Sort list by: AuthorModelYear
1. A.H. Bandi and N.S. Patil. 2022. Estimation of water balance components for the watershed of Ghataprabha Subbasin. Nature Environment and Pollution Technology. 21(3): 1395-1400. DOI: 10.46488/NEPT.2022.v21i03.048 .
2. Aalami, M.T., H. Abbasi and M.H. Niksokhan. 2018. Comparison of two calibration-uncertainty methods for Soil and Water Assessment Tool in stream flow and total suspended solids modeling. Journal of Water and Soil Science. 28(3): 53-64. URL: https://water-soil.tabrizu.ac.ir/article_8123.html?lang=en.
3. Aalami, M.T., H. Abbasi and V. Nourani. 2018. Sustainable management of reservoir water quality and quantity through reservoir operational strategy and watershed control strategies. International Journal of Environmental Research. 12: 773-788. DOI: 10.1007/s41742-018-0130-y .
4. Aamery, N.A., E. Adams, J. Fox, A. Husic, J. Zhu, M. Gerlitz, C. Agouridis and L. Bettel. 2021. Numerical model development for investigating hydrologic pathways in shallow fluviokarst. Journal of Hydrology. 593: 125844. DOI: 10.1016/j.jhydrol.2020.125844 .
5. Aamery, N.A., J.F. Fox and T. Mahoney. 2021. Variance decomposition of forecasted sediment transport in a lowland watershed using global climate model ensembles. Journal of Hydrology. 602: 126760. DOI: 10.1016/j.jhydrol.2021.126760 .
6. Aawar, T. and D. Khare. 2020. Assessment of climate change impacts on streamfow through hydrological model using SWAT model: A case study of Afghanistan. Modeling Earth Systems and Environment. 6(3): 1427-1437. DOI: 10.1007/s40808-020-00759-0 .
7. Abate, B.Z., A.A. Alaminie, T.T. Assefa, T.B. Tigabu and L. He. 2024. Modeling climate change impacts on blue and green water of the Kobo-Golina River in data-scarce Upper Danakil Basin, Ethiopia. Journal of Hydrology: Regional Studies. 53: 101756. DOI: 10.1016/j.ejrh.2024.101756 .
8. Abate, B.Z., T.T. Assefa, T.B. Tigabu, W.B. Abebe an L. He. 2023. Hydrological modeling of the Kobo-Golina River in the data-scarce Upper Danakil Basin, Ethiopia. Sustainability. 15(4): 3337. DOI: 10.3390/su15043337 .
9. Abbas, N., S.A. Wasimi and N. Al-Ansari. 2016. Assessment of climate change impacts on water resources of Khabour in Kurdistan, Iraq using SWAT model. Journal of Environmental Hydrology. 24(10): 1-21. URL: http://www.hydroweb.com/journal-hydrology-2016-paper-10.html.
10. Abbas, N., S.A. Wasimi, N. Al-Ansari and S.N. Baby. 2018. Recent trends and long-range forecasts of water resources of northeast Iraq and climate change adaptation measures. Water. 10(11): 1562. DOI: 10.3390/w10111562 .
11. Abbas, S., Y. Xuan and R. Bailey. 2022. Assessing Climate Change Impact on Water Resources in Water Demand Scenarios Using SWAT-MODFLOW-WEAP. Hydrology. 9: 164. DOI: 10.3390/hydrology9100164 .
12. Abbas, S.A. and Y. Xuan. 2019. Development of a new quantile-based method for the assessment of regional water resources in a highly-regulated river basin. Water Resources Management. 33: 3187–3210. DOI: 10.1007/s11269-019-02290-z .
13. Abbas, S.A. and Y. Xuan. 2020. Impact of precipitation pre-processing methods on hydrological model performance using high-resolution gridded dataset. Water. 12(3): 840. DOI: 10.3390/w12030840 .
14. Abbas, S.A., R.T. Bailey, J.T. White, J.G. Arnold, M.J. White, N. Čerkasova and J. Gao. 2024. A framework for parameter estimation, sensitivity analysis, and uncertainty analysis for holistic hydrologic modeling using SWAT+. Hydrology and Earth System Sciences. 28(1): 21–48. DOI: 10.5194/hess-28-21-2024 .
15. Abbas, S.A., R.T. Bailey, M.K. Almahawis, J.T. White, J.G. Arnold and M.J. White. 2024. Calibration guide for watershed modeling with distributed groundwater modeling: Application for the SWAT+ model. Hydrological Sciences Journal. DOI: 10.1080/02626667.2024.2393414 .
16. Abbas, T., F. Hussain, G. Nabi, M.W. Boota and R.S. Wu. 2019. Uncertainty evaluation of SWAT model for snowmelt runoff in a Himalayan watershed. Terrestrial, Atmospheric and Oceanic Sciences. 30(2): 265-279. DOI: 10.3319/TAO.2018.10.08.01 .
17. Abbas, T., G. Nabi, M.W. Boota, F. Hussain, M.I. Azam, H. Jin and M. Faisal. 2016. Uncertainty analysis of runoff and sedimentation in a forested watershed using sequential uncertainty fitting method. Sciences in Cold and Arid Regions. 8(4): 297-310. URL: http://www.scar.ac.cn/EN/10.3724/SP.J.1226.2016.00297.
18. Abbasi, A., M. Amirabadizedeh, A.A. Afshar and M. Yaghoobzadeh. 2022. Potential influence of climate and land-use changes on green water security in a semi-arid catchment. Journal of Water and Climate Change. 13(1): 287-303. DOI: 10.2166/wcc.2021.055 .
19. Abbasi, H. and L. Malekani. 2019. Runoff modeling and estimation of runoff changes due to climatic and human factors. Iranian Journal of Irrigation and Drainage . 13(2): 475-485. URL: https://idj.iaid.ir/article_92976.html?lang=en.
20. Abbasi, H., M. Delavar, R.B. Nalbandan and M.H. Shahdany. 2020. Robust strategies for climate change adaptation in the agricultural sector under deep climate uncertainty. Stochastic Environmental Research and Risk Assessment. 34(6): 755–774. DOI: 10.1007/s00477-020-01782-4 .
21. Abbasi, H., M.T. Aalami, M.H. Niksokhan and L. Malekani. 2022. Multi-objective optimization to manage reservoir water quality and quantity via selective withdrawal and watershed control. Sustainable Earth Review. 2(2): 1-14. URL: https://sustainearth.sbu.ac.ir/article_102538.html.
22. Abbasi, Y., C.M. Mannaerts and W. Makau. 2019. Modeling pesticide and sediment transport in the Malewa River Basin (Kenya) using SWAT. Water. 11: 87. DOI: 10.3390/w11010087 .
23. Abbaspour, K.C. 2021. The fallacy in the use of the “best-fit” solution in hydrologic modeling. Science of the Total Environment. 802: 149713. DOI: 10.1016/j.scitotenv.2021.149713 .
24. Abbaspour, K.C., E. Rouholahnejad, S. Vaghefi, R. Srinivasan, H. Yang and B. Kløve. 2015. A continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model. Journal of Hydrology. 524: 733–752. DOI: 10.1016/j.jhydrol.2015.03.027 .
25. Abbaspour, K.C., J. Yang, I. Maximov, R. Siber, K. Bogner, J. Mieleitner, J. Zobrist and R. Srinivasan. 2006. Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. Journal of Hydrology. 333(2-4): 413-430. DOI: 10.1016/j.jhydrol.2006.09.014 .
26. Abbaspour, K.C., M. Faramarzi, S.S. Ghasemi and H. Yang. 2009. Assessing the impact of climate change on water resources in Iran. Water Resources Research. 45: 1-16. DOI: 10.1029/2008WR007615 .
27. Abbaspour, K.C., S. Ashraf Vaghefi, H. Yang and R. Srinivasan. 2019. Global soil, landuse, evapotranspiration, historical and future weather databases for SWAT applications. Scientific Data. 6: 263. DOI: 10.1038/s41597-019-0282-4 .
28. Abbaspour, K.C., S.A. Vaghefi and R. Srinivasan. 2018. A guideline for successful calibration and uncertainty analysis for Soil and Water Assessment: A review of papers from the 2016 International SWAT Conference. Water. 10(1): 6. DOI: 10.3390/w10010006 .
29. Abdelwahab O.M.M., G.F. Ricci, A.M. De Girolamo and F. Gentile. 2018. Modelling soil erosion in a Mediterranean watershed: Comparison between SWAT and AnnAGNPS models. Environmental Research. 166: 363-376. DOI: 10.1016/j.envres.2018.06.029 .
30. Abdouramane, G.D., H. Karambiri, O. Seidou, K. Sittichok, J.E. Paturel and H.M. Saley. 2015. Statistical seasonal streamflow forecasting using probabilistic approach over West African Sahel. Natural Hazards. 79(2): 699-722. DOI: 10.1007/s11069-015-1866-8 .
31. Abdulai, P.J. and E.S. Chung. 2019. Uncertainty assessment in drought severities for the Cheongmicheon Watershed using multiple GCMs and the reliability ensemble averaging method. Sustainability. 11(16): 4283. DOI: 10.3390/su11164283 .
32. Abdule, A.M., A. Muluneh and A. Woldemichael. 2023. Impact of climate and land use/land cover changes in streamflow in Yadot Watershed, Genale Dawa Basin, Ethiopia. Air, Soil and Water Research. 16: 1-15. DOI: 10.1177/11786221231200106 .
33. Abdulkareem, J.H., B. Pradhan, W.N.A. Sulaiman and N. R. Jamil. 2018. Review of studies on hydrological modelling in Malaysia. Modeling Earth Systems and Environment. 4(4): 1577-1605. DOI: 10.1007/s40808-018-0509-y .
34. Abdulla, F.A. and T. Eshtawi. 2007. Application of Automated Geospatial Watershed Assessment (AGWA) tool to evaluate the sediment yield in a semi-arid region: Case study, Kufranja Basin-Jordan. Jordan Journal of Civil Engineering. 1(3): 234-244. URL: https://jjce.just.edu.jo/issues/show_paper.php?pid=21.
35. Abdullah, F., W.B. Mamoon, AKM S. Islam , GM T. Islam, S.K. Bala, S. Kaiser, K. Mohammed, M. Billah and M.K. Das. 2024. Hydrological responses of the Brahmaputra river basin using CMIP6 GCM projections for supporting climate resilient infrastructure design. Sustainable and Resilient Infrastructure. DOI: 10.1080/23789689.2024.2371741 .
36. Abe, C.A., F. de L. Lobo, E.M.L. de M. Novo, M. Costa and Y. Dibike. 2019. Modeling the effects of land cover change on sediment concentrations in a gold-mined Amazonian basin. Regional Environmental Change. 19(6): 1801–1813. DOI: 10.1007/s10113-019-01513-8 .
37. Abe, C.A., F. de Lucia Lobo, Y.B. Dibike, M.P. de Farias Costa, V. dos Santos and E.M.L.M. Novo. 2018. Modelling the ffects of historical and future land cover changes on the hydrology of an Amazonian Basin. Water. 10(7): 932. DOI: 10.3390/w10070932 .
38. Abebe W.B. S.A. Tilahun, M.M. Moges, A. Wondie, M.G. Dersseh, W.W. Assefa, D.A. Mhiret, A.A. Adem, F.A. Zimale, W. Abera, T.S. Steenhuis and M.E. McClain. 2021. Ecological status as the basis for the holistic environmental flow assessment of a tropical highland river in Ethiopia. Water. 13(14): 1913. DOI: 10.3390/w13141913 .
39. Abebe, B.K., F.A. Zimale, K.K. Gelaye, T. Gashaw, E.G. Dagnaw and A.A. Adem. 2022. Application of hydrological and sediment modeling with limited data in the Abbay (Uppe Blue Nile) Basin, Ethiopia. Hydrology. 9(10): 167. DOI: 10.3390/hydrology9100167 .
40. Abebe, T. and B. Gebremariam. 2019. Modeling runoff and sediment yield of Kesem Dam Watershed, Awash Basin, Ethiopia. SN Applied Sciences. 1: 446. DOI: 10.1007/s42452-019-0347-1 .
41. Abera, F.F. and A. Shumete. 2021. Optimal operation of cascade reservoir systems under climate change: Case study of Tekeze Hydropower Reservoir in the tributary of the Blue Nile River. Abyssinia Journal of Engineering & Computing. 1(2): 31-46. DOI: 10.20372/ajec.2021.v1.i2.242 .
42. Abera, F.F., D.H. Asfaw, A.N. Engida and A.M. Melesse. 2018. Optimal operation of hydropower reservoirs under climate change: The case of Tekeze Reservoir, Eastern Nile. Water. 10(3): 273. DOI: 10.3390/w10030273 .
43. Abesh, B.F., L. Jin and J.A. Hubbart. 2022. Predicting climate change impacts on water balance components of a mountainous watershed in the northeastern USA. Water. 14(20): 3349. DOI: 10.3390/w14203349 .
44. Abeysingha, N.S., A. Islam and M. Singh. 2020. Assessment of climate change impact on flow regimes over the Gomti River Basin under IPCC AR5 climate change scenarios. Journal of Water and Climate Change. 11(1): 303-326. DOI: 10.2166/wcc.2018.039 .
45. Abeysingha, N.S., M. Singh, A. Islam and V.K. Sehgal. 2016. Climate change impacts on irrigated rice and wheat production in Gomti River basin of India: A case study. SpringerPlus. 5: 1250. DOI: 10.1186/s40064-016-2905-y .
46. Abeysingha, N.S., M. Singh, A. Islam, M. Khanna, V.K. Sehgal and H. Pathak. 2017. Impacts of Climate Change on Stream Flow in the Gomti River Basin of India. Journal of Agricultural Engineering (India). 54(4): 49-63. DOI: 10.52151/jae2017544.1639 .
47. Abeysingha, N.S., M. Singh, V.K. Sehgal, M. Khanna, H. Pathak, P. Jayakody and R. Srinivasan. 2015. Assessment of water yield and evapotranspiration over 1985 to 2010 in the Gomti River basin in India using the SWAT model. Current Science. 108(12): 2202-2212. URL: https://www.jstor.org/stable/24905656.
48. Abimbola, O., A. Mittelstet, T. Messer, E. Berry and A. van Griensven. 2021. Modeling and prioritizing interventions using pollution hotspots for reducing nutrients, atrazine and e. coli concentrations in a watershed. Sustainability. 13(1): 103. DOI: 10.3390/su13010103 .
49. Abimbola, O., A. Mittelstet, T. Messer, E. Berry and A.V. Griensven. 2021. Modeling and prioritizing interventions using pollution hotspots for reducing nuctrients, atrazine and e. coli oncentrations in a watershed. Sustainability. 13(1): 103. DOI: 10.3390/su13010103 .
50. Abiodun, O.O., H. Guan, V.E.A. Post and O. Batelaan. 2018. Comparison of MODIS and SWAT evapotranspiration over a complex terrain at different spatial scales. Hydrology and Earth System Sciences. 22(5): 2775-2794. DOI: 10.5194/hess-22-2775-2018 .
51. Abitew, T.A., J. Arnold, J. Jeong, A. Jones and R. Srinivasan. 2023. Innovative approach to prognostic plant growth modeling in SWAT+ for forest and perennial vegetation in tropical and sub-tropical climates. Journal of Hydrology X. 20: 100156. DOI: 10.1016/j.hydroa.2023.100156 .
52. Abi-Zreig, M. and L.B. Hani. 2021. Assessment of the SWAT model in simulating watersheds in arid regions: Case study of the Yarmouk River Basin (Jordan). Open Geoscience. 13(1): 377-389. DOI: 10.1515/geo-2020-0238 .
53. Aboelnour, M., M.W. Gitau and B.A. Engel. 2019. Hydrologic response in an urban watershed as affected by climate and land-use change. Water. 11(8): 1603. DOI: 10.3390/w11081603 .
54. Aboelnour, M., M.W. Gitau and B.A. Engel. 2020. A Comparison of streamflow and baseflow responses to land-use change and the variation in climate parameters using SWAT. Water. 12(1): 191. DOI: 10.3390/w12010191 .
55. Abouabdillah, A., M. White, J.G. Arnold, A.M. De Girolamo, O. Oueslati, A. Maataoui and A. Lo Porto. 2014. Evaluation of soil and water conservation measures in a semi-arid river basin in Tunisia using SWAT. Soil Use and Management. 30(4): 539-549. DOI: 10.1111/sum.12146 .
56. Abouali, M, A.P. Nejadhashemi, F. Daneshvar, M.R. Herman, U. Adhikari, T.J. Calappi and J.P. Selegean. 2018. Evaluation of the effectiveness of conservation practices under implementation site uncertainty. Journal of Environmental Management. 228: 197-204. DOI: 10.1016/j.jenvman.2018.09.035 .
57. Abouali, M., A.P. Nejadhashemi, F. Daneshvar and S.A. Woznicki. 2016. Two-phase approach to improve stream health modeling. Ecological Informatics. 34: 13-21. DOI: 10.1016/j.ecoinf.2016.04.009 .
58. Abouali, M., A.P. Nejadhashemi, F. Daneshvar, U. Adhikari, M.R. Herman, T.J. Calappi and B.G. Rohn. 2017. Evaluation of wetland implementation strategies on phosphorus reduction at a watershed scale. Journal of Hydrology. 552: 105-120. DOI: 10.1016/j.jhydrol.2017.06.038 .
59. Abouali, M., F. Daneshvar and A.P. Nejadhashemi. 2016. MATLAB Hydrological Index Tool (MHIT): A high performance library to calculate 171 ecologically relevant hydrological indices. Ecological Informatics. 33: 17-23. DOI: 10.1016/j.ecoinf.2016.03.004 .
60. Abraham, T., A. Muluneh, R. Girma, A. Hartmann and S. Tekleab. 2022. Quantifying sensitivity of groundwater recharge to land use and land cover changes by improving model performance on the wetland dominated Tikur Wuha Watershed, Ethiopia. Water Cycle. 3: 112-125. DOI: 10.1016/j.watcyc.2022.08.002 .
61. Abu-Allaban, M., A. El-Naqa, M. Jaber and N. Hammouri. 2014. Water scarcity impact of climate change in semi-arid regions: a case study in Mujib basin, Jordan. Arabian Journal of Geosciences. 8(2): 951-959. DOI: 10.1007/s12517-014-1266-5 .
62. Abubakari, S., X. Dong, B. Su, X. Hu, J. Liu, Y. Li, T. Peng, H. Ma, K. Wang and S. Xu. 2019. Modelling streamflow response to climate change in data-scarce White Volta River Basin of West Africa using a semi-distributed hydrologic model. Journal of Water and Climate Change. 10(4): 907-930. DOI: 10.2166/wcc.2018.193 .
63. Abuhay, W., T. Gashaw and L. Tsegaye. 2023. Assessing impacts of land use/land cover changes on the hydrology of Upper Gilgel Abbay Watershed using the SWAT model. Journal of Agricultural and Food Chemistry. 12: 100535. DOI: 10.1016/j.jafr.2023.100535 .
64. Abunada, Z. Y. Kishawi, T.M. Alslaibi, N. Kaheil and A. Mittelstet. 2021. The application of SWAT-GIS tool to improve the recharge factor in the DRASTIC framework: Case study. Journal of Hydrology. 592: 125613. DOI: 10.1016/j.jhydrol.2020.125613 .
65. Acero Triana, J.S. and H. Ajami. 2022. Identifying major hydrologic change drivers in a highly managed transboundary endorheic basin: Integrating hydro-ecological models and time series data mining techniques. Water Resources Research. 58(8): e2022WR032281. DOI: 10.1029/2022WR032281 .
66. Acero Triana, J.S., M.L. Chu, J.A. Guzman, D.L. Moriasi and J.L. Steiner. 2019. Beyond model metrics: The perils of calibrating hydrologic models. Journal of Hydrology. 578: 124032. DOI: 10.1016/j.jhydrol.2019.124032 .
67. Acero Triana, J.S., M.L. Chu, J.A. Guzman, D.L. Moriasi and J.L. Steiner. 2020. Evaluating the risks of groundwater extraction in an agricultural landscape under different climate projections. Water. 12(2): 400. DOI: 10.3390/w12020400 .
68. Acharki, S., S. Taia, Y. Arjdal and J. Hack. 2023. Hydrological modeling of spatial and temporal variations in streamflow due to multiple climate change scenarios in northwestern Morocco. Climate Services. 30: 100388. DOI: 10.1016/j.cliser.2023.100388 .
69. Acharya, A. 2017. Quantification of modeled streamflows under climate change over the Flint River Watershed in northern Alabama. Journal of Hydrologic Engineering. 22(9): 04017032. DOI: 10.1061/(ASCE)HE.1943-5584.0001549 .
70. Acharya, A. 2018. Evaluating the suitability of application of hydrological models in a mixed land use watershed. Journal of Water Management Modeling. 26: C456. DOI: 10.14796/JWMM.C456 .
71. Acharya, B. and H. Blanco-Canqui. 2018. Lignocellulosic-based bioenergy and water quality parameters: A review. Global Change Biology Bioenergy. 10: 504-533. DOI: 10.1111/gcbb.12508 .
72. Acharyya, R., A. Mukhopadhyay and M. Habel. 2023. Coupling of SWAT and DSAS models for assessment of retrospective and prospective transformations of river deltaic estuaries. Remote Sensing. 15(4): 958. DOI: 10.3390/rs15040958 .
73. Acharyya, R., N. Pramanick, S. Mukherjee, S. Ghosh, A. Chanda, I. Pal, D. Mitra and A. Mukhopadhyay. 2022. Evaluation of catchment hydrology and soil loss in non‑perennial river system: a case study of Subarnarekha Basin, India. Modeling Earth Systems and Environment. 8(2): 2401-2429. DOI: 10.1007/s40808-021-01231-3 .
74. Acuña, M.J.E. and C.R.Z. Martínez. 2022. Application of hydrological model SWAT in hydrographic units in Nicaragua: Simulation of surface runoff. Recursos Naturales y Ambiente. 21(36): 24-29. DOI: 10.5377/calera.v22i38.14116 .
75. Addis, H.K., S. Strohmeier, F. Ziadat, N.D. Melaku and A.Klik. 2016. Modeling streamflow and sediment using SWAT in Ethiopian Highlands. International Journal of Agricultural and Biological Engineering. 9(5): 51-66. DOI: 10.3965/j.ijabe.20160905.2483 .
76. Adeba, D., M.L. Kansal and S. Sen. 2015. Assessment of water scarcity and its impacts on sustainable development in Awash Basin, Ethiopia. Sustainable Water Resources Management. 1(1): 71-87. DOI: 10.1007/s40899-015-0006-7 .
77. Adeba, D., M.L. Kansal and S. Sen. 2016. Economic evaluation of the proposed alternatives of inter-basin water transfer from the Baro Akobo to Awash basin in Ethiopia. Sustainable Water Resources Management. 2(3): 313–330. DOI: 10.1007/s40899-016-0058-3 .
78. Adem, A.A., Y.T. Dile, A.W. Worqlul, E.K. Ayana, S.A. Tilahun and T.S. Steenhuis. 2020. Assessing digital soil inventories for predicting streamflow in the headwaters of the Blue Nile. Hydrology. 7(1): 8. DOI: 10.3390/hydrology7010008 .
79. Adeogun, A.G., B.A. Ibitoye, A.W. Salami and G.T. Ihagh. 2020. Sustainable management of erosion prone areas of upper watershed of Kainji Hydropower Dam, Nigeria. Journal of King Saud University - Engineering Sciences. 32(1): 5-10. DOI: 10.1016/j.jksues.2018.05.001 .
80. Adeogun, A.G., B.F. Sule and A.W. Salami. 2015. Simulation of sediment yield at the upstream watershed of Jebba Lake in Nigeria using SWAT Model. Malaysian Journal of Civil Engineering. 27(1): 25-40. URL: https://journals.utm.my/mjce/article/view/15906.
81. Adeogun, A.G., B.F. Sule and A.W. Salami. 2018. Cost effectiveness of sediment management strategies for mitigation of sedimentation at Jebba Hydropower reservoir, Nigeria. Journal of King Saud University - Engineering Sciences. 30(2): 141-149. DOI: 10.1016/j.jksues.2016.01.003 .
82. Adeogun, A.G., E.O. Adeyemi and H.O. Ganiyu. 2022. GIS-based prediction and comparitive analysis of potential evapotranspiration using selected methods at Omi-Kampe Watershed, Nigeria. Nigerian Journal of Technology. 41(2): 396-407. DOI: 10.4314/njt.v41i2.22 .
83. Adeogun, A.G., H.O. Ganiyu, A.B. Okunade and O.T. Amoo. 2022. Modelling the impacts of selected watershed management strategies on sediment reduction upstream of Shiroro Dam, Nigeria. Journal of Engineering Studies and Research. 28(4): 7-17. DOI: 10.29081/jesr.v28i4.001 .
84. Adeogun, A.G., H.O. Ganiyu, L.L. Ladokun and B.A. Ibitoye. 2020. Evaluation of hydrokinetic energy potentials of selected rivers in Kwara State, Nigeria. Environmental Engineering Research. 25(3): 267-273. DOI: 10.4491/eer.2018.028 .
85. Adeogun, B.K., S.U. Bello and I.M. Sanni. 2019. Hydrological modelling of Kangimi Dam Watershed using GIS and SWAT model. ANNALS of Faculty Engineering Hunedoara. 17(2): 165-170. URL: http://annals.fih.upt.ro/pdf-full/2019/ANNALS-2019-2-23.pdf.
86. Adhikari, R.K., S. Mohanasundaram and S. Shrestha. 2020. Impacts of land-use changes on the groundwater recharge in the Ho Chi Minh City, Vietnam. Environmental Research. 185: 109440. DOI: 10.1016/j.envres.2020.109440 .
87. Adhikari, U. and P. Nejadhashemi. 2016. Impacts of climate change on water resources in Malawi. Journal of Hydrologic Engineering. 21(11): 05016026. DOI: 10.1061/(ASCE)HE.1943-5584.0001436 .
88. Adhikary, P.P., D.R. Sena, C.J. Dash, U. Mandal, S. Nanda, M. Madhu, D.C. Sahoo and P.K. Mishra. 2019. Effect of calibration and validation decisions on streamflow modeling for a heterogeneous and low runoff–producing river basin in India. Journal of Hydrologic Engineering. 24(7): 05019015. DOI: 10.1061/(ASCE)HE.1943-5584.0001792 .
89. Adib, M.N.M., M.K. Rowshon, M.A. Mojid and I. Habibu. 2020. Projected streamflow in the Kurau River Basin of western Malaysia under future climate scenarios. Scientific Reports. 10: 8336. DOI: 10.1038/s41598-020-65114-w .
90. Adjei, K. A., L. Ren, E. K. Appiah-Adjei and S. N. Odai. 2015. Application of satellite-derived rainfall for hydrological modelling in the data-scarce Black Volta trans-boundary basin. Hydrology Research. 46(5): 777-791. DOI: 10.2166/nh.2014.111 .
91. Adla, S., S. Tripathi and M. Disse. 2019. Can We Calibrate a Daily Time-Step Hydrological Model Using Monthly Time-Step Discharge Data? Water. 11 (9): 1750. DOI: 10.3390/w11091750 .
92. Admas, B.F., T. Gashaw, A.A. Adem, A.W. Worqlul, Y.T. Dile and E. Molla. 2022. Identification of soil erosion hot-spot areas for prioritization of conservation measures using the SWAT model in Ribb Watershed, Ethiopia. Resources, Environment and Sustainability. 8: 100059. DOI: 10.1016/j.resenv.2022.100059 .
93. Adnan, M., K. Shi-Chang, Z. Guo-Shuai, M.N. Anjum, M. Zaman and Z. Yu-Qing. 2019. Evaluation of SWAT model performance on glaciated and non-glaciated subbasins of Nam Co Lake, southern Tibetan Plateau, China. Journal of Mountain Science. 16(5): 1075-1097. DOI: 10.1007/s11629-018-5070-7 .
94. Adnan, M., S. Kang, G. Zhang, M. Saifullah, M.N. Anjum and A.F. Ali. 2019. Simulation and analysis of the water balance of the Nam Co Lake using SWAT model. Water. 11(7): 1383. DOI: 10.3390/w11071383 .
95. Adnan, M., S. Kang, M. Saifullah, S. Liu, G. Zhang, Q. Zhao, M.A. Faiz and M. Zaman. 2021. Prediction of changes in water balance of Nam Co Lake under projected climate change scenarios. Hydrological Sciences Journal. 66(11): 1712-1727. DOI: 10.1080/02626667.2021.1957474 .
96. Adu, J.T. and M.V. Kumarasamy. 2018. Assessing non-point source pollution models: A review. Polish Journal of Environmental studies. 27(5): 1913-1922. DOI: 10.15244/pjoes/76497 .
97. Affuso, E. and L.M. Duzy. 2013. The impact of US biofuel policy on agricultural production and nitrogen loads in Alabama. Economics Research International. : 521254. DOI: 10.1155/2013/521254 .
98. Afifa, M., A. Dina, E.R. Syofyan and Wisafri. 2020. Mainstay discharge analysis at the bottom of the stem using the Soil Water Assessment Tool ( SWAT). Jurnal Ilmiah Poli Rekayasa. 16(1): 34-42. URL: http://jpr-pnp.com/index.php/jpr/article/view/191.
99. Afinowicz, J.D., C.L. Munster and B.P. Wilcox. 2005. Modeling effects of brush management on the rangeland water budget: Edwards Plateau, Texas. Journal of the American Water Resources Association. 41(1): 181-193. DOI: 10.1111/j.1752-1688.2005.tb03727.x .
100. Afshar, A.A. and Y. Hassanzadeh. 2017. Determination of monthly hydrological erosion severity and runoff in Torogh Dam watershed basin using SWAT and WEPP models. Iranian Journal of Science and Technology, Transactions of Civil Engineering. 41(2): 221–228. DOI: 10.1007/s40996-017-0056-1 .
101. Afshar, A.A. and Y. Hassanzadeh. 2021. A hydrological toolkit to delineate patterns of blue and green water in a regional semi-arid climate in Iran via CMIP5 models. Időjárás. 125(2): 291–319. DOI: 10.28974/idojaras.2021.2.8 .
102. Afshar, A.A., Y. Hassanzadeh and A. Farrokhi. 2020. Study uncertainty of parameters of hydrological model (SWAT) by Differential Evolution Adaptive Metropolis algorithm (DREAM-ZS). Journal of Water and Soil Conservation. DOI: 10.22069/jwsc.2020.17856.3344 .
103. Afshar, A.A., Y. Hassanzadeh, M. Pourreza-Bilondi and A. Ahmadi. 2018. Analyzing long-term spatial variability of blue and green water footprints in a semi-arid mountainous basin with MIROC-ESM model (case study: Kashafrood River Basin, Iran). Theoretical and Applied Climatology. 134(3–4): 885–899. DOI: 10.1007/s00704-017-2309-0 .
104. Afshar, A.A., Y. Hassanzadeh, M. Pourreza‐Bilondi and H. Memarian. 2020. Uncertainty analysis of a continuous hydrological model using DREAM‐ZS Algorithm. Iranian Journal of Science and Technology, Transactions of Civil Engineering. 44: 1403. DOI: 10.1007/s40996-019-00287-7 .
105. Aga, A.O., A.M. Melesse and B. Chane. 2020. An alternative empirical model to estimate watershed sediment yield based on hydrology and geomorphology of the basin in data-scarce Rift Valley Lake Regions, Ethiopia. Revista Geociências. 10: 1-17. DOI: 10.3390/geosciences10010031 .
106. Aga, A.O., B. Chane and A.M. Melesse. 2018. Soil erosion modelling and risk assessment in data scarce rift valley lake regions, Ethiopia. Water. 10(11): 1689. DOI: 10.3390/w10111684 .
107. Aghakhani, M., T. Nasrabadi and A. Vafaeinejad. 2018. Assessment of the effects of land use scenarios on watershed surface runoff using hydrological modelling. Applied Ecology and Environmental Research. 16(3): 2369-2389. DOI: 10.15666/aeer/1603_23692389 .
108. Aghakhani, M., T. Nasrabadi and A.V. Nejad. 2019. Hydrological simulation of Taleqan Watershed using SWAT. Journal of Environmental Science and Technology. 21(9): 147-159. URL: http://jest.srbiau.ac.ir/article_15675.html?lang=en.
109. Aghazadeh, R., M. Shourian and M.J. Salehi. 2024. Assessment of the impact of socio-economic policies on groundwater consumption using a multi-agent-based modeling approach. Water Policy. 26(3): 290–308. DOI: 10.2166/wp.2024.008 .
110. Aghsaei, H., N.M. Dinan, A. Moridi, Z. Asadolahi, M. Delavar, N. Fohrer and P.D. Wagner. 2020. Effects of dynamic land use/land cover change on water resources and sediment yield in the Anzali wetland catchment, Gilan, Iran. Science of the Total Environment. 712: 136449. DOI: 10.1016/j.scitotenv.2019.136449 .
111. Agrawal, N., M.K. Verma and M.P. Tripathi. 2009. Effective Management of Critical Sub-watersheds Using SWAT Model, Remote Sensing and GIS. Agricultural Engineering Today. 33(4): 15-20. URL: https://www.indianjournals.com/ijor.aspx?target=ijor:aet&volume=33&issue=4&article=003.
112. Aguirre, H.D.R., E.G. Pérez, J.U. Gil, J.P.M. Dávila and H.O. Laurel. 2013. Potential to produce Jatropha curcas L. as feedstock for biodiesel in the state of Veracruz. Tropical and Subtropical Agroecosystems. 16(3): 325-339. URL: https://www.revista.ccba.uady.mx/ojs/index.php/TSA/article/view/1469.
113. Ahiablame, L., A.Y. Seshukov, E. Mosase and J. Hong. 2019. Modelling the impacts of grassland to cropland conversion on river flow regimes in Skunk Creek Watershed, Upper Midwest United States. River Research and Applications. 35 (9): 1454-1465. DOI: 10.1002/rra.3512 .
114. Ahiablame, L., T. Sinha, M. Paul, J.-H. Ji and A. Rajib. 2017. Streamflow response to potential land use and climate changes in the James River watershed, Upper Midwest United States. Journal of Hydrology: Regional Studies. 14: 150-166. DOI: 10.1016/j.ejrh.2017.11.004 .
115. Ahialey, E.K., A.T. Kabo–Bah and S. Gyamfi. 2023. Impacts of LULC and climate changes on hydropower generation and development: A systematic review. Heliyon. 9(11): e21247. DOI: 10.1016/j.heliyon.2023.e21247 .
116. Ahl, R.S., S.W. Woods, and H.R. Zuuring. 2008. Hydrologic calibration and validation of SWAT in a snow-dominated Rocky Mountain watershed, Montana, U.S.A. Journal of the American Water Resources Association. 44(6): 1411-1430. DOI: 10.1111/j.1752-1688.2008.00233.x .
117. Ahmad, H.M.N., A. Sinclair, R. Jamieson, A. Madani, D. Hebb, P. Havard and E.K. Yiridoe. 2011. Modeling sediment and nitrogen export from a rural watershed in eastern Canada using the Soil and Water Assessment Tool. Journal of Environmental Quality. 40(4): 1182-1194. DOI: 10.2134/jeq2010.0530 .
118. Ahmad, Z., A. Ashraf, M. Zaheer and H. Bashir. 2015. Hydrological response to environment change in Himalayan watersheds: Assessment from integrated modeling approach. Journal of Mountain Science. 12(4): 972-982. DOI: 10.1007/s11629-013-2892-1 .
119. Ahmad, Z.U., S. Sakib and D.D. Gang. 2016. Nonpoint source pollution. Water Environment Research. 88(10): 1594-1619. DOI: 10.2175/106143016X14696400495497 .
120. Ahmadabadi, A. and Z. Sedighifar. 2018. Prediction of climate change induced hydrogeomorphology by using SDSM in Can Watershed. Journal of Geographical Sciences. 18(51): 103-114. URL: https://jgs.khu.ac.ir/browse.php?a_id=2697&sid=1&slc_lang=en&ftxt=0.
121. Ahmadi A., A.A. Afshar, V. Nourani, M. Pourreza-Bilondi and A.A. Besalatpour. 2020. Assessment of MC&MCMC uncertainty analysis frameworks on SWAT model by focusing on future runoff prediction in a mountainous watershed via CMIP5 models. Journal of Water and Climate Change. 11(4): 1811-1828. DOI: 10.2166/wcc.2019.122 .
122. Ahmadi, M., A. Moeini, H. Ahmadi, B. Motamedvaziri and G.R. Zehtabiyan. 2019. Comparison of the performance of SWAT, IHACRES and artificial neural networks models in rainfall-runoff simulation (case study: Kan Watershed, Iran). Physics and Chemistry of the Earth. 111: 65-77. DOI: 10.1016/j.pce.2019.05.002 .
123. Ahmadi, M., M. Arabi, D.G. Fontane and B.A. Engel. 2015. Application of multicriteria decision analysis with a priori knowledge to identify optimal nonpoint source pollution control plans. Journal of Water Resources Planning and Management. 141(2): 04014054. DOI: 10.1061/(ASCE)WR.1943-5452.0000455 .
124. Ahmadi, M., M. Arabi, D.L. Hoag and B.A. Engel. 2013. A mixed discrete continuous variable multiobjective genetic algorithm for targeted implementation of nonpoint source pollution control practices. Water Resources Research. 49(12): 8344-8356. DOI: 10.1002/2013WR013656 .
125. Ahmadi, M., M. Arabi, J.C. Ascough II, D.G. Fontane and B.A. Engel. 2014. Toward improved calibration of watershed models: Multisite multiobjective measures of information. Environmental Modelling & Software. 59: 135-145. DOI: 10.1016/j.envsoft.2014.05.012 .
126. Ahmadi, M., R. Records and M. Arabi. 2014. Impact of climate change on diffuse pollutant fluxes at the watershed scale. Hydrological Processes. 28(4): 1962-1972. DOI: 10.1002/hyp.9723 .
127. Ahmadia, M., J.C. Ascough II, K.C. DeJonge and M. Arabi. 2014. Multisite-multivariable sensitivity analysis of distributed watershed models: Enhancing the perceptions from computationally frugal methods. Ecological Modelling. 279: 54-67. DOI: 10.1016/j.ecolmodel.2014.02.013 .
128. Ahmadisharaf, E., R.A. Camacho, H.X. Zhang, M.M. Hantush and Y.M. Mohamoud. 2019. Calibration and validation of watershed models and advances in uncertainty analysis in TMDL Studies. Journal of Hydrologic Engineering. : 03119001. DOI: 10.1061/(ASCE)HE.1943-5584.0001794 .
129. Ahmadzadeh, H. S. Morid and M. Delavar. 2015. Assessment of SWAT Model For Simultaneous Simulation of Streamflow, Actual Evapotranspiration and Crops’ Yield: A Case Study In Zarineh Rud Basin. Journal of Water and Soil. 28(5): 876-889. URL: http://www.magiran.com/magtoc.asp?mgID=5711&Number=2805&Appendix=0&l=en.
130. Ahmadzadeh, H., B. Mansouri, F. Fathian and B. Vaheddoost. 2022. Assessment of water demand reliability using SWAT and RIBASIM models with respect to climate change and operational water projects. Agricultural Water Management. 261: 107377. DOI: 10.1016/j.agwat.2021.107377 .
131. Ahmadzadeh, H., S. Morid, M. Delavar and R. Srinivasan. 2016. Using the SWAT model to assess the impacts of changing irrigation from surface to pressurized systems on water productivity and water saving in the Zarrineh Rud catchment. Agricultural Water Management. 175: 15-28. DOI: 10.1016/j.agwat.2015.10.026 .
132. Ahmed, E., F.A. Janabi, J. Zhang, W. Yang, N. Saddique and P. Krebs. 2020. Hydrologic assessment of TRMM and GPM-based precipitation products in transboundary river catchment (Chenab River, Pakistan). Water. 12(7): 1902. DOI: 10.3390/w12071902 .
133. Ahmed, N., G. Wang, H. Lü, M.J. Booji, H. Marhaento, F.A. Prodhan, S. Ali and M.A. Imran. 2022. Attribution of changes in streamflow to climate change and land cover change in Yangtze River Source Region, China. Water. 14(2): 259. DOI: 10.3390/w14020259 .
134. Ahmed, N., G. Wang, M.J. Booij, S. Xiangyang, F. Hussian and G. Nabi. 2022. Separation of the impact of landuse/landcover change and climate change on runoff in the upstream area of the Yangtze River, China. Water Resources Management. 36(1): 181-201. DOI: 10.1007/s11269-021-03021-z .
135. Ahmed, N., G. Wang, M.J. Booij, H. Merhaento, F.A. Pordhan, S. Ali, S. Munir and M.Z.-u.-R. Hashmi. 2022. Variations in hydrological variables using distributed hydrological model in permafrost environment. Ecological Indicators. 145: 109609. DOI: 10.1016/j.ecolind.2022.109609 .
136. Ahn, J.M. and S. Lyu. 2017. Assessing future river environments in the Seomjin River Basin due to climate change. Journal of Environmental Engineering. 143(5): Article ID: 04017005. DOI: 10.1061/(ASCE)EE.1943-7870.0001188 .
137. Ahn, J.M., T.H. Im, I.J. Lee and S.U. Cheon. 2014. Assessment of future river environment considering climate change and basin runoff characteristics. Journal of Korea Water Resources Association. 47(3): 269-283. DOI: 10.3741/JKWRA.2014.47.3.269 .
138. Ahn, K.-H and V. Merwade. 2017. The effect of land cover change on duration and severity of high and low flows. Hydrological Processes. 31(1): 133–149. DOI: 10.1002/hyp.10981 .
139. Ahn, S. and S. Kim. 2019. Assessment of watershed health, vulnerability and resilience for determining protection and restoration priorities. Environmental Modelling & Software. 122: 103926. DOI: 10.1016/j.envsoft.2017.03.014 .
140. Ahn, S. and Z. Sheng. 2021. Assessment of water availability and scarcity based on hydrologic components in an irrigated agricultural watershed using SWAT. Journal of the American Water Resources Association. 57(1): 186-203. DOI: 10.1111/1752-1688.12888 .
141. Ahn, S., S. Abudu, Z. Sheng and A. Mirchi. 2018. Hydrologic impacts of drought-adaptive agricultural water management in a semi-arid river basin: Case of Rincon Valley, New Mexico. Agricultural Water Management. 209: 206-218. DOI: 10.1016/j.agwat.2018.07.040 .
142. Ahn, S.R. and S.J. Joon Kim. 2017. Assessment of integrated watershed health based on the natural environment, hydrology, water quality, and aquatic ecology. Hydrology and Earth System Sciences. 21: 5583–5602. DOI: 10.5194/hess-21-5583-2017 .
143. Ahn, S.R. and S.J. Kim. 2018. Analysis of water balance by surface-groundwater interaction using the SWAT model for the Han River Basin, South Korea. Paddy and Water Environment. DOI: 10.1007/s10333-018-0647-x .
144. Ahn, S.R., C.H. Jang, J.W. Lee and S.J. Kim. 2015. Assessment of climate and land use change impacts on watershed hydrology for an urbanizing watershed. Journal of the Korean Society of Civil Engineers. 35(3): 567-577. DOI: 10.12652/Ksce.2015.35.3.0567 .
145. Ahn, S.R., G.A. Park and S.J. Kim. 2013. Assessment of agricultural water supply capacity using MODSIM-DSS coupled with SWAT. Journal of the Korean Society of Civil Engineers. 33(2): 507-519. DOI: 10.12652/Ksce.2013.33.2.507 .
146. Ahn, S.R., J.H. Jeong and S.J. Kim. 2016. Assessing drought threats to agricultural water supplies under climate change by combining the SWAT and MODSIM models for the Geum River Basin, South Korea. Hydrological Sciences Journal. 61(15): 2740-2753. DOI: 10.1080/02626667.2015.1112905 .
147. Ahn, S.R., J.W. Lee, S.S. Jang and S.J. Kim. 2016. Large scale SWAT watershed modeling considering multi-purpose dams and multi-function weirs operation - For Namhan River Basin -. Journal of the Korean Society of Agricultural Engineers. 58(4): 21-35. DOI: 10.5389/KSAE.2016.58.4.021 .
148. Ahn, S.-R., J.-Y. Park, J.-W. Lee, M.-S. Lee, H.-J. Shin and S.-J. Kim. 2016. Comparison of SWAT streamflow and water quality in an agricultural watershed using KOMPSAT-2 and landsat land use information. KSCE Journal of Civil Engineering. 20(1): 367-375. DOI: 10.1007/s12205-015-1265-4 .
149. Ahn, S.R., R. Ha, S.W. Yoon and S.J. Kim. 2014. Evaluation of future turbidity water and eutrophication in Chungju Lake by climate change using CE-QUAL-W2. Journal of the Korean Water Resources Association. 47(2): 145-150. DOI: 10.3741/JKWRA.2014.47.2.145 .
150. Aibaidula, D., N. Ates and F. Dadaser-Celik. 2023. Uncertainty analysis for streamflow modeling using multiple optimization algorithms at a data-scarce semi-arid region: Altınapa Reservoir Watershed, Turkey. Stochastic Environmental Research and Risk Assessment. 37(5): 1997-2011. DOI: 10.1007/s00477-022-02377-x .
151. Aich, V., S. Liersch, T. Vetter, J.C.M. Anderson, E.N. Müller and F.F. Hattermann. 2015. Climate or land use?—attribution of changes in river flooding in the sahel zone. Water. 7(6): 2796-2820. DOI: 10.3390/w7062796 .
152. Aich, V., S. Liersch, T. Vetter, S. Fournet, J.C.M. Andersson, S. Calmanti, F.H.A. van Weert, F.F. Hattermann and E.N. Paton. 2016. Flood projections within the Niger River Basin under future land use and climate change. Science of the Total Environment. 562: 666-677. DOI: 10.1016/j.scitotenv.2016.04.021 .
153. Ainunisa, D., G. Halik and W.Y Widiarti. 2020. Pemodelan perubahan tataguna lahan terhadap debit banjir DAS tanggul, jember menggunakan model SWAT (Soil and Water Assessment Tool). Rekayasa Sipil . 14(2): 154-161. DOI: 10.21776/ub.rekayasasipil.2020.014.02.10 .
154. Ajaaj, A.A., A.K. Mishra and A.A. Khan. 2019. Evaluation of satellite and gauge-based precipitation products through hydrologic simulation in Tigris River Basin under data-scarce environment. Journal of Hydrologic Engineering. 24(3): 05018033. DOI: 10.1061/(ASCE)HE.1943-5584.0001737 .
155. Akbar, H. and S.H. Gheewala. 2021. Impact of climate and land use changes on flowrate in the Kunhar River Basin, Pakistan, for the period (1992- 2014). Arabian Journal of Geosciences. 14(8): 707. DOI: 10.1007/s12517-021-07058-7 .
156. Akbarpour, S. and M.H. Niksokhan. 2018. Investigating effects of climate change, urbanization, and sea level changes on groundwater resources in a coastal aquifer: An integrated assessment. Environmental Monitoring and Assessment. 190: 579. DOI: 10.1007/s10661-018-6953-3 .
157. Akbas, A., J. Freer, H. Ozdemir, P.D. Bates and M.T. Turp. 2020. What about reservoirs? Questioning anthropogenic and climatic interferences on water availability. Hydrological Processes. 34: 5441-5455. DOI: 10.1002/hyp.13960 .
158. Akhavan, S. and A. Jodi Hameze Abad. 2015. Simulation of inflow to Urmia lake using SWAT model. Journal of Science and Technology of Agriculture and Natural Resources. 19(72): 23-34. URL: http://jstnar.iut.ac.ir/browse.php?a_code=A-10-1-116&sid=1&slc_lang=en.
159. Akhavan, S., J. Abedi-Koupaia, S.-F. Mousavia, M. Afyunib, S.-S. Eslamiana and K.C. Abbaspour. 2010. Application of SWAT model to investigate nitrate leaching in Hamadan–Bahar Watershed, Iran. Agriculture Ecosystems and Environment. 139(4): 675-688. DOI: 10.1016/j.agee.2010.10.015 .
160. Akhbari, M. and N.S. Grigg. 2014. Water management trade-offs between agriculture and the environment: A multiobjective approach and application. Journal of Irrigation and Drainage Engineering. 140(8): 05014005. DOI: 10.1061/(ASCE)IR.1943-4774.0000737 .
161. Akhtar, F., C. Borgemeister, B. Tischbein and U.K. Awan. 2022. Metrics assessment and streamflow modeling under changing climate in a data-scarce heterogeneous region: A case study of the Kabul River Basin. Water. 14(11): 1697. DOI: 10.3390/w14111697 .
162. Akhtar, F., U.K. Awan, C. Borgemeister and B. Tischbein. 2021. Coupling remote sensing and hydrological model for evaluating the impact of climate change on streamflow in data-scarce environment. Sustainability. 13(24): 14025. DOI: 10.3390/su132414025 .
163. Akhtar, M.K., G.A. Corzo, S.J. van Andel, and A. Jonoski. 2009. River flow forecasting with artificial neural networks using satellite observed precipitation pre-processed with flow length and travel time information: case study of the Ganges river basin. Hydrology and Earth System Sciences. 13(9): 1607-1618. DOI: 10.5194/hess-13-1607-2009 .
164. Akhter, M., M.I. Malik, T. Mehraj, A.F. Shah, S. Ahmad, W.A. Bhat and S. Mujeeb. 2022. Runoff modelling of Aripal Watershed using SWAT model. Arabian Journal of Geosciences. 15(16): 1419. DOI: 10.1007/s12517-022-10708-z .
165. Akiner, M.E. and A. Akkoyunlu. 2012. Modeling and forecasting river flow rate from the Melen Watershed, Turkey. Journal of Hydrology. 456-457: 121-129. DOI: 10.1016/j.jhydrol.2012.06.031 .
166. Akiner, M.E. and C. Lačnjevac. 2022. Managing saltwater intrusion and agricultural practices along the Boğaçay River, Turkey: Effects from excavation and land source pollution. Journal of Coastal Research. 38(3): 567-577. DOI: 10.2112/JCOASTRES-D-21-00101.1 .
167. Akinyemi, A., L. Elbakidze, Y. Xu, P.W. Gassman, H. Yen and J.G. Arnold. 2024. Cross-watershed leakage of agricultural nutrient runoff. Environmental Research Letters. 19(7): 074047. DOI: 10.1088/1748-9326/ad4e4a .
168. Akoko, G., T.U. Le, T. Gomi and T. Kato. 2021. A review of SWAT model application in Africa. Water. 13(9): 1313. DOI: 10.3390/w13091313 .
169. Akoko, G., T. Kato and L.H. Tu. 2020. Evaluation of irrigation water resources availability and climate change impacts—A case study of Mwea irrigation scheme, Kenya. Water. 12(9): 2330. DOI: 10.3390/w12092330 .
170. Akpoti, K., E.O. Antwi and A.T. Kabo-bah. 2016. Impacts of rainfall variability, land use and land cover change on stream flow of the Black Volta basin, West Africa. Hydrology. 3(3): 26. DOI: 10.3390/hydrology3030026 .
171. Al Aamery, N., J.F. Fox and M. Snyder. 2016. Evaluation of climate modeling factors impacting the variance of streamflow. Journal of Hydrology. 542: 125–142. DOI: 10.1016/j.jhydrol.2016.08.054 .
172. Al Aamery, N., J.F. Fox, M. Snyder and C.V. Chandramouli. 2018. Variance analysis of forecasted streamflow maxima in a wet temperate climate. Journal of Hydrology. 560: 364-381. DOI: 10.1016/j.jhydrol.2018.03.038 .
173. Al- Khafaji, M.S. and R.D. Al-Chalabi. 2020. Impact of climate change on the spatiotemporal distribution of stream flow and sediment yield of Darbandikhan Watershed, Iraq. Engineering and Technology Journal. 38(2): 265-276. DOI: 10.30684/etj.v38i2A.156 .
174. Al Khoury, I., L. Boithias and D. Labat. 2023. A review of the application of the Soil and Water Assessment Tool (SWAT) in karst watersheds. Water. 15(5): 954. DOI: 10.3390/w15050954 .
175. Al Khoury, I., L. Boithias, R.T. Bailey, C. Ollivier, V. Sivelle, D. Labat. 2023. Impact of land-use change on karst spring response by integration of surface processes in karst hydrology: The ISPEEKH model. Journal of Hydrology. 626(Part B): 130300. DOI: 10.1016/j.jhydrol.2023.130300 .
176. Al Qatarneh, G.N., B. Al Smadi, K. Al-Zboon and K.M. Shatanawi. 2018. Impact of climate change on water resources in Jordan: A case study of Azraq basin. Applied Water Science. 8: 50. DOI: 10.1007/s13201-018-0687-9 .
177. Al Sayah, M.J., R. Nedjai, K. Kaffas, C. Adballah and M. Khouri. 2019. Assessing the impact of man–made ponds on soil erosion and sediment transport in limnological basins. Water. 11(12): 2576. DOI: 10.3390/w11122526 .
178. Aladejana, O. 2021. Flood investigation and adaptation strategies through best management practices in an ungauged basin in southwest Nigeria. African Geographical Review. 40(2): 141-162. DOI: 10.1080/19376812.2020.1782235 .
179. Aladejana, O.O., A.T. Salami and O.O. Adetoro. 2018. Hydrological responses to land degradation in the northwest Benin Owena River Basin, Nigeria. Journal of Environmental Management. 225: 300-312. DOI: 10.1016/j.jenvman.2018.07.095 .
180. Alam, M.J., M.B. Ercan, F.T. Zahura and J.L. Goodall. 2018. Using geospatial analysis and hydrologic modeling to estimate climate change impacts on nitrogen export: Case study for a forest and pasture dominated watershed in North Carolina. International Journal of Geo-Information. 7(7): 280. DOI: 10.3390/ijgi7070280 .
181. Alam, N.M., C. Jana, D. Mandal, S.K. Meena, S.S. Shrimali, U. Mandal, S. Mitra and G. Kar. 2022. Applying analytic hierarchy process for identifying best management practices in erosion risk areas of northwestern Himalayas. Land. 11(6): 832. DOI: 10.3390/land11060832 .
182. Alam, S., M.M. Ali and Z. Islam. 2016. Future streamflow of Brahmaputra River Basin under synthetic climate change scenarios. Journal of Hydrologic Engineering. 21(11): 05016027. DOI: 10.1061/(ASCE)HE.1943-5584.0001435 .
183. Alam, S., Md. M. Ali, A.Z. Rahaman and Z. Islam. 2021. Multi-model ensemble projection of mean and extreme streamflow of Brahmaputra River Basin under the impact of climate change. Journal of Water and Climate Change. 12(5): 2026-2044. DOI: 10.2166/wcc.2021.286 .
184. Alcalá, G., L.F. Grisales-Noreña, Q. Hernandez-Escobedo, J.J. Muñoz-Criollo and J.D. Revuelta-Acosta. 2021. SHP assessment for a run-of-river (RoR) scheme using a rectangular mesh sweeping approach (MSA) based on GIS. Energies. 14(11): 3095. DOI: 10.3390/en14113095 .
185. Alehu, B.A. and S.G. Bitana. 2023. Assessment of climate change impact on water balance of Lake Hawassa Catchment. Environmental Processes. 10: 14. DOI: 10.1007/s40710-023-00626-x .
186. Alejo, L.A. and A.S. Alejandro. 2022. Changes in irrigation planning and development parameters due to climate change. Water Resources Management. 36(5): 1711–1726. DOI: 10.1007/s11269-022-03105-4 .
187. Alejo, L.A., V.B. Ella and R.B. Saludes. 2021. Applicability of the climate hazards group infrared precipitation with stations as rainfall input for SWAT watershed modeling. Water Resources. 48(6): 925-935. DOI: 10.1134/S0097807821060026 .
188. Alemaw, D., E.K. Ayana, E.S. Legesse, M.M. Moges, S.A. Tilahun and M.A. Moges. 2016. Estimating reservoir sedimentation using bathymetric differencing and hydrologic modeling in data scarce Koga watershed, Upper Blue Nile, Ethiopia. Journal of Agriculture and Environment for International Development. 110(2): 413-427. URL: http://www.iao.florence.it/ojs/index.php/JAEID/article/viewFile/519/202.
189. Alemayehu, T., A. van Griensven and W. Bauwens. 2016. Evaluating CFSR and WATCH data as input to SWAT for the estimation of the potential evapotranspiration in a data-scarce eastern-African catchment. Journal of Hydrologic Engineering. 21(3). DOI: 10.1061/(ASCE)HE.1943-5584.0001305 .
190. Alemayehu, T., A. van Griensven, B.T. Woldegiorgis and W. Bauwens. 2017. An improved SWAT vegetation growth module and its evaluation for four tropical ecosystems. Hydrology and Earth System Sciences. 21(9): 4449–4467. DOI: 10.5194/hess-21-4449-2017 .
191. Alemayehu, T., F. Kilonzo, A. van Griensven and W. Bauwens. 2017. Evaluation and application of alternative rainfall data sources for forcing hydrologic models in the Mara Basin. Hydrology Research. 49(2): ID: nh2017081. DOI: 10.2166/nh.2017.081 .
192. Alemayehu, T., H.V. Gupta, A. van Griensven and W. Bauwens. 2022. On the calibration of spatially distributed hydrologic models for poorly gauged basins: Exploiting information from streamflow signatures and remote sensing-based evapotranspiration data. Water. 14(8): 1252. DOI: 10.3390/w14081252 .
193. Alemu, G.T., M.M. Ayalew, B.S. Geremew, B.G. Bihonegn and K.A. Tareke. 2023. Evaluation of semi-distributed hydrological models performance in Borkena Watershed; Upper Awash Basin, Ethiopia. Heliyon. 9(7): e18030. DOI: 10.1016/j.heliyon.2023.e18030 .
194. Alevkayah, Ç. and B. Abi. 2023. Spatial based soil erosion forecasting models: Is what we know changing? Turkish Journal of Geographical Sciences. 21(2): 696-725. DOI: 10.33688/aucbd.1265625 .
195. Ali, F., C. Srisuwan, K. Techato, A. Bennui, T. Suepa and D. Niammuad. 2020. Theoretical hydrokinetic power potential assessment of the U-Tapao River Basin using GIS. Energies. 13(7): 1749. DOI: 10.3390/en13071749 .
196. Ali, I. and M. Bruen. 2014. Improved semi-distributed model for phosphorus losses from Irish catchments. Environmental Technology. 35(19): 2506-2519. DOI: 10.1080/09593330.2014.911360 .
197. Ali, I. and M. Bruen. 2016. Methodology and application of the combined SWAT-HSPF Model. Environmental Processes. 3(3): 645–661. DOI: 10.1007/s40710-016-0167-x .
198. Ali, S.S., H. Mehmood and Y. Chemin. 2014. BMP implementations in Himalayan context: Can a locally-calibrated SWAT assessment direct efforts? International Journal of Geoinformatics. 10(2): 53-62. URL: http://journals.sfu.ca/ijg/index.php/journal/article/view/377.
199. Ali, Y. S. A., A. Crosato, Y. A. Mohamed, S. H. Abdalla and N. G. Wright. 2014. Sediment balances in the Blue Nile River Basin. International Journal of Sediment Research. 29(3): 316-328. DOI: 10.1016/S1001-6279(14)60047-0 .
200. Alibuyog, N.R., V.B. Ella, M.R. Reyes, R. Srinivasan, C. Heatwole and T. Dillaha. 2009. Predicting the effects of land use change on runoff and sediment yield in Manupali River subwatersheds using the SWAT model. International Agricultural Engineering Journal. 18(1-2): 15-25. URL: https://www.researchgate.net/publication/268200453_Predicting_the_effects_of_land_use_change_on_runoff_and_sediment_yield_in_manupali_river_subwatersheds_using_the_SWAT_model.
201. Alighalehbabakhani, F., C.J. Miller, J.P. Selegean, J. Barkach, S.M.S. Abkenar, T. Dahl and M. Baskaran. 2017. Estimates of sediment trapping rates for two reservoirs in the Lake Erie Watershed: Past and present scenarios. Journal of Hydrology. 544: 147-155. DOI: 10.1016/j.jhydrol.2016.11.032 .
202. Alim, N., S.D. Tarigan, D.P.T. Baskoro and E.D. Wahjunie. 2018. Parameter sensitivity test of SWAT Hydrological Model on two different resolutions (A case study of Upper Cisadane Subbasin, West Java). Journal of Tropical Soils. 23(1): 46-53. DOI: 10.5400/jts.2018.v23i1.47-53 .
203. Alipour, M. and M. Hosseini. 2018. Simulation of surface runoff in Karaj dam basin, Iran. Applied Water Science. 8(5): 147. DOI: 10.1007/s13201-018-0782-y .
204. Alitane, A., A. Essahlaoui, A. van Griesven, E.A. Yimer, N. Essahlaoui, M. Mohajane, C.J. Chawanda and A. van Rompaey. 2022. Towards a decision-making approach of sustainable water resources management based on hydrological modeling: A case study in central Morocco. Sustainability. 14(17): 10848. DOI: 10.3390/su141710848 .
205. Alitane, A., A. Essahlaoui, M.E. Hayani, A.E. Hmaidi, A.E. Ouali, A. Kassou, Y.E. Yousfi, A. van Griensven, C.J. Chawanda and A.V. Rompaey. 2022. Water erosion monitoring and prediction in response to the effects of climate change using RUSLE and SWAT equations: case of R'Dom Watershed in Morocco. Land. 11(1): 93. DOI: 10.3390/land11010093 .
206. Aliyari, F., R.T. Bailey and M. Arabi. 2021. Appraising climate change impacts on future water resources and agricultural productivity in agro-urban river basins. Science of the Total Environment. 788: 147717. DOI: 10.1016/j.scitotenv.2021.147717 .
207. Aliyari, F., R.T. Bailey, A. Tasdighi, A. Dozier, M. Arabi and K. Zeiler. 2019. Coupled SWAT-MODFLOW model for large-scale mixed agro-urban river basins. Environmental Modelling & Software. 115: 200-210. DOI: 10.1016/j.envsoft.2019.02.014 .
208. Al-Khafaji, M. S. and R.D. Al-Chalabi. 2019. Assessment and mitigation of streamflow and sediment yield under climate change conditions in Diyala River Basin, Iraq. Hydrology. 6(3): 63. DOI: 10.3390/hydrology6030063 .
209. Al-Khafaji, M., F.H. Saeed and N. Al-Ansari. 2020. The interactive impact of land cover and DEM resolution on the accuracy of computed streamflow using the SWAT mode. Water, Air, and Soil Pollution. 231(8): 416. DOI: 10.1007/s11270-020-04770-0 .
210. Al-Kubaisi, M.H.D. and Q.Y.S. Al-Kubaisi. 2022. Applying SWAT model to estimate the annual runoff of Wadi Al-Mohammadi Basin, Western Iraq. Iraqi Geological Journal . 55(2E): 189-200. DOI: 10.46717/igj.55.2E.13ms-2022-11-27 .
211. Allen, P.M., J.G. Arnold and E. Jakubowski. 1997. Design and testing of a simple submerged-jet device for field determination of soil erodibility. Environmental & Engineering Geoscience. 3(4): 579-584. URL: https://pubs.geoscienceworld.org/aeg/eeg/article/III/4/579/137039/design-and-testing-of-a-simple-submerged-jet.
212. Allen, P.M., J.G. Arnold and E. Jakubowski. 1999. Prediction of stream channel erosion potential. Environmental & Engineering Geoscience. 5(3): 339-351. DOI: 10.2113/gseegeosci.V.3.339 .
213. Allen, P.M., J.G. Arnold and W. Skipworth. 2002. Erodibility of urban bedrock and alluvial channels, North Texas. Journal of the American Water Resources Association. 38(5): 1477-1492. DOI: 10.1111/j.1752-1688.2002.tb04360.x .
214. Allen, P.M., J.G. Arnold and W. Skipwith. 2008. Prediction of channel degradation rates in urbanizing watersheds. Hydrological Sciences Journal. 53(5): 1013-1029. DOI: 10.1623/hysj.53.5.1013 .
215. Almahawis, M.K., R.T. Bailey, S.A. Abbas, J.G. Arnold and M.J. White. 2024. Investigating the impact of irrigation practices on hydrologic fluxes in a highly managed river basin. Agricultural Water Management. 301: 108954. DOI: 10.1016/j.agwat.2024.108954 .
216. Almeida, C., P. Branco, P. Segurado, T.B. Ramos, T. Ferreira, R. Neves and R.P. de Oliveira. 2021. Evaluation of the trophic status in a Mediterranean reservoir under climate change: An integrated modelling approach. Journal of Water and Climate Change. 12(3): 817-832. DOI: 10.2166/wcc.2020.247 .
217. Almeida, C., T.B. Ramos, J. Sobrinho, R. Neves and R.P. Oliveira. 2019. An integrated modelling approach to study future water demand vulnerability in the Montargil Reservoir Basin, Portugal. Sustainability. 11(1): 206. DOI: 10.3390/su11010206 .
218. Almeida, C., T.B. Ramos, P. Segurado, P. Branco, R. Neves and R.P. de Oliveira. 2018. Water quantity and quality under future climate and societal scenarios: A basin-wide approach applied to the Sorraia River, Portugal. Water. 10(9): 1186. DOI: 10.3390/w10091186 .
219. Almeida, R.A., S.B. Pereira and D.B.F. Pinto. 2018. Calibration and validation of the SWAT hydrological model for the Mucuri River Basin. Engenharia Agricola. 38(1): 55-63. DOI: 10.1590/1809-4430-Eng.Agric.v38n1p55-63/2018 .
220. Almeida, R.A., S.B. Pereira, D.B.F. Pinto and D.R.Q. Rosa. 2020. Applicability of the SWAT hydrological model in the Mucuri River Basin. Engenharia Agricola. 40(5): 631-644. DOI: 10.1590/1809-4430-Eng.Agric.v40n5p631-644/2020 .
221. Almendinger J.E. and J.S. Ulrich. 2017. Use of SWAT to estimate spatial scaling of phosphorus export coefficients and load reductions due to agricultural BMPs. Journal of the American Water Resources Association. 53(3): 547-561. DOI: 10.1111/1752-1688.12523 .
222. Almendinger, J.E., M.S. Murphy and J.S. Ulrich. 2014. Use of SWAT to scale sediment delivery from field to watershed in an agricultural landscape with topographic depressions. Journal of Environmental Quality. 43(1): 9-17. DOI: 10.2134/jeq2011.0340 .
223. Al-Mukhtar, M. 2016. Modelling the root zone soil moisture using artificial neural networks, a case study. Environmental Earth Sciences. 75: 1124. DOI: 10.1007/s12665-016-5929-2 .
224. Al-Mukhtar, M., V. Dunger and B. Merkel. 2014. Assessing the impacts of climate change on hydrology of the upper reach of the Spree River: Germany. Water Resources Management. 28(10): 2731-2749. DOI: 10.1007/s11269-014-0675-2 .
225. Alnahit, A.O., A.K. Mishra and A.A. Khan. 2020. Evaluation of high-resolution satellite products for streamflow and water quality assessment in a southeastern US watershed. Journal of Hydrology: Regional Studies. 27: 100660. DOI: 10.1016/j.ejrh.2019.100660 .
226. Alodah, A. and O. Seidou. 2019. Assessment of climate change impacts on extreme high and low flows: An improved bottom-up approach. Water. 11(6): 1236. DOI: 10.3390/w11061236 .
227. Alodah, A. and O. Seidou. 2019. The adequacy of stochastically generated climate time series for water resources systems risk and performance assessment. Stochastic Environmental Research and Risk Assessment. 33(1): 253-269. DOI: 10.1007/s00477-018-1613-2(0123 .
228. Aloui, S., A. Mazzoni, A. Elomri, J. Aouissi, A. Boufekane and A. Zghibi. 2023. A review of Soil and Water Assessment Tool (SWAT) studies of Mediterranean catchments: Applications, feasibility, and future directions. Journal of Environmental Management. 326(Part B): 116799. DOI: 10.1016/j.jenvman.2022.116799 .
229. Alp, H., M.C. Demirel and O.L. Aşıkoğlu. 2022. Effect of model structure and calibration algorithm on discharge simulation in the Acisu Basin, Turkey. Climate. 10(12): 196. DOI: 10.3390/cli10120196 .
230. Alshammari, E., A. Abdul Rahman, R. Ranis, N. Abu Seri and F. Ahmad. 2024. Investigation of urunoff and flooding in urban areas based on hydrological models: A literature review. International Journal of Geoinformatics. 20(1): 99-119. DOI: 10.52939/ijg.v20i1.3033 .
231. Alsilibe, F. and K. Bene. 2021. Watershed subdivision and weather input effect on streamflow simulation using SWAT model. Pollack Periodica . 17(1): 88-93. DOI: 10.1556/606.2021.00349 .
232. Altaweel, M. 2008. Investigating agricultural sustainability and strategies in northern Mesopotamia: results produced using a socio-ecological modeling approach. Journal of Archaeological Science. 35: 821-835. DOI: 10.1016/j.jas.2007.06.012 .
233. Alvarenga, L.A., V.S.O. Carvalho, V.A. de Oliveira, C.R. de Mello, A. Colombo, J. Tomasella and P.A. Melo. 2020. Hydrological simulation with SWAT and VIC models in the Verde River Watershed, Minas Gerais. Revista Ambiente & Água. 15(4): e2492. DOI: 10.4136/ambi-agua.2492 .
234. Alvarenga, L.A., V.S.O. Carvalho, Vinícius Augusto de Oliveira1 ; Carlos Rogério de Mello1 ; Alberto Colombo1 ; Javier Tomasella3 ; Pâmela Aparecida Melo. 2020. Hydrological simulation with SWAT and VIC Models in the Verde River Watershed, Minas Gerais. Ambiente & Água. 15(4): 2492. DOI: 10.4136/ambi-agua.2492 .
235. Alves, J.C.B., L.L. Martins, W.A. Martins, J.F.L. de Moraes and G.C. Blain. 2021. Use of reanalysis meteorological data for streamflow simulation in the Ribeorão do Pinhal River Basin, Limeira / State of São Paulo SP. Caminhos de Geografia. 22(80): 234-252. DOI: 10.14393/RCG228054849 .
236. Alves, W. dos S., A.P. Martins and R.S. Ferrerira. 2022. Modeling applied to the flow estimate of a hydrodynamic basin in the southwestern of Goiás, Brazilian Cerrado. Revista Caminhos de Geografia. 53(10): 261-282. DOI: 10.14393/RCG238557899 .
237. Amadou, A., G.D. Abdouramane, S. Ousmane, S.S. Ibrah and K. Sittichok. 2015. Changes to flow regime on the Niger River at Koulikoro under a changing climate. Hydrological Sciences Journal. 60(10): 1709-1723. DOI: 10.1080/02626667.2014.916407 .
238. Amalia, A.V., T.R. Fariz, F. Lutfiananda, H.M. Ihsan, R. Atunnisa and A. Jabbar. 2024. Comparison of SWAT-based ecohydrological modeling in Rawa Pening Catchment Area, Indonesia. Indonesian Journal of Science Education. 13(1). URL: https://journal.unnes.ac.id/nju/jpii/article/view/45277.
239. Amatya, D.M., C.G. Rossi, A. Saleh, Z. Dai, M.A. Youssef, R.G. Williams, D.D. Bosch, G.M. Chescheir, G. Sun, R.W. Skaggs, C.C. Trettin, E.D. Vance, J.E. Nettles and S. Tian. 2013. Review of nitrogen fate models applicable to forest landscapes in the southern U.S. Transactions of the ASABE. 56(5): 1731-1757. DOI: 10.13031/trans.56.10096 .
240. Amatya, D.M., K.R. Douglas-Mankin, T.M. Williams, R.W. Skaggs and J.E. Nettles. 2011. Advances in forest hydrology: Challenges and opportunities. Transactions of the ASABE. 54(6): 2049-2056. DOI: 10.13031/2013.40672 .
241. Amatya, D.M., M. Jha, A.E. Edwards, T.M. Williams and D.R. Hitchcock. 2011. SWAT-based streamflow and embayment modeling of karst-affected Chapel Branch Watershed, South Carolina. Transactions of the ASABE. 54(4): 1311-1323. DOI: 10.13031/2013.39033 .
242. Amatya, K.M. and M.K. Jha. 2011. Evaluating the SWAT model for a low-gradient forested watershed in coastal South Carolina. Transactions of the ASABE. 54(6): 2151-2163. URL: http://elibrary.asabe.org/abstract.asp?aid=40671&t=3&dabs=Y&redir=&redirType=.
243. Ambrose, R.B., T.A. Wool and T.O. Barnwell, Jr. 2009. Development of water quality modeling in the United States. Environmental Engineering Research. 14(4): 200-210. DOI: 10.4491/eer.2009.14.4.200 .
244. Ambrosio, E.D’., A.M. De Girolamo, M. Spanò, V. Corbelli, G. Capasso, M. Morea, R. Velardo, O.M.M. Abdelwahab, A. Lonigro, F. Milillo, G.F. Ricci, G. Romano, A. Calabrese, B. Casale, R. Mauro, G. Pappagallo and F. Gentile. 2019. A spatial analysis to define data requirements for hydrological and water quality models in data-limited regions. Water. 11(2): 267. DOI: 10.3390/w11020267 .
245. Amin, M.G.M., H.D. Karsten, T.L. Veith, D.B. Beegle and P.J. Kleinman. 2018. Conservation dairy farming impact on water quality in a karst watershed in northeastern US. Agricultural Systems. 165: 187-196. DOI: 10.1016/j.agsy.2018.06.010 .
246. Amin, M.G.M., T.L. Veith, J.S. Shortle, H.D. Karsten and P.J.A. Kleinman. 2020. Addressing the spatial disconnect between national-scale total maximum daily loads and localized land management decisions. Journal of Environmental Quality. 49(3): 613-627. DOI: 10.1002/jeq2.20051 .
247. Amin, M.G.M., T.L. Vieth, A.S. Collick, H.D. Karsten and A.R. Buda. 2017. Simulating hydrological and nonpoint source pollution processes in a karst watershed: A variable source area hydrology model evaluation. Agricultural Water Management. 180(Part B): 212–223. DOI: 10.1016/j.agwat.2016.07.011 .
248. Amini, M.A., Gh. Torkan, S. Eslamian, M.J. Zareian and A.A. Besalatpour. 2018. Assessment of SWAT hydrological model in catchments' water balance simulation located in semi-arid regions (Case study: Zayandeh-Rud River Basin). Journal of Water and Soil. 32(5): 849-863. DOI: 10.22067/jsw.v32i5.68815 .
249. Aminkhah, S., M.A. Mahmoodi, A. Bahmani and G. Ghaffari. 2023. Simulation of runoff and sediment yield using SWAT in Gawshan Dam Watershed. Iranian Journal of Soil and Water Research. 54(3): 441-454. DOI: 10.22059/ijswr.2023.348170.669348 .
250. Ammar, M.E., A. Gharib, Z. Islam, E.G.R. Davies, M. Seneka and M. Faramarzi. 2020. Future floods using hydroclimatic simulations and peaks over threshold: An alternative to nonstationary analysis inferred from trend tests. Advances in Water Resources. 136: 103463. DOI: 10.1016/j.advwatres.2019.103463 .
251. Amon-Armah, F., E. K. Yiridoe, R. Jamieson and D. Hebb. 2015. Comparison of crop yield and pollution production response to nitrogen fertilization models, accounting for crop rotation effect. Agroecology and Sustainable Food Systems . 39(3): 245-275. DOI: 10.1080/21683565.2014.967435 .
252. Amon-Armah, F., E.K. Yiridoe, N.H.M. Ahmad, D. Hebb, R. Jamieson, D. Burton and A. Madani. 2013. Effect of nutrient management planning on crop yield, nitrate leaching and sediment loading in Thomas Brook watershed. Environmental Management. 52(5): 1177-1191. DOI: 10.1007/s00267-013-0148-z .
253. An, H. and J.W. Eheart. 2006. Evaluation of programs for regulating withdrawal of surface water under the riparian legal system. Journal of Water Resources Planning and Management. 132(5): 385-394. DOI: 10.1061/(ASCE)0733-9496(2006)132:5(385) .
254. An, H., J.W. Eheart and R.D. Braatz. 2004. Stability-oriented programs for regulating water withdrawals in riparian regions. Water Resources Research. 40(12): W12301. DOI: 10.1029/2004WR003398 .
255. Anand, J., A.K. Gosain and R. Khosa. 2018. Optimisation of multipurpose reservoir operation by coupling Soil and Water Assessment Tool (SWAT) and genetic algorith for optimal operating policy (case study: Ganga River Basin). Sustainability. 10(5): 1660. DOI: 10.3390/su10051660 .
256. Anand, J., A.K. Gosain and R. Khosa. 2018. Prediction of land use changes based on land change modeler and attribution of changes in the water balance of Ganga Basin to land use change using the SWAT model. Science of the Total Environment. 644: 503-519. DOI: 10.1016/j.scitotenv.2018.07.017 .
257. Anand, J., A.K. Gosain and R. Khosa. 2021. Impacts of climate and land use change on hydrodynamics and sediment transport regime of the Ganga River Basin. Regional Environmental Change. 21(3): 79. DOI: 10.1007/s10113-021-01806-x .
258. Anand, J., A.K. Gosain, R. Khosa and R. Srinivasan. 2018. Regional scale hydrologic modeling for prediction of water balance, analysis of trends in streamflow and variations in streamflow: The case study of the Ganga River basin. Journal of Hydrology: Regional Studies. 16: 32-53. DOI: 10.1016/j.ejrh.2018.02.007 .
259. Anand, J., M. Devak, A.K. Gosain, R. Khosa and C.T. Dhanya. 2021. Spatio-temporal effect of climate and land-use change on water balance of the Ganga River Basin. Journal of Hydro-environment Research. 36: 50-66. DOI: 10.1016/j.jher.2021.03.004 .
260. Anand, S., K.R. Mankin, K.A. McVay, K.A. Janssen, P.L. Barnes and G.M. Pierzynski. 2007. Calibration and validation of ADAPT and SWAT for field-scale runoff prediction. Journal of the American Water Resources Association. 43(4): 899-910. DOI: 10.1111/j.1752-1688.2007.00061.x .
261. Anand, V. and B. Oinam. 2019. Future climate change impact on hydrological regime of river basin using SWAT model. Global Journal of Environmental Science and Management. 5(4): 471-484. DOI: 10.22034/gjesm.2019.04.07 .
262. Anand, V., B. Oinam and B.R. Parida. 2020. Uncertainty in hydrological analysis using multi-GCM predictions and multi-parameters under RCP 2.6 and 8.5 scenarios in Manipur River Basin, India. Journal of Earth System Science. 129: 223. DOI: 10.1007/s12040-020-01492-z .
263. Anandan, K.S., S.N. Sahay and S. Karthikenyan. 2010. Delineation of Recharge Area and Artificial Recharge Studies in the Neyveli Hydrogeological Basin. Mine Water and the Environment. 29(1): 14-22. DOI: 10.1007/s10230-009-0090-8 .
264. Anandhi, A. and N. Kannan. 2017. Vulnerability assessment of water resources – Translating a theoretical concept to an operational framework using systems thinking approach in a changing climate: Case study in Ogallala Aquifer. Journal of Hydrology. 557: 460-474. DOI: 10.1016/j.jhydrol.2017.11.032 .
265. Ancev, T., A.L. Stoecker, D.E. Storm and M.J. White. 2006. The economics of efficient phosphorus abatement in a watershed. Journal of Agricultural and Resource Economics Association. 31(3): 529-548. URL: http://www.jstor.org/stable/40987334?seq=1#page_scan_tab_contents.
266. Andaryani, S., D. Trolle, M.R. Nikjoo, M.H.R. Moghadam and D. Mokhtari. 2019. Forecasting near-future impacts of land use and climate change on the Zilbier River hydrological regime, northwestern Iran. Environmental Earth Sciences. 78: 188. DOI: 10.1007/s12665-019-8193-4 .
267. Andaryani, S., V. Nourani, D. Trolle, M. Dehgani and A.M. Asl. 2019. Assessment of land use and climate change effects on land subsidence using a hydrological model and radar technique. Journal of Hydrology. 578: 124070. DOI: 10.1016/j.jhydrol.2019.124070 .
268. Andaryani, S., V. Nourani, J. Ball, S. Jahanbakhsh Asl, H. Keshtkar and D. Trolle. 2021. A comparison of frameworks for separating the impacts of human activities and climate change on river flow in existing records and different near-future scenarios. Hydrological Processes. 35(7): e14301. DOI: 10.1002/hyp.14301 .
269. Andersson, J.C.M., A.J.B. Zehnder, G.P.W. Jewitt and H.Yang. 2009. Water availability, demand and reliability of in situ water harvesting in smallholder rain-fed agriculture in the Thukela River Basin, South Africa. Hydrology and Earth System Sciences. 13(12): 2329-2347. DOI: 10.5194/hess-13-2329-2009 .
270. Andersson, J.C.M., A.J.B. Zehnder, J. Rockstrom and H. Yang. 2011. Potential impacts of water harvesting and ecological sanitation on crop yield, evaporation and river flow regimes in the Thukela River basin, South Africa. Agricultural Water Management. 98(7): 1113-1124. DOI: 10.1016/j.agwat.2011.02.004 .
271. Andersson, J.C.M., A.J.B. Zehnder, B. Whrli and H. Yang. 2012. Improved SWAT model performance with time-dynamic Voronoi tessellation of climatic input data in Southern Africa. Journal of the American Water Resources Association. 48(3): 480–493. DOI: 10.1111/j.1752-1688.2011.00627.x .
272. Andersson, J.C.M., A.J.B. Zehnder, B. Wehrli, G.P.M. Jewitt, K.C. Abbaspour and H. Yang. 2013. Improving crop yield and water productivity by ecological sanitation and water harvesting in South Africa. Environmental Science & Technology. 47(9): 4341-4348. DOI: 10.1021/es304585p .
273. Andimuthu, R., B. Lakshminarayanan, M. Ramaswamy and K. Joseph. 2024. Multivariate drought risk assessment of tropical river basin in South India under SSP scenarios. Theoretical and Applied Climatology. DOI: 10.1007/s00704-024-05048-9 .
274. Andrade, M.A., C.R. de Mello and S. Beskow. 2013. Hydrological simulation in a watershed with predominance of Oxisol in the Upper Grande river region, MG - Brazil. Revista Brasileira de Engenharia Agricola e Ambiental. 17(1): 69-76. DOI: 10.1590/S1415-43662013000100010 .
275. Andres, K.J., H. Chien and J.H. Knouft. 2019. Hydrology induces intraspecific variation in freshwater fish morphology under contemporary and future climate scenarios. Science of the Total Environment. 671: 412-430. DOI: 10.1016/j.scitotenv.2019.03.292 .
276. Andrianaki, M., J. Shrestha, F. Kobierska, N.P. Nikolaidis and S.M. Bernasconi. 2019. Assessment of SWAT spatial and temporal transferability for a high-altitude glacierized catchment. Hydrology and Earth System Sciences. 23(8): 3219-3232. DOI: 10.5194/hess-23-3219-2019 .
277. Andualem, T.G., A. Guadie, G. Belay, I. Ahmad and M.A. Dar. 2020. Hydrological modeling of Upper Ribb Watershed, Abbay Basin, Ethiopia. Global Nest Journal. 72(2): 158-164. DOI: 10.30955/gnj.003152 .
278. Andualem, T.G., G.A. Hewa, B.R. Myers, S. Peters and J. Boland. 2023. Erosion and sediment transport modeling: A systematic review. Land. 12(7): 1396. DOI: 10.3390/land12071396 .
279. Ang, R. and C. Oeurng. 2018. Simulating streamflow in an ungauged catchment of Tonlesap Lake Basin in Cambodia using Soil and Water Assessment Tool (SWAT) model. Water Science. 32: 89-101. DOI: 10.1016/j.wsj.2017.12.002 .
280. Ang, R., T. Kinouchi and W. Zhao. 2023. Sediment load estimation using a novel regionalization sediment-response similarity method for ungauged catchments. Journal of Hydrology. 618: 129198. DOI: 10.1016/j.jhydrol.2023.129198 .
281. Ang, R., T. Kinouchi and W.P. Zhao. 2022. Evaluation of daily gridded meteorological datasets for hydrological modeling in data-sparse basins of the largest lake in Southeast Asia. Journal of Hydrology: Regional Studies. 42: 101135. DOI: 10.1016/j.ejrh.2022.101135 .
282. Angelidis, P., M. Kotsikas and N. Kotsovinos. 2010. Management of upstream dams and flood protection of the transboundary River Evros/Maritza. Water Resources Management. 24(11): 2467-2484. DOI: 10.1007/s11269-009-9563-6 .
283. Anggiarini, A. and E. Anggraheni. 2023. Kajian limpasan permukaan pada DAS Mampang menggunakan model SWAT. Teras Jurnal . 13(1): 289-290. URL: https://teras.unimal.ac.id/teras/article/view/864.
284. Anguita, P.M.d., S. Rivera, J.M. Beneitez, F. Cruz, and F.M. Espinal. 2011. A GIS cost-benefit analysis-based methodology to establish a payment for environmental services system in watersheds: Application to the Calan River in Honduras. Journal of Sustainable Forestry. 30: 79-110. DOI: 10.1080/10549811003742225 .
285. Anh, N.V. 2019. Evaluation of Swat model performance to hydrologic cycle simulation in the Cong watershed, Viet Nam. Tạp chí Khoa học kỹ thuật Thủy lợi và Môi trường. 65(6): 163-171. URL: http://tapchivatuyentap.tlu.edu.vn/Home/groupid/90.
286. Anh, N.V., S. Fukuda, K. Hiramatsu and M. Harada. 2015. Sensitivity-based calibration of the Soil and Water Assessment Tool for hydrologic cycle simulation in the Cong watershed, Vietnam. Water Environment Research. 87(8): 735-750. DOI: 10.2175/106143015X14338845156948 .
287. Anil, A.P. and H. Ramesh. 2017. Analysis of climate trend and effect of land use land cover change on Harangi streamflow, South India: A case study. Sustainable Water Resources Management. 3(3): 257–267. DOI: 10.1007/s40899-017-0088-5 .
288. Anjuma, M.N., Y. Dinga and D. Shangguan. 2019. Simulation of the projected climate change impacts on the river flow regimes under CMIP5 RCP scenarios in the westerlies dominated belt, northern Pakistan. Atmospheric Research. 227: 233-248.
289. Anoh, K. A., T. J. J. Koua, W. E. Yeo, A. G. Eblin, K. J. Kouamé and J. P. Jourda. 2021. Application of the agro-hydrologic SWAT model on the Taabo River Basin (Côte d’Ivoire) to evaluate the effect of three vegetative filter strip scenarios on streamflow and nutrients. Environmental Engineering and Management Journal. 20(1): 13-23. URL: http://www.eemj.icpm.tuiasi.ro/issues/vol20/vol20no1.htm.
290. Anoh, K.A., T.J.J. Koua, K. J. Kouamé, J.P. Jourda and F. Laurent. 2018. Modelling water flow in a complex watershed in humid a tropical area using swat: A case study of Taabo watershed in Ivory Coast. International Journal of River Basin Management. 16(2): 157-167. DOI: 10.1080/15715124.2017.1387122 .
291. Ansari, A., T. Kato and A. Fitriah. 2019. Simulating streamflow through the SWAT model in the Keduang Sub-Watershed, Wonogiri Regency, Indonesia. AGRITECH. 39(1): 60-69. DOI: 10.22146/agritech.29737 .
292. Anshuman, A., A. Kunnath-Poovakka and T.I. Eldho. 2019. Towards the use of conceptual models for water resource assessment in Indian tropical watersheds under monsoon‐driven climatic conditions. Environmental Earth Sciences. 78: 282. DOI: 10.1007/s12665-019-8281-5 .
293. Aoubid, H.S. and C. Opp. 2023. Nitrogen and phosphorus discharge loads assessment using the SWAT model: A case study of the Shatt Al-Arab River Basin. Applied Sciences. 13(14): 8376. DOI: 10.3390/app13148376 .
294. Aouissi, J., B. Sihem, L.C. Zohra and C. Christophe. 2014. Modelling water quality to improve agricultural practices and land management in a Tunisian catchment using SWAT. Journal of Environmental Quality. 43(1): 18-25. DOI: 10.2135/jeq2011.0375 .
295. Aouissi, J., S. Benabdallah, Z.L. Chabaâne and C. Cudennec. 2016. Evaluation of potential evapotranspiration assessment methods for hydrological modelling with SWAT—Application in data-scarce rural Tunisia. Agricultural Water Management. 174: 39-51. DOI: 10.1016/j.agwat.2016.03.004 .
296. Aparecida, T.L. and M.L. Calijuri. 2010. Hydrosedimentological modeling of watershed in southeast Brazil using SWAT. Revista Ambiente & Água. 5(2): 158-174. DOI: 10.4136/ambi-agua.145 .
297. Aparício, B.A., J.P. Nunes, L. Bernard-Jannin, L.F. Dias, A. Fonseca and T. Ferreira. 2023. Modelling the role of ground-true riparian vegetation for providing regulating services in a Mediterranean watershed. International Soil and Water Conservation Research. 11(1): 159-168. DOI: 10.1016/j.iswcr.2022.07.005 .
298. Apostel, A., M. Kalcic, A. Dagnew, G. Evenson, J. Kast, K. King, J. Martin, R.L. Muenich and D. Scavia. 2021. Simulating internal watershed processes using multiple SWAT models. Science of the Total Environment. 759: 143920. DOI: 10.1016/j.scitotenv.2020.143920 .
299. Aqnouy, M, J.E.S. El Messari, H. Ismail, A. Bouadila, J.G.M. Navarro, B. Loubna and M.R.A. Mansour. 2019. Assessment of the SWAT model and the parameters affecting the flow simulation in the Watershed of Oued Laou (northern Morocco). Journal of Ecological Engineering. 20(4): 104-113. DOI: 10.12911/22998993102794 .
300. Arabi, M., J.R. Frankenberger, B.A. Engel, and J.G. Arnold. 2008. Representation of agricultural conservation practices with SWAT. Hydrological Processes. 22(16): 3042-3055. DOI: 10.1002/hyp.6890 .
301. Arabi, M., R.S. Govindaraju and M.M. Hantush. 2006. Cost-effective allocation of watershed management practices using a genetic algorithm. Water Resources Research. 42(10): W10429. DOI: 10.1029/2006WR004931 .
302. Arabi, M., R.S. Govindaraju and M.M. Hantush. 2007. A probabilistic approach for analysis of uncertainty in the evaluation of watershed management practices. Journal of Hydrology. 333(2-4): 459-471. DOI: 10.1016/j.jhydrol.2006.09.012 .
303. Arabi, M., R.S. Govindaraju, M.M. Hantush and B.A. Engel. 2006. Role of watershed subdivision on modeling the effectiveness of best management practices with SWAT. Journal of the American Water Resources Association. 42(2): 513-528. DOI: 10.1111/j.1752-1688.2006.tb03854.x .
304. Arabi, M., R.S. Govindaraju, M.M. Hantush and B.A. Engel. 2007. Multiobjective sensitivity analysis of sediment and nitrogen processes with a watershed model. Water Resources Research. 43(6): 1-11. DOI: 10.1029/2006WR005463 .
305. Aragaw, H.M. and A.L. Kura. 2024. Hydrological response to land use/land cover changes in Ethiopian basins: A review. Hydrological Sciences Journal. 69(7): 986-996. DOI: 10.1080/02626667.2024.2349272 .
306. Aragaw, H.M. and S.K. Mishra. 2022. Multi‑site multi‑objective calibration of SWAT model using a large dataset for improved performance in Ethiopia. Arabian Journal of Geosciences. 15(4): 320. DOI: 10.1007/s12517-022-09602-5 .
307. Aragaw, H.M., M.K. Goel and S.K. Mishra. 2021. Hydrological responses to human-induced land use/land cover changes in the Gidabo River Basin, Ethiopia. Hydrological Sciences Journal. 66(4): 640-655. DOI: 10.1080/02626667.2021.1890328 .
308. Aragawa, H.M., S.K. Mishra and M.K. Goel. 2022. Responses of water balance component to land use/land cover and climate change using geospatial and hydrologic modeling in the Gidabo watershed. Geocarto International. 37(27): 17119–17144. DOI: 10.1080/10106049.2022.2123956 .
309. Araza, A., M. Perez, R.V. Cruz, L.F. Aggabao and E. Soyosa. 2021. Probable streamflow changes and its associated risk to the water resources of Abuan Watershed, Philippines caused by climate change and land use changes. Stochastic Environmental Research and Risk Assessment. 35(2): 389–404. DOI: 10.1007/s00477-020-01953-3 .
310. Arbab, N.N., A.R. Collins and J.F. Conley. 2018. Projections of watershed pollutant loads using a spatially explicit, agent-based land use conversion model: A case study of Berkeley County, West Virginia. Applied Spatial Analysis and Policy. 11(1): 147–181. DOI: 10.1007/s12061-016-9197-z .
311. Arceo, M.G.A.S., R.V.O. Cruz, C.L. Tiburan Jr., J.B. Balatibat and N.R. Alibuyog. 2018. Modeling the hydrologic responses to land cover and climate changes of selected watersheds in the Philippines using Soil and Water Assessment Tool (SWAT) model. DLSU Business and Economics Review. 28(SI): 84-101. URL: https://dlsu-ber.com/modeling-the-hydrologic-responses-to-land-cover-and-climate-changes-of-selected-watersheds-in-the-philippines-using-soil-and-water-assessment-tool-swat-model/.
312. Arhonditsis, G.B., A. Neumann, Y. Shimoda, D.-K. Kim, F. Dong, G. Onandia, C. Yang, A. Javed, M. Brady, A. Visha, F. Ni and V. Cheng. 2019. Castles built on sand or predictive limnology in action? Part A: Evaluation of an integrated modelling framework to guide adaptive management implementation in Lake Erie. Ecological Informatics. 52: 100968. DOI: 10.1016/j.ecoinf.2019.05.014 .
313. Arias, M.E., T. Piman, H. Lauri, T.A. Cochrane and M. Kummu. 2014. Dams on Mekong tributaries as significant contributors of hydrological alterations to the Tonle Sap Floodplain in Cambodia. Hydrology and Earth System Sciences. 18(12): 5303-5315. DOI: 10.5194/hess-18-5303-2014 .
314. Arias, M.E., T.A. Cochrane, K.S. Lawrence, T.J. Killeen and T.A. Farrell. 2011. Paying the forest for electricity: A modelling framework to market forest conservation as payment for ecosystem services benefiting hydropower generation. Environmental Conservation. 38(4): 473-484. DOI: 10.1017/S0376892911000464 .
315. Arias, R., M. L. Rodriguez-Blanco, M. M. Taboada-Castro, J. P. Nunes, J. J. Keizer and M. T. Taboada-Castro. 2014. Water resources response to changes in temperature, rainfall and CO2 concentration: a first approach in NW Spain. Water. 6(10): 3049-3067. DOI: 10.3390/w6103049 .
316. Arizobal, D.E., R.A. Luyun, A.G.P. Sobremisana and J.A. Gonzales. 2024. Assessment of soil erosion risk at Carrascal, Surigao del Sur, Philippines using Soil and Water Assessment Tool (SWAT+). Philippine Journal of Agricultural and Biosystems Engineering. 20(1): 3-14. DOI: 10.48196/020.01.2024.01 .
317. Arjomandi, A., S.A. Mortazavi, S. Khalilian and A.Z. Garizi. 2021. Optimal land-use allocation using MCDM and SWAT for the Hablehroud Watershed, Iran. Land Use Policy. 100: 104930. DOI: 10.1016/j.landusepol.2020.104930 .
318. Armağan, K., B.N. Egoh, D. Lanzanova, B. Grizzetti, G. Bidoglio, L. Pagliero, F. Bouraoui, A. Aloe, A. Reynaud, J. Maes, I. Vandecasteele and S. Mubareka. 2016. Mapping water provisioning services to support the ecosystem–water–food–energy nexus in the Danube River Basin. Ecosystem Services. 17: 278-292. DOI: 10.1016/j.ecoser.2015.08.002 .
319. Armoa, O.L.B., S. Sauvage, T. Houska, K. Bieger, C. Schürz and J.M.S. Pérez. 2023. Representation of hydrological components under a changing climate—A case study of the Uruguay River Basin using the new version of the Soil and Water Assessment Tool model (SWAT+). Water. 15(14): 2604. DOI: 10.3390/w15142604 .
320. Arnillas, C.A., C. Yang, S.A. Zamaria, A. Neumann, A. Javed, Y. Shimoda, N. Feisthauer, A. Crolla, F. Dong, A. Blukacz-Richards, Y.R. Rao, D. Paredes and G.B. Arhonditsis. 2021. Integrating watershed and ecosystem service models to assess best management practice efficiency: Guidelines for Lake Erie managers and watershed modellers. Environmental Reviews. 29(1): 31–63. DOI: 10.1139/er-2020-0071 .
321. Arnold J. G., D. Harmel, M. V. Johnson, R. Bingner, T. C. Strickland, M. Walbridge, C. Santhi, M. DiLuzio and X. Wang. 2014. Impact of the Agricultural Research Service watershed assessment studies on the Conservation Effects Assessment Project Cropland National Assessment. Journal of Soil and Water Conservation. 69(5): 137A-144A. DOI: 10.2489/jswc.69.5.137A .
322. Arnold, J.G. and J.R. Williams. 1987. Validation of SWRRB-- Simulator for water resources in rural basins. Journal of Water Resources Planning and Management. 113(2): 243-256. DOI: 10.1061/(ASCE)0733-9496(1987)113:2(243) .
323. Arnold, J.G. and N. Fohrer. 2005. SWAT2000: current capabilities and research opportunities in applied watershed modeling. Hydrological Processes. 19(3): 563-572. DOI: 10.1002/hyp.5611 .
324. Arnold, J.G. and P.M. Allen. 1996. Estimating hydrologic budgets for three Illinois watersheds. Journal of Hydrology. 176(1-4): 57‑77. DOI: 10.1016/0022-1694(95)02782-3 .
325. Arnold, J.G. and P.M. Allen. 1999. Automated methods for estimating baseflow and groundwater recharge from streamflow records. Journal of the American Water Resources Association. 35(2): 411-424. DOI: 10.1111/j.1752-1688.1999.tb03599.x .
326. Arnold, J.G., Allen, P.M. and G. Bernhardt. 1993. A comprehensive surface‑groundwater flow model. Journal of Hydrology. 142(1-4): 47‑69. DOI: 10.1016/0022-1694(93)90004-S .
327. Arnold, J.G., D.N. Moriasi, P.W. Gassman, K.C. Abbaspour, M.J. White, R. Srinivasan, C. Santhi, R.D. Harmel, A. van Griensven, M.W. Van Liew, N. Kannan and M.K. Jha. 2012. SWAT: Model use, calibration, and validation. Transactions of the ASABE. 55(4): 1491-1508. DOI: 10.13031/2013.42256 .
328. Arnold, J.G., J.R. Williams and D.A. Maidment. 1995. Continuous-time water and sediment-routing model for large basins. Journal of Hydraulic Engineering. 121(2): 171-183. DOI: 10.1061/(ASCE)0733-9429(1995)121:2(171) .
329. Arnold, J.G., K. Bieger, M.J. White, R. Srinivasan, J.A. Dunbar and P.M. Allen. 2018. Use of decision tables to simluate management in SWAT+. Water. 10(6). DOI: 10.3390/w10060713 .
330. Arnold, J.G., K.N. Potter, K.W. King and P.M. Allen. 2005. Estimation of soil cracking and the effect on surface runoff in a Texas Blackland Prairie watershed. Hydrological Processes. 19(3): 589-603. DOI: 10.1002/hyp.5609 .
331. Arnold, J.G., M.A. Youssef, H. Yen, M.J. White, A.Y. Sheshukov, A.M. Sadeghi, D.N. Moriasi, J.L. Steiner, D.M. Amatya, R.W. Skaggs, E.B. Haney, J. Jeong, M. Arabi and P.H. Gowda. 2015. Hydrological processes and model representation: Impact of soft data on calibration. Transactions of the ASABE. 58(6): 1637-1660. DOI: 10.13031/trans.58.10710 .
332. Arnold, J.G., M.J. White, P.M. Allen, P.W. Gassman and K. Bieger. 2021. Conceptual framework of connectivity for a national agroecosystem model based on transport processes and management practices. Journal of the American Water Resources Association. 54(1): 154-169. DOI: 10.1111/1752-1688.12890 .
333. Arnold, J.G., P.M. Allen and D. Morgan. 2001. Hydrologic model for design and constructed wetlands. Wetlands. 21(2): 167-178. DOI: 10.1672/0277-5212(2001)021[0167:HMFDAC]2.0.CO;2 .
334. Arnold, J.G., P.M. Allen, M. Volk, J.R. Williams and D.D. Bosch. 2010. Assessment of different representations of spatial variability on SWAT model performance. Transactions of the ASABE. 53(5): 1433-1443. DOI: 10.13031/2013.34913 .
335. Arnold, J.G., P.M. Allen, R.S. Muttiah and G. Bernhardt. 1995. Automated base flow separation and recession analysis techniques. Groundwater. 33(6): 1010‑1018. DOI: 10.1111/j.1745-6584.1995.tb00046.x .
336. Arnold, J.G., R. Srinivasan and B.A. Engel. 1994. Flexible watershed configurations for simulating models. Hydrological Science and Technology. 10(1‑4): 5‑14.
337. Arnold, J.G., R. Srinivasan, R.S. Muttiah and J.R. Williams. 1998. Large area hydrologic modeling and assessment part I: Model development. Journal of the American Water Resources Association. 34(1): 73‑89. DOI: 10.1111/j.1752-1688.1998.tb05961.x .
338. Arnold, J.G., R. Srinivasan, R.S. Muttiah and P.M. Allen. 1999. Continental scale simulation of the hydrologic balance. Journal of the American Water Resources Association. 35(5): 1037-1052. DOI: 10.1111/j.1752-1688.1999.tb04192.x .
339. Arnold, J.G., R. Srinivasan, T.S. Ramanarayanan and M. Di Luzio. 1999. Water resources of the Texas Gulf Basin. Water Science and Technology. (39)3: 121-133. DOI: 10.1016/S0273-1223(99)00044-X .
340. Arnold, J.G., R.S. Muttiah, R. Srinivasan and P.M. Allen. 2000. Regional estimation of base flow and groundwater recharge in the Upper Mississippi River Basin. Journal of Hydrology. 227(1-4): 21-40. DOI: 10.1016/S0022-1694(99)00139-0 .
341. Arora, P., J. Lamba, P. Srivastava and L. Kalin. 2019. Modeling effectiveness of broiler litter application method for reducing phosphorus and nitrogen losses. Hydrology Research. 50(4): 1047-1061. DOI: 10.2166/nh.2019.017 .
342. Arrueta, L., D. Jackson-Smith and M. Kalcic. 2022. Simulating behavioral heterogeneity in watershed models: A systematic review of fertilizer use in SWAT studies. Journal of Soil and Water Conservation. 77(3): 249-260. DOI: 10.2489/jswc.2022.00055 .
343. Arshad, A., A.M. shir Ahmad, M. Samimi and B. Ahmad. 2022. Combining downscaled-GRACE data with SWAT to improve the estimation of groundwater storage and depletion variations in the Irrigated Indus Basin (IIB). Science of the Total Environment. 838(Part2): 156044. DOI: 10.1016/j.scitotenv.2022.156044 .
344. Artita, K.S., P. Kaini and J.W. Nicklow. 2013. Examining the possibilities: Generating alternative watershed-scale BMP designs with evolutionary algorithms. Water Resources Management. 27(12): 3849-3863. DOI: 10.1007/s11269-013-0375-3 .
345. Aryal, A., S. Shrestha and M.S. Babel. 2019. Quantifying the sources of uncertainty in an ensemble of hydrological climate-impact projections. Theoretical and Applied Climatology. 135(1-2): 193–209. DOI: 10.1007/s00704-017-2359-3 .
346. Asadi, S., S.J. Mousavi, A. López-Ballesteros and J. Senent-Aparicio. 2024. Analyzing hydrological alteration and environmental flows in a highly anthropized agricultural river basin system using SWAT+, WEAP and IAHRIS. Journal of Hydrology: Regional Studies. 52: 101738. DOI: 10.1016/j.ejrh.2024.101738 .
347. Asadzadeh, M., B. Tolson and D.H. Burn. 2014. A new selection metric for multi-objective hydrologic model calibration. Water Resources Research. 50(9): 7082-7099. DOI: 10.1002/2013WR014970 .
348. Asadzadeh, M., L. Leon, C. McCrimmon, W. Yang, Y. Liu, I. Wong, P. Fong and G. Bowen. 2015. Watershed derived nutrients for lake Ontario inflows: Model calibration considering typical land operations in southern Ontario. Journal of Great Lakes Research. 41(4): 1037-1051. DOI: 10.1016/j.jglr.2015.09.002 .
349. Asadzadeh, M., L. Leon, W. Yang and D. Bosch. 2016. One-day offset in daily hydrologic modelling: An exploration of the issue in automatic model calibration. Journal of Hydrology. 534: 164–177. DOI: 10.1016/j.jhydrol.2015.12.056 .
350. Asante, K., M.D. Leh, J.D. Cothren, M. Di Luzio and J.V. Brahana. 2017. Effects of land-use land-cover data resolution and classification methods on SWAT model flow predictive reliability. International Journal of Hydrology Science and Technology. 7(1): 39-62. URL: http://www.inderscienceonline.com/doi/abs/10.1504/IJHST.2017.080956.
351. Asgari, M., W. Yang, J. Lindsay, B. Tolson and M.M. Dehnavi. 2022. A review of parallel computing applications in calibrating watershed hydrologic models. Environmental Modelling & Software. 151: 105370. DOI: 10.1016/j.envsoft.2022.105370 .
352. Asghari, A., B. Aminnejad and H. Ebrahimi. 2023. Flow control and sediment transfer using the performance of two hydrological and hydraulic models in the Jajrud River Basin. Iranian Journal of Irrigation and Water Engineering. : 78-80. DOI: 10.22125/IWE.2022.345698.1641 .
353. Ashagre, B.B., P.J. Platts, M. Njana, N.D. Burgess, A. Balmford, R.K. Turner and M. Schaafsma. 2018. Integrated modelling for economic valuation of the role of forests and woodlands in drinking water provision to two African cities. Ecosystem Services. 32: 50-61. DOI: 10.1016/j.ecoser.2018.05.004 .
354. Ashraf, A. and Hanif-ur-Rehman. 2019. Upstream and downstream response of water resource regimes to climate change in the Indus River Basin. Arabian Journal of Geosciences. 12(16): 516. DOI: 10.1007/s12517-019-4667-7 .
355. Ashraf, S., M. Ali, S. Shrestha, M.A. Hafeez, A. Moiz and Z.A. Sheikh. 2022. Impacts of climate and land-use change on groundwater recharge in the semi-arid lower Ravi River Basin, Pakistan. Groundwater for Sustainable Development. 17: 100743. DOI: 10.1007/s40899-022-00733-x .
356. Ashu, A.B. and S.-I. Lee. 2023. Multi-site calibration of hydrological model and spatio-temporal assessment of water balance in a monsoon watershed. Water. 15(2): 360. DOI: 10.3390/w15020360 .
357. Ashu, A.B. and S-I. Lee. 2020. Assessing climate change effects on water balance in a monsoon watershed. Water. 12(9): 2564. DOI: 10.3390/w12092564 .
358. Askar, M.A.A. and M. Basibuyuk. 2020. AssessIng climate change impacts on water resources of Seyhan River Basin by using SWAT model. Çukurova Üniversitesi Fen Bilimleri Enstitüsü. 39(2): 1-10. URL: https://fbe.cukurova.edu.tr/cu/e-dergi/makaleler/2020%20Y%C4%B1l%C4%B1.
359. Aslam, R.A., S. Shrestha, M.N. Usman, S.N. Khan, S. Ali, M.S. Sharif, M.W. Sarwar, N. Saddique, A. Sarwar, M.U. Ali and A. Arshad. 2022. Integrated SWAT-MODFLOW modeling-based groundwater adaptation policy guidelines for Lahore, Pakistan under projected climate change, and human development scenarios. Atmosphere. 13(12): 2001. DOI: 10.3390/atmos13122001 .
360. Asl-Rousta, B. and S.J. Mousavi. 2019. A TOPSIS-based multicriteria approach to the calibration of a basin-scale SWAT hydrological model. Water Resources Management. 33(1): 439–452. DOI: 10.1007/s11269-018-2111-5 .
361. Asl-Rousta, B., S.J. Mousavi, M. Ehtiat and M. Ahmadi. 2018. SWAT-based hydrological modelling using model selection criteria. Water Resources Management. 32(6): 2181-2197. DOI: 10.1007/s11269-018-1925-5 .
362. Aslund, M.W., R.L. Breton, L. Padilla, M. Winchell, K.L. Wooding, D.R.J. Moore, R.S. Teed, R. Reiss and P. Whatling. 2017. Ecological risk assessment for pacific salmon exposed to Dimethoate in California. Environmental Toxicology and Chemistry. 36(2): 532–543. DOI: 10.1002/etc.3563 .
363. Asmara, B. and T.O. Randhir. 2024. Modeling the impacts of oil palm plantations on water quantity and quality in the Kais River Watershed of Indonesia. Science of the Total Environment. 928: 172456. DOI: 10.1016/j.scitotenv.2024.172456 .
364. Asmaranto, R., E. Suhartanto and M. Yuanita. 2011. Aplikasi model AVSWAT 2000 untuk memprediksi erosi, sedimentasi dan limpasan di DAS Sampean. Jurnal Teknik Pengairan. 2(1): 79-85. URL: http://jurnalpengairan.ub.ac.id/index.php/jtp/article/view/123.
365. Asres, M.T. and S.B. Awulachew. 2010. SWAT based runoff and sediment yield modelling: A case study of the Gumera watershed in the Blue Nile basin. Ecohydrology & Hydrobiology. 10(2-4): 191-200. DOI: 10.2478/v10104-011-0020-9 .
366. Assfaw, A.T. 2019. Calibration, validation and performance evaluation of SWAT model for sediment yield modeling in Megech Reservoir Catchment, Ethiopia. Journal of Environmental Geography. 12(3-4): 21-31. DOI: 10.2478/jengeo-2019-0009 .
367. Astsatryan, H., W. Narsisian and Sh. Asmaryan. 2016. SWAT hydrological model as a DaaS cloud service. Earth Science Informatics. 9(3): 401–407. DOI: 10.1007/s12145-016-0254-6 .
368. Astuti, I.S., K. Sahoo, A. Milewski and D.R. Mishra. 2019. Impact of land use land cover (LULC) change on surface runoff in an increasingly urbanized tropical watershed. Water Resources Management. 33: 4087–4103. DOI: 10.1007/s11269-019-02320-w .
369. Asurza-Véliz, F.A. and W.S. Lavado-Casimiro. 2020. Regional parameter estimation of the SWAT model: Methodology and application to River Basins in the Peruvian Pacific drainage. Water. 12(11). DOI: 10.3390/w12113198 .
370. Athira, P. and K. P. Sudheer. 2015. A method to reduce the computational requirement while assessing uncertainty of complex hydrological models. Stochastic Environmental Research and Risk Assessment. 29(3): 847-859. DOI: 10.1007/s00477-014-0958-4 .
371. Athira, P. and K.P. Sudheer. 2021. Calibration of distributed hydrological models considering the heterogeneity of the parameters across the basin: A case study of SWAT model. Environmental Earth Sciences. 80(4): 131. DOI: 10.1007/s12665-021-09434-8 .
372. Athira, P., C. Nanda and K.P. Sudheer. 2018. A computationally efficient method for uncertainty analysis of SWAT model simulations. Stochastic Environmental Research and Risk Assessment. 32(6): 1479-1492. DOI: 10.1007/s00477-018-1538-9 .
373. Athira, P., K.P. Sudheer, R. Cibin and I. Chaubey. 2016. Predictions in ungauged basins: An approach for regionalization of hydrological models considering the probability distribution of model parameters. Stochastic Environmental Research and Risk Assessment. 30(4): 1131-1149. DOI: 10.1007/s00477-015-1190-6 .
374. Athira, R.A. 2021. Calibration of hydrological models considering process interdependence: A case study of SWAT model. Environmental Modelling & Software. 144: 105131. DOI: 10.1016/j.envsoft.2021.105131 .
375. Attwood, J.D., B. McCarl, C.C. Chen, B.R. Eddleman, B. Nayda and R. Srinivasan. 2000. Assessing regional impacts of change: Linking economic and environmental models. Agricultural Systems. 63(3): 147-159. DOI: 10.1016/S0308-521X(99)00077-3 .
376. Atullley, J.A., A.A. Kwaku, E.D.J. Owusu-Ansah, S. Ampofo, A. Jacob and O.S. Nii. 2022. Modeling the impact of land cover changes on water balance in the Vea Catchment of Ghana, 1985–2040. Sustainable Water Resources Management. 8(5): 148. DOI: 10.1007/s40899-022-00727-9 .
377. Auerbach, D.A., Z.M. Easton, M.T. Walter, A.S. Flecker and D.R. Fuka. 2016. Evaluating weather observations and the Climate Forecast System Reanalysis as inputs for hydrologic modeling in the tropics. Hydrological Processes. 30(19): 3466–3477. DOI: 10.1002/hyp.10860 .
378. Avci, B.C., E. Kesgin, M. Atam and R.I. Tan. 2022. Modeling agricultural practice impacts on surface water quality: Case of Northern Aegean watershed, Turkey. International Journal of Environmental Science and Technology. 20(5): 5265–5280. DOI: 10.1007/s13762-022-04477-1 .
379. Avci, B.C., E. Kesgin, M. Atam and R.I. Tan. 2023. Spatial-temporal response of sediment loads to climate change and soil conservation practices in the Northern Aegean Watershed, Türkiye. Water. 15(13): 2461. DOI: 10.3390/w15132461 .
380. Avellaneda, P.M. and A.J. Jefferson. 2020. Sensitivity of streamflow metrics to infiltration‐based stormwater management networks. Water Resources Research. 56: e2019WR026555. DOI: 10.1029/2019WR026555 .
381. Avellaneda, P.M., D.L. Ficklin, C.S. Lowry, J.H. Knouft and D.M. Hall. 2020. Improving hydrological models with the assimilation of crowdsourced data. Water Resources Research. 56(5): 02019WR026325. DOI: 10.1029/2019WR026325 .
382. Avila-Aceves, E., W. Plata-Rocha, S.A. Monjardin-Armenta and J.G. Rangel-Peraza. 2023. Geospatial modelling of floods: A literature review. Stochastic Environmental Research and Risk Assessment. 37(11): 4109-4128. DOI: 10.1007/s00477-023-02505-1 .
383. Awan, U.K. and A. Ismaeel. 2014. A new technique to map groundwater recharge in irrigated areas using a SWAT model under changing climate. Journal of Hydrology. 519 (Part B): 1368–1382. DOI: 10.1016/j.jhydrol.2014.08.049 .
384. Awan, U.K., U.W. Liaqat, M. Choi and A. Ismaeel. 2016. A SWAT modeling approach to assess the impact of climate change on consumptive water use in Lower Chenab Canal area of Indus basin. Hydrology Research. 47(5): 1025-1037. DOI: 10.2166/nh.2016.102 .
385. Awotwi, A., F. Yeboah and M. Kumi. 2014. Assessing the impact of land cover changes on water balance components of White Volta Basin in West Africa. Water and Environment Journal. 29(2): 259-267. DOI: 10.1111/wej.12100 .
386. Awotwi, A., G.K. Anornu, J.A. Quaye-Ballard, T. Annor, E.K. Forkuo, E. Harris, J. Agyekum and J.L. Terlabie. 2019. Water balance responses to land-use/land-cover changes in the Pra River Basin of Ghana, 1986–2025. Catena. 182: 104129. DOI: 10.1016/j.catena.2019.104129 .
387. Awotwi, A., G.K. Anornu, J.A. Quaye-Ballard, T. Annor, I.K. Nti, S.N. Odai, E. Arhin and C. Gyamfi. 2021. Impact of post-reclamation of soil by large-scale, small-scale and illegal mining on water balance components and sediment yield: Pra River Basin case study. Soil & Tillage Research. 211: 105026. DOI: 10.1016/j.still.2021.105026 .
388. Ayalew, A.D., P.D. Wagner, D. Sahlu and N. Fohrer. 2024. Unveiling hydrological dynamics in data-scarce regions: experiences from the Ethiopian Rift Valley Lakes Basin. Hydrology and Earth System Sciences. 28(8): 1853–1872. DOI: 10.5194/hess-28-1853-2024 .
389. Ayalew, A.D., P.D. Wagner, T.B. Tigabu, D. Sahlu and N. Fohrer. 2023. Hydrological responses to land use and land cover change and climate dynamics in the Rift Valley Lakes Basin, Ethiopia. Journal of Water and Climate Change. 14(8): 2788-2807. DOI: 10.2166/wcc.2023.138 .
390. Ayalew, D.W., T. Asefa, M.A. Moges and S.M. Leyew. 2022. Evaluating the potential impact of climate change on the hydrology of Ribb Catchment, Lake Tana Basin, Ethiopia. Journal of Water and Climate Change. 13(1): 190-205. DOI: 10.2166/wcc.2021.049 .
391. Ayalew, L.T. and R. Bharti. 2022. Modelling sediment yield of Rib Watershed, northwest Ethiopia. ISH Journal of Hydraulic Engineering. 28(S1): 491-502. DOI: 10.1080/09715010.2020.1797544 .
392. Ayana, A.B., D.C. Edossa and E. Kositsakulchai. 2012. Simulation of sediment yield using SWAT model in Fincha Watershed, Ethiopia. Kasetsart Journal Natural Sciences. 46: 283-297. URL: http://kasetsartjournal.ku.ac.th/abstractShow.aspx?param=YXJ0aWNsZUlEPTUxMDN8bWVkaWFJRD01MzI3.
393. Ayana, E.K., A.W. Worqlul and T.S. Steenhuis. 2015. Evaluation of streamwater quality data generated from MODIS images in modeling total suspended solid emission to a freshwater lake. Science of the Total Environment. 523: 170-177. DOI: 10.1016/j.scitotenv.2015.03.132 .
394. Ayana, E.K., Y.T. Dile, B. Narasimhan and R. Srinivasan. 2019. Dividends in flow prediction improvement using high-resolution soil database. Journal of Hydrology: Regional Studies. 21: 159-175. DOI: 10.1016/j.ejrh.2019.01.003 .
395. Ayana, M.T., Y.K. Bizuneh, A.E. Koshuma, A.C. Workneh, B.M. Ali and T.K. Loahni. 2022. Developing a DEM and elucidating through SWAT to Conserve Soil in Kulfo Watershed of Rift Valley Basin, Ethiopia. Applied and Environmental Soil Science. : 7702739. DOI: 10.1155/2022/7702739 .
396. Ayanshola, A., O. Olonfintoye and E. Obadofin. 2018. The impact of global warming on precipitation patterns in Ilorin and the hydrological balance of the Awun Basin. Slovak Journal of Civil Engineering. 26(1): 40-46. DOI: 10.2478/sjce-2018-0006 .
397. Ayele, G.T., A. Kuriqi, M.A. Jemberrie, S.M. Saia, A.M. Seka, E.Z. Teshale, M.H. Daba, S.A. Bhat, S.S. Demissie, J. Jeong and A.M. Melesse. 2021. Sediment yield and reservoir sedimentation in highly dynamic watersheds: The case of Koga Reservoir, Ethiopia. Water. 13(23): 3374. DOI: 10.3390/w13233374 .
398. Ayele, G.T., B. Yu, A. Bruere and D.P. Hamilton. 2023. Response of streamfow and nutrient loads in a small temperate catchment subject to land use change. Environmental Monitoring and Assessment. 195(12): 1418. DOI: 10.1007/s10661-023-11828-z .
399. Ayele, W.T., D.Y. Tenagashaw, A.Z. Belew and T.G. Andualem. 2022. Optimal water allocation under climate change, based on stochastic dynamic programming model approach in Ribb Reservoir, Amhara, Ethiopia. Water Conservation Science and Engineering. 7: 33-44. DOI: 10.1007/s41101-021-00125-w .
400. Ayers, J., D.L. Ficklin, I.T. Stewart and M. Strunk. 2016. Comparison of CMIP3 and CMIP5 projected hydrologic conditions over the Upper Colorado River Basin. International Journal of Climatology. 36(11): 3807–3818. DOI: 10.1002/joc.4594 .
401. Ayik, A., N. Ijumba, C. Kabiri and P. Goffin. 2023. Preliminary assessment of small hydropower potential using the Soil and Water Assessment Tool model: A case study of Central Equatoria State, South Sudan. Energy Reports. 9: 2229-2246. DOI: 10.1016/j.egyr.2023.01.014 .
402. Ayivi, F. and M.K. Jha. 2018. Estimation of water balance and water yield in the Reedy Fork-Buffalo Creek watershed in North Carolina using SWAT. International Soil and Water Conservation Research. DOI: 10.1016/j.iswcr.2018.03.007 .
403. Aytaç, E. 2020. Unsupervised learning approach in defining the similarity of catchments: Hydrological response unit based k-means clustering, a demonstration on Western Black Sea Region of Turkey. International Soil and Water Conservation Research. 8: 321-331. DOI: 10.1016/j.iswcr.2020.05.002 .
404. Ayuba, S.R. and N.A. Budiprabowo. 2019. Analisis ketersediaan air di sub das Batu Layar melalui pemodelan SWAT. Jurnal Azimut. 2(2): 116-120. DOI: 10.31317/jaz.v2i2.482 .
405. Ayuba, S.R., M. Nurshaputra and Tisen. 2018. Classification of drought level in Limboto watershed. Jurnal Sains Informasi Geografi. 1(2): 12-20. DOI: 10.31314/jsig.v1i2.174 .
406. Azari, M., B. Saghafian, H.R. Moradi and M. Faramarzi. 2017. Effectiveness of Soil and Water Conservation practices under climate change in the Gorganroud Basin, Iran. Clean - Soil, Air, Water. 45(8): 1700888. DOI: 10.1002/clen.201700288 .
407. Azari, M., H.R. Moradi, B. Saghafian and M. Faramarzi. 2013. Assessment of hydrological effects of climate change in Gourganroud River Basin. Journal of Water and Soil. 27(3): 573-547. URL: http://jm.um.ac.ir/index.php/jsw/article/view/26051.
408. Azari, M., H.R. Moradi, B. Saghafian and M. Faramarzi. 2016. Climate change impacts on streamflow and sediment yield in the North of Iran. Hydrological Sciences Journal. 61(1): 123-133. DOI: 10.1080/02626667.2014.967695 .
409. Azgin, S.T. and F.D. Celik. 2020. Evaluating surface runoff responses to land use changes in a data scarce basin: A case study in Palas Basin, Turkey. Water Resources. 47(5): 828-834. DOI: 10.1134/S0097807820050206 .
410. Azimi, M. and S. Mahzari. 2018. Simulation of the effects of different rangeland improvements scenarios on evapotranspiration of Gorganrud Watershed-Golestan. Iranian Journal of Range and Desert Research. 25(1): 129-139. DOI: 10.22092/ijrdr.2018.116231 .
411. Azimi, M., G.A. Heshmati, M. Farahpour, M. Faramarzi and K.C. Abbaspour. 2013. Modeling the impact of rangeland management on forage production of sagebrush species in arid and semi-arid regions of Iran. Ecological Modelling. 250: 1-44. DOI: 10.1016/j.ecolmodel.2012.10.017 .
412. Azimi, M., M. Barzali, M. Abdolhosseini and A. Lotfi. 2021. Examining the impact of rangeland condition on water conservation by using an integrated modelling approach. Land Degradation & Development. 32(13): 3711-3719. DOI: 10.1002/ldr.3830 .
413. Azimia, S., A.B. Dariane, S. Modanesi, B. Bauer-Marschallinger, R. Bindlish, W. Wagner and C. Massari. 2020. Assimilation of Sentinel 1 and SMAP – based satellite soil moisture retrievals into SWAT hydrological model: The impact of satellite revisit time and product spatial resolution on flood simulations in small basins. Journal of Hydrology. 581: 124367. DOI: 10.1016/j.jhydrol.2019.124367 .
414. Aznarez, C., P. Jimeno-Sáez, A. López-Ballesteros, J.P. Pacheco and J. Senent-Aparicio. 2021. Analysing the impact of climate change on hydrological ecosystem services in Laguna del Sauce (Uruguay) using the SWAT model and remote sensing data. Remote Sensing. 13(10): 2014. DOI: 10.3390/rs13102014 .
415. Azzellino, A., M. Carpani, S. Cevirgen, C. Giupponi, P. Parati, F. Ragusa and R. Salvetti. 2013. Managing the nutrient loads of the Venice Lagoon Watershed: Are the loads external to the watershed relevant under the WFD River Basin District framework? Journal of Coastal Research. SI65: 25-30. DOI: 10.2112/SI65-005.1 .
416. Azzellino, A., S. Çevirgen, C. Giupponi, P. Parati, F. Ragusa and R. Salvetti. 2015. SWAT meta-modeling as support of the management scenario analysis in large watersheds. Water Science and Technology. 72(12): 2103-2111. DOI: 10.2166/wst.2015.430 .
417. B. 2020. Assessment of hydrological response in Subarnarekha River Basin under anticipated climate change scenarios. Global Nest Journal. 22(2): 207-219. DOI: 10.30955/gnj.003191 .
418. Ba, W., P. Du, T. Liu, A. Bao, M. Luo, M. Hassan and C. Qin. 2018. Simulating hydrological responses to climate change using dynamic and statistical downscaling methods: A case study in the Kaidu River Basin, Xinjiang, China. Journal of Arid Land. 10(6): 905–920. DOI: 10.1007/s40333-018-0068-0 .
419. Ba, W., P. Du, T. Liu, A. Bao, X. Chen, J. Liu and C. Qin. 2020. Impacts of climate change and agricultural activities on water quality in the Lower Kaidu River Basin, China. Journal of Geographical Sciences. 30(1): 164-176. DOI: 10.1007/s11442-020-1721-z .
420. Babaei, H., M. Nazari-Sharabian, M. Karakouzian and S. Ahmad. 2019. Identification of critical source areas (CSAs) and evaluation of best management practices (BMPs) in controlling eutrophication in the Dez River Basin. Environments. 6: 20. DOI: 10.3390/environments6020020 .
421. Babaei, N., M. Shourian and A. Moridi. 2021. Estimating evapotranspiration values in river basin scale using SWAT model and SEBAL Algorithm. Iranian Journal of Soil and Water Research. 54(9): 719-730. DOI: 10.22059/ijswr.2020.300306.668567 .
422. Babaei, N., M. Shourian and A. Moridi. 2021. Estimating evapotranspiration values in river basin scale using SWAT model and SEBAL algorithm. Iranian Journal of Soil and Water Research. 52(1): 175-194. DOI: 10.22059/ijswr.2020.300306.668567 .
423. Babaeian, F., M. Delavar, S. Morid and R. Srinivasan. 2021. Robust climate change adaptation pathways in agricultural water management. Agricultural Water Management. 252: 106904. DOI: 10.1016/j.agwat.2021.106904 .
424. Babaeian, F., M. Delavar, S. Morid and S. Jamshidi. 2023. Designing climate change dynamic adaptive policy pathways for agricultural water management using a socio-hydrological modeling approach. Journal of Hydrology. 627(PartA): 130398. DOI: 10.1016/j.jhydrol.2023.130398 .
425. Babar, S. and H. Ramesh. 2015. Streamflow response to land use-land cover change over the Nethravathi River Basin, India. Journal of Hydrologic Engineering. 20(10). DOI: 10.1061/(ASCE)HE.1943-5584.0001177 .
426. Babbar-Sebens, M., R. Barr, L.Tedesco and M. Anderson. 2013. Spatial identification and optimization of upland wetlands in agricultural watersheds. Ecological Engineering. 52: 130-142. DOI: 10.1016/j.ecoleng.2012.12.085 .
427. Babbar-Sebens, M., S. Mukhopadhyay, V.B. Singh and A.D. Piemonti. 2015. A web-based software tool for participatory optimization of conservation practices in watersheds. Environmental Modelling & Software. 69: 111-127. DOI: 10.1016/j.envsoft.2015.03.011 .
428. Babel, M.S., B. Shrestha and S.R. Perret. 2011. Hydrological impact of biofuel production: A case study of the Khlong Phlo Watershed in Thailand. Agricultural Water Management. 101(1): 8-26. DOI: 10.1016/j.agwat.2011.08.019 .
429. Babel, M.S., M.B. Gunathilake and M.K. Jha. 2021. Evaluation of ecosystem-based adaptation measures for sediment yield in a tropical watershed in Thailand. Water. 13(19): 2767. DOI: 10.3390/w13192767 .
430. Babur M., S. Shrestha, B. Bhatta, A. Datta and H. Ullah. 2020. Integrated assessment of extreme climate and landuse change impact on sediment yield in a mountainous transboundary watershed of India and Pakistan. Journal of Mountain Science. 17(3): 624-640. DOI: 10.1007/s11629-019-5547-z .
431. Babur, M., M.S. Babel, S. Shrestha, A. Kawasaki and N.K. Tripathi. 2016. Assessment of climate change impact on reservoir inflows using multi climate-models under RCPs—The case of Mangla Dam in Pakistan. Water. 8(9): 389. DOI: 10.3390/w8090389 .
432. Bacopoulos, P., Y. Tang, D. Wang and S.C. Hagen. 2017. Integrated hydrologic-hydrodynamic modeling of estuarine-riverine flooding: 2008 Tropical Storm Fay. Journal of Hydrologic Engineering. 22(8): 04017022. DOI: 10.1061/(ASCE)HE.1943-5584.0001539 .
433. Bacu, V., D. Mihon, T. Stefanut, D. Rodila and D. Gorgan. 2013. Calibration of SWAT hydrological models in a distributed environment using the gSWAT application. International Journal of Advanced Computer Science and Applications. EnviroGRIDS special Issue: 66-74. URL: http://thesai.org/Publications/ViewIssue?volume=3&issue=3&code=SpecialIssue.
434. Bae, D.-H., I.-W. Jung and D.P. Lettenmaier. 2011. Hydrologic uncertainties in climate change from IPCC AR4GCM simulations of the Chungju Basin, Korea. Journal of Hydrology. 401(1-2): 90-105. DOI: 10.1016/j.jhydrol.2011.02.012 .
435. Baek, S.S., J. Jeon, H. Lee, J. Park and K.H. Cho. 2019. Investigating influence of hydrological regime on organic matters characteristic in a Korean Watershed. Water. 11(3). DOI: 10.3390/w11030512 .
436. Baffaut, C. and A. Sadeghi. 2010. Bacteria modeling with SWAT for assessment and remediation studies: A review. Transactions of the ASABE. 53(5): 1585-1594. DOI: 10.13031/2013.34907 .
437. Baffaut, C. and V.W. Benson. 2009. Modeling flow and pollutant transport in a karst watershed with SWAT. Transactions of the ASABE. 52(2): 469-479. DOI: 10.13031/2013.26840 .
438. Baffaut, C., E.J. Sadler, F. Ghidey and S.H. Anderson. 2015. Long-term agroecosystem research in the Central Mississippi River Basin: SWAT simulation of flow and water quality in the Goodwater Creek Experimental Watershed. Journal of Environmental Quality. 44: 84-96. DOI: 10.2134/jeq2014.02.0068 .
439. Baffaut, C., S.M. Dabney, M.D. Smolen, M.A. Youssef, J.V. Bonta, M.L. Chu, J.A. Guzman, V.S. Shedekar, M.K. Jha and J.G. Arnold. 2015. Hydrologic and water quality modeling: Spatial and temporal considerations. Transactions of the ASABE. 58(6): 1661-1680. DOI: 10.13031/trans.58.10714 .
440. Bahati, H.K., A. Ogenrwoth and J.I. Sempewo. 2021. Quantifying the potential impacts of land-use and climate change on hydropower reliability of Muzizi Hydropower Plant, Uganda. Journal of Water and Climate Change. 12(6): 2526-2554. DOI: 10.2166/wcc.2021.273 .
441. Bahattacharjee, N.V., P. Ranjan, A. Mandal and E.W. Tollner. 2019. A history matching approach for calibrating hydrological models. Environmental and Ecological Statistics. 26: 87-105. DOI: 10.1007/s10651-019-00420-9 .
442. Bai, J., Z. Shen and T. Yan. 2016. Effectiveness of vegetative filter strips in abating fecal coliform based on modified soil and water assessment tool. International Journal of Environmental Science and Technology. 13(7): 1723-1730. DOI: 10.1007/s13762-016-1011-6 .
443. Bai, J., Z. Shen and T. Yan. 2017. A comparison of single- and multi-site calibration and validation: A case study of SWAT in the Miyun Reservoir watershed, China. Frontiers in Earth Science. 11(3): 592–600. DOI: 10.1007/s11707-017-0656-x .
444. Bai, J., Z. Shen, T. Yan, J. Qui and Y. Li. 2017. Predicting fecal coliform using the interval-to-interval approach and SWAT in the Miyun watershed, China. Environmental Science and Pollution Research. 24(18): 15462–15470. DOI: 10.1007/s11356-017-9101-7 .
445. Bai, J., Z. Zhou, Y. Zou, B. Pulatov and K.H.M. Siddique. 2021. Watershed drought and ecosystem services: Spatiotemporal characteristics and gray relational analysis. International Journal of Geo-Information. 10(2): 43(2). DOI: 10.3390/ijgi10020043 .
446. Bailey, R., H. Rathjens, K. Bieger, I. Chaubey and J. Arnold. 2017. SWATMOD-PREP: Graphical user interface for preparing coupled SWAT-MODFLOW simulations. Journal of the American Water Resources Association. 53(2): 400-410. DOI: 10.1111/1752-1688.12502 .
447. Bailey, R.T., K. Bieger, J.G. Arnold and D.D. Bosch. 2020. A new physically-based spatially-distributed groundwater flow module for SWAT+. Hydrology. 7(4): 75. DOI: 10.3390/hydrology7040075 .
448. Bailey, R.T., K. Bieger, L. Flores and M. Tomer. 2021. Evaluating the contribution of subsurface drainage to watershed water yield using SWAT+ with groundwater modeling. Science of the Total Environment. 802: 149962. DOI: 10.1016/j.scitotenv.2021.149962 .
449. Bailey, R.T., S. Abbas, J. Arnold, M. White, J. Gao and N. Čerkasova. 2023. Augmenting the National Agroecosystem Model with physically based spatially distributed groundwater modeling. Environmental Modelling & Software. 160: 105589. DOI: 10.1016/j.envsoft.2022.105589 .
450. Bailey, R.T., S. Park, K. Bieger, J.G. Arnold and P.M. Allen. 2020. Enhancing SWAT+ simulation of groundwater flow and groundwater-surface water interactions using MODFLOW routines. Environmental Modelling & Software. 126: 104660. DOI: 10.1016/j.envsoft.2020.104660 .
451. Bailey, R.T., S. Tavakoli-Kivi and X. Wei. 2019. A salinity module for SWAT to simulate salt ion fate and transport at the watershed scale. Hydrology and Earth System Sciences. 23(7): 3155-3174. DOI: 10.5194/hess-23-3155-2019 .
452. Bailey, R.T., T.C. Wible, M. Arabi, R.M. Records and J. Ditty. 2016. Assessing regional-scale spatio-temporal patterns of groundwater-surface water interactions using a coupled SWAT-MODFLOW model. Hydrological Processes. 30(23): 4420–4433. DOI: 10.1002/hyp.10933 .
453. Bajracharya, A.R., S.R. Bajracharya, A.B. Shrestha and S.B. Maharjan. 2018. Climate change impact assessment on the hydrological regime of the Kaligandaki Basin, Nepal. Science of the Total Environment. 625: 837-848. DOI: 10.1016/j.scitotenv.2017.12.332 .
454. Bajwa, S.G. and V. Vibhava. 2009. A distributed artificial neural network model for watershed-scale rainfall-runoff modeling. Transactions of the ASABE. 52(5): 813-823. URL: http://www.cabdirect.org/abstracts/20093231125.html?freeview=true.
455. Bakanlığı, T. ve O., S.Y.G. Müdürlüğü and Y. Ankara. 2021. Evaluation of climate change impacts on runoff and sediment at the basin scale: Yuvacık Dam Lake Basin. Journal of Geological Engineering. 45: 129-154. DOI: 10.24232/jmd.941528 .
456. Baker, T. and S.N. Miller. 2013. Using the Soil and Water Assessment Tool (SWAT) to assess land use impact on water resources in an East African watershed. Journal of Hydrology. 486: 100–111. DOI: 10.1016/j.jhydrol.2013.01.041 .
457. Baker, T.J., B. Cullen, L. Debevec and Y. Abebe. 2015. A socio-hydrological approach for incorporating gender into biophysical models and implications for water resources research. Applied Geography. 62: 325-338. DOI: 10.1016/j.apgeog.2015.05.008 .
458. Bakhtiar, J. Hadihardaja and I.K Hadihardaja. 2013. Pengaruh curah hujan rata-rata tahunan terhadap indeks erosi dan umur waduk pada DAS Citarum Hulu. Jurnal Media Komunikasi Teknik Sipil. 19(6): 41-54. URL: https://ejournal.undip.ac.id/index.php/mkts/article/view/7834.
459. Bakken, T.H., M. Szomolanyi, A. Lazar, T. Tjomsland and S.A. Borgvang. 2009. Simulation of nutrient reduction scenarios with three different models. Does the selection of model affect the recommended set of measures? International Journal of River Basin Management. 7(1): 15-22. DOI: 10.1080/15715124.2009.9635366 .
460. Bal, M., A.K. Dandpat and B. Naik. 2021. Hydrological modeling with respect to impact of land-use and land-cover change on the runoff dynamics in Budhabalanga River Basing using ArcGIS and SWAT model. Remote Sensing Applications: Society and Environment. 23: 100527. DOI: 10.1016/j.rsase.2021.100527 .
461. Balathandayutham, K. and C. Mayilswami. 2014. A semi-distributed water balance model for Walayar Sub basin using SWAT model. International Journal of Agricultural Engineering. 7(1): 198-202. URL: http://www.researchjournal.co.in/online/IJAE/IJAE-7-1-2014-2.htm.
462. Balcha, S.K., A.A. Awass, T.A. Hulluka, G.T. Ayele and A. Bantider. 2022. Hydrological simulation in a rift-bounded lake system and implication of water abstraction: Central Rift Valley Lakes Basin, Ethiopia. Water. 14(23): 3929. DOI: 10.3390/w14233929 .
463. Balcha, S.K., A.A. Awass, T.A. Hulluka, A. Bantider and G.T. Ayele. 2023. Assessment of future climate change impact on water balance components in Central Rift Valley Lakes Basin, Ethiopia. Journal of Water and Climate Change. 14(1): 175-199. DOI: 10.2166/wcc.2022.249 .
464. Baldan, D., B. Mehdi, E. Feldbacher, M. Piniewski, C. Hauer and T. Hein. 2021. Assessing multi-scale effects of natural water retention measures on in-stream fine bed material deposits with a modeling cascade. Journal of Hydrology. 594: 125702. DOI: 10.1016/j.jhydrol.2020.125702 .
465. Baljeet, K., N.K. Shrestha, P. Daggupati, R. Rudra, P.K. Goel, R. Shukla and N. Allataifeh. 2019. Water Security Assessment of the Grand River Watershed in Southwestern Ontario, Canada. Sustainability. 11(7): 1883. DOI: 10.3390/su11071883 .
466. Baltokoski, V., M.H.F. Tavares, R.E. Machado and M.P. de Oliveira. 2010. Model calibration for flow rate and total phosphorous export simulations in the watersheds of the Rivers Conrado and Pinheiro, Pato Branco (PR). Revista Brasileira de Ciência do Solo. 34: 253-261. DOI: 10.1590/S0100-06832010000100026 .
467. Bandi, A.S., S. Meshapam and P. Deva. 2019. A geospatial approach to flash flood hazard mapping in the city of Warangal, Telangana, India. Environmental & Socio-economic Studies. 7(3): 1-13. DOI: 10.2478/environ-2019-0013 .
468. Bannwarth, M.A., C. Grovermann, P. Schreinemachers, J. Ingwersen, M. Lamers, T. Berger and T. Streck. 2016. Non-hazardous pesticide concentrations in surface waters: An integrated approach simulating application thresholds and resulting farm income effects. Journal of Environmental Management. 165: 298-312. DOI: 10.1016/j.jenvman.2014.12.001 .
469. Bannwarth, M.A., C. Hugenschmidt, W. Sangchan, M. Lamers, J. Ingwersen, A.D. Ziegler and T. Streck. 2015. Simulation of stream flow components in a mountainous catchment in northern Thailand with SWAT, using the ANSELM calibration approach. Hydrological Processes. 29(6): 1340-1352. DOI: 10.1002/hyp.10268 .
470. Bannwarth, M.A., W. Sangchan, C. Hugenschmidt, M. Lamers, J. Ingwersen, A.D. Ziegler and T. Streck. 2014. Pesticide transport simulation in a tropical catchment by SWAT. Environmental Pollution. 191: 70-79. DOI: 10.1016/j.envpol.2014.04.011 .
471. Bar, R., E. Rouholahnedjad, K. Rahman, K.C. Abbaspour and A. Lehmann. 2015. Climate change and agricultural water resources: A vulnerability assessment of the Black Sea catchment. Environmental Science and Policy. 46: 57-69. DOI: 10.1016/j.envsci.2014.04.008 .
472. Barkey, R. A., M. F. Mappiasse and M. Nursaputra. 2017. Model of climate and land-use changes impact on water security in Ambon City, Indonesia. Geoplanning: Journal of Geomatics and planning. 4(1): 97-108. DOI: 10.14710/geoplanning.4.1.97-108 .
473. Bärlund, I. and T. Kirkkala. 2008. Examining a model and assessing its performance in describing nutrient and sediment transport dynamics in a catchment in southwestern Finland. Boreal Environment Research. 13(3): 195-207. URL: http://cat.inist.fr/?aModele=afficheN&cpsidt=20471109.
474. Bärlund, I., T. Kirkkala, O. Malve, and J. Kämäri. 2007. Assessing SWAT model performance in the evaluation of management actions for the implementation of the Water Framework Directive in a Finnish catchment. Environmental Modelling & Software. 22(5): 719-724. DOI: 10.1016/j.envsoft.2005.12.030 .
475. Barnhart, B.L., G.W. Whittaker and D.L. Ficklin. 2014. Improved stream temperature simulations in SWAT using NSGA-II for automatic multi-site calibration. Transactions of the ASABE. 57(2): 517-530. DOI: 10.13031/trans.57.10472 .
476. Barnhart, B.L., H.E. Golden, J.R. Kasprzyk, J.J. Pauer, C.E. Jones, K.A. Sawicz, N. Hoghooghi, M. Simon, R.B. McKane, P.M. Mayer, A.N. Piscopo, D.L. Ficklin, J.J. Halama, P.B. Pettus and B. Rashleigh. 2018. Embedding co-production and addressing uncertainty in watershed modeling decision-support tools: Successes and challenges. Environmental Modelling & Software. 109: 368-379. DOI: 10.1016/j.envsoft.2018.08.025 .
477. Barreto-Martin, C., R. Sierra-Parada, D. Calderón-Rivera, A. Jaramillo-Londono and D. Mesa-Fernández. 2021. Spatio-temporal analysis of the hydrological response to land cover changes in the sub-basin of the Chicú River, Colombia. Heliyon. 7(7): e07358. DOI: 10.1016/j.heliyon.2021.e07358 .
478. Barron, J., E. Enfors, H. Cambridge and A.M. Moustapha. 2010. Coping with rainfall variability: Dry spell mitigation and implication on landscape water balances in small-scale farming systems in semi-arid Niger. Water Resources Development. 26(4): 543-559. DOI: 10.1080/07900627.2010.519519 .
479. Basheer, A.K., H. Lu, A. Omer, A.B. Ali and A.M.S. Abdelgader. 2016. Impacts of climate change under CMIP5 RCP scenarios on the streamflow in the Dinder River and ecosystem habitats in Dinder National Park, Sudan. Hydrology and Earth System Sciences. 20(4): 1331-1353. DOI: 10.5194/hess-20-1331-2016 .
480. Basirani, N., H. Karimi, A. Moghadamnia and H. Ebrahimi. 2015. Optimization and sensitivity analysis of the effective parameters in sediment yield based on SUFI2 algorithm (Case study: Doiraj River Basin, Iran). Journal of Science and Technology of Agriculture and Natural Resources. 19(72): 243-254. URL: http://jstnar.iut.ac.ir/browse.php?a_id=3079&sid=1&slc_lang=en.
481. Baskaran, L., H.I. Jager, P.E. Schweizer and R. Srinivasan. 2010. Progress toward evaluating the sustainability of switchgrass as a bioenergy crop using the SWAT model. Transactions of the ASABE. 53(5): 1547-1556. DOI: 10.13031/2013.34905 .
482. Basso, M., D. Serpa, J. Rocha, M.A.S. Martins, J. Keizer and D.C.S. Vierira. 2022. A modelling approach to evaluate land management options for recently burnt catchments. European Journal of Soil Science. 73(4): e13275. DOI: 10.1111/ejss.13275 .
483. Basso, M., D.C.S. Vieira, T.B. Ramos and M. Mateus. 2020. Assessing the adequacy of SWAT model to simulate postfire effects on the watershed hydrological regime and water quality. Land Degradation & Development. 31(5): 619-631. DOI: 10.1002/ldr.3476 .
484. Basso, M., M. Mateus, T.B. Ramos and D.C.S. Vieira. 2021. Potential post-fire impacts on a water supply reservoir: An integrated watershed-reservoir approach. Frontiers in Environmental Science. 9: 684703. DOI: 10.3389/fenvs.2021.684703 .
485. Basthoni, M.K.R., G. Halik and E. Hidayah. 2020. Analisis perubahan tata guna lahan terhadap debit banjir Sub-Sub DAS Keyang-Slahung-Tempuran (KST). Teras Jurnal . 10(2): 189-202. DOI: 10.29103/tj.v10i2.309 .
486. Basu, A.S., L.W. Gill, F. Pilla and B. Basu. 2022. Assessment of climate change impact on the annual maximum flood in an urban river in Dublin, Ireland. Sustainability. 14(8): 4670. DOI: 10.3390/su14084670 .
487. Basu, N.B., P.S.C. Rao, H.E. Winzeler, S. Kumar, P. Owens and V. Merwade. 2010. Parsimonious modeling of hydrologic responses in engineered watersheds: Structural heterogeneity versus functional homogeneity. Water Resources Research. 46(W04501): 1-16. DOI: 10.1029/2009WR007803 .
488. Batelis, S.-C. and I. Nalbantis. 2014. Potential effects of forest fires on streamflow in the Enipeas River basin, Thessaly, Greece. Environmental Processes. 1(1): 73-85. DOI: 10.1007/s40710-014-0004-z .
489. Baucke, A.S., A. Pinheiro and V. Kaufmann. 2019. Hydrossedimentological contribution of rural roads in river basins with small and medium properties. Brazilian Journal of Environmental Sciences. 53: 13-32. DOI: 10.5327/Z2176-947820190503 .
490. Bautista-Avalos, D., G. Cruz-Cardenas, R. Moncayo-Estrada, J.T. Silva Garcia and F. Estrada-Godoy. 2014. Application of the SWAT model to evaluate the diffuse contamination sources at lake Chapala sub-basin, Mexico. Revista Internacional de Contaminacion Ambiental. 30(3): 263-274. URL: https://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0188-49992014000300003.
491. Bauwe A., P. Kahle and B. Lennartz. 2019. Evaluating the SWAT model to predict streamflow, nitrate loadings and crop yields in a small agricultural catchment. Advances in Geosciences. 48: 1-9. DOI: 10.5194/adgeo-48-1-2019 .
492. Bauwe, A., K.-U. Eckhardt and B. Lennartz. 2019. Predicting dissolved reactive phosphorus in tile-drained catchments using a modified SWAT model. Ecohydrology & Hydrobiology. 19(2): 198-209. DOI: 10.1016/j.ecohyd.2019.03.003 .
493. Bauwe, A., K.-U. Eckhardt and B. Lennartz. 2022. Potential of constructed wetlands to reduce nitrate pollution in agricultural catchments. Ecological Engineering. 178: 106597. DOI: 10.1016/j.ecoleng.2022.106597 .
494. Bauwe, A., P. Kahle and B. Lennartz. 2016. Hydrologic evaluation of the curve number and Green and Ampt infiltration methods by applying Hooghoudt and Kirkham tile drain equations using SWAT. Journal of Hydrology. 537: 311-321. DOI: 10.1016/j.jhydrol.2016.03.054 .
495. Bauwe, A., P. Kahle and B. Lennartz. 2019. Impact of filters to reduce phosphorus losses: Field observations and modelling tests in tile-drained lowland catchments. Water. 11(12): 2638. DOI: 10.3390/w11122638 .
496. Bauwe, A., S. Tiedemann, P. Kahle and B. Lennartz. 2017. Does the temporal resolution of precipitation input influence the simulated hydrological components employing the SWAT Model? Journal of the American Water Resources Association. 53(6): 997-1007. DOI: 10.1111/1752-1688.12560 .
497. Bawa, A., J.D. Perez-Gutierrez and S. Kumar. 2021. Simulating hydrological responses of integrated crop-livestock systems under future climate changes in an agricultural watershed. Journal of the American Water Resources Association. 57(3): 474-492. DOI: 10.1111/1752-1688.12908 .
498. Bayabil, H.K. and Y.T. Dile. 2020. Improving hydrologic simulations of a small watershed through soil data integration. Water. 12(10): 2763. DOI: 10.3390/w12102763 .
499. Bayat, M., H. Alizadeh and B. Mojaradi. 2022. SWAT_DA: Sequential multivariate data assimilation-oriented modification of SWAT. Water Resources Research. 58(10): e2022WR032397. DOI: 10.1029/2022WR032397 .
500. Bayat, M., H. Alizadeh and B. Mojaradi. 2023. Assimilation versus optimization for SWAT calibration: accuracy, uncertainty, and computational burden analysis. Water Supply. 23(3): 1189. DOI: 10.2166/ws.2023.055 .
501. Bayissa, Y., S. Maskey, T. Tadesse, S.J. van Andel, S., Moges, A. Van Griensven and D. Solomatine. 2018. Comparison of the performance of six drought indices in characterizing historical drought for the Upper Blue Nile Basin, Ethiopia. Revista Geociências. 8(3): 81. DOI: 10.3390/geosciences8030081 .
502. Beachum, C.E., M.J. Michel and J.H. Knouft. 2016. Differential responses of body shape to local and reach scale stream flow in two freshwater fish species. Ecology of Freshwater Fish. 25(3): 446-454. DOI: 10.1111/eff.12225 .
503. Becker, R., A. Koppa, S. Schulz, M. Usman, T. aus der Beek and C. Schüth. 2019. Spatially distributed model calibration of a highly managed hydrological system using remote sensing-derived ET data. Journal of Hydrology. 577: 123944. DOI: 10.1016/j.jhydrol.2019.123944 .
504. Beeram, S.N.R., P.V. Shahanas, S.K. Pramada and R. Thendiyath. 2023. Impact of change in land use/land cover and climate variables on groundwater recharge in a tropical river basin. Environment, Development, and Sustainability. DOI: 10.1007/s10668-023-03216-x .
505. Beeson, P.C., A.M. Sadeghi, M.W. Lang, M.D. Tomer and C.S.T. Daughtry. 2014. Sediment delivery estimates in water quality models altered by resolution and source of topographic data. Journal of Environmental Quality. 43(1): 26-36. DOI: 10.2134/jeq2012.0148 .
506. Beeson, P.C., P.C. Doraiswamy, A.M. Sadeghi, M. Di Luzio, M.D. Tomer, J.G. Arnold and C.S.T. Daughtry. 2011. Treatments of precipitation inputs to hydrologic models. Transactions of the ASABE. 54(6): 2011-2020. DOI: 10.13031/2013.40652 .
507. Begou, J.C., S. Jomaa, S. Benabdallah, P. Bazie, A. Afouda and M. Rode. 2016. Multi-Site validation of the SWAT model on the Bani catchment: Model performance and predictive uncertainty. Water. 8(5): 178. DOI: 10.3390/w8050178 .
508. Beharry, S.L., D. Gabriels, D. Lobo, D. Ramsewak and R.M. Clarke. 2021. Use of the SWAT model for estimating reservoir volume in the Upper Navet Watershed in Trinidad. SN Applied Sciences. 3(2): 163. DOI: 10.1007/s42452-021-04201-7 .
509. Behboudian, M. and R. Kerachian. 2021. Evaluating the resilience of water resources management scenarios using the evidential reasoning approach: The Zarrinehrud River Basin experience. Journal of Environmental Management. 284: 112025. DOI: 10.1016/j.jenvman.2021.112025 .
510. Behboudian, M., R. Kerachian and P. Pourmoghim. 2021. Evaluating the long-term resilience of water resources systems: Application of a generalized grade-based combination approach. Science of the Total Environment. 786: 147447. DOI: 10.1016/j.scitotenv.2021.147447 .
511. Behera, S. and R.K. Panda. 2006. Evaluation of management alternatives for an agricultural watershed in a sub-humid subtropical region using a physical process based model. Agriculture Ecosystems and Environment. 113(1-4): 62-72. DOI: 10.1016/j.agee.2005.08.032 .
512. Bekele, D., R. Srinivasan, J.-Y. Parlange. 2009. Hourly Analyses of Hydrological and Water Quality Simulations Using the ESWAT Model. Water Resources Management. 32(2): 303-324. DOI: 10.1007/s11269-008-9276-2 .
513. Bekele, D., T. Alamirew, A. Kebede, G. Zeleke and A.M. Melesse. 2019. Modeling climate change impact on the hydrology of Keleta Watershed in the Awash River Basin, Ethiopia. Environmental Modeling & Assessment. 24: 95-107. DOI: 10.1007/s10666-018-9619-1 .
514. Bekele, D., T. Alamirew, A. Kebede, G. Zeleke and A.M. Melesse. 2021. Modeling the impacts of land use and land cover dynamics on hydrological processes of the Keleta Watershed, Ethiopia. Sustainable Environment. 7(1). DOI: 10.1080/27658511.2021.1947632 .
515. Bekele, E., C. Lant, S. Soman and G. Misgna. 2013. The evolution and empirical estimation of ecological-economic production possibilities frontiers. Ecological Economics. 90: 1-9. DOI: 10.1016/j.ecolecon.2013.02.012 .
516. Bekele, E.G. and H.V. Knapp. 2010. Watershed modeling to assessing impacts of potential climate change on water supply availability. Water Resources Management. 24(13): 3299-3320. DOI: 10.1007/s11269-010-9607-y .
517. Bekele, E.G. and J.W. Nicklow. 2005. Multiobjective management of ecosystem services by integrative watershed modeling and evolutionary algorithms. Water Resources Research. 41(10): W10406. DOI: 10.1029/2005WR004090 .
518. Bekele, E.G. and J.W. Nicklow. 2007. Multi-objective automatic calibration of SWAT using NSGA-II. Journal of Hydrology. 341(3-4): 165-176. DOI: 10.1016/j.jhydrol.2007.05.014 .
519. Bekiaris, I.G., I.N. Panagopoulos and M.A. Minikou. 2005. Application of the SWAT (Soil and Water Assessment Tool) model in the Ronnea Catchment of Sweden. Global Nest Journal. 7(3): 252-257. DOI: 10.30955/gnj.000343 .
520. Belay, T. and D.A. Mengistu. 2024. Modeling hydrological characteristics based on land use/land cover and climate changes in Muga Watershed, Abay River Basin, Ethiopia. Cogent Food & Agriculture. 10(1): 2319935. DOI: 10.1080/23311932.2024.2319935 .
521. Belete, M.D. 2022. Strategic management of wetlands within DPSER framework: A case study at Cheleleka Wetland, Rift Valley Lakes Basin, Ethiopia. Ethiopian Journal of Engineering and Technology . 2(1): 26-42. URL: https://journals.hu.edu.et/hu-journals/index.php/ejet/ article/view/672.
522. Belmont, P., J.R. Stevens, J.A. Czuba, K. Kumarasamy and S.A. Kelly. 2016. Comment on ‘‘Climate and agricultural land use change impacts on streamflow in the upper midwestern United States’’ by Satish Gupta et al. Water Resources Research. 52(9): 7523–7528. DOI: 10.1002/2015WR018476 .
523. Benaman, J. and C.A. Shoemaker. 2004. Methodology for analyzing ranges of uncertain model parameters and their impact on total maximum daily load processes. Journal of Environmental Engineering. 130(6): 648-656. DOI: 10.1061/(ASCE)0733-9372(2004)130:6(648) .
524. Benaman, J. and C.A. Shoemaker. 2005. An analysis of high-flow sediment event data for evaluating model performance. Hydrological Processes. 19(3): 605-620. DOI: 10.1002/hyp.5608 .
525. Benaman, J., C.A. Shoemaker and D.A. Haith. 2005. Calibration and validation of soil and water assessment tool on an agricultural watershed in upstate New York. Journal of Hydrologic Engineering. 10(5): 363-374. DOI: 10.1061/(ASCE)1084-0699(2005)10:5(363) .
526. Benavides, F. and J.N. Veenstra. 2005. The impact of tropical deforestation on river chemical pollution. Global Nest Journal. 7(2): 180-187. DOI: 10.30955/gnj.000336 .
527. Benavides-Solorio, J. D., M.J. Gonzalez-Guillen, C. Lopez-Paniagua and J.R. Valdez-Lazalde. 2008. Water supply of the Tapalpa forestry watershed in Jalisco, focused to environmental services provision. Madera y Bosques. 14(2): 5-28. URL: http://www.scielo.org.mx/scielo.php?script=sci_abstract&pid=S1405-04712008000200002&lng=en&nrm=iso&tlng=en.
528. Benham, B.L., C. Baffaut, R.W. Zeckoski, K.R. Mankin, Y.A. Pachepsky, A.M. Sadeghi, K.M. Brannan, M.L. Soupir and M.J. Habersack. 2006. Modeling bacteria fate and transport in watersheds to support TMDLs. Transactions of the ASABE. 49(4): 987-1002. DOI: 10.13031/2013.21739 .
529. Benham, B.L., G. Yagow, I. Chaubey and K.R. Douglas-Mankin. 2011. Advances in watershed management: Modeling, monitoring, and assessment. Transactions of the ASABE. 54(6): 2167-2170. DOI: 10.13031/2013.40915 .
530. Bennett, M.E. and K.J. Tobin. 2013. The evolution of remotely sensed precipitation products for hydrological applications with a focus on the Tropical Rainfall Measurement Mission (TRMM). Journal of Environmental Hydrology. 21: 1-16. URL: http://www.hydroweb.com/journal-hydrology-2013-paper-10.html.
531. Bennour, A., L. Jia, M. Menenti, C. Zheng, Y. Zeng, B.A. Barnieh and M. Jiang. 2022. Calibration and validation of SWAT model by using hydrological remote sensing observables in the Lake Chad Basin. Remote Sensing. 14(6): 1511. DOI: 10.3390/rs14061511 .
532. Bera, S. and R. Maiti. 2021. Assessment of water availability with SWAT model: A study on Ganga River. Journal of the Geological Society of India. 97: 781-788. DOI: 10.1007/s12594-021-1760-9 .
533. Berezowski, T., M. Szczesniak, I. Kardel, R. Michalowski, T. Okruszko, A. Mezghani and M. Piniewski. 2016. CPLFD-GDPT5: High-resolution gridded daily precipitation and temperature data set for two largest Polish river basins. Earth System Science Data. 8(1): 127-139. DOI: 10.5194/essd-8-127-2016 .
534. Bergion, V., A. Lindhe, E. Sokolova and L. Rosén. 2021. Accounting for unexpected risk events in drinking water systems. Exposure and Health. 13(1): 15-31. DOI: 10.1007/s12403-020-00359-4 .
535. Bergion, V., E. Sokolova, J. Åström, A. Lindhe, K. Sörén and L. Rosén. 2017. Hydrological modelling in a drinking water catchment area as a means of evaluating pathogen risk reduction. Journal of Hydrology. 544: 74-85. DOI: 10.1016/j.jhydrol.2016.11.011 .
536. Berihun, M.L., A. Tsunekawa, N. Haregeweyn, Y.T. Dile, M. Tsubo, A.A. Fenta, D.T. Meshesha, K. Ebabu, D. Sultan and R. Srinivasan. 2020. Evaluating runoff and sediment responses to soil and water conservation practices by employing alternative modeling approaches. Science of the Total Environment. 747: 141118. DOI: 10.1016/j.scitotenv.2020.141118 .
537. Berihun, M.L., A. Tsunekawa, N. Haregeweyn, M. Tsubo, A.A. Fenta, K. Ebabu, D. Sultan and Y.T. Dile. 2022. Reduced runoff and sediment loss under alternative land capability-based land use and management options in a sub-humid watershed of Ethiopia. Journal of Hydrology: Regional Studies. 40: 100998. DOI: 10.1016/j.ejrh.2022.100998 .
538. Berihun, M.L., A. Tsunekawa, N. Haregeweyn, M. Tsubo, A.A. Fenta, K. Ebabu, H.K. Bayabil and Y.T. Dile. 2023. Predicting runoff and sediment responses to climate-resilient land use and management scenarios. Environmental Science and Pollution Research. 30(28): 72262-72283. DOI: 10.1007/s11356-023-27452-w .
539. Berkowitz, J.F., D.A. Schlea, C.M. VanZomeren and C.M.W. Boles. 2020. Coupling watershed modeling, public engagement, and soil analysis improves decision making for targeting P retention wetland locations. Journal of Great Lakes Research. 46(5): 1331-1339. DOI: 10.1016/j.jglr.2020.06.016 .
540. Bernini, A., R. Becker, O.D. Adeniyi, G. Pilla, S.H. Sadeghi and M. Maerker. 2023. Hydrological implications of recent droughts (2004-2022): A SWAT-based study in an ancient lowland irrigation area in Lombardy, Northern Italy. Sustainability. 15(24): 16771. DOI: 10.3390/su152416771 .
541. Besalatpour, A. M.A. Hajabbasi, S. Ayoubi and A. Jalalian. 2012. Identification and prioritization of critical sub-basins in a highly mountainous watershed using SWAT model. Eurasian Journal of Soil Science. 1(1): 58 - 63. URL: http://www.fesss.org/download/arsiv/GO3Y16FZ.pdf.
542. Besalatpour, A.A., Sh. Ayoubi, M.A. Hajabbasi and A. Jalalian. 2015. Calibration and validation of SWAT model using PSO algorithm for the simulation of runoff and sediment in a mountainous watershed with limited climate data. Electronic Journal of Soil Management and Sustainable Production. 4(4). URL: http://en.journals.sid.ir/ViewPaper.aspx?ID=466787.
543. Betrie, G.D., A. van Griensven, Y.A. Mohamed, I. Popescu, A.E. Mynett and S. Hummel. 2011. Linking SWAT and SOBEK using open modeling interface (OpenMI) for sediment transport simulation in the Blue Nile River Basin. Transactions of the ASABE. 54(5): 1749-1757. DOI: 10.13031/2013.39847 .
544. Betrie, G.D., Y.A. Mohamed, A. van Griensven and R. Srinivasan. 2011. Sediment management modelling in the Blue Nile Basin using SWAT model. Hydrology and Earth System Sciences. 15(3): 807-818. URL: http://swatmodel.tamu.edu/publications/peer-reviewed-publications/.
545. Beza, M., H. Hailu and G. Teferi. 2023. Modeling and assessing surface water potential using combined SWAT model and spatial promixity regionalization technique for ungauged subwatershed of Jewuha Watershed, Awash Basin, Ethiopia. Advances in Civil Engineering. : 9972801. DOI: 10.1155/2023/9972801 .
546. Bhanja, S.N. and J. Wang. 2020. Estimating influences of environmental drivers on soil heterotrophic respiration in the Athabasca River Basin, Canada. Environmental Pollution. 257: 113630. DOI: 10.1016/j.envpol.2019.113630 .
547. Bhanja, S.N. and J. Wang. 2021. Influence of environmental factors on autotrophic, soil and ecosystem respirations in Canadian boreal forest. Ecological Indicators. 125: 107517. DOI: 10.1016/j.ecolind.2021.107517 .
548. Bhanja, S.N., J. Wang and R. Bol. 2022. Soil CO2 emission largely dominates the total ecosystem CO2 emission at Canadian boreal forest. Frontiers in Environmental Science. 10: 898199. DOI: 10.3389/fenvs.2022.898199 .
549. Bhanja, S.N., J. Wang, J., N.K. Shrestha and X. Zhang. 2019. Modelling microbial kinetics and thermodynamic processes for quantifying soil CO2 emission. Atmospheric Environment. 209: 125-135. DOI: 10.1016/j.atmosenv.2019.04.014 .
550. Bhanja, S.N., J. Wang, N.K. Shrestha and X. Zhang. 2019. Microbial kinetics and thermodynamic (MKT) processes for soil organic matter decomposition and dynamic oxidation-reduction potential: Model descriptions and applications to soil N2O emissions. Environmental Pollution. 247: 812-823. DOI: 10.1016/j.envpol.2019.01.062 .
551. Bharati, L. and P. Jayakody. 2011. Hydrological impacts of inflow and land-use changes in the Gorai River catchment, Bangladesh. Water International. 36(3): 357-369. DOI: 10.1080/02508060.2011.586200 .
552. Bharati, L., P. Gurung and P. Jayakody. 2012. Hydrologic characterization of the Koshi Basin and the impact of climate change. Hydro Nepal: Journal of Water, Energy and Environment. April 2012: 18-22, 120. URL: http://www.iwmi.cgiar.org/offices/asia/south_asia/nepal/pdf/specia_issue_hn_bulletin_final_web.pdf.
553. Bharati, L., P. Gurung, L. Maharjan and U. Bhattarai. 2016. Past and future variability in the hydrological regime of the Koshi basin, Nepal. Hydrological Sciences Journal. 61(1): 75-93. DOI: 10.1080/02626667.2014.952639 .
554. Bharati, L., P. Gurung, P. Jayakody, V. Smakhtin and U. Bhattarai. 2014. The projected impact of climate chage on water availability and development in the Koshi Basin, Nepal. Mountain Research and Development. 34(2): 118-130. DOI: 10.1659/MRD-JOURNAL-D-1300096.1 .
555. Bhati, D.S., S.K. Dubey and D. Sharma. 2021. Application of satellite-based and observed precipitation datasets for hydrological simulation in the Upper Mahi River Basin of Rajasthan, India. Sustainability. 13(14): 7560. DOI: 10.3390/su13147560 .
556. Bhatt V.K., A.K. Tiwari and D.R. Sena. 2016. Application of SWAT model for simulation of runoff in micro watersheds of lower Himalayan region of India. Indian Journal of Soil Conservation. 44(2): 133-140. URL: http://indianjournals.com/ijor.aspx?target=ijor:ijsc&type=home.
557. Bhatta, B., S. Shrestha, P.K. Shrestha and R. Talchabhadel. 2019. Evaluation and application of a SWAT model to assess the climate change impact on the hydrology of the Himalayan river basin. Catena. 181: 104082. DOI: 10.1016/j.catena.2019.104082 .
558. Bhatta, B., S. Shrestha, P.K. Shrestha and R. Talchabhadel. 2020. Modelling the impact of past and future climate scenarios on streamflow in a highly mountainous watershed: A case study in the West Seti River Basin, Nepal. Science of the Total Environment. 740: 140156. DOI: 10.1016/j.scitotenv.2020.140156 .
559. Bhattacharya, R.K., N.D. Chatterjee and K. Das. 2020. Sub-basin prioritization for assessment of soil erosion susceptibility in Kangsabati, a plateau basin: A comparison between MCDM and SWAT models. Science of the Total Environment. 734: 139474. DOI: 10.1016/j.scitotenv.2020.139474 .
560. Bhattacharya, T., D. Khare and M. Arora. 2019. A case study for the assessment of the suitability of gridded reanalysis weather data for hydrological simulation in Beas River basin of north western Himalaya. Applied Water Science. 9: 110. DOI: 10.1007/s13201-019-0993-x .
561. Bhattacharyya, S. and J. Sanyal. 2019. Impact of different types of meteorological data inputs on predicted hydrological and erosive responses to projected land use changes. Journal of Earth System Science. 128: 60. DOI: 10.1007/s12040-019-1076-y .
562. Bhattarai, G., P. Srivastava, L. Marzen, D. Hite, and U. Hatch. 2008. Assessment of Economic and water quality impacts of land use change using a simple bioeconomic model. Journal of Environmental Management. 42(1): 122-131. DOI: 10.1007/s00267-008-9111-9 .
563. Bhattarai, S. and P.B. Parajuli. 2023. Best management practices affect water quality in coastal watersheds. Sustainability. 15(5): 4045. DOI: 10.3390/su15054045 .
564. Bhattarai, S., P.B. Parajuli and F. To. 2023. Comparison of flood frequency at different climatic scenarios in forested coastal watersheds. Climate. 11(2): 41. DOI: 10.3390/cli11020041 .
565. Bhatti, A.Z., A.A. Farooque, N. Krouglicof, W. Peters, B. Acharya, Q. Li and M.S. Ahsan. 2021. Spatiotemporal hydrological analysis of streamflows and groundwater recharge for sustainable water management in Prince Edward Island, Canada. World Water Policy. 7(2): 253-282. DOI: 10.1002/wwp2.12065 .
566. Bhuvaneswari, K., V. Geethalakshmi, A. Lakshmanan, R. Srinivasan and N.U. Sekhar. 2013. Impact of El Niño/Southern Oscillation on hydrology and rice productivity in Cauvery basin, India: application of soil and water assessment tool. Weather and Climate Extremes. 2: 39-47. DOI: 10.1016/j.wace.2013.10.003 .
567. Bi, W., B. Weng, Z. Yuan, M. Ye, C. Zhang, Y. Zhao, D. Yan and T. Xu. 2018. Evolution characteristics of surface water quality due to climate change and LUCC under scenario simulations: A case study in the Luanhe River Basin. International Journal of Environmental Research and Public Health. 15(8): 1729. DOI: 10.3390/ijerph15081724 .
568. Bi, W., B. Weng, Z. Yuan, Y. Yang, T. Xu, D. Yan and J. Ma. 2019. Evolution of drought–flood abrupt alternation and its impacts on surface water quality from 2020 to 2050 in the Luanhe River Basin. International Journal of Environmental Research and Public Health. 16: 691. DOI: 10.3390/ijerph16050691 .
569. Bi, Z., Y. Zhang, P. Shi, X. Zhang, Z. Shan and L. Ren. 2021. The impact of land use and socio-economic factors on ammonia nitrogen pollution in Weihe River Watershed, China. Environmental Science and Pollution Research. 28(14): 17659-17679. DOI: 10.1007/s11356-020-11960-0 .
570. Bian, G., G. Wang, J. Chen, J. Zhang and M. Song. 2021. Spatial and seasonal variations of hydrological responses to climate and land-use changes in a highly urbanized basin of southeastern China. Hydrology Research. 52(2): 506-522. DOI: 10.2166/nh.2021.087 .
571. Bian, L. and S. Hu. 2007. Identifying components for interoperable process models using concept lattice and semantic reference system. International Journal of Geographical Information Science. 21(9): 1009-1032. DOI: 10.1080/13658810601169907 .
572. Biancamaria, S., M. Mballo, P. Le Moigne, J.M.S. Pérez, G. Espitalier-Noël, Y. Grusson, R. Cakir, V. Häfliger, F. Barathieu, M. Trasmonte, A. Boone, E Martin and S. Sauvage. 2019. Total water storage variability from GRACE mission and hydrological models for a 50,000 km2 temperate watershed: The Garonne River Basin (France). Journal of Hydrology: Regional Studies. 24: 100609. DOI: 10.1016/j.ejrh.2019.100609 .
573. Bieger, K., G. Hormann and N. Fohrer. 2012. Using residual analysis, auto- and cross-correlations to indentify key processes for the calibration of the SWAT model in a data scarce region. Advances in Geosciences. 31: 23-30. DOI: 10.5194/adgeo-31-23-2012 .
574. Bieger, K., G. Hormann and N. Fohrer. 2014. Simulation of streamflow and sediment with the SWAT model in a data scarce catchment in the Three Gorges Region, China. Journal of Environmental Quality. 43(1): 37-45. DOI: 10.2134/jeq2011.0383 .
575. Bieger, K., G. Hormann and N. Fohrer. 2015. Detailed spatial analysis of SWAT-simulated surface runoff and sediment yield in a mountainous watershed in China. Hydrological Sciences Journal. 60(5): 784-800. DOI: 10.1080/02626667.2014.965172 .
576. Bieger, K., G. Hörmann and N. Fohrer. 2015. The impact of land use change in the Xiangxi Catchment (China) on water balance and sediment transport. Regional Environmental Change. 15(3): 485-498. DOI: 10.1007/s10113-013-0429-3 .
577. Bieger, K., H. Rathjens, P.M. Allen and J.G. Arnold. 2015. Development and evaluation of bankfull hydraulic geometry relationships for the physiographic regions of the United States. Journal of the American Water Resources Association. 51(3): 842-858. DOI: 10.1111/jawr.12282 .
578. Bieger, K., J.G. Arnold, H. Rathjens, M.J. White, D.D. Bosch, P.M. Allen, M. Volk and R. Srinivasan. 2017. Introduction to SWAT+, a completely restructured version of the Soil and Water Assessment Tool. Journal of the American Water Resources Association. 53(1): 115–130. DOI: 10.1111/1752-1688.12482 .
579. Bieger, K., J.G. Arnold, H. Rathjens, M.J. White, D.D. Bosch and P.M. Allen. 2019. Representing the connectivity of upland areas to floodplains and streams in SWAT+. Journal of the American Water Resources Association. 55(3): 578-590. DOI: 10.1111/1752-1688.12728 .
580. Billah, K., T.B. Le and H.O. Sharif. 2021. Data- and model-based discharge hindcasting over a subtropical river basin. Water. 13(18): 2560. DOI: 10.3390/w13182560 .
581. Bilondi, M.P., K.C. Abbaspour and B. Ghahraman. 2013. Application of three different calibration-uncertainty analysis methods in a semi-distributed rainfall-runoff model application. Middle-East Journal of Scientific Research. 15(9): 1255-1263. URL: http://www.idosi.org/mejsr/mejsr15%289%2913.htm.
582. Bingner, R. L. 1996. Runoff simulated from Goodwin Creek watershed using SWAT. Transactions of the ASAE. 39(1): 85-90. DOI: 10.13031/2013.27483 .
583. Bingner, R.L., J. Garbrecht, J.G. Arnold and R. Srinivasan. 1997. Effect of watershed subdivision on simulation runoff and fine sediment yield. Transactions of the ASAE. 40(5): 1329‑1335. DOI: 10.13031/2013.21391 .
584. Biru, Z. and D. Kumar. 2018. Calibration and validation of SWAT model using stream flow and sediment load for the Mojo Watershed, Ethiopia. Sustainable Water Resources Management. 9: 937-949. DOI: 10.1007/s40899-017-0189-1 .
585. Bitew, M.M. and M. Gebremichael. 2011. Assessment of satellite rainfall products for streamflow simulation in medium watersheds of the Ethiopian highlands. Hydrology and Earth System Sciences. 15: 1147-1155. DOI: 10.5194/hess-15-1147-2011 .
586. Bitew, M.M., M. Gebremichael, L.T. Ghebremichael and Y.A. Bayissa. 2012. Evaluation of high-resolution satellite rainfall products through streamflow simulation in a hydrological modeling of a small mountainous watershed in Ethiopia. Journal of Hydrometeorology. 13(1): 338-350. DOI: 10.1175/2011JHM1292.1 .
587. Bittencourt, S. and E.F. Gobbi. 2006. Maximum allowable phosphorus load in the Piraquara II Reservoir, a TMDL process application. Revista Brasileira de Ciência do Solo. 30(3): 595-603. DOI: 10.1590/S0100-06832006000300019 .
588. Bizimana, J.C. and J.W. Richardson. 2019. Agricultural technology assessment for smallholder farms: An analysis using a farm simulation model. Computers and Electronics in Agriculture. 156: 406-425. DOI: 10.1016/j.compag.2018.11.038 .
589. Blainski, E., E. Acosta, P.C. do Prado Nogueira. 2017. Calibration and validation of the SWAT model for hydrologic simulation in a river basin located in the north coast of Santa Catarina. Revista Ambiente & Água. 12(2): 226-236. DOI: 10.4136/ambi-agua.1951 .
590. Blainski, E., E.A.A. Porras, L.H.P. Garbossa and A. Pinheiro. 2017. Simulation of land use scenarios in the Camboriú River Basin using the SWAT model. Revista Brasileira de Recursos Hidricos. 22: e33. DOI: 10.1590/2318-0331.011716110 .
591. Blainski, É., F.A. Silveira, G. Conceição, L.H. Pospissil Garbossa and L.F. Vianna. 2011. Estimated soil use impacts in the Ararangua river basin through the use of the hydrologic modeling technique. Agropecuária Catarinense. 24(1): 65-70. URL: https://publicacoes.epagri.sc.gov.br/rac/article/view/680.
592. Blanc, E., K. Strzepek, A. Schlosser, H. Jacoby, A. Gueneau, C. Fant, S. Rausch and J. Reilly. 2014. Modeling U.S. water resources under climate change. Earth's Future. 2(4): 197-224. DOI: 10.1002/2013EF000214 .
593. Blanco-Gómez, P., P. Jimeno-Sáez, J. Senent-Aparicio and J. Pérez-Sánchez. 2019. Impact of climate change on water balance components and droughts in the Guajoyo River Basin (El Salvador). Water. 11(11): 2360. DOI: 10.3390/w11112360 .
594. Bliznyuk, N., D. Ruppert and C.A. Shoemaker. 2012. Local derivative-free approximation of computationally expensive posterior densities. Journal of Computational and Graphical Statistics. 21(2): 476-495. DOI: 10.1080/10618600.2012.681255 .
595. Blount, J.D., L.E.K. Lenoch and F.A. Fitzpatrick. 2022. Stream corridor and upland sources of fluvial sediment and phosphorus from a mixed urban-agricultural tributary to the Great Lakes. Journal of Great Lakes Research. 48(6): 1536-1549. DOI: 10.1016/j.jglr.2022.08.024 .
596. Bo, H., X. Dong, Z. Li, G. Reta, L. Li and C. Wei. 2022. Comparison of two versions of SWAT models in predicting the streamflow in the Xuanmiaoguan Reservior Catchment. Nature Environment and Pollution Technology. 21(2): 529-541. DOI: 10.46488/NEPT.2022.v21i02.011 .
597. Bo, H., X. Dong, Z. Li, X. Hu, G. Reta, C. We, and B. Su. 2019. Impacts of climate change and human activities on runoff variation of the intensive phosphate mined Huangbaihe River Basin, China. Water. 11(10): 2039. DOI: 10.3390/w11102039 .
598. Bobal, P., B. Sir, J. Richnavsky and J. Unucka. 2010. Analysis of the impact of land cover spatial structure change on the erosion processes in the catchment. Acta Montanistica Slovaca. 15(4): 269-276. URL: http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CCAQFjAA&url=http%3A%2F%2Factamont.tuke.sk%2Fpdf%2F2010%2Fn4%2F2bobal.pdf&ei=yoJOVOD9MsuAygSHn4HAAw&usg=AFQjCNF-kz7eJ7UduSeFzj0E2oCwY4Gekg.
599. Bochenek, W. and L. Wiejaczka. 2023. Current and future variability of water supply to a mountain reservoir (Polish Carpathians). Stochastic Environmental Research and Risk Assessment. 37(12): 5051–5069. DOI: 10.1007/s00477-023-02527-9 .
600. Bodrud-Doza, Md., W. Yang, R. de Q. Miranda, A. Martin, B. Vries, and E.D.G. Fraser. 2023. Towards implementing precision conservation practices in agricultural watersheds: A review of the use and prospects of spatial decision support systems and tools. Science of the Total Environment. 905: 167118. DOI: 10.1016/j.scitotenv.2023.167118 .
601. Boithias, L., R. Srinivasan, S. Sauvage, F. Macary and J.M. Sanchez-Perez. 2014. Daily nitrate losses: Implication on long-term river quality in an intensive agricultural catchment of south-western France. Journal of Environmental Quality. 43(1): 46-54. DOI: 10.2135/jeq2011.0367 .
602. Boithias, L., S. Sauvage, A. Lenica, H. Roux, K.C. Abbaspour, K. Larnier, D. Dartus and J.M. Sánchez-Pérez. 2017. Simulating flash floods at hourly time-step using the SWAT model. Water. 9(12): 929. DOI: 10.3390/w9120929 .
603. Boithias, L., S. Sauvage, G. Merlina, S. Jean, J.-L. Probst and J.M. Sánchez Pérez. 2014. New insight into pesticide partition coefficient Kd for modelling pesticide fluvial transport: Application to an agricultural catchment in south-western France. Chemosphere. 99: 134-142. DOI: 10.1016/j.chemosphere.2013.10.050 .
604. Boithias, L., S. Sauvage, L. Taghavi, G. Merlina, J.-L. Probst and J.M.S. Perez. 2011. Occurrence of metolachlor and trifluralin losses in the Save river agricultural catchment during floods. Journal of Hazardous Materials. 196: 210-219. DOI: 10.1016/j.jhazmat.2011.09.012 .
605. Boithias, L., S. Sauvage, R. Srinivasan, O. Leccia and J.M. Sánchez Pérez. 2014. Application date as a controlling factor of pesticide transfers to surface water during runoff events. Catena. 119: 97-103. DOI: 10.1016/j.catena.2014.03.013 .
606. Bojanowski, D., P. Orlińska-Woźniak, P. Wilk and E. Szalińska. 2022. Estimation of nutrient loads with the use of mass-balance and modelling approaches on the Wełna River Catchment example (central Poland). Scientific Reports. 12: 13052. DOI: 10.1038/s41598-022-17270-4 .
607. Bojorquez-Tapia, L.A., L. Luna-Gonzalez, G.M. Cruz-Bello, P. Gomez-Priego, L. Juarez-Marusich and I. Rosas-Perez. 2011. Regional environmental assessment for multiagency policy making: implementing an environmental ontology through GIS-MCDA. Environment and Planning B: Planning and Design. 38: 539-563. URL: http://envplan.com/abstract.cgi?id=b36129.
608. Boles, C.M.W, J.R. Frankenberger and D.N. Moriasi. 2015. Tile drainage simulation in SWAT2012: Parameterization and evaluation in an Indiana watershed. Transactions of the ASABE. 58(5): 1201-1213. DOI: 10.13031/trans.58.10589 .
609. Bolster, C.H., A. Forsberg, A. Mittelstet, D.E. Radcliffe, D. Storm, J. Ramirez-Avila, A.N. Sharpley and D. Osmond. 2017. Comparing an annual and a daily time-step model for predicting field-scale phosphorus loss. Journal of Environmental Quality. 46(6): 1314-1322. DOI: 10.2134/jeq2016.04.0159 .
610. Boluwade, A. and C. Madramootoo. 2013. Modeling the impacts of spatial heterogeneity in the Castor Watershed on runoff, sediment, and phosphorus loss using SWAT: I. Impacts of spatial variability of soil properties. Water, Air, and Soil Pollution. 224(1692): 1-16. DOI: 10.1007/s11270-013-1692-0 .
611. Boluwade, A. and C. Madramootoo. 2015. Determining the influence of land use change and soil heterogeneities on discharge, sediment and phosphorus. Journal of Environmental Informatics. 25(2): 126-135. URL: http://www.iseis.org/jei/abstract.asp?no=201500290.
612. Bond, J., E. Défranoux and Z. Makkeb. 2020. Discussion of “Using the SWAT Model in Intensively Managed Irrigated Watersheds: Model Modification and Application” by Xiaolu Wei, Ryan T. Bailey, and Ali Tasdighi. Journal of Hydraulic Engineering. 25(6): 07020006. URL: https://ascelibrary.org/doi/abs/10.1061/%28ASCE%29HE.1943-5584.0001930.
613. Bonumá, N.B., C.G. Rossi, J.G. Arnold, J.M. Reichert and E.M.C.D. Paiva. 2013. Hydrology evaluation of the Soil and Water Assessment Tool considering measurement uncertainty for a small watershed in southern Brazil. Applied Engineering in Agriculture. 29(2): 189-200. DOI: 10.13031/2013.42651 .
614. Bonumá, N.B., C.G. Rossi, J.G. Arnold, J.M. Reichert, J.P. Minella, P.M. Allen and M. Volk. 2014. Simulating landscape sediment transport capacity by using a modified SWAT model. Journal of Environmental Quality. 43(1): 55-66. DOI: 10.2134/jeq2012.0217 .
615. Boongaling, C.G.K., D.V. Faustino-Eslava and F.P. Lansigan. 2018. Modeling land use change impacts on hydrology and the use of landscape metrics as tools for watershed management: The case of an ungauged catchment in the Philippines. Land Use Policy. 72: 116-128. DOI: 10.1016/j.landusepol.2017.12.042 .
616. Boonwichai, S., S. Shrestha, P. Pradhan, M.S. Babel and A. Datta. 2021. Adaptation strategies for rainfed rice water management under climate change in Songkhram River Basin, Thailand. Journal of Water and Climate Change. 12(6): 2182-2198. DOI: 10.2166/wcc.2021.220 .
617. Boorman, D.B. 2003. Climate, Hydrochemistry and Economics of Surface-water Systems (CHESS): Adding a European dimension to the catchment modelling experience developed under LOIS. Science of the Total Environment. 314-316: 411-437. DOI: 10.1016/S0048-9697(03)00066-4 .
618. Borah, D. K., J. G. Arnold, M. Bera; E. C. Krug and X. Liang. 2007. Storm event and continuous hydrologic modeling for comprehensive and efficient watershed simulations. Journal of Hydrologic Engineering. 12: 605-616. DOI: 10.1061/(ASCE)1084-0699(2007)12:6(605) .
619. Borah, D.K. and M. Bera. 2003. Watershed-scale hydrologic and nonpoint-source pollution models: Review of mathematical bases. Transactions of the ASAE. 46(6): 1553-1566. DOI: 10.13031/2013.15644 .
620. Borah, D.K. and M. Bera. 2004. Watershed-scale hydrologic and nonpoint-source pollution models: Review of applications. Transactions of the ASAE. 47(3): 789-803. DOI: 10.13031/2013.16110 .
621. Borah, D.K., E. Ahmadisharaf, G. Padmanabhan, S. Imen and Y.M. Mohamoud. 2019. Watershed models for development and implementation of total maximum daily loads. Journal of Hydrologic Engineering. 24(1): 03118001. DOI: 10.1061/(ASCE)HE.1943-5584.0001724 .
622. Borah, D.K., G. Yagow, A. Saleh, P.L. Barnes, W. Rosenthal, E.C. Krug and L.M. Hauck. 2006. Sediment and nutrient modeling for TMDL development and implementation. Transactions of the ASABE. 49(4): 967-986. DOI: 10.13031/2013.21742 .
623. Bormann, H., L. Breuer, T. Graff, and J. A. Huisman. 2007. Analysing the effects of soil properties changes associated with land use changes on the simulated water balance: A comparison of three hydrological catchment models for scenario analysis. Ecological Modelling. 209(1): 29-40. DOI: 10.1016/j.ecolmodel.2007.07.004 .
624. Bormann, H., L. Breuer, T. Graff, J.A. Huisman, B. Croke. 2008. Assessing the impact of land use change on hydrology by ensemble modelling (LUCHEM) IV: Model sensitivity on data aggregation and spatial (re-)distribution. Advances in Water Resources. 32(2): 171-192. DOI: 10.1016/j.advwatres.2008.01.002 .
625. Borrelli, P., C. Alewell, P. Alvarez, J.A.A. Anache, J. Baartman, C. Ballabio, N. Bezak, M. Biddoccu, A. Cerdà, D. Chalise, S. Chen, W. Chen, A.M. De Girolamo, G.D. Gessesse, D. Deumlich, N. Diodato, N. Efthimiou, G. Erpul, P. Fiener, M. Freppaz, F. Gentile, A. Gericke, N. Haregeweyn, B. Hu, A. Jeanneau, K. Kaffas, M. Kiani-Harchegani, I.L. Villuendas, C. Li, L. Lombardo, M. López-Vicente, M.E. Lucas-Borja, M. Märker, F. Matthews, C. Miao, M. Mikoš, S. Modugno, M. Möller, V. Naipal, M. Nearing, S. Owusu, D. Panday, E. Patault, C.V. Patriche, L. Poggio, R. Portes, L. Quijano, M.R. Rahdari, M. Renima, G.F. Ricci, J. Rodrigo-Comino, S. Saia, A.N. Samani, C. Schillaci, V. Syrris, H.S. Kim, D.N. Spinola, P.T. Oliveira, H. Teng, R. Thapa, K. Vantas, D. Vieira, J.E. Yang, S. Yin, D.A. Zema, G. Zhao and P. Panagos. 2021. Soil erosion modelling: A global review and statistical analysis. Science of the Total Environment. DOI: 10.1016/j.scitotenv.2021.146494 .
626. Boru, G.F., Z.B. Gonfa and G.M. Diga. 2019. Impacts of climate change on stream flow and water availability in Anger Sub‑Basin, Nile Basin of Ethiopia. Sustainable Water Resources Management. DOI: 10.1007/s40899-019-00327-0 .
627. Bosch, D.D., J.G. Arnold, M. Volk and P.M. Allen. 2010. Simulation of a low-gradient coastal plain watershed using the SWAT landscape model. Transactions of the ASABE. 53(5): 1445-1456. DOI: 10.13031/2013.34899 .
628. Bosch, D.D., J.M. Sheridan, H.L. Batten and J.G. Arnold. 2004. Evaluation of the SWAT model on a coastal plain agricultural watershed. Transactions of the ASAE. 47(5): 1493-1506. DOI: 10.13031/2013.17629 .
629. Bosch, D.J., M.B. Wagena, A.C. Ross, A.S. Collick and Z.M. Easton. 2018. Meeting water quality goals under climate change in Chesapeake Bay Watershed, USA. Journal of the American Water Resources Association. 54(6): 1239-1257. DOI: 10.1111/1752-1688.12684 .
630. Bosch, N.S. 2008. The influence of impoundments on riverine nutrient transport: An evaluation using the Soil and Water Assessment Tool. Journal of Hydrology. 355(1): 185-193. DOI: 10.1016/j.jhydrol.2008.03.012 .
631. Bosch, N.S., J.D. Allan, D.M. Dolan, H. Han and R.P. Richards. 2011. Application of the Soil and Water Assessment Tool for six watersheds of Lake Erie: Model parameterization and calibration. Journal of Great Lakes Research. 37(2): 263-271. DOI: 10.1016/j.jglr.2011.03.004 .
632. Bosch, N.S., J.D. Allen, J.P. Selegean and D. Scavia. 2013. Scenario-testing of agricultural best management practices in Lake Erie watersheds. Journal of Great Lakes Research. 39: 429–436. DOI: 10.1016/j.jglr.2013.06.004 .
633. Bosch, N.S., M.A. Evans, D. Scavia and J.D. Allan. 2014. Interacting effects of climate change and agricultural BMPs on nutrient runoff entering Lake Erie. Journal of Great Lakes Research. 40(3): 581-589. DOI: 10.1016/j.jglr.2014.04.011 .
634. Boskidis, I., G.D. Gikas, G.K. Sylalos and V.A. Tsihrintzis. 2012. Hydrologic and water quality modeling of Lower Nestos River Basin. Water Resources Management. 26(10): 3023-3051. DOI: 10.1007/s11269-012-0064-7 .
635. Boskidis, I., G.D. Gikas, V. Pisinaras and V.A. Tsihrintzis. 2010. Spatial and temporal changes of water quality, and SWAT modeling of Vosvozis river basin, North Greece. Journal of Environmental Science and Health, Part A - Toxic/Hazardous Substances and Environmental Engineering. 45(11): 1421-1440. DOI: 10.1080/10934529.2010.500936 .
636. Bossa, A,Y., B. Diekkrüger, S. Giertz, G. Steup, L.O. Sintondji, E.K. Agbossou and C. Hiepe. 2012. Modeling the effects of crop patterns and management scenarios on N and P loads to surface water and groundwater in a semi-humid catchment (West Africa). Agricultural Water Management. 115: 20-37. DOI: 10.1016/j.agwat.2012.08.011 .
637. Bossa, A. Y., B. Diekkuger and E. K. Agbossou. 2014. Scenario-based impacts of land use and climate change on land and water degradation from the meso to regional scale. Water. 6(10): 3152-3181. DOI: 10.3390/w6103152 .
638. Bossa, A.Y., B. Diekkruger, A.M. Igue and T. Gaiser. 2012. Analyzing the effects of different soil databases on modeling of hydrological processes and sediment yield in Benin (West Africa). Geoderma. 173-174: 61-74. DOI: 10.1016/j.geoderma.2012.01.012 .
639. Bostian, M., G. Whittaker, B. Barnhart, R. Färe and S. Grosskopf. 2015. Valuing water quality tradeoffs at different spatial scales: An integrated approach using bilevel optimization. Water Resources and Economics. 11: 1–12. DOI: 10.1016/j.wre.2015.06.002 .
640. Bostian, M.B., B.L. Barnhart, L.A. Kurkalova, M.K. Jha and G.W. Whittaker. 2021. Bilevel optimization of conservation practices for agricultural production. Journal of Cleaner Production. 300: 126874. DOI: 10.1016/j.jclepro.2021.126874 .
641. Boufala, M., A. El Hmaidi, A. Essahlaoui, K. Chadli, A. El Ouali and A. Lahjouj. 2022. Assessment of the best management practices under a semi‑arid basin using SWAT model (case of M’dez Watershed, Morocco). Modeling Earth Systems and Environment. 8(1): 713-731. DOI: 10.1007/s40808-021-01123-6 .
642. Boufala, M., A. El Hmaidi, K. Chadli, A. Essahlaoui, A. El Ouali and S. Taia. 2019. Hydrological modeling of water and soil resources in the basin upstream of the Allal El Fassi Dam (Upper Sebou Watershed, Morocco). Modeling Earth Systems and Environment. 5: 1163–1177. DOI: 10.1007/s40808-019-00621-y .
643. Bougamouza, A. and B. Remini. 2022. Hydrological modeling of Oued El Abiod Watershed using the SWAT model. Arabian Journal of Geosciences. 15(13): 1227. DOI: 10.1007/s12517-022-10512-9 .
644. Bougeard, M., J.-C. Le Saux, A. Teillon, J. Belloir, C. Le Mennec, S. Thome, G. Durand and M. Pommepuy. 2011. Combining modeling and monitoring to study fecal contamination in a small rural catchment. Journal of Water and Health. 9(3): 467-482. DOI: 10.2166/wh.2011.189 .
645. Bougeard, M., J.C. Le Saux, M. Jouan, G. Durand and M. Pommepuy. 2010. Modeling and evaluation of compliance to water quality regulations in bathing areas on the Daoulas catchment and estuary (France). Water Science and Technology. 61(10): 2521-2530. DOI: 10.2166/wst.2010.142 .
646. Bougeard, M., J.-C. Le Saux, N. Perenne, C. Baffaut, M. Robin and M. Pommepuy. 2011. Modeling of Escherichia Coli fluxes on a catchment and the impact on coastal water and shellfish quality. Journal of the American Water Resources Association. 47(2): 350-366. DOI: 10.1111/j.1752-1688.2010.00520.x .
647. Boulange, J., H. Watanabe, K. Inao, T. Iwafune, M. Zhang, Y, Luo and J. Arnold. 2014. Development and validation of a basin scale model PCPF-1@SWAT for simulating fate and transport of rice pesticides. Journal of Hydrology. 517: 146–156. DOI: 10.1016/j.jhydrol.2014.05.013 .
648. Bouma, J., P. Droogers, M.P.W. Sonneveld, C.J. Ritsema, J.E. Hunink, W.W. Immerzeel and S. Kauffman. 2011. Hydropedological insights when considering catchment classification. Hydrology and Earth System Sciences. 15(6): 1909-1919. DOI: 10.5194/hess-15-1909-2011 .
649. Bouraoui, F. and B. Grizzetti. 2008. An integrated modelling framework to estimate the fate of nutrients: Application to the Loire (France). Ecological Modelling. 212(3-4): 450-459. DOI: 10.1016/j.ecolmodel.2007.10.037 .
650. Bouraoui, F. and B. Grizzetti. 2014. Modelling mitigation options to reduce diffuse nitrogen water pollution from agriculture. Science of the Total Environment. 468–469: 1267–1277. DOI: 10.1016/j.scitotenv.2013.07.066 .
651. Bouraoui, F., B. Grizzetti, G. Adelskold, H. Behrendt, I. de Miguel, M. Silgram, S. Gomez, K. Granlund, L. Hoffmann, B. Kronvang, S. Kvaerno, A. Lazar, M. Minikou, G. Passarella, P. Panagos, H. Reisser, B. Schwarzl, C. Siderius, A.S. Sileika, A.A.M.F.R. Smit, R. Sugrue, M. VanLiedekerke and J. Zaloudik. 2009. Basin characteristics and nutrient losses: The EUROHARP catchment network perspective. Journal of Environmental Monitoring. 11(3): 515-525. DOI: 10.1039/b822931g .
652. Bouraoui, F., B. Grizzetti, K. Granlund, S. Rekolainen and G. Bidoglio. 2004. Impact of climate change on the water cycle and nutrient losses in a Finnish catchment. Climatic Change. 66(1-2): 109-126. DOI: 10.1023/B:CLIM.0000043147.09365.e3 .
653. Bouraoui, F., L. Galbiati and G. Bidoglio. 2002. Climate change impacts on nutrient loads in the Yorkshire Ouse catchment (UK). Hydrology and Earth System Sciences. 6(2): 197-209. DOI: 10.5194/hess-6-197-2002 .
654. Bouraoui, F., S. Benabdallah, A. Jrad and G. Bidoglio. 2005. Application of the SWAT model on the Medjerda River Basin (Tunisia). Physics and Chemistry of the Earth. 30(8-10): 497-507. DOI: 10.1016/j.pce.2005.07.004 .
655. Bouslihim, Y., A. Rochdi and N. El Amrani Paaza. 2020. Combining SWAT model and regionalization approach to estimate soil erosion under limited data availability conditions. Eurasian Journal of Soil Science. 53(9): 1280-1292. DOI: 10.1134/S1064229320090021 .
656. Bouslihim, Y., A. Rochdi, N. El Amrani Paaza and L. Liuzzo. 2019. Understanding the effects of soil data quality on SWAT model performance and hydrological processes in Tamedroust Watershed (Morocco). Journal of African Earth Sciences. 160: 103616. DOI: 10.1016/j.jafrearsci.2019.103616 .
657. Bracmort, K.S., M. Arabi, J.R. Frankenberger, B.A. Engel and J.G. Arnold. 2006. Modeling long-term water quality impact of structural BMPs. Transactions of the ASABE. 49(2): 367-374. DOI: 10.13031/2013.20411 .
658. Brauer, D., R.L. Baumhardt, D. Gitz, P. Gowda and J. Mahan. 2015. Characterization of trends in reservoir storage, streamflow, and precipitation in the Canadian River Watershed in New Mexico and Texas. Lake and Reservoir Management. 31(1): 64-79. DOI: 10.1080/10402381.2015.1006348 .
659. Breen, K.H., S.C. James, J.D. White, P.M. Allen and J.G. Arnold. 2020. A hybrid artificial neural network to estimate soil moisture using SWAT+ and SMAP data. Machine Learning and Knowledge Extraction. 2: 283-306. DOI: 10.3390/make2030016 .
660. Bremer, L.L., D.A. Auerbach, J.H. Goldstein, A.L. Vogl, D. Shemie, T. Kroeger, J.L. Nelson, S.P. Benítez, A. Calvache, J. Guimarães, C. Herron, J. Higgins, C. Klemz, J. León, J.S. Lozano, P.H. Moreno, F. Nuñez, F. Veiga and G. Tiepolo. 2016. One size does not fit all: Natural infrastructure investments within the Latin American Water Funds Partnership. Ecosystem Services. 17: 217-236. DOI: 10.1016/j.ecoser.2015.12.006 .
661. Bressiani, D. de A., P.W. Gassman, J.G. Fernandes, L.H.P. Garbossa, R. Srinivasan, N.B. Bonumá and E.M. Mendiondo. 2015. A review of Soil and Water Assessment Tool (SWAT) applications in Brazil: Challenges and prospects. International Journal of Agricultural and Biological Engineering. 8(3): 9-35. DOI: 10.3965/j.ijabe.20150803.1765 .
662. Bressiani, D. de A., R. Srinivasan, C.A. Jones and E.M. Mendiondo. 2015. Effects of different spatial and temporal weather data resolutions on the streamflow modeling of a semi-arid basin, Northeast Brazil. International Journal of Agricultural and Biological Engineering. 8(3): 125-139. DOI: 10.3965/j.ijabe.20150803.970 .
663. Breuer L., J. A. Huisman and H.-G. Frede. 2006. Monte Carlo assessment of uncertainty in the simulated hydrological response to land use change. Environmental Modeling & Assessment. 11(3): 209-218. DOI: 10.1007/s10666-006-9051-9 .
664. Breuer, L. and J.A. Huisman. 2008. Assessing the impact of land use change on hydrology by ensemble modeling (LUCHEM). Advances in Water Resources. 32(2): 127-128. DOI: 10.1016/j.advwatres.2008.10.010 .
665. Breuer, L., J.A. Huisman, P. Willems, H. Bormann, A. Bronstert, B.F.W. Croke, H.-G. Frede, T. Graff, L. Hubrechts, A.J. Jakeman, G. Kite, J. Lanini, G. Leavesley, D.P. Lettenmaier, G. Lindstrom, J. Seibert, M. Sivapalan and N.R. Viney. 2008. Assessing the impact of land use change on hydrology by ensemble modeling (LUCHEM). I: Model intercomparison with current land use. Advances in Water Resources. 32(2): 129-146. DOI: 10.1016/j.advwatres.2008.10.003 .
666. Breuer, L., K. Eckhardt and H.-G. Frede. 2003. Plant parameter values for models in temperate climates. Ecological Modelling. 169(2-3): 237-293. DOI: 10.1016/S0304-3800(03)00274-6 .
667. Breuer, L., K.B. Vache, S. Julich and H.-G. Frede. 2008. Current concepts in nitrogen dynamics for mesoscale catchments. Hydrological Sciences Journal. 53(5): 1059-1074. DOI: 10.1623/hysj.53.5.1059 .
668. Brewer, S.K., T.A. Worthington, R. Mollenhauer, D.R. Stewart, R.A. McManamay, L. Guertault and D. Moore. 2018. Synthesizing models useful for ecohydrology and ecohydraulic approaches: An emphasis on integrating models to address complex research questions. Ecohydrology. 11(7): e1966. DOI: 10.1002/eco.1966 .
669. Briak, H., R. Moussadek, K. Aboumaria and R. Mrabet. 2016. Assessing sediment yield in Kalaya gauged watershed (Northern Morocco) using GIS and SWAT model. International Soil and Water Conservation Research. 4(3): 177-185. DOI: 10.1016/j.iswcr.2016.08.002 .
670. Briak, H., R. Mrabet, R. Moussadek and K. Aboumaria. 2019. Use of a calibrated SWAT model to evaluate the effects of agricultural BMPs on sediments of the Kalaya River basin (North of Morocco). International Soil and Water Conservation Research. 7: 176-183. DOI: 10.1016/j.iswcr.2019.02.002 .
671. Bridhikitti, A., A. Ketuthong, T. Prabamroong, R. Li, J. Li and G. Liu. 2022. How do sustainable development-induced land use change and climate change affect water balance? A case study of the Mun River Basin, NE Thailand. Water Resources Management. DOI: 10.1007/s11269-022-03298-8 .
672. Brighenti T.M., N.B. Bonumá, F. Grison, A. de Almeida Mota, M. Kobiyama and P.L.B. Chaffe. 2019. Two calibration methods for modeling streamflow and suspended sediment with the swat model. Ecological Engineering. 127: 103-113. DOI: 10.1016/j.ecoleng.2018.11.007 .
673. Brighenti, T.M., N.B. Bonumá and P.L.B. Chaffe. 2016. Hierarchical calibration of SWAT model for a watershed in southern Brazil. Revista Brasileira de Recursos Hidricos. 21(1): 53-64. DOI: 10.21168/rbrh.v21n1.p53-64 .
674. Brighenti, T.M., N.B. Bonuma, R. Srinivasan and P.L.B. Chaffe. 2019. Simulating sub-daily hydrological process with SWAT: A review. Hydrological Sciences Journal. 64(12): 1415-1423. DOI: 10.1080/02626667.2019.1642477 .
675. Brighenti, T.M., P.W. Gassman, K.E. Schilling, R. Srinivasan, M. Liebmand and J.R. Thompson. 2022. Determination of accurate baseline representation for three Central Iowa watersheds within a HAWQS-based SWAT analyses. Science of the Total Environment. 839: 156302. DOI: 10.1016/j.scitotenv.2022.156302 .
676. Brighenti, T.M., P.W. Gassman, W.J. Gutowski, Jr. and J.R. Thompson. 2023. Assessing the influence of a bias correction method on future climate scenarios using SWAT as an impact model indicator. Water. 15(4): 750. DOI: 10.3390/w15040750 .
677. Brighenti, T.M., P.W. Gassman, J. Arnold and J. Thompson. 2023. Comparison of two tile-drain methods in SWAT via temporal and spatial testing for an Iowa watershed. Journal of the ASABE. 66(6): 1555-1569. DOI: 10.13031/ja.15534 .
678. Briones, R.U., V.B. Ella and N.C. Bantayan. 2016. Hydrologic impact evaluation of land use and land cover change in Palico Watershed, Batangas, Philippines using the SWAT model. Journal of Environmental Science and Management. 19(1): 96-107. URL: http://jesam-uplb.org/article.php?aid=168-hydrologic-impact-evaluation-of-land-use-and-land-cover-change-in-palico-watershed--batangas--philippines-using-the-swat-model-nbsp-.
679. Brito, D., R. Neves, M.A. Branco, A. Prazeres, S. Rodrigues, M.C. Gonçalves and T.B. Ramos. 2019. Assessing water and nutrient long-term dynamics and loads in the Enxoé Temporary River Basin (Southeast Portugal). Water. 11(2): 354. DOI: 10.3390/w11020354 .
680. Brito, D., T. B. Ramos, M.C. Gonçalves, M. Morais and R. Neves. 2018. Integrated modelling for water quality management in a eutrophic reservoir in south‑eastern Portugal. Environmental Earth Sciences. 77: 40. DOI: 10.1007/s12665-017-7221-5 .
681. Britto, F.B., A.O. Aguiar Netto, A.N. do Vasco and M.G. Silva. 2017. SWAT model for in potential contamination a tributary of the Rio São Francisco, Brazil. Scientia Plena. 13(16): 109910. URL: https://www.scientiaplena.org.br/sp/article/view/3779.
682. Britto, F.B., E.L.M. Neto, A. de O.A. Netto and N.A.C. Rego. 2014. Water sustainability in sub-basin Sangradouro River, Sergipe. Revista Brasileira de Geografia Física. 7(1): 155-164. URL: https://periodicos.ufpe.br/revistas/index.php/rbgfe/article/view/232976.
683. Brochet, E., Y. Grusson, S. Sauvage, L. Lhuissier and V. Demarez. 2024. How to account for irrigation withdrawals in a watershed model. Hydrology and Earth System Sciences. 28(1): 49–64. DOI: 10.5194/hess-28-49-2024 .
684. Brou, D., A.K. Armand, K.-W.A. Brice, K.T. Jean-Jaques and K.K. Lazare. 2021. Coupling modeling and remote sensing for the determination of high-flow drilling locations in the Lobo Watershed at Nibehibé in Côte d'Ivoire. Environmental and Water Sciences, Public Health & Territorial Intelligence. 5(2): 578-587. URL: https://revues.imist.ma/index.php/ewash-ti/article/view/26020.
685. Brouziyne, Y., A. Abouabdillah, A. Hirich, R. Bouabid, R. Zaaboul and L. Benaabidate. 2018. Modeling sustainable adaptation strategies toward a climate-smart agriculture in a Mediterranean watershed under projected climate change scenarios. Agricultural Systems. 162: 154-163. DOI: 10.1016/j.agsy.2018.01.024 .
686. Brouziyne, Y., A. Abouabdillah, A. Chehbouni, L. Hanich, K. Bergaoui, R. McDonnell and L. Benaabidate. 2020. Assessing hydrological vulnerability to future droughts in a Mediterranean watershed: Combined indices-based and distributed modeling approaches. Water. 12(9): 2333. DOI: 10.3390/w12092333 .
687. Brouziyne, Y., A.M. De Girolamo, A. Aboubdillah, L. Benaabidate, L. Bouchaou and A. Chehbouni. 2021. Modeling alterations in flow regimes under changing climate in a Mediterranean watershed: An analysis of ecologically-relevant hydrological indicators. Ecological Informatics. 61: 101219. DOI: 10.1016/j.ecoinf.2021.101219 .
688. Brouziyne, Y., S. Belaqziz, L. Benaabidate, A. Aboubdillah, A.E. Bilali, A. Elbeltagi, O. Tzoraki and A. Chehbouni. 2022. Modeling long term response of environmental flow attributes to future climate change in a North African watershed (Bouregreg watershed, Morocco). Ecohydrology & Hydrobiology. 22(1): 155-167. DOI: 10.1016/j.ecohyd.2021.08.005 .
689. Brown, S.C., V.L. Versace, R.E. Lester and M.T. Walter. 2015. Assessing the impact of drought and forestry on streamflows in south-eastern Australia using a physically based hydrological model. Environmental Earth Sciences. 74(7): 1-17. DOI: 10.1007/s12665-015-4628-8 .
690. Brulebois, E., M. Ubertosi, T. Castel, Y. Richard, S. Sauvage, J.-M. S. Perez, N. Le Moine and P. Amoitte-Suchet. 2018. Robustness and performance of semi-distributed (SWAT) and global (GR4J) hydrological models throughout an observed climatic shift over contrasted French watersheds. Open Water. 5(1): 41-56. URL: https://scholarsarchive.byu.edu/openwater/vol5/iss1/4/.
691. Bruno, D., R. Sorando, B. Álvarez-Farizo, C. Castellano, V. Céspedes, B. Gallardo, J.J. Jiménez, M.V. López, R. López-Flores, D. Moret-Fernández, E. Navarro, F. Picazo, M. Sevilla-Callejo, J. Tormo, J.J. Vidal-Macua, J.M. Nicolau and F.A. Comín. 2021. Depopulation impacts on ecosystem services in Mediterranean rural areas. Ecosystem Services. 52: 101369. DOI: 10.1016/j.ecoser.2021.101369 .
692. Bryant, R. B., W. J. Gburek, T. L. Veith and W. D. Hively. 2006. Perspectives on the potential for hydropedology to improve watershed modeling of phosphorus loss. Geoderma. 131(3-4): 299-307. DOI: 10.1016/j.geoderma.2005.03.011 .
693. Bryant, R.B., T.L. Vieth, P.J.A. Kleinman and W.J. Gburek. 2008. Cannonsville Reservoir and Town Brook Watersheds: Documenting conservation efforts to protect New York City's drinking water. Journal of Soil and Water Conservation. 63(6): 339-344. DOI: 10.2489/jswc.63.6.339 .
694. Brzozowski, J., Z. Miatowski, D. Sliwinski, K. Smarzynska and M. Smietanka. 2011. Application of SWAT model to small agricultural catchment in Poland. Journal of Water and Land Development. 15: 157-166. DOI: 10.2478/v10025-012-0014-z .
695. Bu, J.Y., C.X. Lu, J. Niu and Y.C. Gao. 2018. Attribution of Runoff Reduction in the Juma River Basin to Climate Variation, Direct Human Intervention, and Land Use Change. Water. 10(12): 1775. DOI: 10.3390/w10121775 .
696. Bucak, T., D. Trolle, H.E. Andersen, H. Thodsen, Ş. Erdoğan, E.E. Levi, N. Filiz, E. Jeppesen and M. Beklioğlu. 2017. Future water availability in the largest freshwater Mediterranean lake is at great risk as evidenced from simulations with the SWAT model. Science of the Total Environment. 581–582: 413–425. DOI: 10.1016/j.scitotenv.2016.12.149 .
697. Bucak, T., D. Trolle, Ü.N. Tavşanoğlu, A.I. Çakıroğlu, A. Özen, E. Jeppesen and M. Beklioğlu. 2018. Modeling the effects of climatic and land use changes on phytoplankton and water quality of the largest Turkish freshwater lake: Lake Beyşehir. Science of the Total Environment. 621: 802-816. DOI: 10.1016/j.scitotenv.2017.11.258 .
698. Bučienė, A., A. Povilaitis, V. Langas, M. Bučas, J. Petkuviene, D. Vaičiūtė and S. Gužys. 2019. Changes in nutrient concentrations of two streams in Western Lithuania with focus on shrinkage of agriculture and effect of climate, drainage runoff and soil factors. Water. 11(8): 1590. DOI: 10.3390/w11081590 .
699. Bucton, B.G.B., S. Shrestha, S. KC, S. Mohanasundaram, S.G.P. Virdis and W. Chaowiwat. 2022. Impacts of climate and land use change on groundwater recharge under shared socioeconomic pathways: A case of Siem Reap, Cambodia. Environmental Research. 211: 113070. DOI: 10.1016/j.envres.2022.113070 .
700. Budamala, V. and A. Mahindrakar. 2020. Approximation of metro water district basin using parallel computing of Emulator Based Spatial Optimization (PCESO). Water Resources Management. 34(1): 121-137. DOI: 10.1007/s11269-019-02424-3 .
701. Budamala, V. and A.B. Mahindrakar. 2019. Enhance the prediction of complex hydrological models by pseudo-simulators. Geocarto International. DOI: 10.1080/10106049.2019.1629646 .
702. Budamala, V. and A.B. Mahindrakar. 2020. Integration of adaptive emulators and sensitivity analysis for enhancement of complex hydrological models. Environmental Processes. 7(4): 1235–1253. DOI: 10.1007/s40710-020-00468-x .
703. Budamala, V. and A.B. Mahindrakar. 2021. Adaptive hybrid architecture for enhancement of the complex hydroclimatic system and assessment of freshwater security. Journal of Hydroinformatics. 23(5): 950-965. DOI: 10.2166/hydro.2021.182 .
704. Budhathoki, A., M.S. Babel, S. Shrestha, G. Meon and A.G. Kamalmma. 2021. Climate change impact on water balance and hydrological extremes in different physiographic regions of the West Seti River Basin, Nepal. Ecohydrology & Hydrobiology. 21(1): 79-95. DOI: 10.1016/j.ecohyd.2020.07.001 .
705. Bugaets, A.N., B.I. Gartsman, S.Y. Lupakov, V.V. Shamov, L.V. Gonchukov, N.F. Pshenichnikova and A.A. Tereshkina. 2019. Modeling the hydrological regime of small testbed catchments based on field observations: A case study of the Pravaya Sokolovka River, the Upper Ussuri River Basin. Water Resources. 46(Suppl. 2): S8-S16. DOI: 10.1134/S0097807819080037 .
706. Bugaets, A.N., G.I. Gartsman, A.A. Tereshkina, L.V. Gonchukov, N.D. Bugaets, N.Y. Sidorenko, N.F. Pshenichnikova and S.M. Krasnopeyev. 2018. Using the SWAT model for studying the hydrological regime of a small river basin (the Komarovka River, Primorsky Krai). Russian meteorology and hydrology. 43(5): 323-331. DOI: 10.3103/S1068373918050060 .
707. Bugaets, A.N., N.F. Pshenichnikova, A.A. Tereshkina, S.Y. Lupakov, B.I. Gartsman, V.V. Shamov, L.V. Gonchukov, O.M. Golodnaya, S.M. Krasnopeyev and N.K. Kozhevnikova. 2021. Digital soil mapping for hydrological modeling by the example of experimental catchments in the south of Primorsky Krai. Eurasian Journal of Soil Science. 54(9): 1375-1384. DOI: 10.1134/S1064229321050057 .
708. Buhr, D.X., R.W. Lammers and B.P. Bledsoe. 2022. Global sensitivity analyses of key riparian nitrogen models. Environmental Modelling & Software. 158: 105542. DOI: 10.1016/j.envsoft.2022.105542 .
709. Bui, M.T., J. Lu and L. Nie. 2020. A review of hydrological models applied in the permafrost-dominated arctic region. Revista Geociências. 10(10): 401. DOI: 10.3390/geosciences10100401 .
710. Bui, M.T., J. Lu and L. Nie. 2021. Evaluation of the climate forecast system reanalysis data for hydrological model in the Arctic Watershed Målselv. Journal of Water and Climate Change. 12(8): 3481-3504. DOI: 10.2166/wcc.2021.346 .
711. Bui, M.T., J. Lu and L. Nie. 2021. Quantifying the effects of watershed subdivision scale and spatial density of weather inputs on hydrological simulations in a Norwegian Arctic watershed. Journal of Water and Climate Change. 12(8): 3518–3543. DOI: 10.2166/wcc.2021.173 .
712. Bùi, Q.H., H.H. Uông, V.H. Bùi and V.D. Bùi. 2019. Application SWAT model for evaluation of water quality in the Cong River Basin. Journal of Water Resources & Environmental Engineering. 65(6): 117-123. URL: http://tapchivatuyentap.tlu.edu.vn/Home/groupid/90.
713. Bulti, A.T. 2021. The infuence of dam construction on the catchment hydrologic behavior and its effects on a discharge forecast in hydrological models. Water Resources Management. 35(6): 2023-2037. DOI: 10.1007/s11269-021-02829-z .
714. Bulut, E. and A. Aksoy. 2008. Impact of fertilizer usage on phosphorus loads to Lake Uluabat. Desalination. 226: 289-297. DOI: 10.1016/j.desal.2007.02.112 .
715. Buonocore, C., J.J.G. Pascual, M.L.P. Cayeiro, R.M. Salinas and M.B. Mejías. 2021. Modelling the impacts of climate and land use changes on water quality in the Guadiana Basin and the adjacent coastal area. Science of the Total Environment. 776: 146034. DOI: 10.1016/j.scitotenv.2021.146034 .
716. Burigato Costa, C.M. da S., L. da Silva Marques, A.K. Almeida, I.R. Leite and I.K. de Almeida. 2019. Applicability of water quality models around the world—a review. Environmental Science and Pollution Research. DOI: 10.1007/s11356-019-06637-2 .
717. Burkart, C.S. and M.K. Jha. 2012. Site-specific simulation of nutrient control policies: Integrating economic and water quality effects. Journal of Agricultural and Resource Economics Association. 37(1): 20-33. URL: https://jareonline.org/articles/site-specific-simulation-of-nutrient-control-policies-integrating-economic-and-water-quality-effects/.
718. Burke, W.D. and D.L. Ficklin. 2017. Future projections of streamflow magnitude and timing differ across coastal watersheds of the western United States. International Journal of Climatology. 37(13): 4493–4508. DOI: 10.1002/joc.5099 .
719. Busico, G., E. Grilli, S.C.P. Carvalho. M. Mastrocicco and S. Castaldi. 2023. Assessing soil erosion susceptibility for past and future scenarios in semiarid Mediterranean agroecosystems. Sustainability. 15(17): 12992. DOI: 10.3390/su151712992 .
720. Busico, G., M.M. Ntona, S.C.P. Carvalho, O. Patrikaki, K. Voudouris and N. Kazakis. 2021. Simulating future groundwater recharge in coastal and inland catchments. Water Resources Management. 35(11): 3617-3632. DOI: 10.1007/s11269-021-02907-2 .
721. Busico, G., N. Colombani, D. Fronzi, M. Pellegrini, A. Tazioli and M. Mastrocicco. 2020. Evaluating SWAT model performance, considering different soils data input, to quantify actual and future runoff susceptibility in a highly urbanized basin. Journal of Environmental Management. 266: 110625. DOI: 10.1016/j.jenvman.2020.110625 .
722. Butcher, J.B., T.E. Johnson, D. Nover and S. Sarkar. 2014. Incorporating the effects of increased atmospheric CO2 in watershed model projections of climate change impacts. Journal of Hydrology. 513: 322-334. DOI: 10.1016/j.jhydrol.2014.03.073 .
723. Butler, G.B. and P. Srivastava. 2007. An Alabama BMP database for evaluating water quality impacts of alternative management practices. Applied Engineering in Agriculture. 23(6): 727-736. DOI: 10.13031/2013.24056 .
724. Byun, J. and M. Son. 2018. Effects of climate change and reduction method on water quality in Cheongmicheon Watershed. Journal of Korea Water Resources Association. 51(7): 585-597. DOI: 10.3741/JKWRA.2018.51.7.585 .
725. Cai, T., Q. Li, M. Yu, G. Lu, L. Cheng and X. Wei. 2012. Investigation into the impacts of land-use change on sediment yield characteristics in the Upper Huaihe River Basin, China. Physics and Chemistry of the Earth. 53-54: 1-9. DOI: 10.1016/j.pce.2011.08.023 .
726. Cai, W., J. Liu, X. Zhu, X. Zhao and X. Zhang. 2022. Estimating the role of climate internal variability and sources of uncertainties in hydrological climate-impact projections. Sustainability. 14(19): 12201. DOI: 10.3390/su141912201 .
727. Cai, X., R. Zeng, W.H. Kang, J. Song and A.J. Valocchi. 2015. Strategic planning for drought mitigation under climate change. Journal of Water Resources Planning and Management. 141(9). DOI: 10.1061/(ASCE)WR.1943-5452.0000510 .
728. Cakir, R., M. Raimonet, S. Sauvage, J. Paredes-Arquiola, Y. Grusson, L. Roset, M. Meaurio, E. Navarro, M. Sevilla-Callejo, J.L. Lechuga-Crespo, J.J.G. Pascual , J.M. Bodoque and J.M. Sánchez-Pérez. 2020. Hydrological alteration index as an indicator of the calibration complexity of water quantity and quality modeling in the context of global change. Water. 12(1): 115. DOI: 10.3390/w12010115 .
729. Cakir, R., M. Raimonet, S. Sauvage, R. Walcker, M. Gerino and J. Sánchez-Pérez. 2021. Assessment of water quality regulation functions in southwestern Europe watersheds. Water. 13(21): 2980. DOI: 10.3390/w13212980 .
730. Cakir, R., S. Sauvage, M. Gerino, M. Volk and J.M. Sánchez-Pérez. 2020. Assessment of ecological function indicators related to nitrate under multiple human stressors in a large watershed. Ecological Indicators. 111: 106016. DOI: 10.1016/j.ecolind.2019.106016 .
731. Caldwell, P.V., J.G. Kennen, G. Sun, J.E. Kiang, J.B. Butcher, M.C. Eddy, L.E. Hay, J.H. LaFontaine, E.F. Hain, S.A.C. Nelson and S.G. McNulty. 2015. A comparison of hydrologic models for ecological flows and water availability. Ecohydrology. 8(8): 1525-1546. DOI: 10.1002/eco.1602 .
732. Camargos, C., S. Julich, T. Houska, M. Bach and L. Breuer. 2018. Effects of input data content on the uncertainty of simulating water resources. Water. 10(5): 621. DOI: 10.3390/w10050621 .
733. Cambien, N., S. Gobeyn, I. Nolivos, M.A. Eurie Forio, M. Arias-Hidalgo, L. Dominguez-Granda, F. Witing, M. Volk and P.L.M. Goethals. 2020. Using the Soil and Water Assessment Tool to simulate the pesticide dynamics in the data scarce Guayas River Basin, Ecuador. Water. 12(3): 696. DOI: 10.3390/w12030696 .
734. Campbell, A., S.M. Pradhanang, S.K. Anbaran, J. Sargent, Z. Palmer and M. Audette. 2018. Assessing the impact of urbanization on flood risk and severity for the Pawtuxet Watershed, Rhode Island. Lake and Reservoir Management. 34: 74-87. DOI: 10.1080/10402381.2017.1390016 .
735. Campos, F.L.M., A.L.N. Coelho, D. de A. Bressiani and I.C.H.M. Campos. 2024. Use of the SWAT+ hydrological model to quantification and spatialization processes in support of environmental planning. Revista Pantaneira. 24: 119-137. URL: https://periodicos.ufms.br/index.php/revpan/article/view/21316.
736. Candela, A., G. Freni, G. Mannina and G. Viviani. 2012. Receiving water body quality assessment: an integrated mathematical approach applied to an Italian case study. Journal of Hydroinformatics. 14(1): 30-47. DOI: 10.2166/hydro.2011.099 .
737. Cao, C., B. Yan, J. Guo, H. Jiang, Z. Li and Y. Liu. 2021. A framework for projecting future streamflow of the Yalong River basin to climate change. Stochastic Environmental Research and Risk Assessment. 35(8): 1549-1562. DOI: 10.1007/s00477-021-02009-w .
738. Cao, W., W.B. Bowden, T. Davie and A. Fenemor. 2006. Multi-variable and multi-site calibration and validation of SWAT in a large mountainous catchment with high spatial variability. Hydrological Processes. 20(5): 1057-1073. DOI: 10.1002/hyp.5933 .
739. Cao, W., W.B. Bowden, T. Davie, A. Fenemor. 2008. Modelling impacts of land cover change on critical water resources in the Motueka River Catchment, New Zealand. Water Resources Management. 23(1): 137-151. DOI: 10.1007/s11269-008-9268-2 .
740. Cao, Y., C. Fu, X. Wang, L. Dong, S. Yao, B. Xue, H. Wu and H. Wu. 2021. Decoding the dramatic hundred-year water level variations of a typical great lake in semi-arid region of northeastern Asia. Science of the Total Environment. 770: 145353. DOI: 10.1016/j.scitotenv.2021.145353 .
741. Cao, Y., J. Zhang, M. Yang, X. Lei, B. Guo, L. Yang, Z. Zeng and J. Qu. 2018. Application of SWAT model with CMADS data to estimate hydrological elements and parameter uncertainty based on SUFI-2 algorithm in the Lijiang River Basin, China. Water. 10(6): 742. DOI: 10.3390/w10060742 .
742. Cao, Y., Z. Zhou, Q. Liao, S. Shen, W. Wang, P. Xiao and J. Liao. 2023. Effects of landscape conservation on the ecohydrological and water quality functions and services and their driving factors. Science of the Total Environment. 861: 160695. DOI: 10.1016/j.scitotenv.2022.160695 .
743. Capel, P.D., K.A. McCarthy and J.E. Barbash. 2008. National, holistic, watershed-scale approach to understand the sources, transport, and fate of agricultural chemicals. Journal of Environmental Quality. 37: 983-993. DOI: 10.2134/jeq2007.0226 .
744. Caprario, J., A.S. Rech, G.N. Caprario and A.R. Finotti. 2017. Hydrossedimentological simulation of the Quatorze River Watershed, Francisco Beltrão (Paraná, Brazil). Anuário do Instituto de Geociências. 40(1): 102-114. DOI: 10.11137/2017_1_102_114 .
745. Carl, P. and H. Behrendt. 2008. Regularity-based functional streamflow disaggregation: 1. Comprehensive foundation. Water Resources Research. 44: 1-12. DOI: 10.1029/2004WR003724 .
746. Carl, P., K. Gerlinger, F.F. Hattermann, V. Krysanova, C. Schilling and H. Behrendt. 2008. Regularity-based functional streamflow disaggregation: 2. Extended demonstration. Water Resources Research. 44: 1-19. DOI: 10.1029/2006WR005056 .
747. Carneiro, L., A. Ostroski and E.G.F. Mercuri. 2020. Trophic state index for heavily impacted watersheds: Modeling the influence of diffuse pollution in water bodies. Hydrological Sciences Journal. 65(15): 2548-2560. DOI: 10.1080/02626667.2020.1828588 .
748. Caro-Borrero, A., J. Carmona-Jiménez, T. González-Martínez and M. Mazari-Hiriart. 2015. Hydrological evaluation of a peri-urban stream and its impact on ecosystem services potential. Global Ecology and Conservation. 3: 628-644. DOI: 10.1016/j.gecco.2015.02.008 .
749. Carpenter, S.R. and R.C. Lathrop. 2014. Phosphorus loading, transport and concentrations in a lake chain: A probabilistic model to compare management options. Aquatic Sciences. 76(1): 145-154. DOI: 10.1007/s00027-013-0324-5 .
750. Cartwright, J.H., S.A. Shammi and J.C. Rodgers III. 2022. Use of a multi-criteria decision analysis (MCDA) for mapping erosion potential in Gulf of Mexico watersheds. Water. 14(12): 1923. DOI: 10.3390/w14121923 .
751. Carvalho, V.S.O., L.A. Alvarenga, C. de M.M. de Oliveria, J. Tomasella, A. Colombo and P.A. Melo. 2021. Impact of climate change on monthly streamflow in the Verde River Basin using two hydrological models. Revista Ambiente & Água. 16(4): e2683. DOI: 10.4136/ambi-agua.2683 .
752. Carvalho-Santos, C., A.T. Monteiro, J.C. Azevedo, J.P. Honrado and J.P. Nunes. 2017. Climate change impacts on water resources and reservoir management: Uncertainty and adaption for a mountain catchment in northeast Portugal. Water Resources Management. 31(11): 3355–3370. DOI: 10.1007/s11269-017-1672-z .
753. Carvalho-Santos, C., B. Marcos, J.P. Nunes, A. Regos, E. Palazzi, S. Terzago, A.T. Monteiro and J.P. Honrado. 2019. Hydrological impacts of large fires and future climate: Modeling approach supported by satellite data. Remote Sensing. 11(23): 2832. DOI: 10.3390/rs11232832 .
754. Carvalho-Santos, C., J.P. Nunes, A.T. Monteiro, L. Hein and J.P. Honrado. 2016. Assessing the effects of land cover and future climate conditions on the provision of hydrological services in a medium-sized watershed of Portugal. Hydrological Processes. 30(5): 720-738. DOI: 10.1002/hyp.10621 .
755. Carvalho-Santos, C., R. Sousa-Silva, J. Goncalves and J.P. Honrado. 2016. Ecosystem services and biodiversity conservation under forestation scenarios: Options to improve management in the Vez watershed, NW Portugal. Regional Environmental Change. 16(6): 1557–1570. DOI: 10.1007/s10113-015-0892-0 .
756. Casper, A.F., B.Dixon, J. Earls and J.A. Gore. 2010. Linking a spatially explicit watershed model (SWAT) with an in-stream fish habitat model (PHABSIM): A case study of setting minimum flows and levels in a low gradient, sub-tropical river. River Research and Applications. 27(3): 269-282. DOI: 10.1002/rra.1355 .
757. Castellanos-Osorio, G., A. López-Ballesteros, J. Pérez-Sánchez and J. Senent-Aparicio. 2023. Disaggregated monthly SWAT+ model versus daily SWAT+ model for estimating environmental flows in Peninsular Spain. Journal of Hydrology. 623: 129837. DOI: 10.1016/j.jhydrol.2023.129837 .
758. Castelli, G., C. Foderi, B.H. Guzman, L. Ossoli, Y. Kempff, E. Bresci and F. Salbitano. 2017. Planting waterscapes: Green infrastructures, landscape and hydrological modeling for the future of Santa Cruz de la Sierra, Bolivia. Forests. 8(11): 437. DOI: 10.3390/f8110437 .
759. Castillo, C.R., I. Güneralp and B. Güneralp. 2014. Influence of changes in developed land and precipitation on hydrology of a coastal Texas watershed. Applied Geography. 47: 154-167. DOI: 10.1016/j.apgeog.2013.12.009 .
760. Castro, R.A. 2014. Simulacao de producao de sedimentos com a utilizacao o modelo SWAT na bacia dp Rio das Pedras (Guarapuava-PR). Revista Geonorte. 4(1): 297-301. URL: http://www.periodicos.ufam.edu.br/index.php/revista-geonorte/article/view/1401.
761. Cau, P. and C. Paniconi. 2007. Assessment of alternative land management practices using hydrological simulation and a decision support tool: Arborea agricultural region, Sardinia. Hydrology and Earth System Sciences. 11(6): 1811-1823. DOI: 10.5194/hess-11-1811-2007 .
762. Cau, P., S. Manca, C. Soru, D. Muroni, D. Gorgan, V. Bacu, A. Lehman, N. Ray and G. Giuliani. 2013. An interoperable GIS oriented information and support system for water resources management. International Journal of Advanced Computer Science and Applications. EnviroGRIDS special Issue: 75-82. URL: http://thesai.org/Publications/ViewIssue?volume=3&issue=3&code=SpecialIssue.
763. Cecílio, R.A., Pimentel, S.M. and S.S. Zanetti. 2019. Modeling the influence of forest cover on streamflows by different approaches. Catena. 178: 49-58. DOI: 10.1016/j.catena.2019.03.006 .
764. Celine, G. and E.J. James. 2015. Assessing the implications of extension of rubber plantation on the hydrology of humid tropical river basin. International Journal of Environmental Research. 9(3): 841-852. URL: https://ijer.ut.ac.ir/article_971.html.
765. Centanni, M., G.F. Ricci, A.M. De Girolamo, G Romano and F. Gentile. 2023. A review of modeling pesticides in freshwaters: Current status, progress achieved and desirable improvements. Environmental Pollution. 316(Part 2): 120553. DOI: 10.1016/j.envpol.2022.120553 .
766. Čerkasova, N., A. Ertürk, P. Zemlys, V. Denisov and G. Umgiesser. 2016. Curonian Lagoon drainage basin modelling and assessment of climate change impact. Oceanologia. 58 (2): 90–102. DOI: 10.1016/j.oceano.2016.01.003 .
767. Čerkasova, N., G. Umgiesser and A. Ertürk. 2018. Development of a hydrology and water quality model for a large transboundary river watershed to investigate the impacts of climate change – A SWAT application. Ecological Engineering. 124: 99-115. DOI: 10.1016/j.ecoleng.2018.09.025 .
768. Čerkasova, N., G. Umgiesser and A. Ertürk. 2019. Assessing climate change impacts on streamflow, sediment and nutrient loadings of the Minija River (Lithuania): A hillslope watershed discretization application with high-resolution spatial inputs. Water. 11(4): 676. DOI: 10.3390/w11040676 .
769. Čerkasova, N., G. Umgiesser and A. Ertürk. 2021. Modelling framework for flow, sediments and nutrient loads in a large transboundary river watershed: A climate change impact assessment of the Nemunas River Watershed. Journal of Hydrology. 598: 126422. DOI: 10.2166/nh.2021.096 .
770. Čerkasova, N., M. White, J. Arnold, K. Bieger, P. Allen, J. Gao, M. Gambone, M. Meki, J. Kiniry and P. W. Gassman. 2023. Field scale SWAT+ modeling of corn and soybean yields for the contiguous United States: National Agroecosystem Model Development. Agricultural Systems. 210: 103695. DOI: 10.1016/j.agsy.2023.103695 .
771. Cerro, I., I. Antiguedad, R. Srinavasan, S. Sauvage, M. Volk and J.M. Sanchez-Perez. 2014. Simulating land management options to reduce nitrate pollution in an agricultural watershed dominated by an alluvial aquifer. Journal of Environmental Quality. 43(1): 67-74. DOI: 10.2134/jeq2011.0393 .
772. Cerucci, M. and J.M. Conrad. 2003. The use of binary optimization and hydrologic models to form riparian buffers. Journal of the American Water Resources Association. 39(5): 1167-1180. DOI: 10.1111/j.1752-1688.2003.tb03700.x .
773. Česonienė, L., D. Šileikienė, V. Marozas and L. Čiteikė. 2021. Influence of anthropogenic loads on surface water status: A case study in Lithuania. Sustainability. 13(8): 4341. DOI: 10.3390/su13084341 .
774. Česonienė, L., D. Sileikiene, M. Dapkiene, A. Radzevicius and K. Räsänen. 2019. Assessment of chemical and microbiological parameters on the Leite River Lithuania. Environmental Science and Pollution Research. 26: 18752-18765. DOI: 10.1007/s11356-019-04665-6 .
775. Cha, S.M. and S.W. Lee. 2021. Advanced hydrological streamflow simulation in a watershed using adjusted radar-rainfall estimates as meteorological input data. Journal of Environmental Management. 277: 111393. DOI: 10.1016/j.jenvman.2020.111393 .
776. Chaâbane, N., B. Salah and H. Abida. 2016. Runoff and sediment yield modeling using SWAT model: Case of Wadi Hatab basin, central Tunisia. Arabian Journal of Geosciences. 9(11): 579. DOI: 10.1007/s12517-016-2607-3 .
777. Chaemiso, S.E., S.A. Kartha and S.M. Pingale. 2021. Effect of land use/land cover changes on surface water availability in the Omo-Gibe Basin, Ethiopia. Hydrological Sciences Journal. 66(13): 1936-1962. DOI: 10.1080/02626667.2021.1963442 .
778. Chagas, A.M.S. das, A.A. de A. Montenegro, F.A.C. Lins and C.W.L. de A. Farias. 2022. Soil moisture analysis in an experimental basin in the semiarid region of Pernambuco using the SWAT model. Agrometeoros, Passo Fundo. 30: e026993. DOI: 10.31062/agrom.v30.e026993 .
779. Chahinian, N., M.-G. Tournoud, J.-L. Perrin and B. Picot. 2011. Flow and nutrient transport in intermittent rivers: A modelling case-study on the Vène River using SWAT 2005. Hydrological Sciences Journal. 56(2): 268-287. DOI: 10.1080/02626667.2011.559328 .
780. Chakilu, G.G., S. Sándor and T. Zoltán. 2020. Change in stream flow of Gumara watershed, Upper Blue Nile Basin, Ethiopia under representative concentration pathway climate change scenarios. Water. 12(11): 3046. DOI: 10.3390/w12113046 .
781. Chakilu, G.G., S. Sándor, T. Zoltán and K. Phinzi. 2022. Climate change and the response of streamflow of watersheds under the high emission scenario in Lake Tana sub-basin, Upper Blue Nile Basin, Ethiopia. Journal of Hydrology: Regional Studies. 42: 101175. DOI: 10.1016/j.ejrh.2022.101175 .
782. Chambers, B., S.M. Pradhanang and A.J. Gold. 2017. Assessing thermally stressful events in a Rhode Island coldwater fish habitat using the SWAT model. Water. 9(9): 667. DOI: 10.3390/w9090667 .
783. Chambers, B.M., S.M. Pradhanang and A.J. Gold. 2017. Simulating climate change induced thermal stress in coldwater fish habitat using SWAT Model. Water. 9(10): 732. DOI: 10.3390/w9100732 .
784. Chan, R., C. Baffaut, A. Thompson and J. Sadler. 2017. Validating the soil vulnerability index for a claypan watershed. Catena. 148(2): 185–194. DOI: 10.1016/j.catena.2016.03.009 .
785. Chanapathi, T., S. Thatikonda, V.R. Keesara and N.S. Ponguru. 2020. Assessment of water resources and crop yield under future climate scenarios: A case study in a Warangal District of Telangana, India. Journal of Earth System Science. 129(1): 20. DOI: 10.1007/s12040-019-1294-3 .
786. Chanasyk, D.S., E. Mapfumo and W. Willms. 2003. Quantification and simulation of surface runoff from fescue grassland watersheds. Agricultural Water Management. 59(2): 137-153. DOI: 10.1016/S0378-3774(02)00124-5 .
787. Chandra, P., P.L. Patel, P.D. Porey and I.D. Gupta. 2014. Estimation of sediment yield using SWAT model for Upper Tapi Basin. ISH Journal of Hydraulic Engineering. 20(3): 291-300. DOI: 10.1080/09715010.2014.902170 .
788. Chang, C., D. Sun, P. Feng, M. Zhang and N. Ge. 2017. Impacts of nonpoint source pollution on water quality in the Yuqiao Reservoir. Environmental Engineering Science. 34(6): 418-432. DOI: 10.1089/ees.2016.0124 .
789. Chang, C.-H., J.F. Harrison and Y.-C. Huang. 2015. Modeling typhoon-induced alterations on river sediment transport and turbidity based on dynamic landslide inventories: Gaoping River Basin, Taiwan. Water. 7(12): 6910-6930. DOI: 10.3390/w7126666 .
790. Chang, D., Z. Lai, S. Li, D. Li and J. Zhou. 2021. Critical source areas’ identification for non-point source pollution related to nitrogen and phosphorus in an agricultural watershed based on SWAT model. Environmental Science and Pollution Research. 28(34): 47162-47181. DOI: 10.1007/s11356-021-13973-9 .
791. Chang, H.-S., Z.-H. Lin and Y.-Y. Hsu. 2022. Planning for green infrastructure and mapping synergies and trade-offs: A case study in the Yanshuei River Basin, Taiwan. Urban Forestry & Urban Greening. 65: 127325. DOI: 10.1016/j.scitotenv.2022.152955 .
792. Chang, S. and I.-M. Chung. 2014. Analysis of groundwater variations using the relationship between groundwater use and daily minimum temperature in a water curtain cultivation site. The Journal of Engineering Geology. 24(2): 217-225. DOI: 10.9720/kseg.2014.2.217 .
793. Chang, S.W. and I.-M. Chung. 2021. Water budget analysis considering surface water–groundwater interactions in the exploitation of seasonally varying agricultural groundwater. Hydrology. 8(2): 60. DOI: 10.3390/hydrology8020060 .
794. Chang, S.W., K. Nemec, L. Kalin and T.P. Clement. 2016. Impacts of climate change and urbanization on groundwater resources in a Barrier island. Journal of Environmental Engineering. 142(12). DOI: 10.1061/(ASCE)EE.1943-7870.0001123 .
795. Chang, W., W. Li, H. Ma, D. Wang, E.R. Bandala, Y. Yu and J. Rodrigo-Comino. 2022. An integrated approach for shaping drought characteristics at the watershed scale. Journal of Hydrology. 604: 127248. DOI: 10.1016/j.jhydrol.2021.127248 .
796. Chang, Z., Z. Jiang and P. Wang. 2022. Inflow combination forecast of reservoir based on SWAT, XAJ model and Bayes model averaging method. Water Supply. 22(12): 8440-8463. DOI: 10.2166/ws.2022.405 .
797. Changkun, M., L. Sun, S. Liu, M. Shao and Y. Luo. 2015. Impact of climate change on the streamflow in the glacierized Chu River Basin, Central Asia. Journal of Arid Land. 7(4): 501-513. DOI: 10.1007/s40333-015-0041-0 .
798. Chann, K., T. Sok, R. Khoeun, V. Men, S. Visessri, C. Oeurng, R. Sor and S.E. Null. 2022. Prolonged and severe drought in the most dammed tributaries of the Lower Mekong Basin. Sustainability. 14(23): 16254. DOI: 10.3390/su142316254 .
799. Chantha, O., L. Sarann, S. Ty and C. Sarit. 2017. Assessing SWAT model performance to simulate daily stream flow and sediment transport from a tropical catchment of Tonle Sap Lake Basin in Cambodia. Techno-Science Research Journal. 5: 10‐24. URL: https://techno-srj.itc.edu.kh/menuscript/cbc7faeb16547e709027f391653ecd51.
800. Chao, G. and R. Tian. 2018. The influence of climate change and human activities on runoff in the middle reaches of the Huaihe River Basin, China. Journal of Geographical Sciences. 28(1): 79-92. DOI: 10.1007/s11442-018-1460-6 .
801. Chaplot, V. 2005. Impact of DEM mesh size and soil map scale on SWAT runoff, sediment, and NO3-N loads predictions. Journal of Hydrology. 312(1-4): 207-222. DOI: 10.1016/j.jhydrol.2005.02.017 .
802. Chaplot, V. 2007. Water and soil resources response to rising levels of atmospheric CO2 concentration and to changes in precipitation and air temperature. Journal of Hydrology. 337(1-2): 159-171. DOI: 10.1016/j.jhydrol.2007.01.026 .
803. Chaplot, V. 2014. Impact of spatial input data resolution on hydrological and erosion modeling: Recommendations from a global assessment. Physics and Chemistry of the Earth. 67-69: 23-35. DOI: 10.1016/j.pce.2013.09.020 .
804. Chaplot, V., A. Saleh and D.B. Jaynes. 2005. Effect of the accuracy of spatial rainfall information on the modeling of water, sediment, and NO3-N loads at the watershed level. Journal of Hydrology. 312(1-4): 223-234. DOI: 10.1016/j.jhydrol.2005.02.019 .
805. Chaplot, V., A. Saleh, D.B. Jaynes and J. Arnold. 2004. Predicting water, sediment and NO3-N loads under scenarios of land-use and management practices in a flat watershed. Water, Air, and Soil Pollution. 154 (1-4): 271-293. DOI: 10.1023/B:WATE.0000022973.60928.30 .
806. Chaponniere, A., G.Boulet, A. Chehbouni and M. Aresmouk. 2008. Understanding hydrological processes with scarce data in a mountain environment. Hydrological Processes. 22(12): 1908-1921. DOI: 10.1002/hyp.6775 .
807. Charbonnel, A., L. Buisson, M. Biffi, F. D'Amico, A. Besnard, S. Aulagnier, F. Blanc, F. Gillet, V. Lacaze, J.R. Michaux, M. Némoz, C. Pagé, J.M. Sanchez-Perez, S. Sauvage and P. Laffaille. 2015. Integrating hydrological features and genetically validated occurrence data in occupancy modelling of an endemic and endangered semi-aquatic mammal, Galemys pyrenaicus, in a Pyrenean catchment. Biological Conservation. 184: 182-192. DOI: 10.1016/j.biocon.2015.01.019 .
808. Charbonnel, A., P. Laffaille, M. Biffi, F. Blanc, A. Maire, M. Némoz, J.M. Sanchez-Perez, S. Sauvage and L. Buisson. 2016. Can recent global changes explain the dramatic range contraction of an endangered semi-aquatic mammal species in the French Pyrenees? PLoS ONE. 11(7): e0159941. DOI: 10.1371/journal.pone.0159941 .
809. Chathuranika, I.M., M.B. Gunathilake, P.K. Baddewela, E. Sachinthanie, M.S. Babel, S. Shrestha, M.K. Jha and U.S. Rathnayake. 2022. Comparison of two hydrological models, HEC-HMS and SWAT in runoff estimation: Application to Huai Bang Sai Tropical Watershed, Thailand. Fluids. 7(8): 267. DOI: 10.3390/fluids7080267 .
810. Chattopadhyay, S. and M. K Jha. 2016. Hydrological response due to projected climate variability in Haw River Watershed, North Carolina. Hydrological Sciences Journal. 61(3): 495-506. DOI: 10.1080/02626667.2014.934823 .
811. Chattopadhyay, S., D.R. Edwards, Y. Yu and A. Hamidisepehr. 2017. An assessment of climate change impacts on future water availability and droughts in the Kentucky River Basin. Environmental Processes. 4(3): 477-507. DOI: 10.1007/s40710-017-0259-2 .
812. Chattopadhyay, S., E. Szałkiewicz, M. Dytkiewicz, P. Marcinkowski, D. Mirosław-Świątek,, P. Oglęcki and M. Piniewski. 2023. Development of an integrated modelling framework to evaluate impacts of pressures on habitat conditions and riverine biota. Ecohydrology. : e2585. DOI: 10.1002/eco.2585 .
813. Chattrairat, K., A. Jattamart, and A. Leelasantitham. 2022. Estimating water runoff from downscaling climate change scenarios using Soil and Water Assessment Tool and machine learning: A case study of Lake Tana Basin in Ethiopia. Science, Engineering and Health Studies. 16: 22020012. DOI: 10.14456/sehs.2022.62 .
814. Chaubey, I., A.S. Cotter. T.A. Costello and T.S. Soerens. 2005. Effect of DEM data resolution on SWAT output uncertainty. Hydrological Processes. 19(3): 621-628. DOI: 10.1002/hyp.5607 .
815. Chaubey, I., L. Chiang, M.W. Gitau and S. Mohamed. 2010. Effectiveness of best management practices in improving water quality in a pasture-dominated watershed. Journal of Soil and Water Conservation. 65(6): 424-437. DOI: 10.2489/jswc.65.6.424 .
816. Chauhan, N., V. Kumar and P. Paliwal. 2020. Quantifying the impacts of decadal landuse change on the water balance components using Soil and Water Assessment Tool in Ghaggar River Basin. SN Applied Sciences. 2(11): 1777. DOI: 10.1007/s42452-020-03606-0 .
817. Chawanda, C.J., A. Nkwasa, W. Thiery and A. van Griensven. 2024. Combined impacts of climate and land-use change on future water resources in Africa. Hydrology and Earth System Sciences. 28(1): 117–138. DOI: 10.5194/hess-28-117-2024 .
818. Chawanda, C.J., C. George, W. Thiery, A. van Griensven, J. Tech, J. Arnold and R. Srinivasan. 2020. User-friendly workflows for catchment modelling: Towards reproducible SWAT+ model studies. Environmental Modelling & Software. 134: 104812. DOI: 10.1016/j.envsoft.2020.104812 .
819. Chawanda, C.J., J. Arnold, W. Thiery and A. van Griensven. 2020. Mass balance calibration and reservoir representations for large-scale hydrological impact studies using SWAT+. Climatic Change. 163(3): 1307–1327. DOI: 10.1007/s10584-020-02924-x .
820. Chebet, C., V.A.O. Odenyo and E.C. Kipkorir. 2017. Modeling the impact of land use changes on river flows in Arror watershed, Elgeyo Marakwet County, Kenya. Water Practice and Technology. 12(2): 344-353. DOI: 10.2166/wpt.2017.028 .
821. Cheema, M., W. Immerzeel and W. Bastiaanssen. 2014. Spatial quantification of groundwater abstraction in the irrigated Indus basin. Groundwater. 52(1): 25–36. DOI: 10.1111/gwat.12027 .
822. Chegnizadeh, A., H. Rabieifar, H. Ebrahimi and M.Z. Nayeri. 2022. Evaluating the hydrological response due to the changes in climate and land use on streamflow in the Karkheh basin, Iran. Journal of Water and Climate Change. 13(11): 4054-4068. DOI: 10.2166/wcc.2022.278 .
823. Chegwin, M.R. and S. Kumara. 2018. Energy, land and water nexus in Sri Lanka’s Mahaweli basin. Energy. 17(13): 93-111. DOI: 10.1680/jener.17.00026 .
824. Chen, C., Y. Zhang, Y. Xiang and L. Wang. 2014. Study on runoff responses to land use change in Ganjiang Basin. Journal of Natural Resources. 29(10): 1758-1769. DOI: 10.11849/zrzyxb.2014.10.011 .
825. Chen, D., J. Li, Z. Zhou, Y. Liu, T. Li and J. Liu. 2018. Simulating and mapping the spatial and seasonal effects of future climate and land -use changes on ecosystem services in the Yanhe watershed, China. Environmental Science and Pollution Research. 25(2): 1115-1131. DOI: 10.1007/s11356-017-0499-8 .
826. Chen, E. and D.S. Mackay. 2004. Effects of distribution-based parameter aggregation on a spatially distributed agricultural nonpoint source pollution model. Journal of Hydrology. 295(1-4): 211-224. DOI: 10.1016/j.jhydrol.2004.03.029 .
827. Chen, F. and J. Li. 2016. Quantifying drought and water scarcity: A case study in the Luanhe river basin. Natural Hazards. 81(3): 1913-1927. DOI: 10.1007/s11069-016-2162-y .
828. Chen, F., W.T. Crow, P.J. Starks and D.N. Moriasi. 2011. Improving hydrologic predictions of a catchment model via assimilation of surface soil moisture. Advances in Water Resources. 34(4): 526-536. DOI: 10.1016/j.advwatres.2011.01.011 .
829. Chen, H., J. Chen, Y. Liu and J. He. 2021. Study of nitrogen pollution Simulation and management measures on SWAT model in typhoon period of Shanxi Reservoir Watershed, Zhejiang Province, China. Polish Journal of Environmental studies. 30(3): 1-9. DOI: 10.15244/pjoes/130038 .
830. Chen, H., Y. Luo, C. Potter, P.J. Moran, M.L. Grieneisen and M. Zhang. 2017. Modeling pesticide diuron loading from the San Joaquin watershed into the Sacramento-San Joaquin Delta using SWAT. Water Research. 121: 374–385. DOI: 10.1016/j.watres.2017.05.032 .
831. Chen, J. and Y. Wu. 2012. Advancing representation of hydrologic processes in the Soil and Water Assessment Tool (SWAT) through integration of the TOPographic MODEL (TOPMODEL) features. Journal of Hydrology. 420-421: 319-328. DOI: 10.1016/j.jhydrol.2011.12.022 .
832. Chen, J. and H. Chang. 2021. Relative impacts of climate change and land cover change on streamflow using SWAT in the Clackamas River Watershed, USA. Journal of Water and Climate Change. 12(5): 1454–1470. DOI: 10.2166/wcc.2020.123 .
833. Chen, J. and X. Li. 2004. Simulation of hydrological response to land-cover changes. Chinese Journal of Applied Ecology. 15(5): 833-836. URL: http://www.cjae.net/EN/Y2004/V/I5/833.
834. Chen, J., C. Du, T. Nie, X. Han and S. Tang. 2022. Study of non-point pollution in the Ashe River Basin based on SWAT model with different land use. Water. 14(14): 2177. DOI: 10.3390/w14142177 .
835. Chen, J., C. Gao, X. Zeng, M. Xiong, Y. Wang, C. Jing, V. Krysanova, J. Huang, N. Zhao and B. Su. 2017. Assessing changes of river discharge under global warming of 1.5 °C and 2 °C in the upper reaches of the Yangtze River Basin: Approach by using multiple- GCMs and hydrological models. Quaternary International. 453: 63-73. DOI: 10.1016/j.quaint.2017.01.017 .
836. Chen, J., L. Xiubin and Z. Ming. 2005. Simulating the impacts of climate variation and land-cover changes on basin hydrology: A case study of the Suomo basin. Science in China Series D: Earth Sciences. 48(9): 1501-1509. DOI: 10.1360/03yd0269 .
837. Chen, J., L. Zhang, P. Chen and Y. Ma. 2022. Application of spatially distributed calibrated hydrological model in evapotranspiration simulation of three gorges reservior area of China: A case study in the Madu River Basin. Chinese Geographical Science. 32(6): 1083-1098. DOI: 10.1007/s11769-022-1318-9 .
838. Chen, J., P. Zhong, C. Liu, Y. Shang and C. Cheng. 2016. Research on runoff restoration method based on SWAT Model: A case study in Dawenhe River Basin. Journal of China Hydrology. 36(6): 28-34. URL: http://sw.allmaga.net/sw/article/abstract/20160605.
839. Chen, J., R. Arsenault, F.P. Brissette, P. Côté and T. Su. 2019. Coupling annual, monthly and daily weather generators to simulate multisite and multivariate climate variables with low-frequency variability for hydrological modelling. Climate Dynamics. 53: 3841-3860. DOI: 10.1007/s00382-019-04750-z .
840. Chen, L., A. Zhu, C. Qin and J. Liu. 2012. Effectiveness assessment of soil erosion critical source areas for soil and water conservation. Journal of Resources and Ecology. 3(2): 138-143. DOI: 10.5814/j.issn.1674-764x.2012.02.005 .
841. Chen, L., G. Wang, Y. Zhong and Z. Shen. 2016. Evaluating the impacts of soil data on hydrological and nonpoint source pollution prediction. Science of the Total Environment. 563-564: 19-28. DOI: 10.1016/j.scitotenv.2016.04.107 .
842. Chen, L., G. Wang, Y. Zhong, X. Zhao and Z. Shen. 2016. Using site-specific soil samples as a substitution for improved hydrological and nonpoint source predictions. Environmental Science and Pollution Research. 23(16): 16037–16046. DOI: 10.1007/s11356-016-6789-8 .
843. Chen, L., G. Wei and Z. Shen. 2015. An auto-adaptive optimization approach for targeting nonpoint source pollution control practices. Scientific Reports. 5:15393. DOI: 10.1038/srep15393 .
844. Chen, L., G. Wei and Z. Shen. 2016. Incorporating water quality responses into the framework of best management practices optimization. Journal of Hydrology. 541(Part B): 1363–1374. DOI: 10.1016/j.jhydrol.2016.08.038 .
845. Chen, L., G. Wei, Y. Zhong, G. Wang and Z. Shen. 2014. Targeting priority management areas for multiple pollutants from non-point sources. Journal of Hazardous Materials. 280: 244–251. DOI: 10.1016/j.jhazmat.2014.08.012 .
846. Chen, L., J. Li, J. Xu, G. Liu, W. Wang, J. Jiang and Z. Shen. 2022. New framework for nonpoint source pollution management based on downscaling priority management areas. Journal of Hydrology. 606: 127433. DOI: 10.1016/j.jhydrol.2022.127433 .
847. Chen, L., J. Qiu, G. Wei and Z. Shen. 2015. A preference-based multi-objective model for the optimization of best management practices. Journal of Hydrology. 520: 356–366. DOI: 10.1016/j.jhydrol.2014.11.032 .
848. Chen, L., J. Xu, G. Wang and Z. Shen. 2019. Comparison of the multiple imputation approaches for imputing rainfall data series and their applications to watershed models. Journal of Hydrology. 572: 449-460. DOI: 10.1016/j.jhydrol.2019.03.025 .
849. Chen, L., J. Xu, G. Wang, H. Liu, L. Zhai, S. Li, C. Sun and Z. Shen. 2018. Influence of rainfall data scarcity on non-point source pollution prediction: Implications for physically based models. Journal of Hydrology. 562: 1-16. DOI: 10.1016/j.jhydrol.2018.04.044 .
850. Chen, L., S. Chen, S. Li and Z. Shen. 2019. Temporal and spatial scaling effects of parameter sensitivity in relation to non-point source pollution simulation. Journal of Hydrology. 571: 36-49. DOI: 10.1016/j.jhydrol.2019.01.045 .
851. Chen, L., S. Li, Y. Zhong and Z. Shen. 2018. Improvement of model evaluation by incorporating prediction and measurement uncertainty. Hydrology and Earth System Sciences. 22(8): 4145-4154. DOI: 10.5194/hess-22-4145-2018 .
852. Chen, L., Y. Dai, X. Zhi, H. Xie and Z. Shen. 2018. Quantifying nonpoint source emissions and their water quality responses in a complex catchment: A case study of a typical urban-rural mixed catchment. Journal of Hydrology. 559: 110-121. DOI: 10.1016/j.jhydrol.2018.02.034 .
853. Chen, L., Y. Gong and Z. Shen. 2016. Structural uncertainty in watershed phosphorus modeling: Toward a stochastic framework. Journal of Hydrology. 537: 36-44. DOI: 10.1016/j.jhydrol.2016.03.039 .
854. Chen, L., Y. Wang, N. Yang, K. Zhu, X. Yan, Z. Bai, L. Zhai and Z. Shen. 2023. Improving crop-livestock integration in China using numerical experiments at catchment and regional scales. Agriculture Ecosystems and Environment. 341: 108192. DOI: 10.1016/j.agee.2022.108192 .
855. Chen, L., Y. Zhong, G. Wei, Y. Cai and Z. Shen. 2014. Development of an integrated modeling approach for identifying multilevel non-point-source priority management areas at the watershed scale. Water Resources Research. 50(5): 4095-4109. DOI: 10.1002/2013WR015041 .
856. Chen, L., Z. Shen, X. Yang, Q. Liao and S.L. Yu. 2014. An Interval-Deviation Approach for hydrology and water quality model evaluation within an uncertainty framework. Journal of Hydrology. 509: 207–214. DOI: 10.1016/j.jhydrol.2013.11.043 .
857. Chen, M., C. Yang, T. Hou, G. Lu, Y. Wen, and S. Yue. 2018. Developing a data model for understanding geographical analysis models with consideration of their evolution and application processes. Transactions in GIS. 22: 1498-1521. DOI: 10.1111/tgis.12484 .
858. Chen, M., P.W. Gassman, R. Srinivasan, Y. Cui and R. Arritt. 2020. Analysis of alternative climate datasets and evapotranspiration methods for the Upper Mississippi River Basin using SWAT within HAWQS. Science of the Total Environment. 720: 137562. DOI: 10.1016/j.scitotenv.2020.137562 .
859. Chen, M., S. Yue, G. Lü, H. Lin, C. Yang, Y. Wen, T. Hou, D. Xiao and H. Jiang. 2019. Teamwork-oriented integrated modeling method for geo-problem solving. Environmental Modelling & Software. 119: 111-123. DOI: 10.1016/j.envsoft.2019.05.015 .
860. Chen, M., Y. Cui, P.W. Gassman and R. Srinivasan. 2021. Effect of Watershed Delineation and Climate Datasets density on runoff predictions for the Upper Mississippi River Basin using SWAT within HAWQS. Water. 13(4): 422. DOI: 10.3390/w13040422 .
861. Chen, P. and W. Li. 2022. Assessing reservoir effect on water quality in the Missouri River Basin using the Soil and Water Assessment Tool (SWAT) model. River Research and Applications. 38: 1775–1786. DOI: 10.1002/rra.4044 .
862. Chen, P., W. Li and K. He. 2022. Impacts of different types of El Niño events on water quality over the Corn Belt, United States. Hydrology and Earth System Sciences. 26(19): 4875-4892. DOI: 10.5194/hess-26-4875-2022 .
863. Chen, P., Y. Yuan, W. Li, S.D. LeDuc, T.J. Lark, X. Zhang and C. Clark. 2021. Assessing the impacts of recent crop expansion on water quality in the Missouri River Basin Using the Soil and Water Assessment Tool. Journal of Advances in Modeling Earth Systems. 13: e2020MS002284. DOI: 10.1029/2020MS002284 .
864. Chen, Q., H. Chen, J. Wang, Y. Zhao, J. Chen and C. Xu. 2019. Impacts of climate change and land-use change on hydrological extremes in the Jinsha River Basin. Water. 11(7): 1398. DOI: 10.3390/w11071398 .
865. Chen, Q., H. Chen, J. Zhang, Y. Hou, M. Shen, J. Chen and C. Xu. 2020. Impacts of climate change and LULC change on runoff in the Jinsha River Basin. Journal of Geographical Sciences. 30(1): 85-102. DOI: 10.1007/s11442-020-1716-9 .
866. Chen, S., L. Chen, X. Liu, Y. Pan, F. Zhou, J. Guo, T. Huang, F. Chen and Z. Shen. 2022. Unexpected nitrogen flow and water quality change due to varying atmospheric deposition. Journal of Hydrology. 609: 127679. DOI: 10.1016/j.jhydrol.2022.127679 .
867. Chen, W., D. Nover, H. Yen, Y. Xia, B. He, W. Sun and J. Viers. 2020. Exploring the multiscale hydrologic regulation of multipond systems in a humid agricultural catchment. Water Research. 184: 115987. DOI: 10.1016/j.watres.2020.115987 .
868. Chen, X. and G. Huang. 2020. Applicability and hydrologic substitutability of TMPA satellite precipitation product in the Feilaixia Catchment, China. Water. 12(6): 1803. DOI: 10.3390/w12061803 .
869. Chen, X., B. Xu, Y. Zheng and C. Zhang. 2019. Nexus of water, energy and ecosystems in the Upper Mekong River: A system analysis of phosphorus transport through cascade reservoirs. Science of the Total Environment. 671: 1179-1191. DOI: 10.1016/j.scitotenv.2019.03.324 .
870. Chen, X., C. Bing and W. Hongjing. 2014. Parameter uncertainty analysis of surface flow and sediment yield in the Huolin Basin, China. Journal of Hydrologic Engineering. 19(6): 1224-1236. DOI: 10.1061/(ASCE)HE.1943-5584.0000909 .
871. Chen, X., F. Li, J.-z. Li and P. Feng. 2019. Three-dimensional identification of hydrological drought and multivariate drought risk probability assessment in the Luanhe River Basin, China. Theoretical and Applied Climatology. DOI: 10.1007/s00704-019-02780-5 .
872. Chen, X., F.-W. Li, Y.-X. Wang, P. Feng and R.-Z. Yang. 2019. Evolution properties between meteorological, agricultural and hydrological droughts and their related driving factors in the Luanhe River Basin, China. Hydrology Research. 50(4): 1096-1119. DOI: 10.2166/nh.2019.141 .
873. Chen, X., G. Xu, W. Zhang, H. Peng, H. Xia, X. Zhang, Q. Ke and J. Wan. 2019. Spatial variation pattern analysis of hydrologic processes and water quality in Three Gorges Reservoir Area. Water. 11(12): 2608. DOI: 10.3390/w11122608 .
874. Chen, X., K. Alizad, D. Wang and S.C. Hagen. 2014. Climate change impact on runoff and sediment loads to the Apalachicola River at seasonal and event scales. Journal of Coastal Research. 68: 35-42. DOI: 10.2112/SI68-005.1 .
875. Chen, X., R. Han, P. Feng and Y. Wang. 2022. Combined effects of predicted climate and land use changes on future hydrological droughts in the Luanhe River Basin, China. Natural Hazards. 110(2): 1305-1337. DOI: 10.1007/s11069-021-04992-3 .
876. Chen, X., W. Chen and G. Huang. 2021. Future climatic projections and hydrological responses in the Upper Beijiang River Basin of south China using bias-corrected RegCM 4.6 data. JGR Atmospheres. 126(19): e2021JD034550. DOI: 10.1029/2021JD034550 .
877. Chen, X., Y. Liu, J. Zhang, T. Guan, Z. Sun, J. Jin, C. Liu, G. Wang and Z. Bao. 2022. Quantify runoff reduction in the Zhang River due to water diversion for irrigation. Water. 14(12): 1918. DOI: 10.3390/w14121918 .
878. Chen, Y. and M. Nakatsugawa. 2021. Analysis of changes in land use/land cover and hydrological processes caused by earthquakes in the Atsuma River Basin in Japan. Sustainability. 13(23): 13041. DOI: 10.3390/su132313041 .
879. Chen, Y. J. Shuai, Z. Zhang, P. Shi and F. Tao. 2013. Simulating the impact of watershed management for surface water quality protection: A case study on reducing inorganic nitrogen load at a watershed scale. Ecological Engineering. 62: 61-70. DOI: 10.1016/j.ecoleng.2013.10.023 .
880. Chen, Y., C.-Y. Xu, X. Chen, Y. Xu, Y. Yin, L. Gao and M. Liu. 2019. Uncertainty in simulation of land-use change impacts on catchment runoff with multi-timescales based on the comparison of the HSPF and SWAT models. Journal of Hydrology. 573: 486-500. DOI: 10.1016/j.jhydrol.2019.03.091 .
881. Chen, Y., G.W. Marek, T.H. Marek, D.K. Brauer and R. Srinivasan. 2017. Assessing the efficacy of the SWAT auto-irrigation function to simulate irrigation, evapotranspiration, and crop response to management strategies of the Texas High Plains. Water. 9(7): 509. DOI: 10.3390/w9070509 .
882. Chen, Y., G.W. Marek, T.H. Marek, J.E. Moorhead, K.R. Heflin, D.K. Brauer, P.H. Gowda and R. Srinivasan. 2018. Assessment of alternative agricultural land use options for extending the availability of the Ogallala Aquifer in the northern high plains of Texas. Hydrology. 5(4): 53. DOI: 10.3390/hydrology5040053 .
883. Chen, Y., G.W. Marek, T.H. Marek, D.K. Brauer and R. Srinivasan. 2018. Improving SWAT auto-irrigation functions for simulating agricultural irrigation management using long-term lysimeter field data. Environmental Modelling & Software. 99: 25-38. DOI: 10.1016/j.envsoft.2017.09.013 .
884. Chen, Y., G.W. Marek, T.H. Marek, Q. Xue, D.K. Brauer and R. Srinivasan. 2019. Assessing soil and water assessment tool plant stress algorithms using full and deficit irrigation treatments. Agronomy Journal. 111(3): 1266-1280. DOI: 10.2134/agronj2018.09.0556 .
885. Chen, Y., G.W. Marek, T.H. Marek, P.H. Gowda, Q. Xue, J.E. Moorhead, D.K. Brauer, R. Srinivasan and K.R. Heflin. 2019. Multisite evaluation of an improved SWAT irrigation scheduling algorithm for corn (Zea mays L.) production in the U.S. Southern Great Plains. Environmental Modelling & Software. 118: 23-34. DOI: 10.1016/j.envsoft.2019.04.001 .
886. Chen, Y., G.W. Marek, T.H. Marek, D.O. Porter, J.E. Moorhead, K.R. Heflin, D.K. Brauer and R. Srinivasan. 2020. Watershed scale evaluation of an improved SWAT auto-irrigation function. Environmental Modelling & Software. 131: 104789. DOI: 10.1016/j.envsoft.2020.104789 .
887. Chen, Y., G.W. Marek, T.H. Marek, D.O. Porter, D.K. Brauer and R. Srinivasan. 2021. Modeling climate change impacts on blue, green, and grey water footprints and crop yields in the Texas High Plains, USA. Agricultural and Forest Meteorology. 310: 108649. DOI: 10.1016/j.agrformet.2021.108649 .
888. Chen, Y., G.W. Marek, T.H. Marek, D.O. Porter, D.K. Brauer and R. Srinivasan. 2021. Simulating the effects of agricultural production practices on water conservation and crop yields using an improved SWAT model in the Texas High Plains, USA. Agricultural Water Management. 244: 1065. DOI: 10.1016/j.agwat.2020.106574 .
889. Chen, Y., M. Nakatsugawa and H. Ohashi. 2021. Research of impacts of the 2018 Hokkaido Eastern Iburi Earthquake on sediment transport in the Atsuma River Basin using the SWAT model. Water. 13(3): 356. DOI: 10.3390/w13030356 .
890. Chen, Y., S. Ale, N. Rajan and C. Munster. 2017. Assessing the hydrologic and water quality impacts of biofuel-induced changes in land use and management. Global Change Biology Bioenergy. 9(9): 1461-1475. DOI: 10.1111/gcbb.12434 .
891. Chen, Y., S. Ale, N. Rajan and R. Srinivasan. 2017. Modeling the effects of land use change from cotton (Gossypium hirsutum L.) to perennial bioenergy grasses on watershed hydrology and water quality under changing climate. Agricultural Water Management. 192: 198-208. DOI: 10.1016/j.agwat.2017.07.011 .
892. Chen, Y., S. Ale, N. Rajan, C.L.S. Morgan and J. Park. 2016. Hydrological responses of land use change from cotton (Gossypium hirsutum L.) to cellulosic bioenergy crops in the Southern High Plains of Texas, USA. Global Change Biology Bioenergy. 8(5): 981–999. DOI: 10.1111/gcbb.12304 .
893. Chen, Y., X. Chen, C.-Y. Xu, M. Zhang, M. Liu and L. Gao. 2018. Toward improved calibration of SWAT using season-based multi-objective optimization: A case study in the Jinjiang Basin in southeastern China. Water Resources Management. 32(4): 1193–1207. DOI: 10.1007/s11269-017-1862-8 .
894. Chen, Y., X. Song, Z. Zhang, P. Shi and F. Tao. 2015. Simulating the impact of flooding events on non-point source pollution and the effects of filter strips in an intensive agricultural watershed in China. Limnology. 16(2): 91-101. DOI: 10.1007/s10201-014-0443-2 .
895. Chen, Y., Y. Xu and X. Chen. 2011. Hydrologic response to future urbanization in small or medium basins in the Yangtze River Delta region. Resources Science. 33(1): 64-69. URL: https://www.resci.cn/EN/Y2011/V33/I1/64.
896. Chen, Z., R. Zhu, Z. Yin, Q. Feng, L. Yang, L. Wang, R. Lu and C. Fang. 2022. Hydrological response to future climate change in a mountainous watershed in the northeast of Tibetan Plateau. Journal of Hydrology: Regional Studies. 44: 101256. DOI: 10.1016/j.ejrh.2022.101256 .
897. Cheng K., X. Xu, L. Cui, Y. Li, J. Zheng, W. Wu, J. Sun and G. Pan. 2021. The role of soils in regulation of freshwater and coastal water quality. Philosophical Transactions of the Royal Society B: Biological Sciences. 376: 20200176. DOI: 10.1098/rstb.2020.0176 .
898. Cheng, C., Y.C.E. Yang, R. Ryan, Q. Yu and E. Brabec. 2017. Assessing climate change-induced flooding mitigation for adaptation in Boston’s Charles River watershed, USA. Landscape and Urban Planning. 167: 25-36. DOI: 10.1016/j.landurbplan.2017.05.019 .
899. Cheng, D., H. Li, W. Zhang, S.G. Pueppke, J. Pang and Y. Diao. 2020. Spatiotemporal dynamics of nitrogen transport in the Qiandao Lake Basin, a large hilly monsoon basin of southeastern China. Water. 12(4): 1075. DOI: 10.3390/w12041075 .
900. Cheng, H., F. Hao, X. Ren, S. Yang, W. Xiong and S. Lei. 2008. Loss coefficient of nitrogenous non-point source pollution under various precipitation conditions. Frontiers of Environmental Science & Engineering in China. 26(3): 392-397. DOI: 10.1007/s11783-008-0043-7 .
901. Cheng, H., W. Ouyang, F. Hao, X. Ren, and S. Yang. 2006. The non-point source pollution in livestock-breeding areas of the Heihe River basin in Yellow River. Stochastic Environmental Research and Risk Assessment. 21(3): 213-221. DOI: 10.1007/s00477-006-0057-2 .
902. Cheng, J., Y. Gong, D.Z. Zhu, M. Xiao, Z. Zhang, J. Bi and K. Wang. 2021. Modeling the sources and retention of phosphorus nutrient in a coastal river system in China using SWAT. Journal of Environmental Management. 278(Part 2): 111556. DOI: 10.1016/j.jenvman.2020.111556 .
903. Cheng, L., G. Wan, M. Yang, X. Wang and Y. Li. 2022. The runoff in the Upper Taohe River Basin and its responses to climate change. Water. 14(13): 2094. DOI: 10.3390/w14132094 .
904. Cheng, M., Y. Wang, B. Engel, W. Zhang, H. Peng, X. Chen and H. Xia. 2017. Performance assessment of spatial interpolation of precipitation for hydrological process simulation in Three Gorges Basin. Water. 9(11): 836. DOI: 10.3390/w9110838 .
905. Cheng, Q., X. Chen, C. Xu, C. Reinhardt-Imjela and A. Schulte. 2014. Improvement and comparison of likelihood functions for model calibration and parameter uncertainty analysis within a Markov chain Monte Carlo scheme. Journal of Hydrology. 519(Part B): 2202–2214. DOI: 10.1016/j.jhydrol.2014.10.008 .
906. Cheng, Q.-B., X. Chen, C.-Y. Xu, Z.-C. Zhang, C. Reinhardt-Imjela and A. Schulte. 2018. Using maximum likelihood to derive various distance-based goodness-of-fit indicators for hydrologic modeling assessment. Stochastic Environmental Research and Risk Assessment. 32: 949-966. DOI: 10.1007/s00477-017-1507-8 .
907. Cheng, Q.-B., X. Chen, J. Wang, Z.-C. Zhang, R.-R. Zhang, Y.-Y. Xie, C. Reinhardt-Imjela and A. Schulte. 2018. The use of river flow discharge and sediment load for multi-objective calibration of SWAT based on the Bayesion inference. Water. 10(11): 1662. DOI: 10.3390/w10111662 .
908. Cheng, Q-B., C. Reinhardt-Imjela, X. Chen, A. Schulte, X. Ji and F-L. Lie. 2016. Improvement and comparison of the rainfall-runoff methods in SWAT at the monsoonal watershed of Baocun, Eastern China. Hydrological Sciences Journal. 61(8): 1460-1476. DOI: 10.1080/02626667.2015.1051485 .
909. Cheng, Y., J. Zhou, J. Liao, D. Mao, W. Chen and Z. Shan. 2020. Coupled modeling using PRZM/RICEWQ and SWAT for the North Tiaoxi Watershed. Environmental Science and Pollution Research. 27(11): 12635-12645. DOI: 10.1007/s11356-019-06418-x .
910. Cherkauer, K.A., L.C. Bowling, K. Byun, I. Chaubey, N. Chin, D.L. Ficklin, A.F. Hamlet, S.J. Kines, C.I. Lee, R. Neupane, G.W. Pignotti, S. Rahman, S. Singh, P.V. Femeena and T.N. Williamson. 2021. Climate change impacts and strategies for adaptation for water resource management in Indiana. Climatic Change. 165(1-2): 21. DOI: 10.1007/s10584-021-02979-4 .
911. Cherry, K.A., M. Shepherd, P.J.A. Withers and S.J. Mooney. 2008. Assessing the effectiveness of actions to mitigate nutrient loss from agriculture: A review of methods. Science of the Total Environment. 406: 1-23. DOI: 10.1016/j.scitotenv.2008.07.015 .
912. Chhetri, S., L. Ruangpan, Y.A. Abebe, A.S. Torres and Z. Vojinovic. 2024. Review of environmental benefits and development of methodology for EUNIS habitat changes from nature-based solutions: Application to Denmark and the Netherlands. Ecological Engineering. 165: 112189. DOI: 10.1016/j.ecolind.2024.112189 .
913. Chhuon, K., E. Herrera and K. Nadaoka. 2016. Application of integrated hydrologic and river basin management modeling for the optimal development of a multi-purpose reservoir project. Water Resources Management. 30(9): 3143-3157. DOI: 10.1007/s11269-016-1336-4 .
914. Chhuon, K., H. Lin, Y. Guo and A. Math. 2020. Impact assessment of land cover change on hydrology and suspended sediment in an upland watershed of Mekong River Basin in Cambodia, using ArcSWAT. International Journal of Advanced Science and Technology. 29(6): 6948-6956. URL: http://sersc.org/journals/index.php/IJAST/article/view/22447.
915. Chiang, L., I. Chaubey, M.W. Gitau and J.G. Arnold. 2010. Differentiating impacts of land use changes from pasture management in a CEAP watershed using the SWAT model. Transactions of the ASABE. 53(5): 1569-1584. DOI: 10.13031/2013.34901 .
916. Chiang, L.-C. and C.-M. Lu. 2024. Improvement of sediment simulation in landslide areas using SWAT model with various landslide triggering factors and multiple thresholds. Catena. 240: 107948. DOI: 10.1016/j.catena.2024.107948 .
917. Chiang, L.-C. and Y. Yuan. 2015. The NHDPlus dataset, watershed subdivision and SWAT model performance. Hydrological Sciences Journal. 60(10): 1690-1708. DOI: 10.1080/02626667.2014.916408 .
918. Chiang, L.-C., C.-J. Liao, C.-M. Lu and Y.-C. Wang. 2021. Applicability of modified SWAT model (SWAT‑Twn) on simulation of watershed sediment yields under different land use/cover scenarios in Taiwan. Environmental Monitoring and Assessment. 193(8): 520. DOI: 10.1007/s10661-021-09283-9 .
919. Chiang, L.-C., I. Chaubey , C. Maringanti and T. Huang. 2014. Comparing the selection and placement of best management practices in improving water quality using the multiobjective optimization and targeting method. International Journal of Environmental Research and Public Health. 11(3): 2992-3014. DOI: 10.3390/ijerph110302992 .
920. Chiang, L.-C., I. Chaubey , N.-M. Hong, Y. Lin and T. Huang. 2012. Implementation of BMP strategies for adaptation to climate change and land use change in a pasture-dominated watershed. International Journal of Environmental Research and Public Health. 9(10): 3654-3684. DOI: 10.3390/ijerph9103654 .
921. Chiang, L.-C., Y. Yuan, M. Mehaffey, M. Jackson and I. Chaubey. 2014. Assessing SWAT's performance in the Kaskaskia River watershed as influenced by the number of calibration stations used. Hydrological Processes. 28(3): 676–687. DOI: 10.1002/hyp.9589 .
922. Chiang, L.-C., Y.-T. Chuang and C.-C. Han. 2019. Integrating landscape metrics and hydrologic modeling to assess the impact of natural disturbances on ecohydrological processes in the Chenyulan Watershed, Taiwan. International Journal of Environmental Research and Public Health. 16(2): 266. DOI: 10.3390/ijerph16020266 .
923. Chien, H., P.J.-F. Yeh and J.H. Knouft. 2013. Modeling the potential impacts of climate change on streamflow in agricultural watersheds of the Midwestern United States. Journal of Hydrology. 491: 73–88. DOI: 10.1016/j.jhydrol.2013.03.026 .
924. Chilkoti, V., T. Bolisetti and R. Balachandar. 2018. Multi-objective autocalibration of SWAT model for improved low flow performance for a small snowfed catchment. Hydrological Sciences Journal. 63(10): 1482-1501. DOI: 10.1080/02626667.2018.1505047 .
925. Chilkoti, V., T. Bolisetti and R. Balachandar. 2020. Investigating the role of hydrological model parameter uncertainties in future streamflow projections. Journal of Hydrologic Engineering. 25(10): 05020035. DOI: 10.1061/(ASCE)HE.1943-5584.0001994 .
926. Chim, K., J. Tunnicliffe, A. Shamseldin and S. Sarun. 2021. Sustainable water management in the Angkor Temple Complex, Cambodia. SN Applied Sciences. 3: 74. DOI: 10.1007/s42452-020-04030-0 .
927. Chim, K., J. Tunnicliffe, A.Y. Shamseldin and H. Bun. 2021. Assessment of land use and climate change effects on hydrology in the Upper Siem Reap River and Angkor Temple Complex, Cambodia. Environmental Development. 39: 100615. DOI: 10.1016/j.envdev.2021.100615 .
928. Chimdessa, K., S. Quraishi, A. Kebede and T. Alamirew. 2019. Effect of land use land cover and climate change on river flow and soil loss in Didessa River Basin, South West Blue Nile, Ethiopia. Hydrology. 6(1): 2. DOI: 10.3390/hydrology6010002 .
929. Chin, D.A. 2011. Quantifying pathogen sources in streams by hydrograph separation. Journal of Environmental Engineering. 137(9): 770-781. DOI: 10.1061/(ASCE)EE.1943-7870.0000394 .
930. Chin, D.A., D. Sakura‐Lemessy, D.D. Bosch and P.A. Gay. 2009. Watershed-scale fate and transport of bacteria. Transactions of the ASABE. 52(1): 145-154. DOI: 10.13031/2013.25955 .
931. Chin, D.A., S.H. Fan and Y.C. Li. 2011. Validation of growth and nutrient uptake models for tomato on a gravelly South Florida soil under greenhouse conditions. Pedosphere. 21(1): 46-55. DOI: 10.1016/S1002-0160(10)60078-1 .
932. Chinnasamy, P. and A. Sood. 2020. Estimation of sediment load for Himalayan Rivers: Case study of Kaligandaki in Nepal. Journal of Earth System Science. 129(1): 181. DOI: 10.1007/s12040-020-01437-6 .
933. Chinnasamy, P., L. Muthuwatta, N. Eriyagama, P. Pavelic and S. Lagudu. 2018. Modeling the potential for floodwater recharge to offset groundwater depletion: A case study from the Ramganga Basin, India. Sustainable Water Resources Management. 4(2): 331-344. DOI: 10.1007/s40899-017-0168-6 .
934. Chiogna, G., G. Marcolini, W. Liu, T.P. Ciria and Y. Tuo. 2018. Coupling hydrological modeling and support vector regression to model hydropeaking in alpine catchments. Science of the Total Environment. 633: 220-229. DOI: 10.1016/j.scitotenv.2018.03.162 .
935. Chiphang, N., A. Bandyopadhyay and B. Aditi. 2020. Assessing the effects of snowmelt dynamics on streamflow and water balance components in an eastern Himalayan river basin using SWAT model. Environmental Modeling & Assessment. 25(4): 861 - 863. DOI: 10.1007/s10666-020-09716-8 .
936. Chirachawala, C., S. Shrestha, M.S. Babel, S.G.P. Virdis and S. Wichakul. 2020. Evaluation of global land use/land cover products for hydrologic simulation in the Upper Yom River Basin, Thailand. Science of the Total Environment. 708: 135148. DOI: 10.1016/j.scitotenv.2019.135148 .
937. Chiu, M.-C., L. Hunt and V.H. Resh. 2016. Response of macroinvertebrate communities to temporal dynamics of pesticide mixtures: A case study from the Sacramento River watershed, California. Environmental Pollution. 214: 89-98. DOI: 10.1016/j.envpol.2016.09.048 .
938. Chiu, M.-C., L. Hunt and V.H. Resh. 2017. Climate-change influences on the response of macroinvertebrate communities to pesticide contamination in the Sacramento River, California watershed. Science of the Total Environment. 581–582: 741–749. DOI: 10.1016/j.scitotenv.2017.01.002 .
939. Chiu, Y. and M. Wu. 2014. Assessing county-level water footprints of different cellulosic-biofuel feedstock pathways. Environmental Science & Technology. 46: 9155-9162. DOI: 10.1021/es3002162 .
940. Cho, H. and F. Olivera. 2014. Application of multimodal optimization for uncertainty estimation of computationally expensive hydrologic models. Journal of Water Resources Planning and Management. 140(3): 313–321. DOI: 10.1061/(ASCE)WR.1943-5452.0000330 .
941. Cho, J., C. Oh, J. Choi and Y. Cho. 2016. Climate change impacts on agricultural non-point source pollution with consideration of uncertainity in CMIP5. Irrigation and Drainage. 65(S2): 209–220. DOI: 10.1002/ird.2036 .
942. Cho, J., C.G. Kim, S. Hwang, J. Shin and J. Park. 2019. Hydrologic evaluation of grid-based global climate data for use in ungauged watershed. Journal of Climate Change Research. 10(1): 23-34. URL: https://ekscc.re.kr/_common/do.php?a=full&b=42&bidx=1509&aidx=19216.
943. Cho, J., D. Bosch, G. Vellidis, R. Lowrance and T. Strickland. 2013. Multi-site evaluation of hydrology component of SWAT in the coastal plain of southwest Georgia. Hydrological Processes. 27(12): 1-25. DOI: 10.1002/hyp.9341 .
944. Cho, J., D. Bosch, R. Lowrance, T. Strickland and G. Vellidis. 2009. Effect of spatial distribution of rainfall on temporal and spatial uncertainty of SWAT output. Transactions of the ASABE. 52(5): 1545-1555. URL: http://ddr.nal.usda.gov/handle/10113/37985.
945. Cho, J., G.Vellidis, D.D. Bosch, R. Lowrance and T. Strickland. 2010. Water quality effects of simulated conservation practice scenarios in the Little River Experimental watershed. Journal of Soil and Water Conservation. 65(6): 463-473. DOI: 10.2489/jswc.65.6.463 .
946. Cho, J., R.R. Lowrance, D.D. Bosch, T.C. Strickalnd, Y. Her and G. Vellidis. 2010. Effect of watershed subdivision and filter width on SWAT simulation of a coastal plain watershed. Journal of the American Water Resources Association. 46(3): 586-602. DOI: 10.1111/j.1752-1688.2010.00436.x .
947. Cho, J., S. Hwang, G. Go, K.-Y. Kim and J. Kim. 2015. Assessing the climate change impacts on agricultural reservoirs using the SWAT model and CMIP5 GCMs. Journal of the Korean Society of Agricultural Engineers. 57(5): 1-12. DOI: 10.5389/KSAE.2015.57.5.001 .
948. Cho, J., W. Jung, C.G. Kim, T.G. Kim. 2016. One-month lead dam inflow forecast using climate indices based on tele-connection. Journal of Korea Water Resources Association. 49(5): 361-372. DOI: 10.3741/JKWRA.2016.49.5.361 .
949. Cho, J., Y. Her and D. Bosch. 2016. Sensitivity of simulated conservation practice effectiveness to representation of field and in-stream processes in the Little River Watershed. Environmental Modeling & Assessment. 159-173: 22(2). DOI: 10.1007/s10666-016-9530-6 .
950. Cho, K.H., Y.A. Pachepsky, D.M. Oliver, R.W. Muirhead, Y. Park, R.S. Quilliam and D. Shelton. 2016. Modeling fate and transport of fecally-derived microorganisms at the watershed scale: State of the science and future opportunities. Water Research. 100: 38–56. DOI: 10.1016/j.watres.2016.04.064 .
951. Cho, K.H., Y.A. Pachepsky, J.H. Kim, J.-W. Kim and M.-H. Park. 2012. The modified SWAT model for predicting fecal coliforms in the Wachusett Reservoir Watershed, USA. Water Research. 46(15): 4750-4760. DOI: 10.1016/j.watres.2012.05.057 .
952. Cho, K.H., Y.A. Pachepsky, M. Kim, J.C. Pyo, M.-H. Park, Y.M. Kim, J.-W. Kim and J.H. Kim. 2016. Modeling seasonal variability of fecal coliform in natural surface waters using the modified SWAT. Journal of Hydrology. 535: 377-385. DOI: 10.1016/j.jhydrol.2016.01.084 .
953. Cho, S.J., P. Wilcock and B. Hobbs. 2018. Topographic filtering simulation model for sediment source apportionment. Geomorphology. 309: 1-19. DOI: 10.1016/j.geomorph.2018.02.014 .
954. Cho, S.M. and L.M. Lee. 2001. Sensitivity considerations when modeling hydrologic processes with digital elevation model. Journal of the American Water Resources Association. 37(4): 931-934. DOI: 10.1111/j.1752-1688.2001.tb05523.x .
955. Choi, D., H. Jun, H.S. Shin, Y.S. Yoon and S. Kim. 2010. The effect of climate change on Byeongseong stream's water quantity and quality. Desalination and Water Treatment. 19: 105-112. DOI: 10.5004/dwt.2010.1902 .
956. Choi, D., M.S. Keem, N.W. Kim and S. Kim. 2009. An analysis of the effect of climate change on Byeongseong Stream's hydrologic and water quality responses using CGCM's future climate information. Journal of the Korean Water Resources Association. 42(11): 921-931. DOI: 10.3741/JKWRA.2009.42.11.921 .
957. Choi, D.S., R.C. Ready and J.S. Shortle. 2020. Valuing water quality benefits from adopting best management practices: A spatial approach. Journal of Environmental Quality. 49: 582-592. DOI: 10.1002/jeq2.20005 .
958. Choi, H., W. Lee, C. Song, J.Y. Lee, S.W. Jeon and J.S. Kim. 2014. Applicability analysis of water provisioning services quantification model of forest ecosystem. Journal of the Korea Society of Environmental Restoration Technology. 17(4): 1-15. DOI: 10.13087/kosert.2014.17.4.1 .
959. Choi, H.S. 2013. Parameter estimation of SWAT model using SWAT-CUP in Seom-River Experimental Watershed. Journal of the Korean Society of Civil Engineers. 33(2): 529-536. DOI: 10.12652/Ksce.2013.33.2.529 .
960. Choi, J.R. H.J. Jo, D.H. La and J.T. Kim. 2019. A study on drought prediction and diffusion of water supply intake source using SWAT model. Journal of the Korean Society of Civil Engineers. 39(6): 743-750. DOI: 10.12652/Ksce.2019.39.6.0743 .
961. Choi, J.-R., B.-S. Kim, D.-H. Kang and I.-M. Chung. 2022. Evaluation of water supply capacity of a small forested basin water supply facilities using SWAT model and flow recession curve. KSCE Journal of Civil Engineering. 26(8): 3665-3675. DOI: 10.1007/s12205-022-1075-4 .
962. Choi, J.R., I.M. Chung and H.J. Jo. 2019. A study on the establishment of water supply and demand monitoring system and drought response plan of small-scale water facilities. The Journal of Engineering Geology. 29(4): 469-481. DOI: 10.9720/kseg.2019.4.469 .
963. Choi, J.-R., I.-M. Chung, S.-J. Jeung, K.-S. Choo, C.-H. Oh and B.-S. Kim. 2021. Development and verification of the available number of water intake days in ungauged local water source using the SWAT model and flow recession curves. Water. 13(11): 1511. DOI: 10.3390/w13111511 .
964. Choi, Y., J. Kim, D.J. Lee, J. Han, G. Lee, M. Park, K. Kim and K.J. Lim. 2019. Analysis of baseflow using future land use and climate change scenario. Journal of the Korean Society of Agricultural Engineers. 61(1): 45-59. DOI: 10.5389/KSAE.2019.61.1.045 .
965. Choi, Y.H., J.C. Ryu, H.S. Hwang, D.H. Kum, Y.S. Park, Y.H. Jung, J.D. Choi and K.J. Lim. 2015. Analysis of pollutant load reduction efficiency with riparian buffer system using the SWAT-REMM. Journal of Korean Society on Water Environment. 31(2): 166-180. DOI: 10.15681/KSWE.2015.31.2.166 .
966. Choo, T., Y. Kim, Y. Kim and G. Yun. 2019. Analysis on dam operation effect and development of an function formula and automated model for estimating suitable site. Journal of Korea Water Resources Association. 52(3): 187-194. DOI: 10.3741/JKWRA.2019.52.3.187 .
967. Chordia, J., U.R. Panikkar, R. Srivastav and R.U. Shaik. 2022. Uncertainties in prediction of streamflows using SWAT model - Role of remote sensing and precipitation sources. Remote Sensing. 14(21): 5385. DOI: 10.3390/rs14215385 .
968. Choto, M. and A. Fetene. 2019. Impacts of land use/land cover change on stream flow and sediment yield of Gojeb Watershed, Omo-Gibe Basin, Ethiopia. Remote Sensing Applications: Society and Environment. 14: 84-99. DOI: 10.1016/j.rsase.2019.01.003 .
969. Chotpantarat, S. and S. Boonkaewwan. 2018. Impacts of land-use changes on watershed discharge and water quality in a large intensive agricultural area in Thailand. Hydrological Sciences Journal. 63(9): 1386-1407. DOI: 10.1080/02626667.2018.1506128 .
970. Choubin, B., K. Solaimani, F. Rezanezhad, M. Habibnejad Roshan, A. Malekian and S. Shamshirband. 2019. Streamflow regionalization using a similarity approach in ungauged basins: Application of the geo-environmental signatures in the Karkheh River Basin, Iran. Catena. 182: 104128. DOI: 10.1016/j.catena.2019.104128 .
971. Choudhary, R. and P. Athira. 2021. Effect of root zone soil moisture on the SWAT model simulation of surface and subsurface hydrological fluxes. Environmental Earth Sciences. 80: 620. DOI: 10.1007/s12665-021-09912-z .
972. Choukri, F., D. Raclot, M. Naimi, M. Chikhaoui, J.P. Nune, F. Huard, C. Hérivaux, M. Sabir and Y. Pepin. 2020. Distinct and combined impacts of climate and land use scenarios on water availability and sediment loads for a water supply reservoir in northern Morocco. International Soil and Water Conservation Research. 8: 141-153. DOI: 10.1016/j.iswcr.2020.03.003 .
973. Choukri, F., M. Chikhaoui, M. Naimi, Y. Pepin and D. Raclot. 2019. Analysis of the hydro-sedimentary functioning of Tleta Watershed of the Western Rif of Morocco using the SWAT model. Revue Marocaine des Sciences Agronomiques et Vétérinaires . 7(2): 304-312. URL: https://www.agrimaroc.org/index.php/Actes_IAVH2/article/view/695#sec-4.
974. Christanto, N., A.N. Kholis, M.A. Setiawan, R. Sharma and D.P. Shrestha. 2024. Impacts of land use on runoff and sediment dynamics in tropical watersheds: A case study in Bogowonto Upper Watershed. Jambura Geoscience Review. 6(2): 96-105. DOI: 10.37905/jgeosrev.v6i2.26055 .
975. Christanto, N., M.A. Setiawan, A. Nurkholis, S. Istiqomah, J. Sartohadi and M.P. Hadi. 2018. Analisis Laju Sedimen DAS Serayu Hulu dengan Menggunakan Model SWAT. Majalah Geograf Indonesia. 32: 50-58. DOI: 10.22146/mgi.32280 .
976. Christiansen, J.H. and M. Altaweel. 2006. Simulation of natural and social process interactions: An example from Bronze Age Mesopotamia. Social Science Computer Review. 24(2): 209-226. DOI: 10.1177/0894439305281500 .
977. Christopher, S.F., J.L. Tanka, U.H. Mahl, H.Yen, J.G. Arnold, M.T. Trentman, S.P. Sowa, M.E. Herbert, J.A. Ross, M.J. White and T.V. Royer. 2017. Modeling nutrient removal using watershed-scale implementation of the two-stage ditch. Ecological Engineering. 108(Part B): 358-369. DOI: 10.1016/j.ecoleng.2017.03.015 .
978. Christopher, S.F., S.H. Schoenholtz and J.E. Nettles. 2015. Water quantity implications of regional-scale switchgrass production in the southeastern U.S. Biomass & Bioenergy. 83: 50-59. DOI: 10.1016/j.biombioe.2015.08.012 .
979. Chu, J., C. Zhang, Y. Wang, H. Zhou and C.A. Shoemaker. 2011. A watershed rainfall data recovery approach with application to distributed hydrological models. Hydrological Processes. 26(13): 1937–1948. DOI: 10.1002/hyp.8242 .
980. Chu, J., Y. Peng, W. Ding and Y. Li. 2015. A heuristic dynamically dimensioned search with sensitivity information (HDDS-S) and application to river basin management. Water. 7(5): 2214-2238. DOI: 10.3390/w7052214 .
981. Chu, T.W. and A. Shirmohammadi. 2004. Evaluation of the SWAT model’s hyrodology component in the piedmont physiographic region of Maryland. Transactions of the ASAE. 47(4): 1057-1073. DOI: 10.13031/2013.16579 .
982. Chu, T.W., A. Shirmohammadi, H. Montas and A. Sadeghi. 2004. Evaluation of the SWAT model’s sediment and nutrient components in the Piedmont Physiographic Region of Maryland. Transactions of the ASAE. 47(5): 1523-1538. URL: https://naldc.nal.usda.gov/download/9719/PDF.
983. Chu, X., Z. Lin, M.T. Nasab, L. Zeng, K. Grimm, M.H. Bazrkar, N. Wang, X. Liu, X. Zhang and H. Zheng. 2019. Macro-scale grid-based and subbasin-based hydrologic modeling: Joint simulation and cross-calibration. Journal of Hydroinformatics. 21(1): 77-91. DOI: 10.2166/hydro.2018.026 .
984. Chueh, Y.-Y., C. Fan and Y.-Z. Huang. 2021. Copper concentration simulation in a river by SWAT-WASP integration and its application to assessing the impacts of climate change and various remediation strategies. Journal of Environmental Management. 279: 111613. DOI: 10.1016/j.jenvman.2020.111613 .
985. Chun, J.A., J. Baik, D. Kim and M. Choi. 2018. A comparative assessment of SWAT-model-based evapotranspiration against regional-scale estimates. Ecological Engineering. 122: 1-9. DOI: 10.1016/j.ecoleng.2018.07.015 .
986. Chun, J.A., J. Baik, D. Kim and M. Choi. 2018. A comparitive assessment of SWAT-model-based evapotranspiration against regional-scale estimates. Ecological Engineering. 122: 1-9. DOI: 10.1016/j.ecoleng.2018.07.015 .
987. Chung, E.-S., P.J. Abdulai, H. Park, Y. Kim, S.R. Ahn and S.J. Kim. 2017. Multi-Criteria assessment of spatial robust water resource vulnerability using the TOPSIS method coupled with objective and subjective weights in the Han River Basin. Sustainability. 9(1): 29. DOI: 10.3390/su9010029 .
988. Chung, I.-M. and J. Lee. 2013. A method of estimating the volume of exploitable groundwater considering minimum desirable streamflow. The Journal of Engineering Geology. 23(4): 375-380. DOI: 10.9720/kseg.2013.4.375 .
989. Chung, I.-M., J. Lee, J.E. Lee and M.S. Kim. 2019. Method of estimating exploitable groundwater amount considering relationship between precipitation and recharge and the variation of 10-year minimum precipitation. Journal of Korea Water Resources Association. 52(6): 421-427. DOI: 10.3741/JKWRA.2019.52.6.421 .
990. Chung, I.-M., J. Lee, N.W. Kim, H. Na, S.W. Chang, Y. Kim and G.-B. Kim. 2015. Estimating exploitable amount of groundwater abstraction using an integrated surface water-groundwater model: Mihocheon watershed, South Korea. Hydrological Sciences Journal. 60(5): 863-872. DOI: 10.1080/02626667.2014.980261 .
991. Chung, I.-M., N. Kim, J. Lee and M. Sophoceous. 2010. Assessing distributed groundwater recharge rate using integrated surface water-groundwater modelling: Application to Mihocheon Watershed, South Korea. Hydrogeology Journal. 18(5): 1253-1264. DOI: 10.1007/s10040-010-0593-1 .
992. Chung, I.-M., N.W. Kim and J. Lee. 2007. Estimation of groundwater recharge by considering runoff process and groundwater level variation in watershed. Journal of Soil and Groundwater Environment. 12(5): 19-32. URL: http://www.koreascience.or.kr/article/JAKO200715651243526.page.
993. Chung, I.-M., N.W. Kim, H. Na, J. Lee, S. Yoo, J. Kim and S. Yang. 2011. Integrated surface-groundwater analysis for the Pyoseon region, Jeju Island in Korea. Applied Engineering in Agriculture. 27(6): 875-886. DOI: 10.13031/2013.40629 .
994. Chung, I.M., Y.J. Kim and N.W. Kim. 2021. Estimating the temporal distribution of groundwater recharge by using the transient water table fluctuation method and watershed hydrologic model. Transactions of the ASABE. 37(1): 95-104. DOI: 10.13031/aea.13376 .
995. Chung-Gil, J., J.-W. Lee, S.-R. Ahn, S.-J. Hwang and S.-J. Kim. 2016. Assessment of ecological streamflow for maintaining good ecological water environment. Journal of the Korean Society of Agricultural Engineers. 58(3): 1-12. DOI: 10.5389/KSAE.2016.58.3.001 .
996. Chunn, D., M. Faramarzi, B. Smerdon and D.S. Alessi. 2019. Application of an integrated SWAT–MODFLOW model to evaluate potential impacts of climate change and water withdrawals on groundwater–surface water interactions in west-central Alberta. Water. 11(1): 110. DOI: 10.3390/w11010110 .
997. Cianfrani, C.M., S Mazeika, P. Sullivan, W. Cully Hession and M.C. Watzin. 2012. A multitaxonomic approach to understanding local versus watershed-scale influences on stream biota in the Lake Champlain Basin, Vermont, USA. River Research and Applications. 28(7): 973-988. DOI: 10.1002/rra.1470 .
998. Cibin, R. and I. Chaubey. 2015. A computationally efficient approach for watershed scale spatial optimization. Environmental Modelling & Software. 66: 1-11. DOI: 10.1016/j.envsoft.2014.12.014 .
999. Cibin, R., I. Chaubey and B. Engel. 2012. Simulated watershed scale impacts of corn stover removal for biofuel on hydrology and water quality. Hydrological Processes. 26(11): 1629–1641. DOI: 10.1002/hyp.8280 .
1000. Cibin, R., I. Chaubey, M. Helmers, K.P. Sudheer, M.J. White and J.G. Arnold. 2018. An improved representation of vegetative filter strips in SWAT. Transactions of the ASABE. 61(3): 1017-1024. DOI: 10.13031/trans.12661 .
1001. Cibin, R., I. Chaubey, R.L. Muenich, K.A. Cherkauer, P.W. Gassman, C.L. Kling and Y. Panagopoulos. 2017. Influence of bioenergy crop production and climate change on ecosystem services. Journal of the American Water Resources Association. 53(6): 1323-1335. DOI: 10.1111/1752-1688.12591 .
1002. Cibin, R., K.P. Sudheer and I. Chaubey. 2010. Sensitivity and identifiability of stream flow generation parameters of the SWAT model. Hydrological Processes. 24(9): 1133-1148. DOI: 10.1002/hyp.7568 .
1003. Cibin, R., P. Athira, K. Sudheer and I. Chaubey. 2014. Application of distributed hydrological models for predictions in ungauged basins: A method to quantify predictive uncertainty. Hydrological Processes. 28(4): 2033–2045. DOI: 10.1002/hyp.9721 .
1004. Cibin, R., Trybula, E., Chaubey, I., Brouder, S. and J.J. Volenec. 2016. Watershed scale impacts of bioenergy crops on hydrology and water quality using improved SWAT model. Global Change Biology Bioenergy. 8(4): 837-848. DOI: 10.1111/gcbb.12307 .
1005. Clark, N., J.-C. Bizimana, Y. Dile, A. Worqlul, J. Osorio, B. Herbst, J.W. Richardson, R. Srinivasan, T.J. Gerik, J. Williams, C.A. Jones and J. Jeong. 2017. Evaluation of new farming technologies in Ethiopia using the Integrated Decision Support System (IDSS). Agricultural Water Management. 180(Part B): 267–279. DOI: 10.1016/j.agwat.2016.07.023 .
1006. Claro, A.M., A. Fonseca, H. Fraga and J.A. Santos. 2024. Future agricultural water availability in Mediterranean countries under climate change: A systematic review. Water. 16(17): 2484. DOI: 10.3390/w16172484 .
1007. Clemow, Y.H., G.E. Manning, R.L. Breton, M.F. Winchell, L. Padilla, S.I. Rodney, J.P. Hanzas, T.L. Estes, K. Budreski, B. N. Toth., K. L. Hill, C.D. Priest, R.S. Teed, L.D. Knopper, D.R.J. Moore, C.T. Stone and P. Whatling. 2019. A refined ecological risk assessment for California red-legged frog, delta smelt and California tiger salamander exposed to malathion in California. Integrated Environmental Assessment and Management. 14(2): 224-239. DOI: 10.1002/ieam.2002 .
1008. Coffey, M.E., S.R. Workman, J.L. Taraba and A.W. Fogle. 2004. Statistical procedures for evaluating daily and monthly hydrologic model predictions. Transactions of the ASAE. 47(1): 59-68. DOI: 10.13031/2013.15870 .
1009. Coffey, R., B. Benham, M.L. Wolfe, S. Dorai-Raj, N. Bhreathnach, V. O'Flaherty, M. Cormican and E. Cummins. 2016. Sensitivity of streamflow and microbial water quality to future climate and land use change in the West of Ireland. Regional Environmental Change. 16(7): 2111–2128. DOI: 10.1007/s10113-015-0912-0 .
1010. Coffey, R., E. Cummins, M. Cormican, V.O. Flaherty and S. Kelly. 2007. Microbial exposure assessment of waterborne pathogens. Human and Ecological Risk Assessment: An International Journal. 13(6): 1313-1351. DOI: 10.1080/10807030701655582 .
1011. Coffey, R., E. Cummins, N. Breathnach, V.O. Glaherty and M. Cormican. 2010. Development of a pathogen transport model for Irish catchments using SWAT. Agricultural Water Management. 97(1): 101-111. DOI: 10.1016/j.agwat.2009.08.017 .
1012. Coffey, R., E. Cummins, V. O' Flaherty and M. Cormican. 2010. Analysis of the soil and water assessment tool (SWAT) to model Cryptosporidium in surface water sources. Biosystems Engineering. 106(3): 303-314. DOI: 10.1016/j.biosystemseng.2010.04.003 .
1013. Coffey, R., E. Cummins, V. O'Flaherty and M. Comican. 2010. Pathogen sources estimation and scenario analysis using the Soil and Water Assessment Tool (SWAT). Human and Ecological Risk Assessment: An International Journal. 16(4): 913-933. DOI: 10.1080/10807039.2010.502051 .
1014. Coffey, R., S. Dorai-Raj, V. O’Flaherty, M. Cormican, and E. Cummins. 2013. Modeling of pathogen indicator organisms in a small-scale agricultural catchment using SWAT. Human and Ecological Risk Assessment: An International Journal. 19(1): 232-233. DOI: 10.1080/10807039.2012.701983 .
1015. Cohen Liechti, T., J.P. Matos, D. Ferras Segura, J.-L. Boillat and A.J. Schleiss. 2014. Hydrological modeling of the Zambezi River Basin taking into account floodplain behavior by a modified reservoir approach. International Journal of River Basin Management. 12(1): 29-41. DOI: 10.1080/15715124.2014.880707 .
1016. Colín-García, G., E. Palacios-Vélez, D.S. Fernández-Reynoso, A. López-Pérez, H. Flores-Magdaleno, R. Ascencio-Hernández and E.I. Canales-Islas. 2023. Hydrological modeling with the SWAT model using different spatial distributions of soil type in the Mixteco River Basin. Terra Latinoamericana. 41: e1566. DOI: 10.28940/terra.v41i0.1566 .
1017. Collender, P.A., O.C. Cooke, L.D. Bryant, T.R. Kjeldsen and J.V. Remais. 2016. Estimating the microbiological risks associated with inland flood events: Bridging theory and models of pathogen transport. Critical Reviews in Environmental Science and Technology. 46(23-24): 1787-1833. DOI: 10.1080/10643389.2016.1269578 .
1018. Collick, A.S., D.R. Fuka, P.J.A. Kleinman, A.R. Buda, J.L. Weld, M.J. White, T.L. Veith, R.B. Bryant, C.H.Bolster and Z.M. Easton. 2015. Predicting phosphorus dynamics in complex terrains using a variable source area hydrology model. Hydrological Processes. 29(4): 588-601. DOI: 10.1002/hyp.10178 .
1019. Collick, A.S., T.L. Veith, D.R. Fuka, P.J.A. Kleinman, A.R. Buda, J.L. Weld, R.B. Bryant, P.A. Vadas, M.J. White, R.D. Harmel and Z.M. Easton. 2016. Improved simulation of edaphic and manure phosphorus loss in SWAT. Journal of Environmental Quality. 45(4): 1215-1225. DOI: 10.2134/jeq2015.03.0135 .
1020. Comin, F.A., R. Sorando, N. Darwiche-Criado, M. Garcia and A. Masip. 2014. A protocol to prioritize wetland restoration and creation for water quality improvement in agricultural watersheds. Ecological Engineering. 66: 10–18. DOI: 10.1016/j.ecoleng.2013.04.059 .
1021. Conan, C., F. Bouraoui, N. Turpin, G. de Marsily and G. Bidoglio. 2003. Modeling flow and nitrate fate at catchment scale in Brittany (France). Journal of Environmental Quality. 32(6): 2026-2032. DOI: 10.2134/jeq2003.2026 .
1022. Conan, C., G. de Marsily, F. Bouraoui and G. Bidoglio. 2003. A long-term hydrological modelling of the Upper Guadiana river basin (Spain). Physics and Chemistry of the Earth. 28(4-5): 193-200. DOI: 10.1016/S1474-7065(03)00025-1 .
1023. Confesor, R.B. Jr. and G.W. Whittaker. 2007. Automatic calibration of hydrologic models with multi-objective evolutionary algorithm and pareto optimization. Journal of the American Water Resources Association. 43(4): 981-989. DOI: 10.1111/j.1752-1688.2007.00080.x .
1024. Cong, W., X. Sun, H. Guo and R. Shan. 2020. Comparison of the SWAT and InVEST models to determine hydrological ecosystem service spatial patterns, priorities and trade-offs in a complex basin. Ecological Indicators. 112: 106089. DOI: 10.1016/j.ecolind.2020.106089 .
1025. Conradt, T., H. Koch, F.F. Hattermann and F. Wechsung. 2012. Precipitation or evapotranspiration? Bayesian analysis of potentail error sources in the simulation of sub-basin discharges in the Czech Elbe River Basin. Regional Environmental Change. 12(3): 649-661. DOI: 10.1007/s10113-012-0280-y .
1026. Conradt, T., H. Koch, F.F. Hattermann and F. Wechsung. 2012. Spatially differentiated management-revised discharge scenarios for an integrated analysis of multi-realisation climate and land use scenarios for the Elbe River Basin. Regional Environmental Change. 12(3): 633-648. DOI: 10.1007/s10113-012-0279-4 .
1027. Conradt, T., M. Kaltofen, M. Hentschel, F.F. Hattermann and F. Wechsung. 2007. Impacts of global change on water-related sectors and society in a trans-boundary central European river basin - Part 2: From eco-hydrology to water demand management. Advances in Geosciences. 11: 93-99. DOI: 10.5194/adgeo-11-93-2007 .
1028. Cools, J., S. Broekx, V. Vandenberghe, H. Sels, E. Meynaerts, P. Vercaemst, P. Seuntjens, S. Van Hulle, H. Wustenberghs, W. Bauwens and M. Huygens. 2011. Coupling a hydrological water quality model and an economic optimization model to set up a cost-effective emission reduction scenario for nitrogen. Environmental Modelling & Software. 26(1): 44-51. DOI: 10.1016/j.envsoft.2010.04.017 .
1029. Copetti, D., F. Salerno, L. Valsecchi, G. Viviano, F. Buzzi, C. Agostinelli, R. Formenti, A. Marieri and G. Tartari. 2017. Restoring lakes through external phosphorus load reduction: The case of Lake Pusiano (Southern Alps). Inland Waters. 7(1): 100-108. DOI: 10.1080/20442041.2017.1294354 .
1030. Coppens, J., A. Özen, Ü.N. Tavşanoğlu, S. Erdoğan, E.E. Levi, C. Yozgatlıgil, E. Jeppesen and M. Beklioğlu. 2016. Impact of alternating wet and dry periods on long-term seasonal phosphorus and nitrogen budgets of two shallow Mediterranean lakes. Science of the Total Environment. 563–564: 456–467. DOI: 10.1016/j.scitotenv.2016.04.028 .
1031. Coppens, J., D. Trolle, E. Jeppesen and M. Beklioğlu. 2020. The impact of climate change on a Mediterranean shallow lake: Insights based on catchment and lake modelling. Regional Environmental Change. 20: 62. DOI: 10.1007/s10113-020-01641-6 .
1032. Cordeiro, M.R.C., G. Lelyk, R. Krobel, G. Legesse, M. Faramarzi, M.B. Masud and T. McAllister. 2018. Deriving a dataset for agriculturally relevant soils from the Soil Landscapes of Canada (SLC) database for use in Soil and Water Assessment Tool (SWAT) simulations. Earth System Science Data. 10: 1673-1686. DOI: 10.5194/essd-10-1673-2018 .
1033. Corona, J., T. Doley, C. Griffiths, M. Massey, C. Moore, S. Muela, B. Rashleigh, W. Wheeler, S.D. Whitlock and J. Hewitt. 2020. An integrated assessment model for valuing water quality changes in the United States. Land Economics. 96(4): 478-492. DOI: 10.3368/wple.96.4.478 .
1034. Corona, J.A.I., T. Lakhankar, S. Pradhanang and R. Khanbilvardi. 2014. Remote sensing and ground-based weather forcing data analysis for streamflow simulation. Hydrology. 1(1): 89-111. DOI: 10.3390/hydrology1010089 .
1035. Corona-López, A.D. Román-Gutiérrez, E.M. Otazo-Sánchez, F.A. Guzman-Ortiz and O.A. Acevedo-Sandoval. 2021. Water–Food Nexus Assessment in agriculture: A systematic review. Water. 13(9): 1202. DOI: 10.3390/ijerph18094983 .
1036. Corral, C., J. Winklmaier and T.S. Narany. 2022. Linear modelling of water potential and supply for decentralized energy-water-food systems - case study St. Rupert Mayer, Zimbabwe. Journal of Sustainable Development of Energy, Water and Environment Systems. 10(4): 1080421. DOI: 10.13044/j.sdewes.d10.0422 .
1037. Correa-González, A., J. Hernández-Bedolla, M.A. Martínez-Cinco, S.T. Sánchez-Quispe and M.A. Hernández-Hernández. 2023. Assessment of nitrate in groundwater from diffuse sources considering spatiotemporal patterns of hydrological systems using a coupled SWAT/MODFLOW/MT3DMS model. Hydrology. 10(11): 209. DOI: 10.3390/hydrology10110209 .
1038. Corti, M., M. Francioni, A. Abbate, M. Papini and L. Longoni. 2024. Analysis and modelling of the September 2022 flooding event in the Misa Basin. Italian Journal of Engineering Geology and Environment. DOI: 10.4408/IJEGE.2024-01.S-08 .
1039. Ćosić-Flajsig, G., B. Karleuša and M. Glavan. 2021. Integrated water quality management model for the rural transboundary river basin - A case study of the Sulta/Solta River. Water. 13(8): 2569. DOI: 10.3390/w13182569 .
1040. Cotter, A.S., I. Chaubey, T.A. Costello, T.S. Soerens and M.A. Nelson. 2003. Water quality model output uncertainty as affected by spatial resolution of input data. Journal of the American Water Resources Association. 39(4): 977-986. DOI: 10.1111/j.1752-1688.2003.tb04420.x .
1041. Cotugno, A., V. Smith, T. Baker and R. Srinivasan. 2021. A framework for calculating peak discharge and flood inundation in ungauged urban watersheds using remotely sensed precipitation data: A case study in Freetown, Sierra Leone. Remote Sensing. 13: 3806. DOI: 10.3390/rs13193806 .
1042. Coupe, R.H. 2010. Use of a watershed model to characterize the fate and transport of fluometuron, a soil-applied cotton herbicide, in surface water. International Journal of Environmental Analytical Chemistry. 87(13-14,15): 883-896. DOI: 10.1080/03067310701627819 .
1043. Cousino, L.K., R.H. Becker and K.A. Zmijewski. 2015. Modeling the effects of climate change on water, sediment, and nutrient yields from the Maumee River watershed. Journal of Hydrology: Regional Studies. 4(Part B): 762–775. DOI: 10.1016/j.ejrh.2015.06.017 .
1044. Creech C.T., R.B. Siqueira, J.P. Selegean and C. Miller. 2015. Anthropogenic impacts to the sediment budget of São Francisco River navigation channel using SWAT. International Journal of Agricultural and Biological Engineering. 8(3): 140-157. DOI: 10.3965/j.ijabe.20150803.1372 .
1045. Cruise, J.F., A.S. Limaye and N. Al-Abed. 1999. Assessment of impacts of climate change on water quality in the Southeastern United States. Journal of the American Water Resources Association. 35(6): 1539-1550. DOI: 10.1111/j.1752-1688.1999.tb04236.x .
1046. Cruz, M A D., S. Nakamura, N. Hanasaki and J. Boulange. 2021. Integrated evaluation of changing water resources in an active ecotourism area: The case of Puerto Princesa City, Palawan, Philippines. Sustainability. 13(9): 4826. DOI: 10.3390/su13094826 .
1047. Cruz-Arévalo, B., F. Gavi-Reyes, M. Martínez-Menez and J. Juárez-Méndez. 2021. Land use and its effect on runoff modeled with SWAT. Tecnología y Ciencias del Agua. 12(2): 157-206. DOI: 10.24850/j-tyca-2021-02-04 .
1048. Cruz-González, A., I. Sánchez-Cohen, M.A. Macías-Corral, M.A. Velásquez-Valle and T.R. Trejo-Calzada. 2021. Hydrologic modeling to measure the impact of climate change in the Yaqui River Basin. Agricultural and Biosystems Engineering. 13(1): 77-94. DOI: 10.5154/r.inagbi.2021.02.040 .
1049. Cuceloglu, C. and I. Ozturk. 2019. Assessing the impact of CFSR and local climate datasets on hydrological modeling performance in the mountainous Black Sea catchment. Water. 11(11): 2277. DOI: 10.3390/w11112277 .
1050. Cuceloglu, G., K.C. Abbaspour and I. Ozturk. 2017. Assessing the water-resources potential of Istanbul by using a Soil and Water Assessment Tool (SWAT) hydrological model. Water. 9(10): 814. DOI: 10.3390/w9100814 .
1051. Cuceoglu, G., D.Z. Seker, A. Tanik and I. Ozturk. 2021. Analyzing effects of two different land use datasets on hydrological simulations by using SWAT model. International Journal of Environment and Geoinformatics . 8(2): 172-185. DOI: 10.30897/ijegeo.828112 .
1052. Cui, B., J. Ma, L. Liu, X. Hao, Z. Song and C. Fang. 2022. Dynamic characteristics of drought conditions during the growth of summer maize. Water Policy. 24(11): 1741. DOI: 10.2166/wp.2022.065 .
1053. Cui, J., Y. Zhao, W. Sun, Y. Chen, B. Wu, B. Xue, H. Chen, Z. Li and Z. Tian. 2021. Evaluating the influence of hydrological condition on the phosphorus loads in an agricultural river basin using the SWAT model. Hydrology Research. 52(5): 1143-1158. DOI: 10.2166/nh.2021.165 .
1054. Cui, Q., M.E. Ammar, M. Iravani, J. Kariyeva and M. Faramarzi. 2021. Regional wetland water storage changes: The influence of future climate on geographically isolated wetlands. Ecological Indicators. 120: 106941. DOI: 10.1016/j.ecolind.2020.106941 .
1055. Culbertson, A.M., J.F. Martin, N. Aloysius and S.A. Ludsin. 2016. Anticipated impacts of climate change on 21st century Maumee River discharge and nutrient loads. Journal of Great Lakes Research. 42(6): 1332-1342. DOI: 10.1016/j.jglr.2016.08.008 .
1056. Cunha, M.C., D. Serpa, J. Marques, J.J. Keizer and N. Abrantes. 2023. On sustainable improvements of agricultural practices in the Bairrada Region (Portugal). Environment, Development, and Sustainability. 25(3): 2735-2757. DOI: 10.1007/s10668-022-02155-3 .
1057. Curk, M., M. Glavan and M. Pintar. 2020. Analysis of nitrate pollution pathways on a vulnerable agricultural plain in Slovenia: Taking the local approach to balance ecosystem services of food and water. Water. 12(3): 707. DOI: 10.3390/w12030707 .
1058. D’Ambrosio, E, F. Gentile, A.M. De Girolamo. 2020. Assessing the sustainability in water use at the basin scale through water footprint indicators. Journal of Cleaner Production. 244: 118847. DOI: 10.1016/j.jclepro.2019.118847 .
1059. D’Ambrosio, E., A.M. De Girolamo, E. Barca, P. Ielpo and M.C. Rulli. 2017. Characterising the hydrological regime of an ungauged temporary river system: A case study. Environmental Science and Pollution Research. 24(16): 13950-13966. DOI: 10.1007/s11356-016-7169-0 .
1060. da Fonseca, C.A.B., N. Al-Ansari, R.M. da Silva, C.A.G. Santos, B. Zerouali, D.B. de Oliveira and A. Elbeltagi. 2022. Investigating relationships between runoff-erosion processes and land use and land cover using remote sensing multiple gridded datasets. ISPRS International Journal of Geo-Information. 11(5): 272. DOI: 10.3390/ijgi11050272 .
1061. da S. Amorim, J., M.R. Viola, R. Junqueira , V.A. de Oliveira and C.R. de Mello. 2020. Evaluation of satellite precipitation products for hydrological modeling in the Brazilian Cerrado Biome. Water. 12(9): 2571. DOI: 10.3390/w12092571 .
1062. da Silva Amorim, J., M.R. Viola, R. Junqueira, C.R. de Mello, N.L. Bento and J.C. Avanzi. 2022. Quantifying the climate change-driven impacts on the hydrology of a data-scarce watershed located in the Brazilian Tropical Savanna. Hydrological Processes. 36(7): e14638. DOI: 10.1002/hyp.14638 .
1063. da Silva Burigato Costa, C.M., I.R. Leite, A.K. Almeida and I.K. de Almeida. 2021. Choosing an appropriate water quality model—a review. Environmental Monitoring and Assessment. 193: 38. DOI: 10.1007/s10661-020-08786-1 .
1064. da Silva, R.M. and I. de Carvalho Medeiros. 2014. Runoff-erosion analysis in GIS environment using the SWAT model. GeoFocus. Revista Internacional de Ciencia y Tecnología de la Información Geográfica. 14: 211-231. URL: http://www.geofocus.org/index.php/geofocus/article/view/308.
1065. da Silva, R.M., C.A.G. Santos, V.C. de L. Silva, I.C. Medeiros, M. Moreira and J. Corte-Real. 2016. Effects of scenarios of land use on runoff and sediment yield for Cobres River Basin, Portugal. Revista Geociências. 35(4): 609-622. URL: https://www.revistageociencias.com.br/geociencias-arquivos/35/volume35_4.html.
1066. da Silva, R.M., Henrique, I.G.N. and J.F. Caze. 2018. Simulation of land use/land cover change and its effects on the runoff-erosion characteristics in the catchment of Caatinga Biome. Revista de Geografia (Recife). 35(1): 158-179. URL: https://periodicos.ufpe.br/revistas/revistageografia/article/view/229325.
1067. da Silva, R.M., J.C. Dantas, J. de Araújo Beltrão and C.A.G. Santos. 2018. Hydrological simulation in a tropical humid basin in the Cerrado Biome using the SWAT model. Hydrology Research. 49(2): nh2018222. DOI: 10.2166/nh.2018.222 .
1068. da Silva, V. de P.R., M.T. Silva and E.P. de Souza. 2016. Influence of land use change on sediment yield: A case study of the sub-middle of the São Francisco River Basin. Engenharia Agricola. 36(6): 1005-1015. DOI: 10.1590/1809-4430-Eng.Agric.v36n6p1005-1015/2016 .
1069. da Silva, V. de P.R., M.T. Silva, V.P. Singh, E.P. de Souza, C.C. Braga, R.M. de Holanda, R.S.R. Almeida, F. de A.S. de Sousa and A.C.R. Braga. 2018. Simulation of stream flow and hydrological response to land-cover changes in a tropical river basin. Catena. 162: 166-176. DOI: 10.1016/j.catena.2017.11.024 .
1070. da Silva, V.V.M., E.A. Miranda, J.L. Junior, V. de P.S. de Oliveira, S.V. Silva , G.G. dos Santos, E.Av. Guimaraes and A.J. da S. Neto. 2023. Hydrological modeling and transport of pollutants in water basins: A systematic review. Revista Cereus. 15(3): 18-33. DOI: 10.18605/2175-7275/cereus.v15n3p18-33 .
1071. da Veiga, D.P.B., M.E.G. Guandique and A.C. Nardocci. 2019. Land use and water quality in watersheds in the State of São Paulo, based on GIS and SWAT data. Ambiente & Água. 14 (5): e2325. DOI: 10.4136/ambi-agua.2325 .
1072. Daba, B.I., T.A. Demissie and F.G. Tufa. 2023. Sediment yield modeling in Awash Melkasa Dam Watershed, Upper Awash River Basin, Ethiopia. Acta Geophysica. 71(5): 2287-2306. DOI: 10.1007/s11600-022-00972-8 .
1073. Daba, M.H. and S. You. 2020. Assessment of climate change impacts on river flow regimes in the upstream of Awash Basin, Ethiopia: Based on IPCC Fifth assessment report (AR5) climate change scenarios. Hydrology. 7(4): 98. DOI: 10.3390/hydrology7040098 .
1074. Dabrowski, J.M. 2014. Applying SWAT to predict ortho-phosphate loads and trophic status in four reservoirs in the Upper Olifants Catchment, South Africa. Hydrology and Earth System Sciences. 18: 2629-2643. DOI: 10.5194/hess-18-2629-2014 .
1075. Dadhich, A.P. and K. Nadaoka. 2012. Analysis of terrestrial discharge from agricultural watersheds and its impact on nearshore and offshore reefs in Fiji. Journal of Coastal Research. 28(5): 1225-1235. DOI: 10.2112/JCOASTRES-D-11-00149.1 .
1076. Daggupati, P., R. Shukla, B. Mekonnen, R. Rudra, A. Biswas, P.K. Goel, S. Prasher and W. Yang. 2018. Hydrological responses to various land use, soil and weather inputs in northern Lake Erie Basin in Canada. Water. 10(2): 222. DOI: 10.3390/w10020222 .
1077. Daggupati, P., A.Y. Sheshukov and K.R. Douglas-Mankin. 2014. Evaluating ephemeral gullies with a process-based topographic index model. Catena. 113: 177-186. DOI: 10.1016/j.catena.2013.10.005 .
1078. Daggupati, P., D. Deb, R. Srinivason, D. Yeganantham, V.M. Mehta and N.J. Rosenberg. 2016. Large-scale fine-resolution hydrological modeling using parameter regionalization in the Missouri River basin. Journal of the American Water Resources Association. 52(3): 648–666. DOI: 10.1111/1752-1688.12413 .
1079. Daggupati, P., H. Yen, M.J. White, R. Srinivasan, J.G. Arnold, C.S. Keitzerd and S.P. Sowa. 2015. Impact of model development, calibration and validation decisions on hydrological simulations in West Lake Erie basin. Hydrological Processes. 29(26): 5307–5320. DOI: 10.1002/hyp.10536 .
1080. Daggupati, P., K.R. Douglas-Mankin, A.Y. Sheshukov, P.L. Barnes and D.L. Devlin. 2011. Field-level targeting using SWAT: Mapping output from HRUs to fields and assessing limitations of GIS imput data. Transactions of the ASABE. 54(2): 501-514. URL: http://www.bae.ksu.edu/watershed/ashesh/publications/Daggupati%20et%20al%20-%202011%20-%20Field-level%20targeting%20using%20SWAT.pdf.
1081. Daggupati, P., N. Pai, S. Ale, K.R. Douglas-Mankin, R.W. Zeckoski, J. Jeong, P.B. Parajuli, D. Saraswat and M.A. Youssef. 2015. A recommended calibration and validation strategy for hydrologic and water quality models. Transactions of the ASABE. 58(6): 1705-1719. DOI: 10.13031/trans.58.10712 .
1082. Daggupati, P., R. Srinivasan, Y.T. Dile and D. Verma. 2017. Reconstructing the historical water regime of the contributing basins to the Hawizeh marsh: Implications of water control structures. Science of the Total Environment. 580: 832-845. DOI: 10.1016/j.scitotenv.2016.12.029 .
1083. Dagnew, A., D. Scavia, Y.-C. Wang, R. Muenich, C. Long and M. Kalcic. 2019. Modeling flow, nutrient, and sediment delivery from a large international watershed using a field-scale SWAT model. Journal of the American Water Resources Association. 55(5): 1288-1305. DOI: 10.1111/1752-1688.12779 .
1084. Dagnew, A., D. Scavia, Y.-C. Wang, R. Muenich and M. Kalcic. 2019. Modeling phosphorus reduction strategies from the international St. Clair-Detroit River system watershed. Journal of Great Lakes Research. 45(4): 742-751. DOI: 10.1016/j.jglr.2019.04.005 .
1085. Dahal, P., M.L. Shrestha, J. Panthi and D. Pradhananga. 2020. Modeling the future impacts of climate change on water availability in the Karnali River Basin of Nepal Himalaya. Environmental Research. 185: 109430. DOI: 10.1016/j.envres.2020.109430 .
1086. Dahal, V., N.M. Shakya and R. Bhattarai. 2016. Estimating the impact of climate change on water availability in Bagmati Basin, Nepal. Environmental Processes. 3: 1-17. DOI: 10.1007/s40710-016-0127-5 .
1087. Dahl, T.A., A.D. Kendall and D.W. Hyndman. 2018. Impacts of projected climate change on sediment yield and dredging costs. Hydrological Processes. 32: 1223-1234. DOI: 10.1002/hyp.11486 .
1088. Dahl, T.A., A.D. Kendall and D.W. Hyndman. 2021. Climate and hydrologic ensembling lead to differing streamflow and sediment yield predictions. Climatic Change. 8(1-2): 165. DOI: 10.1007/s10584-021-03011-5 .
1089. Dai, C. and X.S. Qin. 2019. Assessment of the effectiveness of a multi-site stochastic weather generator on hydrological modelling in the Red Deer River Watershed, Canada. Hydrological Sciences Journal. 64(13): 1616–1628. DOI: 10.1080/02626667.2019.1661416 .
1090. Dai, C., X.S. Qin, Q. Tan and H.C. Guo. 2018. Optimizing best management practices for nutrient pollution control in a lake watershed under uncertainty. Ecological Indicators. 92: 288-300. DOI: 10.1016/j.ecolind.2017.05.016 .
1091. Dai, J., S. Wu, G. Han, J. Weinberg, X. Xie, X. Wu, X. Song, B. Jia, W. Xue and Q. Yang. 2018. Water-energy nexus: A review of methods and tools for macro-assessment. Applied Energy. 210: 393-408. DOI: 10.1016/j.apenergy.2017.08.243 .
1092. Dai, J., Y. Cui, X. Cai, L.C. Brown and Y. Shang. 2016. Influence of water management on the water cycle in a small watershed irrigation system based on a distributed hydrologic model. Agricultural Water Management. 174: 52-60. DOI: 10.1016/j.agwat.2016.02.029 .
1093. Dai, J.-f., J.-z. Chen, G.-a. Lü, L.C. Brown, L. Gan and Q.-x. Xu. 2017. Application of SWAT99.2 to sensitivity analysis of water balance components in unique plots in a hilly region. Water Science and Engineering. 10(3): 209-216. DOI: 10.1016/j.wse.2017.09.002 .
1094. Dai, J.-F., J.-Z. Chen, Y.-L. Cui, Y.-Q. He and J.-G. Ma. 2006. Impact of forest and grass ecosystems on the water budget of the catchments. Physical Geography Research Quarterly. 17(4): 435-443. URL: http://skxjz.nhri.cn/EN/volumn/volumn_1178.shtml.
1095. Dakhlalla, A.O. and P.B. Parajuli. 2016. Evaluation of the best management practices at the watershed scale to attenuate peak streamflow under climate change scenarios. Water Resources Management. 30(3): 963-982. DOI: 10.1007/s11269-015-1202-9 .
1096. Dakhlalla, A.O. and P.B. Parajuli. 2019. Assessing model parameters sensitivity and uncertainty of streamflow, sediment, and nutrient transport using SWAT. Information Processing in Agriculture. 6(1): 61-72. DOI: 10.1016/j.inpa.2018.08.007 .
1097. Dakhlalla, A.O. and P.B. Parajuli. 2020. Sensitivity of fecal coliform bacteria transport to climate change in an agricultural watershed. Journal of Water and Climate Change. 11(4): 1250-1262. DOI: 10.2166/wcc.2019.211 .
1098. Dakhlalla, A.O., P.B. Parajuli, Y. Ouyang and D.W. Schmitz. 2016. Evaluating the impacts of crop rotations on groundwater storage andrecharge in an agricultural watershed. Agricultural Water Management. 163: 332-343. DOI: 10.1016/j.agwat.2015.10.001 .
1099. Dalibard, M., P. Laffaille, J.M. Sánchez-Pérez, S. Sauvage and L. Buisson. 2021. Accounting for flow intermittence in freshwater species distribution modelling. Ecohydrology. 14(8): e2346. DOI: 10.1002/eco.2346 .
1100. Dalilsafaee, S., M.H. Niksokhan and B. Moshtaghi. 2018. Impact of climate change on basin hydrological characteristics and thermal structure of reservoirs. Irrigation and Drainage. 67(2): 306-322. DOI: 10.1002/ird.2195 .
1101. Dallison, R.J.H., A.P. Williams, I.M. Harris and S.D. Patil. 2022. Modelling the impact of future climate change on streamflow and water quality in Wales, UK. Hydrological Sciences Journal. 67(6): 939-962. DOI: 10.1080/02626667.2022.2044045 .
1102. Dallison, R.J.H., S.D. Patil and A.P. Williams. 2021. Impacts of climate change on future water availability for hydropower and public water supply in Wales, UK. Journal of Hydrology: Regional Studies. 36: 100866. DOI: 10.1016/j.ejrh.2021.100866 .
1103. Daloglu, I., J.I. Nassauer, R.L. Riolo and D. Scavia. 2014. Development of a farmer typology of agricultural conservation behavior in the American Corn Belt. Agricultural Systems. 129: 93-102. DOI: 10.1016/j.agsy.2014.05.007 .
1104. Daloglu, I., K.H. Cho and D. Scavia. 2012. Evaluating Causes of Trends in Long-Term Dissolved Reactive Phosphorus Loads to Lake Erie. Environmental Science & Technology. 46(19): 10660–10666. DOI: 10.1021/es302315d .
1105. Daloğlu, M., J.I. Nassauer, R. Riolo and D. Scavia. 2014. An integrated social and ecological modeling framework—impacts of agricultural conservation practices on water quality. Ecology and Society. 19(3): 12. DOI: 10.5751/ES-06597-190312 .
1106. Dalzell, B.J. and D.J. Mulla. 2018. Perennial vegetation impacts on stream discharge and channel sources of sediment in the Minnesota River Basin. Journal of Soil and Water Conservation. 73(2): 120-132. DOI: 10.2489/jswc.73.2.120 .
1107. D'Ambrosio, E., G.F. Ricci, F. Gentile and A.M. De Girolamo. 2020. Using water footprint concepts for water security assessment of a basin under anthropogenic pressures. Science of the Total Environment. 748: 141356. DOI: 10.1016/j.scitotenv.2020.141356 .
1108. Dams, J., J. Nossent, T.B. Senbeta, P. Willems and O. Batelaan. 2015. Multi-model approach to assess the impact of climate change on runoff. Journal of Hydrology. 529 (Part 3): 1601-1616. DOI: 10.1016/j.jhydrol.2015.08.023 .
1109. Dan, D., C. Xi, Z. Haijun, W. Zhiqiang, X. Yingying and W. Na. 2022. Quantitative impacts of climate change and human activities on runoff in the Huolin River Catchment. Journal of Water and Climate Change. 13(11): 3851-3866. DOI: 10.2166/wcc.2022.223 .
1110. Dananto, M., A.O. Aga, P. Yohannes and L. Shura. 2022. Assessing the water-resources potential and soil erosion hotspot areas for sustainable land management in the Gidabo Watershed, Rift Valley Lake Basin of Ethiopia. Sustainability. 14(9): 5262. DOI: 10.3390/su14095262 .
1111. Dandapat A.K. and S.N. Sahoo. 2019. Evaluation of loss models and effect of LU/LC changes on surface runoff in Subarnarekha River Basin. ISH Journal of Hydraulic Engineering. DOI: 10.1080/09715010.2019.1619489 .
1112. Daneshvar, F., A.P. Nejadhashemi, U. Adhikari, B. Elahi, M. Abouali, M.R. Herman, E. Martinez-Martinez, T.J. Calappi and B.G. Rohn. 2017. Evaluating the significance of wetland restoration scenarios on phosphorus removal. Journal of Environmental Management. 192: 104-196. DOI: 10.1016/j.jenvman.2017.01.059 .
1113. Daneshvar, F., A.P. Nejadhashemi, M.R. Herman and M. Abouali. 2017. Response of benthic macroinvertebrate communities to climate change. Ecohydrology & Hydrobiology. 17(1): 63–72. DOI: 10.1016/j.ecohyd.2016.12.002 .
1114. Daneshvar, F., A.P. Nejadhashemi, Z. Zhang and M.R. Herman. 2018. Assessing the relative importance of parameter estimation in stream health based environmental justice modeling. Journal of Hydrology. 563: 211-222. DOI: 10.1016/j.jhydrol.2018.06.004 .
1115. Daneshvar, F., J.R. Frankenberger, K.E. Mazer, L.C. Bowling and E.F. Bocardo Delgado. 2019. Increasing access to hydrologic modelling through a two-phase course. Global Journal of Engineering Education. 21(2): 121-127. URL: http://www.wiete.com.au/journals/GJEE/Publish/TOCVol21No2.html.
1116. Daneshvar, F., J.R. Frankenberger, L.C. Bowling, K.A. Cherkauer and A.G. de Lima Moraes. 2021. Development of strategy for SWAT hydrologic modeling in data-scarce regions of Peru. Journal of Hydrologic Engineering. 26(7): 05021016. DOI: 10.1061/(ASCE)HE.1943-5584.0002086 .
1117. Daniel, H. 2023. Modeling surface water potential using the SWAT model combined with principal component analysis in the ungauged Gelana Watershed, Ethiopia. Journal of Water and Climate Change. DOI: 10.2166/wcc.2023.548 .
1118. Daniel, H. and B. Abate. 2022. Effect of climate change on streamflow in the Gelana Watershed, Rift Valley Basin, Ethiopia. Journal of Water and Climate Change. 13(5): 2205-2232. DOI: 10.2166/wcc.2022.059 .
1119. Dantas, J.C., M.A. da Silva, R.M. da Silva and P.C.G. Vianna. 2015. Simulação vazão-erosão usando o modelo SWAT para uma grande bacia da região semiárida da Paraíba. Revista Geociências. 34(4): 816- 827. URL: https://www.revistageociencias.com.br/geociencias-arquivos/34/volume34_4.html.
1120. Danvi, A., S. Giertz, S.J. Zwart and B. Diekkrüger. 2017. Comparing water quantity and quality in three inland valley watersheds with different levels of agricultural development in central Benin. Agricultural Water Management. 192: 257-270. DOI: 10.1016/j.agwat.2017.07.017 .
1121. Danvi, A., S. Giertz, S.J. Zwart and B. Diekkrüger. 2018. Rice intensification in a changing environment: Impact of water availability in inland valley landscapes in Benin. Water. 10(1): 74. DOI: 10.3390/w10010074 .
1122. Dao, D.M., J. Lu, X. Chen, S.A. Kantoush, D.V. Binh, P. Phan and N.X. Tung. 2021. Predicting tropical monsoon hydrology using CFSR and CMADS data over the Cau River Basin in Vietnam. Water. 13(9): 1314. DOI: 10.3390/w13091314 .
1123. Daramola, J., E.J. Adepehin, T.M. Ekhwan, L.K. Choy, J. Mokhtar and T.S. Tabiti. 2022. Impacts of land-use change, associated land-use area and runoff on watershed sediment yield: Implications from the Kaduna Watershed. Water. 14(3): 325. DOI: 10.3390/w14030325 .
1124. Daramola, J., T.M. Ekhwan, J. Mokhtar, K.C. Lam and G.A. Adeogun. 2019. Estimating sediment yield at Kaduna Watershed, Nigeria using Soil and Water Assessment Tool (SWAT) model. Heliyon. 5(7): e02106. DOI: 10.1016/j.heliyon.2019.e02106 .
1125. Daramola, J., T.M. Ekhwan, L.K. Choy, J. Mokhtar and J.A. Alakeji. 2022. Impacts of climatic variation on water balance and yield of watershed (insights from the Kaduna Watershed, north central Nigeria). Indonesian Journal of Geography. 54(1): 135-146. DOI: 10.22146/ijg.68138 .
1126. Dargahi, B. and S.G. Setegn. 2011. Combined 3D hydrodynamic and watershed modelling of Lake Tana, Ethiopia. Journal of Hydrology. 398: 44-64. DOI: 10.1016/j.jhydrol.2010.12.009 .
1127. Darji, J. P. Lodha and S. Tyagi. 2022. Assimilative capacity and water quality modeling of rivers: A review. Journal of Water Supply: Research and Technology - AQUA. 71(10): 1127–1147. DOI: 10.2166/aqua.2022.063 .
1128. Darradi, Y., E. Saur, R. Laplana, J.-M. Lescot, V. Kuentz and B.C. Meyer. 2012. Optimizing the enviromental performance of agricultural activities: A case study in La Boulouze watershed. Ecological Indicators. 22: 27–37. DOI: 10.1016/j.ecolind.2011.10.011 .
1129. Darwiche-Criado, N., F.A. Comín, A. Masip, M. García, S.G. Eismann and R. Sorando. 2017. Effects of wetland restoration on nitrate removal in an irrigated agricultural area: The role of in-stream and off-stream wetlands. Ecological Engineering. 103(Part B): 426–435. DOI: 10.1016/j.ecoleng.2016.03.016 .
1130. Das, B., S. Jain, S. Singh and P. Thakur. 2019. Evaluation of multisite performance of SWAT model in the Gomti River Basin, India. Applied Water Science. 9(5): 134. DOI: 10.1007/s13201-019-1013-x .
1131. Das, B., S.K. Jain, P.K. Thakur and S. Singh. 2021. Assessment of climate change impact on the Gomti River basin in India under different RCP scenarios. Arabian Journal of Geosciences. 14(2): 120. DOI: 10.1007/s12517-020-06359-7 .
1132. Das, S. K., A. Ahsan, Md. H.R.B. Khan, M.A. Ur R. Tariq, N. Muttil and A.W.M. Ng. 2022. Impacts of climate alteration on the hydrology of the Yarra River Catchment, Australia using GCMs and SWAT model. Water. 14(3): 445. DOI: 10.3390/w14030445 .
1133. Dasgupta, S., A.K. Gosain, S. Rao, S. Roy and M. Sarraf. 2013. A megacity in a changing climate: The case of Kolkata. Climatic Change. 116: 1-20. DOI: 10.1007/s10584-012-0516-3 .
1134. Dash, P. and M. Punia. 2019. Governance and disaster: Analysis of land use policy with reference to Uttarakhand flood 2013, India. International Journal of Disaster Risk Reduction. 36: 101090. DOI: 10.1016/j.ijdrr.2019.101090 .
1135. Dash, S.S., B. Sahoo and N.S. Raghuwanshi. 2019. A SWAT-Copula based approach for monitoring and assessment of drought propagation in an irrigation command. Ecological Engineering. 127: 417-430. DOI: 10.1016/j.ecoleng.2018.11.021 .
1136. Dash, S.S., B. Sahoo and N.S. Raghuwanshi. 2020. A novel embedded pothole module for Soil and Water Assessment Tool (SWAT) improving streamflow estimation in paddy-dominated catchments. Journal of Hydrology. 588: 125103. DOI: 10.1016/j.jhydrol.2020.125103 .
1137. Dash, S.S., B. Sahoo and N.S. Raghuwanshi. 2021. How reliable are the evapotranspiration estimates by Soil and Water Assessment Tool (SWAT) and Variable Infiltration Capacity (VIC) models for catchment-scale drought assessment and irrigation planning? Journal of Hydrology. 592: 125838. DOI: 10.1016/j.jhydrol.2020.125838 .
1138. Dash, S.S., B. Sahoo and N.S. Raghuwanshi. 2022. An adaptive multi-objective reservoir operation scheme for improved supply-demand management. Journal of Hydrology. 615(Part A): 128718. DOI: 10.1016/j.jhydrol.2022.128718 .
1139. Dash, S.S., B. Sahoo and N.S. Raghuwanshi. 2023. An integrated reservoir operation framework for enhanced water resources planning. Scientific Reports. 13: 21720. DOI: 10.1038/s41598-023-49107-z .
1140. Dash, S.S., B. Sahoo and N.S. Raghuwanshi. 2023. SWAT model calibration approaches in an integrated paddy-dominated catchment-command. Agricultural Water Management. 278: 108138. DOI: 10.1016/j.agwat.2023.108138 .
1141. Dash, S.S., D.R. Sena, U. Mandal, A. Kumar, G. Kumar, P.K. Mishra and M. Rawat. 2021. A hydrological modelling-based approach for vulnerable area identification under changing climate scenarios. Journal of Water and Climate Change. 12(2): 433-452. DOI: 10.2166/wcc.2020.202 .
1142. Datok, P., S. Sauvage, C. Fabre, A. Laraque, S. Ouillon, G.M. N'kaya and J. Sanchez-Perez. 2021. Sediment balance estimation of the ‘Cuvette Centrale’ of the Congo River Basin using the SWAT hydrological model. Water. 13(10): 1388. DOI: 10.3390/w13101388 .
1143. Datta A.R. and T. Bolisetti. 2016. Uncertainty analysis of a spatially-distributed hydrological model with rainfall multipliers. Canadian Journal of Civil Engineering. 43: 1062-1079. DOI: 10.1139/cjce-2015-0413 .
1144. Datta, A.R. and T. Bolisetti. 2013. Application of variance decomposition approach in the uncertainty analysis of a hydrological model. Canadian Journal of Civil Engineering. 40(4): 373-381. DOI: 10.1139/cjce-2012-0337 .
1145. Datta, A.R. and T. Bolisetti. 2015. Second-order autoregressive model based likelihood function for calibration and uncertainty analysis of SWAT model. Journal of Hydrologic Engineering. 20(2). DOI: 10.1061/(ASCE)HE.1943-5584.0000917 .
1146. David, M.B., S.J. Del Grosso, X. Hu, E.P. Marshall, G.F. McIsaac, W.J. Parton, C. Tonitto and M. Youssef. 2008. Modeling denitrification in a tile-drained, corn and soybean agroecosystem of Illinois, USA. Biogeochemistry. 93(1-2): 7-30. DOI: 10.1007/s10533-008-9273-9 .
1147. Dawit, M., B.D. Olika, F.B. Muluneh, O.T. Leta and M.O. Dinka. 2020. Assessment of surface irrigation potential of the Dhidhessa River Basin, Ethiopia. Hydrology. 7(3): 68. DOI: 10.3390/hydrology7030068 .
1148. Day, C.A. and J. Liebman. 2021. Modeling seasonal sediment yields for a medium-scale temperate forest/agricultural watershed. Physical Geography. DOI: 10.1080/02723646.2021.1934957 .
1149. de Amorim, P.B. and P.L.B. Chaffe. 2019. Integrating climate models into hydrological modelling: What’s going on in Brazil? Revista Brasileira de Recursos Hidricos. 24: e31. DOI: 10.1590/2318-0331.241920180176 .
1150. de Andrade Farias, C.W.L., S.M.G.L. Montenegro, A.A. de Assunção Montenegro, J.R. de Sousa Lima, R. Srinivasan and C.A. Jones. 2020. Modeling runoff response to land-use changes using the SWAT model in the Mundaú watershed, Brazil. Journal of Environmental Analysis and Progress. 5(2): 194-206. DOI: 10.24221/jeap.5.2.2020.2828.194-206 .
1151. de Andrade, C.W.L., S.M.G.L. Montenegro, J.R. de S. Lima, A.A. de A. Montenegro and A.G. Magalhães. 2017. Hydrological modeling on data scarcity in the Upper Mundaú Basin, northeast of Brazil. Journal of Environmental Analysis and Progress. 2(3): 227-238. DOI: 10.24221/jeap.2.3.2017.1443.227-238 .
1152. de Andrade, C.W.L., S.M.G.L. Montenegro, J.R. de S. Lima, A.A. de A. Montenegro and A.G. Magalhães. 2017. Hydrological modeling under vegetal cover changes of a watershed in the Brazilian Northeast. Journal of Environmental Analysis and Progress. 2(3): 239-248. DOI: 10.24221/jeap.2.3.2017.1446.239-248 .
1153. de Andrade, C.W.L., S.M.G.L. Montenegro, A.A.A. Montenegro, J.R. de S. Lima, R. Srinivasan and C.A. Jones. 2019. Soil moisture and discharge modeling in a representative watershed in northeastern Brazil using SWAT. Ecohydrology & Hydrobiology. 19(2): 238-251. DOI: 10.1016/j.ecohyd.2018.09.002 .
1154. de Aragão, R., M.A.S. Cruz, J.R.A. de Amorim, L.C. Mendonça, E.E. de Figueiredo and V.S. Srinivasan. 2013. Sensitivity analysis of the parameters of the SWAT model and simulation of the hydrosedimentological processes in a watershed in the northeastern region of Brazil. Revista Brasileira de Ciência do Solo. 37: 1091-1102. URL: http://www.scielo.br/scielo.php?script=sci_abstract&pid=S0100-06832013000400026&lng=en&nrm=iso&tlng=en.
1155. de Brauwere, A., N.K. Ouattara and P. Servais. 2014. Modeling fecal indicator bacteria concentrations in natural surface waters: A review. Critical Reviews in Environmental Science and Technology. 44: 2380-2453. DOI: 10.1080/10643389.2013.829978 .
1156. de Bruin, A., D. de Condappa, M. Mikhail, S.K. Tomer, M. Sekhar and J. Barron. 2012. Simulated water resource impacts and livelihood implications of stakeholder-developed scenarios in the Jaldhaka Basin, India. Water International. 37(4): 492-508. DOI: 10.1080/02508060.2012.708976 .
1157. de Carvalho Neto, J.G., V.S. Srinivasan and I.A.A. Rufino. 2011. Hydrosedimentological simulation, analyzing two dem, of two small sub-basins in the Paraibano Cariri using the SWAT Model. Revista Geográfica Acadêmica. 5(1): 48-58. URL: https://revista.ufrr.br/rga/issue/view/182.
1158. de Carvalho Neto, J.G., V.S. Srinivasan and I.A.A. Rufino. 2011. Study of hypothetical scenarios in the Riacho dos Namorados watershed in Cariri Paraibano using SWAT model. Revista Geográfica Acadêmica. 5(2): 30-40. URL: https://revista.ufrr.br/rga/issue/view/183.
1159. de Freitas, L.D., J.F.L. de Moraes, A.M. da Costa, L.L. Martin, B.M. Silva, J.C. Avanzi and A. Uezu. 2022. How far can nature-based solutions increase water supply resilience to climate change in one of the most important Brazilian watersheds? Earth. 3(3): 748-767. DOI: 10.3390/earth3030042 .
1160. De Girolamo A.M., E. Barca, G. Pappagallo and A. Lo Porto. 2017. Simulating ecologically relevant hydrological indicators in a temporary river system. Agricultural Water Management. 180(Part B): 194–204. DOI: 10.1016/j.agwat.2016.05.034 .
1161. De Girolamo A.M., E. Barca, M. Leone and A. Lo Porto. 2022. Impact of long-term climate change on flow regime in a Mediterranean basin. Journal of Hydrology: Regional Studies. 41: 101061. DOI: 10.1016/j.ejrh.2022.101061 .
1162. De Girolamo, A.M. and A. Lo Porto. 2012. Land use scenario development as a tool for watershed management within the Rio Mannu Basin. Land Use Policy. 29(3): 691-701. DOI: 10.1016/j.landusepol.2011.11.005 .
1163. De Girolamo, A.M. and A. Lo Porto. 2020. Source apportionment of nutrient loads to a Mediterranean river and potential mitigation measures. Water. 12: 577. DOI: 10.3390/w12020577 .
1164. De Girolamo, A.M., A. Drouiche, G.F. Ricci, G. Parete, F. Gentile and T.-H. Debieche. 2022. Characterising flow regimes in a semi-arid region with limited data availability: The Nil Wadi case study (Algeria). Journal of Hydrology: Regional Studies. 41: 101062. DOI: 10.1016/j.ejrh.2022.101062 .
1165. De Girolamo, A.M., A. Lo Porto, G. Pappagallo, O. Tzoraki and F. Gallart. 2014. The hydrological status concept: Application at a temporary river (Candelaro, Italy). River Research and Applications. 31(7): 892-903. DOI: 10.1002/rra.2786 .
1166. De Girolamo, A.M., A. Lo Porto, G. Pappagallo and F. Gallart. 2015. Assessing flow regime alterations in a temporary river – the River Celone case study. Journal of Hydrology and Hydromechanics. 63(3): 263-272. DOI: 10.1515/johh-2015-0027 .
1167. De Girolamo, A.M., A.L. Porto and O. Oueslati. 2010. Modeling nutrient balances in the Rio Mannu Basin and scenario analysis of the impact of fertilizer reduction. Fresenius Environmental Bulletin. 19(9): 1854-1861. URL: http://www.psp-parlar.de/details_artikel.asp?tabelle=FEBArtikel&artikel_id=3240&jahr=2010.
1168. De Girolamo, A.M., F. Bouraoui, A. Buffagni, G. Pappagallo and A. Lo Porto. 2017. Hydrology under climate change in a temporary river system: Potential impact on water balance and flow regime. River Research and Applications. 33(7): 1219–1232. DOI: 10.1002/rra.3165 .
1169. De Girolamo, A.M., F. Gallart, G. Pappagallo, G. Santese and A. Lo Porto. 2015. An eco-hydrological assessment method for temporary rivers. The Celone and Salsola rivers case study (SE, Italy). International Journal of Limnology. 51(1): 1-10. DOI: 10.1051/limn/2014028 .
1170. De Girolamo, A.M., O. Cerdan, T. Grangeon, G.F. Ricci, R. Vandromme, and A. Lo Porto. 2022. Modelling effects of forest fire and post-fire management in a catchment prone to erosion: Impacts on sediment yield. Catena. 212: 106080. DOI: 10.1016/j.catena.2022.106080 .
1171. De Girolamo, A.M., P. Miscioscia, T. Politi and E. Barca. 2019. Improving grey water footprint assessment: Accounting for uncertainty. Ecological Indicators. 22: 822-833. DOI: 10.1016/j.ecolind.2019.03.040 .
1172. de Medeiros, I.C. and R.M. da Silva. 2014. Analise da erosao hidrica na regiao semiarida da paraiba usando o modelo SWAT acoplado a um sig. Revista Geociências. 33(3): 457-471. URL: https://www.periodicos.rc.biblioteca.unesp.br/index.php/geociencias/article/view/9220.
1173. de Medeiros, I.C., J.F.C.B. da Costa Silva, R.M. Silva and C.A.G. Santos. 2018. Run-off-erosion modelling and water balance in the Epitácio Pessoa Dam River Basin, Paraíba State in Brazil. International Journal of Environmental Science and Technology. DOI: 10.1007/s13762-018-1940-3 .
1174. de Medelros, I.C., J.F.C.B. da Costa Silva and C.A.G. Santos. 2019. Run‑off–erosion modelling and water balance in the Epitácio Pessoa Dam River Basin, Paraíba State in Brazil. International Journal of Environmental Science and Technology. 16: 3035-3048. DOI: 10.1007/s13762-018-1940-3 .
1175. de Mello, C.R., L.D. Norton, L.C. Pinto, S. Beskow and N. Curi. 2016. Agricultural watershed modeling: A review for hydrology and soil erosion processes. Ciência e Agrotecnologia. 40(1): 7-25. DOI: 10.1590/S1413-70542016000100001 .
1176. de Mello, K., T.O. Randhir, R.A. Valente and C.V. Vettorazzi. 2017. Riparian restoration for protecting water quality in tropical agricultural watersheds. Ecological Engineering. 108: 519-529. DOI: 10.1016/j.ecoleng.2017.06.049 .
1177. de Melo Martins, M.S., C.A. Valera, M. Zanata, R.M.B. Santos, V.L. Abdala, F.A.L. Pacheco, L.F.S. Fernandes and T.C.T. Pissarra. 2021. Potential impacts of land use changes on water resources in a tropical headwater catchment. Water. 13(22): 3249. DOI: 10.3390/w13223249 .
1178. de Oliveira Serrão, E.A., M.T. Silva, T.R. Ferreira, V.P.R. Silva, F.A.S. Sousa, A.M.M. Lima, L.C.P Ataide and R.T.S. Wanzeler. 2020. Land use change scenarios and their effects on hydropower energy in the Amazon. Science of the Total Environment. 744: 140981. DOI: 10.1016/j.scitotenv.2020.140981 .
1179. de Oliveira Serrão, E.A., M.T. Silva, T.R. Ferreira, L.C.P. de Ataide, R.T. S. Wanzeler, V. de P.R. da Silva, A.M.M. de Lima and F. de A.S. de Sousa. 2021. Large-Scale hydrological modelling of flow and hydropower production, in a Brazilian watershed. Ecohydrology & Hydrobiology. 21(1): 23-35. DOI: 10.1016/j.ecohyd.2020.09.002 .
1180. de Oliveira Serrão, E.A., M.T. Silva, T.R. Ferreira, A.C.F. Xavier, C.A. dos Santos, L.C.P Ataide, P.R.M. Pontes and V.P.R da Silva. 2023. Climate and land use change: Future impacts on hydropower and revenue for the Amazon. Journal of Cleaner Production. 385: 135700. DOI: 10.1016/j.jclepro.2022.135700 .
1181. de Oliveira, V.A., C.R. de Mello, M.R. Viola and R. Srinivasan. 2017. Assessment of climate change impacts on streamflow and hydropower potential in the headwater region of the Grande River Basin, southeastern Brazil. International Journal of Climatology. 37(15): 5005-5023. DOI: 10.1002/joc.5138 .
1182. de Oliveira, V.A., C.R. de Mello, M.B. Viola and R. Srinivasan. 2018. Land-use change impacts on the hydrology of the Upper Grande River Basin, Brazil. CERNE. 24(4): 334-343. DOI: 10.1590/01047760201824042573 .
1183. de Oliveira, V.A., C.R. de Mello, S. Beskow, M.R. Viola and R. Srinivasan. 2019. Modeling the effects of climate change on hydrology and sediment load in a headwater basin in the Brazilian Cerrado Biome. Ecological Engineering. 133: 20-31. DOI: 10.1016/j.ecoleng.2019.04.021 .
1184. de Silva, R.M., C.A.G. Santos, V.C. de Lima Silva and L.P. e Silva. 2013. Erosivity, surface runoff, and soil erosion estimation using GIS-coupled runoff–erosion model in the Mamuaba catchment, Brazil. Environmental Monitoring and Assessment. 185(11): 8977–8990. DOI: 10.1007/s10661-013-3228-x .
1185. de Sousa Oliveira, A.E., R.R. Gracelli, A.A. e Silva, V.J. dos Santos, J. de Siqueira Castro and M.L. Calijuri. 2022. Projection of land use to 2030 and its impacts on water availability in a brazilian sub-basin: A LCM and SWAT approach. Geofísica Internacional. 61(1): 66-87. DOI: 10.22201/igeof.00167169p.2022.61.1.2189 .
1186. de Sousa, A.M.L., M.I. Vitorino N.M.d.R. Castro, M.d.N. Botelho and P.J.O.P. de Souza. 2015. Evapotranspiration from remote sensing to improve the SWAT Model in eastern Amazonia. Floresta e Ambiente. 22(4): 456-464. DOI: 10.1590/2179-8087.083814 .
1187. de Souza Dias, V., M.P. da Luz, G.M. Medero, D.T.F. Nascimento, W.N. de Oliveira and L.R. de Oliveira Merelles. 2018. Historical streamflow series analysis applies to Furnas HPP reservoir watershed using the SWAT model. Water. 10(4): 458. DOI: 10.3390/w10040458 .
1188. de Souza Viana, J.F., S.M.G.L. Montenegro, B.B. da Silva, R.M. da Silva and W. dos Santos Sousa. 2018. Hydrological modeling of the Pirapama River-PE Basin using the SWAT model. Journal of Environmental Analysis and Progress. 3(1): 155-172. DOI: 10.24221/jeap.3.1.2018.1709.155-172 .
1189. de Souza Viana, J.F., S.M.G.L. Montenegro, B.B. da Silva, R.M. da Silva, R. Srinivasan, C.A.G. Santos, D.C. dos Santos Araujo and C.G. Tavares. 2021. Evaluation of gridded meteorological datasets and their potential hydrological application to a humid area with scarce data for Pirapama River Basin, northeastern Brazil. Theoretical and Applied Climatology. 145(1-2): 393-410. DOI: 10.1007/s00704-021-03628-7 .
1190. de Souza, R.M. and I. dos Santos. 2013. Estimated spatial variablility of low flow in the Upper Negro River watershed, south Brazil region, with application of SWAT model. Ra'e Ga - O Espaco Geografico em Analise. 28: 134-153. DOI: 10.5380/raega.v28i0.32304 .
1191. de Vente, J., G. Poesen, G. Verstraeten, G. Govers, M. Vanmaercke, A. Van Rompaey, M. Arabkhedri and C. Boix-Fayos. 2013. Predicting soil erosion and sediment yield at regional scales: Where do we stand? Earth Science Reviews. 127: 16–29. DOI: 10.1016/j.earscirev.2013.08.014 .
1192. Deb, D., J. Butcher and R. Srinivasan. 2015. Projected hydrologic changes under mid-21st century climatic conditions in a sub-arctic watershed. Water Resources Management. 29(5): 1467-1487. DOI: 10.1007/s11269-014-0887-5 .
1193. Deb, D., P. Tuppad, P. Daggupati, R. Srinivasan and D. Varma. 2015. Spatio-temporal impacts of biofuel production and climate variability on water quantity and quality in Upper Mississippi River Basin. Water. 7(4): 3283-3305. DOI: 10.3390/w7073283 .
1194. Deb, P. and Anthony S. Kiem. 2020. Evaluation of rainfall–runoff model performance under non-stationary hydroclimatic conditions. Hydrological Sciences Journal. 65(10): 1667-1684. DOI: 10.1080/02626667.2020.1754420 .
1195. Deb, P., A.S. Kiema and G. Willgoose. 2019. A linked surface water-groundwater modelling approach to more realistically simulate rainfall-runoff non-stationarity in semi-arid regions. Journal of Hydrology. 575: 273-291. DOI: 10.1016/j.jhydrol.2019.05.039 .
1196. Debela, S.K. and F.F. Feyessa. 2022. Rainfall-runoff modeling and its prioritization at sub-watershed level using SWAT model: A case of Finca'aa, Oromia, Western Ethiopia. Water Conservation & Management. 6(1): 22-29. DOI: 10.26480/wcm.01.2022.22.29 .
1197. Debele, B., R. Srinivasan, and J.-Y. Parlange. 2008. Coupling upland watershed and downstream waterbody hydrodynamic and water quality models (SWAT and CE-QUAL-W2) for better water resources management in complex river basins. Environmental Modeling & Assessment. 13(1): 135-153. URL: http://swatmodel.tamu.edu/publications/peer-reviewed-publications/.
1198. DeBoe, G., E. Bock, K. Stephenson, and Z. Easton. 2017. Nutrient biofilters in the Virginia Coastal Plain: Nitrogen removal, cost, and potential adoption pathways. Journal of Soil and Water Conservation. 72(2): 139-149. DOI: 10.2489/jswc.72.2.139 .
1199. Dechasa, A., A.O. Aga and T. Dufera. 2022. Erosion risk assessment for prioritization of conservation measures in the watershed of Genale Dawa-3 Hydropower Dam, Ethiopia. Quaternary. 5(4): 39. DOI: 10.3390/quat5040039 .
1200. Dechmi, F. and A. Skhiri. 2013. Evaluation of best management practices under intensive irrigation using SWAT model. Agricultural Water Management. 123: 55-64. DOI: 10.1016/j.agwat.2013.03.016 .
1201. Dechmi, F., A. Skhiri and D. Isidoro. 2021. Modeling environmental impact in a semi-arid intensive irrigated watershed. Agricultural Water Management. 256: 107115. DOI: 10.1016/j.agwat.2021.107115 .
1202. Dechmi, F., J. Burguete and A. Skhiri. 2012. SWAT application in intensive irrigation systems: Model modification, calibration and validation. Journal of Hydrology. 470-471: 1-47. DOI: 10.1016/j.jhydrol.2012.08.055 .
1203. Deelstra, J., S.H. Kvaerno, K. Granlund, A.S. Seleika, K. Gaigalis, K. Kyllmar and N. Vagstad. 2009. Runoff and nutrient losses during winter periods in cold climates - requirements to nutrient simulation models. Journal of Environmental Monitoring. 11(3): 602-609. DOI: 10.1039/b900769p .
1204. Definnas, A.F., R.F. Reyandal, E.R. Syofyan and Wisafri. 2020. Analysis of the effect of change in land use on the Batang Kuranji River Basin using Soil and Water Assessment Tool (SWAT) models. Jurnal Ilmiah Poli Rekayasa. 15(2): 1-12. URL: http://jpr-pnp.com/index.php/jpr/article/view/161.
1205. Dekongmen, B.W., G.K. Anornu, A.T. Kabo-Bah, I. Larbi, E.D. Sunkari, Y.T. Dile, A. Agyare and C. Gyamfi. 2022. Groundwater recharge estimation and potential recharge mapping in the Afram Plains of Ghana using SWAT and remote sensing techniques. Groundwater for Sustainable Development. 17: 100741. DOI: 10.1016/j.gsd.2022.100741 .
1206. Delaney, J.T., K.L. Bouska, J.D. Eash, P.J. Heglund and A.J. Allstadt. 2021. Mapping climate change vulnerability of aquatic-riparian ecosystems using decision-relevant indicators. Ecological Indicators. 125: 107581. DOI: 10.1016/j.ecolind.2021.107581 .
1207. Delavar, M., L. Raeisi, M.R. Eini, S. Morid, H. Mohammadi and H. Abbasi. 2024. Assessing the effectiveness of water-saving plans at the farm and basin level using agrohydrological modeling and water-accounting approaches. Journal of Irrigation and Drainage Engineering. 150(4): 04024009. DOI: 10.1061/JIDEDH.IRENG-10110 .
1208. Delavar, M., M.R. Eini, V.S. Kuchak, M.R. Zaghiyan, A. Shahbaz, F. Nourmohammadi and A. Motamedi. 2022. Model-based water accounting for integrated assessment of water resources systems at the basin scale. Science of the Total Environment. 830: 154810. DOI: 10.1016/j.scitotenv.2022.154810 .
1209. Delavar, M., S. Morid and N. Nikbakht. 2013. Distributed snowmelt simulation in ungauged mountainous chatchments, case study: Imamzadeh Davoud Catchment. Iran-Water Resources Research. 7(4). URL: http://www.iranwra.com/index.php?option=com_content&view=article&id=56&Itemid=80&lang=en.
1210. Delia, K.A., C.R. Haney, J.L. Dyer and V.G. Paul. 2021. Spatial analysis of a Chesapeake Bay Sub-Watershed: How land use and precipitation patterns impact water quality in the James River. Water. 13(11): 1592. DOI: 10.3390/w13111592 .
1211. Deliberty, T.L. and D.R. Legates. 2003. Interannual and seasonal variability of modelled soil moisture in Oklahoma. International Journal of Climatology. 23(9): 1057-1086. DOI: 10.1002/joc.904 .
1212. Delkash, M., F.A.M. Al-Faraj and M. Scholz. 2014. Comparing the export coefficient approach with the Soil and Water Assessment Tool to predict phosphorous pollution: The Kan Watershed case study. Water, Air, and Soil Pollution. 225:2122: 1-17. DOI: 10.1007/s11270-014-2122-7 .
1213. Demetropoulou, L., M.A. Lilli, I. Petousi, T. Nikolaou, M. Fountoulakis, M. Kritsotakis, S. Panakoulia, G.V. Giannakis, T. Manios and N.P. Nikolaidis. 2019. Innovative methodology for the prioritization of the program of the measures for integrated water resources management of the Region of Crete, Greece. Science of the Total Environment. 672: 61-70. DOI: 10.1016/j.scitotenv.2019.03.397 .
1214. Demirel, M.C., A. Venancio and E. Kahya. 2009. Flow forecast by SWAT model and ANN in Pracana Basin, Portugal. Advances in Engineering Software. 40(7): 467-473. DOI: 10.1016/j.advengsoft.2008.08.002 .
1215. Demissie, T.A. 2022. Land use and land cover change dynamics and its impact on watershed hydrological parameters: The case of Awetu Watershed, Ethiopia. Journal of Sedimentary Environments. 7(1): 79-94. DOI: 10.1007/s43217-021-00084-1 .
1216. Demissie, Y., E. Yan and M. Wu. 2012. Assessing regional hydrology and water quality implications of large-scale biofuel feedstock production in the upper Mississippi River basin. Environmental Science & Technology. 46: 9174-9182. DOI: 10.1021/es300769k .
1217. Demissie, Y., E. Yan and M. Wu. 2017. Hydrologic and water quality impacts of biofuel feedstock production in the Ohio River Basin. Global Change Biology Bioenergy. 9(12): 1736–1750. DOI: 10.1111/gcbb.12466 .
1218. Deneufbourg, M., C. Vandenberghe, D. Gaule, P.-Y. Bolly and J.M. Marcoen. 2013. Application of the Sustainable Nitrogen Management Program in two small agricultural watersheds (Arquennes – Belgium) and impact evaluation by monitoring of nitrate fluxes at outlets and by numerical modeling. Biotechnologie, Agronomie, Société et Environnement. 17(51): 164-176. URL: https://popups.uliege.be/1780-4507/index.php?id=9652.
1219. Deng, C., B. Pisani, H. Hernández and Y. Li. 2020. Assessing the impact of climate change on water resources in a semi-arid area in central Mexico using a SWAT model. Boletín de la Sociedad Geológica Mexicana. 72(2): A150819. DOI: 10.18268/BSGM2020v72n2a150819 .
1220. Deng, G., Y. Li, Y. Liu, C. Liu and G. Zhang. 2024. Rice terraces enhanced the hydrological stability of small watershed with LUCC—A case study of Xinhua Basin. Water. 16(5): 712. DOI: 10.3390/w16050712 .
1221. Deng, L., J. Yin, J. Tian, Q. Li and S. Guo. 2021. Comprehensive evaluation of water resources carrying capacity in the Han River Basin. Water. 13(3): 249. DOI: 10.3390/w13030249 .
1222. Deng, P., M. Zhang, J. Bing, J. Jia and D. Zhang. 2019. Evaluation of the GSMaP_Gauge products using rain gauge observations and SWAT model in the Upper Hanjiang River Basin. Atmospheric Research. 219: 153-165. DOI: 10.1016/j.atmosres.2018.12.032 .
1223. Deng, X., Q. Shi, Q. Zhang, C. Shi and F. Yin. 2015. Impacts of land use and land cover changes on surface energy and water balance in the Heihe River Basin of China, 2000-2010. Physics and Chemistry of the Earth. 79–82: 2–10. DOI: 10.1016/j.pce.2015.01.002 .
1224. Deng, Z., X. Zhang, D. Li and G. Pan. 2015. Simulation of land use/land cover change and its effects on the hydrological characteristics of the upper reaches of the Hanjiang Basin. Environmental Earth Sciences. 73(3): 1119-1132. DOI: 10.1007/s12665-014-3465-5 .
1225. Dennedy-Frank P.J. and S.M. Gorelick. 2019. Insights from watershed simulations around the world: Watershed service-based restoration does not significantly enhance streamflow. Global Environmental Change. 50: 101938. DOI: 10.1016/j.gloenvcha.2019.101938 .
1226. Dennedy-Frank, P.J., R.L. Muenich, I. Chaubey and G. Ziv. 2016. Comparing two tools for ecosystem service assessments regarding water resources decisions. Journal of Environmental Management. 177: 331-340. DOI: 10.1016/j.jenvman.2016.03.012 .
1227. Deo, A., S. Karmakar and A. Arora. 2022. Rainwater harvesting and water balance simulation-optimization scheme to plan sustainable second crop in small rain-fed systems. Journal of Environmental Management. 323: 116135. DOI: 10.1016/j.jenvman.2022.116135 .
1228. Deraedt, D., G. Colinet, H. Claessens and A. Degre. 2014. Forest cover representation in hydrological modeling: a comparison of ten models. A review. Biotechnologie, Agronomie, Société et Environnement. 18(1). URL: https://popups.uliege.be/1780-4507/index.php?id=10817.
1229. Desai, S., D.K. Singh, A. Islam and A. Sarangi. 2021. Impact of climate change on the hydrology of a semi-arid river basin of India under hypothetical and projected climate change scenarios. Journal of Water and Climate Change. 12(3): 969-996. DOI: 10.2166/wcc.2020.287 .
1230. Desai, S., D.K. Singh, A. Islam and A. Sarangi. 2021. Multi-site calibration of hydrological model and assessment of water balance in a semi-arid river basin of India. Quaternary International. 571: 136-149. DOI: 10.1016/j.quaint.2020.11.032 .
1231. Deslandes, J., I. Beaudin., A.R. Michaud, F. Bonn and C.A. Madramootoo. 2007. Influence of landscape and cropping system on phosphorus mobility within the Pike River Watershed of southwestern Quebec: Model parameterization and validation. Canadian Water Resources Journal. 32(1): 21-42. DOI: 10.4296/cwrj3201021 .
1232. Dessie, M., N.E.C. Verhoest, V.R.N. Pauwels, T. Admasu, J. Poesen, E. Adgo, J. Deckers and J. Nyssen. 2014. Analyzing runoff processes through conceptual hydrological modeling in the Upper Blue Nile Basin, Ethiopia. Hydrology and Earth System Sciences. 18: 5149-5167. DOI: 10.5194/hess-18-5149-2014 .
1233. Dessu, S.B, A.M. Melesse, M.G. Bhat and M.E. McClain. 2014. Assessment of water resources availability and demand in the Mara River Basin. Catena. 115: 104-114. DOI: 10.1016/j.catena.2013.11.017 .
1234. Dessu, S.B. and A.M. Melesse. 2012. Modelling the rainfall-runoff process of the Mara River basin using the Soil and Water Assessment Tool. Hydrological Processes. 26(26): 1-12. DOI: 10.1002/hyp.9205 .
1235. Dessu, S.B. and A.M. Melesse. 2013. Impact and uncertainties of climate change on the hydrology of the Mara River basin, Kenya/Tanzania. Hydrological Processes. 27(20): 2973–2986. DOI: 10.1002/hyp.9434 .
1236. Desta, H. and B. Lemma. 2017. SWAT based hydrological assessment and characterization of Lake Ziway sub-watersheds, Ethiopia. Journal of Hydrology: Regional Studies. 13: 123-127. DOI: 10.1016/j.ejrh.2017.08.002 .
1237. Desta, H., B. Lemma and E. Gebremariam. 2017. Identifying sustainability challenges on land and water uses: The case of Lake Ziway watershed, Ethiopia. Applied Geography. 88: 130-143. DOI: 10.1016/j.apgeog.2017.09.005 .
1238. Destouni, G. and C. Prieto. 2003. On the possibility for generic modeling of submarine groundwater discharge. Biogeochemistry. 66: 171-186. DOI: 10.1023/B:BIOG.0000006101.12076.10 .
1239. Deval, C., E.S. Brooks, M. Dobre, R. Lew, P.R. Robichaud, A. Fowler, J. Boll, Z.M. Easton and A.S. Collick. 2022. Pi-VAT: A web-based visualization tool for decision support using spatially complex water quality model outputs. Journal of Hydrology. 607: 127529. DOI: 10.1016/j.jhydrol.2022.127529 .
1240. Devkota, L.P. and D.R. Gyawali. 2015. Impacts of climate change on hydrological regime and waterresources management of the Koshi River Basin, Nepal. Journal of Hydrology: Regional Studies. 4: 502-515. DOI: 10.1016/j.ejrh.2015.06.023 .
1241. Dey, A. and R. Remesan. 2022. Multimodel quantification of green and blue water components and its error propagations through parameter transferability approach across input choices. Journal of Hydrology. 607: 127579. DOI: 10.1016/j.jhydrol.2022.127579 .
1242. Dhami, B., S.K. Himanshu, A. Pandey and A.K. Gautam. 2018. Evaluation of the SWAT model for water balance study of a mountainous snowfed river basin of Nepal. Environmental Earth Sciences. 77: 21. DOI: 10.1007/s12665-017-7210-8 .
1243. Dhami, B.S. and A. Pandey. 2013. Comparative review of recently developed hydrologic models. Journal of Indian Water Resources Society. 33(3): 34-42. URL: https://www.researchgate.net/publication/331372417_COMPARATIVE_REVIEW_OF_RECENTLY_DEVELOPED_HYDROLOGICAL_MODELS/link/5c760e96299bf1268d284b41/download.
1244. Dhanesh, Y., V.M. Bindhu, J. Senent-Aparicio, T.M. Brighenti, E. Ayana, P.S. Smith, C. Fei and R. Srinivasan. 2020. A comparative evaluation of the performance of CHIRPS and CFSR data for different climate zones using the SWAT model. Remote Sensing. 12(18): 3088. DOI: 10.3390/rs12183088 .
1245. Dhar, A., S. Sahoo and M. Sahoo. 2015. Identification of groundwater potential zones considering water quality aspect. Environmental Earth Sciences. 74(7): 5663-5675. DOI: 10.1007/s12665-015-4580-7 .
1246. Dhar, S. and A. Mazumdar. 2009. Hydrological modelling of the Kangsabati river under changed climate scenario: case study in India. Hydrological Processes. 23(16): 2394-2406. DOI: 10.1002/hyp.7351 .
1247. Dhiraj, K., M.P. Tripathi, S. Patel and K. Love. 2021. Distributed parameter modelling for sediment yield estimation from Hamp watershed in Upper Mahanadi Basin. Journal of Soil and Water Conservation (India). 20(1): 22-34. DOI: 10.5958/2455-7145.2021.00005.9 .
1248. Dhoke, M.E., A. Kusumandari and dan Senawi. 2018. Erosion level and soil and water conservation engineering plan in Waewoki Sub Watershed, Aesesa Watershed, Ngada Regency, East Nusa Tenggara Province. Jurnal Manusia dan Lingkungan. 25(1): 7-17. DOI: 10.22146/jml.23045 .
1249. Dhungel, H., S. Sharma, R. Bhatt and K. Dhakal. 2020. Monitoring ungauged watersheds for investigating the variability of flow and salinity to implement the possible removal of salt fill sites. Environmental Monitoring and Assessment. 192(12): 762. DOI: 10.1007/s10661-020-08714-3 .
1250. Di Luzio, M. and J.G. Arnold. 2004. Formulation of a hybrid calibration approach for a physically based distributed model with NEXRAD data input. Journal of Hydrology. 298(1-4): 136-154. DOI: 10.1016/j.jhydrol.2004.03.034 .
1251. Di Luzio, M., G.L. Johnson, C. Daly, J.K. Eischeid and J.G. Arnold. 2008. Constructing retrospective gridded daily precipitation and temperature datasets for the conterminous United States. Journal of Applied Meteorology and Climatology. 47(2): 475-497. DOI: 10.1175/2007JAMC1356.1 .
1252. Di Luzio, M., J.G. Arnold and R. Srinivasan. 2004. Integration of SSURGO maps and soil parameters within a geographic information system and nonpoint source pollution model system. Journal of Soil and Water Conservation. 59(4): 123-133. URL: http://www.jswconline.org/content/59/4/123.short.
1253. Di Luzio, M., J.G. Arnold and R. Srinivasan. 2005. Effect of GIS data quality on small watershed stream flow and sediment simulations. Hydrological Processes. 19(3): 629-650. DOI: 10.1002/hyp.5612 .
1254. Di Luzio, M., M.J. White, J.G. Arnold, J.R. Williams and J.R. Kinary. 2017. Advancement of a soil parameters geodatabase for the modeling assessment of conservation practice outcomes in the United States. International Journal of Geospatial and Environmental Research. 4(1): 2. URL: http://dc.uwm.edu/ijger/vol4/iss1/2.
1255. Di Luzio, M., M.L. Norfleet, J.G. Arnold, J.R. Williams and J.R. Kiniry. 2014. A soil parameters geodatabase for the modeling assessment of agricultural conservation practices effects in the United States. International Journal of Geospatial and Environmental Research. 1(2): 1-23. URL: http://dc.uwm.edu/ijger/vol1/iss2/6/.
1256. Di Luzio, M., R. Srinivasan and J.G. Arnold. 2002. Integration of watershed tools and SWAT model into BASINS. Journal of the American Water Resources Association. 38(4): 1127-1141. DOI: 10.1111/j.1752-1688.2002.tb05551.x .
1257. Di Luzio, M., R. Srinivasan and J.G. Arnold. 2004. A GIS-coupled hydrological model system for the watershed assessment of agricultural nonpoint and point sources of pollution. Transactions in GIS. 8(1): 113-136. DOI: 10.1111/j.1467-9671.2004.00170.x .
1258. Dibaba, W.T. and D.G. Ebsa. 2022. Identifying erosion hot spot areas and evaluation of best management practices in the Toba Watershed, Ethiopia. Water Conservation Science and Engineering. 6(1): 30-38. DOI: 10.26480/wcm.01.2022.30.38 .
1259. Dibaba, W.T., Demissie, T.A. and K. Miegel. 2020. Watershed hydrological response to combined land use/land cover and climate change in Highland Ethiopia: Finchaa Catchment. Water. 12(6): 1801. DOI: 10.3390/w12061801 .
1260. Dibaba, W.T., T.A. Demissie and K. Miegel. 2021. Prioritization of sub-watersheds to sediment yield and evaluation of best management practices in Highland Ethiopia, Finchaa Catchment. Land. 10(6): 650. DOI: 10.3390/land10060650 .
1261. Dibike, Y. A. Muhammad, R.R. Shrestha, C. Spence, B. Bonsal, L. de Rhama, J. Rowley, G. Evenson and T. Stadnyk. 2021. Application of dynamic contributing area for modelling the hydrologic response of the Assiniboine River basin to a changing climate. Journal of Great Lakes Research. 47(3): 663-676. DOI: 10.1016/j.jglr.2020.10.010 .
1262. Didovets, I., A. Lobanova, A. Bronstert, S. Snizhko, C.F. Maule and V. Krysanova. 2017. Assessment of climate change impacts of water resources in three representative Ukrainian catchments using eco-hydrological modelling. Water. 9(3): 204. DOI: 10.3390/w9030204 .
1263. Dierauer, J.R. and C. Zhu. 2020. Drought in the twenty‐first century in a water‐rich region: Modeling study of the Wabash River Watershed, USA. Water. 12(1): 181. DOI: 10.3390/w12010181 .
1264. Dietrich, J. and M. Funke. 2009. Integrated catchment modelling within a strategic planning and decision making process: Werra case study. Physics and Chemistry of the Earth. 34(8-9): 580-588. DOI: 10.1016/j.pce.2008.11.001 .
1265. Dile, Y.T. and R. Srinivasan. 2014. Evaluation of CFSR climate data for hydrologic prediction in data-scarce watersheds: An application in the Blue Nile River basin. Journal of the American Water Resources Association. 50(5): 1226-1241. DOI: 10.1111/jawr.12182 .
1266. Dile, Y.T., L. Karlberg, P. Daggupati, R. Srinivasan, D. Wiberg and J. Rockström. 2016. Assessing the implications of water harvesting intensification on upstream–downstream ecosystem services: A case study in the Lake Tana Basin. Science of the Total Environment. 542: 22-35. DOI: 10.1016/j.scitotenv.2015.10.065 .
1267. Dile, Y.T., L. Karlberg, R. Srinivasan and J. Rockström. 2016. Investigation of the curve number method for surface runoff estimation in tropical regions. Journal of the American Water Resources Association. 52(5): 1155–1169. DOI: 10.1111/1752-1688.12446 .
1268. Dile, Y.T., P. Daggupati, C. George, R. Srinivasan and J. Arnold. 2016. Introducing a new open source GIS user interface for the SWAT model. Environmental Modelling & Software. 85: 129-138. DOI: 10.1016/j.envsoft.2016.08.004 .
1269. Dile, Y.T., R. Berndtsson and S.G. Setegn. 2013. Hydrological response to climate change for Gilgel Abay River, in the Lake Tana Basin-upper Blue Nile Basin of Ethiopia. PLoS ONE. 8(10): e79296. DOI: 10.1371/journal.pone.0079296 .
1270. Dile, Y.T., S. Tekleab, E.K. Ayana, S.G. Gebrehiwot, A.W. Worqlul, H.K. Bayabil, Y.T. Yimam, S.A. Tilahun, P. Daggupati, L. Karlberg and R. Srinivasan. 2018. Advances in water resources research in the Upper Blue Nile basin and the way forward: A review. Journal of Hydrology. 560: 407-423. DOI: 10.1016/j.jhydrol.2018.03.042 .
1271. Dill, J., R.N. Dagios, and V.G. Barros. 2022. Public policies on water resource management and its impacts on the context of climatic changes and alterations in land use and land cover in small and protected rainforest river basins. Environmental Science and Policy. 137: 191-204. DOI: 10.1016/j.envsci.2022.08.021 .
1272. Dilnesa, W. 2022. GIS and hydrological model based hydropower potential assessments of Temcha Watershed. International Journal of Environment and Geoinformatics . 9(1): 97-101. DOI: 10.30897/ijegeo.783157 .
1273. Ding, B., H. Liu, Y. Li, X. Zhang, P. Feng, D.L. Liu, G.W. Marek, S. Ale, D.K. Brauer, R. Srinivasan and Y. Chen. 2022. Post-processing R tool for SWAT efficiently studying climate change impacts on hydrology, water quality, and crop growth. Environmental Modelling & Software. 156: 105492. DOI: 10.1016/j.envsoft.2022.105492 .
1274. Ding, J., Q. Zhu, H. Zhang and G.-q. Chen. 2022. The impact of the calibration based on multisource evapotranspiration products on the daily streamflow simulation. China Rural Water and Hydropower. 10: 105-111,118. DOI: 10.12396/znsd.220049 .
1275. Ding, N., F. Tao and Y. Chen. 2023. Effects of climate change, crop planting structure, and agricultural management on runoff, sediment, nitrogen and phosphorus losses in the Hai-River Basin since the 1980s. Journal of Cleaner Production. 359: 132066. DOI: 10.1016/j.jclepro.2022.132066 .
1276. Ding, N., Y. Chen and F. Tao. 2022. Effects of climate and land use changes on runoff, sediment, nitrogen and phosphorus losses in the Haihe River Basin. Frontiers in Earth Science. 16(4): 934-948. DOI: 10.1007/s11707-022-0975-4 .
1277. Ding, Y., F. Dong, J. Zhao, W. Peng, Q. Chen and B. Ma. 2020. Non-point source pollution simulation and best management practices analysis based on control units in northern China. International Journal of Environmental Research and Public Health. 17(3): 868. DOI: 10.3390/ijerph17030868 .
1278. Ding, Z., G. Fang, X. Wen, Q. Tan, X. Lei, Z. Liu and X. Huang. 2020. Cascaded hydropower operation chart optimization balancing overall ecological benefits and ecological conservation in hydrological extremes under climate change. Water Resources Management. 34: 1231-1246. DOI: 10.1007/s11269-020-02496-6 .
1279. Dinh, K.D., T.N. Anh, N.Y. Nguyen, D.D. Bui and R. Srinivasan. 2020. Evaluation of grid-based rainfall products and water balances over the Mekong River Basin. Remote Sensing. 12(11): 1858. DOI: 10.3390/rs12111858 .
1280. Dippold, D.A., N.R. Aloysius, S.C Keitzer, H. Yen, J.G. Arnold, P. Daggupati, M.E. Fraker, J.F. Martin, D.M. Robertson, S.P. Sowa, M.-V. Johnson, M.J. White and S.A. Ludsin. 2020. Forecasting the combined effects of anticipated climate change and agricultural conservation practices on fish recruitment dynamics in Lake Erie. Freshwater Biology. 65: 1487-1508. DOI: 10.1111/fwb.13515 .
1281. Diriba, B.T. 2021. Surface runoff modeling using SWAT analysis in Dabus Watershed, Ethiopia. Sustainable Water Resources Management. 7(6): 96. DOI: 10.1007/s40899-021-00573-1 .
1282. Dixit, S. and K.V. Jayakumar. 2022. Spatio-temporal analysis of copula-based probabilistic multivariate drought index using CMIP6 model. International Journal of Climatology. 42(8): 4333-4350. DOI: 10.1002/joc.7469 .
1283. Dixon, B. and J. Earls. 2009. Resample or not?! Effects of resolution of DEMs in watershed modeling. Hydrological Processes. 23(12): 1714-1724. DOI: 10.1002/hyp.7306 .
1284. Dixon, B. and J. Earls. 2012. Effects of urbanization on streamflow using SWAT with real and simulated meteorological data. Applied Geography. 35: 174-190. DOI: 10.1016/j.apgeog.2012.06.010 .
1285. Djebou, D.C.S. 2018. Assessment of sediment inflow to a reservoir using the SWAT Model under undammed conditions: A case study for the Somerville Reservoir, Texas, USA. International Soil and Water Conservation Research. DOI: 10.1016/j.iswcr.2018.03.003 .
1286. Djebou, D.C.S. 2019. Streamflow drought interpreted using SWAT model simulations of past and future hydrologic scenarios: Application to Neches and Trinity River Basins, Texas. Journal of Hydrologic Engineering. 24(9): 05019024. DOI: 10.1061/(ASCE)HE.1943-5584.0001827 .
1287. Djebou, D.C.S., A.A. Szogi, K.C. Stone and J.M. Novak. 2020. Watershed scale nitrate-N abatement of instream wetlands: An appraisal using the Soil and Water Assessment Tool. Applied Engineering in Agriculture. 36(3): 387-397. DOI: 10.13031/aea.13736 .
1288. Dlamini, N.S., M.R. Kamal, M.A.B.M. Soom, M.S.F. bin Mohd, A.F.B. Abdullah and L.S. Hin. 2017. Modeling potential impacts of climate change on streamflow using projections of the 5th assessment report for the Bernam River Basin, Malaysia. Water. 9(4): 226. DOI: 10.3390/w9030226 .
1289. do Nascimento, T.V.M., R.P. de Oliveira and M.T.C. de Melo. 2023. Impacts of large-scale irrigation and climate change on groundwater quality and the hydrological cycle: A case study of the Alqueva Irrigation Scheme and the Gabros de Beja Aquifer System. Science of the Total Environment. DOI: 10.1016/j.scitotenv.2023.168151 .
1290. Do, X.K., T.H. Nguyen, L.A. Ngo, M.L. Felix and K. Jung. 2022. Prediction of reservoir sedimentation in the long term period due to the impact of climate change: A case study of Pleikrong Reservoir. Journal of Disaster Research. 17(4): 552-560. DOI: 10.20965/jdr.2022.p0552 .
1291. Dogan, F.N. and M.E. Karpuzcu. 2021. Effect of land use change on hydrology of forested watersheds. Hydrology Research. 15(1): e2367. DOI: 10.1002/eco.2367 .
1292. Doğan, F.N. and M.E. Karpuzcu. 2023. Best management practices for pesticide pollution control. Çevre, Iklim ve Sürdürülebilirlik. 24(1): 25-31. URL: https://dergipark.org.tr/tr/pub/itucis/issue/75828/1241017.
1293. Domínguez-Acevedo, A., J.L. Oropeza-Mota, E. Palacios-Vélez and J. Garfias-Solís. 2005. Study of simulated hydrodynamic response in the Acambay Valley aquifer. Agrociencia. 39: 247-258. URL: https://agrociencia-colpos.org/index.php/agrociencia/article/view/388.
1294. Dong, F., A. Javed, A. Sabar, A. Neumann, C.A. Arnillas, G. Kaltenecker and G. Arhonditsis. 2021. A flow-weighted ensemble strategy to assess the impacts of climate change on watershed hydrology. Journal of Hydrology. 594: 125898. DOI: 10.1016/j.jhydrol.2020.125898 .
1295. Dong, F., A. Neumann, D.-K. Kim, J. Huang and G.B. Arhonditsis. 2019. A season-specific, multi-site calibration strategy to study the hydrological cycle and the impact of extreme-flow events along an urban-to-agricultural gradient. Ecological Informatics. 54: 100993. DOI: 10.1016/j.ecoinf.2019.100993 .
1296. Dong, F., J. Li, C. Dai, J. Niu, Y. Chen, J. Huang and Y. Liu. 2022. Understanding robustness in multiscale nutrient abatement: Probabilistic simulation-optimization using Bayesian network emulators. Journal of Cleaner Production. 378: 134394. DOI: 10.1016/j.jclepro.2022.134394 .
1297. Dong, F., Y. Liu, Z. Wu, Y. Chen and H. Guo. 2018. Identification of watershed priority management areas under water quality constraints: A simulation-optimization approach with ideal load reduction. Journal of Hydrology. 562: 577-588. DOI: 10.1016/j.jhydrol.2018.05.033 .
1298. Dong, L., Z. Xin, C. Song, C. Zhang and X. Bai. 2022. Applicability of statistical and modeling methods in assessing the basin-scale grey water footprint. Ecological Indicators. 143: 109345. DOI: 10.1016/j.ecolind.2022.109345 .
1299. Dong, W., B. Cui, Z. Liu and K. Zhang. 2014. Relative effects of human activities and climate change on the river runoff in an arid basin in northwest China. Hydrological Processes. 28(18): 4854–4864. DOI: 10.1002/hyp.9982 .
1300. Dongyuk, K., M. Shin, N. Ya, S. Lee, D. Kim, Y. Sung and S.S. Lee. 2021. An analysis of the water quality improvement measures and evaluation of Wonju Stream. Journal of the Korean Society of Agricultural Engineers. 63(1): 61-73. DOI: 10.5389/KSAE.2021.63.1.061 .
1301. Donmez, C., O. Sari, S. Berberoglu, A. Cilek, O. Satir and M. Volk. 2020. Improving the Applicability of the SWAT model to simulate flow and nitrate dynamics in a flat data-scarce agricultural region in the Mediterranean. Water. 12(12): 3479. DOI: 10.3390/w12123479 .
1302. Donyaii, A. and A. Sarraf. 2021. Evaluation of hydro-climatic conditions of Gorganroud Catchment under the effect of climate change using MIROC-ESM mode. Journal of Hydrogeomorphology. 7(25): 183-204. DOI: 10.22034/hyd.2021.44082.1572 .
1303. dos Santos, F.M., N. de S. Pelinson, R.P. de Oliveria and J.A.D. Lollo. 2023. Using the SWAT model to identify erosion prone areas and to estimate soil loss and sediment transport in Mogi Guaçu River Basin in Sao Paulo State, Brazil. Catena. 222: 106872. DOI: 10.1016/j.catena.2022.106872 .
1304. dos Santos, F.M., R.P. de Oliveira and F.F. Mauad. 2018. Lumped versus distributed hydrological modeling of the Jacaré-Guaçu Basin, Brazil. Journal of Environmental Engineering. 144(8): 04018056. DOI: 10.1061/(ASCE)EE.1943-7870.0001397 .
1305. dos Santos, F.M., R.P. de Oliveira and J.A. Di Lollo. 2020. Effects of land use changes on streamflow and sediment yield in Atibaia River Basin—SP, Brazil. Water. 12(6): 1711. DOI: 10.3390/w12061711 .
1306. dos Santos, F.M., R.P. de Oliveira and F.F. Mauad. 2020. Evaluating a parsimonious watershed model versus SWAT to estimate streamflow, soil loss and river contamination in two case studies in Tietê River Basin, São Paulo, Brazil. Journal of Hydrology: Regional Studies. 29: 100685. DOI: 10.1016/j.ejrh.2020.100685 .
1307. dos Santos, J.T.S., H.G.G.C. Nunes, A.K. dos Santos Pontes and A.M.L. de Sousa. 2018. The SWAT Model as tool for water resources management: An example applied to Apeú River in Castanhal/PA. Revista de Gestão de Água da América Latina. 15: e3. DOI: 10.21168/rega.v15e2 .
1308. dos Santos, J.Y.G., S.M.G.L. Montenegro, R.M. da Silva, C.A.G. Santo, N.W. Quinn, A.P.X. Dantas and A.R. Neto. 2021. Modeling the impacts of future LULC and climate change on runoff and sediment yield in a strategic basin in the Caatinga/Atlantic Forest Ecotone of Brazil. Catena. 203: 105308. DOI: 10.1016/j.catena.2021.105308 .
1309. Dos Santos, V., F. Laurent, C. Abe and F. Messner. 2018. Hydrologic response to land use change in a large basin in eastern Amazon. Water. 10(4): 429. DOI: 10.3390/w10040429 .
1310. Dosdogru, F., L. Kalin, R. Wang and H. Yen. 2020. Potential impacts of land use/cover and climate changes on ecologically relevant flows. Journal of Hydrology. 584: 124654. DOI: 10.1016/j.jhydrol.2020.124654 .
1311. Douglas-Mankin, K.R. 2018. Current Research in land, water, and agroecosystems: ASABE journals 2017 year in review. Transactions of the ASABE. 61(5): 1639-1651. DOI: 10.13031/trans.12821 .
1312. Douglas-Mankin, K.R., P. Daggupati, A.Y. Sheshukov and P.L. Barnes. 2013. Paying for sediment: Field-scale conservation practice targeting, funding, and assessment using the Soil and Water Assessment Tool. Journal of Soil and Water Conservation. 68(1): 41-51. DOI: 10.2489/jswc.68.1.41 .
1313. Douglas-Mankin, K.R., R. Srinivasan and J.G. Arnold. 2010. Soil and Water Assessment Tool (SWAT) model: Current developments and applications. Transactions of the ASABE. 53(5): 1423-1431. URL: http://ddr.nal.usda.gov/handle/10113/46702.
1314. Doulabian, S., E.G. Tousi, R. Aghlmand, B. Alizadeh, A.G. Bafti and A. Abbasi. 2021. Evalution of integrating SWAT Model into a multi-criteria decision analysis towards reliable rainwater harvesting systems. Water. 13(14): 1935. DOI: 10.3390/w13141935 .
1315. Dourte, D., R.L. Bartel, S. George, J.J. Marois and D.L. Wright. 2016. A sod-based cropping system for irrigation reductions. Renewable Agriculture and Food Systems. 31(6): 485-494. DOI: 10.1017/S1742170515000393 .
1316. Dourte, D.R., C.W. Fraisse and O. Uryasev. 2014. WaterFootprint on AgroClimate: A dynamic, web-based tool for comparing agricultural systems. Agricultural Systems. 125: 33-41. DOI: 10.1016/j.agsy.2013.11.006 .
1317. Dourte, D.R., S. Shukla, D.Z. Haman, M.D. Reddy, M.U. Devi and A. Mani. 2014. Agricultural management impacts on groundwater: Simulations of existing and alternative management options in Peninsular India. Hydrological Processes. 28(19): 5021–5033. DOI: 10.1002/hyp.9990 .
1318. Dowlatabadi, S. and S.M.A. Zomorodian. 2016. Conjunctive simulation of surface water and groundwater using SWAT and MODFLOW in Firoozabad watershed. KSCE Journal of Civil Engineering. 20(1): 485-496. DOI: 10.1007/s12205-015-0354-8 .
1319. Drissia, T.K. and T.P. Anjali. 2022. Influential factors of water scarcity in Bharathapuzha Basin, India. Journal of Applied Water Engineering and Research. 10(2): 129-143. DOI: 10.1080/23249676.2021.1956377 .
1320. Drohan, P.J., M. Bechmann, A. Buda, F. Djodjic, D. Doody, J.M. Duncan, A. Iho, P. Jordan, P.J. Kleinman, R. McDowell, P.-E. Mellander, I.A. Thomas and P.l.J.A. Withers. 2019. A global perspective on phosphorus management decision support in agriculture: Lessons learned and future directions. Journal of Environmental Quality. 48: 1218-1223. DOI: 10.2134/jeq2019.03.0107 .
1321. Droogers, P. and J. Bouma. 2014. Simulation modelling for water governance in basins. International Journal of Water Resources Development. 30(3): 475-494. DOI: 10.1080/07900627.2014.903771 .
1322. Du, B., A. Saleh, D.B. Jaynes and J.G. Arnold. 2006. Evaluation of SWAT in simulating nitrate nitrogen and atrazine fates in a watershed with tiles and potholes. Transactions of the ASABE. 49(4): 949-959. URL: https://www.researchgate.net/publication/43254810_Evaluation_of_SWAT_in_Simulating_Nitrate_Nitrogen_and_Atrazine_Fates_in_a_Watershed_With_Tiles_and_Potholes/download.
1323. Du, B., J. G. Arnold, A. Saleh and D. B. Jaynes. 2005. Development and application of SWAT to landscapes with tiles and potholes. Transactions of the ASAE. 48(3): 1121-1133. DOI: 10.13031/2013.18522 .
1324. Du, B., X. Ji, R.D. Harmel and L.M. Hauck. 2009. Evaluation of a watershed model for estimating daily flow using limited flow measurements. Journal of the American Water Resources Association. 45(2): 475-484. DOI: 10.1111/j.1752-1688.2009.00303.x .
1325. Du, H., M.L. Tan, F. Zhang, K.P. Chun, L. Li and M.H. Kabir. 2024. Evaluating the effectiveness of CHIRPS data for hydroclimatic studies. Theoretical and Applied Climatology. DOI: 10.1007/s00704-023-04721-9 .
1326. Du, J., H. Rui, T. Zuo, Q. Li, D. Zheng, A. Chen, Y. Xu and C.-Y. Xu. 2013. Hydrological simulation by SWAT model with fixed and varied parameterization approaches under land use change. Water Resources Management. 27(8): 2823-2838. DOI: 10.1007/s11269-013-0317-0 .
1327. Du, Liuying, A. Rajib and V. Merwade. 2018. Large scale spatially explicit modeling of blue and green water dynamics in a temperate mid-latitude basin. Journal of Hydrology. 562: 84-102. DOI: 10.1016/j.jhydrol.2018.02.071 .
1328. Du, W., Y. Li, L. Hua, C. Wang, P. Wang, J. Wang, Y. Wang, L. Chen, R.B. Buoh, M. Jepkirui, B. Pan, Y. Jiang and K. Acharya. 2016. Water age responses to weather conditions in a hyper-eutrophic channel reservoir in Southern China. Water. 8(9): 372. DOI: 10.3390/w8090372 .
1329. Du, X, N.K. Shrestha and J. Wang. 2019. Assessing climate change impacts on stream temperature in the Athabasca River Basin using SWAT equilibrium temperature model and its potential impacts on stream ecosystem. Science of the Total Environment. 650: 1872-1881. DOI: 10.1016/j.scitotenv.2018.09.344 .
1330. Du, X, N.K. Shrestha and J. Wang. 2018. Integrating organic chemical simulation module into SWAT model with application for PAHs simulation in Athabasca oil sands region, Western Canada. Environmental Modelling & Software. DOI: 10.1016/j.envsoft.2018.10.011 .
1331. Du, X., D. Loiselle, D.S. Alessi and M. Faramarzi. 2020. Hydro-climate and biogeochemical processes control watershed organic carbon inflows: Development of an in-stream organic carbon module coupled with a process-based hydrologic model. Science of the Total Environment. 718: 137281. DOI: 10.1016/j.scitotenv.2020.137281 .
1332. Du, X., G. Goss and M. Faramarzi. 2020. Impacts of hydrological processes on stream temperature in a cold region watershed based on the SWAT equilibrium temperature model. Water. 12(4): 1112. DOI: 10.3390/w12041112 .
1333. Du, X., G. Silwal and M. Faramarzi. 2022. Investigating the impacts of glacier melt on stream temperature in a cold-region watershed: Coupling a glacier melt model with a hydrological model. Journal of Hydrology. 605: 127303. DOI: 10.1016/j.jhydrol.2021.127303 .
1334. Du, X., N.K. Shrestha and J. Wang. 2019. Incorporating a non-reactive heavy metal simulation module into SWAT model and its application in the Athabasca Oil Sands region. Environmental Science and Pollution Research. DOI: 10.1007/s11356-019-05334-4 .
1335. Du, X., N.K. Shrestha, D.L. Ficklin and J. Wang. 2018. Incorporation of the equilibrium temperature approach in a Soil and Water Assessment Tool hydroclimatological stream temperature model. Hydrology and Earth System Sciences. 22(4): 2343-2357. DOI: 10.5194/hess-22-2343-2018 .
1336. Du, X., X. Zhang, R. Mukundan, L. Hoang and E.M. Owens. 2019. Integrating terrestrial and aquatic processes toward watershed scale modeling of dissolved organic carbon fluxes. Environmental Pollution. 249: 125-135. DOI: 10.1016/j.envpol.2019.03.014 .
1337. Duan, W., B. He, K. Takara, P. Luo, D. Nover and M. Hu. 2017. Impacts of climate change on the hydro-climatology of the upper Ishikari River Basin, Japan. Environmental Earth Sciences. 76: 490. DOI: 10.1007/s12665-017-6805-4 .
1338. Duan, Y., F. Meng, T. Liu, Y. Huang, M. Luo, W. Xing and P. De Maeyer. 2019. Sub-daily simulation of mountain flood processes based on the modified Soil Water Assessment Tool (SWAT) model. International Journal of Environmental Research and Public Health. 16(17): 3118. DOI: 10.3390/ijerph16173118 .
1339. Duan, Y., M. Luo, X. Guo, P. Cai and F. Li. 2021. Study on the relationship between snowmelt runoff for different latitudes and vegetation growth based on an improved SWAT model in Xinjiang, China. Sustainability. 13(3): 1189. DOI: 10.3390/su13031189 .
1340. Duan, Y., T. Liu, F. Meng, M. Luo, A. Frankl, P. De Maeyer, A. Bao, A. Kurban and X. Feng. 2018. Inclusion of modified snow melting and flood processes in the SWAT model. Water. 10(12): 1715. DOI: 10.3390/w10121715 .
1341. Duan, Z., Y. Tuo, J. Liu, H. Gao, X. Song, Z. Zhang, L. Yang and D.F. Mekonnen. 2019. Hydrological evaluation of open-access precipitation and air temperature datasets using SWAT in a poorly gauged basin in Ethiopia. Journal of Hydrology. 569: 612-626. DOI: 10.1016/j.jhydrol.2018.12.026 .
1342. Dubey, S.K., J. Kim, Y. Her, D. Sharma and H. Jeong. 2023. Hydroclimatic impact assessment using the SWAT model in India—State of the art review. Sustainability. 15(22): 15779. DOI: 10.3390/su152215779 .
1343. Dubeya, S.K., D. Sharmab, M.S. Babel and N. Mundetia. 2020. Application of hydrological model for assessment of water security using multi-model ensemble of CORDEX-South Asia experiments in a semi-arid river basin of India. Ecological Engineering. 143: 105641. DOI: 10.1016/j.ecoleng.2019.105641 .
1344. Duke, J.R., J.D. White, S.J. Prochnow, L. Zygo, P.M. Allen and R.S. Muttiah. 2007. The use of remote sensing and modelling to detect small-dam influences on land-use changes along downstream riparian zones. Ecohydrology & Hydrobiology. 7(1): 23-35. DOI: 10.1016/S1642-3593(07)70186-6 .
1345. Duku, C., H. Rathjens, S.J. Zwart and L. Hein. 2015. Towards ecosystem accounting: A comprehensive approach to modelling multiple hydrological ecosystem services. Hydrology and Earth System Sciences. 19(10): 4377-4396. DOI: 10.5194/hess-19-4377-2015 .
1346. Duku, C., S.J. Zwart and L. Hein. 2016. Modelling the forest and woodland-irrigation nexus in tropical Africa: A case study in Benin. Agriculture Ecosystems and Environment. 230: 105-115. DOI: 10.1016/j.agee.2016.06.001 .
1347. Duku, C., S.J. Zwart and L. Hein. 2018. Impacts of climate change on cropping patterns in a tropical, sub-humid watershed. PLoS ONE. 13(3): e0192642. DOI: 10.1371/journal.pone.0192642 .
1348. Duku, C., S.J. Zwart, L.G.J. van Bussel and L. Hein. 2018. Quantifying trade-offs between future yield levels, food availability and forest and woodland conservation in Benin. Science of the Total Environment. 610–611: 1581-1589. DOI: 10.1016/j.scitotenv.2017.06.115 .
1349. Dumedah, G. and P. Coulibaly. 2013. Evolutionary assimilation of streamflow in distributed hydrologic modeling using in-situ soil moisture data. Advances in Water Resources. 53: 231–241. DOI: 10.1016/j.advwatres.2012.07.012 .
1350. Dumedah, G., A.A. Berg and M. Wineberg. 2012. Evaluating autoselection methods used for choosing solutions from Pareto-optimal set: Does nondominance persist from calibration to validation phase? Journal of Hydrologic Engineering. 17(1): 150-159. DOI: 10.1061/(ASCE)HE.1943-5584.0000389 .
1351. Dumedah, G., A.A. Berg, M. Wineberg and R. Collier. 2010. Selecting model parameter sets from a trade-off surface generated from the non-dominated sorting genetic algorithm-II. Water Resources Management. 24: 4469-4489. DOI: 10.1007/s11269-010-9668-y .
1352. Dunea, D., P. Bretcan, D. Tanislav, G. Serban, R. Teodorescu, S. Iordache, N. Petrescu and E. Tuchiu. 2020. Evaluation of water quality in Ialomita River Basin in relationship with land cover patterns. Water. 12(3): 735. DOI: 10.3390/w12030735 .
1353. Dunn, S.M. and C.F. Dilks. 2006. Benchmark models for diffuse pollution: The challenges. Archiv für Hydrobiologie Supplement. 17(1-2): 49-73. DOI: 10.1127/lr/17/2006/49 .
1354. Duong, H.N., H.T. Nguyen, S. Vaclav and L. Sanghyuk. 2016. A comparative study of SWAT, RFNN and RFNN-GA for predicting river runoff. Indian Journal of Science and Technology. 9(17). DOI: 10.17485/ijst/2016/v9i17/92308 .
1355. Duque-Gardeazabal, N., C. García-Echeverri1, J. José Montoya-Monsalve1 and F.A. Bernal-Quiroga. 2024. Improving estimates of water resources availability over North Tropical South America: comparison of two satellite precipitation merging schemes. Earth Sciences Research Journal. 28(1): 55-63. DOI: 10.15446/esrj.v28n1.104344 .
1356. Durães, M.F, C.R. de Mello and M Naghettini. 2011. Applicability of the SWAT model for hydrological simulation in Paraopeba river basin, MG. CERNE. 17(4): 481-488. DOI: 10.1590/S0104-77602011000400006 .
1357. Duriancik, L.F., D. Bucks, J.P. Dobrowolski, T. Drewes, S.D. Eckles, L. Jolley, R.L. Kellogg, D. Lund, J.R. Makuch, M.P. O'Neill, C.A. Rewa, M.R. Walbridge, R. Parry and M.A. Weltz. 2008. The first five years of the Conservation Effects Assessment Project. Journal of Soil and Water Conservation. 63(6): 185A-197A. DOI: 10.2489/jswc.63.6.185A .
1358. Duru, U., E. Wohl and M. Ahmadi. 2017. Factors controlling sediment load in the Central Anatolia Region of Turkey: Ankara River Basin. Environmental Management. 59(5): 826–841. DOI: 10.1007/s00267-016-0818-8 .
1359. Duru, U., M. Arabi and E.E. Wohl. 2017. Modeling stream flow and sediment yield using the SWAT model: A case study of Ankara River basin, Turkey. Physical Geography. 39(3): 264-289. URL: http://www.tandfonline.com/doi/abs/10.1080/02723646.2017.1342199.
1360. Dutta, D., R. Das and A. Mazumdar. 2017. Assessment of runoff and sediment yield in the Tilaya Reservoir, India, using SWAT Model. Asian Journal of Water, Environment and Pollution. 19(3): 9-18. DOI: 10.3233/AJW-170021 .
1361. Dutta, P and A.K. Sarma. 2021. Hydrological modeling as a tool for water resources management of the data-scarce Brahmaputra Basin. Journal of Water and Climate Change. 12(1): 152-165. DOI: 10.2166/wcc.2020.186 .
1362. Dutta, S. and D. Sen. 2017. Application of SWAT model for predicting soil erosion and sediment yield. Sustainable Water Resources Management. DOI: 10.1007/s40899-017-0127-2 .
1363. Duvvuri, S. 2018. Hydrological modelling of Cooum River Basin using GIS and SWAT MODEL. Journal of Indian Water Works Association. Oct.-Dec.: 306-310. URL: https://www.iwwa.info/widgetkit/journal-archives/325-decade/2011-2015/2018/oct-dec.
1364. Dybowski, D., M. Janecki, A. Nowicki and L.A. Dzierzbicka-Glowacka. 2020. Assessing the impact of chemical loads from agriculture holdings on the Puck Bay environment with the high-resolution ecosystem model of the Puck Bay, Southern Baltic Sea. Water. 12(7): 2068. DOI: 10.3390/w12072068 .
1365. Dzierzbicka-Glowacka, L., D. Dybowski, M. Janecki, E. Wojciechowska, B. Szymczycha, D. Potrykus, A. Nowicki, A. Szymkiewicz, P. Zima, B. Jaworska-Szulc, S. Pietrzak, G. Pazikowska-Sapota, D. Kalinowska, N. Nawrot, P. Wielgat, G. Dembska, K. Matej-Lukowicz, K. Szczepanska and T. Puszkarczuk. 2022. Modelling the impact of the agricultural holdings and land-use structure on the quality of inland and coastal waters with an innovative and interdisciplinary toolkit. Agricultural Water Management. 263: 107438. DOI: 10.1016/j.agwat.2021.107438 .
1366. Dzierzbicka-Głowacka, L., M. Janecki, D. Dybowski, B. Szymczycha, H. Obarska-Pempkowiak, E. Wojciechowska, P. Zima, S. Pietrzak, G. Pazikowska-Sapota, B. Jaworska-Szulc, A. Nowicki, Z. Kłostowska, A. Szymkiewicz, K. Galer-Tatarowicz, M. Wichorowski, M. Białoskórski and T. Puszkarczuk. 2019. A new approach for investigating the impact of pesticides and nutrient flux from agricultural holdings and land-use structures on Baltic Sea coastal waters. Polish Journal of Environmental studies. 28(4): 2531-2539. DOI: 10.15244/pjoes/92524 .
1367. Dziubanski, D.J., K.J. Franz and M.J. Helmers. 2017. Effects of spatial distribution of prairie vegetation in an agricultural landscape on curve number values. Journal of the American Water Resources Association. 53(2): 365–381. DOI: 10.1111/1752-1688.12510 .
1368. Earls, J. and B. Dixon. 2008. A comparison of SWAT nodel-predicted potential evapotranspiration using real and modeled meteorological data. Vadose Zone Journal. 7: 570-580. DOI: 10.2136/vzj2007.0012 .
1369. Easton, Z.M., D. R. Fuka, M.T. Walter, D.M. Cowan, E.M. Schneiderman and T.S. Steenhuis. 2008. Re-conceptualizing the Soil and Water Assessment Tool (SWAT) model to predict runoff from variable source areas. Journal of Hydrology. 348(3-4): 279-291. DOI: 10.1016/j.jhydrol.2007.10.008 .
1370. Easton, Z.M., D.R. Fuka, E.D. White, A.S. Collick, B. Biruk Ashagre, M. McCartney, S.B. Awulachew, A.A. Ahmed and T.S. Steenhuis. 2010. A multi basin SWAT model analysis of runoff and sedimentation in the Blue Nile, Ethiopia. Hydrology and Earth System Sciences. 14(10): 1827-1841. DOI: 10.5194/hess-14-1827-2010 .
1371. Easton, Z.M., M.T. Walter, D.R. Fuka, E.D. White and T.S. Steenhuis. 2011. A simple concept for calibrating runoff thresholds in quasi-distributed variable source area watershed models. Hydrological Processes. 25(20): 3131-3143. DOI: 10.1002/hyp.8032 .
1372. Easton, Z.M., P.J.A. Kleinman, A.R. Buda, D. Goering, N. Emberston, S. Reed, P.J. Drohan, M.T. Walter, P.Guinan, J.A. Lory, A.R. Sommerlot and A. Sharpley. 2017. Short-term forecasting tools for agricultural nutrient management. Journal of Environmental Quality. 46(6): 1257-1269. DOI: 10.2134/jeq2016.09.0377 .
1373. Ebodé, V.B., J.G. Dzana, E. Nkiaka, B.N. Nnomo, J.J. Braun and J. Riotte. 2022. Effects of climate and anthropogenic changes on current and future variability in flows in the So'o River Basin (south of Cameroon). Hydrology Research. 53(9): 1203--1220. DOI: 10.2166/nh.2022.047 .
1374. Echogdali, F.Z., S. Boutaleb, M. Ouchchen, M. Id-Belqas, R.B. Kpan, M. Abioui, J. Aswathi and K.S. Sajinkumar. 2022. Assessment of soil erosion risk in a semi‑arid climate watershed using SWAT model: Case of Tata Basin, south‑east of Morocco. Applied Water Science. 12(6): 137. DOI: 10.1007/s13201-022-01664-w .
1375. Eckhardt, K. and J.G. Arnold. 2001. Automatic calibration of a distributed catchment model. Journal of Hydrology. 251(1-2): 103-109. DOI: 10.1016/S0022-1694(01)00429-2 .
1376. Eckhardt, K. and U. Ulbrich. 2003. Potential impacts of climate change on groundwater recharge and streamflow in a central European low mountain range. Journal of Hydrology. 284(1-4): 244-252. DOI: 10.1016/j.jhydrol.2003.08.005 .
1377. Eckhardt, K., L. Breuer and H.-G. Frede. 2003. Parameter uncertainty and the significance of simulated land use change effects. Journal of Hydrology. 273(1-4): 164-176. DOI: 10.1016/S0022-1694(02)00395-5 .
1378. Eckhardt, K., N. Fohrer and H.-G. Frede. 2005. Automatic model calibration. Hydrological Processes. 19(3): 651-658. DOI: 10.1002/hyp.5613 .
1379. Eckhardt, K., S. Haverkamp, N. Fohrer and H.-G. Frede. 2002. SWAT-G, a version of SWAT99.2 modified for application to low mountain range catchments. Physics and Chemistry of the Earth. 27(9-10): 641-644. DOI: 10.1016/S1474-7065(02)00048-7 .
1380. Ed‑daoudy, L., M. Moustakim, O. El kharki, M. Maatouk, A. Ouallali and B. Damnati. 2024. Assessing the suitability of the SWAT model for Moroccan watersheds: A review of applications, challenges, and future prospects. Euro-Mediterranean Journal for Environmental Integration. DOI: 10.1007/s41207-024-00544-w .
1381. Edmonds, J.A. and N.J. Rosenberg. 2005. Climate change impacts for the conterminous USA: An integrated assessment summary. Climatic Change. 69(1): 151-162. DOI: 10.1007/s10584-005-3608-5 .
1382. Eduardo, E.N., C.R. de Mello, M.R. Viola, P.R. Owens and N. Curi. 2016. Hydrological simulation as subside for management of surface water resources at the Mortes River Basin. Ciência e Agrotecnologia. 40(4): 390-404. DOI: 10.1590/1413-70542016404009516 .
1383. Efthimiou, N. 2018. Hydrological simulation using the SWAT model: The case of Kalamas River Catchment. Journal of Applied Water Engineering and Research. 6(3): 210-227. DOI: 10.1080/23249676.2016.1265471 .
1384. Eger, G.Z.S., G.C.S. Junior, E.A.G. Marques, B.R.C. Leão, D.G.T.B. da Rocha, T.E. Gilmore, L.G.H. do Amaral, J.A.O. Silva and C. Neale. 2021. Recharge assessment in the context of expanding agricultural activity: Urucuia Aquifer System, western State of Bahia, Brazil. Journal of South American Earth Sciences. 112(Part 1): 103601. DOI: 10.1016/j.jsames.2021.103601 .
1385. Eheart, J.W. and D.W. Tornil. 1999. Low-flow frequency exacerbation by irrigation withdrawals in the agricultural midwest under various climate change scenarios. Water Resources Research. 35(7): 2237-2246. DOI: 10.1029/1999WR900114 .
1386. Ehtiat, M., S.J. Mousavi and A. Ghaheri. 2015. Ranking of conceptualized groundwater models based on model information criteria. Journal of Water Supply: Research and Technology - AQUA. 64(6): 670-687. DOI: 10.2166/aqua.2015.109 .
1387. Ehtiat, M., S.J. Mousavi and R. Srinivasan. 2018. Groundwater modeling under variable operating conditions using SWAT, MODFLOW and MT3DMS: A catchment scale approach to water resources management. Water Resources Management. 32(5): 1631–1649. DOI: 10.1007/s11269-017-1895-z .
1388. Ehtiat, M., S.J. Mousavi, S.A. Vaghefi and A. Ghaheri. 2016. Analysis of recharge conceptualization in inverse groundwater modeling. Hydrological Sciences Journal. 61(15): 2789-2801. DOI: 10.1080/02626667.2016.1151978 .
1389. Eingrüber, N. and W. Korres. 2022. Climate change simulation and trend analysis of extreme precipitation and floods in the mesoscale Rur Catchment in western Germany until 2099 using Statistical Downscaling Model (SDSM) and the Soil & Water Assessment Tool (SWAT model). Science of the Total Environment. 838(Part 1): 155775. DOI: 10.1016/j.scitotenv.2022.155775 .
1390. Einheuser, M., A.P. Nejadhashemi and S.A. Woznicki. 2013. Simulating stream health sensitivity to landscape changes due to bioenergy crops expansion. Biomass & Bioenergy. 58: 198-209. DOI: 10.1016/j.biombioe.2013.08.025 .
1391. Einheuser, M.D., A.P, Nejadhashemi, L. Wang, S.P. Sowa and S.A. Woznicki. 2014. Linking biological integrity and watershed models to assess the impacts of historical land use and climate changes on stream health. Environmental Management. 51(6): 1147-1163. DOI: 10.1007/s00267-013-0043-7 .
1392. Einheuser, M.D., A.P. Nejadhashemi, S,P. Sowa, L. Wang, Y.A. Hamaamin and S.A. Woznicki. 2012. Modeling the effects of conservation practices on stream health. Science of the Total Environment. 435-436: 380-391. DOI: 10.1016/j.scitotenv.2012.07.033 .
1393. Eini, M.R. 2019. Discussion of ‘Intra- and interannual streamflow variations of Wardha watershed under changing climate’ (2018) by Naga Sowjanya P., Venkata Reddy K. & Shashi M. (ISH Journal of Hydraulic Engineering, DOI: 10.1080/09715010.2018.1473057). ISH Journal of Hydraulic Engineering. DOI: 10.1080/09715010.2018.1564376 .
1394. Eini, M.R., A. Rahmati and M. Piniewki. 2022. Hydrological application and accuracy evaluation of PERSIANN satellite-based precipitation estimates over a humid continental climate catchment. Journal of Hydrology: Regional Studies. 41: 101109. DOI: 10.1016/j.ejrh.2022.101109 .
1395. Eini, M.R., C. Massari and M. Piniewski. 2023. Satellite-based soil moisture enhances the reliability of agro-hydrological modeling in large transboundary river basins. Science of the Total Environment. 873: 162396. DOI: 10.1016/j.scitotenv.2023.162396 .
1396. Eini, M.R., H. Salmani and M. Piniewski. 2023. Comparison of process-based and statistical approaches for simulation and projections of rainfed crop yields. Agricultural Water Management. 277: 108107. DOI: 10.1016/j.agwat.2022.108107 .
1397. Eini, M.R., S. Javadi and M. Delavar. 2018. Evaluating the performance of CRU and NCEP CFSR global reanalysis climate datasets, in hydrological simulation by SWAT model, case study: Maharlu Basin. Iran-Water Resources Research. 14(1): 32-44. URL: http://iwrr.ir/article_48378_en.html.
1398. Eini, M.R., S. Javadi, M. Delavar and M. Darand. 2018. Assessment of Asfezari national database precipitation data in runoff evaluating and monitoring regional drought. Iranian Journal of EcoHydrology. 5(1): 99-120. DOI: 10.22059/ije.2017.235625.643 .
1399. Eini, M.R., S. Javadi, M. Delavar, J.A.F Monteiro and M. Darand. 2019. High accuracy of precipitation reanalyses resulted in good river discharge simulations in a semi-arid basin. Ecological Engineering. 131: 107-119. DOI: 10.1016/j.ecoleng.2019.03.005 .
1400. Eini, M.R., S. Javadi, M. Delavarb, P.W. Gassman and B. Jarihan. 2020. Development of alternative SWAT-based models for simulating water budget components and streamflow for a karstic-influenced watershed. Catena. 195: 104801. DOI: 10.1016/j.catena.2020.104801 .
1401. Eini, M.R., S. Javadi, M.H. Shahdany and O. Kisi. 2021. Comprehensive assessment and scenario simulation for the future of the hydrological processes in Dez River Basin, Iran. Water Supply. 21(3): 1157-1176. DOI: 10.2166/ws.2020.363 .
1402. Eisner, S., M. Flörke, A. Chamorro, P. Daggupati, C. Donnelly, J. Huang, Y. Hundecha, H. Koch, A. Kalugin, I. Krylenko, V. Mishra, M. Piniewski, L. Samaniego, O. Seidou, M. Wallner and V. Krysanova. 2017. An ensemble analysis of climate change impacts on streamflow seasonality across 11 large river basins. Climatic Change. 141(3): 401-417. DOI: 10.1007/s10584-016-1844-5 .
1403. Ekstrand, S., P. Wallenberg and F. Djodjic. 2010. Process based modelling of phosphorus losses from arable land. Ambio. 39: 100-115. DOI: 10.1007/s13280-010-0016-5 .
1404. El Harraki, W., D. Ouazar, A. Bouziane, I. El Harraki and D. Hasnaoui. 2021. Streamflow prediction upstream of a dam using SWAT and assessment of the impact of land use spatial resolution on model performance. Environmental Processes. 8(3): 1165-1186. DOI: 10.1007/s40710-021-00532-0 .
1405. Elçi, A. 2017. Evaluation of nutrient retention in vegetated filter strips using the SWAT model. Water Science and Technology. 76(10): 2742-2752. DOI: 10.2166/wst.2017.448 .
1406. Elhassan, A., H. Xie, A.A. Al-Othman, J. McClelland and H.O. Sharif. 2016. Water quality modelling in the San Antonio River Basin driven by radar rainfall data. Geomatics, Natural Hazards and Risk. 7(3): 953-970. DOI: 10.1080/19475705.2015.1009500 .
1407. El-Khoury, A., O. Seidou, D.R.L. Lapen, Z. Que, M. Mohammadian, M. Sunohara and D. Bahram. 2015. Combined impacts of future climate and land use changes on discharge, nitrogen and phosphorus loads for a Canadian river basin. Journal of Environmental Management. 151: 76-86. DOI: 10.1016/j.jenvman.2014.12.012 .
1408. El-Nasr, A.A., J.G. Arnold, J. Feyen and J. Berlamont. 2005. Modelling the hydrology of a catchment using a distributed and a semi-distributed model. Hydrological Processes. 19(3): 573-587. DOI: 10.1002/hyp.5610 .
1409. El-Sadek, A. and A. Irevem. 2014. Evaluating the impact of land use uncertainty on the simulated streamflow and sediment yield of the Seyhan River basin using the SWAT model. Turkish Journal of Agriculture and Forestry. 38(4): 515-530. DOI: 10.3906/tar-1309-89 .
1410. El-Sadek, A., M. Bleiweiss, M. Shukla, S. Guldan and A. Fernald. 2011. Alternative climate data sources for distributed hydrological modelling on a daily time step. Hydrological Processes. 25(10): 1542-1557. DOI: 10.1002/hyp.7917 .
1411. Emam, A.R., M. Kappas and S.Z. Hosseini. 2015. Assessing the impact of climate change on water resources, crop production and land degradation in a semi-arid river basin. Hydrology Research. 46(6): 854-870. DOI: 10.2166/nh.2015.143 .
1412. Emam, A.R., M. Kappas, N.H.K. Linh and T. Renchin. 2017. Hydrological modeling and runoff mitigation in an ungauged basin of central Vietnam using SWAT model. Hydrology. 4(1): 16. DOI: 10.3390/hydrology4010016 .
1413. Emam, A.R., M. Kappas, S. Akhavan, S.Z. Hosseini and K.C. Abbaspour. 2015. Estimation of groundwater recharge and its relation to land degradation: Case study of a semi-arid river basin in Iran. Environmental Earth Sciences. 74(9): 6791-6803. DOI: 10.1007/s12665-015-4674-2 .
1414. Emam, A.R., M. Kappas, S. Fassnacht and N.H.K. Linh. 2018. Uncertainty analysis of hydrological modeling in a tropical area using different algorithms. Frontiers in Earth Science. 12(4): 661–671. DOI: 10.1007/s11707-018-0695-y .
1415. Emami, F. and M. Koch. 2017. Evaluating the water resources and operation of the Boukan Dam in Iran under climate change. European Water. 59: 17-24. URL: http://www.ewra.net/ew/pdf/EW_2017_59_03.pdf.
1416. Emami, F. and M. Koch. 2018. Agricultural water productivity-based hydro-economic modeling for optimal crop pattern and water resources planning in the Zarrine River Basin, Iran, in the wake of climate change. Sustainability. 10(11): 3953. DOI: 10.3390/su10113953 .
1417. Emami, F. and M. Koch. 2018. Evaluation of statistical-downscaling/bias-correction methods to predict hydrologic responses to climate change in the Zarrine River Basin, Iran. Water. 6(2): 30. DOI: 10.3390/cli6020030 .
1418. Emami, F. and M. Koch. 2018. Sustainability assessment of the water management system for the Boukan Dam, Iran, using CORDEX - South Asia climate projections. Water. 10(12): 1723. DOI: 10.3390/w10121723 .
1419. Emami, F. and M. Koch. 2019. Modeling the impact of climate change on water availability in the Zarrine River Basin and inflow to the Boukan Dam, Iran. Climate. 7: 51. DOI: 10.3390/cli7040051 .
1420. Engebretsen A., R.D. Vogt and M. Bechmann. 2019. SWAT model uncertainties and cumulative probability for decreased phosphorus loading by agricultural Best Management Practices. Catena. 175: 154-166. DOI: 10.1016/j.catena.2018.12.004 .
1421. Engel, B., D. Storm, M. White, J. Arnold and M. Arabi. 2007. A hydrologic/water quality model application protocol. Journal of the American Water Resources Association. 43(5): 1223-1236. DOI: 10.1111/j.1752-1688.2007.00105.x .
1422. Engel, B., I. Chaubey, M. Thomas, D. Saraswat, P. Murphy and B. Bhaduri. 2010. Biofuels and water quality: Challenges and opportunities for simulation modeling. Biofuels. 1(3): 463-477. DOI: 10.4155/bfs.10.17 .
1423. Engel, B.A., R. Srinivasan, J.G. Arnold, C. Rewerts and S.J. Brown. 1993. Nonpoint source (NPS) pollution modeling using models integrated with Geographic Information Systems (GIS). Water Science and Technology. 28(3‑5): 685-690. DOI: 10.2166/wst.1993.0474 .
1424. Engida, T.G., T.A. Nigussie, A.B. Aneseyee and J. Barnabas. 2021. Land use/land cover change impact on hydrological process in the Upper Baro Basin, Ethiopia. Applied and Environmental Soil Science. 10(2): 6617541. DOI: 10.1155/2021/6617541 .
1425. Epelde, A.M., I. Antiguedad, D. Brito, E. Jauch, R. Neves, C. Garneau, S. Sauvage and J.M. Sánchez-Pérez. 2016. Different modelling approaches to evaluate nitrogen transport and turnover at the watershed scale. Journal of Hydrology. 539: 478–494. DOI: 10.1016/j.jhydrol.2016.05.066 .
1426. Epelde, A.M., I. Cerro, J.M. Sanchez-Perez, S. Sauvage, R. Srinivasan and I. Antiguedad. 2015. Application of the SWAT model to assess the impact of changes in agricultural management practices on water quality. Hydrological Sciences Journal. 60(5): 825-843. DOI: 10.1080/02626667.2014.967692 .
1427. Eranki, P.L., J. Devkota and A.E. Landis. 2019. Carbon footprint of corn-soy-oats rotations in the US Midwest using data from real biological farm management practices. Journal of Cleaner Production. 210: 170-180. DOI: 10.1016/j.jclepro.2018.11.002 .
1428. Ercan, M.B. and J.L. Goodall. 2013. Estimating watershed-scale precipitation by combining gauge- and radar-derived observations. Journal of Hydrologic Engineering. 18(8): 983-994. DOI: 10.1061/(ASCE)HE.1943-5584.0000687 .
1429. Ercan, M.B. and J.L. Goodall. 2016. Design and implementation of a general software library for using NSGA-II with SWAT for multi-objective model calibration. Environmental Modeling & Assessment. 84: 112-120. DOI: 10.1016/j.envsoft.2016.06.017 .
1430. Ercan, M.B., I. Maghami, B.D. Bowes, M.M. Morsy and J.L. Goodall. 2020. Estimating potential climate change effects on the Upper Neuse Watershed water balance using the SWAT model. Journal of the American Water Resources Association. 56(1): 53-67. DOI: 10.1111/1752-1688.12813 .
1431. Ercan, M.B., J.L. Goodall, A.M. Castronova, M. Humphrey and N. Beekwilder. 2014. Calibration of SWAT models using the cloud. Environmental Modelling & Software. 62: 188-196. DOI: 10.1016/j.envsoft.2014.09.002 .
1432. Erima, G., I. Kabenge, A. Gidudu, Y. Bamutaze and A. Egeru. 2022. Differentiated spatial-temporal flood vulnerability and risk assessment in lowland plains in eastern Uganda. Hydrology. 9(11): 201. DOI: 10.3390/hydrology9110201 .
1433. Eriyagama, N., V. Smakhtin and L. Udamulla. 2021. Sustainable surface water storage development pathways and acceptable limits for river basins. Water. 13(5): 645. DOI: 10.3390/w13050645 .
1434. Ermolieva, T.Y., Y.M. Ermoliev, P. Havlk, A. Mosnier, D. Leclere, S. Fritz, H. Valin, M. Obersteiner, S.V. Kyryzyuk and O.M. Borodina. 2017. Dynamic merge of the global and local models for sustainable land use planning with regard for global projections from GLOBIOM and local technical-economic feasibility and resource constraints. Cybernetics and System Analysis. 53(2): 176-185. DOI: 10.1007/s10559-017-9917-7 .
1435. Ernst, M.R. and J. Owens. 2009. Development and application of a WASP model on a large Texas reservoir to assess eutrophication control. Lake and Reservoir Management. 25(2): 136-148. DOI: 10.1080/07438140902821389 .
1436. Erraioui, L., S. Taia, K. Taj-Eddine, J. Chao and B.E. Mansouri. 2023. Hydrological modelling in the Ouergha Watershed by Soil and Water Analysis Tool. Journal of Ecological Engineering. 24(4): 343-356. DOI: 10.12911/22998993/161043 .
1437. Ertürk, A. A. Ekdal, M. Gurel, N. Karakaya, G. Cuceloglu and E. Gönenç. 2017. Model-based assessment of groundwater vulnerability for the Dalyan Region of southwestern Mediterranean Turkey. Regional Environmental Change. 17(4): 1193-1203. DOI: 10.1007/s10113-017-1106-8 .
1438. Ertürk, A., A. Ekdal, M. Gürel, N. Karakaya, C. Guzel and E. Gönenç. 2014. Evaluating the impact of climate change on groundwater resources in a small Mediterranean watershed. Science of the Total Environment. 499: 437-447. DOI: 10.1016/j.scitotenv.2014.07.001 .
1439. Ervinia, A., J. Huang, Y. Huang and J. Lin. 2019. Coupled effects of climate variability and land use pattern on surface water quality: An elasticity perspective and watershed health indicators. Science of the Total Environment. 693: 133592. DOI: 10.1016/j.scitotenv.2019.133592 .
1440. Escurra, J.J., V. Vazquez, R. Cestti, E. De Nys and R. Srinivasan. 2014. Climate change impact on countrywide water balance in Bolivia. Regional Environmental Change. 14(2): 727-742. DOI: 10.1007/s10113-013-0534-3 .
1441. Esen, S.E. and L. Hein. 2021. Development of SEEA water accounts with a hydrological model. Science of the Total Environment. 737: 140168. DOI: 10.1016/j.scitotenv.2020.140168 .
1442. Esfahanian, E., A.P. Nejadhashemi, M. Abouali, F. Daneshvar, A.A. Renani, M.R. Herman and Y. Tang. 2016. Defining drought in the context of stream health. Ecological Engineering. 94: 668-681. DOI: 10.1016/j.ecoleng.2016.06.110 .
1443. Esfahanian, E., A.P. Nejadhashemi, M. Abouali, U. Adhikari, Z. Zhang, F. Daneshvar and M.R. Herman. 2017. Development and evaluation of a comprehensive drought index. Journal of Environmental Management. 185: 31-43. DOI: 10.1016/j.jenvman.2016.10.050 .
1444. Eshtawi, T., M. Evers and B. Tischbein. 2015. Potential impacts of urban area expansion on groundwater level in the Gaza Strip: A spatial-temporal assessment. Arabian Journal of Geosciences. 8(12): 10565–10584. DOI: 10.1007/s12517-015-1971-8 .
1445. Eshtawi, T., M. Evers and B. Tischbein. 2016. Quantifying the impact of urban area expansion on groundwater recharge and surface runoff. Hydrological Sciences Journal. 61(5): 826-843. DOI: 10.1080/02626667.2014.1000916 .
1446. Eshtawi, T., M. Evers, B. Tischbein and B. Diekkrüger. 2016. Integrated hydrologic modeling as a key for sustainable urban water resources planning. Water Research. 101: 411-428. DOI: 10.1016/j.watres.2016.05.061 .
1447. Esmaeili-Gisavandani, H., M. Lotfirad, M.S.D. Sofla and A. Ashrafzadeh. 2021. Improving the performance of rainfall-runoff models using the gene expression programming approach. Journal of Water and Climate Change. 12(7): 3308-3329. DOI: 10.2166/wcc.2021.064 .
1448. Esmali, A., M. Golshan and A. Kavian. 2021. Investigating the performance of SWAT and IHACRES in simulation streamflow under different climatic regions in Iran. Atmósfera. 34(1): 79-96. DOI: 10.20937/atm.52740 .
1449. Espinosa, C., A. La Rotta and Y.J. Perez. 2013. The preventive expenses method to assess benefit of sediments control in high watershed producers of drinking water. Revista Forestal Venezolana. 56(1): 51-61. URL: http://www.saber.ula.ve/handle/123456789/36850.
1450. Espinosa, J. and D. Rivera. 2016. Variations in water resources availability at the Ecuadorian páramo due to land-use changes. Environmental Earth Sciences. 75: 1173. DOI: 10.1007/s12665-016-5962-1 .
1451. Espinosa-García, J.A., J. Uresti-Gil, A. Velez-Izquierdo, G. Moctezuma-Lopez, H.D. Inurreta-Aguirre and S.F. Góngora-González. 2015. Productivity and profit potential of cocoa. Revista Mexicana de Ciencias Agrícolas. 6(5): 1051-1063. URL: http://www.scielo.org.mx/scielo.php?script=sci_abstract&pid=S2007-09342015000500012&lng=en&nrm=iso&tlng=en.
1452. Esse, C., N. Ríos, P. Saavedra, D. Fonseca, F. Encina-Montoya, R. Santander-Massa, P .De los Ríos-Escalante, G. Figeroa-Muñoz, A. López-Pérez and F. Correa-Arandea. 2021. Effects of land use change on water availability and water efficiency in the temperate basins of south-central Chile. Journal of King Saud University - Science. 33(8): 101650. DOI: 10.1016/j.jksus.2021.101650 .
1453. Essenfelder, A.H. and C. Giupponi. 2020. A coupled hydrologic-machine learning modelling framework to support hydrologic modelling in river basins under interbasin water transfer regimes. Environmental Modelling & Software. 131: 104779. DOI: 10.1016/j.envsoft.2020.104779 .
1454. Essenfelder, A.H., C.D. Pérez‐Blanco and A.S. Mayer. 2018. Rationalizing systems analysis for the evaluation of adaptation strategies in complex human-water systems. Earth's Future. 6(9): 1181-1206. DOI: 10.1029/2018EF000826 .
1455. Evenson, G., W.R. Osterholz, V.S. Shedekar, K. King, S. Mehan and M. Kalcic. 2022. Representing soil health practice effects on soil properties and nutrient loss in a watershed-scale hydrologic model. Journal of Environmental Quality. DOI: 10.1002/jeq2.20338 .
1456. Evenson, G.R., C.N. Jones, D.L. McLaughlin, H.E. Golden, C.R. Lane, B. DeVries, L.C. Alexander, M.W. Lang, G.W. McCarty and A. Sharifi. 2018. A watershed-scale model for depressional wetland-rich landscapes. Journal of Hydrology X. 1: 100002. DOI: 10.1016/j.hydroa.2018.10.002 .
1457. Evenson, G.R., H.E Golden, C.R. Lane, D.L. McLaughlin and E. D'Amico. 2018. Depressional wetlands affect watershed hydrological, biogeochemical, and ecological functions. Ecological Applications. 28(4): 953-966. DOI: 10.1002/eap.1701 .
1458. Evenson, G.R., H.E. Golden, C.R. Lane and E. D'Amico. 2015. Geographically isolated wetlands and watershed hydrology: A modified model analysis. Journal of Hydrology. 529(Part 1): 240–256. DOI: 10.1016/j.jhydrol.2015.07.039 .
1459. Evenson, G.R., H.E. Golden, C.R. Lane and E. D'Amico. 2016. An improved representation of geographically isolated wetlands in a watershed-scale hydrologic model. Hydrological Processes. 30(22): 4168–4184. DOI: 10.1002/hyp.10930 .
1460. Evenson, G.R., H.E. Golden, J.R. Christensen, C.R. Lane, A. Rajib, E. D'Amico, D.T. Mahoney, E. White and Q. Wu. 2021. Wetland restoration yields dynamic nitrate responses across the Upper Mississippi River Basin. Environmental Research Communications. 3(9): 095002. DOI: 10.1088/2515-7620/ac2125 .
1461. Evenson, G.R., M. Kalcic, Y.-C. Wang, D. Robertson, D. Scavia, J. Martin, N. Aloysius, A. Apostel, C. Boles, M. Brooker, R. Confesor, A.T. Dagnew, T. Guo, J. Kast, H. Kujawa, R.L. Muenich, A. Murumkar and T. Redder. 2021. Uncertainty in critical source area predictions from watershed-scale hydrologic models. Journal of Environmental Management. 279: 111506. DOI: 10.1016/j.jenvman.2020.111506 .
1462. Exbrayat, J.-F., N.R. Viney, H.-G. Frede and L. Breuer. 2011. Probabilistic multi-model ensemble predictions of nitrogen concentrations in river systems. Geophysical Research Letters. 38(L12401): 1-5. DOI: 10.1029/2011GL047522 .
1463. Exbrayat, J.-F., N.R. Viney, J. Seibert, S. Wrede, H.-G. Frede and L. Breuer. 2010. Ensemble modelling of nitrogen fluxes: Data fusion for a Swedish meso-scale catchment. Hydrology and Earth System Sciences. 14(12): 2383-2397. DOI: 10.5194/hess-14-2383-2010 .
1464. Ezz-Aldeen, M., R. Hassan, A. Ali, N. Al-Ansari and S. Knutsson. 2018. Watershed Sediment and its effect on storage capacity: Case study of Dokan Dam Reservoir. Water. 10(7): 858. DOI: 10.3390/w10070858 .
1465. Fabian, P.S., H.-H. Kwon, M. Vithanage and J.-H. Lee. 2023. Modeling, challenges, and strategies for understanding impacts of climate extremes (droughts and floods) on water quality in Asia: A review. Environmental Science. 225: 115617. DOI: 10.1016/j.envres.2023.115617 .
1466. Fabre, C., S. Sauvage, N. Tananaev, R. Srinivasan, R. Teisserenc and J.M.S. Pérez. 2017. Using modeling tools to better understand permafrost hydrology. Water. 9(6): 418. DOI: 10.3390/w9060418 .
1467. Fabre, C., S. Sauvage, N. Tananaev, G.E. Noël, R. Teisserenc, J.L. Probst and J.M. Sánchez Pérez. 2019. Assessment of sediment and organic carbon exports into the Arctic ocean: The case of the Yenisei River Basin. Water Research. 158: 118-135. DOI: 10.1016/j.watres.2019.04.018 .
1468. Faksomboon, B. 2022. Development of a hydrodynamic model for regulating water drainage of reservoir and water resources management, Lamtakong Watershed of Thailand. Nakhara: Journal of Environmental Design and Planning. 21(3): 217. DOI: 10.54028/NJ202221217 .
1469. Faksomboon, B. and N. Thangtham. 2017. Application of SWAT Model for Studying Land Use Changes on Suspended Sediment in Upper Tha Chin Watershed. Srinakharinwirot Science Journal. 33(2). URL: https://www.thaiscience.info/view3.asp?sCode=SSCJ&sType=JOURNAL#Year%202017,%20Volume%2033.
1470. Faksomboon, B. and S. Polthana. 2023. Performance evaluation and comparison of SWAT model-predicted potential trends in Sub-Ping Watershed, Thailand. EnvironmentAsia. 16(20): 35-47. DOI: 10.2166/wst.2023.252 .
1471. Faksomboon, B. S. Bualert, N. Dampin and N. Thangtham. 2017. Dynamic Modeling for the investigation of changes in land uses on streamflow in the Upper Tha Chin Watershed. Burapha Science Journal. 22(2): 42-57. URL: https://scijournal.buu.ac.th/index.php/sci/article/view/1455.
1472. Faksomboon, B., W. Suanmali, N. Chaivino, N. Khamcharoen and S. Buasruang. 2019. Land use changes of head watershed area on streamflow, suspended sediment and water quality in Khlong Lan Watershed, Kamphaeng Phet Province. Burapha Science Journal. 24(2): 532-549. URL: https://scijournal.buu.ac.th/index.php/sci/article/view/2646.
1473. Fallatah O.A., M. Ahmed, D. Cardace, T. Boving and A.S. Akanda. 2019. Assessment of modern recharge to arid region aquifers using an integrated geophysical, geochemical, and remote sensing approach. Journal of Hydrology. 569: 600-611. DOI: 10.1016/j.jhydrol.2018.09.061 .
1474. Fallo, Y., R. Rispiningtati and D. Harisuseno. 2013. Analisis perubahan tataguna lahan terhadap usia bendungan Tilong di das Tilong Kabupaten Kupang propinsi NTT. Jurnal Teknik Pengairan. 4(2). URL: http://jurnalpengairan.ub.ac.id/index.php/jtp/article/view/188.
1475. Fan, H., M. Jiang, L. Xu, H. Zhu, J. Cheng and J. Jiang. 2020. Comparison of long short term memory networks and the hydrological model in runoff simulation. Water. 12(1): 175. DOI: 10.3390/w12010175 .
1476. Fan, J. F. Tian, Y. Yang, S. Han and G. Qiu. 2010. Quantifying the magnitude of the impact of climate change and human activity on runoff decline in Mian River Basin, China. Water Science and Technology. 62(4): 783-791. DOI: 10.2166/wst.2010.294 .
1477. Fan, J., M. Galoie, A. Motamedi and J. Huang. 2021. Assessment of land cover resolution impact on flood modeling uncertainty. Hydrology Research. 52(1): 78-90. DOI: 10.2166/nh.2020.043 .
1478. Fan, J., M. Li, F. Guo, Z. Yan, X. Zheng, Y. Zhang, Z. Xu and F. Wu. 2018. Prioritization of river restoration by coupling Soil and Water Assessment Tool (SWAT) and Support Vector Machine (SVM) models in the Taize River Basin, northern China. International Journal of Environmental Research and Public Health. 15(10): 2090. DOI: 10.3390/ijerph15102090 .
1479. Fan, M. and H. Shibata. 2014. Water yield, nitrogen and sediment retentions in Northern Japan (Teshio river watershed): Land use change. Mitigation and Adaptation Strategies for Global Change. 21(1): 119-133. DOI: 10.1007/s11027-014-9574-3 .
1480. Fan, M. and H. Shibata. 2015. Simulation of watershed hydrology and stream water quality under land use and climate change scenarios in Teshio River watershed, northern Japan. Ecological Indicators. 50: 79-89. DOI: 10.1016/j.ecolind.2014.11.003 .
1481. Fan, M., H. Shibata and L. Chen. 2018. Assessing high impacts of climate change: Spatial characteristics and relationships of hydrological ecosystem services in northern Japan (Teshio River watershed). Mitigation and Adaptation Strategies for Global Change. 23: 525-552. DOI: 10.1007/s11027-017-9748-x .
1482. Fan, M., H. Shibata and L. Chen. 2018. Spatial priority conservation areas for water yield ecosystem service under climate changes in Teshio watershed, northernmost Japan. Journal of Water and Climate Change. DOI: 10.2166/wcc.2018.088 .
1483. Fan, M., H. Shibata and Q. Wang. 2016. Optimal conservation planning of multiple hydrological ecosystem services under land use and climate changes in Teshio river watershed, northernmost of Japan. Ecological Indicators. 62: 1-13. DOI: 10.1016/j.ecolind.2015.10.064 .
1484. Fan, M., H. Shibata, and L. Chen. 2017. Environmental and economic risks assessment under climate changes for three land uses scenarios analysis across Teshio watershed, northernmost of Japan. Science of the Total Environment. 599-600: 451-463. DOI: 10.1016/j.scitotenv.2017.05.010 .
1485. Fan, M., M. Shi, Y. Liu, W. Chen, Y. Deng and M. Wang. 2022. Implications of spatial priority areas for hydrological ecosystem services through coupling hydrology model and Zonation model under diferent economic costs of water utilizations in northernmost of Japan. Mitigation and Adaptation Strategies for Global Change. 27(1): 2. DOI: 10.1007/s11027-021-09976-z .
1486. Fan, M., W. Ou and L. Chen. 2019. Spatial priority areas for individual and multiple hydrological ecosystem services with economic costs across Teshio Watershed, northernmost of Japan. Global Ecology and Conservation. 20: e00746. DOI: 10.1016/j.gecco.2019.e00746 .
1487. Fang, D., L. Hao, Z. Cao, X. Huang, M. Qin, J. Hu, Y. Liu and G. Sun. 2020. Combined effects of urbanization and climate change on watershed evapotranspiration at multiple spatial scales. Journal of Hydrology. 587: 124869. DOI: 10.1016/j.jhydrol.2020.124869 .
1488. Fang, G., J. Yang, Y. Chen, C. Xu and P. De Maeyer. 2015. Contribution of meteorological input in calibrating a distributed hydrologic model in a watershed in the Tianshan Mountains, China. Environmental Earth Sciences. 74(3): 2413-2424. DOI: 10.1007/s12665-015-4244-7 .
1489. Fang, G., J. Yang, Y. Chen, Z. Li and P. De Maeyer. 2017. Impact of GCM structure uncertainty on hydrological processes in an arid area of China. Hydrology Research. DOI: 10.2166/nh.2017.227 .
1490. Fang, G., J. Yang, Y. Chen, Z. Li, H. Ji and P. De Maeyer. 2018. How hydrologic processes differ spatially in a large basin: Multisite and multiobjective modeling in the Tarim River basin. Journal of Geophysical Research: Atmospheres. DOI: 10.1029/2018JD028423 .
1491. Fang, X., L. Ren, Q. Li, Q. Zhu, P. Shi and Y. Zhu. 2013. Hydrologic response to land use and land cover changes within the context of catchment-scale spatial information. Journal of Hydrologic Engineering. 18(11): 1539-1548. DOI: 10.1061/(ASCE)HE.1943-5584.0000482 .
1492. Fang, Y., X. Chen, J.G. Velez, X. Zhang, Z. Duan, G.E. Hammond, A.E. Goldman, V.A. Garayburu-Caruso and E.B. Graham. 2020. A multirate mass transfer model to represent the interaction of multicomponent biogeochemical processes between surface water and hyporheic zones (SWAT-MRMT-R 1.0). Geoscientific Model Development. 13(8): 3553-3569. DOI: 10.5194/gmd-13-3553-2020 .
1493. Fant, C., R. Srinivasan, B. Boehlert, L. Rennels, S.C. Chapra, K.M. Strzepek, J. Corona, A. Allen and J. Martinich. 2017. Climate change impacts on US water quality using two models: HAWQS and US Basins. Water. 9(2): 118. DOI: 10.3390/w9020118 .
1494. Faramarzi, M., K.C. Abbaspour, W.L. (Vic) Adamowicz, W. Lu, J. Fennell, A.J.B. Zehnder and G.G. Goss. 2017. Uncertainty based assessment of dynamic freshwater scarcity in semi-arid watersheds of Alberta, Canada. Journal of Hydrology: Regional Studies. 9: 48-68. DOI: 10.1016/j.ejrh.2016.11.003 .
1495. Faramarzi, M., H. Yang, J. Mousavi, R. Shulin, C.R. Binder and K.C. Abbaspour. 2010. Analysis of intra-country virtual water trade strategy to alleviate water scarcity in Iran. Hydrology and Earth System Sciences. 14(8): 1417-1433. DOI: 10.5194/hess-14-1417-2010 .
1496. Faramarzi, M., H. Yang, R. Schulin and K.C. Abbaspour. 2010. Modeling wheat yield and crop water productivity in Iran: Implications of agricultural water management for wheat production. Agricultural Water Management. 97(11): 1861-1875. DOI: 10.1016/j.agwat.2010.07.002 .
1497. Faramarzi, M., K.C. Abbaspour, R. Schulin and H. Yarn. 2009. Modelling blue and green water resources availability in Iran. Hydrological Processes. 23(3): 486-501. DOI: 10.1002/hyp.7160 .
1498. Faramarzi, M., K.C. Abbaspour, S.A. Vaghefi, M.R. Farzaneh, A.J.B. Zehnder, R. Srinivasan and H. Yang. 2013. Modelling impacts of climate change on freshwater availability in Africa. Journal of Hydrology. 480: 85–101. DOI: 10.1016/j.jhydrol.2012.12.016 .
1499. Faramarzi, M., R. Srinivasan, M. Iravani, K.D. Bladon, K.C. Abbaspour, A.J.B. Zehnder and G.G. Goss. 2015. Setting up a hydrological model of Alberta: Data discrimination analyses prior to calibration. Environmental Modelling & Software. 74: 48-65. DOI: 10.1016/j.envsoft.2015.09.006 .
1500. Farhan, A.A. and B. Sh. Abed. 2021. Estimation of surface runoff to Bahr AL-Najaf. Journal of Engineering. 27(9): 51-63. DOI: 10.31026/j.eng.2021.09.05 .
1501. Farhan, A.M. and H.A. Al Thamiry. 2020. Estimation of the surface runoff volume of Al-Mohammedi Valley for long-term period using SWAT Model. Iraqi Journal of Civil Engineering. 14(1): 7-12. URL: https://www.iasj.net/iasj/article/183107.
1502. Farias, C.W.L. de A., J.F. de S. Viana, R. de Q. Miranda, S.F. da Silva, G. Vasco, S.M.G.L. Montenegro and J.D. Galvincio. 2023. Calibration technique for modeling the São Francisco watershed, Brazil, using SWAT. Revista Brasileira de Geografia Física. 16(3): 1621-1628. DOI: 10.26848/rbgf.v16.3.p1621-1628 .
1503. Farkas, C., S.H. Kværnø, A. Engebretsen, R. Barneveld and J. Deelstra. 2016. Applying profile- and catchment-based mathematical models for evaluating the run-off from a Nordic catchment. Journal of Hydrology and Hydromechanics. 64: 218-225. DOI: 10.1515/johh-2016-0022 .
1504. Farsani, I.F., M.R. Farzaneh, A.A. Besalatpour, M.H. Salehi and M. Faramarzi. 2018. Assessment of the impact of climate change on spatiotemporal variability of blue and green water resources under CMIP3 and CMIP5 models in a highly mountainous watershed. Theoretical and Applied Climatology. DOI: 10.1007/s00704-018-2474-9 .
1505. Farzana, S.Z., A. Zafor and J.A. Shahariar. 2019. Application of SWAT model for assessing water availability in Surma River Basin. Journal of the Civil Engineering Forum. 5(1): 30-38. DOI: 10.22146/jcef.39191 .
1506. Fatehifar, A., M.R. Goodarzi, S.S.M. Hedesh and P.S. Dastjerdi. 2021. Assessing watershed hydrological response to climate change based on signature indices. Journal of Water and Climate Change. 12(6): 2579-2593. DOI: 10.2166/wcc.2021.293 .
1507. Fatemi, A. 2022. A survey of modeling for water quality prediction of Gharasou River, Kermanshah, Iran. Environmental Earth Sciences. 81(3): 66. DOI: 10.1007/s12665-022-10191-5 .
1508. Febrianingrum, N.D., A. Masrevaniah and E. Suhartanto. 2011. Pengaruh perubahan penggunaan lahan terhadap sedimen di Sungai Lesti. Jurnal Teknik Pengairan. 2(1): 86-98. URL: http://jurnalpengairan.ub.ac.id/index.php/jtp/article/view/124.
1509. Febrianti, I., I. Ridwan and N. Nurlina. 2018. Model SWAT (Soil And Water Assessment Tool) Untuk Analisis Erosi dan Sedimentasi di Catchment Area Sungai Besar Kabupaten Banjar. Jurnal Fisika FLUX. 15(1): 20-25. DOI: 10.20527/flux.v15i1.4506 .
1510. Feld, C.K., P. Segurado and C. Gutiérrez-Cánovas. 2016. Analysing the impact of multiple stressors in aquatic biomonitoring data: A ‘cookbook’ with applications in R. Science of the Total Environment. 573: 1320–1339. DOI: 10.1016/j.scitotenv.2016.06.243 .
1511. Felix, M.L. and K. Jung. 2022. Impacts of spatial interpolation methods on daily streamflow predictions with SWAT. Water. 14(20): 3340. DOI: 10.3390/w14203340 .
1512. Femeena, P.V., K.P. Sudheer, R. Cibin and I. Chaubey. 2018. Spatial optimization of cropping pattern for sustainable food and biofuel production with minimal downstream pollution. Journal of Environmental Management. 212: 198-209. DOI: 10.1016/j.jenvman.2018.01.060 .
1513. Femeena, P.V., R. Karki, R. Cibin and K.P. Sudheer. 2022. Reconceptualizing HRU threshold definition in the Soil and Water Assessment Tool. Journal of the American Water Resources Association. 58(4): 508–516. DOI: 10.1111/1752-1688.13000 .
1514. Feng G. and Y. Ge. 2008. Numerical simulations of nutrient transport changes in Honghu Lake Basin, Jianghan Plain. Chinese Science Bulletin. 53(15): 2353-3363. DOI: 10.1007/s11434-008-0315-4 .
1515. Feng, H., M. Jha, and P. Gassman. 2008. The allocation of nutrient load reduction across a watershed: Assessing delivery coefficients as an implementation tool. Review of Agricultural Economics. 31(1): 183-204. URL: https://onlinelibrary.wiley.com/doi/10.1111/j.1467-9353.2008.01432.x.
1516. Feng, M. and Z. Shen. 2021. Assessment of the impacts of land use change on non-point source loading under future climate scenarios using the SWAT mode. Water. 13(6): 874. DOI: 10.3390/w13060874 .
1517. Feng, Q., D.C. Flanagan, B.A. Engel, L. Yang and L. Chen. 2020. GeoAPEXOL, a web GIS interface for the Agricultural Policy Environmental eXtender (APEX) model enabling both field and small watershed simulation. Environmental Modelling & Software. 123: 104569. DOI: 10.1016/j.envsoft.2019.104569 .
1518. Feng, Q., I. Chaubey, B. Engel, R. Cibin, K.P. Sudheer and J. Volenec. 2017. Marginal land suitability for switchgrass, Miscanthus and hybrid poplar in the Upper Mississippi River Basin (UMRB). Environmental Modelling & Software. 93: 356-365. DOI: 10.1016/j.envsoft.2017.03.027 .
1519. Feng, Q., I. Chaubey, R. Cibin, B. Engel, K.P. Sudheer and J. Volenec. 2017. Simulating establishment periods of switchgrass and miscanthus in the Soil and Water Assessment Tool (SWAT). Transactions of the ASABE. 60(5): 1621-1632. DOI: 10.13031/trans.12227 .
1520. Feng, Q., I. Chaubey, R. Cibin, B. Engel, K.P. Sudheer, J. Volenec and N. Omani. 2018. Perennial biomass production from marginal land in the Upper Mississippi River Basin. Land Degradation & Development. 29(6): 1748-1755. DOI: 10.1002/ldr.2971 .
1521. Feng, S., W. Wang, R. Huang and R. Su. 2024. A review of typical water pollution control and cost-benefit analysis in China. Frontiers in Environmental Science. 12: 1406155. DOI: 10.3389/fenvs.2024.1406155 .
1522. Feng, W., Z. Jinyan, W. Zhan and Z. Qian. 2014. Streamflow variation due to glacier melting and climate change in upstream Heihe River Basin, Northwest China. Physics and Chemistry of the Earth. 79-82: 11-19. DOI: 10.1016/j.pce.2014.08.002 .
1523. Feng, X.Q., G.X. Zhang and Y.J. Xu. 2013. Simulation of hydrological processes in the Zhalong wetland within a river basin, Northeast China. Hydrology and Earth System Sciences. 17: 2797-2807. DOI: 10.5194/hess-17-2797-2013 .
1524. Feng, Z., L. Wu, T. Mu, D. Wang and G. Zhang. 2024. Application and development of SWAT model: A bibliometric analysis. Journal of Irrigation and Drainage. 43(2): 85-95. URL: https://www.ggpsxb.com/jgpxxben/ch/reader/issue_list.aspx.
1525. Fentaw, F., D. Hailu, A. Nigussie and A.M. Melesse. 2018. Climate change impact on the hydrology of Tekeze Basin, Ethiopia: Projection of rainfall-runoff for future water resources planning. Water Science and Engineering. DOI: 10.1007/s41101-018-0057-3 .
1526. Fereidoon, M. and M. Koch. 2018. SWAT-MODSIM-PSO optimization of multi-crop planning in the Karkheh River Basin, Iran, under the impacts of climate change. Science of the Total Environment. 630: 502-516. DOI: 10.1016/j.scitotenv.2018.02.234 .
1527. Fereidoon, M., M. Koch and L. Brocca. 2019. Predicting rainfall and runoff through satellite soil moisture data and SWAT modelling for a poorly gauged basin in Iran. Water. 11(3): 594. DOI: 10.3390/w11030594 .
1528. Ferijal, T., S. Mechram, D.S. Jayanti and P. Satriyo. 2015. Keliling Reservoir Catchment Area Modeling Using SWAT Model. AGRITECH. 35(1): 121-127. DOI: 10.22146/agritech.13037 .
1529. Fernandes, M.R., F.C. Aguiar, M.J. Martins, R. Rivaes and M.T. Ferreira. 2020. Long-term human-generated alterations of Tagus River: Effects of hydrological regulation and land-use changes in distinct river zones. Catena. 188: 104466. DOI: 10.1016/j.catena.2020.104466 .
1530. Fernandez, M.A., P. Huang, B. McCarl and V. Mehta. 2016. Value of decadal climate variability information for agriculture in the Missouri River basin. Climatic Change. 139(3-4): 517-533. DOI: 10.1007/s10584-016-1807-x .
1531. Fernandez-Palomino, C.A., F.F. Hattermann, V. Krysanova, A. Lobanova, F. Vega-Jácome, W. Lavado, W. Santini, C. Aybar and A. Bronstert. 2021. A novel high-resolution gridded precipitation dataset for Peruvian and Ecuadorian watersheds – development and hydrological evaluation. Journal of Hydrometeorology. DOI: 10.1175/JHM-D-20-0285.1 .
1532. Fernandez-Palomino, C.A., F.F. Hattermann, V. Krysanova, F. Vega-Jácome and A. Bronstert. 2021. Towards a more consistent eco-hydrological modelling through multi-objective calibration: A case study in the Andean Vilcanota River Basin, Peru. Hydrological Sciences Journal. 66(1): 59-74. DOI: 10.1080/02626667.2020.1846740 .
1533. Fernandez-Palomino, C.A., F.F. Hattermann, V. Krysanova, A. Lobanova, F. Vega-Jácome, W. Lavado, W. Santini, C. Aybar and A. Bronstert. 2022. A novel high-resolution gridded precipitation dataset for Peruvian and Ecuadorian watersheds: Development and hydrological evaluation. Journal of Hydrometeorology. 23(3): 309-336. DOI: 10.1175/JHM-D-20-0285.1 .
1534. Ferrant, S., F. Oehler, P. Durand, L. Ruiz, J. Salmon-Monvoila, E. Justes, P. Dugast, A. Probst, J.-L. Probst and J.-M. Sanchez-Perez. 2011. Understanding nitrogen transfer dynamics in a small agricultural catchment: Comparision of a distributed (TNT2) and a semi distributed (SWAT) modeling approaches. Journal of Hydrology. 406(1-2): 1-15. DOI: 10.1016/j.jhydrol.2011.05.026 .
1535. Ferrant, S., Y. Caballero, J. Perrin, S. Gascoin, B. Dewandel, S. Aulong, F. Dazin, S. Ahmed and J. Marechal. 2014. Projected impacts of climate change on farmers’ extraction of groundwater from crystalline aquifers in South India. Scientific Reports. 4(3679): 1-10. DOI: 10.1038/srep03697 .
1536. Ferreira, A. do N., A. de Alemida, S. Koide, R.T. Minoti and M.B.B. de Siqueira. 2021. Evaluation of evapotranspiration in Brazilian Cerrado Biome simulated with the SWAT Model. Water. 13(15): 2037. DOI: 10.3390/w13152037 .
1537. Ferreira, F.H.M., W.C.S. Júniora, D.A. Bressiani, W.M.M. Filhoc and D.A. Gonçalves. 2024. Climate change in the upper Paraguay Basin and hydrological impacts on the Pantanal. Journal of Water and Climate Change. DOI: 10.2166/wcc.2024.081 .
1538. Ferreira, J.G., C. Saurel, J.D. Lencart e Silva, J.P. Nunes and F. Vazquez. 2014. Modelling of interactions between inshore and offshore aquaculture. Aquaculture. 426-427: 154-164. DOI: 10.1016/j.aquaculture.2014.01.030 .
1539. Ferreira, R,G., R.L. Silva Dias, J. de S. Castro, V.J. dos Santos, Maria Lúcia Calijuri and D.D. da Silva. 2021. Performance of hydrological models in fluvial flow simulation. Ecological Informatics. 66: 101453. DOI: 10.1016/j.ecoinf.2021.101453 .
1540. Ferreira, R.S. and R.E.S. Uagoda. 2017. Analysis of hydrological balance in Gama watershed, Distrito Federal/ Brazil, using SWAT model. Revista Brasileira de Geografia Física. 10(3): 888-893. DOI: 10.5935/1984-2295.20170057 .
1541. Feyereisen, G.W., T.C. Strickland, D.D. Bosch and D.G Sullivan. 2007. Evaluation of SWAT manual calibration and input parameter sensitivity in the Little River Watershed. Transactions of the ASABE. 50(3): 843-855. DOI: 10.13031/2013.23149 .
1542. Ficklin, D. L., Y. Luo, M. Zhang and S. E. Gatzke. 2014. The use of soil taxonomy as a soil type identifier for the Shasta Lake watershed using SWAT. Transactions of the ASABE. 57(3): 717-728. DOI: 10.13031/trans.57.9557 .
1543. Ficklin, D., I. Stewart and E. Maurer. 2013. Effects of climate change on stream temperature, dissolved oxygen, and sediment concentration in the Sierra Nevada in California. Water Resources Research. 49(5): 2765–2782. DOI: 10.1002/wrcr.20248 .
1544. Ficklin, D.L. and B.L. Barnhart. 2014. SWAT hydrologic model parameter uncertainty and its implications for hydroclimatic projections in snowmelt-dependent watersheds. Journal of Hydrology. 519: 2081–2090. DOI: 10.1016/j.jhydrol.2014.09.082 .
1545. Ficklin, D.L. and M. Zhang. 2013. A comparison of the curve number and green-ampt models in an agricultural watershed. Transactions of the ASABE. 56(1): 61-69. DOI: 10.13031/2013.42590 .
1546. Ficklin, D.L., I.T. Stewart and E.P. Maurer. 2012. Projections of 21st century Sierra Nevada local hydrologic flow components using an ensemble of general circulation models. Journal of the American Water Resources Association. 48(6): 1-21. DOI: 10.1111/j.1752-1688.2012.00675.x .
1547. Ficklin, D.L., I.T. Stewart and E.P. Maurer. 2013. Climate change impacts on streamflow and subbasin- scale hydrology in the Upper Colorado River Basin. PLoS ONE. 8(8) (e71297): 1-17. DOI: 10.1371/journal.pone.0071297 .
1548. Ficklin, D.L., I.T. Stewart and E.P. Maurer. 2013. Effects of projected climate change on the hydrology in the Mono Lake Basin, California. Climatic Change. 116(1): 1-21. DOI: 10.1007/s10584-012-0566-6 .
1549. Ficklin, D.L., S.L. Letsinger, I.T. Stewart and E.P. Maurer. 2015. Assessing differences in snowmelt-dependent hydrologic projections using CMIP3 and CMIP5 climate forcing data for the western United States. Hydrology Research. 47(2). DOI: 10.2166/nh.2015.101 .
1550. Ficklin, D.L., Y. Luo and M. Zhang. 2013. Climate change sensitivity assessment of streamflow and agricultural pollutant transport in California’s Central Valley using Latin hypercube sampling. Hydrological Processes. 27(18): 2666-2675. DOI: 10.1002/hyp.9386 .
1551. Ficklin, D.L., Y. Luo and M. Zhang. 2013. Watershed modelling of hydrology and water quality in the Sacramento River watershed, California. Hydrological Processes. 27(2): 236–250. DOI: 10.1002/hyp.9222 .
1552. Ficklin, D.L., Y. Luo, E. Lunedeling and M. Zhang. 2009. Climate change sensitivity assessment of a highly agricultural watershed using SWAT. Journal of Hydrology. 374(1-2): 16-29. DOI: 10.1016/j.jhydrol.2009.05.016 .
1553. Ficklin, D.L., Y. Luo, I.T. Stewart and E.P. Maurer. 2012. Development and application of a hydroclimatological stream temperature model within the Soil and Water Assessment Tool. Water Resources Research. 48(1): W01511. DOI: 10.1029/2011WR011256 .
1554. Filbin, R.J., L. Zhu, L. Dechano-Cook and L. Meng. 2019. Implications of dam removal: Modeling streamflow in Lansing, Michigan using the Soil and Water Assessment Tool. International Journal of Geospatial and Environmental Research. 6(1): 1-14. URL: https://dc.uwm.edu/ijger/vol6/iss1/1?utm_source=dc.uwm.edu%2Fijger%2Fvol6%2Fiss1%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages.
1555. Fink, M., P. Krause, S. Kralisch, U. Bende-Michl and W.A. Flügel. 2007. Development and application of the modelling system J2000-S for the EU-water framework directive. Advances in Geosciences. 11: 123-130. DOI: 10.5194/adgeo-11-123-2007 .
1556. Firdaus, G., O. Haridjaja and D.S.D. Tarigan. 2016. Hydrological response analysis for the application of soil conservation techniques in sub-watershed Lengkong using SWAT model. Jurnal Ilmu Tanah Dan Lingkungan. 16(1): 16-23. URL: http://journal.ipb.ac.id/index.php/jtanah/article/view/11481.
1557. Fiseha, B., M. Setegn, S. G. Melesse, E. Volpi and A. Fiori. 2013. Hydrological analysis of the Upper Tiber River Basin, central Italy: A watershed modelling approach. Hydrological Processes. 27(16): 2339–2351. DOI: 10.1002/hyp.9234 .
1558. Fiseha, B.M., S.G. Setegn, A.M. Melesse, E. Volpi and A. Fiori. 2014. Impact of climate change on the hydrology of Upper Tiber River Basin using bias corrected regional climate model. Water Resources Management. 28(5): 1327–1343. DOI: 10.1007/s11269-014-0546-x .
1559. Fisher, J.R.B., E.A. Acosta, P.J. Dennedy-Frank, T. Kroeger and T.M. Boucher. 2018. Impact of satellite imagery spatial resolution on land use classification accuracy and modeled water quality. Remote Sensing in Ecology and Conservation. 4(2): 137-149. DOI: 10.1002/rse2.61 .
1560. FitzHugh, T.W. and D.S. Mackay. 2000. Impacts of input parameter spatial aggregation on an agricultural nonpoint source pollution model. Journal of Hydrology. 236(1-2): 35-53. DOI: 10.1016/S0022-1694(00)00276-6 .
1561. FitzHugh, T.W. and D.S. Mackay. 2001. Impact of subwatershed partitioning on modeled source-and transport-limited sediment yields in an agricultural nonpoint source pollution model. Journal of Soil and Water Conservation. 56(2): 137-143. URL: http://www.jswconline.org/content/56/2/137.short.
1562. Flachsbarth, I., B. Willaarts, H. Xie, G. Pitois, N. D. Mueller, C. Ringler and A. Garrido. 2015. The role of Latin America's land and water resources for global food security: environmental trade-offs of future food production pathways. PLoS ONE. 10(1). DOI: 10.1371/journal.pone.0116733 .
1563. Flajsig, G.C., B. Karleuša, I. Vučković and M. Glavan. 2017. Analysis of the eutrophication factors in the Sutla River Basin. Acta Hydrologica Slovaca. 18(2): 290-300. URL: http://147.213.100.3/ah_articles/2017_18_2_Flajsig_290.pdf.
1564. Flynn, K.F. and M.W. Van Liew. 2011. Evaluation of SWAT for sediment prediction in a mountainous snowmelt-dominated catchment. Transactions of the ASABE. 54(1): 113-122. DOI: 10.13031/2013.36265 .
1565. Fohrer, N., A. Dietrich, O. Kolychalow and U. Ulrich. 2014. Assessment of the environmental fate of the herbicides Flufenacet and Metazachlor with the SWAT model. Journal of Environmental Quality. 43(1): 67-74. DOI: 10.2134/jeq2011.0382 .
1566. Fohrer, N., D. Möller and N. Steiner. 2002. An interdisciplinary modelling approach to evaluate the effects of land use change. Physics and Chemistry of the Earth. 27(9-10): 655-662. DOI: 10.1016/S1474-7065(02)00050-5 .
1567. Fohrer, N., S. Haverkamp and H.-G. Frede. 2005. Assessment of the effects of land use patterns on hydrologic landscape functions: development of sustainable land use concepts for low mountain range areas. Hydrological Processes. 19(3): 659-672. DOI: 10.1002/hyp.5623 .
1568. Fontaine, T.A., J.F. Klassen, T.S. Cruickshank and R.H. Hotchkiss. 2001. Hydrological response to climate change in the Black Hills of South Dakota, USA. Hydrological Sciences Journal. 46(1): 27-40. DOI: 10.1080/02626660109492798 .
1569. Fontaine, T.A., T.S. Cruickshank, J.G. Arnold and R.H. Hotchkiss. 2002. Development of a snowfall-snowmelt routine for mountainous terrain for the soil water assessment tool (SWAT). Journal of Hydrology. 262(1-4): 209-223. DOI: 10.1016/S0022-1694(02)00029-X .
1570. Foroughi, M., J.M. Mallard, D.R. Nelson, L.A. Sutter and D. Markewitz. 2021. The impacts of historical land-use on phosphorus movement in the Calhoun Critical Zone Observatory in the southeastern US Piedmont. Biogeochemistry. 154(1): 17-35. DOI: 10.1007/s10533-021-00794-8 .
1571. Forsberg, A., D.E. Radcliffe, C.H. Bolster, A. Mittelstet, D.E. Storm and D. Osmond. 2017. Evaluation of the TBET Model for potential improvement of Southern P Indices. Journal of Environmental Quality. 46(6): 1341-1348. DOI: 10.2134/jeq2016.06.0210 .
1572. Foteh, R., V. Garg, B.R. Nikam, M.Y. Khadatare, S.P. Aggarwal and A.S. Kumar. 2018. Reservoir sedimentation assessment through remote sensing and hydrological modelling. Journal of the Indian Society of Remote Sensing. 46(11): 1893-1905. DOI: 10.1007/s12524-018-0843-6 .
1573. Fousiya and S. Varughese. 2020. Modelling streamflow using SWAT model: A case study of Thuthapuzha River Basin, Kerala. International Journal of Farm Sciences. 10(2): 86-95. DOI: 10.5958/2250-0499.2020.00040.3 .
1574. Foy, C., M. Arabi, H. Yen, J. Gironas and R.T. Bailey. 2015. Multisite assessment of hydrologic processes in snow-dominated mountainous river basins in Colorado using a watershed model. Journal of Hydrologic Engineering. 20(10). DOI: 10.1061/(ASCE)HE.1943-5584.0001130 .
1575. Francesconi, W., R. Srinivasan, E. Elena Pérez-Miñana, S.P. Willcock and M. Quintero. 2016. Using the Soil and Water Assessment Tool (SWAT) to model ecosystem services: A systematic review. Journal of Hydrology. 535: 625-636. DOI: 10.1016/j.jhydrol.2016.01.034 .
1576. Francos, A., F.J. Elorza, F. Bouraoui, G. Bidoglio and L. Galbiati. 2003. Sensitivity analysis of distributed environmental simulation models: understanding the model behaviour in hydrological studies at the catchment scale. Reliability Engineering & System Safety. 79(2): 205-218. DOI: 10.1016/S0951-8320(02)00231-4 .
1577. Francos, A., G. Bidoglio, L. Galbiati, F. Bouraoui, F.J. Elorza, S. Rekolainen, K. Manni and K. Granlund. 2001. Hydrological and water quality modelling in a medium-sized coastal basin. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere. 26(1): 47-52. DOI: 10.1016/S1464-1909(01)85013-9 .
1578. Franczyk, J. and H. Chang. 2009. The effects of climate change and urbanization on the runoff of the Rock Creek basin in the Portland metropolitan area, Oregon, USA. Hydrological Processes. 23(6): 805-815. DOI: 10.1002/hyp.7176 .
1579. Frede, H.-G. 2001. Hydrologic response to land use changes on the catchment scale. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere. 26(7-8): 577-582. DOI: 10.1016/S1464-1909(01)00052-1 .
1580. Frede, H.-G., M. Bach, N. Fohrer and L. Breuer. 2002. Interdisciplinary modeling and the significance of soil functions. Journal of Plant Nutrition and Soil Science. 165 (4): 460-467. DOI: 10.1002/1522-2624(200208)165:4<460::AID-JPLN460>3.0.CO;2-B .
1581. Frederiksen, R.R., and E. Molina-Navarro. 2021. The importance of subsurface drainage on model performance and water balance in an agricultural catchment using SWAT and SWAT-MODFLOW. Agricultural Water Management. 255: 107058. DOI: 10.1016/j.agwat.2021.107058 .
1582. Freund, E.R., K.C. Abbaspour and A. Lehmann. 2017. Water resources of the Black Sea catchment under future climate and landuse change projections. Water. 9(8): 598. DOI: 10.3390/w9080598 .
1583. Frey, S.K., E. Topp, T. Edge, C. Fall, V. Gannon, C. Jokinen, R. Marti, N. Neumann, N. Ruecker, G. Wilkes and D.R. Lapen. 2013. Using SWAT, Bacteroidales microbial source tracking markers, and fecal indicator bacteria to predict waterborne pathogen occurrence in an agricultural watershed. Water Research. 47(16): 6326–6337. DOI: 10.1016/j.watres.2013.08.010 .
1584. Fricklin, D.L., Y. Luo, E. Luedeling, S.E. Gatzke and M. Zhang. 2010. Sensitivity of agricultural runoff loads to rising levels of CO2 and climate change in the San Joaquin Valley of California. Environmental Pollution. 158: 223-234. DOI: 10.1016/j.envpol.2009.07.016 .
1585. Frizzle, C., R.A. Fournier, M. Trudel and J.E. Luther. 2021. Using the Soil and Water Assessment Tool to develop a LiDAR-based index of the erosion regulation ecosystem service. Journal of Hydrology. 595: 126009. DOI: 10.1016/j.jhydrol.2021.126009 .
1586. Fu C., A.L. James and H. Yao. 2014. SWAT-CS: Revision and testing of SWAT for Canadian Shield catchments. Journal of Hydrology. 511: 719-735. DOI: 10.1016/j.jhydrol.2014.02.023 .
1587. Fu, B., W.S. Merritt, B.F.W. Croke, T. Weber and A.J. Jakeman. 2019. A review of catchment-scale water quality and erosion models and a synthesis of future prospects. Environmental Modelling & Software. 114: 75-97. DOI: 10.1016/j.envsoft.2018.12.008 .
1588. Fu, C., A.L. James and Y. Yao. 2015. Investigations of uncertainty in SWAT hydrologic simulations: A case study of a Canadian Shield catchment. Hydrological Processes. 29(18): 4000-4017. DOI: 10.1002/hyp.10477 .
1589. Fu, C., X. Lee, T.J. Griffis, J.M. Baker and P.A. Turner. 2018. A modeling study of direct and indirect N2O emissions from a representative catchment in the U.S. Corn Belt. Water Resources Research. 54(5): 3632-3653. DOI: 10.1029/2017WR022108 .
1590. Fu, Q., L. Yang, H. Li, T. Li, D. Liu, Y. Ji, M. Li and Y. Zhang. 2019. Study on the optimization of dry land irrigation schedule in the downstream Songhua River Basin based on the SWAT Model. Water. 11(6): 1147. DOI: 10.3390/w11061147 .
1591. Fu, Q., R. Shi, T. Li, Y. Sun, D. Liu, S. Cui and R. Hou. 2019. Effects of land‐use change and climate variability on streamflow in the Woken River Basin in northeast China. River Research and Applications. 35(2): 121-132. DOI: 10.1002/rra.3397 .
1592. Fu, Y., W. Zang, F. Dong, M. Fu and J. Zhang. 2016. Yield calculation of agricultural non-point source pollutants in Huntai River Basin based on SWAT model. Transactions of the Chinese Society of Agricultural Engineering. 32(8): 1-8. DOI: 10.11975/j.issn.1002-6819.2016.08.001 .
1593. Fu, Z., J. Dong, J. Zhang, Y. Guo, Y. Zhang, X. Jiang, H. Wang and S. Wang. 2024. A novel energy-water-carbon coupling system optimization management model based on water environmental carrying capacity under the influence of climate change. Energy Strategy Reviews. 53: 101424. DOI: 10.1016/j.esr.2024.101424 .
1594. Fu, Z., Y. Xie, Y. Zhang, X. Jiang, H. Guo and S. Wang. 2022. Water resource availability assessment through hydrological simulation under climate change in the Huangshui Watershed of the Qinghai–Tibet Plateau. Frontiers in Earth Science. 9: 755119. DOI: 10.3389/feart.2021.755119 .
1595. Fujita, T., M.V.B. de Morais, V.C.D. Santos, A.P. Rudke, M.M. de Eiras, A.C.F. Xaiver, S.A.A. Rafee, E.B. Santos, L.D. Martins, C.B. Uvo, R.A.F. de Souza, E.D. de Freitas and J.A. Martins. 2022. Simulating discharge in a non-dammed river of southeastern South America using SWAT model. Water. 14(3): 488. DOI: 10.3390/w14030488 .
1596. Fuka, D.R., A.S. Collick, P.J.A. Kleinman, D. Auerbach, D. Harmel and Z.M. Easton. 2016. Improving the spatial representation of soil properties and hydrology using topographically derived initialization processes in the SWAT model. Hydrological Processes. 30(24): 4633–4643. DOI: 10.1002/hyp.10899 .
1597. Fuka, D.R., M.T. Walter, C. MacAlister, A.T. Degaetano, T.S. Steenhuis and Z.M. Easton. 2014. Using the climate forecast system reanalysis as weather input data for watershed models. Hydrological Processes. 28(22): 5613–562. DOI: 10.1002/hyp.10073 .
1598. Fuka, D.R., M.T. Walter, C. MacAlister, T.S. Steenhuis and Z.M. Easton. 2014. SWATModel: A multi-operating system, multi-platform SWAT Model package in R. Journal of the American Water Resources Association. 50(5): 1349-1353. DOI: 10.1111/jawr.12170 .
1599. Fuka, D.R., Z.M. Easton, E.S. Brooks, J. Boll, T.S. Steenhuis and M.T, Walter. 2012. A simple process-based snowmelt routine to model spatially distributed snow depth and snowmelt in the SWAT model. Journal of the American Water Resources Association. 48(6): 1-11. DOI: 10.1111/j.1752-1688.2012.00680.x .
1600. Fukunaga, D.C., R.A. Cecilio, S.S. Zanetti, L.T. Oliveira and M.A.C. Caiado. 2015. Application of the SWAT hydrologic model to a tropical watershed at Brazil. Catena. 125: 206-213. DOI: 10.1016/j.catena.2014.10.032 .
1601. Furl, C., H. Sharif and J. Jeong. 2015. Analysis and simulation of large erosion events at central Texas unit source watersheds. Journal of Hydrology. 527: 494–504. DOI: 10.1016/j.jhydrol.2015.05.014 .
1602. Gabiri, G., B. Diekkrüger, K. Näschen, C. Leemhuis, R. van der Linden, J.G.M. Majaliwa and J.A. Obando. 2020. Impact of climate and land use/land cover change on the water resources of a tropical inland alley catchment in Uganda, East Africa. Climate. 8(7): 83. DOI: 10.3390/cli8070083 .
1603. Gabiri, G., C. Leemhuis, B. Diekkrüger, K. Näschen, S. Steinbach and F. Thonfeld. 2019. Modelling the impact of land use management on water resources in a tropical inland valley catchment of central Uganda, East Africa. Science of the Total Environment. 653: 1052-1066. DOI: 10.1016/j.scitotenv.2018.10.430 .
1604. Gaborit, E., G. Pelletier, P.A. Vanrolleghem and F. Anctila. 2010. Simulation du débit de la rivière Saint-Charles, première source d’eau potable de la ville de Québec. Canadian Journal of Civil Engineering. 37(2): 311-321. URL: https://www.nrcresearchpress.com/doi/abs/10.1139/L09-139#.XofdNnJ7nIU.
1605. Gabriel, M., C. Knightes, E. Cooter and R. Dennis. 2014. The impacts of different meteorology data sets on nitrogen fate and transport in the SWAT watershed model. Environmental Modeling & Assessment. 19(4): 301-314. DOI: 10.1007/s10666-014-9400-z .
1606. Gabriel, M., C. Knightes, E. Cooter and R. Dennis. 2016. Evaluating relative sensitivity of SWAT-simulated nitrogen discharge to projected climate and land cover changes for two watersheds in North Carolina, USA. Hydrological Processes. 30(9): 1403-1418. DOI: 10.1002/hyp.10707 .
1607. Gabriel, M., C. Knightes, E. Cooter and R. Dennis. 2018. Modeling the combined effects of changing land cover, climate, and atmospheric deposition on nitrogen transport in the Neuse River Basin. Journal of Hydrology: Regional Studies. 18: 68-79. DOI: 10.1016/j.ejrh.2018.05.004 .
1608. Gabriel, M., C. Knightes, R. Dennis and E. Cooter. 2014. Potential impact of Clean Air Act regulations on nitrogen fate and transport in the Neuse River Basin: A modeling investigation using CMAQ and SWAT. Environmental Modeling & Assessment. 19(6): 451-465. DOI: 10.1007/s10666-014-9410-x .
1609. Gadissa, T., M. Nyadawa, F. Behulu and B. Mutua. 2018. The effect of climate change on loss of lake volume: Case of sedimentation in Central Rift Valley Basin, Ethiopia. Hydrology. 5(4): 67. DOI: 10.3390/hydrology5040067 .
1610. Galata, A.W. 2022. Modeling the hydrological characteristics of Hangar Watershed, Ethiopia. Water Supply. 22(4): 3896. DOI: 10.2166/ws.2022.018 .
1611. Galata, A.W. 2023. Quantifying soil erosion and identifiying critical source areas under current management in the Holeta Watershed, Awash Basin, Ethiopia. Water Conservation Science and Engineering. 8(1): 51. DOI: 10.1007/s41101-023-00226-8 .
1612. Galata, A.W., K.T. Tullu and A C. Guder. 2021. Evaluating watershed hydrological responses to climate changes at Hangar Watershed, Ethiopia. Journal of Water and Climate Change. 12(6): 2271-2287. DOI: 10.2166/wcc.2021.229 .
1613. Galata, A.W., T.A. Demissei and M.K. Leta. 2020. Watershed hydrological responses to changes in land use and land cover at Hangar Watershed, Ethiopia. Iranian Journal of Energy & Environment. 11(1): 1-7. DOI: 10.5829/ijee.2020.11.01.01 .
1614. Galavi, H., R. Kamal, M. Mirzaei and M. Ebrahimian. 2019. Assessing the contribution of different uncertainty sources in streamflow projections. Theoretical and Applied Climatology. 137: 1289–1303. DOI: 10.1007/s00704-018-2669-0 .
1615. Galbiati, L., F. Bouraoui, F.J. Elorza and G. Bidoglio. 2006. Modeling diffuse pollution loading into a Mediterranean lagoon: Development and application of an integrated surface-subsurface model tool. Ecological Modelling. 193(1-2): 4-18. DOI: 10.1016/j.ecolmodel.2005.07.036 .
1616. Galharte, C.A., J.M. Villela and S. Crestana. 2014. Sediment yield estimation due to changes in land use and cover. Revista Brasileira de Engenharia Agricola e Ambiental. 18(2): 194-201. DOI: 10.1590/S1415-43662014000200010 .
1617. Gali, R.K., K. R. Douglas-Mankin, X. Li and T. Xu. 2012. Assessing NEXRAD P3 data effects on stream-flow simulation using SWAT model in an agricultural watershed. Journal of Hydrologic Engineering. 17(11): 1-22. DOI: 10.1061/(ASCE)HE.1943-5584.0000618 .
1618. Gali, R.K., S.A. Cryer, N.N. Poletika and P.K. Dande. 2016. Modeling pesticide runoff from small watersheds through field-scale management practices: Minnesota watershed case study with chlorpyrifos. Air, Soil and Water Research. 9: 113-122. DOI: 10.4137/ASWR.S32777 .
1619. Gallay, I., B. Olah, Z. Gallayová and T. Lepeška. 2021. Monetary valuation of flood protection ecosystem service based on hydrological modelling and avoided damage costs. An example from the Čierny Hron River Basin, Slovakia. Water. 13(2): 198. DOI: 10.3390/w13020198 .
1620. Galleguillos, M., F. Gimeno, C. Puelma, M. Zambrano-Bigiarini, A. Lara and M. Rojas. 2021. Disentangling the effect of future land use strategies and climate change on streamflow in a Mediterranean catchment dominated by tree plantations. Journal of Hydrology. 595: 126047. DOI: 10.1016/j.jhydrol.2021.126047 .
1621. Galvan, L., M. Olfas, R.F. de Villaran, J.M. Domingo Santos, J.M. Nieto, A.M. Sarmiento and C.R. Canovas. 2009. Application of the SWAT model to an AMD-affected river (Meca River, SW Spain). Estimation of tranported pollutant load. Journal of Hydrology. 377(3-4): 445-454. DOI: 10.1016/j.jhydrol.2009.09.002 .
1622. Galvan, L., M. Olfas, T. Izquierdo, J.C. Ceron and R.F. de Villaran. 2014. Rainfall estimation in SWAT: An alternative method to simulate orographic precipitation. Journal of Hydrology. 509: 257–265. DOI: 10.1016/j.jhydrol.2013.11.044 .
1623. Galván, L., M. Olías, C.R. Cánovas, A.M. Sarmiento and J.M. Nieto. 2016. Hydrological modeling of a watershed affected by acid mine drainage (Odiel River, SW Spain). Assessment of the pollutant contributing areas. Journal of Hydrology. 540: 196-206. DOI: 10.1016/j.jhydrol.2016.06.005 .
1624. Galván, L., M. Olías, J.C. Cerónb and R. Fernández de Villarán. 2021. Inputs and fate of contaminants in a reservoir with circumneutral water affected by acid mine drainage. Science of the Total Environment. 762: 143614. DOI: 10.1016/j.scitotenv.2020.143614 .
1625. Galván, L., M. Olías, J.M. Nieto, J.C. Cerón and A.M. Sarmiento. 2007. Determination of dissolved contaminant load transported by Meca River (Huelva, Spain). Geogaceta. 43: 63-66. URL: https://sociedadgeologica.org/publicaciones/geogaceta/geogaceta-43-2007/.
1626. Galván, L., M. Olías, R. Fernández de Villarán and J.M. Domingo-Santos. 2007. Application of SWAT hydrological model to the Meca River Watershed (Huelva, Spain). Geogaceta. 42: 63-66. URL: https://sociedadgeologica.org/publicaciones/geogaceta/geogaceta-42-2007/.
1627. Gamvroudis, C., N.P. Nikolaidis, O. Tzoraki, V. Papadoulakis and N. Karalemas. 2015. Water and sediment transport modeling of a large temporary river basin in Greece. Science of the Total Environment. 508: 354-356. DOI: 10.1016/j.scitotenv.2014.12.005 .
1628. Gamvroudis, C., Z. Dokou, N.P. Nikolaidis and G.P. Karatzas. 2017. Impacts of surface and groundwater variability response to future climate change scenarios in a large Mediterranean watershed. Environmental Earth Sciences. 76: 385. DOI: 10.1007/s12665-017-6721-7 .
1629. Gan, R. and Q. Zuo. 2015. Assessing the digital filter method for base flow estimation in glacier melt dominated basins. Hydrological Processes. 30(9): 1367-1375. DOI: 10.1002/hyp.10724 .
1630. Gan, R., C. Chen, J. Tao and Y. Shi. 2021. Hydrological process simulation of sluice‑controlled rivers in the plains area of China based on an improved SWAT model. Water Resources Management. 35: 1817–1835. DOI: 10.1007/s11269-021-02814-6 .
1631. Gan, R., M. Xu and Q. Zuo. 2022. Baseflow separation and spatiotemporal variation characteristics in the Yiluo River Basin. Resources Science. 44(9): 1824-1834. DOI: 10.18402/resci.2022.09.07 .
1632. Gan, Rong, Y. Luo, Q. Zuo and L. Sun. 2015. Effects of projected climate change on the glacier and runoff generation in the Naryn River Basin, Central Asia. Journal of Hydrology. 523: 240–251. DOI: 10.1016/j.jhydrol.2015.01.057 .
1633. Gangsheng, W., M.E. Barber, S. Chen and J.Q. Wu. 2014. SWAT modeling with uncertainty and cluster analyses of tillage impacts on hydrological processes. Stochastic Environmental Research and Risk Assessment. 28: 225-238. DOI: 10.1007/s00477-013-0743-9 .
1634. Gao F., G. Feng, M. Han, P. Dash, J. Jenkins and C. Liu. 2019. Assessment of surface water resources in the Big Sunflower River Watershed using coupled SWAT–MODFLOW model. Water. 11(3): 528. DOI: 10.3390/w11030528 .
1635. Gao Y. and D. Long. 2008. Intercomparison of remote sensing-based models for estimation of evapotranspiration and accuracy assessment based on SWAT. Hydrological Processes. 22(25): 4850-4869. DOI: 10.1002/hyp.7104 .
1636. Gao, C., B. Su, V. Krysanova , Q. Zha, C. Chen, G. Luo, X. Zeng, J. Huang, M. Xiong, L. Zhang and T. Jiang. 2020. A 439-year simulated daily discharge dataset (1861–2299) for the upper Yangtze River, China. Earth System Science Data. 12(1): 382-402. DOI: 10.5194/essd-12-387-2020 .
1637. Gao, F., B. He, S. Xue and Y. Li. 2020. Impact of landscape pattern change on runoff processes in catchment area of the Ulungur River Basin. Water Supply. 20(3): 1046-1058. DOI: 10.2166/ws.2020.027 .
1638. Gao, F., G. Feng, Y. Ouyang, J. Jenkins and C. Liu. 2019. Simulating potential weekly stream and pond water available for irrigation in the Big Sunflower River Watershed of Mississippi Delta. Water. 11(6): 1271. DOI: 10.3390/w11061271 .
1639. Gao, J., A.Y. Sheshukov, H. Yen and M.J. White. 2017. Impacts of alternative climate information on hydrologic processes with SWAT: A comparison of NCDC, PRISM and NEXRAD datasets. Catena. 156: 353-369. DOI: 10.1016/j.catena.2017.04.010 .
1640. Gao, J., A.Y. Sheshukov, H. Yen, J.H. Kastens and D.L. Peterson. 2017. Impacts of incorporating dominant crop rotation patterns as primary land use change on hydrologic model performance. Agriculture Ecosystems and Environment. 247: 33-42. DOI: 10.1016/j.agee.2017.06.019 .
1641. Gao, J., A.Y. Sheshukov, H. Yen, K.R. Douglas-Mankin, M.J. White and J.G. Arnold. 2019. Uncertainty of hydrologic processes caused by bias-corrected CMIP5 climate change projections with alternative historical data sources. Journal of Hydrology. 568: 551-561. DOI: 10.1016/j.jhydrol.2018.10.041 .
1642. Gao, J., K. Bieger, M.J. White and J.G. Arnold. 2020. Development and accuracy assessment of a 12-digit hydrologic unit code based real-time climate database for hydrologic models in the US. Journal of Hydrology. 586: 124817. DOI: 10.1016/j.jhydrol.2020.124817 .
1643. Gao, J., P. Xie, L. Zhuo, K. Shang, X. Ji and P. Wu. 2021. Water footprints of irrigated crop production and meteorological driving factors at multiple temporal scales. Agricultural Water Management. 255: 107014. DOI: 10.1016/j.agwat.2021.107014 .
1644. Gao, J., Y. Jiang and Y. Anker. 2021. Contribution analysis on spatial tradeoff/synergy of karst soil conservation and water retention for various geomorphological types: Geographical detector application. Ecological Indicators. 125: 107470. DOI: 10.1016/j.ecolind.2021.107470 .
1645. Gao, L. and D. Li. 2014. A review of hydrological/water-quality models. Frontiers of Agricultural Science and Engineering. 1(4): 267-276. URL: https://journal.hep.com.cn/fase/EN/10.15302/J-FASE-2014041.
1646. Gao, Q. and M. Yu. 2024. Forest cover and locality regulate response of watershed discharge to rainfall variability in Caribbean Region. Forests. 15(1): 154. DOI: 10.3390/f15010154 .
1647. Gao, X., C. Yan, Y. Wang, X. Zhao, Y. Zhao, M. Sun and S. Peng. 2020. Attribution analysis of climatic and multiple anthropogenic causes of runoff change in the Loess Plateau—A case-study of the Jing River Basin. Land Degradation & Development. 31(13): 1622-1640. DOI: 10.1002/ldr.3557 .
1648. Gao, X., Q. Zhu, Z. Yang and H. Wang. 2018. Evaluation and hydrological application of CMADS against TRMM 3B42V7, PERSIANN-CDR, NCEP-CFSR, and guage-based datasets in Xiang River Basin of China. Water. 10(9): 1225. DOI: 10.3390/w10091225 .
1649. Gao, X., W. Ouyang, C. Lin, K. Wang, F. Hao, X. Hao and Z. Lian. 2021. Considering atmospheric N2O dynamic in SWAT model avoids the overestimation of N2O emissions in river networks. Water Research. 174: 115624. DOI: 10.1016/j.watres.2020.115624 .
1650. Gao, X., W. Ouyang, Z. Hao, X. Xie, Z. Lian, X. Hao and X. Wang. 2019. SWAT-N2O coupler: An integration tool for soil N2O emission modeling. Environmental Modelling & Software. 115: 86-97. DOI: 10.1016/j.envsoft.2019.02.008 .
1651. Gao, X., W. Ouyang, Z. Hao, Y. Shi, P. Wei and F. Hao. 2017. Farmland–atmosphere feedbacks amplify decreases in diffuse nitrogen pollution in a freeze-thaw agricultural area under climate warming conditions. Science of the Total Environment. 579: 484–494. DOI: 10.1016/j.scitotenv.2016.11.070 .
1652. Gao, X., X. Chen, T.W. Biggs and H. Yao. 2018. Separating wet and dry years to improve calibration of SWAT in Barrett Watershed, southern California. Water. 10(3): 274. DOI: 10.3390/w10030274 .
1653. Gao, Y.-Y., W. Zhao, Y.-Qi. Huang, V. Kumar, X. Zhang and G.-F. Hao. 2024. In silico environmental risk assessment improves efficiency for pesticide safety management. Science of the Total Environment. 908: 167878. DOI: 10.1016/j.scitotenv.2023.167878 .
1654. Garbrecht, J.D., J.M. Schneider and M.W. Van Liew. 2006. Monthly runoff predictions based on rainfall forecasts in a small Oklahoma watershed. Journal of the American Water Resources Association. 42(5): 1285-1295. DOI: 10.1111/j.1752-1688.2006.tb05301.x .
1655. Garcia, D.J., B.M. Lovett and F. You. 2019. Considering agricultural wastes and ecosystem services in Food-Energy-Water-Waste Nexus system design. Journal of Cleaner Production. 228: 941-955. DOI: 10.1016/j.jclepro.2019.04.314 .
1656. Garcia, G.J., H.G. Gamero, L.B.R. Garcia, C.A. Vettorazzi, R. Kroenert, M. Volk, A. Lauch and B. Meyer. 2006. Impact of land use on soil erosion and on the water balance and water quality in the Corumbatai Watershed. Holos Environment. 6(2): 118-136. URL: https://www.cea-unesp.org.br/holos/article/view/571.
1657. Garcia, X. 2023. Using the Soil and Water Assessment Tool (SWAT) to quantify the economic value of ecosystem services. River. 2(2): 173-185. DOI: 10.1002/rvr2.47 .
1658. Garcia, X., L. Estrada, J. Saló and V. Acuña. 2024. Blueing green water from forests as strategy to cope with climate change in water scarce regions: The case of the Catalan River Basin District. Journal of Environmental Management. 353: 120249. DOI: 10.1016/j.jenvman.2024.120249 .
1659. Garcia, X., L. Estrada, O. and V. Acuña. 2024. Correction: Assessing small hydropower viability in water‑scarce regions: Environmental flow and climate change impacts using a SWAT + based tool. Environmental Sciences Europe. 36: 142. DOI: 10.1186/s12302-024-00938-1 .
1660. Garcia, X., L. Estrada, O. Llorente and V. Acuña. 2024. Assessing small hydropower viability in water‑scarce regions: environmental flow and climate change impacts using a SWAT+ based tool. Environmental Sciences Europe. 36(1): 126. DOI: 10.1186/s12302-024-00938-1 .
1661. Garcia-Quijano, J.F., G. Deckmyn, E. Moons, S. Proost, R. Ceulemans and B. Muys. 2005. An integrated decision support framework for the prediction and evaluation of efficiency, environmental impact and total social cost of domestic and international forestry projects for greenhouse gas mitigation: Description and case studies. Forest Ecology and Management. 207: 245-262. DOI: 10.1016/j.foreco.2004.10.030 .
1662. Garee, K., X. Chen, A. Bao, Y. Wang and F. Meng. 2017. Hydrological modeling of the Upper Indus Basin: A case study from a high-altitude glacierized catchment Hunza. Water. 9(1): 17. DOI: 10.3390/w9010017 .
1663. Garg, K.K. and S.P. Wani. 2013. Opportunities to build groundwater resilience in the semi-arid tropics. Groundwater. 51(5): 679–691. DOI: 10.1111/j.1745-6584.2012.01007.x .
1664. Garg, K.K., K.H. Anantha, A. Venkataradha, S. Dixit, R. Singh and R. Ragab. 2021. Impact of rainwater harvesting on hydrological processes in a fragile watershed of south Asia. Groundwater. 59(6): 839-855. DOI: 10.1111/gwat.13099 .
1665. Garg, K.K., L. Bharati, A. Gaur, B. George, S. Acharya, K. Jella and B. Narasimhan. 2012. Spatial mapping of agricultural water productivity using the SWAT model in Upper Bhima Catchment, India. Irrigation and Drainage. 61(1): 60–79. DOI: 10.1002/ird.618 .
1666. Garg, K.K., L. Karlberg, J. Barron, S.P. Wani and J. Rockstrom. 2012. Assessing impacts of agricultural water interventions in the Kothapally Watershed, southern India. Hydrological Processes. 26(3): 387-404. DOI: 10.1002/hyp.8138 .
1667. Garg, K.K., L. Karlberg, S.P. Wani and G. Berndes. 2011. Jatropha production on wastelands in India: Opportunities and trade-offs for soil and water management at the watershed scale. Biofuels, Bioproducts and Biorefining. 5: 410-430. DOI: 10.1002/bbb.312 .
1668. Garg, K.K., S.P. Wani, J. Barron, L. Karberg and J. Rockstrom. 2013. Up-scaling potential impacts on water flows from agricultural water interventions: Opportunities and trade-offs in the Osman Sagar Catchment, Musi Sub-basin, India. Hydrological Processes. 27(26): 3905–3921. DOI: 10.1002/hyp.9516 .
1669. Garizi, A.Z. and A. Talebi. 2016. Identification of critical sediment source areas across the Gharesou watershed, northeastern Iran, using hydrological modeling. Environmental Resources Research. 4(1): 1-25. URL: http://ijerr.gau.ac.ir/article_3150.html.
1670. Gashaw, T., A.W. Worqlul, Y.T. Dile, M. Sahle, A.A. Adem, A. Bantider, Z. Teixiera, T. Alamirew, D.T. Meshesha and G. Bayable. 2022. Evaluating InVEST model for simulating annual and seasonal water yield in data‐scarce regions of the Abbay (Upper Blue Nile) Basin: Implications for water resource planners and managers. Sustainable Water Resources Management. 8(5): 170. DOI: 10.1007/s40899-022-00757-3 .
1671. Gashaw, T., T. Tulu, M. Argaw and A.W. Worqlul. 2018. Modeling the hydrological impacts of land use/land cover changes in the Andassa watershed, Blue Nile Basin, Ethiopia. Science of the Total Environment. 619-620: 1394-1408. DOI: 10.1016/j.scitotenv.2017.11.191 .
1672. Gashaw, T., Y.T. Dile, A.W. Worglul, A. Bantider, G. Zeleke, W. Bewket and T. Alamirebw. 2021. Evaluating the effectiveness of best management practices on soil erosion reduction using the SWAT model: for the case of Gumara Watershed, Abbay (Upper Blue Nile) Basin. Environmental Management. 68(2): 240-261. DOI: 10.1007/s00267-021-01492-9 .
1673. Gassman, P.W. and R.S. Kanwar. 2009. Message from the Guest Editor and Chief Editor on this Special Issue. International Agricultural Engineering Journal. 18(1-2). URL: http://www.iaej.cn/EN/volumn/volumn_1136.shtml.
1674. Gassman, P.W. and R.S. Kanwar. 2009. Note about ongoing Special Issue. International Agricultural Engineering Journal. 19(2). URL: http://www.iaej.cn/EN/volumn/volumn_1139.shtml.
1675. Gassman, P.W. and R.S. Kanwar. 2009. Special Issue Editorial. International Agricultural Engineering Journal. 18(3-4). URL: http://www.iaej.cn/EN/volumn/volumn_1137.shtml.
1676. Gassman, P.W. and Y. Wang. 2015. IJABE SWAT Special Issue: Innovative modeling solutions for water resource problems. International Journal of Agricultural and Biological Engineering. 8(3): 1-8. DOI: 10.3965/j.ijabe.20150803.1763 .
1677. Gassman, P.W., A.M. Valcu-Lisman, C.L. Kling, S.K. Mickelson, Y. Panagopoulos, R. Cibin, I. Chaubey, C.F. Wolter and K.E. Schilling. 2017. Assessment of bioenergy cropping scenarios for the Boone River Watershed in north central Iowa, United States. Journal of the American Water Resources Association. 53(6): 1336-1359. DOI: 10.1111/1752-1688.12593 .
1678. Gassman, P.W., A.M. Sadeghi and R. Srinivasan. 2014. Applications of the SWAT Model Special Section: Overview and Insights. Journal of Environmental Quality. 43(1): 1-8. DOI: 10.2134/jeq2013.11.0466 .
1679. Gassman, P.W., E. Osei, A. Saleh and L.M. Hauck. 2002. Application of an environmental and economic modeling system for watershed assessments. Journal of the American Water Resources Association. 38(2): 423-438. DOI: 10.1111/j.1752-1688.2002.tb04327.x .
1680. Gassman, P.W., E. Osei, A. Saleh, J. Rodecap, S. Norvell and J. Williams. 2006. Alternative practices for sediment and nutrient loss control on livestock farms in northeast Iowa. Agriculture Ecosystems and Environment. 117(2-3): 135-144. DOI: 10.1016/j.agee.2006.03.030 .
1681. Gassman, P.W., J. Jeong, J. Boulange, B. Narasimhan, T. Kato, H. Somura, H. Watanabe, S. Eguchi, Y. Cui, A. Sakaguchi, L.H. Tu, R.Jiang, M.-K. Kim, J.G. Arnold and W. Ouyang. 2022. Simulation of rice paddy systems in SWAT: A review of previous applications and proposed SWAT+ rice paddy module. International Journal of Agricultural and Biological Engineering. 15(1): 1-24. DOI: 10.25165/j.ijabe.20221501.7147 .
1682. Gassman, P.W., J.R. Williams, X. Wang, A. Saleh, E. Osei, L.M. Hauck, R.C. Izaurralde and J.D. Flowers. 2010. The Agricultural Policy/Enviromental EXtender (APEX) model: An emerging tool for landscape and watershed environmental analyses. Transactions of the ASABE. 53(3): 711-740. DOI: 10.13031/2013.30078 .
1683. Gassman, P.W., M.R. Reyes, C.H. Green and J.G. Arnold. 2007. The Soil and Water Assessment Tool: Historical development, applications, and future research directions. Transactions of the ASABE. 50(4): 1211-1250. DOI: 10.13031/2013.23637 .
1684. Gathagu, J.N., J.K. Sang and C.W. Maina. 2017. Modelling the impacts of structural conservation measures on sediment and water yield in Thika-Chania catchment, Kenya. International Soil and Water Conservation Research. DOI: 10.1016/j.iswcr.2017.12.007 .
1685. Gathagu, J.N., K.A. Mourad and J. Sang. 2018. Effectiveness of contour farming and filter strips on ecosystem services. Water. 10(10): 1312. DOI: 10.3390/w10101312 .
1686. Gaur, S., A. Bandyopadhyay and R. Singh. 2021. Modelling potential impact of climate change and uncertainty on streamflow projections: A case study. Journal of Water and Climate Change. 12(2): 384-400. DOI: 10.2166/wcc.2020.254 .
1687. Gautam, K. and G. Corzo. 2023. Evaluating the impact of ponds on flood and drought mitigation in the Bagmati River Basin, Nepal. Hydrology Research. 54(10): 1163–1180. DOI: 10.2166/nh.2023.050 .
1688. Gautam, S., C. Costello, C. Baffaut, A. Thompson and E.J. Sadler. 2021. Projection of future drought and extreme events occurrence in Goodwater Creek Experimental Watershed, Midwestern US. Hydrological Sciences Journal. 66(6): 1045-1058. DOI: 10.1080/02626667.2021.1906878 .
1689. Gautam, S., V. Dahai and R. Bhattarai. 2019. Impacts of DEM source, resolution and area threshold values on SWAT generated stream network and streamflow in two distinct Nepalese catchments. Environmental Processes. 6: 597-617. DOI: 10.1007/s40710-019-00379-6 .
1690. Gayley, A. 2013. A SWAT- based evapotranspirative water conservation analysis performed on irrigated croplands to determine potential regional water savings. Journal of Irrigation and Drainage Engineering. 139(6): 456–462. DOI: 10.1061/(ASCE)IR.1943-4774.0000562 .
1691. Gebiaw, T.A., Z.T. Engidasew, Y. Bofu, I.D. Rutherfurd and J. Jeong. 2017. Streamflow and sediment yield prediction for watershed prioritization in the Upper Blue Nile River Basin, Ethiopia. Water. 9(10): 782. DOI: 10.3390/w9100782 .
1692. Gebre, S.L., D. Getahun, F. Fufa, O.H. Diriba, A. Nigussie and E. Alemayehu. 2022. Hydrological responses of land use land cover change on the Hangar Catchment, Blue Nile Basin. Ethiopian Journal of Applied Science and Technology. 13(1): 33-44. URL: https://journals.ju.edu.et/index.php/ejast/article/ view/3853.
1693. Gebrechorkos, S.H., C. Bernhofer and S. Hülsmann. 2020. Climate change impact assessment on the hydrology of a large river basin in Ethiopia using a local-scale climate modelling approach. Science of the Total Environment. 742: 140504. DOI: 10.1016/j.scitotenv.2020.140504 .
1694. Gebremariam, S.Y., J.F. Martin, C. DeMarchi, N.S. Bosch, R. Confessor and S.A. Ludsin. 2014. A comprehensive approach to evaluating watershed models for predicting river flow regimes critical to downstream ecosystem services. Environmental Modelling & Software. 61: 121-134. DOI: 10.1016/j.envsoft.2014.07.004 .
1695. Gebremicael, T.G., Y.A. Mohamed, G.D. Betrie, P. van der Zaag and E. Teferi. 2013. Trend analysis of runoff and sediment fluxes in the Upper Blue Nile Basin: A combined analysis of statistical tests, physically-based models and landuse maps. Journal of Hydrology. 482: 57–68. DOI: 10.1016/j.jhydrol.2012.12.023 .
1696. Gemechu, T.M. 2022. Impacts of climate change on water balance components of Guder Catchment, Upper Abbay Basin, Ethiopia: SWAT model. Sustainable Water Resources Management. 8(5): 144. DOI: 10.1007/s40899-022-00733-x .
1697. Gemechu, T.M., H. Zhao, S. Bao, C. Yangzong, Y. Liu, F. Li and H. Li. 2021. Estimation of hydrological components under current and future climate scenarios in Guder Catchment, Upper Abbay Basin, Ethiopia, using the SWAT. Sustainability. 13(17): 9689. DOI: 10.3390/su13179689 .
1698. Gemitzi, A. and V. Lakshmi. 2017. Evaluating renewable groundwater stress with GRACE data in Greece. Groundwater. 56(3): 501-514. DOI: 10.1111/gwat.12591 .
1699. Gemitzi, A., H. Ajami and H.-H. Richnow. 2017. Developing empirical monthly groundwater recharge equations based on modeling and remote sensing data – Modeling future groundwater recharge to predict potential climate change impacts. Journal of Hydrology. 546: 1-13. DOI: 10.1016/j.jhydrol.2017.01.005 .
1700. Geng, R. and A.N. Sharpley. 2019. A novel spatial optimization model for achieve the trad-offs placement of best management practices for agricultural non-point source pollution control at multi-spatial scales. Journal of Cleaner Production. 234: 1023-1032. DOI: 10.1016/j.jclepro.2019.06.277 .
1701. Geng, X., C. Zhang, F. Zhang, Z. Chen, Z. Nie and M. Liu. 2021. Hydrological modeling of karst watershed containing subterranean river using a modified SWAT model: A case study of the Daotian River Basin, southwest China. Water. 13(24): 3552. DOI: 10.3390/w13243552 .
1702. Germeç, E. and O. Ürker. 2023. Investigation of a SWAT model for environmental health management based on the water quality parameters of a stream system in Central Anatolia (Türkiye). Sustainability. 15(18): 13850. DOI: 10.3390/su151813850 .
1703. Gessesse, A.A., A.M. Melesse, F.F. Abera and A.Z. Abiy. 2019. Modeling hydrological responses to land use dynamics, Choke, Ethiopia. Water Conservation Science and Engineering. 4: 201-212. DOI: 10.1007/s41101-019-00076-3 .
1704. Gessesse, B., W. Bewket and A. Bräuning. 2015. Model-based characterization and monitoring of runoff and soil erosion in response to land use/land cover changes in the Modjo watershed, Ethiopia. Land Degradation & Development. 26(7): 711-724. DOI: 10.1002/ldr.2276 .
1705. Getachew, B. and B.R. Manjunatha. 2022. Impacts of land-use change on the hydrology of Lake Tana Basin, Upper Blue Nile River Basin, Ethiopia. Global Challenges. 6(8): 220004144. DOI: 10.1002/gch2.202200041 .
1706. Getachew, B. and B.R. Manjunatha. 2022. Potential climate change impact assessment on the hydrology of the Lake Tana Basin, Upper Blue Nile River Basin, Ethiopia. Physics and Chemistry of the Earth. 127: 103162. DOI: 10.1016/j.pce.2022.103162 .
1707. Getachew, B., B.R. Manjunatha and H.G. Bhat. 2021. Modeling projected impacts of climate and land use/land cover changes on hydrological responses in the Lake Tana Basin, Upper Blue Nile River Basin, Ethiopia. Journal of Hydrology. 595: 125974. DOI: 10.1016/j.jhydrol.2021.125974 .
1708. Getahun, E. and L. Keefer. 2016. Integrated modeling system for evaluating water quality benefits of agricultural watershed management practices: Case study in the Midwest. Sustainability of Water Quality and Ecology. 8: 14-29. DOI: 10.1016/j.swaqe.2016.06.002 .
1709. Getaun, E. and L. Keefer. 2022. Assessing the effectiveness of winter cover crops for controlling agricultural nutrient losses. Journal of the American Water Resources Association. : 1-13. DOI: 10.1111/1752-1688.13058 .
1710. Gevaert, V., A. Van Griensven, K. Holvoet, P. Seuntjens and P.A. Vanrolleghem. 2008. SWAT developments and recommendations for modelling agricultural pesticide mitigation measures in river basins. Hydrological Sciences Journal. 53(5 ): 1075-1089. DOI: 10.1623/hysj.53.5.1075 .
1711. Geying, L., Y. Ge and G. Feng. 2006. Preliminary study on assessment of nutrient transport in the Taihu Basin based on SWAT modeling. Science in China Series D: Earth Sciences. 49(Suppl. I): 135-145. DOI: 10.1007/s11430-006-8113-9 .
1712. Geza, M. and J.E. McCray. 2008. Effects of soil data resolution on SWAT model stream flow and water quality predictions. Journal of Environmental Management. 88(3): 393-406. DOI: 10.1016/j.jenvman.2007.03.016 .
1713. Geza, M., B.J. Barfield, R.L. Huhnke, A. Stoecker, D.E. Storm and E.W. Stevens. 2009. Comparison of Targeted Replacement and Vegetative Filter Strips for Sediment Control and Cost Effectiveness. Journal of Water Resources Planning and Management. 135(5): 406-409. DOI: 10.1061/(ASCE)0733-9496(2009)135:5(406) .
1714. Ghafari, H. and M. Gorji. 2021. Evaluation of soil erosion effects on rainfed wheat (Triticum aestivum) yield using SWAT model. Water and Soil Management and Modeling. 1(3): 53-66. DOI: 10.22098/mmws.2021.9267.1029 .
1715. Ghaffari, G. 2018. Erosion intensity zoning by using SWAT model in Gheshlagh Dam Basin. Journal of Geography and Development. 16(50): 55-74. DOI: 10.22111/gdij.2018.3553 .
1716. Ghaffari, G., S. Keesstra, J. Ghodousi and H. Ahmadi. 2009. SWAT-simulated hydrological impact of land-use change in the Zanjanrood Basin, Northwest Iran. Hydrological Processes. 24(7): 892-903. DOI: 10.1002/hyp.7530 .
1717. Ghafourian, S., B. Aminnejad and H. Ebrahimi. 2023. Evaluating direct assimilation of satellite-based potential evapotranspiration into SWAT for improving hydrological modeling. Journal of Hydrologic Engineering. 28(11): 05023019. DOI: 10.1061/JHYEFF.HEENG-5936 .
1718. Ghaith, M. and Z. Li. 2020. Propagation of parameter uncertainty in SWAT: A probabilistic forecasting method based on polynomial chaos expansion and machine learning. Journal of Hydrology. 586: 124854. DOI: 10.1016/j.jhydrol.2020.124854 .
1719. Ghaith, M., Z. Li and B.W. Baetz. 2021. Uncertainty analysis for hydrological models with interdependent parameters: An improved polynomial chaos expansion approach. Water Resources Research. 57(8): e2020WR029149. DOI: 10.1029/2020WR029149 .
1720. Gharib, A., E.G.R. Davies, G.G. Goss and M. Faramarzi. 2017. Assessment of the combined effects of threshold selection and parameter estimation of Generalized Pareto Distribution with applications to flood frequency analysis. Water. 9(9): 692. DOI: 10.3390/w9090692 .
1721. Gharibdousti, S.R., G. Kharel and A. Stoecker. 2019. Modeling the impacts of agricultural best management practices on runoff, sediment, and crop yield in an agriculture-pasture intensive watershed. PeerJ. : e7093. DOI: 10.7717/peerj.7093 .
1722. Gharibdousti, S.R., G. Kharel, R.B. Miller, E. Linde and A. Stoecker. 2019. Projected climate could increase water yield and cotton yield but decrease winter wheat and sorghum yield in an agricultural watershed in Oklahoma. Water. 11: 105. DOI: 10.3390/w11010105 .
1723. Ghashghaie, M., A. Bagheri and S. Morid. 2013. Rainfall-runoff modeling in a watershed scale using an object oriented approach based on the concepts of system dynamics. Water Resources Management. 27(15): 5119-5141. DOI: 10.1007/s11269-013-0457-2 .
1724. Ghazal, K.A., O.T. Leta, A.I. El-Kadi and H. Dulai. 2020. Impact of coastal wetland restoration plan on the water balance components of Heeia Watershed, Hawaii. Hydrology. 7(4): 86. DOI: 10.3390/hydrology7040086 .
1725. Ghebremichael, L., W. Chen, A. Jacobson, C. Roy, D.B. Perkins and R. Brain. 2022. Coupling field‐scale and watershed models for regulatory modeling of pesticide aquatic exposures in streams. Integrated Environmental Assessment and Management. 18(6): 1678-1693. DOI: 10.1002/ieam.4596 .
1726. Ghebremichael, L.T., T.L. Veith, J.M. Hamlett and W.J. Gburek. 2008. Precision feeding and forage management effects on phosphorus loss modeled at a watershed scale. Journal of Soil and Water Conservation. 63(5): 280-291. DOI: 10.2489/jswc.63.5.280 .
1727. Ghebremichael, L.T., T.L. Veith and M.C. Watzin. 2010. Determination of critical source areas for phosphorus loss: Lake Champlain Basin, Vermont. Transactions of the ASABE. 53(5): 1595-1604. DOI: 10.13031/2013.34898 .
1728. Ghebremichael, L.T., T.L. Veith and J.M. Hamlett. 2013. Integrated watershed- and farm-scale modeling framework for targeting critical source areas while maintaining farm economic viability. Journal of Environmental Management. 114: 381–394. DOI: 10.1016/j.jenvman.2012.10.034 .
1729. Ghezelsofloo, A.A., M. Hajibigloo, M. Eftekhari, S. Mahmoodizadeh, M. Akbari and S.A. Eslaminezhad. 2022. Simulation of runoff from Atrak River Basin Iran using SWAT model (a case study). Soil & Environment. 41(1): 33-45. URL: http://www.se.org.pk/Papers.aspx?issueid=86.
1730. Ghimire, S. and J. Johnston. 2013. Impacts of domestic and agricultural rainwater harvesting systems on watershed hydrology: A case study in the Albemarle-Pamlico River Basins (USA). Ecohydrology & Hydrobiology. 13(2): 159–171. DOI: 10.1016/j.ecohyd.2013.03.007 .
1731. Ghimire, U., A. Agarwal, N.K. Shrestha, P. Daggupati, G. Srinivasan and H.H Than. 2020. Applicability of lumped hydrological models in a data-constrained river basin of Asia. Journal of Hydrologic Engineering. 25 (8): 05020018. DOI: 10.1061/(ASCE)HE.1943-5584.0001950 .
1732. Ghimire, U., N.K. Shrestha, A. Biswas, C. Wagner-Riddle, W. Yang, S. Prashar, R. Rudra and P. Daggupati. 2020. A Review of Ongoing Advancements in Soil and Water Assessment Tool (SWAT) for Nitrous Oxide (N2O) Modeling. Atmosphere. 11(5): 450. DOI: 10.3390/atmos11050450 .
1733. Ghobadi, Y., B. Pradhan, G.A. Sayyad, K. Kabiri and Y. Falamarzi. 2015. Simulation of hydrological processes and effects of engineering projects on the Karkheh River Basin and its wetland using SWAT2009. Quaternary International. 374: 144-153. DOI: 10.1016/j.quaint.2015.02.034 .
1734. Gholami, A., M. Habibnejad Roshan, K. Shahedi, M. Vafakhah and K. Solaymani. 2016. Hydrological stream flow modeling in the Talar catchment (central section of the Alborz Mountains, north of Iran): Parameterization and uncertainty analysis. Journal of Water and Land Development. 30(7-9): 57-69. DOI: 10.1515/jwld-2016-0022 .
1735. Gholami, A., M.H. Roshan, K. Shahedi, M. Vafakhah and K. Solaymani. 2018. Future impacts of climate change on actual evapotranspiration and soil water in the Talar Watershed in Mazandran Province. Physical Geography Research Quarterly. 50(3): 511-529. URL: https://jphgr.ut.ac.ir/article_69791.html?lang=en.
1736. Gholami, F., A. Nemati, Y. Li and J. Zhang. 2022. Calculation of runoff computation cost and sensitivity analysis of topological attributes. Remote Sensing Applications: Society and Environment. 26: 100714. DOI: 10.1016/j.rsase.2022.100714 .
1737. Gholami, F., Z. Sedighifar, P. Ghaforpur, Y. Li and J. Zhan. 2023. Spatial–temporal analysis of various land use classifications and their long-term alteration's impact on hydrological components: Using remote sensing, SAGA-GIS, and ARCSWAT model. Environmental Science Water Research & Technology. 9(4): 1161-1181. DOI: 10.1039/d2ew00138a .
1738. Ghonchepour, D., A. Sadoddin, A. Bahremand, B. Croke, A. Jakeman and A. Salmanmahiny. 2021. A methodological framework for the hydrological model selection process in water resource management projects. Natural Resource Modeling. 34(3): e12326. DOI: 10.1111/nrm.12326 .
1739. Ghoraba, S.M. 2015. Hydrological modeling of the Simly Dam watershed (Pakistan) using GIS and SWAT model. Alexandria Engineering Journal. 54(3): 583-594. DOI: 10.1016/j.aej.2015.05.018 .
1740. Ghumaid, A. 2022. Study the change in hydrological conditions for the Azraq Basin using incremental climate change scenarios: A Soil and Water Assessment Model and geospatial techniques. Dirasat, Human and Social Sciences. 49(3): 69-95. DOI: 10.35516/hum.v49i3.1336 .
1741. Giacomoni, M.H. and E.Z. Berglund. 2015. Complex adaptive modeling framework for evaluating adaptive demand management for urban water resources sustainability. Journal of Water Resources Planning and Management. 141(11). DOI: 10.1061/(ASCE)WR.1943-5452.0000543 .
1742. Giacomoni, M.H., L. Kanta and E.M. Zechman. 2013. Complex adaptive systems approach to simulate the sustainability of water resources and urbanization. Journal of Water Resources Planning and Management. 139(5): 554-564. DOI: 10.1061/(ASCE)WR.1943-5452.0000302 .
1743. Giacomoni, M.H., R. Gomez and E.Z. Berglund. 2014. Hydrologic impact assessment of land cover change and stormwater management using the hydrologic footprint residence. Journal of the American Water Resources Association. 50(5): 1242-1256. DOI: 10.1111/jawr.12187 .
1744. Giang, P.Q., K. Toshiki, M. Sakata, S. Kunikane and T.Q. Vinh. 2014. Modelling climate change impacts on the seasonality of water resources in the Upper Ca River Watershed in Southeast Asia. The Scientific World Journal. : 279135. DOI: 10.1155/2014/279135 .
1745. Giang, P.Q., K. Toshiki, M. Sakata and S. Kunikane. 2014. Modelling the seasonal response of sediment yield to climate change in the Laos-Vietnam transnational Upper Ca River Watershed. EnvironmentAsia. 7(2): 152-162.
1746. Giang, P.Q., L.T. Giang and K. Toshiki. 2017. Spatial and temporal responses of soil erosion to climate change impacts in a transnational watershed in Southeast Asia. Climate. 5(1): 22. DOI: 10.3390/cli5010022 .
1747. Gies, L., D.B. Agusdinata and V. Merwade. 2014. Drought adaptation policy development and assessment in East Africa using hydrologic and system dynamics modeling. Natural Hazards. 74: 789-813. DOI: 10.1007/s11069-014-1216-2 .
1748. Giese, E., A. Rockler A. Shirmohammadi and M.A. Pavao-Zuckerman. 2019. Assessing watershed-scale stormwater green infrastructure response to climate change in Clarksburg, Maryland. Journal of Water Resources Planning and Management. 145(10): 05019015. DOI: 10.1061/(ASCE)WR.1943-5452.0001099 .
1749. Gikas, G.D., T. Yiannakopoulou and V.A. Tsihrintzis. 2006. Modeling of non-point source pollution in a Mediterranean drainage basin. Environmental Modeling & Assessment. 11(3): 219-233. DOI: 10.1007/s10666-005-9017-3 .
1750. Gikas, G.D., T. Yiannakopoulou and V.A. Tsihrintzis. 2009. Hydrodynamic and nutrient modeling in a Mediterranean coastal lagoon. Journal of Environmental Science and Health, Part A - Toxic/Hazardous Substances and Environmental Engineering. 44(13): 1400-1423. DOI: 10.1080/10934520903217336 .
1751. Gildow, M., N. Aloysius, S. Gebremariam and J. Martin. 2016. Fertilizer placement and application timing as strategies to reduce phosphorus loading to Lake Erie. Journal of Great Lakes Research. 42(6): 1281-1288. DOI: 10.1016/j.jglr.2016.07.002 .
1752. Giles, N.A., M. Babbar-Sebens, R. Srinivasan, D.L. Ficklin and B. Barnhart. 2019. Optimization of linear stream temperature model parameters in the Soil and Water Assessment Tool for the continental United States. Ecological Engineering. 127: 125-134. DOI: 10.1016/j.ecoleng.2018.11.012 .
1753. Giri S., N.N. Arbab and R.G. Lathrop. 2019. Assessing the potential impacts of climate and land use change on water fluxes and sediment transport in a loosely coupled system. Journal of Hydrology. 577: 123955. DOI: 10.1016/j.jhydrol.2019.123955 .
1754. Giri, S. and A.P. Nejadhashemi. 2014. Application of analytical hierarchy process for effective selection of agricultural best management practices. Journal of Environmental Management. 132: 165-177. DOI: 10.1016/j.jenvman.2013.10.021 .
1755. Giri, S., A.P. Nejadhashemi and S.A. Woznicki. 2012. Evaluation of targeting methods for implementation of best management practices in the Saginaw River Watershed. Journal of Environmental Management. 103: 24-40. DOI: 10.1016/j.jenvman.2012.02.033 .
1756. Giri, S., A.P. Nejadhashemi and S.A. Woznicki. 2016. Regulators’ and stakeholders’ perspectives in a framework for bioenergy development. Land Use Policy. 59: 143-153. DOI: 10.1016/j.landusepol.2016.08.028 .
1757. Giri, S., A.P. Nejadhashemi, S. Woznickia and Z. Zhang. 2014. Analysis of best management practice effectiveness and spatiotemporal variability based on different targeting strategies. Hydrological Processes. 28(3): 431–445. DOI: 10.1002/hyp.9577 .
1758. Giri, S., A.P. Nejadhashemi, Z. Zhang and S.A. Woznicki. 2015. Integrating statistical and hydrological models to identify implementation sites for agricultural conservation practices. Environmental Modelling & Software. 72: 327-340. DOI: 10.1016/j.envsoft.2015.01.018 .
1759. Giri, S., N.N. Arbab and R.G. Lathrop. 2018. Water security assessment of current and future scenarios through an integrated modeling framework in the Neshanic River Watershed. Journal of Hydrology. 563: 1025-1041. DOI: 10.1016/j.jhydrol.2018.05.046 .
1760. Giri, S., R.G. Lathrop and C.C. Obropta. 2020. Climate change vulnerability assessment and adaptation strategies through T best management practices. Journal of Hydrology. 580: 124311. DOI: 10.1016/j.jhydrol.2019.124311 .
1761. Giri, S., Z. Qiu, T. Prato and B. Luo. 2016. An integrated approach for targeting critical source areas to control nonpoint source pollution in watersheds. Water Resources Management. 30(14): 5087–5100. DOI: 10.1007/s11269-016-1470-z .
1762. Girma, R., A. Moges and C. Fürst. 2023. Integrated modeling of land degradation dynamics and insights on the possible future management alternatives in the Gidabo River Basin, Ethiopian Rift Valley. Land. 12(9): 1809. DOI: 10.3390/land12091809 .
1763. Gitau, M.W. and I. Chaubey. 2010. Regionalization of SWAT model parameters for use in ungauged watersheds. Water. 2(4): 849-871. DOI: 10.3390/w2040849 .
1764. Gitau, M.W., L.-C. Chiang, M. Sayeed and I. Chaubey. 2011. Watershed modeling using large-scale ditributed computing in Condor and the Soil and Water Assessment Tool model. Simulation: Transactions of The Society for Modeling and Simulation International. 88(3): 1-16. DOI: 10.1177/0037549711402524 .
1765. Gitau, M.W., T.L. Veith and W.J. Gburek. 2004. Farm-level optimization of BMP placement for cost-effective pollution reduction. Transactions of the ASAE. 47(6): 1923-1931. DOI: 10.13031/2013.17805 .
1766. Gitau, M.W., T.L. Veith, W.J. Gburek and A.R. Jarrett. 2006. Watershed level best management practice selecton and placement in the Town Brook Watershed, New York. Journal of the American Water Resources Association. 42(6): 1565-1581. DOI: 10.1111/j.1752-1688.2006.tb06021.x .
1767. Gitau, M.W., W.J. Gburek and P.L. Bishop. 2008. Use of the SWAT model to quantify water quality effects of agicultural BMPs at the farm-scale level. Transactions of the ASABE. 51(6): 1925-1936. URL: http://lshs.tamu.edu/docs/lshs/end-notes/use%20of%20the%20swat%20model%20to%20quantify%20water%20-1773351426/use%20of%20the%20swat%20model%20to%20quantify%20water%20quality%20effects%20of%20agricultural%20bmps%20at%20the%20farm-scale%20level.pdf.
1768. Githui, F., B. Selle and T. Thayalakumaran. 2012. Recharge estimation using remotely sensed evapotranspiration in an irrigated catchment in southeast Australia. Hydrological Processes. 26: 1379-1389. DOI: 10.1002/hyp.8274 .
1769. Githui, F., F. Mutua and W. Bauwens. 2009. Estimating the impacts of land-cover change on runoff using the soil and water assessment tool (SWAT): Case study of Nzoia catchment, Kenya. Hydrological Sciences Journal. 54(5): 899-908. DOI: 10.1623/hysj.54.5.899 .
1770. Githui, F., T. Thayalakumaran and B. Selle. 2016. Estimating irrigation inputs for distributed hydrological modelling: A case study from an irrigated catchment in southeast Australia. Hydrological Processes. 30(12): 1824-1835. DOI: 10.1002/hyp.10757 .
1771. Githui, F., W. Gitan, F. Mutua and W. Bauwens. 2009. Climate change impact on SWAT simulated streamflow in western Kenya. International Journal of Climatology. 29(12): 1823-1834. DOI: 10.1002/joc.1828 .
1772. Giudice, D.D., R.L. Muenich, M.M. Kalcic, N.S. Bosch, D. Scavia and A.M. Michalak. 2018. On the practical usefulness of least squares for assessing uncertainty in hydrologic and water quality predictions. Environmental Modelling & Software. 105: 286-295. DOI: 10.1016/j.envsoft.2018.03.009 .
1773. Giuliani, G. and D. Gorgan. 2013. EnviroGRIDS special issue on "Building a Regional Observation System in the Black Sea Catchment". International Journal of Advanced Computer Science and Applications. EnviroGRIDS special Issue: 4-8. URL: http://thesai.org/Publications/ViewIssue?volume=3&issue=3&code=SpecialIssue.
1774. Giuliani, G., K. Rahman, N. Ray and A. Lehmann. 2013. OWS4SWAT: Publishing and Sharing SWAT Outputs with OGC standards. International Journal of Advanced Computer Science and Applications. EnviroGRIDS Special Issue: 90-98. DOI: 10.14569/SpecialIssue.2013.030311 .
1775. Giuliani, G., N. Ray and A. Lehman. 2011. Grid-enabled spatial data infrastructure for environmental sciences: Challenges and opportunities. Future Generation Computer Systems. 27(3): 292-303. DOI: 10.1016/j.future.2010.09.011 .
1776. Gizaw, D. and M. Kebede. 2019. Spatial and temporal distribution of sediment yield-case study Nashe, Blue Nile basin, Ethiopia. Journal of Water Sustainability. 9(2): 23-34. DOI: 10.11912/jws.2019.9.2.23-34 .
1777. Gkiatas, G., I. Kasapidis, P. Koutalakis, V. Iakovoglou, A. Savvopoulou, I. Germantzidis and G.N. Zaimes. 2021. Enhancing urban and sub-urban riparian areas through ecosystem services and ecotourism activities. Water Supply. 21(6): 2974-2988. DOI: 10.2166/ws.2021.114 .
1778. Glavan, M., A. Ceglar and M. Pintar. 2015. Assessing the impacts of climate change on water quantity and quality modelling in small Slovenian Mediterranean catchment – lesson for policy and decision makers. Hydrological Processes. 29(14): 3124-3144. DOI: 10.1002/hyp.10429 .
1779. Glavan, M., M. Pintar and J. Urbanc. 2015. Spatial variation of crop rotations and their impacts on provisioning ecosystem services on the River Drava alluvial plain. Sustainability of Water Quality and Ecology. 5: 31-48. DOI: 10.1016/j.swaqe.2015.01.004 .
1780. Glavan, M., M. Pintar and M. Volk. 2013. Land use change in a 200-year period and its effect on blue and green water flow in two Slovenian Mediterranean catchments - lessons for the future. Hydrological Processes. 27(26): 3964–3980. DOI: 10.1002/hyp.9540 .
1781. Glavan, M., P.O. Zorčič and M. Pintar. 2019. A tool for the selection and implementation of eco-remediation mitigation measures. Ecological Engineering. 130: 53-66. DOI: 10.1016/j.ecoleng.2019.01.022 .
1782. Glavan, M., S. White and I.P. Holman. 2010. Evaluation of river water quality simulations at a daily time step - experience with SWAT in the Axe Catchment, UK. Clean - Soil, Air, Water. 39 (1): 43–54. DOI: 10.1002/clen.200900298 .
1783. Glavan, M., S.M. White and I.P. Holman. 2012. Water quality targets and maintenance of valued landscape character - Experience in the Axe Catchment, UK. Journal of Environmental Management. 103: 142-153. DOI: 10.1016/j.jenvman.2012.03.009 .
1784. Glavan, M., V. Milicic and M. Pintar. 2013. Finding options to improve catchment water quality—Lessons learned from historical land use situations in a Mediterranean catchment in Slovenia. Ecological Modelling. 261-262: 58-73. DOI: 10.1016/j.ecolmodel.2013.04.004 .
1785. Godin, P. J.S. Russell, J.D. MacDonald, G. Putz and E.E. Prepas. 2008. Development of opinion-based generic reforestation regimes and their application in vegetation management and water modelling in the upper and lower foothills of Alberta. Journal of Environmental Engineering and Science. 7(S1): S23-S33. URL: http://www.nrcresearchpress.com/doi/abs/10.1139/s09-001#.UlHvfxAlKTI.
1786. Gogineni, A. M.R. Chintalacheruvu and R.V. Kale. 2024. Modelling of snow and glacier melt dynamics in a mountainous river basin using integrated SWAT and machine learning approaches. Earth Science Informatics. DOI: 10.1007/s12145-024-01397-1 .
1787. Golden, H.E., C.R. Lane, D.M. Amatya, K.W. Bandilla, H.R. Kiperwas, C.D. Knightes and H. Ssegane. 2014. Hydrologic connectivity between geographically isolated wetlands and surface water systems: A review of select modeling methods. Environmental Modelling & Software. 53: 190-206. DOI: 10.1016/j.envsoft.2013.12.004 .
1788. Golden, H.E., H.A. Sander, C.R. Lane, C. Zhao, K. Price, E. D'Amico and J.R. Christensen. 2016. Relative effects of geographically isolated wetlands on streamflow: A watershed-scale analysis. Ecohydrology. 9(1): 21-38. DOI: 10.1002/eco.1608 .
1789. Goldstein, J. C., A. Tarhule, and D. Brauer. 2014. Simulating the hydrologic response of a semiarid watershed to switchgrass cultivation. Hydrology Research. 44(1): 99-114. DOI: 10.2166/nh.2013.163 .
1790. Goldstein, J.C. and A. Tarhule. 2015. Evaluating the impacts of climate change and switchgrass production on a semiarid basin. Hydrological Processes. 29(5): 724–738. DOI: 10.1002/hyp.10159 .
1791. Gollamudi, A, C.A. Madramootoo and P. Enright. 2007. Water quality modeling of two agricultural fields in southern quebec using SWAT. Transactions of the ASABE. 50(6): 1973-1980. DOI: 10.13031/2013.24100 .
1792. Golmohammadi, G., R. Rudra, S. Prasher, A. Madani, M. Youssef, P. Goel and K. Mohammadi. 2017. Impact of tile drainage on water budget and spatial distribution of sediment generating areas in an agricultural watershed. Agricultural Water Management. 189: 124-134. DOI: 10.1016/j.agwat.2017.02.001 .
1793. Golmohammadi, G., R. Rudra, S. Prasher, A. Madani, K. Mohammadi, P. Goel and P. Daggupatti. 2017. Water budget in a tile drained watershed under future climate change using SWATDRAIN model. Climate. 5(2): 39. DOI: 10.3390/cli5020039 .
1794. Golmohammadi, G., R. Rudra, T. Dickinson, P. Goel and M. Veliz. 2017. Predicting the temporal variation of flow contributing areas using SWAT. Journal of Hydrology. 547: 375-386. DOI: 10.1016/j.jhydrol.2017.02.008 .
1795. Golmohammadi, G., S. Prasher, A. Madani and R. Rudra. 2014. Evaluating three hydrological distributed watershed models: MIKE-SHE, APEX, SWAT. Hydrology. 1(1): 20-39. DOI: 10.3390/hydrology1010020 .
1796. Golmohammadi, G., S.O. Prasher, A. Madani, R.P. Rudra and M.A. Youssef. 2016. SWATDRAIN, a new model to simulate the hydrology of agricultural Lands, model development and evaluation. Biosystems Engineering. 141: 31-47. DOI: 10.1016/j.biosystemseng.2015.11.003 .
1797. Golzari, S., H.Z. Abyaneh, N.M. Dinan, M. Delavar and P.G. Wagner. 2022. Modeling the effects of human influences on water quality and quantity in the Zarrineh River Basin, Iran. Journal of Hydro-environment Research. 40: 51-63. DOI: 10.1016/j.jher.2021.11.001 .
1798. Gombault, C., C.A. Madramootoo, A.R. Michaud, I. Beaudin, M.F. Sottile, M. Chikhaoui and F.F. Ngwa. 2015. Impacts of climate change on nutrient losses from the Pike River watershed of southern Québec. Canadian Journal of Soil Science. 95(4): 337-358. DOI: 10.4141/cjss-2014-012 .
1799. Gombault, C., M.F. Sottile, F.F. Ngwa, C.A. Madramootoo, A.R. Michaud, I. Beaudin and M. Chikhaoui. 2015. Modelling climate change impacts on the hydrology of an agricultural watershed in southern Québec. Canadian Water Resources Journal. 40(1): 71-86. DOI: 10.1080/07011784.2014.985509 .
1800. Gomes, L.C., F.J.J.A. Bianchi, I.M. Cardoso, R.P.O. Schulte, R.B.A. Fernandes and E.I. Fernandes-Filho. 2021. Disentangling the historic and future impacts of land use changes and climate variability on the hydrology of a mountain region in Brazil. Journal of Hydrology. 594: 125650. DOI: 10.1016/j.jhydrol.2020.125650 .
1801. Gómez, J.A., A. Ben-Gal, J.J. Alarcón, G. De Lannoy, S. de Roos, T. Dostál, E. Fereres, D.S. Intrigliolo, J. Krása, A. Klik, G. Liebhard, R. Nolz, A. Peeters, E. Plaas, J.N. Quinton, R. Miao, P. Strauss, W. Xu, Z. Zhang, F. Zhong, D. Zumr and I.C. Dodd. 2020. SHui, an EU-Chinese cooperative project to optimize soil and water management in agricultural areas in the XXI century. International Soil and Water Conservation Research. 8: 1-14. DOI: 10.1016/j.iswcr.2020.01.001 .
1802. Gomiz-Pascual, J.J., M. Bolado-Penagos, C.J. Gonzalez, A. Vazquez, C. Buonocore, J. Romero-Cozar, M.L. Perez-Cayeiro, A. Izquierdo, O. Alvarez, R. Mañanesa and M. Bruno. 2021. The fate of Guadalquivir River discharges in the coastal strip of the Gulf of Cádiz. A study based on the linking of watershed catchment and hydrodynamic models. Science of the Total Environment. 795: 148740. DOI: 10.1016/j.scitotenv.2021.148740 .
1803. Gonfa, B.G., S.D. Hatiye and M.M. Finssa. 2021. Land suitability and surface water resources potential for irrigation in Becho Plain, Upper Awash Basin, Ethiopia. Irrigation and Drainage. 70(4): 936-957. DOI: 10.1002/ird.2575 .
1804. Gong, S., J. Bian, Y. Wang, Z. Jia and H. Wan. 2019. Evaluating and predicting the effects of land use changes on water quality using SWAT and CA–Markov Models. Water Resources Management. 33: 4923–4938. DOI: 10.1007/s11269-019-02427-0 .
1805. Gong, Y., X. Geng, P. Wang, S. Hu and X. Wang. 2024. Impact of urbanization-driven land use changes on runoff in the upstream mountainous basin of Baiyangdian, China: A multi-scenario simulation study. Land. 13(9): 1374. DOI: 10.3390/land13091374 .
1806. Gong, Y., Z. Shen, Q. Hong, R. Liu and Q. Liao. 2011. Parameter uncertainty analysis in watershed total phosphorus modeling using the GLUE methodology. Agriculture Ecosystems and Environment. 142(3-4): 246-255. DOI: 10.1016/j.agee.2011.05.015 .
1807. Gong, Y., Z. Shen, R. Liu, Q. Hong and X. Wu. 2012. A comparison of single- and multi-gauge based calibrations for hydrological modeling of the Upper Daning River watershed in China's Three Gorges Reservoir Region. Hydrology Research. 43(6): 1-11. DOI: 10.2166/nh.2012.021 .
1808. Gong, Y., Z. Shen, R. Liu, X. Wang and T. Chen. 2010. Effect of watershed subdivision on SWAT modeling with consideration of parameter uncertainty. Journal of Hydrologic Engineering. 15(12): 1070-1074. DOI: 10.1061/(ASCE)HE.1943-5584.0000283 .
1809. González-Celada, G., N. Ríos, L. Benegas-Negri and F. Argotty-Benavides. 2021. Impact of the climate change and the land use/land cover change in the hydrological and water erosion response in the Quiscab River Subbasin. Tecnología y Ciencias del Agua. 12(6): 363-421. DOI: 10.24850/j-tyca-2021-06-09 .
1810. González-Ramírez, J. and A. Parés-Sierra. 2019. Streamflow modeling of five major rivers that flow into the Gulf of Mexico using SWAT. Atmósfera. 32(4): 261-272. DOI: 10.20937/ATM.2019.32.04.01 .
1811. Goodall, J.L., K.D. Saint, M.B. Ercan, L.J. Briley, S. Murphy, H. You, C. DeLuca and R.B. Rood. 2013. Coupling climate and hydrological models: Interoperability through Web Services. Environmental Modelling & Software. 46: 250–259. DOI: 10.1016/j.envsoft.2013.03.019 .
1812. Goodrich, D.C., P. Heilman, M. Anderson, C. Baffaut, J. Bonta, D. Bosch, R. Bryant, M. Cosh, D. Endale, T.L., Veith, S.C. Havens, A. Hedrick, P.J. Kleinman, E. J. Langendoen, G. McCarty, T. Moorman, D. Marks, F. Pierson, J.R. Rigby, H. Schomberg, P. Starks, J. Steiner, T. Strickland and T. Tsegaye. 2021. The USDA‐ARS experimental watershed network: Evolution, lessons learned, societal benefits, and moving forward. Water Resources Research. 57(2): e2019WR026473. DOI: 10.1029/2019WR026473 .
1813. Gordon, B.A., C. Lenhart and J. Nieber. 2021. Modeling the applicability of edge-of-field treatment wetlands to reduce nitrate loads in the Elm Creek Watershed in southern Minnesota, United States. Journal of Soil and Water Conservation. 77(5): 446-456. DOI: 10.2489/jswc.2021.02155 .
1814. Gordon, B.L., V.A. Kowal, A. Khadka, R. Chaplin-Kramer, R. Roath and B.P. Bryant. 2019. Existing accessible modeling tools offer limited support to evaluation of impact investment in rangeland ecosystem services. Frontiers in Sustainable Food Systems. 3: 77. DOI: 10.3389/fsufs.2019.00077 .
1815. Gorelick, D.E., L. Lin, H.B. Zeff, Y. Kim, J.M. Vose, J.W. Coulston, D.N. Wear, L.E. Band, P.M. Reed and G.W. Characklis. 2020. Accounting for adaptive water supply management when quantifying climate and land cover change vulnerability. Water Resources Research. 56(1): e2019WR025614. DOI: 10.1029/2019WR025614 .
1816. Gorelick, D.E., L.M. Baskaran and H.I. Jager. 2019. Visualizing feedstock siting in biomass production: Tradeoffs between economic and water quality objectives. Land Use Policy. 88: 104201. DOI: 10.1016/j.landusepol.2019.104201 .
1817. Gorgan, D., G. Giuliani, N. Ray, A. Lehmann, P. Cau, K. Abbaspour, K. Charvat and A. Jonoski. 2013. Black Sea catchment observation system as a portal for GEOSS community. International Journal of Advanced Computer Science and Applications. EnviroGRIDS special Issue: 9-18. URL: http://thesai.org/Publications/ViewIssue?volume=3&issue=3&code=SpecialIssue.
1818. Gorgan, D., V. Bacu, D. Mihon, D. Rodila, K. Abbaspour and E. Rouholahnejad. 2012. Grid based calibration of SWAT hydrological models. Natural Hazards and Earth System Sciences. 12: 2411-2433. DOI: 10.5194/nhess-12-2411-2012 .
1819. Gorgij1, K., A. Dehvari and M.R.D. Ghaleno. 2020. Uncertainty analysis of hydrological parameters of Sarbaz Watershed using SWAT model and SUFI-2 algorithm. Journal of Hydrosciences and Environment. 4(7): 43-56. URL: https://jhe.usb.ac.ir/article_6221.html.
1820. Gosain, A.K. and S. Rao. 2004. GIS-based technologies for watershed management. Current Science. 87(7): 948-953. URL: https://www.currentscience.ac.in/php/toc.php?vol=087&issue=07.
1821. Gosain, A.K., S. Rao and D. Basuray. 2006. Climate change impact assessment on hydrology of Indian river basins. Current Science. 90(3): 346-353. URL: https://www.currentscience.ac.in/php/toc.php?vol=090&issue=03.
1822. Gosain, A.K., S. Rao, R. Srinivasan and N.G. Reddy. 2005. Return-flow assessment for irrigation command in the Palleru river basin using SWAT model. Hydrological Processes. 19(3): 673-682. DOI: 10.1002/hyp.5622 .
1823. Gosling, S.N., J. Zaherpour, N.J. Mount, F.F. Hattermann, R. Dankers, B. Arheimer, L. Breuer, J. Ding, I. Haddeland, R. Kumar, D. Kundu, J. Liu, A. van Griensven, T.L.E. Veldkamp, T. Vetter, X. Wang and X. Zhang. 2017. A comparison of changes in river runoff from multiple global and catchment-scale hydrological models under global warming scenarios of 1 °C, 2 °C and 3 °C. Climatic Change. 141(3): 577-595. DOI: 10.1007/s10584-016-1773-3 .
1824. Gosling, S.N., R.G. Taylor, N.W. Arnell and M.C. Todd. 2011. A comparative analysis of projected impacts of climate change on river runoff from global and catchment-scale hydrological models. Hydrology and Earth System Sciences. 15(1): 279-294. DOI: 10.5194/hessd-7-7191-2010 .
1825. Goswami, S.B. and S.C. Kar. 2018. Simulation of water cycle components in the Narmada River Basin by forcing SWAT model with CFSR data. Meteorology Hydrology and Water Management: Research and Operational Applications. 6(1): 1-12. DOI: 10.26491/mhwm/76250 .
1826. Goswami, S.B., P.K. Bal and A.K. Mitra. 2018. Use of rainfall forecast from a high-resolution global NWP model in a hydrological stream flow model over Narmada river basin during monsoon. Modeling Earth Systems and Environment. DOI: 10.1007/s40808-018-0436-y .
1827. Goudarzi, F.M., A. Sarraf and H. Ahmadi. 2019. The effects of climate change on crop yields using RCP scenarios with SWAT agro-hydrological model in Maharlu Basin (Fars Province – Iran). International Journal of Water. 13(4): 348-359. DOI: 10.1504/IJW.2019.106048 .
1828. Goudarzi, F.M., A. Sarraf and H. Ahmadi. 2020. Prediction of runoff within Maharlu Basin for future 60 years using RCP scenarios. Arabian Journal of Geosciences. 13(14): 605. DOI: 10.1007/s12517-020-05634-x .
1829. Goudarzi, F.M., A. Sarraf and H. Ahmadi. 2021. Calibration of SWAT and three data-driven models for monthly stream flow simulation in Maharlu Lake Basin. Water Supply. 21(8): 4219-4238. DOI: 10.2166/ws.2021.175 .
1830. Govender, M. and C.S. Everson. 2005. Modelling streamflow from two small South African experimental catchments using the SWAT model. Hydrological Processes. 19(3): 683-692. DOI: 10.1002/hyp.5621 .
1831. Goyal, M.K. and R.Y. Surampalli. 2018. Impact of climate change on water resources in India. Journal of Environmental Engineering. 144(7): 04018054. DOI: 10.1061/(ASCE)EE.1943-7870.0001394 .
1832. Goyal, M.K. and V. Singh. 2014. Discussion of “SWAT-based evapotranspirative water conservation analysis performed on irrigated croplands to determine potential regional water savings” by Andrew Gayley. Journal of Irrigation and Drainage Engineering. 139(6): 456-462. DOI: 10.1061/(ASCE)IR.1943-4774.0000684 .
1833. Goyal, M.K., C.A. Madramootoo and J.F. Richards. 2015. Simulation of the streamflow for the Rio Nuevo Watershed of Jamaica for use in agriculture water scarcity planning. Journal of Irrigation and Drainage Engineering. 141(3). DOI: 10.1061/(ASCE)IR.1943-4774.0000802 .
1834. Goyal, M.K., V. Singh and A.H. Meena. 2015. Geospatial and hydrological modeling to assess hydropower potential zones and site location over rainfall dependent Inland catchment. Water Resources Management. 29(8): 2875-2894. DOI: 10.1007/s11269-015-0975-1 .
1835. Goyal, M.K.,V.K. Panchariya, A. Sharma and V. Singh. 2018. Comparative assessment of SWAT model performance in two distinct catchments under various DEM scenarios of varying resolution, sources and resampling methods. Water Resources Management. 32(2): 805–825. DOI: 10.1007/s11269-017-1840-1 .
1836. Grady, C.A., A.P. Reimer, J. Frankenberger and L.S. Prokopy. 2013. Locating existing best management practices within a watershed: The value of multiple methods. Journal of the American Water Resources Association. 44(4): 883-895. DOI: 10.1111/jawr.12041 .
1837. Graiprab, P., K. Pongput, N. Tangtham and P.W. Gassman. 2010. Hydrologic evaluation and effect of climate change on the At Samat watershed, Northeastern Region, Thailand. International Agricultural Engineering Journal. 19(2): 12-22. URL: https://www.researchgate.net/publication/228668853_Hydrologic_evaluation_and_effect_of_climate_change_on_the_At_Samat_watershed_Northeastern_Region_Thailand.
1838. Gramig, B.M., C.J. Reeling, R. Cibin and I. Chaubey. 2013. Environmental and economic tradeoffs in a watershed when using corn stover for bioenergy. Environmental Science & Technology. 47(4): 1784–1791. DOI: 10.1021/es303459h .
1839. Green, C.H. and A. van Griensven. 2008. Autocalibration in hydrologic modeling: Using SWAT2005 in small-scale watersheds. Environmental Modelling & Software. 23(4): 422-434. DOI: 10.1016/j.envsoft.2007.06.002 .
1840. Green, C.H., J.G. Arnold, J.R. Williams, R. Haney and R.D. Harmel. 2007. Soil and Water Assessment Tool hydrologic and water quality evaluation of poultry litter application to small-scale subwatersheds in Texas. Transactions of the ASABE. 50(4): 1199-1209. DOI: 10.13031/2013.23634 .
1841. Green, C.H., M.D. Tomer, M. Di Luzio and J.G. Arnold. 2006. Hydrologic evaluation of the soil and water assessment tool for a large tile-drained watershed in Iowa. Transactions of the ASABE. 49(2): 413-422. DOI: 10.13031/2013.20415 .
1842. Green, M.B. and D. Wang. 2008. Watershed flow paths and stream water nitrogen-to-phosphorus ratios under simulated precipitation regimes. Water Resources Research. 44: 1-13. DOI: 10.1029/2007WR006139 .
1843. Gregar, J., J Petrů and J. Novotná. 2018. Evaluation of the SWAT model as an integrated management tool in the Švihov drinking water supply catchment. Soil and Water Research. DOI: 10.17221/46/2018-SWR .
1844. Grek, E. and S. Zhuravlev. 2021. Simulation of rainfall-induced floods in small catchments (the Polomet’ River, north-west Russia) using rain gauge and radar data. Hydrology. 7(4): 92. DOI: 10.3390/hydrology7040092 .
1845. Grey, O.P., D.F. St. G. Webber, S.G. Setegn and A.M. Melesse. 2014. Application of the Soil and Water Assessment Tool (SWAT Model) on a small tropical island (Great River Watershed, Jamaica) as a tool in integrated watershed and coastal zone management. International Journal of Tropical Biology and Conservation. 62(Suppl. 3): 293-305. URL: http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CCAQFjAA&url=http%3A%2F%2Frevistas.ucr.ac.cr%2Findex.php%2Frbt%2Farticle%2FviewFile%2F15924%2F15277&ei=dexHVLjTDMakyASZvoKoBA&usg=AFQjCNHPcmnZFDFxzzoWbxiIaruef5Qu5w&sig2=0sCKA2mX35tyBYa6rjMNFA.
1846. Grizzetti, B., F. Bouraoui and G. De Marsily. 2005. Modelling nitrogen pressure in river basins: A comparison between a statistical approach and the physically-based SWAT model. Physics and Chemistry of the Earth. 30(8-10): 508-517. DOI: 10.1016/j.pce.2005.07.005 .
1847. Grizzetti, B., F. Bouraoui, K. Granlund, S. Rekolainen and G. Bidoglio. 2003. Modelling diffuse emission and retention of nutrients in the Vantaanjoki Watershed (Finland) using the SWAT model. Ecological Modelling. 169(1): 25-38. DOI: 10.1016/S0304-3800(03)00198-4 .
1848. Grunwald, S. and C. Qi. 2006. GIS-based water quality modeling in the Sandusky Watershed, Ohio, USA. Journal of the American Water Resources Association. 42(4): 957-973. DOI: 10.1111/j.1752-1688.2006.tb04507.x .
1849. Grusson, Y., F. Anctil, S. Sauvage and J.M. Sánchez Pérez. 2017. Assessing the climatic and temporal transposability of the SWAT Model across a large contrasted watershed. Journal of Hydrologic Engineering. 22(6): Article ID: 04017004. DOI: 10.1061/(ASCE)HE.1943-5584.0001491 .
1850. Grusson, Y., F. Anctil, S. Sauvage and J.M Sánchez Pérez. 2017. Testing the SWAT model with gridded weather data of different spatial resolutions. Water. 9(1): 59. DOI: 10.3390/w9010054 .
1851. Grusson, Y., I. Wesström, W. Svedberg and A. Joel. 2021. Influence of climate change on water partitioning in agricultural watersheds: Examples from Sweden. Agricultural Water Management. 249: 106766. DOI: 10.1016/j.agwat.2021.106766 .
1852. Grusson, Y., X. Sun, S. Gascoin, S. Sauvage, S. Raghavan, F. Anctil and J.-M. Sáchez-Pérez. 2015. Assessing the capability of the SWAT model to simulate snow, snow melt and streamflow dynamics over an alpine watershed. Journal of Hydrology. 531(Part 3): 574–588. DOI: 10.1016/j.jhydrol.2015.10.070 .
1853. Gu, P., Y. Wu, G. Liu, C. Xia, G. Wang, J. Xia, K. Chen, X. Huang and D. Li. 2022. Application of meteorological element combination-driven SWAT model based on meteorological datasets in alpine basin. Water Supply. 22(3): 3307-3324. DOI: 10.2166/ws.2021.397 .
1854. Gu, R.R., M.K. Sahu and M.K. Jha. 2015. Simulating the impacts of bio-fuel crop production on nonpoint source pollution in the Upper Mississippi River Basin. Ecological Engineering. 74: 223-229. DOI: 10.1016/j.ecoleng.2014.10.010 .
1855. Gu, X., G. Yang, X. He, L. Zhao, X. Li, P. Li, B. Liu, Y. Gao, L. Xue and A. Long. 2020. Hydrological process simulation in Manas River basin using CMADS. Open Geoscience. 12: 946-957. DOI: 10.1515/geo-2020-0127 .
1856. Guan, T., B. Xue, Y. A, X. Lai, X. Li, H. Zhang, Q. Wang and Q. Fang. 2022. Contribution of nonpoint source pollution from baseflow of a typical agriculture-intensive basin in northern China. Environmental Research. 212(Part D): 113589. DOI: 10.1016/j.envres.2022.113589 .
1857. Guatam, S., C. Costello, C. Baffaut, A. Thomspon, B.M. Svoma, Q.A. Phung and E.J. Sadler. 2018. Assessing long-term hydrological impact of climate change using an ensemble approach and comparison with global gridded model-A case study on Goodwater Creek experimental watershed. Water. 10: 564. DOI: 10.3390/w10050564 .
1858. Guber, A.K., D.M. Williams, A.C.D. Quinn, S.B. Tamrakar, W.F. Porter and J.B. Rose. 2016. Model of pathogen transmission between livestock and white-tailed deer in fragmented agricultural and forest landscapes. Environmental Modelling & Software. 80: 185-200. DOI: 10.1016/j.envsoft.2016.02.024 .
1859. Guder, A.C., T.A. Demissie and D.T. Ahmed. 2023. Evaluation of hydrological impacts of land use/land cover changes of Holota Watershed, Upper Awash Sub‑basin, Ethiopia. Journal of Sedimentary Environments. 8(1): 39-55. DOI: 10.1007/s43217-022-00118-2 .
1860. Guevara-Ochoa, C., A. Medina and L. Vives. 2020. Spatio-temporal effect of climate change on water balance and interactions between groundwater and surface water in plains. Science of the Total Environment. 722: 137886. DOI: 10.1016/j.scitotenv.2020.137886 .
1861. Guevara-Ochoa, C., A. Medina, L. Vives, E. Zimmermann and R.T. Bailey. 2020. Spatio-temporal patterns of the interaction between groundwater and surface water in plains. Hydrological Processes. 34(6): 1371–1392. DOI: 10.1002/hyp.13615 .
1862. Guevara-Ochoa, C., A. Medina, L. Vives and M. Barrios. 2024. Impact of rainfed agriculture on spatio‐temporal patterns of the interaction between groundwater and surface water in sub-humid plains. Science of the Total Environment. 912: 169247. DOI: 10.1016/j.scitotenv.2023.169247 .
1863. Gui, G.O. and D. Rosbjerg. 2009. Modelling of hydrologic processes and potential response to climate change through the use of a multisite SWAT. Water and Environment Journal. 24(1): 21-31. DOI: 10.1111/j.1747-6593.2008.00146.x .
1864. Guiamel, I.A. and H.S. Lee. 2020. Potential hydropower estimation for the Mindanao River Basin in the Philippines based on watershed modelling using the soil and water assessment tool. Energy Reports. 6: 1010-1028. DOI: 10.1016/j.egyr.2020.04.025 .
1865. Guiamel, I.A. and H.S. Lee. 2020. Watershed modelling of the Mindanao River Basin in the Philippines using SWAT for water resource management. Civil Engineering Journal. 6(4): 626-648. DOI: 10.28991/cej-2020-03091496 .
1866. Guigoz, Y., P. Lacroix, E. Rouholahnejad, N. Ray and G. Giuliani. 2016. SCOPED-W: SCalable online platform for extracting environmental data and water-related model outputs. Transactions in GIS. 21(4): 748-763. DOI: 10.1111/tgis.12227 .
1867. Guigoz, Y., P. Lacroix, E. Rouholahnejad, N. Ray and G. Giuliani. 2017. Scalable online platform for extracting environmental data and water-related model outputs. Transactions in GIS. 21: 748-763. DOI: 10.1111/tgis.12227 .
1868. Guilhen, J., M. Parrens, S. Sauvage, W. Santini, F. Mercier, A.A. Bitar, C. Fabre, J.-M. Martinez and J.-M. Sànchez-Pérez. 2022. Estimation of the Madeira floodplain dynamics from 2008 to 2018. Frontiers in Water. 4: 952810. DOI: 10.3389/frwa.2022.952810 .
1869. Gulakhmadov, A., X. Chen, M. Gulakhmadov, Z. Kobuliev, N. Gulahmadov, J. Peng, Z. Li and T. Liu. 2021. Evaluation of the CRU TS3.1, APHRODITE_V1101, and CFSR datasets in assessing water balance components in the Upper Vakhsh River Basin in Central Asia. Atmosphere. 12(10): 1334. DOI: 10.3390/atmos12101334 .
1870. Gulakhmadov, A., X. Chen, N. Gulahmadov, T. Liu, M.N. Anjum and M. Rizwan. 2020. Simulation of the potential impacts of projected climate change on streamflow in the Vakhsh River Basin in Central Asia under CMIP5 RCP scenarios. Water. 12(5): 1426. DOI: 10.3390/w12051426 .
1871. Gulbin, S., A.P. Kirilenko, G. Kharel and X. Zhang. 2019. Wetland loss impact on long term flood risks in a closed watershed. Environmental Science and Policy. 94: 112-122. DOI: 10.1016/j.envsci.2018.12.032 .
1872. Gull, S. and S.R. Shah. 2020. Watershed models for assessment of hydrological behavior of the catchments: A comparative study. Water Practice and Technology. 15(2): 261-281. DOI: 10.2166/wpt.2020.030 .
1873. Gull, S. and S.R. Shah. 2021. Modelling streamflow and sediment yield using Soil and Water Assessment Tool: A case study of Lidder Watershed in Kashmir Himalayas, India. Water Practice and Technology. 16(4): 1370-1385. DOI: 10.2166/wpt.2021.082 .
1874. Gull, S. and S.R. Shah. 2022. Modelling hydrological processes from Sindh Watershed of Kashmir Valley using Soil and Water Assessment Tool. International Journal of Water. 15(2): 101-116. DOI: 10.1504/IJW.2022.132288 .
1875. Gunathilake, M.B., M.N.M. Zamri, T.P. Alagiyawanna, J.T. Samarasinghe, P.K. Baddewela, M.S. Babel, M.K. Jha and P.S. Rathnayake. 2021. Hydrologic utility of satellite-based and gauge-based gridded precipitation products in the Huai Bang Sai Watershed of northeastern Thailand. Hydrology. 8(4): 165. DOI: 10.3390/hydrology8040165 .
1876. Guncati, M.C., F.A. Kandemir, M. Najar, A. Kuzucu, M. Uyar, F. Barbaros, H. Boyacioglu, G.O. Gul and A. Gul. 2022. Attribution of changes in the water balance of a basin to land-use changes through combined modelling of basin hydrology and land-use dynamics. Journal of Water and Climate Change. 13(11): 4087–4104. DOI: 10.2166/wcc.2022.304 .
1877. Güneş, Z and L. Kusak. 2023. Application of SWAT model- Tarsus (Berdan) Stream. İçel Dergisi. 3(2): 58-64. URL: https://publish.mersin.edu.tr/index.php/icel/article/view/1235.
1878. Gungor, K., N. Karakaya, F. Evrendilek, S. Akgul, O. Baskan, H. Cebel, H.J. Farhoud, O. Turkecan, S. Yasar and O. Gumus. 2016. Spatiotemporal modeling of watershed nutrient transport dynamics: Implications for eutrophication abatement. Ecological Informatics. 34: 52–69. DOI: 10.1016/j.ecoinf.2016.04.012 .
1879. Gungor, O. and S. Goncu. 2013. Application of the Soil and Water Assessment Tool (SWAT) model on the Lower Porsuk Stream watershed. Hydrological Processes. 27(3): 453–466. DOI: 10.1002/hyp.9228 .
1880. Gunn, K.M., A.R. Buda, H.E. Preisendanz, R. Cibin, C.D. Kennedy and T.L. Veith. 2021. Integrating daily CO2 concentrations in SWAT-VSA to examine climate change impacts on hydrology in a karst watershed. Transactions of the ASABE. 64(4): 1303-1318. DOI: 10.13031/trans.13711 .
1881. Guo, D., H. Wang, X. Zhang and G. Liu. 2019. Evaluation and analysis of grid precipitation fusion products in Jinsha River Basin based on China meteorological assimilation datasets for the SWAT Model. Water. 11: 253. DOI: 10.3390/w11020253 .
1882. Guo, G., W. Ding, W. Xu, X. Zhu, X. Wang and W. Tang. 2022. Assessment of an alternative climate product for hydrological modeling: A case study of the Danjiang River Basin, China. Water. 14(7): 1105. DOI: 10.3390/w14071105 .
1883. Guo, H., Q. Hu and T. Jiang. 2008. Annual and seasonal streamflow responses to climate and land-cover Changes in the Poyang Lake Basin, China. Journal of Hydrology. 355(1-4): 106-122. DOI: 10.1016/j.jhydrol.2008.03.020 .
1884. Guo, J. and X. Su. 2019. Parameter sensitivity analysis of SWAT model for streamflow simulation with multisource precipitation datasets. Hydrology Research. 50(3): 861-877. DOI: 10.2166/nh.2019.083 .
1885. Guo, S., Z. Zhu and L. Lyu. 2018. Effects of climate change and human activities on soil erosion in the Xihe River Basin, China. Water. 10(8): 1085. DOI: 10.3390/w10081085 .
1886. Guo, T., B.A. Engel, G. Shao, J.G. Arnold, R. Srinivasan and J.R. Kiniry. 2019. Development and improvement of the simulation of woody bioenergy crops in the Soil and Water Assessment Tool (SWAT). Environmental Modelling & Software. 122: 104295. DOI: 10.1016/j.envsoft.2018.08.030 .
1887. Guo, T., M. Gitau, V. Merwade, J. Arnold, R. Srinivasan, M. Hirschi and B. Engel. 2018. Comparison of performance of tile drainage routines in SWAT 2009 and 2012 in an extensively tile-drained watershed in the Midwest. Hydrology and Earth System Sciences. 22: 89-110. DOI: 10.5194/hess-22-89-2018 .
1888. Guo, T., R. Cibin, I. Chaubey, M. Gitau, J.G. Arnold, R. Srinivasan, J.R. Kiniry and B.A. Engel. 2018. Evaluation of bioenergy crop growth and the impacts of bioenergy crops on streamflow, tile drain flow and nutrient losses in an extensively tile-drained watershed using SWAT. Science of the Total Environment. 613-614: 724-735. DOI: 10.1016/j.scitotenv.2017.09.148 .
1889. Guo, T., Y. Liu, G. Shao, B.A. Engel, A. Sharma, L.A. Marshall, D.C. Flanagan, R. Cibin, C.W. Wallace, K. Zhao, D. Ren, J.V. Mercado and M.A. Aboelnour. 2022. Improving probabilistic monthly water quantity and quality predictions using a simplified residual-based modeling approach. Environmental Modelling & Software. 156: 105499. DOI: 10.1016/j.envsoft.2022.105499 .
1890. Guo, Y., C. Peng, Q. Zhu, M. Wang, H. Wang, S. Peng and H. He. 2019. Modelling the impacts of climate and land use changes on soil water erosion: Model applications, limitations and future challenges. Journal of Environmental Sciences. 250: 109403. DOI: 10.1016/j.jenvman.2019.109403 .
1891. Guo, Y., G. Fang, X. Wen, X. Lei, Y. Yuan and X. Fu. 2018. Hydrological responses and adaptive potential of cascaded reservoirs under climate change in Yuan River Basin. Hydrology Research. 50(1): 358-378. DOI: 10.2166/nh.2018.165 .
1892. Guo, Y., G. Fang, Y.P Xu, X. Tian and J. Xie. 2021. Responses of hydropower generation and sustainability to changes in reservoir policy, climate and land use under uncertainty: A case study of Xinanjiang Reservoir in China. Journal of Cleaner Production. 281: 124609. DOI: 10.1016/j.jclepro.2020.124609 .
1893. Guo, Y., G. Fang, Y.-P. Xu, X. Tian and J. Xie. 2020. Identifying how future climate and land use/cover changes impact streamflow in Xinanjiang Basin, East China. Science of the Total Environment. 710: 136275. DOI: 10.1016/j.scitotenv.2019.136275 .
1894. Guo, Y., X. Wang, C. Melching and Z. Nan. 2022. Identification method and application of critical load contribution areas based on river retention effect. Journal of Environmental Management. 305(1): 114314. DOI: 10.1016/j.jenvman.2021.114314 .
1895. Guo, Y., X. Wang, L. Zhou, C. Melching and Z. Li. 2020. Identification of critical source areas of nitrogen load in the Miyun Reservoir Watershed under different hydrological conditions. Sustainability. 12(3): 964. DOI: 10.3390/su12030964 .
1896. Guo, Y., X. Yu, Y.-P. Xu, G. Wang, J. Xie and H. Gu. 2022. A comparative assessment of CMIP5 and CMIP6 in hydrological responses of the Yellow River Basin, China. Hydrology Research. 53(6): 867-891. DOI: 10.2166/nh.2022.001 .
1897. Guo, Z., L. Wu, H. Zhang and S. Liu. 2023. Response of soil erosion to watershed revegetation:Role of sediment connectivity and erosion power. Journal of Agro-Environment Science. 42(10): 2198-2210. URL: http://www.aes.org.cn/nyhjkxxben/ch/reader/view_abstract.aspx?file_no=20231007&flag=1.
1898. Gupta, C., A.V. Kullkarni and A.K. Taloor. 2021. Streamflow modeling and contribution of snow and glacier melt runoff in glacierized Upper Indus Basin. Environmental Monitoring and Assessment. 193(11): 761. DOI: 10.1007/s10661-021-09537-6 .
1899. Gupta, S., M.K. Goyal and A.K. Sarma. 2021. Assessment of hydroclimatological changes in eastern Himalayan river catchment of northeast India. Journal of Hydrologic Engineering. 26(10): 05021027. DOI: 10.1061/(ASCE)HE.1943-5584.0002124 .
1900. Gurara, M.A., N.B. Jilo and A.D. Tolche. 2021. Modelling climate change impact on the streamflow in the Upper Wabe Bridge Watershed in Wabe Shebele River Basin, Ethiopia. International Journal of River Basin Management. DOI: 10.1080/15715124.2021.1935978 .
1901. Gurjar, S.K., S. Shrivastava, S. Suryavanshi and V. Tare. 2022. Assessment of the natural flow regime and its variability in a tributary of Ganga River: Impact of land use and land cover change. Environmental Development. 44: 100756. DOI: 10.1016/j.envdev.2022.100756 .
1902. Gurung, P. and L. Bharati. 2012. Downstream impacts of the Melamchi Inter-Basin Water Transfer Plan (MIWTP) under current and future climate change projections. Hydro Nepal: Journal of Water, Energy and Environment. April 2012: 23-29. URL: http://www.nepjol.info/index.php/HN/article/view/7199.
1903. Gurung, P., L. Bharati and S. Karki. 2015. Impact of climate change and watershed interventions on water balance and crop yield in West Seti River sub-basin of Nepal. Journal of Hill Agriculture. 6(2): 219-227. DOI: 10.5958/2230-7338.2015.00051.8 .
1904. Gurung, P., S. Dhungana, A.K. Kyaw and L. Bharati. 2022. Hydrologic characterization of the Upper Ayeyarwaddy River Basin and the impact of climate change. Journal of Water and Climate Change. 13(7): 2577. DOI: 10.2166/wcc.2022.407 .
1905. Guse, B, M. Pfannerstill, A. Gafurov, N. Fohrer and H. Gupta. 2016. Demasking the integrated information of discharge: Advancing sensitivity analysis to consider different hydrological components and their rates of change. Water Resources Research. 52(11): 8724-8743. DOI: 10.1002/2016WR018894 .
1906. Guse, B., A. Bronstert, M. Rode, B. Tetzlaff and F. Wendland. 2007. Application of two phosphorus models with different complexities in a mesoscale river catchment. Advances in Geosciences. 11: 77-84. DOI: 10.5194/adgeo-11-77-2007 .
1907. Guse, B., D.E. Reusser and N. Fohrer. 2014. How to improve the representation of hydrological processes in SWAT for a lowland catchment - temporal analysis of parameter sensitivity and model performance. Hydrological Processes. 28(4): 2651–2670. DOI: 10.1002/hyp.9777 .
1908. Guse, B., J. Kail, J. Radinger, M. Schröder, J. Kiesel, D. Hering, C. Wolter and N. Fohrer. 2015. Eco-hydrologic model cascades: Simulating land use and climate change impacts on hydrology, hydraulics and habitats for fish and macroinvertebrates. Science of the Total Environment. 533: 542-556. DOI: 10.1016/j.scitotenv.2015.05.078 .
1909. Guse, B., J. Kiesel, M. Pfannerstill and N. Fohrer. 2020. Assessing parameter identifiability for multiple performance criteria to constrain model parameters. Hydrological Sciences Journal. 65(7): 1158-1172. DOI: 10.1080/02626667.2020.1734204 .
1910. Guse, B., M. Pfannerstill and N. Fohrer. 2015. Dynamic modelling of land use change impacts on nitrate loads in rivers. Environmental Processes. 2(4): 575-592. DOI: 10.1007/s40710-015-0099-x .
1911. Guse, B., M. Pfannerstill, A. Gafurov, J. Kiesel, C. Lehr and N. Fohrer. 2017. Identifying the connective strength between model parameters and performance criteria. Hydrology and Earth System Sciences. 21(11): 5663-5679. DOI: 10.5194/hess-21-5663-2017 .
1912. Guse, B., M. Pfannerstill, J. Kiesel, M. Strauch, M. Volk and N. Fohrer. 2019. Analysing spatio-temporal process and parameter dynamics in models to characterise contrasting catchments. Journal of Hydrology. 570: 863-874. DOI: 10.1016/j.jhydrol.2018.12.050 .
1913. Guse, B., M. Pfannerstill, M. Strauch, D.E. Reusser, S. Ladtke, M. Volk, H. Gupta and N. Fohrer. 2016. On characterizing the temporal dominance patterns of model parameters and processes. Hydrological Processes. 30(13): 2255–2270. DOI: 10.1002/hyp.10764 .
1914. Gustio, I., D.P. Jingga, E.R. Syofyan and C. Muharis. 2020. Analysis of land erosion in the Batang Agam Watershed using the SWAT model. Jurnal Ilmiah Poli Rekayasa. 16(1): 11-26. URL: http://jpr-pnp.com/index.php/jpr/article/view/189.
1915. Guswa, A.J., B. Hall, C. Cheng and J.R. Thompson. 2020. Co-designed land-use scenarios and their implications for storm runoff and streamflow in New England. Environmental Management. 66: 785-800. DOI: 10.1007/s00267-020-01342-0 .
1916. Gutierrez M.A.M. and M. Diaz-Granados Ortiz. 2007. Valoracion de impactos y evaluacion economica en rehabilitacion de cuencas, caso cuenca rio Tona. Avances en Recursos Hidraulicos. 15: 3. URL: https://revistas.unal.edu.co/index.php/arh/article/view/9321.
1917. Guug, S.S., S. Abdul-Ganiyu and R.A. Kasei. 2020. Application of SWAT hydrological model for assessing water availability at the Sherigu catchment of Ghana and Southern Burkina Faso. HydroResearch. 3: 124-133. DOI: 10.1016/j.hydres.2020.10.002 .
1918. Guzha, A.C., M.C. Rufino, S. Okoth, S. Jacobs and R.L.B. Nóbrega. 2018. Impacts of land use and land cover change on surface runoff, discharge and low flows: Evidence from East Africa. Journal of Hydrology: Regional Studies. 15: 49-67. DOI: 10.1016/j.ejrh.2017.11.005 .
1919. Guzinski, R., S. Kass, S. Huber, P. Bauer-Gottwein, I.H. Jensen, V. Naeimi, M. Doubkova, A. Walli and C. Tottrup. 2014. Enabling the use of earth observation data for integrated water resource management in Africa with the water observation and information system. Remote Sensing. 6(8): 7819-7839. DOI: 10.3390/rs6087819 .
1920. Guzman, J.A., A. Shirmohammadi, A.M. Sadeghi, X. Wang, M.L. Chu, M.K. Jha, P.B. Parajuli, R.D. Harmel, Y.P. Khare and J.E. Hernandez. 2015. Uncertainty considerations in calibration and validation of hydrologic and water quality models. Transactions of the ASABE. 58(6): 1745-1762. DOI: 10.13031/trans.58.10710 .
1921. Guzman, J.A., D.N. Moriasi, M.L. Chu, P.J. Starks, J.L. Steiner and P.H. Gowda. 2013. A tool for mapping and spatio-temporal analysis of hydrological data. Environmental Modelling & Software. 48: 163-170. DOI: 10.1016/j.envsoft.2013.06.014 .
1922. Guzman, J.A., D.N. Moriasi, P.H. Gowda, J.L. Steiner, P.J. Starks, J.G. Arnold and R. Srinivasan. 2015. A model integration framework for linking SWAT and MODFLOW. Environmental Modelling & Software. 73: 103-116. DOI: 10.1016/j.envsoft.2015.08.011 .
1923. Gyamfi, C., J.M. Ndambuki and R.W. Salim. 2016. Hydrological responses to land use/cover changes in the Olifants Basin, South Africa. Water. 8(12): 588. DOI: 10.3390/w8120588 .
1924. Gyamfi, C., J.M. Ndambuki and R. W. Salim. 2016. Simulation of sediment yield in a Semi-Arid River basin under changing land use: An integrated approach of hydrologic modelling and principal component analysis. Sustainability. 8(11): 1133. DOI: 10.3390/su8111133 .
1925. Gyawali, B., S. Shrestha, A. Bhatta, B. Pokhrel, R. Cristan, G. Antonious, S. Banerjee and K.P. Paudel. 2022. Assessing the effect of land-use and land-cover changes on discharge and sediment yield in a rural coal-mine dominated watershed in Kentucky, USA. Water. 14(4): 516. DOI: 10.3390/w14040516 .
1926. Ha, D.T.T., M. Ghafouri-Azar and D.-H. Bae. 2019. Long-term variation of runoff coefficient during dry and wet seasons due to climate change. Water. 11: 2411. DOI: 10.3390/w11112411 .
1927. Ha, L.T., W.G.M. Bastiaanssen, A. van Griensven, A.I.J.M. van Dijk and G.B. Senay. 2018. Calibration of spatially distributed hydrological processes and model parameters in SWAT using remote sensing data and an auto-calibration procedure: A case study in a Vietnamese River Basin. Water. 10(2): 212. DOI: 10.3390/w10020212 .
1928. Ha, M. and M. Wu. 2015. Simulating and evaluating best management practices for integrated landscape management scenarios in biofuel feedstock production. Biofuels, Bioproducts and Biorefining. 9(6): 709-721. DOI: 10.1002/bbb.1579 .
1929. Ha, M. and M. Wu. 2017. Land management strategies for improving water quality in biomass production under changing climate. Environmental Research Letters. 12(3): 034015. DOI: 10.1088/1748-9326/aa5f32 .
1930. Ha, M. and M. Wu. 2021. Environmental and cost benefits of multi-purpose buffers in an agricultural watershed for biomass production. Biofuels, Bioproducts and Biorefining. 16(1): 228-243. DOI: 10.3390/su132112067 .
1931. Ha, M., M. Wu, M.D. Tomer, P.W. Gassman, T.M. Isenhart, J.G. Arnold, M.J. White, E.S. Parish, K.S. Comer and B. Belden. 2020. Biomass production with conservation practices for two Iowa watersheds. Journal of the American Water Resources Association. 56(6): 1030-1044. DOI: 10.1111/1752-1688.12880 .
1932. Ha, M., Z. Zhang and M. Wu. 2018. Biomass production in the Lower Mississippi River Basin: Mitigating associated nutrient and sediment discharge to the Gulf of Mexico. Science of the Total Environment. 635: 1585-1599. DOI: 10.1016/j.scitotenv.2018.03.184 .
1933. Haas, H., F. Dosdogru, L Kalin and H Yen. 2021. Soft data in hydrological modeling: Prediction of ecologically relevant flows with alternate land use/land cover data. Water. 13(21): 2947. DOI: 10.3390/w13212947 .
1934. Haas, H., L. Kalin and H. Yen. 2024. Improved forest canopy evaporation leads to better predictions of ecohydrological processes. Ecological Modelling. 489: 110620. DOI: 10.1016/j.ecolmodel.2024.110620 .
1935. Haas, H., L. Kalin and P. Srivastava. 2022. Improved forest dynamics leads to better hydrological predictions in watershed modeling. Science of the Total Environment. 821: 153180. DOI: 10.1016/j.scitotenv.2022.153180 .
1936. Haas, H., N.G.F. Reaver, R. Karki, L. Kalin, P. Srivastava, D.A. Kaplan and C. Gonzalez-Benecke. 2022. Improving the representation of forests in hydrological models. Science of the Total Environment. 812: 151425. DOI: 10.2166/wcc.2021.238 .
1937. Haas, M.B., B. Guse and N. Fohrer. 2017. Assessing the impacts of best management practices on nitrate pollution in an agricultural dominated lowland catchment considering environmental protection versus economic development. Journal of Environmental Management. 196: 347-364. DOI: 10.1016/j.jenvman.2017.02.060 .
1938. Haas, M.B., B. Guse, M. Pfannerstill and N. Fohrer. 2015. Detection of dominant nitrate processes in ecohydrological modelling with temporal parameter sensitivity analysis. Ecological Modelling. 314: 62-72. DOI: 10.1016/j.ecolmodel.2015.07.009 .
1939. Haas, M.B., B. Guse, M. Pfannerstill and N. Fohrer. 2016. A joined multi-metric calibration of river discharge and nitrate loads with different performance measures. Journal of Hydrology. 536: 534–545. DOI: 10.1016/j.jhydrol.2016.03.001 .
1940. Habeck, A. V. Krysanova and F. Hattermann. 2005. Integrated analysis of water quality in a mesoscale lowland basin. Advances in Geosciences. 5: 13-17. DOI: 10.5194/adgeo-5-13-2005 .
1941. Haberlandt, U. 2010. From hydrological modelling to decision support. Advances in Geosciences. 27: 11-19. DOI: 10.5194/adgeo-27-11-2010 .
1942. Haberlandt, U., V. Krysanova and A. Bardossy. 2002. Assessment of nitrogen leaching from arable land in large river basins Part II: Regionalisation using fuzzy rule based modelling. Ecological Modelling. 150(3): 277-294. DOI: 10.1016/S0304-3800(01)00526-9 .
1943. Habibi, A. and H. Masoumi. 2021. The action of tectonic and lithological parameters in the water balance of the Roodak Basin. Journal of Hydrogeomorphology. 7(25): 101-118. URL: https://hyd.tabrizu.ac.ir/article_12658.html?lang=en.
1944. Habibiandehkordi, R., D.K. Reid, P.K. Goel and A. Biswas. 2020. Phosphorus loss assessment tools: A review of underlying concepts and applicability in cold climates. Environmental Science and Pollution Research. 27: 3794–3802. DOI: 10.1007/s11356-019-06800-9 .
1945. Hadadin, N., Z. Al‐Majali and T. Eljufout. 2022. Effects of climate change on water resources: A case study of the Wadi Al‐Arab Catchment area in Jordan. Environmental Earth Sciences. 81(21): 501. DOI: 10.1007/s12665-022-10625-0 .
1946. Hadadin, N.A. and S.R. Al-Adwan. 2020. Estimation of the sediment yield using hydrological assessment tool model: A case of Wadi Al-Arab Dam at the northern part of Jordan. Arabian Journal of Geosciences. 13(10): 380. DOI: 10.1007/s12517-020-05418-3 .
1947. Haddad, O.B., M. Jahandideh-Tehrani and M.A. Mariño. 2013. Discussion of “Assessments of impacts of climate change and human activities on runoff with SWAT for the Huifa River Basin, Northeast China” by Aijing Zhang; Chi Zhang; Guobin Fu; Bende Wang; Zhenxin Bao; and Hongxing Zheng. Water Resources Management. 27(7): 2071-2073. DOI: 10.1007/s11269-013-0273-8 .
1948. Haggard, B.E., P.A. Moore, Jr. and P.B. Delaune. 2005. Phosphorus flux from bottom sediments in Lake Eucha, Oklahoma. Journal of Environmental Quality. 34(2): 724-728. DOI: 10.2134/jeq2005.0724 .
1949. Haghnegahdar, A. and S. Razavi. 2017. Insights into sensitivity analysis of Earth and environmental systems models: On the impact of parameter perturbation scale. Environmental Modelling & Software. 95: 115-131. DOI: 10.1016/j.envsoft.2017.03.031 .
1950. Haguma, D. and R. Leconte. 2018. Long-term planning of water systems in the context of climate non-stationarity with deterministic and stochastic optimization. Water Resources Management. 32(5): 1725-1739. DOI: 10.1007/s11269-017-1900-6 .
1951. Haguma, D., R. Leconte and S. Krau. 2017. Hydropower plant adaptation strategies for climate change impacts on hydrological regime. Canadian Journal of Civil Engineering. 44(11): 962-970. DOI: 10.1139/cjce-2017-0141 .
1952. Haguma, D., R. Leconte, P. Côté, S. Krau and F. Brissette. 2014. Optimal hydropower generation under climate change conditions for a northern water resources system. Water Resources Management. 28(13): 4631-4644. DOI: 10.1007/s11269-014-0763-3 .
1953. Haider, H., M. Zaman, S. Liu, M. Saifullah, M. Usman, J.N. Chauhdary, M.N. Anjum and M. Waseem. 2020. Appraisal of climate change and its impact on water resources of Pakistan: A case study of Mangla Watershed. Atmosphere. 11(10): 1071. DOI: 10.3390/atmos11101071 .
1954. HajiGhasemi, S., M.Z. Niri and A.N. Jilani. 2021. Investigating of climate change effects on the surface runoff with SWAT model (case study: Mazlaghan River). Iranian Journal of Irrigation and Drainage . 15(1): 121-137. URL: https://idj.iaid.ir/article_126747.html?lang=en.
1955. Hajigholizadeh, M., A.M. Melesse and H.R. Fuentes. 2018. Erosion and sediment transport modelling in shallow waters: A review on approaches, models and applications. International Journal of Environmental Research and Public Health. 15: 518. DOI: 10.3390/ijerph15030518 .
1956. Hajihoseini, H., M. Hajihoseini, A. Najafi, S. Morid and M. Delavar. 2015. Assessment of changes in hydro-meteorological variables upstream of Helmand Basin during the last century using CRU data and SWAT model. Iran-Water Resources Research. 10(3): 38-52. URL: http://en.journals.sid.ir/ViewPaper.aspx?ID=455590.
1957. Hajihosseini, H., M. Hajihosseini, S. Morid, M. Delavar and M.J. Booij. 2016. Hydrological assessment of the 1973 treaty on the transboundary Helmand River, using the SWAT model and a global climate database. Water Resources Management. 30(13): 4681–4694. DOI: 10.1007/s11269-016-1447-y .
1958. Hajihosseini, M., H. Hajihosseini, S. Morid, M. Delavar and M.J. Booij. 2020. Impacts of land use changes and climate variability on transboundary Hirmand River using SWAT. Journal of Water and Climate Change. 11(4): 1695-1711. DOI: 10.2166/wcc.2019.100 .
1959. Halecki, W. and D. Bedla. 2022. The rainfall-runoff model for the Carpathian Flysch Catchment using the SWAT+ hydrological software. Acta Scientiarum Polonorum: Formatio . 21(1): 85-93. DOI: 10.15576/ASP.FC/2022.21.1.85 .
1960. Halecki, W. and D. Bedla. 2024. Surface flux patterns of nutrient concentrations and total suspended solids in Western Carpathian Stream within Agricultural, Forest, and Grassland Landscapes. Water. 16(14): 2052. DOI: 10.3390/w16142052 .
1961. Halecki, W. and S. Łyszczarz. 2021. Examination of susceptibility to the deficiency of soil water in a forested agricultural area. Earth. 2(3): 532-543. DOI: 10.3390/earth2030031 .
1962. Halecki, W., E. Kruk and M. Ryczek. 2018. Loss of topsoil and soil erosion by water in agricultural areas: A multicriteria approach for various land use scenarios in the western Carpathians using a SWAT model. Land Use Policy. 73: 363-372. DOI: 10.1016/j.landusepol.2018.01.041 .
1963. Halecki, W., S. Łyszczarz, J. Lasota, E. Błońska and S. Chattopadhyay. 2023. Quantifying the soil water storage capacity of Flysh Catchments surrounded by mixed forests in Outer Carpathians. Environmental Processes. 10(2): 28. DOI: 10.1007/s40710-023-00641-y .
1964. Haleem, K., A.U. Khan, J. Khan, A.A.J. Ghanim and A.M. Al-Areeq. 2023. Evaluating future streamflow patterns under SSP245 scenarios: Insights from CMIP6. Sustainability. 15(22): 16117. DOI: 10.3390/su152216117 .
1965. Haleem, K., A.U. Khan, S. Ahmad, M. Khan, F.A. Khan, W. Khan and J. Khan. 2022. Hydrological impacts of climate and land-use change on flow regime variations in Upper Indus Basin. Journal of Water and Climate Change. 13(2): 758-770. DOI: 10.2166/wcc.2021.238 .
1966. Halefom, A., A. Teshome and E. Sisay. 2020. Potential implications of land use/land cover change and climate variability on ungauged watershed hydrology. International Journal of Hydrology Science and Technology. 10(2): 167-190. DOI: 10.1504/IJHST.2020.106484 .
1967. Halefom, A., E. Sisay, D. Khare, L. Singh and T. Worku. 2017. Hydrological modeling of urban catchment using semi-distributed model. Modeling Earth Systems and Environment. 3(2): 683-692. DOI: 10.1007/s40808-017-0327-7 .
1968. Halik, G., V.S. Putra and P.U.A. Wiyono. 2022. Assessment of climate change impact on drought disaster in Sampean Baru Watershed, East Java, Indonesia based on IPCC‑AR5. Natural Hazards. 112(2): 1705-1726. DOI: 10.1007/s11069-022-05245-7 .
1969. Hall, K.R., M.E. Herbert, S.P. Sowa, S. Mysorekar, S.A. Woznicki, P.A. Nejadhashemi and L. Wang. 2017. Reducing current and future risks: Using climate change scenarios to test an agricultural conservation framework. Journal of Great Lakes Research. 43(1): 59-68. DOI: 10.1016/j.jglr.2016.11.005 .
1970. Hallouin, T., M. Bruen, M. Christie, C. Bullock and M.K. Quinn. 2018. Challenges in using hydrology and water quality models for assessing freshwater ecosystem services: A review. Revista Geociências. 8(2): 45. DOI: 10.3390/geosciences8020045 .
1971. Hallouz, F., M. Meddi, G. Mahé, S. Alirahmani and A. Keddar. 2018. Modeling of discharge and sediment transport through the SWAT model in the basin of Harraza (Northwest of Algeria). Water Science. 32(1): 79-88. DOI: 10.1016/j.wsj.2017.12.004 .
1972. Hamaamin, Y.A., A.P. Nejadhashemi, Z. Zhang, S. Giri and S.A. Woznicki. 2016. Bayesian regression and Neuro-Fuzzy methods reliability assessment for estimating streamflow. Water. 8(7): 287. DOI: 10.3390/w8070287 .
1973. Hamaamin, Y.A., A.P. Nejadhashemi, Z. Zhang, S. Giri, U. Adhikari and M.R. Herman. 2019. Evaluation of neuro-fuzzy and Bayesian techniques in estimating suspended sediment loads. Sustainable Water Resources Management. 5(2): 639-654. DOI: 10.1007/s40899-018-0225-9 .
1974. Hamada, Y., H. Ssegane and M.C. Negri. 2015. Mapping intra-field yield variation using high resolution satellite imagery to integrate bioenergy and environmental stewardship in an agricultural watershed. Remote Sensing. 7(8): 9753-9768. DOI: 10.3390/rs70809753 .
1975. Hamdi, M. and K. Goïta. 2023. Analysis of groundwater depletion in the Saskatchewan River Basin in Canada from coupled SWAT-MODFLOW and satellite gravimetry. Hydrology. 10(9): 188. DOI: 10.3390/hydrology10090188 .
1976. Hamedi, E., J. Chezgi and H. Noor. 2023. Simulating the influence of rangeland conditions improvement on Sarbaz River's discharge and sedimentation. Desert Ecosystem Engineering Journal. 12(38): 73-86. URL: https://deej.kashanu.ac.ir/article_114040.html?lang=en.
1977. Hamel, P. and B.P. Bryant. 2017. Uncertainty assessment in ecosystem services analyses: Seven challenges and practical responses. Ecosystem Services. 24: 1-15. DOI: 10.1016/j.ecoser.2016.12.008 .
1978. Hamid, A.T., M. Sharif and B. Narsimlu. 2017. Assessment of climate change impacts on streamflows in Satluj river basin, India using SWAT model. International Journal of Hydrology Science and Technology. 7(2): 134-157. DOI: 10.1504/IJHST.2017.084140 .
1979. Hammouri, N., J. Adamowski, M. Freiwan and S. Prasher. 2017. Climate change impacts on surface water resources in arid and semi-arid regions: A case study in northern Jordan. Acta Geodaetica et Geophysica. 32(1): 141-156. DOI: 10.1007/s40328-016-0163-7 .
1980. Han, C.-W., S.-G. Xu, J.-W. Liu and J.-J. Lian. 2010. Nonpoint-source nitrogen and phosphorus behavior and modeling in cold climate: a review. Water Science and Technology. 62(10): 2277-2285. URL: http://ukpmc.ac.uk/abstract/MED/21076213/reload=0;jsessionid=zWqOOp9rFk6UGmGd0Dw2.22.
1981. Han, D., J. Lee, W. Jang and S. Kim. 2020. Groundwater evaluation in the Bokha Watershed of the Namhan River using SWAT-MODFLOW. Journal of Korea Water Resources Association. 53(11): 995-997. DOI: 10.3741/JKWRA.2020.53.11.985 .
1982. Han, D., J. Lee, W. Kim, S. Baek and S. Kim. 2021. Hydrologic evaluation of SWAT considered forest type using MODIS LAI data: A case of Yongdam Dam Watershed. Journal of Korea Water Resources Association. 54(11): 875-889. DOI: 10.3741/JKWRA.2021.54.11.875 .
1983. Han, E., V. Merwade and G.C. Heathman. 2012. Implementation of surface soil moisture data assimilation with watershed scale distibuted hydrological model. Journal of Hydrology. 416-417: 98-117. DOI: 10.1016/j.jhydrol.2011.11.039 .
1984. Han, F. and Y. Zheng. 2016. Multiple-response Bayesian calibration of watershed water quality models with significant input and model structure errors. Advances in Water Resources. 88: 109-123. DOI: 10.1016/j.advwatres.2015.12.007 .
1985. Han, F. and Y. Zheng. 2018. Joint analysis of input and parametric uncertainties in watershed water quality modeling: A formal Bayesian approach. Advances in Water Resources. 116: 77-94. DOI: 10.1016/j.advwatres.2018.04.006 .
1986. Han, J., D. Lee, S. Lee, S.-W. Chung, S.J. Kim, M. Park, K.J. Lim and J. Kim. 2019. Evaluation of the effect of channel geometry on streamflow and water quality modeling and modification of channel geometry module in SWAT: A case study of the Andong Dam Watershed. Water. 11(4): 718. DOI: 10.3390/w11040718 .
1987. Han, J., Z. Xin, F. Han, B. Xu, L. Wang, C. Zhang and Y. Zheng. 2021. Source contribution analysis of nutrient pollution in a P-rich watershed: Implications for integrated water quality management. Environmental Pollution. 279: 116885. DOI: 10.1016/j.envpol.2021.116885 .
1988. Han, J.H., Y. Park, D. Kum, Y. Jung, G.C. Jung, K.-S. Kim and K.J. Lim. 2015. Modification of sediment trapping efficiency equation of VFS in SWAT considering the characteristics of the agricultural land in Korea. Journal of Korean Society on Water Environment. 31(5): 482-490. DOI: 10.15681/KSWE.2015.31.5.482 .
1989. Han, Q., T. Qi and M.M. Khanaum. 2024. Evaluation of the offsets of artificial recharge on the extra run-off induced by urbanization and extreme storms based on an enhanced semi-distributed hydrologic model with an infiltration basin modul. Water. 16(7): 1032. DOI: 10.3390/w16071032 .
1990. Han, X., Z. Wei, B. Zhang, C. Han and J. Song. 2018. Effects of crop planting structure adjustment on water use efficiency in the irrigation area of Hei River Basin. Water. 10(10): 1305. DOI: 10.3390/w10101305 .
1991. Han, Y., F. Xia, H. Huang, W. Mu and D. Jia. 2022. Impact of the Grain for Green Project on water resources and ecological water stress in the Yanhe River Basin. PLoS ONE. 17(6): e0259611. DOI: 10.1371/journal.pone.0259611 .
1992. Han, Y., J. Niu, Z. Xin, W. Zhang, T. Zhang, X. Wang and Y. Zhang. 2016. Optimization of land use pattern reduces surface runoff and sediment loss in a Hilly-Gully watershed at the Loess Plateau, China. Forest Systems. 25(1): e054. DOI: 10.5424/fs/2016251-08016 .
1993. Han, Y., X. Du, B. Farjad, G. Goss, A. Gupta and M. Faramarzi. 2022. A numerical modeling framework for simulating the key in-stream fate processes of PAH decay in Muskeg River Watershed, Alberta, Canada. Science of the Total Environment. 848: 157246. DOI: 10.1016/j.scitotenv.2022.157246 .
1994. Han, Y., Z. Liu, Y. Chen, J. Qi, P. Feng, D.L. Liu, J. Shi, L. Meng and Y. Chen. 2024. The response of non-point source pollution to climate change in an orchard-dominant coastal watershed. Environmental Research. 259: 119515. DOI: 10.1016/j.envres.2024.119515 .
1995. Han, Y., Z. Liu, Y. Chen, Y. Li, H. Liu, L. Song and Y. Chen. 2023. Assessing non-point source pollution in an apple-dominant basin and associated best fertilizer management based on SWAT modeling. International Soil and Water Conservation Research. 11(2): 353-364. DOI: 10.1016/j.iswcr.2022.10.002 .
1996. Han, Y., Z. Liu, Y. Li, Y. Chen, J. Qi, P. Feng, D.L. Liu, J. Shi, L. Meng and Y. Chen. 2024. Response of hydrology and nutrient losses to different extreme rainfall conditions in a coastal watershed influenced by orchards. Journal of Environmental Management. 368: 122137. DOI: 10.1016/j.jenvman.2024.122137 .
1997. Hanief, A. and A.E. Laursen. 2017. SWAT modeling of hydrology, sediment and nutrients from the Grand River, Ontario. Water Quality Research Journal. 52(4): 243-257. DOI: 10.2166/wqrj.2017.014 .
1998. Hanief, A. and A.E. Laursen. 2019. Meeting updated phosphorus reduction goals by applying best management practices in the Grand River Watershed, southern Ontario. Ecological Engineering. 130: 169-175. DOI: 10.1016/j.ecoleng.2019.02.007 .
1999. Hanief, A. and A.E. Laursen. 2019. Modeling the natural drainage network of the Grand River in southern Ontario: Agriculture may increase total channel length of low-order streams. Revista Geociências. 9(1): 46. DOI: 10.3390/geosciences9010046 .
2000. Hanif, F., S. Kanae, R. Farooq, M.R. Iqbal and A. Petroselli. 2023. Impact of satellite-derived land cover resolution using machine learning and hydrological simulations. Remote Sensing. 15(22): 5338. DOI: 10.3390/rs15225338 .
2001. Hann, H., A. Nauditt, M. Zambrano-Bigiarini, J. Thurner, I. McNamara and L. Ribbe. 2021. Combining satellite-based rainfall data with rainfall-runoff modelling to simulate low flows in a southern Andean catchment. Journal of Natural Resources and Development. 11: 1-19. DOI: 10.18716/ojs/jnrd/2021.11.02 .
2002. Hanna, K., M. Paul, M. Negahban-Azar and A. Shirmohammadi. 2021. Developing a decision support system for economic analysis of irrigation applications in temperate zones. Water. 13(15): 2044. DOI: 10.3390/w13152044 .
2003. Hanratty, M.P. and H.G. Stefan. 1998. Simulating climate change effects in a Minnesota agricultural watershed. Journal of Environmental Quality. 27: 1524-1532. DOI: 10.2134/jeq1998.00472425002700060032x .
2004. Hansen, A.T., T. Campbell, S.J. Cho, J.A. Czuba, B.J. Dalzell, C.L. Dolph, P.L. Hawthorne, S. Rabotyagov, Z. Lang, K. Kumarasamy, P. Belmont, J.C. Finlay, E. Foufoula-Georgiou, K.B. Gran, C.L. Kling and P. Wilcock. 2021. Integrated assessment modeling reveals near-channel management as cost-effective to improve water quality in agricultural watersheds. Proceedings of the National Academy of Sciences. 118(28): e2024912118. DOI: 10.1073/pnas.2024912118 .
2005. Hanson, L., S. Habicht, P. Daggupati, R. Srinivasan and P. Faeth. 2017. Modeling changes to streamflow, sediment, and nutrient loading from land use changes due to potential natural gas development. Journal of the American Water Resources Association. 53(6): 1293-1312. DOI: 10.1111/1752-1688.12588 .
2006. Hanson, R., J.H. Rowan and M. Green. 2022. An assessment of 2 watershed models to meet watershed planning needs. Lake and Reservoir Management. 38(1): 16-27. DOI: 10.1080/10402381.2021.2007181 .
2007. Hao, F., X. Zhang, X. Wang and O. Wei. 2012. Assessing the relationship between landscape patterns and nonpoint-source pollution in the Danjiangkou Reservoir Basin in China. Journal of the American Water Resources Association. 48: 1-16. DOI: 10.1111/j.1752-1688.2012.00677.x .
2008. Hao, F.H., X.S. Zhang and Z.F. Yang. 2004. A distributed non-point source pollution model: Calibration and validation in the Yellow River Basin. Journal of Environmental Sciences. 16(4): 646-650. URL: http://www.jesc.ac.cn/jesc_en/ch/reader/view_abstract.aspx?file_no=20040425&flag=1.
2009. Hao, L., G. Sun, Y. Liu and H. Qian. 2015. Integrated modeling of water supply and demand under management options and climate change scenarios in Chifeng city, China. Journal of the American Water Resources Association. 51(3): 655-671. DOI: 10.1111/1752-1688.12311 .
2010. Hao, W.G., H.P. Li, H. Liu, L.X. Wang, R. Jiao, H.L. Liu, Y.F. Song and L.P. Cui. 2020. Research on the runoff of arid desert grasslands under changing environments in China. Applied Ecology and Environmental Research. 18(2): 3131-3145. DOI: 10.15666/aeer/1802_31313145 .
2011. Hao, X., W. Ouyang, K. Zhang, X. Wan, X. Cui and W. Zhu. 2022. Enhanced release, export, and transport of diffuse nutrients from litter in forested watersheds with climate warming. Science of the Total Environment. 837: 155897. DOI: 10.1016/j.scitotenv.2022.155897 .
2012. Hao, X., Y. Cao, L. Zhang, Y. Zhang and J. Liu. 2015. Fluoroquinolones in the Wenyu River catchment, China: Occurrence simulation and risk assessment. Environmental Toxicology and Chemistry. 34(12): 2764-2770. DOI: 10.1002/etc.3158 .
2013. Hao, Y., J. Ma, J. Chen, D. Wang, Y. Wang and H. Xu. 2018. Assessment of changes in water balance components under 1.5 ◦C and 2.0 ◦C global warming in transitional climate basin by multi-RCPs and multi-GCMs approach. Water. 10(12): 1863. DOI: 10.3390/w10121863 .
2014. Haque, M.M., O. Seidou, A. Mohammadian, A.G. Djibo, S. Liersch, S. Fournet, S. Karam, E.D.P. Perera and M. Kleynhans. 2019. Improving the accuracy of hydrodynamic simulations in data scarce environments using bayesian model averaging: A case study of the Inner Niger Delta, Mali, West Africa. Water. 11(9): 1-24. DOI: 10.3390/w11091766 .
2015. Hargreaves, J. and B. Hobbs. 2009. Optimal selection of priority development areas considering tradeoffs between hydrology and development configuration. Environmental Modeling & Assessment. 14(3): 289-302. DOI: 10.1007/s10666-007-9130-6 .
2016. Harifa, A.C., M. Sholichin and T.B. Prayogo. 2017. Analisa pengaruh perubahan penutupan lahan terhadap debit sungai sub das metro dengan menggunakan program ARCSWAT. Jurnal Teknik Pengairan. 8(1): 1-14. URL: http://jurnalpengairan.ub.ac.id/index.php/jtp/article/view/291.
2017. Harifidy, R.Z., I. Hiroshi, S. Kazuyoshi, M.Jun, R.Z.M. Hariveloc and C.A. Fernández-Palomino. 2024. Multi-gauge calibration comparison for simulating streamflow across the major river basins in Madagascar: SWAT + Toolbox, R-SWAT, and SWAT + Editor hard calibration. Hydrology Research. DOI: 10.2166/nh.2024.188 .
2018. Hariri, H., S.A. Hosseini and A. Khosrojerdi. 2022. Evaluating gabion performance in sediment yield reduction of basin under current and future conditions (case study: Dehbar Basin). Arabian Journal of Geosciences. 15(5): 402. DOI: 10.1007/s12517-022-09694-z .
2019. Harka, A.E., N.T. Roba and A.K. Kassa. 2020. Modelling rainfall runoff for identification of suitable water harvesting sites in Dawe River Watershed, Wabe Shebelle River Basin, Ethiopia. Journal of Water and Land Development. 47(10-12): 186-195. DOI: 10.24425/jwld.2020.135313 .
2020. Harmel, R. D., C.W. Richardson and K.W. King. 2000. Hydrologic response of a small watershed model to generated precipitation. Transactions of the ASAE. 43(6): 1483-1488. DOI: 10.13031/2013.3047 .
2021. Harmel, R.D. and P.K. Smith. 2007. Consideration of measurement uncertainty in the evaluation of goodness-of-fit in hydrologic and water quality modeling. Journal of Hydrology. 337(3-4): 326-336. DOI: 10.1016/j.jhydrol.2007.01.043 .
2022. Harmel, R.D., C. Baffaut and K.R. Douglas-Mankin. 2018. Review and development of ASABE engineering practice 621: "Guidelines for calibrating, validating, and evaluating hydrologic and water quality models". Transactions of the ASABE. 61(4): 1393-1401. DOI: 10.13031/trans.12806 .
2023. Harmel, R.D., C.G. Rossi, T. Dybala, J. Arnold, K. Potter, J. Wolfe and D. Hoffman. 2008. Conservation Effects Assessment Project research in the Leon River and Riesel watersheds. Journal of Soil and Water Conservation. 63(6): 453-460. DOI: 10.2489/jswc.63.6.453 .
2024. Harmel, R.D., D.K. Smith and K.W. Migliaccio. 2010. Modifying goodness-of-fit indicators to incorporate both measurement and model uncertainty in model calibration and validation. Transactions of the ASABE. 53(1): 55-63. URL: ftp://bellnetweb.brc.tamus.edu/pub/outgoing/bkomar/windows/DUET-H_WQ/TransModel+Meas2010.pdf.
2025. Harms, J.Z., J.J. Malard-Adam, J.F. Adamowski, A. Sharma and A. Nkwasa. 2023. Dynamically coupling system dynamics and SWAT+ models using Tinamït: Application of modular tools for coupled human–water system models. Hydrology and Earth System Sciences. 27(8): 1683–1693. DOI: 10.5194/hess-27-1683-2023 .
2026. Haro-Monteagudo, D., L. Palazón and S. Beguería. 2020. Long-term sustainability of large water resource systems under climate change: A cascade modeling approach. Journal of Hydrology. 582: 124546. DOI: 10.1016/j.jhydrol.2020.124546 .
2027. Harris, H.J., R.B. Wenger, P.E. Sager and J. Val Klump. 2018. The Green Bay saga: Environmental change, scientific investigation, and watershed management. Journal of Great Lakes Research. 44: 829-836. DOI: 10.1016/j.jglr.2018.08.001 .
2028. Harrison, R.L., J. van Tol and M.L. Toucher. 2022. Using hydropedological characteristics to improve modelling accuracy in Afromontane catchments. Journal of Hydrology: Regional Studies. 39: 100986. DOI: 10.1016/j.ejrh.2021.100986 .
2029. Hartanto, I.M., C. Almeida, T.K. Alexandridis, M. Weynants. G. Timoteo, P. Chambel-Leitão and A.M.S. Araujo. 2015. Merging earth observation data, weather predictions, in-situ measurements, and hydrological models, for water information services. Environmental Engineering and Management Journal. 14(9): 2031-2042. URL: http://omicron.ch.tuiasi.ro/EEMJ/issues/vol14/vol14no9.htm.
2030. Hartwich, J., M. Schmidt, J. Bölscher, C. Reinhardt-Imjela, D. Murach and A. Schulte. 2016. Erratum to: Hydrological modelling of changes in the water balance due to the impact of woody biomass production in the North German Plain. Environmental Earth Sciences. 75. DOI: 10.1007/s12665-016-5912-y .
2031. Hartwich, J., M. Schmidt, J. Bölscher, C. Reinhardt-Imjela, D. Murach and A. Schulte. 2016. Hydrologic modelling of changes in the water balance due to the impact of woody biomass production in the North German Plain. Environmental Earth Sciences. 75: 1071. DOI: 10.1007/s12665-016-5870-4 .
2032. Hasan, M.A. and S.M. Pradhanang. 2017. Estimation of flow regime for a spatially varied Himalayan watershed using improved multi‑site calibration of the Soil and Water Assessment Tool (SWAT) model. Environmental Earth Sciences. 76: 787. DOI: 10.1007/s12665-017-7134-3 .
2033. Hasan, M.M. and G. Wyseure. 2018. Impact of climate change on hydropower generation in Rio Jubones Basin, Ecuador. Water Science and Engineering. 11(2): 157-166. DOI: 10.1016/j.wse.2018.07.002 .
2034. Hasan, Z.A., N. Hamidon, M.S. Yusof and A.A. Ghani. 2012. Flow and sediment yield simulations for Bukit Merah Reservoir catchment, Malaysia: A case study. Water Science and Technology. 66(10): 2170-2176. DOI: 10.2166/wst.2012.432 .
2035. Hashem, A.A., B.A. Engel, G.W. Marek, J.E. Moorhead, D.C. Flanagan, M. Rashad, S. Radwan, V.F. Bralts and P.H. Gowda. 2020. Evaluation of SWAT soil water estimation accuracy using data from Indiana, Colorado, and Texas. Transactions of the ASABE. 63(6): 1827-1843. DOI: 10.13031/trans.13910 .
2036. Hashemi, F., J.E. Olesen, T. Dalgaard and C.D. Børgesen. 2016. Review of scenario analyses to reduce agricultural nitrogen and phosphorus loading to the aquatic environment. Science of the Total Environment. 573: 608-626. DOI: 10.1016/j.scitotenv.2016.08.141 .
2037. Hassan, N.A., J.M. Gathenya and J.M. Raude. 2021. Estimating groundwork recharge rates and identifying groundwater recharge zones in Kakia and Esamburbur sub-catchment Narok, Kenya. Journal of Sustainable Research in Engineering. 7(1): 31-45. URL: https://jsre.jkuat.ac.ke/index.php/jsre/article/view/128.
2038. Hassanzadeh, Y. and A.A. Afshar. 2019. Using the MIROC-ESM Model to Investigate the hydro-climatic conditions of the small-scale watershed under the impact of climate change. Journal of Civil and Environmental Engineering. 49.1(94): 47-59. URL: https://ceej.tabrizu.ac.ir/article_8956.html?lang=en.
2039. Hassanzadeh, Y., A.A. Afshar, M., Pourreza-Bilondi, H. Memarian and A.A. Besalatpour. 2019. Toward a combined Bayesian frameworks to quantify parameter uncertainty in a large mountainous catchment with high spatial variability. Environmental Monitoring and Assessment. 191: 23. DOI: 10.1007/s10661-018-7145-x .
2040. Hassen, S.M., B. Gebremariam and D.Y. Tenagashaw. 2022. Sediment yield modeling and evaluation of best management practices using the SWAT model of the Daketa Watershed, Ethiopia. Water Conservation Science and Engineering. 7(3): 283–292. DOI: 10.1007/s41101-022-00142-3 .
2041. Hatterman, F., V. Kyrsanova, F. Wechsung and M. Wattenbach. 2004. Integrating groundwater dynamics in regional hydrological modelling. Environmental Modelling & Software. 19(11): 1039-1051. DOI: 10.1016/j.envsoft.2003.11.007 .
2042. Hatterman, F.F, V. Kyrsanova, A. Habeck and A. Bronstert. 2006. Integrating wetlands and riparian zones in river basin modelling. Ecological Modelling. 199(4): 379-392. DOI: 10.1016/j.ecolmodel.2005.06.012 .
2043. Hatterman, F.F., M. Wattenbach, V. Krysanova and F. Wechsburg. 2005. Runoff simulations on the macroscale with the ecohydrological model SWIM in the Elbe Catchment—validation and uncertainty analysis. Hydrological Processes. 19(3): 693-714. DOI: 10.1002/hyp.5625 .
2044. Hattermann, F.F., H. Gömann, T. Conradt, M. Kaltofen, P. Kreins and F. Wechsung. 2007. Impacts of global change on water-related sectors and society in a trans-boundary central European river basin – Part 1: Project framework and impacts on agriculture. Advances in Geosciences. 11: 85-92. DOI: 10.5194/adgeo-11-85-2007 .
2045. Hattermann, F.F., V. Krysanova and C. Hesse. 2008. Modelling wetland processes in regional applications. Hydrological Sciences Journal. 53(5): 1001-1012. DOI: 10.1623/hysj.53.5.1001 .
2046. Hattermann, F.F., V. Krysanova, S N. Gosling, R. Dankers, P. Daggupati, C. Donnelly, M. Flörke, S. Huang, Y. Motovilov, S. Buda, T. Yang, C. Müller, G. Leng, Q. Tang, F.T. Portmann, S. Hagemann, D. Gerten, Y. Wada, Y. Masaki, T. Alemayehu, Y. Satoh and L. Samaniego. 2017. Cross‐scale intercomparison of climate change impacts simulated by regional and global hydrological models in eleven large river basins. Climatic Change. 141(3): 561-576. DOI: 10.1007/s10584-016-1829-4 .
2047. Havel, A., A. Tasdighi and M. Arabi. 2018. Assessing the hydrologic response to wildfires in mountainous regions. Hydrology and Earth System Sciences. 22: 2527-2550. DOI: 10.5194/hess-22-2527-2018 .
2048. Haverkamp, S., N. Fohrer and H.-G. Frede. 2005. Assessment of the effect of land use patterns on hydrologic landscape functions: A comprehensive GIS-based tool to minimize model uncertainty resulting from spatial aggregation. Hydrological Processes. 19(3): 715-727. DOI: 10.1002/hyp.5626 .
2049. Haverkamp, S., R. Srinivasan, H.-G. Frede and C. Santhi. 2002. Subwatershed spatial analysis tool: Discretization of a distributed hydrologic model by statistical criteria. Journal of the American Water Resources Association. 38(6): 1723-1733. DOI: 10.1111/j.1752-1688.2002.tb04377.x .
2050. Havrylenko, S.B., J.M. Bodoque, R. Srinivasan, G.V. Zucarelli and P. Mercuri. 2015. Assessment of the soil water content in the Pampas region using SWAT. Catena. 137: 298-309. DOI: 10.1016/j.catena.2015.10.001 .
2051. Hawkins, R.H., F.D. Theurer and M. Rezaeianzadeh. 2019. Understanding the basis of the curve number method for watershed models and TMDLs. Journal of Hydrologic Engineering. 24(7): 06019003. DOI: 10.1061/(ASCE)HE.1943-5584.0001755 .
2052. Hayek, S., M. Hammad and D. Al-Kamouh. 2022. Assessment the unconfined aquifer resources under climate change impacts: Case study of Akkar Plain. Tishreen University Journal for Research and Scientific Studies. 21(36): 305-320. URL: https://journal.tishreen.edu.sy/index.php/engscnc/article/view/13330.
2053. He, H., J. Zhou, and W. Zhang. 2008. Modelling the impacts of environmental changes on hydrological regimes in the Hei River Watershed, China. Global and Planetary Change. 61(3-4): 175-193. DOI: 10.1016/j.gloplacha.2007.08.012 .
2054. He, H., Q. Zhang, J. Zhou, J. Fei and X. Xie. 2009. Coupling climate change with hydrological dynamic in Qinling Mountains, China. Climatic Change. 94(3-4): 409-427. DOI: 10.1007/s10584-008-9527-5 .
2055. He, J., X. Wu, Y. Zhang, B. Zheng, D. Meng, H. Zhou, L. Lu, W. Deng, Z. Shao and Y. Qin. 2020. Management of water quality targets based on river-lake water quality response relationships for lake basins – A case study of Dianchi Lake. Environmental Research. 186: 109479. DOI: 10.1016/j.envres.2020.109479 .
2056. He, J., Y.-R. Wan, H.-T. Chen and W.-C. Wang. 2021. Study on the impact of land-use change on runoff variation trend in Luojiang River Basin, China. Water. 13(22): 3283. DOI: 10.3390/w13223282 .
2057. He, Q. and F. Molkenthin. 2021. Improving the integrated hydrological simulation on a data-scarce catchment with multi-objective calibration. Journal of Hydroinformatics. 23(2): 267-283. DOI: 10.2166/hydro.2021.132 .
2058. He, Q., F. Wendland and F. Molkenthin. 2019. The analysis of nitrogen load and simulation uncertainty using SWAT in a catchment with paddy field in China. Water Science and Technology. 80(4): 806-816. DOI: 10.2166/wst.2019.326 .
2059. He, R., X. Yang, P.W. Gassman, G. Wang and C. Yu. 2019. Spatiotemporal characterization of nutrient pollution source compositions in the Xiaohong River Basin, China. Ecological Indicators. 107: 105676. DOI: 10.1016/j.ecolind.2019.105676 .
2060. He, Y., Q. Wang, Y. Xu, Z. Li, J. Yuan, M. Lu and Z. Lin. 2022. Climate change increased the compound extreme precipitation-flood events in a representative watershed of the Yangtze River Delta, China. Stochastic Environmental Research and Risk Assessment. 36(11): 3803-3818. DOI: 10.1007/s00477-022-02229-8 .
2061. Heathman, G.C., D.C. Flanagan, M. Larose and B.W. Zuercher. 2008. Application of the Soil and Water Assessment Tool and annualized agricultural non-point source models in the St. Joseph River Watershed. Journal of Soil and Water Conservation. 63(6): 552-568. DOI: 10.2489/jswc.63.6.552 .
2062. Heathman, G.C., M. Larose and J.C. Ascough II. 2008. Soil and Water Assessment Tool evaluation of soil and land use geographic information system data sets on simulated stream flow. Journal of Soil and Water Conservation. 64(1): 17-32. DOI: 10.2489/jswc.64.1.17 .
2063. Heberling, M.T., C.T. Nietch, H.W. Thurston, M. Elovitz, K.H. Birkenhauer, S. Panguluri, B. Ramakrishnan, E. Heiser and T. Neyer. 2015. Comparing drinking water treatment costs to source water protection costs using time series analysis. Water Resources Research. 51(11): 8741-8756. DOI: 10.1002/2014WR016422 .
2064. Heidari, A., A. Mayer and D. Watkins Jr. 2019. Hydrologic impacts and trade-offs associated with forest-based bioenergy development practices in a snow-dominated watershed, Wisconsin, USA. Journal of Hydrology. 574: 421-429. DOI: 10.1016/j.jhydrol.2019.04.067 .
2065. Heidari, A., D. Watkins Jr., A. Mayer, T. Propato, S. Verón and D. de Abelleyra. 2021. Spatially variable hydrologic impact and biomass production tradeoffs associated with Eucalyptus (E. grandis) cultivation for biofuel production in Entre Rios, Argentina. Global Change Biology Bioenergy. 13(5): 823-837. DOI: 10.1111/gcbb.12815 .
2066. Heidari, A., Mayer, A., Watkins Jr. D. and M.M. Castillo. 2020. Hydrologic impacts and trade-offs associated with developing oil palm for bioenergy in Tabasco, Mexico. Journal of Hydrology: Regional Studies. 31: 100722. DOI: 10.1016/j.ejrh.2020.100722 .
2067. Heidari, H., M. Arabi, M. Ghanbari and T. Warziniack. 2020. A probabilistic approach for characterization of sub-annual socioeconomic drought intensity-duration-frequency (IDF) relationships in a changing environment. Water. 12(6): 1522. DOI: 10.3390/w12061522 .
2068. Heidari, H., M. Arabi, T. Warziniack and S. Sharvelle. 2021. Effects of urban development patterns on municipal water shortage. Frontiers in Water. 3: 694917. DOI: 10.3389/frwa.2021.694817 .
2069. Heistermann, M., T., Francke, C. Georgi and A. Bronstert. 2014. Increasing life expectancy of water resources literature. Water Resources Research. 50: 5019-5028. DOI: 10.1002/2014WR015674 .
2070. Hejzlar, J., S. Anthony, B. Arheimer, H. Behrendt, F. Bouraoui, B. Grizzetti, P. Groenendijk, M.H.J.L. Jeuken, H. Johnsson, A. Lo Porto, B. Kronvang Y. Panagopoulos, C. Siderius, M Silgram, M. Venohr and J. Zaloudik. 2009. Nitrogen and phosphorus retention in surface waters: An inter-comparison of predictions by catchment models of different complexity. Journal of Environmental Monitoring. 11(3): 584-593. DOI: 10.1039/b901207a .
2071. Hendricks, N.P., S. Sinnathamby, K. Douglas-Mankin, A. Smith, D.A. Sumner and D.H. Earnhart. 2014. The environmental effects of crop price increases: Nitrogen losses in the U.S. Corn Belt. Journal of Environmental Economics and Management. 68: 507-526. DOI: 10.1016/j.jeem.2014.09.002 .
2072. Heng, S., P. Hok, Md. M. Rahman and N. Phol. 2020. Flow regime alteration under regional climate models in Stung Chinit River Basin, Cambodia. Techno-Science Research Journal. 8: 25-33. URL: https://techno-srj.itc.edu.kh/menuscript/6f4aa2cdaf481963012cecdfea9220f6.
2073. Heo, J., J. Yu, J.R. Giardino and H. Cho. 2015. Impacts of climate and land-cover changes on water resources in a humid subtropical watershed: A case study from east Texas, USA. Water and Environment Journal. 29(1): 51-60. DOI: 10.1111/wej.12096 .
2074. Heo, J., J. Yu, J.R. Giardino and H. Cho. 2015. Water resources response to climate and land-cover changes in a semi-arid watershed, New Mexico, USA. Terrestrial, Atmospheric and Oceanic Sciences. 26(4): 463-474. DOI: 10.3319/TAO.2015.03.24.01(Hy) .
2075. Heo, S.-G., D.-S. Ryu, J.-Y. Kim, K.-S. Kim, J.-H. Ahn, Y.-S. Park, J.-G. Kim, J.-H. Park, K.-J. Lim and J.-D. Choi. 2006. Effects on SWAT estimation of subwatershed delineation using SWAT. KCID Journal. 13(2): 262-273. URL: https://koreascience.kr/article/JAKO200640976330558.page.
2076. Heo, S.-G., K.-S. Kim, J.-H. Ahn, J.-S. Yoon, K.-J. Lim, J.-D. Choi, Y.-C. Shin and C.-W. Lyou. 2006. Evaluation of water quality impacts of forest fragmentation at Doam-Dam Watershed using GIS-based modeling system. Journal of the Korean Association of Geographic Information Studies. 9(4): 81-94. URL: http://www.koreascience.or.kr/article/ArticleFullRecord.jsp?cn=GRJBBB_2006_v9n4_81.
2077. Heo, S.-G., K.-S. Kim, M. Sagong, J.-H. Ahn and K.J. Lim. 2005. Evaluation of SWAT applicability to simulate soil erosion at highland agricultural lands. Journal of Korean Society of Rural Planning. 11(4): 67-74. URL: http://www.koreascience.or.kr/article/ArticleFullRecord.jsp?cn=NCGHBW_2005_v11n4s29_67.
2078. Her, Y. and I. Chaubey. 2015. Impact of the numbers of observations and calibration parameters on equifinality, model performance, and output and parameter uncertainty. Hydrological Processes. 29(19): 4220-4237. DOI: 10.1002/hyp.10487 .
2079. Her, Y. and J. Jeong. 2018. SWAT+ versus SWAT2012: Comparison of sub-daily urban runoff simulation. Transactions of the ASABE. 61(4): 1287-1295. DOI: 10.13031/trans.12600 .
2080. Her, Y., I. Chaubey, J. Frankenberger and D. Smith. 2016. Effect of conservation practices implemented by USDA programs at field and watershed scales. Journal of Soil and Water Conservation. 71(3): 249-266. DOI: 10.2489/jswc.71.3.249 .
2081. Her, Y., I. Chaubey, J. Frankenberger and J. Jeong. 2017. Implications of spatial and temporal variations in effects of conservation practices on water management strategies. Agricultural Water Management. 180(Part B): 252–266. DOI: 10.1016/j.agwat.2016.07.004 .
2082. Her, Y., J. Frankenberger, I. Chaubey and R. Srinivasan. 2015. Threshold effects in HRU definition of the Soil and Water Assessment Tool. Transactions of the ASABE. 58(2): 367-378. DOI: 10.13031/trans.58.10805 .
2083. Her, Y., J. Jeong, J. Arnold, L. Gosselink, R. Glick and F. Jaber. 2017. A new framework for modeling decentralized low impact developments using Soil and Water Assessment Tool. Environmental Modelling & Software. 96: 305-322. DOI: 10.1016/j.envsoft.2017.06.005 .
2084. Her, Y., J. Jeong, K. Bieger, H. Rathjens, J. Arnold and R. Srinivasan. 2017. Implications of conceptual channel representation on SWAT streamflow and sediment modeling. Journal of the American Water Resources Association. 53(4): 725–747. DOI: 10.1111/1752-1688.12533 .
2085. Her, Y., R. Cibin and I. Chaubey. 2015. Application of parallel computing methods for improving efficiency of optimization in hydrologic and water quality modeling. Applied Engineering in Agriculture. 31(3): 455-468. DOI: 10.13031/aea.31.10905 .
2086. Her0l, Nurhamidah and Andriani. 2022. Analasis pengaruh perubahan tata guna lahan terhadap aliran permukaan dan laju sedimentasi menggunakan ArcSWAT. Journal of Civil Engineering and Vocational Education. 9(1): 15-26. DOI: 10.24036/cived.v9i1.115798 .
2087. Herman, M.R., A.P. Nejadhashemi, M. Abouali, J.S. Hernandez-Suarez, F. Daneshvar, Z. Zhang, M.C. Anderson, A.M. Sadeghi, C.R. Hain and A. Sharifi. 2018. Evaluating the role of evapotranspiration remote sensing data in improving hydrological modeling predictability. Journal of Hydrology. 556: 39-49. DOI: 10.1016/j.jhydrol.2017.11.009 .
2088. Herman, M.R., A.P. Nejadhashemi, F. Daneshvar, D.M. Ross, S.A. Woznicki, Z. Zhang and A. Esfahanian. 2015. Optimization of conservation practice implementation strategies in the context of stream health. Ecological Engineering. 84: 1-12. DOI: 10.1016/j.ecoleng.2015.07.011 .
2089. Herman, M.R., A.P. Nejadhashemi, F. Daneshvar, M. Abouali, D.M. Ross, S.A. Woznicki and Z. Zhang. 2016. Optimization of bioenergy crop selection and placement based on a stream health indicator using an evolutionary algorithm. Journal of Environmental Management. 181: 413-424. DOI: 10.1016/j.jenvman.2016.07.005 .
2090. Herman, M.R., J.S. Hernandez-Suarez, A.P. Nejadhashemi, I. Kropp and A.M. Sadeghi. 2020. Evaluation of multi- and many-objective optimization techniques to improve the performance of a hydrologic model using evapotranspiration remote-sensing data. Journal of Hydraulic Engineering. 25(4): 04020006. DOI: 10.1061/(ASCE)HE.1943-5584.0001896 .
2091. Herman, M.R., P. Nejadhashemi, J.S. Hernandez-Suarez and A.M. Sadeghi. 2020. Analyzing the variability of remote sensing and hydrologic model evapotranspiration products in a watershed in Michigan. Journal of the American Water Resources Association. 56(4): 738-755. DOI: 10.1111/1752-1688.12849 .
2092. Hernandes, T.A.D., F.V. Scarpare and J.E.A. Seabra. 2018. Assessment of impacts on basin stream flow derived from medium-term sugarcane expansion scenarios in Brazil. Agriculture Ecosystems and Environment. 259: 11-18. DOI: 10.1016/j.agee.2018.02.026 .
2093. Hernandes, T.A.D., F.V. Scarpare and J.E.A. Seabra. 2018. Assessment of the recent land use change dynamics related to sugarcane expansion and the associated effects on water resources availability. Journal of Cleaner Production. 197(Part 1): 1328-1341. DOI: 10.1016/j.jclepro.2018.06.297 .
2094. Hernandez A.J., S.P. Healey, H. Huang and R.D. Ramsey. 2018. Improved prediction of stream flow based on updating land cover maps with remotely sensed forest change detection. Forests. 9(6): 317. DOI: 10.3390/f9060317 .
2095. Hernandez, M., S.C. Miller, D.C. Goodrich, B.F. Goff, W.G. Kepner, C.M. Edmond and K.B. Jones. 2000. Modeling runoff response to land cover and rainfall spatial variability in semi-arid watersheds. Environmental Monitoring and Assessment. 64: 285-298. DOI: 10.1023/A:1006445811859 .
2096. Hernandez-Suarez, J.S., A.P. Nejadhashemi, I.M. Kropp, M. Abouali, Z. Zhang and K. Deb. 2018. Evaluation of the impacts of hydrologic model calibration methods on predictability of ecologically-relevant hydrologic indices. Journal of Hydrology. 564: 758-772. DOI: 10.1016/j.jhydrol.2018.07.056 .
2097. Hernandez-Suarez, J.S., A.P. Nejadhashemi and K. Deb. 2021. A novel multi-objective model calibration method for ecohydrological applications. Environmental Modelling & Software. 144: 105161. DOI: 10.1016/j.envsoft.2021.105161 .
2098. Hernandez-Suarez, J.S., S.A. Woznicki and A.P. Nejadhashemi. 2020. Multi-site watershed model calibration for evaluating best management practice effectiveness in reducing fecal pollution. Human and Ecological Risk Assessment: An International Journal. 26(10): 2690-2715. DOI: 10.1080/10807039.2019.1680526 .
2099. Hersi, N.A.M., D.M.M. Mulungu and J. Nobert. 2023. Groundwater recharge estimation under changing climate and land use scenarios in a data-scarce Bahi (Manyoni) catchment in Internal Drainage Basin (IDB), Tanzania using Soil and Water Assessment Tool (SWAT). Groundwater for Sustainable Development. 22: 100957. DOI: 10.1016/j.gsd.2023.100957 .
2100. Hesse, C. and V. Krysanova. 2016. Modeling climate and management change impacts on water quality and in-stream processes in the Elbe River Basin. Water. 8(2): 40. DOI: 10.3390/w8020040 .
2101. Hesse, C., V. Krysanova and A. Voss. 2012. Impementing in-stream nutrient processes in large-scale landscape modeling for the impact assessment on water quality. Environmental Modeling & Assessment. 17(6): 589-611. DOI: 10.1007/s10666-012-9320-8 .
2102. Hesse, C., V. Krysanova, A. Stefanova, M. Bielecka and D.A. Domnin. 2015. Assessment of climate change impacts on water quantity and quality of the multi-river Vistula Lagoon Catchment. Hydrological Sciences Journal. 60(5): 890-911. DOI: 10.1080/02626667.2014.967247 .
2103. Hesse, C., V. Krysanova, J. Pazolt and F.F. Hattermann. 2008. Eco-hydrological modelling in a highly regulated lowland catchment to find measures for improving water quality. Ecological Modelling. 218(1-2): 135-148. DOI: 10.1016/j.ecolmodel.2008.06.035 .
2104. Hesse, C., V. Krysanova, T. Vetter and J. Reinhardt. 2013. Comparison of several approaches representing terrestrial and in-stream nutrient retention and decomposition in watershed modelling. Ecological Modelling. 269: 78-85. DOI: 10.1016/j.ecolmodel.2013.08.017 .
2105. Heuvelmans, G., B. Muys and J. Feyen. 2004. Analysis of the spatial variation in the parameters of the SWAT model with application in Flanders, Northern Belgium. Hydrology and Earth System Sciences. 8(5): 931-939. DOI: 10.5194/hess-8-931-2004 .
2106. Heuvelmans, G., B. Muys and J. Feyen. 2004. Evaluation of hydrological model parameter transferability for simulating the impact of land use on catchment hydrology. Physics and Chemistry of the Earth. 29(11-12): 739-747. DOI: 10.1016/j.pce.2004.05.002 .
2107. Heuvelmans, G., B. Muys and J. Feyen. 2006. Regionalisation of the parameters of a hydrological model: Comparison of linear regression models with artificial neural nets. Journal of Hydrology. 319(1-4): 245-265. DOI: 10.1016/j.jhydrol.2005.07.030 .
2108. Heuvelmans, G., J. F. Garcio-Qujano, B. Muys, J. Feyen and P. Coppin. 2005. Modelling the water balance with SWAT as part of the land use impact evaluation in a life cycle study of CO2 emission reduction scenarios. Hydrological Processes. 19(3): 729-748. DOI: 10.1002/hyp.5620 .
2109. Hidayat, L. and B. Sulistyo. 2019. The simulation of land use change on soil erosion and sediment transported using SWAT hidrological models in the upsteam of Mrica Reservoir catchment areas. TERRA: Journal of Land Restoration. 2(1): 9-17. URL: https://ejournal.unib.ac.id/index.php/terrajournal/article/view/9793.
2110. Hidayat, L., P. Sudira, S. Susanto and R. Jayadi. 2016. Validation of the SWAT Hydrological Model on the catchment area of Mrica Reservoir. AGRITECH. 36(4): 467-474. DOI: 10.22146/agritech.16772 .
2111. Hille, S., D. Graeber, B. Kronvang, G.H. Rubaek, G.H., N. Onnen, E. Molino-Navarro, A. Baattrup-Pedersen, G.J. Heckrath and M.I. Stutter. 2019. Management options to reduce phosphorus leaching from vegetated buffer strips. Journal of Environmental Quality. 48(2): 322-329. DOI: 10.2134/jeq2018.01.0042 .
2112. Himanshu, S.K., A. Pandey and P. Shrestha. 2017. Application of SWAT in an Indian river basin for modeling runoff, sediment and water balance. Environmental Earth Sciences. 76: 3. DOI: 10.1007/s12665-016-6316-8 .
2113. Himanshu, S.K., A. Pandey and A. Patil. 2018. Hydrologic Evaluation of the TMPA-3B42V7 precipitation data set over an agricultural watershed using the SWAT Model. Journal of Hydrologic Engineering. 23(4): 0501803. DOI: 10.1061/(ASCE)HE.1943-5584.0001629 .
2114. Himanshu, S.K., A. Pandey, M.J. Madolli, S.S. Palmate, A. Kumar, N. Patidar and B. Yadav. 2023. An ensemble hydrologic modeling system for runoff and evapotranspiration evaluation over an agricultural watershed. Journal of the Indian Society of Remote Sensing. 51(1): 177-196. DOI: 10.1007/s12524-022-01634-4 .
2115. Himanshu, S.K., A. Paney, B. Yadav and A. Gupta. 2019. Evaluation of best management practices for sediment and nutrient loss control using SWAT model. Soil & Tillage Research. 192: 42-58. DOI: 10.1016/j.still.2019.04.016 .
2116. Hirt, C.C., T.L. Veith, A.S. Collick, S.E. Yetter and R. P. Brooks. 2020. Headwater stream condition and nutrient runoff: Relating SWAT to empirical ecological measures in an agricultural watershed in Pennsylvania. Journal of Environmental Quality. 49(3): 557-568. DOI: 10.1002/jeq2.20032 .
2117. Hively, W.D., S. Lee, A.M. Sadeghi, G.W. McCarty, B.T. Lamb, A. Soroka, J. Keppler, I.-Y. Yeo and G.E. Moglen. 2020. Estimating the effect of winter cover crops on nitrogen leaching using cost-share enrollment data, satellite remote sensing, and Soil and Water Assessment Tool (SWAT) modeling. Journal of Soil and Water Conservation. 75(3): 362-375. DOI: 10.2489/jswc.75.3.362 .
2118. Ho, Y.S. 2018. Comments on "Mapping the scientific research on non-point source pollution: A bibliometric analysis" by Yang et al. (2017). Environmental Science and Pollution Research. 25: 30737-30738. DOI: 10.1007/s11356-017-0381-8 .
2119. Hoan, N.X, D.N. Khoi and P.T.T. Nhi. 2020. Uncertainty assessment of streamflow projection under the impact of climate change in the Lower Mekong Basin: a case study of the Srepok River Basin, Vietnam. Water and Environment Journal. 34(1): 131-142. DOI: 10.1111/wej.12447 .
2120. Hoang, B.H., H.N Hien, N.T.N. Dinh, N.A. Thao, P.T.T. Ha, J. Kandasamy and T.V. Nguyen. 2019. Integration of SWAT and QUAL2K for water quality modeling in a data scarce basin of Cau River Basin in Vietnam. Ecohydrology & Hydrobiology. 19(2): 210-223. DOI: 10.1016/j.ecohyd.2019.03.005 .
2121. Hoang, L., E.M. Schneiderman, K.E.B. Moore, R. Mukundan, E.M. Owens and T.S. Steenhuis. 2017. Predicting saturation-excess runoff distribution with a lumped hillslope model: SWAT-HS. Hydrological Processes. 31(12): 2226–2243. DOI: 10.1002/hyp.11179 .
2122. Hoang, L., A. van Griensven and A. Mynett. 2017. Enhancing the SWAT model for simulating denitrification in riparian zones at the river basin scale. Environmental Modelling & Software. 93: 163-179. DOI: 10.1016/j.envsoft.2017.03.017 .
2123. Hoang, L., A. van Griensven, P. van der Keur, J.C. Refsgaard, L. Troldborg, B. Nilsson and A. Mynett. 2014. Comparison and evaluation of model structures for the simulation of pollution fluxes in a tile-drained river basin. Journal of Environmental Quality. 43(1): 86-99. DOI: 10.2134/jeq2011.0398 .
2124. Hoang, L., R. Mukundan, K.E.B. Moore, E.M. Owens and T.S. Steenhuis. 2018. The effect of input data resolution and complexity on the uncertainty of hydrological predictions in a humid vegetated watershed. Hydrology and Earth System Sciences. 22(11): 5947–5965. DOI: 10.5194/hess-22-5947-2018 .
2125. Hoang, L., R. Mukundan, K.E.B. Moore, E.M. Owens and T.S. Steenhuis. 2019. Phosphorus reduction in the New York City water supply system: A water quality success story confirmed with data and modeling. Ecological Engineering. 135: 75-88. DOI: 10.1016/j.ecoleng.2019.04.029 .
2126. Hoghooghi, N., D.D. Bosch and B.P. Bledsoe. 2021. Assessing hydrologic and water quality effects of land use conversion to Brassica carinata as a winter biofuel crop in the southeastern coastal plain of Georgia, USA using the SWAT model. Global Change Biology Bioenergy. 13(3): 473-492. DOI: 10.1111/gcbb.12792 .
2127. Hoghooghi, N., D.E. Radcliffe, M.Y. Habteselassie and J. Jeong. 2017. Modeling the effects of onsite wastewater treatment systems on nitrate loads using SWAT in an urban watershed of Metropolitan Atlanta. Journal of Environmental Quality. 46(3): 632-640. DOI: 10.2134/jeq2016.08.0322 .
2128. Holder, A.J., R. Rowe, N.P. McNamara, I.S. Donnison and J.P. McCalmont. 2019. Soil & Water Assessment Tool (SWAT) simulated hydrological impacts of land use change from temperate grassland to energy crops: A case study in western UK. Global Change Biology Bioenergy. 11(11): 1298-1317. DOI: 10.1111/gcbb.12628 .
2129. Hollander, H.M., T. Blume, H. Bormann, W. Buytaert, G.B. Chirico, J.-E. Exbrayat, D. Gustafsson, H. Hotzel, P. Kraft, C. Stamm, S. Stoll, G. Bloschl and H. Fluhler. 2009. Comparative predictions of discharge from an artificial catchment (Chicken Creek) using sparse data. Hydrology and Earth System Sciences. 13(11): 2069-2094. URL: http://edoc.gfz-potsdam.de/gfz/get/14291/0/06ba6f0d8028563e614d6d52d2ca453b/14291.pdf.
2130. Hollaway, M.J., K.J. Beven, C.McW.H. Benskin, A.L. Collins, R. Evans, P.D. Falloon, K.J. Forber, K.M. Hiscock, R. Kahana, C.J.A. Macleod, M.C. Ockenden, M.L. Villamizar, C. Wearing, P.J.A. Wither, J.G. Zhou, N.J. Barber and P.M. Haygarth. 2018. The challenges of modelling phosphorus in a headwater catchment: Applying a ‘limits of acceptability’ uncertainty framework to a water quality model. Journal of Hydrology. 558: 607-624. DOI: 10.1016/j.jhydrol.2018.01.063 .
2131. Holvoet, K., A. van Griensven, P. Seuntjens and P.A. Vanrolleghem. 2005. Sensitivity analysis for hydrology and pesticide supply towards the river in SWAT. Physics and Chemistry of the Earth. 30(8-10): 518-526. DOI: 10.1016/j.pce.2005.07.006 .
2132. Holvoet, K., A. van Griensven, V. Gevaert, P. Seuntjens and P.A. Vanrolleghem. 2008. Modifications to the SWAT code for modelling direct pesticide losses. Environmental Modelling & Software. 23(1): 72-81. DOI: 10.1016/j.envsoft.2007.05.002 .
2133. Holvoet, K., P. Seuntjens and P.A. Vanrolleghem. 2007. Monitoring and modeling pesticide fate in surface waters at the catchment scale. Ecological Modelling. 209(1): 53-64. DOI: 10.1016/j.ecolmodel.2007.07.030 .
2134. Holvoet, K., V. Gevaert, A. van Griensven, P. Seuntjens and P.A. Vanrolleghem. 2007. Modelling the effectiveness of agricultural measures to reduce the amount of pesticides entering surface waters. Water Resources Management. 21(12): 2027-2035. DOI: 10.1007/s11269-007-9199-3 .
2135. Homdee, T., K. Pongput and S. Kanae. 2011. Impacts of land cover changes on hydrologic responses: A case study of Chi River Basin, Thailand. Journal of Japan Society of Civil Engineers, Ser. B1 (Hydraulic Engineering). 55: S31-S36. URL: https://www.jstage.jst.go.jp/article/jscejhe/67/4/67_4_I_31/_article.
2136. Hong, E.-M., D. Shelton, Y.A. Pachepsky, W.-H. Nam, C. Coppock and R. Muirhead. 2017. Modeling the interannual variability of microbial quality metrics of irrigation water in a Pennsylvania stream. Journal of Environmental Management. 187: 253-264. DOI: 10.1016/j.jenvman.2016.11.054 .
2137. Hong, W. and B.R. Johnson. 2019. Climate change will both exacerbate and attenuate urbanization impacts on streamflow regimes in southern Willamette Valley, Oregon. River Research and Applications. 35(7): 818-832. DOI: 10.1002/rra.3454 .
2138. Hong, W.Y., M.J. Park, J.Y. Park, G.A. Park and S.J. Kim. 2010. The spatial and temporal correlation analysis between MODIS NDVI and SWAT predicted soil moisture during forest NDVI increasing and decreasing periods. KSCE Journal of Civil Engineering. 14(6): 931-939. DOI: 10.1007/s12205-010-0851-8 .
2139. Hoque, Y.M., C. Raj, M.M. Hantush, I. Chaubey and R.S. Govindaraju. 2014. How do land-use and climate change affect watershed health? A scenario-based analysis. Water Quality, Exposure, and Health. 6(1-2): 19-33. DOI: 10.1007/s12403-013-0102-6 .
2140. Hoque, Y.M., M.M. Hantush and R.S. Govindaraju. 2014. On the scaling behavior of reliability-resilience-vulnerability indices in agricultural watersheds. Ecological Indicators. 40: 136-146. DOI: 10.1016/j.ecolind.2014.01.017 .
2141. Hoque, Y.M., S. Tripathi, M.M. Hantush and R.S. Govindaraju. 2012. Watershed reliability, resilience and vulnerability analysis under uncertainty using water quality data. Journal of Environmental Management. 109: 101-112. DOI: 10.1016/j.jenvman.2012.05.010 .
2142. Hoque, Y.M., S. Tripathi, M.M. Hantush and R.S. Govindaraju. 2016. Aggregate measures of watershed health from reconstructed water quality data with uncertainty. Journal of Environmental Quality. 45(2): 709-719. DOI: 10.2134/jeq2015.10.0508 .
2143. Horan, R., R. Gowri, P.S. Wable, H. Baron, V.D.J. Keller, K.K. Garg, P.P. Mujumdar, H. Houghton-Carr and G. Rees. 2021. A comparative assessment of hydrological models in the Upper Cauvery catchment. Water. 13(2): 151. DOI: 10.3390/w13020151 .
2144. Hordofa, A.T., O.T. Leta, T. Alamirew and A.D. Chukalla. 2023. Climate change impacts on blue and green water of Meki River Sub-Basin. Water Resources Management. DOI: 10.1007/s11269-023-03490-4 .
2145. Hörmann, G., A. Horn and N. Fohrer. 2005. The evaluation of land-use options in mesoscale catchments: Prospects and limitations of eco-hydrological models. Ecological Modelling. 187(1): 3-14. DOI: 10.1016/j.ecolmodel.2005.01.022 .
2146. Hormann, G., N. Koplin, Q. Cai and N. Fohrer. 2009. Using a simple model as a tool to parameterise the SWAT model of the Xiangxi River in China. Quaternary International. 208(1-2): 116-120. DOI: 10.1016/j.quaint.2008.11.007 .
2147. Hormwichian, R., S. Kaewplang, A. Kangrang, J. Supakosol, K. Boonrawd, K. Sriworamat, S. Muangthong, S. Songsaengrit and H. Prasanchum. 2023. Understanding the interactions of climate and land use changes with runoff components in spatial-temporal dimensions in the Upper Chi Basin, Thailand. Water. 15(19): 3345. DOI: 10.3390/w15193345 .
2148. Horn, A.L., F.J. Rueda, G. Hörmann and N. Fohrer. 2004. Implementing river water quality modelling issues in mesoscale watershed models for water policy demands—an overview on current concepts, deficits, and future tasks. Physics and Chemistry of the Earth. 29(11-12): 725-737. DOI: 10.1016/j.pce.2004.05.001 .
2149. Horn, A.L., G. Hörmann and N. Fohrer. 2005. Application of a virtual watershed in academic education. Advances in Geosciences. 5: 137-141. DOI: 10.5194/adgeo-5-137-2005 .
2150. Hossard L. and P. Chopin. 2019. Modelling agricultural changes and impacts at landscape scale: A bibliometric review. Environmental Modelling & Software. 122: 104513. DOI: 10.1016/j.envsoft.2019.104513 .
2151. Hosseini, M., A.M. Ghafouri, M.S.M. Amin, M.R. Tabatabaei, M. Goodarzi and A.A. Kolahchi. 2012. Effects of land use changes on water balance in Taleghan Catchment, Iran. Journal of Agricultural Science and Technology. 14: 1159-1172. URL: http://jast.modares.ac.ir/?_action=articleInfo&article=4884&vol=982.
2152. Hosseini, M., M. Ghafouri, M. Tabatabaei , N. Ebrahimi and A.Z. Garizi. 2016. Estimation of hydrologic budget for Gharasou watershed, Iran. ECOPERSIA. 4(3): 1455-1469. URL: http://ecopersia.modares.ac.ir/article_15526.html.
2153. Hosseini, M., M. Ghafouri, M.R. Tabatabaei, M. Goodarzi and Z. Mokarian. 2016. Estimating hydrologic budgets for six Persian Gulf watersheds, Iran. Applied Water Science. 7(6): 3323-3332. DOI: 10.1007/s13201-016-0478-0 .
2154. Hosseini, P. and R.T. Bailey. 2022. Investigating the controlling factors on salinity in soil, groundwater, and river water in a semi-arid agricultural watershed using SWAT-Salt. Science of the Total Environment. 810: 152293. DOI: 10.1016/j.scitotenv.2021.152293 .
2155. Hosseini, S.H. and M.R. Khaleghi. 2020. Application of SWAT model and SWAT‑CUP software in simulation and analysis of sediment uncertainty in arid and semi‑arid watersheds (case study: the Zoshk–Abardeh watershed). Modeling Earth Systems and Environment. 6(4): 2003-2013. DOI: 10.1007/s40808-020-00846-2 .
2156. Hotchkiss, R.H., S.F. Jorgensen, M.C. Stone and T.A. Fontaine. 2000. Regulated river modeling for climate change impact assessment: The Missouri River. Journal of the American Water Resources Association. 36(2): 375-386. DOI: 10.1111/j.1752-1688.2000.tb04275.x .
2157. Hou, A., Z. Zhao, X. Wang, L. Yang, F. Zhong and J. Chen. 2023. Hydrologic response change and optimization of gully consolidation and highland protection in the Malian River Basin based on CMADS and SWAT model. Advances in Water Science. 39(8): 155-166. URL: http://skxjz.nhri.cn/en/article/doi/10.14042/j.cnki.32.1309.2023.06.005.
2158. Hou, J., M. Dou, Y. Zhang, J. Wang and G. Li. 2021. An evaluation model for landslide and debris flow prediction using multiple hydrometeorological variables. Environmental Earth Sciences. 80(16): 515. DOI: 10.1007/s12665-021-09840-y .
2159. Hou, W. and J. Gao. 2019. Simulating runoff generation and its spatial correlation with environmental factors in Sancha River Basin: The southern source of the Wujiang River. Journal of Geographical Sciences. 29: 432-448. DOI: 10.1007/s11442-019-1608-z .
2160. Hou, X., Z. Xu, C. Tang and S. Zhang. 2021. Spatial distributions of nitrogen and phosphorus losses in a basin and responses to best management practices — Jialing River Basin case study. Agricultural Water Management. 255: 107048. DOI: 10.1016/j.agwat.2021.107048 .
2161. Hou, Z.-W., C.-Z. Qin, A.-X. Zhu, P. Liang, Y.-J. Wang and Y.-Q. Zhu. 2019. From manual to intelligent: A review of input data preparation methods for geographic modeling. ISPRS International Journal of Geo-Information. 8(9): 376. DOI: 10.3390/ijgi8090376 .
2162. Houngue, N.R., A.D. Almoradie, S. Thiam, K. Komi, J.G. Adounkpe, K. Begedou and M. Evers. 2023. Climate and land-use change impacts on flood hazards in the Mono River Catchment of Benin and Togo. Sustainability. 15(7): 5862. DOI: 10.3390/su15075862 .
2163. Hounnou, L. 2022. Economic impact of climate change on the implementation fo best management practices in the Fort Cobb Watershed. Journal of the American Water Resources Association. 58(6): 1307-1325. DOI: 10.1111/1752-1688.12999 .
2164. Houser, J.B., L.M. Hauck and A. Saleh. 2015. Modifying and validating the SWAT model to determine landuse effects on watershed water quality: Using a dual level of model performance based on subbasin size. International Journal of Environmental Research. 9(3): 885-896. URL: https://ijer.ut.ac.ir/article_975.html.
2165. Housh, M., M.A. Yaeger, X. Cai, G. McIsaac, M. Khanna, M. Sivapalan, Y. Ouyang, I. Al-Qadi and A. Jain. 2015. Managing multiple mandates: A system of systems model to analyze strategies for producing cellulosic ethanol and reducing riverine nitrate loads in the Upper Mississippi River Basin. Environmental Science & Technology. 49(19): 11932–11940. DOI: 10.1021/acs.est.5b02712 .
2166. Houteta, D.K., K. Atchonouglo, J.G. Adounkpe, B. Diwediga, Y. Lombo, K.E. Kpemoua and K. Agboka. 2022. Changes in land use/ cover and water balance components during 1964–2010 period in the Mono river basin, Togo-Benin. Geography, Environment, Sustainability. 4(15): 171-180. DOI: 10.24057/2071-9388-2021-098 .
2167. Hovenga, P.A., D. Wang, S.C. Medeiros, S.C. Hagen and K. Alizad. 2016. The response of runoff and sediment loading in the Apalachicola River, Florida to climate and land use land cover change. Earth's Future. 4(5): 124–142. DOI: 10.1002/2015EF000348 .
2168. Howard, G., W. Zhang, A. Valcu-Lismanand P.W. Gassman. 2024. Evaluating the tradeoff between cost effectiveness and participation in agricultural conservation programs. American Journal of Agricultural Economics. 106(2): 712-738. DOI: 10.1111/ajae.12397 .
2169. Hoyos, N., A. Correa-Metrio, S.M. Jepsen, B. Wemple, S. Valencia, M. Marsik, R. Doria, J. Escobar, J.C. Restrepo and M.I. Velez. 2019. Modeling streamflow response to persistent drought in a coastal tropical mountainous watershed, Sierra Nevada De Santa Marta, Colombia. Water. 11(1): 94. DOI: 10.3390/w11010094 .
2170. Hu, D., S. Ma, F. Guo, G. Lu and J. Liu. 2015. Describing data formats of geographical models. Environmental Earth Sciences. 74(10): 7101-7115. DOI: 10.1007/s12665-015-4737-4 .
2171. Hu, D., Y. Li, L. Li and Z. Cong. 2020. Reduction scenarios of non-point source pollution in Xianyang-Xi'an section of Weihe River Basin based on SWAT. Journal of Northwest A&F University (Natural Science Edition). 48(10): 127-136, 145. URL: http://www.xnxbz.net/xbnlkjdxzr/ch/reader/view_abstract.aspx?file_no=20201015&flag=1.
2172. Hu, J., J. Ma, C. Nie, L. Xue, Y. Zhang, F. Ni, Y. Deng, J. Liu, D. Zhou, L. Li and Z. Wang. 2020. Attribution analysis of runoff change in Min-Tuo River basin based on SWAT model simulations, China. Scientific Reports. 10: 2900. DOI: 10.1038/s41598-020-59659-z .
2173. Hu, J., Y. Wu, L. Wang, P. Sun, F. Zhao, Z. Jin, Y. Wang, L. Qiu and Y. Lian. 2021. Impacts of land-use conversions on the water cycle in a typical watershed in the southern Chinese Loess Plateau. Journal of Hydrology. 593: 125741. DOI: 10.1016/j.jhydrol.2020.125741 .
2174. Hu, J., Y. Wu, P. Sun, F. Zhao, K. Sun, T. Li, B. Sivakumar, L. Qiu, Y. Sun and Z. Jin. 2022. Predicting long-term hydrological change caused by climate shifting in the 21st century in the headwater area of the Yellow River Basin. Stochastic Environmental Research and Risk Assessment. 36(6): 1651–1668. DOI: 10.1007/s00477-021-02099-6 .
2175. Hu, J., Y. Wu, W. Zhao, F. Wang, G. Zhang, L. Qiu, J. Hui and X.Yin. 2022. Assessment and projection of ground freezing-thawing responses to climate change in the Upper Heihe River Basin, northwest China. Journal of Hydrology: Regional Studies. 42: 101137. DOI: 10.1016/j.ejrh.2022.101137 .
2176. Hu, P., T. Cai, F. Sui, L. Duan, X. Man and X. Cui. 2021. Response of runoff to extreme land use change in the permafrost region of northeastern China. Forests. 12(8): 1021. DOI: 10.3390/f12081021 .
2177. Hu, S., D. Yang, J. Wu, Y. Gao, H. Qiu, M. Cao, J. Song and H. Wan. 2017. Spatiotemporal Variation Characteristics of Baseflow in the Bahe River Basin Based on Digital Filter Method and SWAT Model. Scientia Geographica Sinica. 37(3): 455- 463. URL: http://geoscien.neigae.ac.cn/article/2017/1000-0690/1000-0690-37-3-455.shtml.
2178. Hu, T.A., S.T. Cheng, H.F. Jia, H.X. Zhang, B. Tan and J. Zhao. 2003. Non-point sources of a small watershed in Upper Yuan River: Experimental design and primary data analysis. Journal of Agro-Environment Science. 22(4): 442-445. URL: http://caod.oriprobe.com/articles/17443361/Non_Point_Sources_of_a_Small_Watershed_in_Upper_Yuan_River__Experiment.htm.
2179. Hu, X., G.F. McIsaac, M.B. David and C.A.L. Louwers. 2007. Modeling riverine nitrate export from an east-central Illinois watershed using SWAT. Journal of Environmental Quality. 36(4): 996-1005. DOI: 10.2134/jeq2006.0228 .
2180. Hu, Y., J.P. Moiwo, Y. Yang, S. Han and Y. Yang. 2010. Agricultural water-saving and sustainable groundwater management in Shijiazhuang Irrigatiion District, North China Plain. Journal of Hydrology. 393(3-4, 8): 219-232. DOI: 10.1016/j.jhydrol.2010.08.017 .
2181. Hu, Y., M. Chen, J. Pu, S. Chen, Y. Li and H. Zhang. 2024. Review Enhancing Phosphorus Source Apportionment in Watersheds through Species-Specific Analysis. Water Research. : 121262. DOI: 10.1016/j.watres.2024.121262 .
2182. Hu, Y., Z. Xing, F. Zhang, Q. Tian, N. Badreldin and J. Zhao. 2022. Analysis and estimation of nonpoint source pollution under different land use in Anjiagou Watershed, Gansu, China. Environmental Science and Pollution Research. 29(51): 77428-77447. DOI: 10.1007/s11356-022-20687-z .
2183. Hua, L., W. LI, L. Zhai, H. Yen, Q. Lei, H. Liu, T. Ren, Y. Xia, F. Zhang and X. Fan. 2019. An innovative approach to identifying agricultural pollution sources and loads by using nutrient export coefficients in watershed modeling. Journal of Hydrology. 571: 322-331. DOI: 10.1016/j.jhydrol.2019.01.043 .
2184. Huang, F. and B. Li. 2010. Assessing grain crop water productivity of China using a hydro-model-coupled-statistics approach Part I: Method development and validation. Agricultural Water Management. 97(7): 1077-1092. DOI: 10.1016/j.agwat.2010.02.016 .
2185. Huang, F. and B.G. Li. 2010. Assessing grain crop water productivity of China using a hydro-model-coupled-statistics approach. Part II: Application in breadbasket basins of China. Agricultural Water Management. 97(9): 1259-1268. DOI: 10.1016/j.agwat.2010.02.017 .
2186. Huang, F. and X. Zhang. 2024. A new interpretable streamflow prediction approach based on SWAT‑BiLSTM and SHAP. Environmental Science and Pollution Research. 31(16): 23896–23908. DOI: 10.1007/s11356-024-32725-z .
2187. Huang, F., Z. Liu, B.G. Ridoutt, J. Huang and B. Li. 2015. China’s water for food under growing water scarcity. Food Security. 7(5): 933-949. DOI: 10.1007/s12571-015-0494-1 .
2188. Huang, H., W. Ouyang, B. Guo, Y. Shi and F. Hao. 2014. Vertical and horizontal distribution of soil parameters in intensive agricultural zone and effect on diffuse nitrogen pollution. Soil & Tillage Research. 144: 32-40. DOI: 10.1016/j.still.2014.07.006 .
2189. Huang, H., W. Ouyang, H. Wu, H. Liu and C. Andrea. 2017. Long-term diffuse phosphorus pollution dynamics under the combined influence of land use and soil property variations. Science of the Total Environment. 579: 1894–1903. DOI: 10.1016/j.scitotenv.2016.11.198 .
2190. Huang, J., B.G. Ridoutt, H. Zhang, C. Xu and F. Chen. 2014. Water footprint of cereals and vegetables for the Beijing market. Journal of Industrial Ecology. 18(1): 40-48. DOI: 10.1111/jiec.12037 .
2191. Huang, J., P. Zhou, Z. Zhou and Y. Huang. 2013. Assessing the influence of land use and land cover datasets with different points in time and levels of detail on watershed modeling in the North River watershed, China. International Journal of Environmental Research and Public Health. 10: 144-157. DOI: 10.3390/ijerph10010144 .
2192. Huang, J.J., X. Lin, J. Wang and H. Wang. 2015. The precipitation driven correlation based mapping method (PCM) for identifying the critical source areas of non-point source pollution. Journal of Hydrology. 524: 100–110. DOI: 10.1016/j.jhydrol.2015.02.011 .
2193. Huang, L. and J. Peng. 2022. Research on technical countermeasures of smart agriculture development based on digital ecological environment. Fresenius Environmental Bulletin. 31(12): 11244-11251. URL: https://www.prt-parlar.de/download_list/?c=FEB_2022.
2194. Huang, Q. and W. Zhang. 2004. Improvement and application of GIS-based distributed SWAT hydrological modeling on high altitude, cold, semi-arid catchment of Heihe river basin, China. Journal of Nanjing Forestry University (Natural Sciences Edition). 28(2): 22-26. DOI: 10.3969/j.jssn.1000-2006.2004.02.005 .
2195. Huang, S., C. Hesse, V. Drysanova and F. Hattermann. 2009. From meso- to macro-scale dynamic water quality modelling for the assessment of land use change scenarios. Ecological Modelling. 220(19): 2543-2558. DOI: 10.1016/j.ecolmodel.2009.06.043 .
2196. Huang, S., H. Shah, B.S. Naz, N.K. Shrestha, V. Mishra, P. Daggupati, U. Ghimire and T. Vetter. 2020. Impacts of hydrological model calibration on projected hydrological changes under climate change—a multi-model assessment in three large river basins. Climatic Change. 163(3): 1143–1164. DOI: 10.1007/s10584-020-02872-6 .
2197. Huang, S., M. Wortmann, D. Duethmann, C. Menz, F. Shi, C. Zhao, B. Su and V. Krysanova. 2018. Adaptation strategies of agriculture and water management to climate change in the Upper Tarim River basin, NW China. Agricultural Water Management. 203: 207-224. DOI: 10.1016/j.agwat.2018.03.004 .
2198. Huang, S., R. Kumar, M. Flörke, T. Yang, Y. Hundecha, P. Kraft, C. Gao, A. Gelfan, S. Liersch, A. Lobanova, M. Strauch, F. van Ogtrop, J. Reinhardt, U. Haberlandt and V. Krysanova. 2017. Erratum to: Evaluation of an ensemble of regional hydrological models in 12 large-scale river basins worldwide. Climatic Change. 141(3): 399-400. DOI: 10.1007/s10584-016-1895-7 .
2199. Huang, S., R. Kumar, M. Flörke, T. Yang, Y. Hundecha, P. Kraft, C. Gao, A. Gelfan, S. Liersch, A. Lobanova, M. Strauch, F. van Ogtrop, J. Reinhardt, U. Haberlandt and V. Krysanova. 2017. Evaluation of an ensemble of regional hydrological models in 12 large-scale river basins worldwide. Climatic Change. 141(3): 381-397. DOI: 10.1007/s10584-016-1841-8 .
2200. Huang, S., V. Krysanova and F.F. Hattermann. 2014. Does bias correction increase reliability of flood projections under climate change? A case study of large rivers in Germany. International Journal of Climatology. 34(14): 3780-3800. DOI: 10.1002/joc.3945 .
2201. Huang, S., V. Krysanova and F. Hattermann. 2015. Projections of climate change impacts on floods and droughts in Germany using an ensemble of climate change scenarios. Regional Environmental Change. 15(3): 461-473. DOI: 10.1007/s10113-014-0606-z .
2202. Huang, S., V. Krysanova, H. Osterle and F.F. Hattermann. 2010. Simulation of spatiotemporal dynamics of water fluxes in Germany under climate change. Hydrological Processes. 24(23): 3289-3306. DOI: 10.1002/hyp.7753 .
2203. Huang, S., W. Zang, M. Xu, X. Li, X. Xie, Z. Li and J. Zhu. 2015. Study on runoff simulation of the upstream of Minjiang River under future climate change scenarios. Natural Hazards. 75(Supplement 2): 5139-5145. DOI: 10.1007/s11069-014-1090-y .
2204. Huang, T.C.C. and K.F.A. Lo. 2015. Effects of land use change on sediment and water yields in Yang Ming Shan National Park, Taiwan. Environments. 2(1): 32-42. DOI: 10.3390/environments2010032 .
2205. Huang, X.D., L. Wang, P.P. Han and W.C. Wang. 2018. Spatial and temporal patterns in nonstationary flood frequency across a forest watershed: Linkage with rainfall and land use types. Forests. 9: 339. DOI: 10.3390/f9060339 .
2206. Huang, X.-D., Z.-H. Shi, N.-F. Fang and X. Li. 2016. Influences of land use change on baseflow in mountainous watersheds. Forests. 7(1): 16. DOI: 10.3390/f7010016 .
2207. Huang, Y. and I.G. Ukpong. 2019. Issues of water resource management in China: Implications on agriculture and food security in the Guangxi Province of south China. Journal of Asian Rural Studies. 3(1): 70-84. DOI: 10.20956/jars.v3i1.1714 .
2208. Huang, Y., J. Huang, A. Ervinia, S. Duan and S.S. Kaushal. 2018. Land use and climate variability amplifies watershed nitrogen exports in coastal China. Ocean & Coastal Management. DOI: 10.1016/j.ocecoaman.2018.02.024 .
2209. Huang, Y., Y. Jiang, B. Jiang, R.T. Bailey, B. Masud, B. Smerdon and M. Faramarzi. 2024. Modelling impacts of climate change on snow drought, groundwater drought, and their feedback mechanism in a snow-dominated watershed in western Canada. Journal of Hydrology. 636: 131342. DOI: 10.1016/j.jhydrol.2024.131342 .
2210. Huang, Z., B. Xue and Y. Pang. 2009. Simulation on stream flow and nutrient loadings in Gucheng Lake, Low Yangtze River Basin, based on SWAT model. Quaternary International. 208(1-2): 109-115. DOI: 10.1016/j.quaint.2008.12.018 .
2211. Hui, J., Y. Wu, F. Zhao, X. Lei, P. Sun, S.K. Singh, W. Liao, L. Qiu and J. Li. 2020. Parameter optimization for uncertainty reduction and simulation improvement of hydrological modeling. Remote Sensing. 12(24): 4069. DOI: 10.3390/rs12244069 .
2212. Hui, Y., Z. Zhu, J.F. Atkinson and A.M. Saharia. 2021. Impacts of phosphorus loading temporal pattern on benthic algae growth in Lake Ontario. Journal of Hydrology. 598: 126449. DOI: 10.1016/j.jhydrol.2021.126449 .
2213. Huisman, J.A., L. Breuer and H.-G. Frede. 2004. Sensitivity of simulated hydrological fluxes towards changes in soil properties in response to land use change. Physics and Chemistry of the Earth. 29(11-12): 749-758. DOI: 10.1016/j.pce.2004.05.012 .
2214. Huisman, J.A., L. Breuer, H. Bormann, A. Bronstert, B.F.W. Croke, H-G. Frede, T. Graff, L. Hubrechts, A.J. Jakeman, G. Kite, J. Lanini, G. Leavesley, D.P. Lettenmaier, G. Lindstrom, J. Seibert, M. Sivapalan, N.R. Viney and P. Willems. 2008. Assessing the impact of land use change on hydrology by ensemble modelling (LUCHEM) III: Scenario analysis. Advances in Water Resources. 32(2): 159-170. DOI: 10.1016/j.advwatres.2008.06.009 .
2215. Huiyu, J., W. Chen, Z. Zhao, J. Wang and W. Ma. 2022. New framework for dynamic water environmental capacity estimation integrating the hydro-environmental model and load-duration curve method - A case study in data-scarce Luanhe River Basin. International Journal of Environmental Research and Public Health. 19(14): 8389. DOI: 10.3390/ijerph19148389 .
2216. Hulsmann, L., T. Geyer, C. Schweitzer, J. Priess and D. Karthe. 2015. The effect of subarctic conditions on water resources: initial results and limitations of the SWAT model applied to the Kharaa River Basin in Northern Mongolia. Environmental Earth Sciences. 73(2): 581-592. DOI: 10.1007/s12665-014-3173-1 .
2217. Hung, P., T. V. Le, P. L. Vo, H. C. Duong and M. Rahman. 2022. Vulnerability assessment of water resources using GIS, remote sensing and SWAT model – a case study: The upper part of Dong Nai River Basin, Vietnam. International Journal of River Basin Management. 20(4): 517-532. DOI: 10.1080/15715124.2021.1901729 .
2218. Hunink, J.E., I.A. Niadas, P. Antonaropoulos, P. Droogers and J. de Vente. 2013. Targeting of intervention areas to reduce reservoir sedimentation in the Tana catchment (Kenya) using SWAT. Hydrological Sciences Journal. 58(3): 600-614. DOI: 10.1080/02626667.2013.774090 .
2219. Hunink, J.E., P. Droogers, S. Kauffman, B.M. Mwaniki and J. Bouma. 2012. Quantitative simulation tools to analyze up- and downstream interactions of soil and water conservation measures: Supporting policy making in the Green Water Credits program of Kenya. Journal of Environmental Management. 111: 187-194. DOI: 10.1016/j.jenvman.2012.07.022 .
2220. Hunt, N.D., J.D. Hill and M. Liebman. 2019. Cropping system diversity effects on nutrient discharge, soil erosion, and agronomic performance. Environmental Science & Technology. 53(3): 1344−1352. DOI: 10.1021/acs.est.8b02193 .
2221. Hunt, W.F., N. Kannan, J. Jeong and P.W. Gassman. 2009. Stormwater best management practices: review of current practices and potential incorporation in SWAT. International Agricultural Engineering Journal. 18(1-2): 73-89. URL: https://www.researchgate.net/publication/282709331_Stormwater_best_management_practices_Review_of_current_practices_and_potential_incorporation_in_SWAT/link/56f6cf3308ae95e8b6d2bbd9/download.
2222. Huo, A. and H. Li. 2013. Assessment of climate change impact on the stream-flow in a typical debris flow watershed of Jianzhuangcuan catchment in Shaanxi Province, China. Environmental Earth Sciences. 69(6): 1931-1938. DOI: 10.1007/s12665-012-2025-0 .
2223. Huo, A., L. Yang, P. Luo, Y. Cheng, J. Peng and D. Nover. 2021. Influence of landfill and land use scenario on runoff, evapotranspiration, and sediment yield over the Chinese Loess Plateau. Ecological Indicators. 121: 107208. DOI: 10.1016/j.ecolind.2020.107208 .
2224. Huo, A., X. Wang, Y. Liang, C. Jiang and X. Zheng. 2020. Integrated numerical model for irrigated area water resources management. Journal of Water and Climate Change. 11(4): 980-991. DOI: 10.2166/wcc.2019.042 .
2225. Huo, A., Z. Huang, Y. Cheng and M.W. Van Liew. 2020. Comparison of two different approaches for sensitivity analysis in Heihe River Basin (China). Water Supply. 20(1): 319-327. DOI: 10.2166/ws.2019.159 .
2226. Huo, A.-D., J. Dang, J.-X. Song, X.H. Chen and H.-R. Mao. 2016. Simulation modeling for water governance in basins based on surface water and groundwater. Agricultural Water Management. 174: 22-29. DOI: 10.1016/j.agwat.2016.02.027 .
2227. Huo, J., X. Qu, D. Zhu, Z. Yuan and Y. Tang. 2021. Impacts of climate change on blue and green water resources in the middle and Upper Yarlung Zangbo River, China. Atmosphere. 12(10): 1280. DOI: 10.3390/atmos12101280 .
2228. Huo, J., X. Qu, D. Zhu, Z. Yuan and Z. Zeng. 2021. Runoff monitoring in the Lhasa River Basin using passive microwave data. International Journal of Applied Earth Observations and Geoinformation . 103: 102486. DOI: 10.1016/j.jag.2021.102486 .
2229. Huong, H.L. and N.T. Son. 2020. Response of streamflow and soil erosion to climate change and human activities in Nam Rom River basin, northwest of Vietnam. Environment and Natural Resources Research. 18(4): 411-423. DOI: 10.32526/ennrj.18.4.2020.39 .
2230. Hupy, J.P. and C.O. Wilson. 2021. Modeling streamflow and sediment loads with a photogrammetrically derived UAS digital terrain model: Empirical evaluation from a fluvial aggregate excavation operation. Drones. 5(1): 20. DOI: 10.3390/drones5010020 .
2231. Hussain, F., G. Nabi, R-S. Wu, B. Hussain and T. Abbas. 2019. Parameter evaluation for soil erosion estimation on small watersheds using SWAT model. International Journal of Agricultural and Biological Engineering. 12(1): 96-108. DOI: 10.25165/j.ijabe.20191201.3769 .
2232. Hussainzada, W. and H.S. Lee. 2021. Hydrological modelling for water resource management in a semi-arid mountainous region using the Soil and Water Assessment tool: A case study in northern Afghanistan. Hydrology. 8(1): 6. DOI: 10.3390/hydrology8010016 .
2233. Hussainzada, W. and H.S. Lee. 2021. Hydrological modelling for water resource management in a semi-arid mountainous region using the Soil and Water Assessment Tool: A case study in northern Afghanistan. Hydrology. 8(1): 16. DOI: 10.3390/hydrology8010016 .
2234. Hussainzada, W. and H.S. Lee. 2022. Effect of an improved agricultural irrigation scheme with a hydraulic structure for crop cultivation in arid northern Afghanistan using the Soil and Water Assessment Tool (SWAT). Scientific Reports. 12: 5186. DOI: 10.1038/s41598-022-09318-2 .
2235. Hussainzada, W., J.S. Cabrera, A.T. Samim and H.S. Lee. 2023. Water resource management for improved crop cultivation and productivity with hydraulic engineering solution in arid northern Afghanistan. Applied Water Science. 13(2): 41. DOI: 10.1007/s13201-022-01850-w .
2236. Hussen, B., A. Mekonnen and S.M. Pingale. 2018. Integrated water resources management under climate change scenarios in the Sub-basin of Abaya-Chamo, Ethiopia. Modeling Earth Systems and Environment. DOI: 10.1007/s40808-018-0438-9 .
2237. Hutchins, M.G., C. Dilks, H.N. Davies and A. Deflandre. 2008. Issues of diffuse pollution model complexity arising from performance benchmarking. Hydrology and Earth System Sciences. 11(1): 647-662. DOI: 10.5194/hess-11-647-2007 .
2238. Hutley, N., M. Boselalu, A. Wenger, A. Grinham, B. Gibbes and S. Albert. 2020. Evaluating the effect of data-richness and model complexity in the prediction of coastal sediment loading in Solomon Islands. Environmental Research Letters. 15(12): 124044. DOI: 10.1088/1748-9326/abc8ba .
2239. Huyen, N.T., L.H. Tu, V.N.Q. Tram, D.N. Minh, N.D. Liem and N.K. Loi. 2017. Assessing the impacts of climate change on water resources in the Srepok Watershed, Central Highland of Vietnam. Journal of Water and Climate Change. 8(3): 524-534. DOI: 10.2166/wcc.2017.135 .
2240. Hwang, C.S., C.U. Choi and J.S. Choi. 2014. Impact of IPCC RCP scenarios on streamflow and sediment in the Hoeya River Basin. Journal of the Korean Society for Geospatial Information System. 22(3): 11-19. DOI: 10.7319/kogsis.2014.22.3.011 .
2241. Hwang, S., S.-M. Jun, J.-H. Song, K. Kim, H. Kim and M.-S. Kang. 2021. Application of the SWAT-EFDC linkage model for assessing water quality management in an Estuarine reservoir separated by levees. Applied Sciences. 11(9): 3911. DOI: 10.3390/app11093911 .
2242. Hwang, T.H., B.S. Kim, H.S. Kim and B.H. Seoh. 2006. The estimation of soil moisture index by SWAT model and drought monitoring. Journal of the Korean Society of Civil Engineers. 26(4B): 345-354. URL: http://www.koreascience.or.kr/article/ArticleFullRecord.jsp?cn=TMHHC2_2006_v26n4B_345.
2243. Hyandye, C.B., A. Worqul, L.W. Martz and A.N.N. Muzuka. 2018. The impact of future climate and land use/cover change on water resources in the Ndembera watershed and their mitigation and adaptation strategies. Environmental Systems Research. 7: 7. DOI: 10.1186/s40068-018-0110-4 .
2244. Iavorivska, L., T.L. Veith, R. Cibin, H.E. Preisendanz and A.D. Steinman. 2021. Mitigating lake eutrophication through stakeholder-driven hydrologic modeling of agricultural conservation practices: A case study of Lake Macatawa, Michigan. Journal of Great Lakes Research. 47(6): 1710-1725. DOI: 10.1016/j.jglr.2021.10.001 .
2245. Ibrahim, U.A., S. Dan'azumi, H.H. Bdliya, Z. Bunu and M.J. Chrioma. 2022. Comparison of WEAP and SWAT models for streamfow prediction in the Hadejia‑Nguru Wetlands, Nigeria. Modeling Earth Systems and Environment. 8(4): 4497-5010. DOI: 10.1007/s40808-022-01435-1 .
2246. Ide, J.H. Somura, T. Nakamura, Y. Mori, I. Takeda and K. Nishida. 2014. Hydrological effects on relationships between &15N of river nitrate and land use in a rural river basin, western Japan. River Research and Applications. 31(5): 639-649. DOI: 10.1002/rra.2756 .
2247. Idrees, M., S. Ahmad, M.W. Khan, Z.H. Dahri, K. Ahmad, M. Azmat and I.A. Rana. 2022. Estimation of water balance for anticipated land use in the potohar plateau of the Indus Basin using SWAT. Remote Sensing. 14(21): 5421. DOI: 10.3390/rs14215421 .
2248. Iensen, I.R.R., G.B. Schultz and I. dos Santos. 2015. Simulation of green and blue water impacts caused by climate changes in the Apucaraninha River watershed, southern Brazil. Revista Brasileira de Geografia Física. 8(1): 179-186. URL: http://www.revista.ufpe.br/rbgfe/index.php/revista/article/viewArticle/1089.
2249. Igarashi, K., K. Koichiro, N. Tanaka and N. Aranyabhaga. 2019. Prediction of the impact of climate change and land use change on flood discharge in the Song Khwae District, Nan Province, Thailand. Journal of Climate Change. 5(1): 1-8. DOI: 10.3233/JCC190001 .
2250. Igder, O.M., H. Alizadeh, B. Mojaradi and M. Bayat. 2022. Multivariate assimilation of satellite-based leaf area index and ground-based river streamflow for hydrological modelling of irrigated watersheds using SWAT+. Journal of Hydrology. 610: 128012. DOI: 10.1016/j.jhydrol.2022.128012 .
2251. Ignatius, A.R., and J.W. Jones. 2018. High resolution water body mapping for SWAT evaporative modelling in the Upper Oconee Watershed of Georgia, USA. Hydrological Processes. 32(1): 51-65. DOI: 10.1002/hyp.11398 .
2252. Iiames, J.S., E. Cooter, D. Schwede and J. Williams. 2018. A comparison of simulated and field-derived Leaf Area Index (LAI) and canopy height values from four forest complexes in the southeastern USA. Forests. 9(1): 26. DOI: 10.3390/f9010026 .
2253. Iizumi, T., G. Sakurai and M. Yokozawa. 2013. An ensemble approach to the representation of subgrid-scale heterogeneity of crop phenology and yield in coarse-resolution large-area crop models. Journal of Agricultural Meteorology. 69(4): 243-254. DOI: 10.2480/agrmet.69.4.2 .
2254. Ikenberry, C.D., M.L. Soupir, W.G. Crumpton, M.J. Helmers, J.G. Arnold and P.W. Gassman. 2017. Simulation of daily flow pathways, tile-drain nitrate concentrations, and soil-nitrogen dynamics using SWAT. Journal of the American Water Resources Association. 53(6): 1251-1532. DOI: 10.1111/1752-1688.12569 .
2255. Ikenberry, C.D., W.G. Crumpton, J.G. Arnold, M.L. Soupir and P.W. Gassman. 2017. Evaluation of existing and modified wetland equations in the SWAT model. Journal of the American Water Resources Association. DOI: 10.1111/1752-1688.12570 .
2256. Ikhar, P.R., D.G. Regulwar and R.U. Kamodkar. 2018. Optimal reservoir operation using soil and water assessment tool and genetic algorithm. Journal of Hydraulic Engineering. 24(2): 249-257. DOI: 10.1080/09715010.2017.1417754 .
2257. Ikhwali1, M,F,, N.S. Ersa, A. Khairi, W. Prayog and Wesli. 2022. Development of Soil & Water Assessment Tool application in Krueng Aceh Watershed review. Teras Jurnal . 12(1): 191-204. DOI: 10.29103/tj.v12i1.703 .
2258. Ikhwalia, M.F., M.I. Raub, S. Nura, T. Ferijalc, W. Prayogod and S.F.D. Saputra. 2022. Application of Soil and Water Assessment Tool in Indonesia – a review and challenges. Desalination and Water Treatment. 277: 105–119. URL: https://www.deswater.com/vol.php?vol=277&oth=277|0|November%20%20|2022.
2259. Ilampooranan, I., J.L. Schnoor and N.B. Basu. 2021. Crops as sensors: Using crop yield data to increase the robustness of hydrologic and biogeochemical models. Journal of Hydrology. 592: 125599. DOI: 10.1016/j.jhydrol.2020.125599 .
2260. Ilampooranan, I., K.J. Van Meter and N.B. Basu. 2019. A race against time: Modeling time lags in watershed response. Water Resources Research. 55(5): 3941-3959. DOI: 10.1029/2018WR023815 .
2261. Im, S., K.M. Brannan, S. Mostaghimi and S.M. Kim. 2007. Comparison of HSPF and SWAT models performance for runoff and sediment yield prediction. Journal of Environmental Science and Health, Part A - Toxic/Hazardous Substances and Environmental Engineering. 42(11): 1561-1570. DOI: 10.1080/10934520701513456 .
2262. Im, S.-J., K.M. Brannan, S. Mostaghimi and J.P. Cho. 2003. Predicting runoff and sediment yield on a forest dominated watershed using HSPF and SWAT models. Journal of Korean Society of Rural Planning. 9(4): 59-64. URL: http://www.koreascience.or.kr/article/JAKO200315836137976.page.
2263. Imani, S., M. Delavar and M.H. Niksokban. 2019. Identification of nutrients critical source areas with SWAT model under limited data condition. Water Resources. 46(1): 128-137. DOI: 10.1134/S0097807819010147 .
2264. Imani, S., M.H. Niksokhan, S. Jamshidi and K.C. Abbaspour. 2017. Discharge permit market and farm management nexus: An approach for eutrophication control in small basins with low-income farmers. Environmental Modeling & Assessment. 189: 346. DOI: 10.1007/s10661-017-6066-4 .
2265. Imfeld, G., S. Payraudeau, J. Tournebize, S. Sauvage, F. Macary, C. Chaumont, A. Probst, J.-M. Sánchez-Pérez, A. Bahi, B. Chaumet, T. Gilevska, H. Alexandre and J.-L. Probst. 2021. The role of ponds in pesticide dissipation at the agricultural catchment scale: A critical review. Water. 13(9): 1202. DOI: 10.3390/w13091202 .
2266. Immerzeel, W. W. and P. Droogers. 2008. Calibration of a distributed hydrological model based on satellite evapotranspiration. Journal of Hydrology. 349(3-4): 411-424. DOI: 10.1016/j.jhydrol.2007.11.017 .
2267. Immerzeel, W., J. Stoorvogel and J. Antle. 2008. Can payments for ecosystem services secure the water tower of Tibet? Agricultural Systems. 96(1-3): 52-63. DOI: 10.1016/j.agsy.2007.05.005 .
2268. Immerzeel, W.W., A. Gaur and S.J. Zwart. 2008. Integrating remote sensing and process-based hydrological model to evaluate water use and productivity in a south Indian catchment. Agricultural Water Management. 95(1): 11-24. DOI: 10.1016/j.agwat.2007.08.006 .
2269. Inamdar, S. and A. Naumov. 2006. Assessment of sediment yields for a mixed-landuse Great Lakes watershed: Lessons from field measurements and modeling. Journal of Great Lakes Research. 32(3): 471-488. DOI: 10.3394/0380-1330(2006)32%5B471:AOSYFA%5D2.0.CO;2 .
2270. Insan, S. and K. Kuntiyawichai. 2022. Assessment of agricultural water sufficiency under climate and land use changes in the Lam Takong River Basin. Water. 44(18): 2794. DOI: 10.3390/w14182794 .
2271. Ioannou, K., L. Kosmatopoulos, G.N. Zaimes and G. Tsantopoulos. 2018. Geoinformatics as a tool for the application of energy policy. International Journal of Sustainable Agricultural Management and Informatics Engineering Management. 4(1): 4-22. DOI: 10.1504/IJSAMI.2018.092402 .
2272. Iqbal, M.S. and N. Hofstra. 2019. Modeling Escherichia coli fate and transport in the Kabul River Basin using SWAT. Human and Ecological Risk Assessment: An International Journal. 25(5): 1279-1297. DOI: 10.1080/10807039.2018.1487276 .
2273. Iqbal, M.S., M. Islam, M. Hassan, H. Bilal, I.A. Shah and T Ourania. 2022. Modeling the fecal contamination (fecal coliform bacteria) in transboundary waters using the scenario matrix approach: A case study of Sutlej River, Pakistan. Environmental Science and Pollution Research. 29(52): 79555-79566. DOI: 10.1007/s11356-022-21294-8 .
2274. Iqbal, M.S., M.M.M. Islam and N. Hofstra. 2019. The impact of socio-economic development and climate change on E. coli loads and concentrations in Kabul River, Pakistan. Science of the Total Environment. 650: 1935-1943. DOI: 10.1016/j.scitotenv.2018.09.347 .
2275. Iqbal, M.S., Z.H. Dahri, E.P. Querner, A. Khan and N. Hofstra. 2018. Impact of climate change on flood frequency and intensity in the Kabul River Basin. Revista Geociências. 8(4): 114. DOI: 10.3390/geosciences8040114 .
2276. Iradukunda, P., E.M. Mwanaumo and J. Kabika. 2024. Modelling the future climate impacts on hydraulic infrastructure development in tropical (peri-)urban region: Case of Kigali, Rwanda. Heliyon. DOI: 10.1016/j.heliyon.2024.e27126 .
2277. Iranmanesh, R., N. Jalalkamali and O. Tayari. 2021. Water resources availability under different climate change scenarios in south east Iran. Journal of Water and Climate Change. 12(8): 3976. DOI: 10.2166/wcc.2021.373 .
2278. Iresh, A.D.S., A.G.N.S. Marasinghe, A.M.T.S.H. Wedanda, G.P. Wickramasekara, M.D.J.P. Wickramasooriya and M.T.C. Premathilake. 2021. Development of a hydrological model for Kala Oya Basin using SWAT model. Journal of the Institution of Engineers, Sri Lanka . 54(1): 57-65. DOI: 10.4038/engineer.v54i1.7435 .
2279. Irlan, W.U. A, A.K.A. Samsu, D. Irundu and E.I. Mas'ud. 2023. Modelling river discharge using Soil and Water Assessment Tool in Mamasa Subwatershed. Jurnal Eboni. 5(2): 64-70. URL: https://ejournals.umma.ac.id/index.php/eboni/index.
2280. Irvem, A.I. and A. El-Sadek. 2018. Evaluation of streamflow simulation by SWAT model for the Seyhan River Basin. Çukurova Journal of Agricultural and Food Sciences. 33(2): 99-110. URL: https://dergipark.org.tr/tr/pub/cutarim/issue/42081/468472.
2281. Isazadeh, M., A.F. Fard and S. Darbandi. 2023. Effects of greenhouse towns developing on meeting the environmental need of Lake Urmia using the SWAT model (case study: Ajichay Watershed). Water and Soil Science. 33(3): 89-108. DOI: 10.22034/ws.2021.48404.2444 .
2282. Isazadeh, M., A.F. Fard and S. Darband. 2023. Study of the development of greenhouse estates and its impact on groundwater levels of Ajichay Basin Aquifers using SWAT model. Hydrogeology. 7(2): 15-29. URL: https://hydro.tabrizu.ac.ir/article_13880_en.html.
2283. Isik, S., H. Haas, L. Kalin, M.M. Hantush and C. Nietch. 2023. Nutrient removal potential of headwater wetlands in coastal plains of Alabama, USA. Water. 15(15): 2687. DOI: 10.3390/w15152687 .
2284. Islam, A.K.M.S., S. Paul, K. Mohammed, M. Billah, Md. G.R. Fahad, Md. A. Hasan, G.M.T. Islam and S.K. Bala. 2018. Hydrological response to climate change of the Brahmaputra basin using CMIP5 general circulation model ensemble. Journal of Water and Climate Change. 9(3): 434-448. DOI: 10.2166/wcc.2017.076 .
2285. Ismail, M., E. Ahmed, G. Peng, R. Xu, M. Sultan, F.U. Khan and M. Aleem. 2022. Evaluating the impact of climate change on the stream flow in Soan River Basin (Pakistan). Water. 14(22): 3695. DOI: 10.3390/w14223695 .
2286. Iudicello, J.J. and D.A. Chin. 2013. A multi-model, multiple watershed examination of in-stream bacteria modeling. International Journal of Environmental Research and Public Health. 139(5): 1-33. DOI: 10.1061/(ASCE)EE.1943-7870.0000670 .
2287. Ivanoski, D., S. Trajkovic and M. Gocic. 2019. Estimation of sedimentation rate of Tikvesh Reservoir in Republic of Macedonia using SWAT. Arabian Journal of Geosciences. 12(14): 438. DOI: 10.1007/s12517-019-4583-x .
2288. Izady, A., K. Davary, A. Alizadeh, A.N. Ziaei, S. Akhavan, A. Alipoor, A. Joodavi and M.L. Brusseau. 2015. Groundwater conceptualization and modeling using distributed SWAT-based recharge for the semi-arid agricultural Neishaboor Plain, Iran. Hydrogeology Journal. 23(1): 47-68. DOI: 10.1007/s10040-014-1219-9 .
2289. J.A.M. Rodrigues, M.R. Viola, L.A. Alvarenga, C.R. de Mello, S.C. Chou, V.A. de Oliveira, V. Uddameri and M.A.V. Morais. 2020. Climate change impacts under representative concentration pathway scenarios on streamflow and droughts of basins in the Brazilian Cerrado Biome. International Journal of Climatology. 40(5): 2511-2526. DOI: 10.1002/joc.6347 .
2290. Jabbar, F.K. and K. Grote. 2020. Evaluation of the predictive reliability of a new watershed health assessment method using the SWAT model. Environmental Monitoring and Assessment. 192: 224. DOI: 10.1007/s10661-020-8182-9 .
2291. Jaberzadeh, M., A. Saremi, H.G. Kharazi and H. Babazadeh. 2022. SWAT and IHACRES models for the simulation of rainfall‐runoff of Dez Watershed. Climate Dynamics. DOI: 10.1007/s00382-022-06215-2 .
2292. Jadhao, V. G. and M. P. Tripathi. 2009. Evaluation of the SWAT model for predicting the daily surface runoff and sediment yield from a small watershed. International Journal of Agricultural Engineering. 2(1): 39-45.
2293. Jadhao, V.G., A.K. Jadhao and M.P. Tripathi. 2009. Estimation of monthly surface runoff and sediment yield from a small watershed by using simulation technique. International Journal of Agricultural Engineering. 2(2): 278-281. URL: https://www.researchgate.net/publication/324745210_Estimation_of_monthly_surface_runoff_and_sediment_yield_from_a_small_watershed_by_using_simulation_technique.
2294. Jadhao, V.G., D.T. Bornare and M.P. Tripathi. 2009. Identification and prioritization of critical sub-watersheds using SWAT Model. International Journal of Agricultural Engineering. 2(1): 113-123. URL: https://www.researchgate.net/publication/324536056_Identification_and_prioritization_of_critical_sub-watersheds_using_SWAT_model.
2295. Jaeger, K.L., J.D. Olden and N.A. Pelland. 2014. Climate change poised to threaten hydrologic connectivity and endemic fishes in dryland streams. Proceedings of the National Academy of Sciences. 111(38): 13894-13899. DOI: 10.1073/pnas.1320890111 .
2296. Jafari, T., A.S. Kiem, S. Javadi, T. Nakamura and K. Nishida. 2021. Fully integrated numerical simulation of surface water-groundwater interactions using SWAT-MODFLOW with an improved calibration tool. Journal of Hydrology: Regional Studies. 35: 100822. DOI: 10.1016/j.ejrh.2021.100822 .
2297. Jafari, T., A.S. Kiema, S. Javadi, T. Nakamura and K. Nishida. 2021. Using insights from water isotopes to improve simulation of surface water-groundwater interactions. Science of the Total Environment. 798: 149253. DOI: 10.1016/j.scitotenv.2021.149253 .
2298. Jager, H.I., L.M. Baskaran, P.E. Schweizer, A.F. Turhollow, C.C. Brandt and R. Srinivasan. 2014. Forecasting changes in water quality in rivers associated with growing biofuels in the Arkansas-White-Red River drainage, USA. Global Change Biology. 7(4): 774-784. DOI: 10.1111/gcbb.12169 .
2299. Jahanshahi, A., M. Golshan and A. Afzali. 2017. Simulation of the catchments hydrological processes in arid, semi-arid and semi-humid areas. Desert. 22(1): 1-10. URL: https://jdesert.ut.ac.ir/article_62295_7a6ba1d82ffc3e5e06be4ab036724acf.pdf.
2300. Jähnig, S.C., M. Kuemmerlen, J. Kiesel, S. Domisch, Q. Cai, B. Schmalz and N. Fohrer. 2012. Modelling of riverine ecosystems by integrating models: Conceptual approach, a case study and research agenda. Journal of Biogeography. 39: 2253-2263. DOI: 10.1111/jbi.12009 .
2301. Jaimes-Correa, J.C., F. Muñoz-Arriola and S. Bartelt-Hunt. 2022. Modeling water quantity and quality nonlinearities for watershed adaptability to hydroclimate extremes in agricultural landscapes. Hydrology. 9(5): 80. DOI: 10.3390/hydrology9050080 .
2302. Jain, S., S. Ale, C.L. Munster, R.J. Ansley and J.R. Kiniry. 2015. Simulating the hydrologic impact of Arundo donax invasion on the headwaters of the Nueces River in Texas. Hydrology. 2: 134-147. DOI: 10.3390/hydrology2030134 .
2303. Jain, S.K., S. Shukla and M.L. Kansal. 2021. Stream flow simulation and water balance of snow and glacier fed mountainous basin using SWAT model. IWRA journal . 10(2): 36-43. URL: https://www.indianjournals.com/ijor.aspx?target=ijor:iwra&volume=10&issue=2&article=005.
2304. Jain, V.K., R.P. Pandey and M.K. Jain. 2015. Spatio-temporal assessment of vulnerability to drought. Natural Hazards. 76(1): 443-469. DOI: 10.1007/s11069-014-1502-z .
2305. Jaiswal, R.K., A.K. Lohani and H.L. Tiwari. 2020. Development of framework for assessment of impact of climate change in a command of water resource project. Journal of Earth System Science. 129(1): 58. DOI: 10.1007/s12040-019-1328-x .
2306. Jaiswal, R.K., R.N. Yadav, A.K. Lohani, H.L. Tiwari and S. Yadav. 2020. Water balance modeling of Tandula (India) Reservoir Catchment using SWAT. Arabian Journal of Geosciences. 13: 148. DOI: 10.1007/s12517-020-5092-7 .
2307. Jaiswal, R.K., S. Ali and B. Bharti. 2020. Comparative evaluation of conceptual and physical rainfall–runoff models. Applied Water Science. 10(1): 48. DOI: 10.1007/s13201-019-1122-6 .
2308. Jajarmizadeh, M., E.K. Lafdani, S. Harun and A. Ahmadi. 2014. Application of SVM and SWAT models for monthly streamflow prediction, a case study in south of Iran. KSCE Journal of Civil Engineering. 19(1): 345-357. DOI: 10.1007/s12205-014-0060-y .
2309. Jajarmizadeh, M., M.S. Lariyah, M. Mirzai, S. Alaghmand, H. Sobri and R.M. Mohammad. 2016. Prediction of surface flow by forcing of Climate Forecast System Reanalysis data. Water Resources Management. 30(8): 2627-2640. DOI: 10.1007/s11269-016-1303-0 .
2310. Jajarmizadeh, M., M.S. Lariyah, H. Sobri and M. Salarpour. 2017. Optimal calibration and uncertainty analysis of SWAT for an arid climate. Air, Soil and Water Research. 10: 1-14. DOI: 10.1177/1178622117731792 .
2311. Jajarmizadeh, M., S. bin Harun, S. Shahid, S. Akib and M. Salarpour. 2014. Impact of direct soil moisture and revised soil moisture index methods on hydrologic predictions in an arid climate. Advances in Meteorology. : 156172. DOI: 10.1155/2014/156172 .
2312. Jajarmizadeh, M., S. Harun, R. Abdulah and M. Salarpour. 2016. An evaluation of blue water prediction in southern part of Iran using SWAT. Environmental Engineering and Management Journal. 15(1): 175-188. URL: http://omicron.ch.tuiasi.ro/EEMJ/issues/vol15/vol15no1.htm.
2313. Jakada, H. and Z. Chen. 2020. An approach to runoff modelling in small karst watersheds using the SWAT model. Arabian Journal of Geosciences. 13: 318. DOI: 10.1007/s12517-020-05291-0 .
2314. Jakrawatana, N., P. Ngammuangtueng and S.H. Gheewala. 2017. Linking substance flow analysis and Soil and Water Assessment Tool for nutrient management. Journal of Cleaner Production. 142(Part 3): 1158–1168. DOI: 10.1016/j.jclepro.2016.07.185 .
2315. Jalali, J., A. Ahmadi and K. Abbaspour. 2021. Runoff responses to human activities and climate change in an arid watershed of central Iran. Hydrological Sciences Journal. 66(16): 2280-2297. DOI: 10.1080/02626667.2021.1985724 .
2316. Jalel, A., B. Sihem, L.C. Zohra and C. Christophe. 2018. Valuing scarce observation of rainfall variability with flexible semi-distributed hydrological modelling – Mountainous Mediterranean context. Science of the Total Environment. 643: 346-356. DOI: 10.1016/j.scitotenv.2018.06.086 .
2317. Jalgaonkar, B.R. 2020. Hydrological modelling of river basin in agriculture area by using soil and water assessment tool. Journal of Soil and Water Conservation (India). 20(2): 233-236. DOI: 10.5958/2455-7145.2021.00030.8 .
2318. Jalowska, A.M. and Y. Yuan. 2019. Evaluation of SWAT impoundment modeling methods in water and sediment simulations. Journal of the American Water Resources Association. 55(1): 209-227. DOI: 10.1111/1752-1688.12715 .
2319. Jamieson, R., R. Gordon, D. Joy and H. Lee. 2004. Assessing microbial pollution of rural surface waters: A review of current watershed scale modeling approaches. Agricultural Water Management. 70: 1-17. DOI: 10.1016/j.agwat.2004.05.006 .
2320. Jamrussri, S. and Y. Toda. 2017. Simulating past severe flood events to evaluate the effectiveness of nonstructural flood countermeasures in the Upper Chao Phraya River Basin, Thailand. Journal of Hydrology: Regional Studies. 10: 82-84. DOI: 10.1016/j.ejrh.2017.02.001 .
2321. Jamshidi, M., M. Tajrishy and M. Maghrebi. 2010. Modeling of point and non-point source polllution of nitrate with SWAT in the Jajrood River Watershed, Iran. International Agricultural Engineering Journal. 19(2): 23-31. URL: https://www.researchgate.net/publication/228666522_Modeling_of_point_and_non-point_source_pollution_of_nitrate_with_SWAT_in_the_Jajrood_river_watershed_Iran.
2322. Jamshidi, R. and D. Dragovich. 2023. Water balance uncertainty of a hydrologic model to lengthy drought and storm events in managed forest catchments, eastern Australia. Land. 12(1): 3. DOI: 10.3390/land12010003 .
2323. Jamshidi, S. and A. Naderi. 2023. A quantitative approach on environment-food nexus: Integrated modeling and indices for cumulative impact assessment of farm management practices. PeerJ. 11: e14816. DOI: 10.7717/peerj.14816 .
2324. Jamshidi, S., S. Imani and M. Delavar. 2020. Impact assessment of best management practices (BMPs) on the water footprint of agricultural productions. International Journal of Environmental Research. 14(6): 641-652. DOI: 10.1007/s41742-020-00285-y .
2325. Jamshidi, S., S. Imani and M. Delavar. 2023. An approach to quantifying the grey water footprint of agricultural productions in basins with impaired environment. Journal of Hydrology. 606: 127458. DOI: 10.1016/j.jhydrol.2022.127458 .
2326. Jang, J.H., K.W. Jung and C.G. Yoon. 2012. Modification of SWAT model for simulation of organic matter in Korean watersheds. Water Science and Technology. 66(11): 2355-2362. DOI: 10.2166/wst.2012.465 .
2327. Jang, S.S., S.R. Ahn and S.J. Kim. 2017. Evaluation of executable best management practices in Haean Highland Agricultural Catchment of South Korea using SWAT. Agricultural Water Management. 180(Part B): 224-234. DOI: 10.1016/j.agwat.2016.06.008 .
2328. Jang, T., G. Vellidis, J.B. Hyman, E. Brooks, L.A. Kurkalova, J. Boll and J. Cho. 2013. Model for prioritizing best management practice implementation: Sediment load reduction. Environmental Management. 51(1): 209-224. DOI: 10.1007/s00267-012-9977-4 .
2329. Jang, W.J., Y.G. Lee and S.J. Kim. 2018. Evaluation of multi-objective PSO algorithm for SWAT auto-calibration. Journal of Korea Water Resources Association. 51(9): 803-812. DOI: 10.3741/JKWRA.2018.51.9.803 .
2330. Jang, W.S., B. Engel and C.M. Yeum. 2020. Integrated environmental modeling for efficient aquifer vulnerability assessment using machine learning. Environmental Modelling & Software. 129: 104602. DOI: 10.1016/j.envsoft.2019.104602 .
2331. Jang, W.S., B. Engel and J. Ryu. 2018. Efficient flow calibration method for accurate estimation of baseflow using a watershed scale hydrological model (SWAT). Ecological Engineering. 125: 50-67. DOI: 10.1016/j.ecoleng.2018.10.007 .
2332. Jang, W.S., Y. Park, J. Kim, N. Kim, J. Choi, Y.S. Ok, J.E. Yang and K.J. Lim. 2010. Development of the SWAT DWDM for accurate estimation of soil erosion from an agricultural field. Journal of the Korean Society of Agricultural Engineers. 52(1): 79-88. URL: https://engineering.purdue.edu/~park397/home/pdf/2010_5.pdf.
2333. Jang, Y., J. Park and D. Seo. 2018. Estimations of flow rate and pollutant loading changes of the Yo-Cheon basin under AR5 climate change scenarios using SWAT. Journal of Korean Society of Water and Wastewater. 32(3): 221-233. DOI: 10.11001/jksww.2018.32.3.221 .
2334. Janjić, J. and L. Tadić. 2023. Fields of application of SWAT hydrological model—A review. Earth. 4(2): 331-344. DOI: 10.3390/earth4020018 .
2335. Janney P. and J. Jenkins. 2019. A systems approach to modeling watershed ecohydrology and pesticide transport. Journal of Environmental Quality. DOI: 10.2134/jeq2018.09.0334 .
2336. Janney, P. and J. Jenkins. 2022. Passive sampling and ecohydrologic modeling to investigate pesticide surface water loading in the Zollner Creek Watershed, Oregon, USA. Science of the Total Environment. 819: 152955. DOI: 10.1016/j.scitotenv.2022.152955 .
2337. Janta, R., L. Khwanchum, P. Ditthakit, N. Al-Ansari and N.T.T. Linh. 2022. Water yield alteration in Thailand's Pak Phanang Basin due to impacts of climate and land-use changes. Sustainability. 14(15): 9106. DOI: 10.3390/su14159106 .
2338. Jara, F., A. Mejia, P. Colonia, T. Meija and G. Revelo. 2023. Evaluation of hydrological models in SWAT and HEC-HMS with potential application to the particular characteristics of the subbasin of the Quillcay River-Peru. Migration Letters. 20(58): 534-547. URL: https://migrationletters.com/index.php/ml/article/view/4629.
2339. Jarray, F., T. Hermassi, M. Mechergui, C. Zucca and Q.B. Le. 2023. Long-term impact of soil and water conservation measures on soil erosion in a Tunisian semi-arid watershed. Land. 12(8): 1537. DOI: 10.3390/land12081537 .
2340. Javadi, P., H. Asadim A. Besalatpour and M. Vazifedoust. 2022. Prediction of spatial and temporal variability of soil moisture in Marghab Watershed using SWAT. Iranian Journal of Soil and Water Research. 53(10): 2365-2382. DOI: 10.22059/ijswr.2022.348271.669353 .
2341. Javaheri, A. and M. Babbar-Sebens. 2014. On comparison of peak flow reductions, flood inundation maps, and velocity maps in evaluating effects of restored wetlands on channel flooding. Ecological Engineering. 73: 132-145. DOI: 10.1016/j.ecoleng.2014.09.021 .
2342. Javanmard S., H. Ghodousi and B. Hesari. 2019. Determination of the surface water balance parameters in Ag Chai Basin using SWAT model and uncertainty analysis with SUFI-2 algorithm. Journal of Irrigation and Water Engineering. 9(34): 27-36. URL: http://www.waterjournal.ir/article_87264.html?lang=en.
2343. Javansalehi, M. and M. Shourian. 2024. Assessing the impacts of climate change on agriculture and water systems via coupled human-hydrological modeling. Agricultural Water Management. 300: 108919. DOI: 10.1016/j.agwat.2024.108919 .
2344. Jayakody, J., P.B. Parajuli, G.F. Sassenrath and Y. Ouyang. 2014. Relationships between water table and model simulated ET. Groundwater. 52(2): 303–310. URL: http://onlinelibrary.wiley.com/doi/10.1111/gwat.12053/abstract.
2345. Jayakody, P., P. Parajuli and J. Brooks. 2014. Evaluating spatial and temporal variability of fecal coliform bacteria loads at the Pelahatchie Watershed in Mississippi. Human and Ecological Risk Assessment: An International Journal. 20(4): 1023-1041. DOI: 10.1080/10807039.2013.784155 .
2346. Jayakody, P., P.B. Parajuli and J.P. Brooks. 2014. Assessing climate variablility impact on thermotolerant coliform bacteria in surface water. Human and Ecological Risk Assessment: An International Journal. 21(3): 691-706. DOI: 10.1080/10807039.2014.909188 .
2347. Jayakody, P., P.B. Parajuli and T.P. Cathcart. 2014. Impacts of climate variability on water quality with best management practices in sub-tropical climate of USA. Hydrological Processes. 28(23): 5776-5790. DOI: 10.1002/hyp.10088 .
2348. Jayakrishnan, R., R. Srinivasan, C. Santhi and J.G. Arnold. 2005. Advances in the application of the SWAT model for water resources management. Hydrological Processes. 19(3): 749-762. DOI: 10.1002/hyp.5624 .
2349. Jayanthi, S.L.S.V. and V.R. Keesara. 2019. Climate change impact on water resources of medium irrigation tank. ISH Journal of Hydraulic Engineering. DOI: 10.1080/09715010.2019.1649605 .
2350. Jayanthi, S.L.S.V., V.R. Keesara and V. Sridhar. 2022. Prediction of future lake water availability using SWAT and support vector regression (SVR). Sustainability. 14(12): 6974. DOI: 10.3390/su14126974 .
2351. Jayaprathiga, M., R. Cibin and K.P. Sudheer. 2022. Reliability of hydrology and water quality simulations using global scale datasets. Journal of the American Water Resources Association. 58(3): 453–470. DOI: 10.1111/1752-1688.13006 .
2352. Jeet, P., D.K. Singh and A. Sarangi. 2019. Development of a composite hydrologic index for semi-arid region of India. Groundwater. 57(5): 749-755. DOI: 10.1111/gwat.12867 .
2353. Jeet, P., D.K. Singh, A. Sarangi, S.S. Mali and A.K. Singh. 2021. Delineation of potential water harvesting site for agriculture water planning in Betwa Basin of India using geospatial and analytical hierarchical process technique. Geocarto International. DOI: 10.1080/10106049.2021.2000647 .
2354. Jefrizon, M. Fauzi and Nurdin. 2021. Pengaruh perubahan Tutupan Lahan Terhadap Ailiran Permukaan Pada Sub DAS Kampar Kanan. Jurnal Rab Contruction Research . 6(1): 22-38. DOI: 10.36341/racic.v6i1.1540 .
2355. Jeitany, J.E., T. Pacetti and E. Caporali. 2023. Evaluating climate change effects on hydrological functionality and water-related ecosystem services. Ecohydrology. 17(4): e2557. DOI: 10.1002/eco.2557 .
2356. Jeon, D.J., M. Ligaray, M. Kim, G. Kim, G. Lee, Y.A. Pachepsky, D.-H. Cha and K.H. Cho. 2019. Evaluating the influence of climate change on the fate and transport of fecal coliform bacteria using the modified SWAT model. Science of the Total Environment. 658: 753-762. DOI: 10.1016/j.scitotenv.2018.12.213 .
2357. Jeon, D.J., S.J. Ki, Y. Cha, Y. Park and J.H. Kim. 2018. New methodology of evaluation of best management practices performances for an agricultural watershed according to the climate change scenarios: A hybrid use of deterministic and decision support models. Ecological Engineering. 119: 73-82. DOI: 10.1016/j.ecoleng.2018.05.006 .
2358. Jeon, D.J., Y.A. Pachepsky, B. Kim and J.H. Kim. 2019. New methodology to develop high-resolution rainfall data using weather radar for watershed-scale water quality model. Desalination and Water Treatment. 138: 248-256. DOI: 10.5004/dwt.2019.23344 .
2359. Jeong, C., K. Joo, W. Lee, H. Shin and J.-H. Heo. 2014. Estimation of optimal grid size for radar reflectivity using a SWAT model. Journal of Hydro-environment Research. 8(1): 20-31. DOI: 10.1016/j.jher.2013.05.005 .
2360. Jeong, H. and J. Adamowski. 2016. A system dynamics based socio-hydrological model for agricultural wastewater reuse at the watershed scale. Agricultural Water Management. 171: 89-107. DOI: 10.1016/j.agwat.2016.03.019 .
2361. Jeong, H., H. Kim, T. Jang and S. Park. 2016. Assessing the effects of indirect wastewater reuse on paddy irrigation in the Osan River Watershed in Korea using the SWAT model. Agricultural Water Management. 163: 393-402. DOI: 10.1016/j.agwat.2015.08.018 .
2362. Jeong, H.G., S.J. Kim and R. Ha. 2013. Assessment of climate change impact on storage behavior of Chungju and the regulation dams using SWAT model. Journal of the Korean Water Resources Association. 46(12): 1235-1247. DOI: 10.3741/JKWRA.2013.46.12.1235 .
2363. Jeong, J., C. Santhi, J.G. Arnold, R. Srinivasan, S. Pradhan and K. Flynn. 2011. Development of algorithms for modeling onsite wastewater systems within SWAT. Transactions of the ASABE. 54(5): 1693-1704. DOI: 10.13031/2013.39849 .
2364. Jeong, J., J. Yang, S. Han, Y.-S. Seo and Y. Hong. 2020. Assessment of coupled hydrologic and biogeochemical Hg cycles in a temperate forestry watershed using SWAT-Hg. Environmental Modelling & Software. 126: 104644. DOI: 10.1016/j.envsoft.2020.104644 .
2365. Jeong, J., K. Wagner, J.J. Flores, T. Cawthon, Y. Her, J. Osorio and H. Yen. 2018. Linking watershed modeling and bacterial source tracking to better assess E. coli sources. Science of the Total Environment. 648: 164-175. DOI: 10.1016/j.scitotenv.2018.08.097 .
2366. Jeong, J., N. Kannan and J.G. Arnold. 2014. Effects of urbanization and climate change on stream health in the north central Texas, USA. Journal of Environmental Quality. 43(1): 100-109. DOI: 10.2134/jeq2011.0345 .
2367. Jeong, J., N. Kannan, J. Arnold, R. Glick, L. Gosselink and R. Srinivasan. 2010. Development and integration of sub-hourly rainfall–runoff modeling capability within a watershed model. Water Resources Management. 24(15): 4505-4527. DOI: 10.1007/s11269-010-9670-4 .
2368. Jeong, J., N. Kannan, J.G. Arnold, R. Glick, L. Gosselink, R. Srinivasan and R.D. Harmel. 2011. Development of sub-daily erosion and sediment transport algorithms for SWAT. Transactions of the ASABE. 54(5): 1685-1691. DOI: 10.13031/2013.39841 .
2369. Jeong, J., N. Kannan, J.G. Arnold, R. Glick, L. Gosselink, R. Srinivasan and M.E. Barrett. 2013. Modeling sedimentation-filtration basins for urban watersheds in SWAT. Journal of Environmental Engineering. 139(6): 838-848. DOI: 10.1061/(ASCE)EE.1943-7870.0000691 .
2370. Jeong, S.M., H.D. Seo, H.S. Kim and K.H. Han. 2008. Sensitivity assessment on Daecheong Dam Basin streamflows according to the change of climate components. Journal of the Korean Water Resources Association. 41(11): 1095-1106. DOI: 10.3741/JKWRA.2008.41.11.1095 .
2371. Jepsen, S.M., T.C. Harmon and B. Guan. 2021. Analyzing the suitability of remotely sensed ET for calibrating a watershed model of a Mediterranean montane forest. Remote Sensing. 13(7): 1258. DOI: 10.3390/rs13071258 .
2372. Jepsen, S.M., T.C. Harmon, D.L. Ficklin, N.P. Molotch and B. Guan. 2018. Evapotranspiration sensitivity to air temperature across a snow-influenced watershed: Space-for-time substitution versus integrated watershed modeling. Journal of Hydrology. 556: 645-659. DOI: 10.1016/j.jhydrol.2017.11.042 .
2373. Jepsen, S.M., T.C. Harmon, S. Sadro, B. Reid and S. Chandra. 2019. Water residence time (age) and flow path exert synchronous effects on annual characteristics of dissolved organic carbon in terrestrial runoff. Science of the Total Environment. 656: 1223-1237. DOI: 10.1016/j.scitotenv.2018.11.392 .
2374. Jeyrani, F., S. Morid and R. Srinivasan. 2021. Assessing basin blue–green available water components under different management and climate scenarios using SWAT. Agricultural Water Management. 256: 107074. DOI: 10.1016/j.agwat.2021.107074 .
2375. Jha, M. and P. Gassman. 2014. Changes in hydrology and streamflow as predicted by a modelling experiment forced with climate models. Hydrological Processes. 28(5): 2772–2781. DOI: 10.1002/hyp.9836 .
2376. Jha, M., B.A. Babcock, P.W. Gassman and C.L. Kling. 2009. Economic and environmental impacts of alternative energy crops. International Agricultural Engineering Journal. 18(03-04): 15-23. URL: https://www.researchgate.net/publication/298016857_Economic_and_environmental_impacts_of_alternative_energy_crops.
2377. Jha, M., J.G. Arnold, P.W. Gassman, F. Giorgi and R.R. Gu. 2006. Climate change sensitivity assessment on Upper Mississippi River Basin streamflows using SWAT. Journal of the American Water Resources Association. 42(4): 997-1016. DOI: 10.1111/j.1752-1688.2006.tb04510.x .
2378. Jha, M., K.E. Schilling, P.W. Gassman and C.F. Wolter. 2010. Targeting land-use change for nitrate-nitrogen load reductions in an agricultural watershed. Journal of Soil and Water Conservation. 65(6): 342-352. DOI: 10.2489/jswc.65.6.342 .
2379. Jha, M., P.W. Gassman and J.G. Arnold. 2007. Water quality modeling for the Raccoon River Watershed using SWAT. Transactions of the ASABE. 50(2): 479-493. DOI: 10.13031/2013.22660 .
2380. Jha, M., P.W. Gassman, S. Secchi, R. Gu and J. Arnold. 2004. Effect of watershed subdivision on SWAT flow, sediment, and nutrient predictions. Journal of the American Water Resources Association. 40(3): 811-825. DOI: 10.1111/j.1752-1688.2004.tb04460.x .
2381. Jha, M., S. Rabotyagov and P.W. Gassman. 2009. Optimal placement of conservation practices using genetic algor