SWAT Literature Database for Peer-Reviewed Journal Articles

Title:Long term quantification of climate and land cover change impacts on streamflow in an Alpine River catchment, northwestern China. 
Authors:Yin, Z., Q. Feng, L. Yang, X. Wen, J. Si and S. Zou 
Year:2017 
Journal:Sustainability 
Volume (Issue):9(7) 
Pages: 
Article ID:1278 
DOI:10.3390/su9071278 
URL (non-DOI journals): 
Model:SWAT 
Broad Application Category:hydrologic only 
Primary Application Category:climate change and land use change 
Secondary Application Category:hydrologic assessment 
Watershed Description:10,018 km^2 Yingluoxia River, a tributary of the Heihe River located in northwest China. 
Calibration Summary: 
Validation Summary: 
General Comments: 
Abstract:Quantifying the long term impacts of climate and land cover change on streamflow is of great important for sustainable water resources management in inland river basins. The Soil and Water Assessment Tool (SWAT) model was employed to simulate the streamflow in the upper reaches of Heihe River Basin, northwestern China, over the last half century. The Sequential Uncertainty Fitting algorithm (SUFI-2) was selected to calibrate and validate the SWAT model. The results showed that both Nash-Sutcliffe efficiency (NSE) and determination coefficient (R 2 ) were over 0.93 for calibration and validation periods, the percent bias (PBIAS) of the two periods were—3.47% and 1.81%, respectively. The precipitation, average, maximum, and minimum air temperature were all showing increasing trends, with 14.87 mm/10 years, 0.30 ◦C/10 years, 0.27 ◦C/10 year, and 0.37 ◦C/10 years, respectively. Runoff coefficient has increased from 0.36 (averaged during 1964 to 1988) to 0.39 (averaged during 1989 to 2013). Based on the SWAT simulation, we quantified the contribution of climate and land cover change to streamflow change, indicated that the land cover change had a positive impact on river discharge by increasing 7.12% of the streamflow during 1964 to 1988, and climate change contributed 14.08% for the streamflow increasing over last 50 years. Meanwhile, the climate change impact was intensive after 2000s. The increasing of streamflow contributed to the increasing of total streamflow by 64.1% for cold season (November to following March) and 35.9% for warm season (April to October). The results provide some references for dealing with climate and land cover change in an inland river basin for water resource management and planning 
Language:English 
Keywords:streamflow; climate change; land cover change; Heihe River Basin; SWAT