SWAT Literature Database for Peer-Reviewed Journal Articles

Title:An improved representation of vegetative filter strips in SWAT 
Authors:Cibin, R., I. Chaubey, M. Helmers, K.P. Sudheer, M.J. White and J.G. Arnold 
Year:2018 
Journal:Transactions of the ASABE 
Volume:61(3) 
Pages:1017-1024 
Article ID: 
DOI:10.13031/trans.12661 
URL (non-DOI journals): 
Model:SWAT (modified) 
Broad Application Category:hydrologic & pollutant 
Primary Application Category:BMP assessment 
Secondary Application Category:model comparison 
Watershed Description:Three plots of paired drainage areas, ranging in size from 0.5 to 32 ha, located in central Iowa, U.S. 
Calibration Summary: 
Validation Summary: 
General Comments: 
Abstract:Vegetative filter strips (VFS) are popular conservation practices installed at the edges of agricultural fields to reduce losses of pollutants from agricultural areas to receiving waterbodies. The recent interest in using VFS areas as multifunctional landscapes necessitates an improved depiction of VFS in simulation models. This study is aimed to enhance the physical representation of VFS in the Soil and Water Assessment Tool (SWAT) to improve the representation of ecohydrologic processes and land management practices in VFS areas. The proposed enhancement enables routing of water, sediment, and nutrients from the source area through the VFS area and makes the infiltrated water and nutrients available for filter crop uptake. The improvements are implemented in SWAT by modifying input files through Matlab scripts and by changing SWAT subroutines to enable routing. The model improvements are tested with three paired watershed studies with and without edge-of-field VFS in central Iowa. The improved model estimated 46% runoff reduction, 91% sediment reduction, 83% total phosphorus reduction, and 54% nitrate reduction with VFS, and these estimates closely matched the measured VFS reductions. The improved model was able to represent increased infiltration, soil moisture, and denitrification in the VFS area, along with accurately capturing crop yields in the source and VFS areas. Overall, the results indicate improved physical representation of VFS in SWAT. 
Language:English 
Keywords:Conservation measures, Flexible buffer strips, Multifunctional buffers, SWAT model, Vegetative filter strips.