SWAT Literature Database for Peer-Reviewed Journal Articles

Title:Water budget in a tile drained watershed under future climate change using SWATDRAIN model 
Authors:Golmohammadi, G., R. Rudra, S. Prasher, A. Madani, K. Mohammadi, P. Goel and P. Daggupatti 
Year:2017 
Journal:Climate 
Volume (Issue):5(2) 
Pages: 
Article ID:39 
DOI:10.3390/cli5020039 
URL (non-DOI journals): 
Model:SWATDRAIN 
Broad Application Category:hydrologic and pollutant 
Primary Application Category:climate change 
Secondary Application Category:tile drainage effects and/or processes 
Watershed Description:143 km^2 Canagagigue Creek, a tributary of the Grand River located in southeast Ontario, Canada. 
Calibration Summary: 
Validation Summary: 
General Comments: 
Abstract:The SWATDRAIN model was developed by incorporating the subsurface flow model, DRAINMOD, into a watershed scale surface flow model, SWAT (Soil and Water Assessment tool), to simulate the hydrology and water quality of agricultural watersheds. The model is capable of simulating hydrology under different agricultural management and climate scenarios. As an application of the SWATDRAIN model, the impact of climate change on surface/subsurface flow was evaluated in the Canagagigue Creek watershed in southern Ontario, Canada. Using the assumption that there has been no change in land cover and land management, the model was applied to simulate annual, seasonal, and monthly changes in surface and subsurface flows at the outlet of the watershed under current and future climate conditions. The climate scenario under consideration in this study for 2015–2044 was derived from CGCM2 (Canadian Global Circulation Model 2), with A2 scenario for future climatic simulation. The SWATDRAIN model’s ability to predict the impacts of future climate change scenarios in agricultural watersheds due to monthly NSE (Nash Sutcliffe Efficiency), PBIAS (Percent Bias), and RSR (Root Mean Square Error) values of 0.74, 3.67, and 0.37, respectively, for the validation phase. The results showed that general climate change effects more spring and winter hydrology than summer hydrology. The results show that the annual flow is expected to increase in future, which will lead to an increase in the sediment loads in the stream. 
Language:English 
Keywords:SWATDRAIN; climate change; hydrology; drainage; cold climate