SWAT Literature Database for Peer-Reviewed Journal Articles

Title:River flow forecasting with artificial neural networks using satellite observed precipitation pre-processed with flow length and travel time information: case study of the Ganges river basin 
Authors:Akhtar, M.K., G.A. Corzo, S.J. van Andel, and A. Jonoski 
Journal:Hydrology and Earth System Sciences 
Article ID: 
URL (non-DOI journals):http://www.hydrol-earth-syst-sci.net/13/1607/2009/hess-13-1607-2009.pdf 
Broad Application Category:hydrologic only 
Primary Application Category:model comparison 
Secondary Application Category:hydrologic assessment 
Watershed Description:907,000 km^2 Ganges India and Bangladesh 
Calibration Summary: 
Validation Summary: 
General Comments:SWAT was used in a minor way in this study. The main results were generated with the ANN model. 
Abstract:This paper explores the use of flow length and travel time as a pre-processing step for incorporating spatial precipitation information into Artificial Neural Network (ANN) models used for river flow forecasting. Spatially distributed precipitation is commonly required when modelling large basins, and it is usually incorporated in distributed physically-based hydrological modelling approaches. However, these modelling approaches are recognised to be quite complex and expensive, especially due to the data collection of multiple inputs and parameters, which vary in space and time. On the other hand, ANN models for flow forecasting are frequently developed only with precipitation and discharge as inputs, usually without taking into consideration the spatial variability of precipitation. Full inclusion of spatially distributed inputs into ANN models still leads to a complex computational process that may not give acceptable results. Therefore, here we present an analysis of the flow length and travel time as a basis for pre-processing remotely sensed (satellite) rainfall data. This pre-processed rainfall is used together with local stream flow measurements of previous days as input to ANN models. The case study for this modelling approach is the Ganges river basin. A comparative analysis of multiple ANN models with different hydrological pre-processing is presented. The ANN showed its ability to forecast discharges 3-days ahead with an acceptable accuracy. Within this forecast horizon, the influence of the pre-processed rainfall is marginal, because of dominant influence of strongly auto-correlated discharge inputs. For forecast horizons of 7 to 10 days, the influence of the preprocessed rainfall is noticeable, although the overall model performance deteriorates. The incorporation of remote sensing data of spatially distributed precipitation information as pre-processing step showed to be a promising alternative for the setting-up of ANN models for river flow forecasting