SWAT Literature Database for Peer-Reviewed Journal Articles

Title:A new temperature-vegetation triangle algorithm with variable edges (TAVE) for satellite-based actual evapotranspiration estimation 
Authors:Zhang, H., S.M. Gorelick, N. Avisse, A. Tilmant, D. Rajsekhar and J. Yoon 
Journal:Remote Sensing 
Article ID:735 
URL (non-DOI journals): 
Broad Application Category:hydrologic only 
Primary Application Category:evapotranspiration assessment 
Secondary Application Category:none 
Watershed Description:42,046 km^2 drainage area located in western Jordan. 
Calibration Summary: 
Validation Summary: 
General Comments: 
Abstract:The estimation of spatially-variable actual evapotranspiration (AET) is a critical challenge to regional water resources management. We propose a new remote sensing method, the Triangle Algorithm with Variable Edges (TAVE), to generate daily AET estimates based on satellite-derived land surface temperature and the vegetation index NDVI. The TAVE captures heterogeneity in AET across elevation zones and permits variability in determining local values of wet and dry end-member classes (known as edges). Compared to traditional triangle methods, TAVE introduces three unique features: (i) the discretization of the domain as overlapping elevation zones; (ii) a variable wet edge that is a function of elevation zone; and (iii) variable values of a combined-effect parameter (that accounts for aerodynamic and surface resistance, vapor pressure gradient, and soil moisture availability) along both wet and dry edges. With these features, TAVE effectively addresses the combined influence of terrain and water stress on semi-arid environment AET estimates. We demonstrate the effectiveness of this method in one of the driest countries in the world—Jordan, and compare it to a traditional triangle method (TA) and a global AET product (MOD16) over different land use types. In irrigated agricultural lands, TAVE matched the results of the single crop coefficient model (-3%), in contrast to substantial overestimation by TA (+234%) and underestimation by MOD16 (-50%). In forested (non-irrigated, water consuming) regions, TA and MOD16 produced AET average deviations 15.5 times and -3.5 times of those based on TAVE. As TAVE has a simple structure and low data requirements, it provides an efficient means to satisfy the increasing need for evapotranspiration estimation in data-scarce semi-arid regions. This study constitutes a much needed step towards the satellite-based quantification of agricultural water consumption in Jordan. 
Keywords:evapotranspiration; remote sensing; triangle method; water stress; water resources