SWAT Literature Database for Peer-Reviewed Journal Articles

Title:
fiogf49gjkf0d
Reconstructing missing daily precipitation data using regression trees and artificial neural networks for SWAT streamflow simulation 
Authors:
fiogf49gjkf0d
Kim, J.-W. and Y.A. Pachepsky 
Year:2010 
Journal:Journal of Hydrology 
Volume:394(3-4) 
Pages:305-314 
Article ID: 
DOI:10.1016/j.jhydrol.2010.09.005 
URL (non-DOI journals): 
Model:SWAT 
Broad Application Category:hydrologic only 
Primary Application Category:climate data effects 
Secondary Application Category:hydrologic assessment 
Watershed Description:
fiogf49gjkf0d
Central portion of the Chesapeake Bay region in the eastern United States 
Calibration Summary:
fiogf49gjkf0d
 
Validation Summary: 
General Comments: 
Language:English 
Keywords:Artificial neural network, Precipitation, Reconstruction missing data, Regression tree, Streamflow