SWAT Literature Database for Peer-Reviewed Journal Articles

Citations List by Author

Sort list by:

1. A.H. Bandi and N.S. Patil. 2022. Estimation of water balance components for the watershed of Ghataprabha Subbasin. Nature Environment and Pollution Technology. 21(3): 1395-1400. DOI: 10.46488/NEPT.2022.v21i03.048 .

2. Aalami, M.T., H. Abbasi and M.H. Niksokhan. 2018. Comparison of two calibration-uncertainty methods for Soil and Water Assessment Tool in stream flow and total suspended solids modeling. Journal of Water and Soil Science. 28(3): 53-64. URL: https://water-soil.tabrizu.ac.ir/article_8123.html?lang=en.

3. Aalami, M.T., H. Abbasi and V. Nourani. 2018. Sustainable management of reservoir water quality and quantity through reservoir operational strategy and watershed control strategies. International Journal of Environmental Research. 12: 773-788. DOI: 10.1007/s41742-018-0130-y .

4. Aamery, N.A., E. Adams, J. Fox, A. Husic, J. Zhu, M. Gerlitz, C. Agouridis and L. Bettel. 2021. Numerical model development for investigating hydrologic pathways in shallow fluviokarst. Journal of Hydrology. 593: 125844. DOI: 10.1016/j.jhydrol.2020.125844 .

5. Aamery, N.A., J.F. Fox and T. Mahoney. 2021. Variance decomposition of forecasted sediment transport in a lowland watershed using global climate model ensembles. Journal of Hydrology. 602: 126760. DOI: 10.1016/j.jhydrol.2021.126760 .

6. Aawar, T. and D. Khare. 2020. Assessment of climate change impacts on streamfow through hydrological model using SWAT model: A case study of Afghanistan. Modeling Earth Systems and Environment. 6(3): 1427-1437. DOI: 10.1007/s40808-020-00759-0 .

7. Abate, B.Z., T.T. Assefa, T.B. Tigabu, W.B. Abebe an L. He. 2023. Hydrological modeling of the Kobo-Golina River in the data-scarce Upper Danakil Basin, Ethiopia. Sustainability. 15(4): 3337. DOI: 10.3390/su15043337 .

8. Abbas, N., S.A. Wasimi and N. Al-Ansari. 2016. Assessment of climate change impacts on water resources of Khabour in Kurdistan, Iraq using SWAT model. Journal of Environmental Hydrology. 24(10): 1-21. URL: http://www.hydroweb.com/journal-hydrology-2016-paper-10.html.

9. Abbas, N., S.A. Wasimi, N. Al-Ansari and S.N. Baby. 2018. Recent trends and long-range forecasts of water resources of northeast Iraq and climate change adaptation measures. Water. 10(11): 1562. DOI: 10.3390/w10111562 .

10. Abbas, S., Y. Xuan and R. Bailey. 2022. Assessing Climate Change Impact on Water Resources in Water Demand Scenarios Using SWAT-MODFLOW-WEAP. Hydrology. 9: 164. DOI: 10.3390/hydrology9100164 .

11. Abbas, S.A. and Y. Xuan. 2019. Development of a new quantile-based method for the assessment of regional water resources in a highly-regulated river basin. Water Resources Management. 33: 3187–3210. DOI: 10.1007/s11269-019-02290-z .

12. Abbas, S.A. and Y. Xuan. 2020. Impact of precipitation pre-processing methods on hydrological model performance using high-resolution gridded dataset. Water. 12(3): 840. DOI: 10.3390/w12030840 .

13. Abbas, S.A., R.T. Bailey, J.T. White, J.G. Arnold, M.J. White, N. Čerkasova and J. Gao. 2024. A framework for parameter estimation, sensitivity analysis, and uncertainty analysis for holistic hydrologic modeling using SWAT+. Hydrology and Earth System Sciences. 28(1): 21–48. DOI: 10.5194/hess-28-21-2024 .

14. Abbas, T., F. Hussain, G. Nabi, M.W. Boota and R.S. Wu. 2019. Uncertainty evaluation of SWAT model for snowmelt runoff in a Himalayan watershed. Terrestrial, Atmospheric and Oceanic Sciences. 30(2): 265-279. DOI: 10.3319/TAO.2018.10.08.01 .

15. Abbas, T., G. Nabi, M.W. Boota, F. Hussain, M.I. Azam, H. Jin and M. Faisal. 2016. Uncertainty analysis of runoff and sedimentation in a forested watershed using sequential uncertainty fitting method. Sciences in Cold and Arid Regions. 8(4): 297-310. URL: http://www.scar.ac.cn/EN/10.3724/SP.J.1226.2016.00297.

16. Abbasi, A., M. Amirabadizedeh, A.A. Afshar and M. Yaghoobzadeh. 2022. Potential influence of climate and land-use changes on green water security in a semi-arid catchment. Journal of Water and Climate Change. 13(1): 287-303. DOI: 10.2166/wcc.2021.055 .

17. Abbasi, H. and L. Malekani. 2019. Runoff modeling and estimation of runoff changes due to climatic and human factors. Iranian Journal of Irrigation and Drainage . 13(2): 475-485. URL: https://idj.iaid.ir/article_92976.html?lang=en.

18. Abbasi, H., M. Delavar, R.B. Nalbandan and M.H. Shahdany. 2020. Robust strategies for climate change adaptation in the agricultural sector under deep climate uncertainty. Stochastic Environmental Research and Risk Assessment. 34(6): 755–774. DOI: 10.1007/s00477-020-01782-4 .

19. Abbasi, H., M.T. Aalami, M.H. Niksokhan and L. Malekani. 2022. Multi-objective optimization to manage reservoir water quality and quantity via selective withdrawal and watershed control. Sustainable Earth Review. 2(2): 1-14. URL: https://sustainearth.sbu.ac.ir/article_102538.html.

20. Abbasi, Y., C.M. Mannaerts and W. Makau. 2019. Modeling pesticide and sediment transport in the Malewa River Basin (Kenya) using SWAT. Water. 11: 87. DOI: 10.3390/w11010087 .

21. Abbaspour, K.C. 2021. The fallacy in the use of the “best-fit” solution in hydrologic modeling. Science of the Total Environment. 802: 149713. DOI: 10.1016/j.scitotenv.2021.149713 .

22. Abbaspour, K.C., E. Rouholahnejad, S. Vaghefi, R. Srinivasan, H. Yang and B. Kløve. 2015. A continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model. Journal of Hydrology. 524: 733–752. DOI: 10.1016/j.jhydrol.2015.03.027 .

23. Abbaspour, K.C., J. Yang, I. Maximov, R. Siber, K. Bogner, J. Mieleitner, J. Zobrist and R. Srinivasan. 2006. Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. Journal of Hydrology. 333(2-4): 413-430. DOI: 10.1016/j.jhydrol.2006.09.014 .

24. Abbaspour, K.C., M. Faramarzi, S.S. Ghasemi and H. Yang. 2009. Assessing the impact of climate change on water resources in Iran. Water Resources Research. 45: 1-16. DOI: 10.1029/2008WR007615 .

25. Abbaspour, K.C., S. Ashraf Vaghefi, H. Yang and R. Srinivasan. 2019. Global soil, landuse, evapotranspiration, historical and future weather databases for SWAT applications. Scientific Data. 6: 263. DOI: 10.1038/s41597-019-0282-4 .

26. Abbaspour, K.C., S.A. Vaghefi and R. Srinivasan. 2018. A guideline for successful calibration and uncertainty analysis for Soil and Water Assessment: A review of papers from the 2016 International SWAT Conference. Water. 10(1): 6. DOI: 10.3390/w10010006 .

27. Abdelwahab O.M.M., G.F. Ricci, A.M. De Girolamo and F. Gentile. 2018. Modelling soil erosion in a Mediterranean watershed: Comparison between SWAT and AnnAGNPS models. Environmental Research. 166: 363-376. DOI: 10.1016/j.envres.2018.06.029 .

28. Abdouramane, G.D., H. Karambiri, O. Seidou, K. Sittichok, J.E. Paturel and H.M. Saley. 2015. Statistical seasonal streamflow forecasting using probabilistic approach over West African Sahel. Natural Hazards. 79(2): 699-722. DOI: 10.1007/s11069-015-1866-8 .

29. Abdulai, P.J. and E.S. Chung. 2019. Uncertainty assessment in drought severities for the Cheongmicheon Watershed using multiple GCMs and the reliability ensemble averaging method. Sustainability. 11(16): 4283. DOI: 10.3390/su11164283 .

30. Abdulkareem, J.H., B. Pradhan, W.N.A. Sulaiman and N. R. Jamil. 2018. Review of studies on hydrological modelling in Malaysia. Modeling Earth Systems and Environment. 4(4): 1577-1605. DOI: 10.1007/s40808-018-0509-y .

31. Abdulla, F.A. and T. Eshtawi. 2007. Application of Automated Geospatial Watershed Assessment (AGWA) tool to evaluate the sediment yield in a semi-arid region: Case study, Kufranja Basin-Jordan. Jordan Journal of Civil Engineering. 1(3): 234-244. URL: https://jjce.just.edu.jo/issues/show_paper.php?pid=21.

32. Abe, C.A., F. de L. Lobo, E.M.L. de M. Novo, M. Costa and Y. Dibike. 2019. Modeling the effects of land cover change on sediment concentrations in a gold-mined Amazonian basin. Regional Environmental Change. 19(6): 1801–1813. DOI: 10.1007/s10113-019-01513-8 .

33. Abe, C.A., F. de Lucia Lobo, Y.B. Dibike, M.P. de Farias Costa, V. dos Santos and E.M.L.M. Novo. 2018. Modelling the ffects of historical and future land cover changes on the hydrology of an Amazonian Basin. Water. 10(7): 932. DOI: 10.3390/w10070932 .

34. Abebe W.B. S.A. Tilahun, M.M. Moges, A. Wondie, M.G. Dersseh, W.W. Assefa, D.A. Mhiret, A.A. Adem, F.A. Zimale, W. Abera, T.S. Steenhuis and M.E. McClain. 2021. Ecological status as the basis for the holistic environmental flow assessment of a tropical highland river in Ethiopia. Water. 13(14): 1913. DOI: 10.3390/w13141913 .

35. Abebe, B.K., F.A. Zimale, K.K. Gelaye, T. Gashaw, E.G. Dagnaw and A.A. Adem. 2022. Application of hydrological and sediment modeling with limited data in the Abbay (Uppe Blue Nile) Basin, Ethiopia. Hydrology. 9(10): 167. DOI: 10.3390/hydrology9100167 .

36. Abebe, T. and B. Gebremariam. 2019. Modeling runoff and sediment yield of Kesem Dam Watershed, Awash Basin, Ethiopia. SN Applied Sciences. 1: 446. DOI: 10.1007/s42452-019-0347-1 .

37. Abera, F.F. and A. Shumete. 2021. Optimal operation of cascade reservoir systems under climate change: Case study of Tekeze Hydropower Reservoir in the tributary of the Blue Nile River. Abyssinia Journal of Engineering & Computing. 1(2): 31-46. DOI: 10.20372/ajec.2021.v1.i2.242 .

38. Abera, F.F., D.H. Asfaw, A.N. Engida and A.M. Melesse. 2018. Optimal operation of hydropower reservoirs under climate change: The case of Tekeze Reservoir, Eastern Nile. Water. 10(3): 273. DOI: 10.3390/w10030273 .

39. Abesh, B.F., L. Jin and J.A. Hubbart. 2022. Predicting climate change impacts on water balance components of a mountainous watershed in the northeastern USA. Water. 14(20): 3349. DOI: 10.3390/w14203349 .

40. Abeysingha, N.S., A. Islam and M. Singh. 2020. Assessment of climate change impact on flow regimes over the Gomti River Basin under IPCC AR5 climate change scenarios. Journal of Water and Climate Change. 11(1): 303-326. DOI: 10.2166/wcc.2018.039 .

41. Abeysingha, N.S., M. Singh, A. Islam and V.K. Sehgal. 2016. Climate change impacts on irrigated rice and wheat production in Gomti River basin of India: A case study. SpringerPlus. 5: 1250. DOI: 10.1186/s40064-016-2905-y .

42. Abeysingha, N.S., M. Singh, V.K. Sehgal, M. Khanna, H. Pathak, P. Jayakody and R. Srinivasan. 2015. Assessment of water yield and evapotranspiration over 1985 to 2010 in the Gomti River basin in India using the SWAT model. Current Science. 108(12): 2202-2212. URL: https://www.jstor.org/stable/24905656.

43. Abimbola, O., A. Mittelstet, T. Messer, E. Berry and A.V. Griensven. 2021. Modeling and prioritizing interventions using pollution hotspots for reducing nuctrients, atrazine and e. coli oncentrations in a watershed. Sustainability. 13(1): 103. DOI: 10.3390/su13010103 .

44. Abimbola, O., A. Mittelstet, T. Messer, E. Berry and A. van Griensven. 2021. Modeling and prioritizing interventions using pollution hotspots for reducing nutrients, atrazine and e. coli concentrations in a watershed. Sustainability. 13(1): 103. DOI: 10.3390/su13010103 .

45. Abiodun, O.O., H. Guan, V.E.A. Post and O. Batelaan. 2018. Comparison of MODIS and SWAT evapotranspiration over a complex terrain at different spatial scales. Hydrology and Earth System Sciences. 22(5): 2775-2794. DOI: 10.5194/hess-22-2775-2018 .

46. Abitew, T.A., J. Arnold, J. Jeong, A. Jones and R. Srinivasan. 2023. Innovative approach to prognostic plant growth modeling in SWAT+ for forest and perennial vegetation in tropical and sub-tropical climates. Journal of Hydrology X. 20: 100156. DOI: 10.1016/j.hydroa.2023.100156 .

47. Abi-Zreig, M. and L.B. Hani. 2021. Assessment of the SWAT model in simulating watersheds in arid regions: Case study of the Yarmouk River Basin (Jordan). Open Geoscience. 13(1): 377-389. DOI: 10.1515/geo-2020-0238 .

48. Aboelnour, M., M.W. Gitau and B.A. Engel. 2019. Hydrologic response in an urban watershed as affected by climate and land-use change. Water. 11(8): 1603. DOI: 10.3390/w11081603 .

49. Aboelnour, M., M.W. Gitau and B.A. Engel. 2020. A Comparison of streamflow and baseflow responses to land-use change and the variation in climate parameters using SWAT. Water. 12(1): 191. DOI: 10.3390/w12010191 .

50. Abouabdillah, A., M. White, J.G. Arnold, A.M. De Girolamo, O. Oueslati, A. Maataoui and A. Lo Porto. 2014. Evaluation of soil and water conservation measures in a semi-arid river basin in Tunisia using SWAT. Soil Use and Management. 30(4): 539-549. DOI: 10.1111/sum.12146 .

51. Abouali, M, A.P. Nejadhashemi, F. Daneshvar, M.R. Herman, U. Adhikari, T.J. Calappi and J.P. Selegean. 2018. Evaluation of the effectiveness of conservation practices under implementation site uncertainty. Journal of Environmental Management. 228: 197-204. DOI: 10.1016/j.jenvman.2018.09.035 .

52. Abouali, M., A.P. Nejadhashemi, F. Daneshvar and S.A. Woznicki. 2016. Two-phase approach to improve stream health modeling. Ecological Informatics. 34: 13-21. DOI: 10.1016/j.ecoinf.2016.04.009 .

53. Abouali, M., A.P. Nejadhashemi, F. Daneshvar, U. Adhikari, M.R. Herman, T.J. Calappi and B.G. Rohn. 2017. Evaluation of wetland implementation strategies on phosphorus reduction at a watershed scale. Journal of Hydrology. 552: 105-120. DOI: 10.1016/j.jhydrol.2017.06.038 .

54. Abouali, M., F. Daneshvar and A.P. Nejadhashemi. 2016. MATLAB Hydrological Index Tool (MHIT): A high performance library to calculate 171 ecologically relevant hydrological indices. Ecological Informatics. 33: 17-23. DOI: 10.1016/j.ecoinf.2016.03.004 .

55. Abraham, T., A. Muluneh, R. Girma, A. Hartmann and S. Tekleab. 2022. Quantifying sensitivity of groundwater recharge to land use and land cover changes by improving model performance on the wetland dominated Tikur Wuha Watershed, Ethiopia. Water Cycle. 3: 112-125. DOI: 10.1016/j.watcyc.2022.08.002 .

56. Abu-Allaban, M., A. El-Naqa, M. Jaber and N. Hammouri. 2014. Water scarcity impact of climate change in semi-arid regions: a case study in Mujib basin, Jordan. Arabian Journal of Geosciences. 8(2): 951-959. DOI: 10.1007/s12517-014-1266-5 .

57. Abubakari, S., X. Dong, B. Su, X. Hu, J. Liu, Y. Li, T. Peng, H. Ma, K. Wang and S. Xu. 2019. Modelling streamflow response to climate change in data-scarce White Volta River Basin of West Africa using a semi-distributed hydrologic model. Journal of Water and Climate Change. 10(4): 907-930. DOI: 10.2166/wcc.2018.193 .

58. Abuhay, W., T. Gashaw and L. Tsegaye. 2023. Assessing impacts of land use/land cover changes on the hydrology of Upper Gilgel Abbay Watershed using the SWAT model. Journal of Agricultural and Food Chemistry. 12: 100535. DOI: 10.1016/j.jafr.2023.100535 .

59. Abunada, Z. Y. Kishawi, T.M. Alslaibi, N. Kaheil and A. Mittelstet. 2021. The application of SWAT-GIS tool to improve the recharge factor in the DRASTIC framework: Case study. Journal of Hydrology. 592: 125613. DOI: 10.1016/j.jhydrol.2020.125613 .

60. Acero Triana, J.S. and H. Ajami. 2022. Identifying major hydrologic change drivers in a highly managed transboundary endorheic basin: Integrating hydro-ecological models and time series data mining techniques. Water Resources Research. 58(8): e2022WR032281. DOI: 10.1029/2022WR032281 .

61. Acero Triana, J.S., M.L. Chu, J.A. Guzman, D.L. Moriasi and J.L. Steiner. 2019. Beyond model metrics: The perils of calibrating hydrologic models. Journal of Hydrology. 578: 124032. DOI: 10.1016/j.jhydrol.2019.124032 .

62. Acero Triana, J.S., M.L. Chu, J.A. Guzman, D.L. Moriasi and J.L. Steiner. 2020. Evaluating the risks of groundwater extraction in an agricultural landscape under different climate projections. Water. 12(2): 400. DOI: 10.3390/w12020400 .

63. Acharki, S., S. Taia, Y. Arjdal and J. Hack. 2023. Hydrological modeling of spatial and temporal variations in streamflow due to multiple climate change scenarios in northwestern Morocco. Climate Services. 30: 100388. DOI: 10.1016/j.cliser.2023.100388 .

64. Acharya, A. 2017. Quantification of modeled streamflows under climate change over the Flint River Watershed in northern Alabama. Journal of Hydrologic Engineering. 22(9): 04017032. DOI: 10.1061/(ASCE)HE.1943-5584.0001549 .

65. Acharya, A. 2018. Evaluating the suitability of application of hydrological models in a mixed land use watershed. Journal of Water Management Modeling. 26: C456. DOI: 10.14796/JWMM.C456 .

66. Acharya, B. and H. Blanco-Canqui. 2018. Lignocellulosic-based bioenergy and water quality parameters: A review. Global Change Biology Bioenergy. 10: 504-533. DOI: 10.1111/gcbb.12508 .

67. Acharyya, R., A. Mukhopadhyay and M. Habel. 2023. Coupling of SWAT and DSAS models for assessment of retrospective and prospective transformations of river deltaic estuaries. Remote Sensing. 15(4): 958. DOI: 10.3390/rs15040958 .

68. Acharyya, R., N. Pramanick, S. Mukherjee, S. Ghosh, A. Chanda, I. Pal, D. Mitra and A. Mukhopadhyay. 2022. Evaluation of catchment hydrology and soil loss in non‑perennial river system: a case study of Subarnarekha Basin, India. Modeling Earth Systems and Environment. 8(2): 2401-2429. DOI: 10.1007/s40808-021-01231-3 .

69. Acuña, M.J.E. and C.R.Z. Martínez. 2022. Application of hydrological model SWAT in hydrographic units in Nicaragua: Simulation of surface runoff. Recursos Naturales y Ambiente. 21(36): 24-29. DOI: 10.5377/calera.v22i38.14116 .

70. Addis, H.K., S. Strohmeier, F. Ziadat, N.D. Melaku and A.Klik. 2016. Modeling streamflow and sediment using SWAT in Ethiopian Highlands. International Journal of Agricultural and Biological Engineering. 9(5): 51-66. DOI: 10.3965/j.ijabe.20160905.2483 .

71. Adeba, D., M.L. Kansal and S. Sen. 2015. Assessment of water scarcity and its impacts on sustainable development in Awash Basin, Ethiopia. Sustainable Water Resources Management. 1(1): 71-87. DOI: 10.1007/s40899-015-0006-7 .

72. Adeba, D., M.L. Kansal and S. Sen. 2016. Economic evaluation of the proposed alternatives of inter-basin water transfer from the Baro Akobo to Awash basin in Ethiopia. Sustainable Water Resources Management. 2(3): 313–330. DOI: 10.1007/s40899-016-0058-3 .

73. Adem, A.A., Y.T. Dile, A.W. Worqlul, E.K. Ayana, S.A. Tilahun and T.S. Steenhuis. 2020. Assessing digital soil inventories for predicting streamflow in the headwaters of the Blue Nile. Hydrology. 7(1): 8. DOI: 10.3390/hydrology7010008 .

74. Adeogun, A.G., B.A. Ibitoye, A.W. Salami and G.T. Ihagh. 2020. Sustainable management of erosion prone areas of upper watershed of Kainji Hydropower Dam, Nigeria. Journal of King Saud University - Engineering Sciences. 32(1): 5-10. DOI: 10.1016/j.jksues.2018.05.001 .

75. Adeogun, A.G., B.F. Sule and A.W. Salami. 2015. Simulation of sediment yield at the upstream watershed of Jebba Lake in Nigeria using SWAT Model. Malaysian Journal of Civil Engineering. 27(1): 25-40. URL: https://journals.utm.my/mjce/article/view/15906.

76. Adeogun, A.G., B.F. Sule and A.W. Salami. 2018. Cost effectiveness of sediment management strategies for mitigation of sedimentation at Jebba Hydropower reservoir, Nigeria. Journal of King Saud University - Engineering Sciences. 30(2): 141-149. DOI: 10.1016/j.jksues.2016.01.003 .

77. Adeogun, A.G., E.O. Adeyemi and H.O. Ganiyu. 2022. GIS-based prediction and comparitive analysis of potential evapotranspiration using selected methods at Omi-Kampe Watershed, Nigeria. Nigerian Journal of Technology. 41(2): 396-407. DOI: 10.4314/njt.v41i2.22 .

78. Adeogun, A.G., H.O. Ganiyu, A.B. Okunade and O.T. Amoo. 2022. Modelling the impacts of selected watershed management strategies on sediment reduction upstream of Shiroro Dam, Nigeria. Journal of Engineering Studies and Research. 28(4): 7-17. DOI: 10.29081/jesr.v28i4.001 .

79. Adeogun, A.G., H.O. Ganiyu, L.L. Ladokun and B.A. Ibitoye. 2020. Evaluation of hydrokinetic energy potentials of selected rivers in Kwara State, Nigeria. Environmental Engineering Research. 25(3): 267-273. DOI: 10.4491/eer.2018.028 .

80. Adeogun, B.K., S.U. Bello and I.M. Sanni. 2019. Hydrological modelling of Kangimi Dam Watershed using GIS and SWAT model. ANNALS of Faculty Engineering Hunedoara. 17(2): 165-170. URL: http://annals.fih.upt.ro/pdf-full/2019/ANNALS-2019-2-23.pdf.

81. Adhikari, R.K., S. Mohanasundaram and S. Shrestha. 2020. Impacts of land-use changes on the groundwater recharge in the Ho Chi Minh City, Vietnam. Environmental Research. 185: 109440. DOI: 10.1016/j.envres.2020.109440 .

82. Adhikari, U. and P. Nejadhashemi. 2016. Impacts of climate change on water resources in Malawi. Journal of Hydrologic Engineering. 21(11): 05016026. DOI: 10.1061/(ASCE)HE.1943-5584.0001436 .

83. Adhikary, P.P., D.R. Sena, C.J. Dash, U. Mandal, S. Nanda, M. Madhu, D.C. Sahoo and P.K. Mishra. 2019. Effect of calibration and validation decisions on streamflow modeling for a heterogeneous and low runoff–producing river basin in India. Journal of Hydrologic Engineering. 24(7): 05019015. DOI: 10.1061/(ASCE)HE.1943-5584.0001792 .

84. Adib, M.N.M., M.K. Rowshon, M.A. Mojid and I. Habibu. 2020. Projected streamflow in the Kurau River Basin of western Malaysia under future climate scenarios. Scientific Reports. 10: 8336. DOI: 10.1038/s41598-020-65114-w .

85. Adjei, K. A., L. Ren, E. K. Appiah-Adjei and S. N. Odai. 2015. Application of satellite-derived rainfall for hydrological modelling in the data-scarce Black Volta trans-boundary basin. Hydrology Research. 46(5): 777-791. DOI: 10.2166/nh.2014.111 .

86. Adla, S., S. Tripathi and M. Disse. 2019. Can We Calibrate a Daily Time-Step Hydrological Model Using Monthly Time-Step Discharge Data? Water. 11 (9): 1750. DOI: 10.3390/w11091750 .

87. Admas, B.F., T. Gashaw, A.A. Adem, A.W. Worqlul, Y.T. Dile and E. Molla. 2022. Identification of soil erosion hot-spot areas for prioritization of conservation measures using the SWAT model in Ribb Watershed, Ethiopia. Resources, Environment and Sustainability. 8: 100059. DOI: 10.1016/j.resenv.2022.100059 .

88. Adnan, M., K. Shi-Chang, Z. Guo-Shuai, M.N. Anjum, M. Zaman and Z. Yu-Qing. 2019. Evaluation of SWAT model performance on glaciated and non-glaciated subbasins of Nam Co Lake, southern Tibetan Plateau, China. Journal of Mountain Science. 16(5): 1075-1097. DOI: 10.1007/s11629-018-5070-7 .

89. Adnan, M., S. Kang, G. Zhang, M. Saifullah, M.N. Anjum and A.F. Ali. 2019. Simulation and analysis of the water balance of the Nam Co Lake using SWAT model. Water. 11(7): 1383. DOI: 10.3390/w11071383 .

90. Adnan, M., S. Kang, M. Saifullah, S. Liu, G. Zhang, Q. Zhao, M.A. Faiz and M. Zaman. 2021. Prediction of changes in water balance of Nam Co Lake under projected climate change scenarios. Hydrological Sciences Journal. 66(11): 1712-1727. DOI: 10.1080/02626667.2021.1957474 .

91. Adu, J.T. and M.V. Kumarasamy. 2018. Assessing non-point source pollution models: A review. Polish Journal of Environmental studies. 27(5): 1913-1922. DOI: 10.15244/pjoes/76497 .

92. Affuso, E. and L.M. Duzy. 2013. The impact of US biofuel policy on agricultural production and nitrogen loads in Alabama. Economics Research International. : 521254. DOI: 10.1155/2013/521254 .

93. Afifa, M., A. Dina, E.R. Syofyan and Wisafri. 2020. Mainstay discharge analysis at the bottom of the stem using the Soil Water Assessment Tool ( SWAT). Jurnal Ilmiah Poli Rekayasa. 16(1): 34-42. URL: http://jpr-pnp.com/index.php/jpr/article/view/191.

94. Afinowicz, J.D., C.L. Munster and B.P. Wilcox. 2005. Modeling effects of brush management on the rangeland water budget: Edwards Plateau, Texas. Journal of the American Water Resources Association. 41(1): 181-193. DOI: 10.1111/j.1752-1688.2005.tb03727.x .

95. Afshar, A.A. and Y. Hassanzadeh. 2017. Determination of monthly hydrological erosion severity and runoff in Torogh Dam watershed basin using SWAT and WEPP models. Iranian Journal of Science and Technology, Transactions of Civil Engineering. 41(2): 221–228. DOI: 10.1007/s40996-017-0056-1 .

96. Afshar, A.A. and Y. Hassanzadeh. 2021. A hydrological toolkit to delineate patterns of blue and green water in a regional semi-arid climate in Iran via CMIP5 models. Időjárás. 125(2): 291–319. DOI: 10.28974/idojaras.2021.2.8 .

97. Afshar, A.A., Y. Hassanzadeh and A. Farrokhi. 2020. Study uncertainty of parameters of hydrological model (SWAT) by Differential Evolution Adaptive Metropolis algorithm (DREAM-ZS). Journal of Water and Soil Conservation. DOI: 10.22069/jwsc.2020.17856.3344 .

98. Afshar, A.A., Y. Hassanzadeh, M. Pourreza-Bilondi and A. Ahmadi. 2018. Analyzing long-term spatial variability of blue and green water footprints in a semi-arid mountainous basin with MIROC-ESM model (case study: Kashafrood River Basin, Iran). Theoretical and Applied Climatology. 134(3–4): 885–899. DOI: 10.1007/s00704-017-2309-0 .

99. Afshar, A.A., Y. Hassanzadeh, M. Pourreza‐Bilondi and H. Memarian. 2020. Uncertainty analysis of a continuous hydrological model using DREAM‐ZS Algorithm. Iranian Journal of Science and Technology, Transactions of Civil Engineering. 44: 1403. DOI: 10.1007/s40996-019-00287-7 .

100. Aga, A.O., A.M. Melesse and B. Chane. 2020. An alternative empirical model to estimate watershed sediment yield based on hydrology and geomorphology of the basin in data-scarce Rift Valley Lake Regions, Ethiopia. Geosciences. 10: 1-17. DOI: 10.3390/geosciences10010031 .

101. Aga, A.O., B. Chane and A.M. Melesse. 2018. Soil erosion modelling and risk assessment in data scarce rift valley lake regions, Ethiopia. Water. 10(11): 1689. DOI: 10.3390/w10111684 .

102. Aghakhani, M., T. Nasrabadi and A. Vafaeinejad. 2018. Assessment of the effects of land use scenarios on watershed surface runoff using hydrological modelling. Applied Ecology and Environmental Research. 16(3): 2369-2389. DOI: 10.15666/aeer/1603_23692389 .

103. Aghakhani, M., T. Nasrabadi and A.V. Nejad. 2019. Hydrological simulation of Taleqan Watershed using SWAT. Journal of Environmental Science and Technology. 21(9): 147-159. URL: http://jest.srbiau.ac.ir/article_15675.html?lang=en.

104. Aghsaei, H., N.M. Dinan, A. Moridi, Z. Asadolahi, M. Delavar, N. Fohrer and P.D. Wagner. 2020. Effects of dynamic land use/land cover change on water resources and sediment yield in the Anzali wetland catchment, Gilan, Iran. Science of the Total Environment. 712: 136449. DOI: 10.1016/j.scitotenv.2019.136449 .

105. Aguirre, H.D.R., E.G. Pérez, J.U. Gil, J.P.M. Dávila and H.O. Laurel. 2013. Potential to produce Jatropha curcas L. as feedstock for biodiesel in the state of Veracruz. Tropical and Subtropical Agroecosystems. 16(3): 325-339. URL: https://www.revista.ccba.uady.mx/ojs/index.php/TSA/article/view/1469.

106. Ahiablame, L., A.Y. Seshukov, E. Mosase and J. Hong. 2019. Modelling the impacts of grassland to cropland conversion on river flow regimes in Skunk Creek Watershed, Upper Midwest United States. River Research and Applications. 35 (9): 1454-1465. DOI: 10.1002/rra.3512 .

107. Ahiablame, L., T. Sinha, M. Paul, J.-H. Ji and A. Rajib. 2017. Streamflow response to potential land use and climate changes in the James River watershed, Upper Midwest United States. Journal of Hydrology: Regional Studies. 14: 150-166. DOI: 10.1016/j.ejrh.2017.11.004 .

108. Ahialey, E.K., A.T. Kabo–Bah and S. Gyamfi. 2023. Impacts of LULC and climate changes on hydropower generation and development: A systematic review. Heliyon. 9(11): e21247. DOI: 10.1016/j.heliyon.2023.e21247 .

109. Ahl, R.S., S.W. Woods, and H.R. Zuuring. 2008. Hydrologic calibration and validation of SWAT in a snow-dominated Rocky Mountain watershed, Montana, U.S.A. Journal of the American Water Resources Association. 44(6): 1411-1430. DOI: 10.1111/j.1752-1688.2008.00233.x .

110. Ahmad, H.M.N., A. Sinclair, R. Jamieson, A. Madani, D. Hebb, P. Havard and E.K. Yiridoe. 2011. Modeling sediment and nitrogen export from a rural watershed in eastern Canada using the Soil and Water Assessment Tool. Journal of Environmental Quality. 40(4): 1182-1194. DOI: 10.2134/jeq2010.0530 .

111. Ahmad, Z., A. Ashraf, M. Zaheer and H. Bashir. 2015. Hydrological response to environment change in Himalayan watersheds: Assessment from integrated modeling approach. Journal of Mountain Science. 12(4): 972-982. DOI: 10.1007/s11629-013-2892-1 .

112. Ahmad, Z.U., S. Sakib and D.D. Gang. 2016. Nonpoint source pollution. Water Environment Research. 88(10): 1594-1619. DOI: 10.2175/106143016X14696400495497 .

113. Ahmadabadi, A. and Z. Sedighifar. 2018. Prediction of climate change induced hydrogeomorphology by using SDSM in Can Watershed. Journal of Geographical Sciences. 18(51): 103-114. URL: https://jgs.khu.ac.ir/browse.php?a_id=2697&sid=1&slc_lang=en&ftxt=0.

114. Ahmadi A., A.A. Afshar, V. Nourani, M. Pourreza-Bilondi and A.A. Besalatpour. 2020. Assessment of MC&MCMC uncertainty analysis frameworks on SWAT model by focusing on future runoff prediction in a mountainous watershed via CMIP5 models. Journal of Water and Climate Change. 11(4): 1811-1828. DOI: 10.2166/wcc.2019.122 .

115. Ahmadi, M., A. Moeini, H. Ahmadi, B. Motamedvaziri and G.R. Zehtabiyan. 2019. Comparison of the performance of SWAT, IHACRES and artificial neural networks models in rainfall-runoff simulation (case study: Kan Watershed, Iran). Physics and Chemistry of the Earth. 111: 65-77. DOI: 10.1016/j.pce.2019.05.002 .

116. Ahmadi, M., M. Arabi, D.G. Fontane and B.A. Engel. 2015. Application of multicriteria decision analysis with a priori knowledge to identify optimal nonpoint source pollution control plans. Journal of Water Resources Planning and Management. 141(2): 04014054. DOI: 10.1061/(ASCE)WR.1943-5452.0000455 .

117. Ahmadi, M., M. Arabi, D.L. Hoag and B.A. Engel. 2013. A mixed discrete continuous variable multiobjective genetic algorithm for targeted implementation of nonpoint source pollution control practices. Water Resources Research. 49(12): 8344-8356. DOI: 10.1002/2013WR013656 .

118. Ahmadi, M., M. Arabi, J.C. Ascough II, D.G. Fontane and B.A. Engel. 2014. Toward improved calibration of watershed models: Multisite multiobjective measures of information. Environmental Modelling & Software. 59: 135-145. DOI: 10.1016/j.envsoft.2014.05.012 .

119. Ahmadi, M., R. Records and M. Arabi. 2014. Impact of climate change on diffuse pollutant fluxes at the watershed scale. Hydrological Processes. 28(4): 1962-1972. DOI: 10.1002/hyp.9723 .

120. Ahmadia, M., J.C. Ascough II, K.C. DeJonge and M. Arabi. 2014. Multisite-multivariable sensitivity analysis of distributed watershed models: Enhancing the perceptions from computationally frugal methods. Ecological Modelling. 279: 54-67. DOI: 10.1016/j.ecolmodel.2014.02.013 .

121. Ahmadisharaf, E., R.A. Camacho, H.X. Zhang, M.M. Hantush and Y.M. Mohamoud. 2019. Calibration and validation of watershed models and advances in uncertainty analysis in TMDL Studies. Journal of Hydrologic Engineering. : 03119001. DOI: 10.1061/(ASCE)HE.1943-5584.0001794 .

122. Ahmadzadeh, H. S. Morid and M. Delavar. 2015. Assessment of SWAT Model For Simultaneous Simulation of Streamflow, Actual Evapotranspiration and Crops’ Yield: A Case Study In Zarineh Rud Basin. Journal of Water and Soil. 28(5): 876-889. URL: http://www.magiran.com/magtoc.asp?mgID=5711&Number=2805&Appendix=0&l=en.

123. Ahmadzadeh, H., B. Mansouri, F. Fathian and B. Vaheddoost. 2022. Assessment of water demand reliability using SWAT and RIBASIM models with respect to climate change and operational water projects. Agricultural Water Management. 261: 107377. DOI: 10.1016/j.agwat.2021.107377 .

124. Ahmadzadeh, H., S. Morid, M. Delavar and R. Srinivasan. 2016. Using the SWAT model to assess the impacts of changing irrigation from surface to pressurized systems on water productivity and water saving in the Zarrineh Rud catchment. Agricultural Water Management. 175: 15-28. DOI: 10.1016/j.agwat.2015.10.026 .

125. Ahmed, E., F.A. Janabi, J. Zhang, W. Yang, N. Saddique and P. Krebs. 2020. Hydrologic assessment of TRMM and GPM-based precipitation products in transboundary river catchment (Chenab River, Pakistan). Water. 12(7): 1902. DOI: 10.3390/w12071902 .

126. Ahmed, N., G. Wang, H. Lü, M.J. Booji, H. Marhaento, F.A. Prodhan, S. Ali and M.A. Imran. 2022. Attribution of changes in streamflow to climate change and land cover change in Yangtze River Source Region, China. Water. 14(2): 259. DOI: 10.3390/w14020259 .

127. Ahmed, N., G. Wang, M.J. Booij, S. Xiangyang, F. Hussian and G. Nabi. 2022. Separation of the impact of landuse/landcover change and climate change on runoff in the upstream area of the Yangtze River, China. Water Resources Management. 36(1): 181-201. DOI: 10.1007/s11269-021-03021-z .

128. Ahmed, N., G. Wang, M.J. Booij, H. Merhaento, F.A. Pordhan, S. Ali, S. Munir and M.Z.-u.-R. Hashmi. 2022. Variations in hydrological variables using distributed hydrological model in permafrost environment. Ecological Indicators. 145: 109609. DOI: 10.1016/j.ecolind.2022.109609 .

129. Ahn, J.M. and S. Lyu. 2017. Assessing future river environments in the Seomjin River Basin due to climate change. Journal of Environmental Engineering. 143(5): Article ID: 04017005. DOI: 10.1061/(ASCE)EE.1943-7870.0001188 .

130. Ahn, J.M., T.H. Im, I.J. Lee and S.U. Cheon. 2014. Assessment of future river environment considering climate change and basin runoff characteristics. Journal of Korea Water Resources Association. 47(3): 269-283. DOI: 10.3741/JKWRA.2014.47.3.269 .

131. Ahn, K.-H and V. Merwade. 2017. The effect of land cover change on duration and severity of high and low flows. Hydrological Processes. 31(1): 133–149. DOI: 10.1002/hyp.10981 .

132. Ahn, S. and S. Kim. 2019. Assessment of watershed health, vulnerability and resilience for determining protection and restoration priorities. Environmental Modelling & Software. 122: 103926. DOI: 10.1016/j.envsoft.2017.03.014 .

133. Ahn, S. and Z. Sheng. 2021. Assessment of water availability and scarcity based on hydrologic components in an irrigated agricultural watershed using SWAT. Journal of the American Water Resources Association. 57(1): 186-203. DOI: 10.1111/1752-1688.12888 .

134. Ahn, S., S. Abudu, Z. Sheng and A. Mirchi. 2018. Hydrologic impacts of drought-adaptive agricultural water management in a semi-arid river basin: Case of Rincon Valley, New Mexico. Agricultural Water Management. 209: 206-218. DOI: 10.1016/j.agwat.2018.07.040 .

135. Ahn, S.R. and S.J. Joon Kim. 2017. Assessment of integrated watershed health based on the natural environment, hydrology, water quality, and aquatic ecology. Hydrology and Earth System Sciences. 21: 5583–5602. DOI: 10.5194/hess-21-5583-2017 .

136. Ahn, S.R. and S.J. Kim. 2018. Analysis of water balance by surface-groundwater interaction using the SWAT model for the Han River Basin, South Korea. Paddy and Water Environment. DOI: 10.1007/s10333-018-0647-x .

137. Ahn, S.R., C.H. Jang, J.W. Lee and S.J. Kim. 2015. Assessment of climate and land use change impacts on watershed hydrology for an urbanizing watershed. Journal of the Korean Society of Civil Engineers. 35(3): 567-577. DOI: 10.12652/Ksce.2015.35.3.0567 .

138. Ahn, S.R., G.A. Park and S.J. Kim. 2013. Assessment of agricultural water supply capacity using MODSIM-DSS coupled with SWAT. Journal of the Korean Society of Civil Engineers. 33(2): 507-519. DOI: 10.12652/Ksce.2013.33.2.507 .

139. Ahn, S.R., J.H. Jeong and S.J. Kim. 2016. Assessing drought threats to agricultural water supplies under climate change by combining the SWAT and MODSIM models for the Geum River Basin, South Korea. Hydrological Sciences Journal. 61(15): 2740-2753. DOI: 10.1080/02626667.2015.1112905 .

140. Ahn, S.R., J.W. Lee, S.S. Jang and S.J. Kim. 2016. Large scale SWAT watershed modeling considering multi-purpose dams and multi-function weirs operation - For Namhan River Basin -. Journal of the Korean Society of Agricultural Engineers. 58(4): 21-35. DOI: 10.5389/KSAE.2016.58.4.021 .

141. Ahn, S.-R., J.-Y. Park, J.-W. Lee, M.-S. Lee, H.-J. Shin and S.-J. Kim. 2016. Comparison of SWAT streamflow and water quality in an agricultural watershed using KOMPSAT-2 and landsat land use information. KSCE Journal of Civil Engineering. 20(1): 367-375. DOI: 10.1007/s12205-015-1265-4 .

142. Ahn, S.R., R. Ha, S.W. Yoon and S.J. Kim. 2014. Evaluation of future turbidity water and eutrophication in Chungju Lake by climate change using CE-QUAL-W2. Journal of the Korean Water Resources Association. 47(2): 145-150. DOI: 10.3741/JKWRA.2014.47.2.145 .

143. Aibaidula, D., N. Ates and F. Dadaser-Celik. 2023. Uncertainty analysis for streamflow modeling using multiple optimization algorithms at a data-scarce semi-arid region: Altınapa Reservoir Watershed, Turkey. Stochastic Environmental Research and Risk Assessment. 37(5): 1997-2011. DOI: 10.1007/s00477-022-02377-x .

144. Aich, V., S. Liersch, T. Vetter, J.C.M. Anderson, E.N. Müller and F.F. Hattermann. 2015. Climate or land use?—attribution of changes in river flooding in the sahel zone. Water. 7(6): 2796-2820. DOI: 10.3390/w7062796 .

145. Aich, V., S. Liersch, T. Vetter, S. Fournet, J.C.M. Andersson, S. Calmanti, F.H.A. van Weert, F.F. Hattermann and E.N. Paton. 2016. Flood projections within the Niger River Basin under future land use and climate change. Science of the Total Environment. 562: 666-677. DOI: 10.1016/j.scitotenv.2016.04.021 .

146. Ainunisa, D., G. Halik and W.Y Widiarti. 2020. Pemodelan perubahan tataguna lahan terhadap debit banjir DAS tanggul, jember menggunakan model SWAT (Soil and Water Assessment Tool). Rekayasa Sipil . 14(2): 154-161. DOI: 10.21776/ub.rekayasasipil.2020.014.02.10 .

147. Ajaaj, A.A., A.K. Mishra and A.A. Khan. 2019. Evaluation of satellite and gauge-based precipitation products through hydrologic simulation in Tigris River Basin under data-scarce environment. Journal of Hydrologic Engineering. 24(3): 05018033. DOI: 10.1061/(ASCE)HE.1943-5584.0001737 .

148. Akbar, H. and S.H. Gheewala. 2021. Impact of climate and land use changes on flowrate in the Kunhar River Basin, Pakistan, for the period (1992- 2014). Arabian Journal of Geosciences. 14(8): 707. DOI: 10.1007/s12517-021-07058-7 .

149. Akbarpour, S. and M.H. Niksokhan. 2018. Investigating effects of climate change, urbanization, and sea level changes on groundwater resources in a coastal aquifer: An integrated assessment. Environmental Monitoring and Assessment. 190: 579. DOI: 10.1007/s10661-018-6953-3 .

150. Akbas, A., J. Freer, H. Ozdemir, P.D. Bates and M.T. Turp. 2020. What about reservoirs? Questioning anthropogenic and climatic interferences on water availability. Hydrological Processes. 34: 5441-5455. DOI: 10.1002/hyp.13960 .

151. Akhavan, S. and A. Jodi Hameze Abad. 2015. Simulation of inflow to Urmia lake using SWAT model. Journal of Science and Technology of Agriculture and Natural Resources. 19(72): 23-34. URL: http://jstnar.iut.ac.ir/browse.php?a_code=A-10-1-116&sid=1&slc_lang=en.

152. Akhavan, S., J. Abedi-Koupaia, S.-F. Mousavia, M. Afyunib, S.-S. Eslamiana and K.C. Abbaspour. 2010. Application of SWAT model to investigate nitrate leaching in Hamadan–Bahar Watershed, Iran. Agriculture Ecosystems and Environment. 139(4): 675-688. DOI: 10.1016/j.agee.2010.10.015 .

153. Akhbari, M. and N.S. Grigg. 2014. Water management trade-offs between agriculture and the environment: A multiobjective approach and application. Journal of Irrigation and Drainage Engineering. 140(8): 05014005. DOI: 10.1061/(ASCE)IR.1943-4774.0000737 .

154. Akhtar, F., C. Borgemeister, B. Tischbein and U.K. Awan. 2022. Metrics assessment and streamflow modeling under changing climate in a data-scarce heterogeneous region: A case study of the Kabul River Basin. Water. 14(11): 1697. DOI: 10.3390/w14111697 .

155. Akhtar, F., U.K. Awan, C. Borgemeister and B. Tischbein. 2021. Coupling remote sensing and hydrological model for evaluating the impact of climate change on streamflow in data-scarce environment. Sustainability. 13(24): 14025. DOI: 10.3390/su132414025 .

156. Akhtar, M.K., G.A. Corzo, S.J. van Andel, and A. Jonoski. 2009. River flow forecasting with artificial neural networks using satellite observed precipitation pre-processed with flow length and travel time information: case study of the Ganges river basin. Hydrology and Earth System Sciences. 13(9): 1607-1618. DOI: 10.5194/hess-13-1607-2009 .

157. Akhter, M., M.I. Malik, T. Mehraj, A.F. Shah, S. Ahmad, W.A. Bhat and S. Mujeeb. 2022. Runoff modelling of Aripal Watershed using SWAT model. Arabian Journal of Geosciences. 15(16): 1419. DOI: 10.1007/s12517-022-10708-z .

158. Akiner, M.E. and A. Akkoyunlu. 2012. Modeling and forecasting river flow rate from the Melen Watershed, Turkey. Journal of Hydrology. 456-457: 121-129. DOI: 10.1016/j.jhydrol.2012.06.031 .

159. Akiner, M.E. and C. Lačnjevac. 2022. Managing saltwater intrusion and agricultural practices along the Boğaçay River, Turkey: Effects from excavation and land source pollution. Journal of Coastal Research. 38(3): 567-577. DOI: 10.2112/JCOASTRES-D-21-00101.1 .

160. Akoko, G., T.U. Le, T. Gomi and T. Kato. 2021. A review of SWAT model application in Africa. Water. 13(9): 1313. DOI: 10.3390/w13091313 .

161. Akoko, G., T. Kato and L.H. Tu. 2020. Evaluation of irrigation water resources availability and climate change impacts—A case study of Mwea irrigation scheme, Kenya. Water. 12(9): 2330. DOI: 10.3390/w12092330 .

162. Akpoti, K., E.O. Antwi and A.T. Kabo-bah. 2016. Impacts of rainfall variability, land use and land cover change on stream flow of the Black Volta basin, West Africa. Hydrology. 3(3): 26. DOI: 10.3390/hydrology3030026 .

163. Al Aamery, N., J.F. Fox and M. Snyder. 2016. Evaluation of climate modeling factors impacting the variance of streamflow. Journal of Hydrology. 542: 125–142. DOI: 10.1016/j.jhydrol.2016.08.054 .

164. Al Aamery, N., J.F. Fox, M. Snyder and C.V. Chandramouli. 2018. Variance analysis of forecasted streamflow maxima in a wet temperate climate. Journal of Hydrology. 560: 364-381. DOI: 10.1016/j.jhydrol.2018.03.038 .

165. Al- Khafaji, M.S. and R.D. Al-Chalabi. 2020. Impact of climate change on the spatiotemporal distribution of stream flow and sediment yield of Darbandikhan Watershed, Iraq. Engineering and Technology Journal. 38(2): 265-276. DOI: 10.30684/etj.v38i2A.156 .

166. Al Khoury, I., L. Boithias and D. Labat. 2023. A review of the application of the Soil and Water Assessment Tool (SWAT) in karst watersheds. Water. 15(5): 954. DOI: 10.3390/w15050954 .

167. Al Khoury, I., L. Boithias, R.T. Bailey, C. Ollivier, V. Sivelle, D. Labat. 2023. Impact of land-use change on karst spring response by integration of surface processes in karst hydrology: The ISPEEKH model. Journal of Hydrology. 626(Part B): 130300. DOI: 10.1016/j.jhydrol.2023.130300 .

168. Al Qatarneh, G.N., B. Al Smadi, K. Al-Zboon and K.M. Shatanawi. 2018. Impact of climate change on water resources in Jordan: A case study of Azraq basin. Applied Water Science. 8: 50. DOI: 10.1007/s13201-018-0687-9 .

169. Al Sayah, M.J., R. Nedjai, K. Kaffas, C. Adballah and M. Khouri. 2019. Assessing the impact of man–made ponds on soil erosion and sediment transport in limnological basins. Water. 11(12): 2576. DOI: 10.3390/w11122526 .

170. Aladejana, O. 2021. Flood investigation and adaptation strategies through best management practices in an ungauged basin in southwest Nigeria. African Geographical Review. 40(2): 141-162. DOI: 10.1080/19376812.2020.1782235 .

171. Aladejana, O.O., A.T. Salami and O.O. Adetoro. 2018. Hydrological responses to land degradation in the northwest Benin Owena River Basin, Nigeria. Journal of Environmental Management. 225: 300-312. DOI: 10.1016/j.jenvman.2018.07.095 .

172. Alam, M.J., M.B. Ercan, F.T. Zahura and J.L. Goodall. 2018. Using geospatial analysis and hydrologic modeling to estimate climate change impacts on nitrogen export: Case study for a forest and pasture dominated watershed in North Carolina. International Journal of Geo-Information. 7(7): 280. DOI: 10.3390/ijgi7070280 .

173. Alam, N.M., C. Jana, D. Mandal, S.K. Meena, S.S. Shrimali, U. Mandal, S. Mitra and G. Kar. 2022. Applying analytic hierarchy process for identifying best management practices in erosion risk areas of northwestern Himalayas. Land. 11(6): 832. DOI: 10.3390/land11060832 .

174. Alam, S., M.M. Ali and Z. Islam. 2016. Future streamflow of Brahmaputra River Basin under synthetic climate change scenarios. Journal of Hydrologic Engineering. 21(11): 05016027. DOI: 10.1061/(ASCE)HE.1943-5584.0001435 .

175. Alam, S., Md. M. Ali, A.Z. Rahaman and Z. Islam. 2021. Multi-model ensemble projection of mean and extreme streamflow of Brahmaputra River Basin under the impact of climate change. Journal of Water and Climate Change. 12(5): 2026-2044. DOI: 10.2166/wcc.2021.286 .

176. Alcalá, G., L.F. Grisales-Noreña, Q. Hernandez-Escobedo, J.J. Muñoz-Criollo and J.D. Revuelta-Acosta. 2021. SHP assessment for a run-of-river (RoR) scheme using a rectangular mesh sweeping approach (MSA) based on GIS. Energies. 14(11): 3095. DOI: 10.3390/en14113095 .

177. Alehu, B.A. and S.G. Bitana. 2023. Assessment of climate change impact on water balance of Lake Hawassa Catchment. Environmental Processes. 10: 14. DOI: 10.1007/s40710-023-00626-x .

178. Alejo, L.A. and A.S. Alejandro. 2022. Changes in irrigation planning and development parameters due to climate change. Water Resources Management. 36(5): 1711–1726. DOI: 10.1007/s11269-022-03105-4 .

179. Alejo, L.A., V.B. Ella and R.B. Saludes. 2021. Applicability of the climate hazards group infrared precipitation with stations as rainfall input for SWAT watershed modeling. Water Resources. 48(6): 925-935. DOI: 10.1134/S0097807821060026 .

180. Alemaw, D., E.K. Ayana, E.S. Legesse, M.M. Moges, S.A. Tilahun and M.A. Moges. 2016. Estimating reservoir sedimentation using bathymetric differencing and hydrologic modeling in data scarce Koga watershed, Upper Blue Nile, Ethiopia. Journal of Agriculture and Environment for International Development. 110(2): 413-427. URL: http://www.iao.florence.it/ojs/index.php/JAEID/article/viewFile/519/202.

181. Alemayehu, T., A. van Griensven and W. Bauwens. 2016. Evaluating CFSR and WATCH data as input to SWAT for the estimation of the potential evapotranspiration in a data-scarce eastern-African catchment. Journal of Hydrologic Engineering. 21(3). DOI: 10.1061/(ASCE)HE.1943-5584.0001305 .

182. Alemayehu, T., A. van Griensven, B.T. Woldegiorgis and W. Bauwens. 2017. An improved SWAT vegetation growth module and its evaluation for four tropical ecosystems. Hydrology and Earth System Sciences. 21(9): 4449–4467. DOI: 10.5194/hess-21-4449-2017 .

183. Alemayehu, T., F. Kilonzo, A. van Griensven and W. Bauwens. 2017. Evaluation and application of alternative rainfall data sources for forcing hydrologic models in the Mara Basin. Hydrology Research. 49(2): ID: nh2017081. DOI: 10.2166/nh.2017.081 .

184. Alemayehu, T., H.V. Gupta, A. van Griensven and W. Bauwens. 2022. On the calibration of spatially distributed hydrologic models for poorly gauged basins: Exploiting information from streamflow signatures and remote sensing-based evapotranspiration data. Water. 14(8): 1252. DOI: 10.3390/w14081252 .

185. Ali, F., C. Srisuwan, K. Techato, A. Bennui, T. Suepa and D. Niammuad. 2020. Theoretical hydrokinetic power potential assessment of the U-Tapao River Basin using GIS. Energies. 13(7): 1749. DOI: 10.3390/en13071749 .

186. Ali, I. and M. Bruen. 2014. Improved semi-distributed model for phosphorus losses from Irish catchments. Environmental Technology. 35(19): 2506-2519. DOI: 10.1080/09593330.2014.911360 .

187. Ali, I. and M. Bruen. 2016. Methodology and application of the combined SWAT-HSPF Model. Environmental Processes. 3(3): 645–661. DOI: 10.1007/s40710-016-0167-x .

188. Ali, S.S., H. Mehmood and Y. Chemin. 2014. BMP implementations in Himalayan context: Can a locally-calibrated SWAT assessment direct efforts? International Journal of Geoinformatics. 10(2): 53-62. URL: http://journals.sfu.ca/ijg/index.php/journal/article/view/377.

189. Ali, Y. S. A., A. Crosato, Y. A. Mohamed, S. H. Abdalla and N. G. Wright. 2014. Sediment balances in the Blue Nile River Basin. International Journal of Sediment Research. 29(3): 316-328. DOI: 10.1016/S1001-6279(14)60047-0 .

190. Alibuyog, N.R., V.B. Ella, M.R. Reyes, R. Srinivasan, C. Heatwole and T. Dillaha. 2009. Predicting the effects of land use change on runoff and sediment yield in Manupali River subwatersheds using the SWAT model. International Agricultural Engineering Journal. 18(1-2): 15-25. URL: https://www.researchgate.net/publication/268200453_Predicting_the_effects_of_land_use_change_on_runoff_and_sediment_yield_in_manupali_river_subwatersheds_using_the_SWAT_model.

191. Alighalehbabakhani, F., C.J. Miller, J.P. Selegean, J. Barkach, S.M.S. Abkenar, T. Dahl and M. Baskaran. 2017. Estimates of sediment trapping rates for two reservoirs in the Lake Erie Watershed: Past and present scenarios. Journal of Hydrology. 544: 147-155. DOI: 10.1016/j.jhydrol.2016.11.032 .

192. Alim, N., S.D. Tarigan, D.P.T. Baskoro and E.D. Wahjunie. 2018. Parameter sensitivity test of SWAT Hydrological Model on two different resolutions (A case study of Upper Cisadane Subbasin, West Java). Journal of Tropical Soils. 23(1): 46-53. DOI: 10.5400/jts.2018.v23i1.47-53 .

193. Alipour, M. and M. Hosseini. 2018. Simulation of surface runoff in Karaj dam basin, Iran. Applied Water Science. 8(5): 147. DOI: 10.1007/s13201-018-0782-y .

194. Alitane, A., A. Essahlaoui, A. van Griesven, E.A. Yimer, N. Essahlaoui, M. Mohajane, C.J. Chawanda and A. van Rompaey. 2022. Towards a decision-making approach of sustainable water resources management based on hydrological modeling: A case study in central Morocco. Sustainability. 14(17): 10848. DOI: 10.3390/su141710848 .

195. Alitane, A., A. Essahlaoui, M.E. Hayani, A.E. Hmaidi, A.E. Ouali, A. Kassou, Y.E. Yousfi, A. van Griensven, C.J. Chawanda and A.V. Rompaey. 2022. Water erosion monitoring and prediction in response to the effects of climate change using RUSLE and SWAT equations: case of R'Dom Watershed in Morocco. Land. 11(1): 93. DOI: 10.3390/land11010093 .

196. Aliyari, F., R.T. Bailey and M. Arabi. 2021. Appraising climate change impacts on future water resources and agricultural productivity in agro-urban river basins. Science of the Total Environment. 788: 147717. DOI: 10.1016/j.scitotenv.2021.147717 .

197. Aliyari, F., R.T. Bailey, A. Tasdighi, A. Dozier, M. Arabi and K. Zeiler. 2019. Coupled SWAT-MODFLOW model for large-scale mixed agro-urban river basins. Environmental Modelling & Software. 115: 200-210. DOI: 10.1016/j.envsoft.2019.02.014 .

198. Al-Khafaji, M. S. and R.D. Al-Chalabi. 2019. Assessment and mitigation of streamflow and sediment yield under climate change conditions in Diyala River Basin, Iraq. Hydrology. 6(3): 63. DOI: 10.3390/hydrology6030063 .

199. Al-Khafaji, M., F.H. Saeed and N. Al-Ansari. 2020. The interactive impact of land cover and DEM resolution on the accuracy of computed streamflow using the SWAT mode. Water, Air, and Soil Pollution. 231(8): 416. DOI: 10.1007/s11270-020-04770-0 .

200. Al-Kubaisi, M.H.D. and Q.Y.S. Al-Kubaisi. 2022. Applying SWAT model to estimate the annual runoff of Wadi Al-Mohammadi Basin, Western Iraq. Iraqi Geological Journal . 55(2E): 189-200. DOI: 10.46717/igj.55.2E.13ms-2022-11-27 .

201. Allen, P.M., J.G. Arnold and E. Jakubowski. 1997. Design and testing of a simple submerged-jet device for field determination of soil erodibility. Environmental & Engineering Geoscience. 3(4): 579-584. URL: https://pubs.geoscienceworld.org/aeg/eeg/article/III/4/579/137039/design-and-testing-of-a-simple-submerged-jet.

202. Allen, P.M., J.G. Arnold and E. Jakubowski. 1999. Prediction of stream channel erosion potential. Environmental & Engineering Geoscience. 5(3): 339-351. DOI: 10.2113/gseegeosci.V.3.339 .

203. Allen, P.M., J.G. Arnold and W. Skipworth. 2002. Erodibility of urban bedrock and alluvial channels, North Texas. Journal of the American Water Resources Association. 38(5): 1477-1492. DOI: 10.1111/j.1752-1688.2002.tb04360.x .

204. Allen, P.M., J.G. Arnold and W. Skipwith. 2008. Prediction of channel degradation rates in urbanizing watersheds. Hydrological Sciences Journal. 53(5): 1013-1029. DOI: 10.1623/hysj.53.5.1013 .

205. Almeida, C., P. Branco, P. Segurado, T.B. Ramos, T. Ferreira, R. Neves and R.P. de Oliveira. 2021. Evaluation of the trophic status in a Mediterranean reservoir under climate change: An integrated modelling approach. Journal of Water and Climate Change. 12(3): 817-832. DOI: 10.2166/wcc.2020.247 .

206. Almeida, C., T.B. Ramos, J. Sobrinho, R. Neves and R.P. Oliveira. 2019. An integrated modelling approach to study future water demand vulnerability in the Montargil Reservoir Basin, Portugal. Sustainability. 11(1): 206. DOI: 10.3390/su11010206 .

207. Almeida, C., T.B. Ramos, P. Segurado, P. Branco, R. Neves and R.P. de Oliveira. 2018. Water quantity and quality under future climate and societal scenarios: A basin-wide approach applied to the Sorraia River, Portugal. Water. 10(9): 1186. DOI: 10.3390/w10091186 .

208. Almeida, R.A., S.B. Pereira and D.B.F. Pinto. 2018. Calibration and validation of the SWAT hydrological model for the Mucuri River Basin. Engenharia Agricola. 38(1): 55-63. DOI: 10.1590/1809-4430-Eng.Agric.v38n1p55-63/2018 .

209. Almeida, R.A., S.B. Pereira, D.B.F. Pinto and D.R.Q. Rosa. 2020. Applicability of the SWAT hydrological model in the Mucuri River Basin. Engenharia Agricola. 40(5): 631-644. DOI: 10.1590/1809-4430-Eng.Agric.v40n5p631-644/2020 .

210. Almendinger J.E. and J.S. Ulrich. 2017. Use of SWAT to estimate spatial scaling of phosphorus export coefficients and load reductions due to agricultural BMPs. Journal of the American Water Resources Association. 53(3): 547-561. DOI: 10.1111/1752-1688.12523 .

211. Almendinger, J.E., M.S. Murphy and J.S. Ulrich. 2014. Use of SWAT to scale sediment delivery from field to watershed in an agricultural landscape with topographic depressions. Journal of Environmental Quality. 43(1): 9-17. DOI: 10.2134/jeq2011.0340 .

212. Al-Mukhtar, M. 2016. Modelling the root zone soil moisture using artificial neural networks, a case study. Environmental Earth Sciences. 75: 1124. DOI: 10.1007/s12665-016-5929-2 .

213. Al-Mukhtar, M., V. Dunger and B. Merkel. 2014. Assessing the impacts of climate change on hydrology of the upper reach of the Spree River: Germany. Water Resources Management. 28(10): 2731-2749. DOI: 10.1007/s11269-014-0675-2 .

214. Alnahit, A.O., A.K. Mishra and A.A. Khan. 2020. Evaluation of high-resolution satellite products for streamflow and water quality assessment in a southeastern US watershed. Journal of Hydrology: Regional Studies. 27: 100660. DOI: 10.1016/j.ejrh.2019.100660 .

215. Alodah, A. and O. Seidou. 2019. Assessment of climate change impacts on extreme high and low flows: An improved bottom-up approach. Water. 11(6): 1236. DOI: 10.3390/w11061236 .

216. Alodah, A. and O. Seidou. 2019. The adequacy of stochastically generated climate time series for water resources systems risk and performance assessment. Stochastic Environmental Research and Risk Assessment. 33(1): 253-269. DOI: 10.1007/s00477-018-1613-2(0123 .

217. Aloui, S., A. Mazzoni, A. Elomri, J. Aouissi, A. Boufekane and A. Zghibi. 2023. A review of Soil and Water Assessment Tool (SWAT) studies of Mediterranean catchments: Applications, feasibility, and future directions. Journal of Environmental Management. 326(Part B): 116799. DOI: 10.1016/j.jenvman.2022.116799 .

218. Alp, H., M.C. Demirel and O.L. Aşıkoğlu. 2022. Effect of model structure and calibration algorithm on discharge simulation in the Acisu Basin, Turkey. Climate. 10(12): 196. DOI: 10.3390/cli10120196 .

219. Alsilibe, F. and K. Bene. 2021. Watershed subdivision and weather input effect on streamflow simulation using SWAT model. Pollack Periodica . 17(1): 88-93. DOI: 10.1556/606.2021.00349 .

220. Altaweel, M. 2008. Investigating agricultural sustainability and strategies in northern Mesopotamia: results produced using a socio-ecological modeling approach. Journal of Archaeological Science. 35: 821-835. DOI: 10.1016/j.jas.2007.06.012 .

221. Alvarenga, L.A., V.S.O. Carvalho, V.A. de Oliveira, C.R. de Mello, A. Colombo, J. Tomasella and P.A. Melo. 2020. Hydrological simulation with SWAT and VIC models in the Verde River Watershed, Minas Gerais. Revista Ambiente & Água. 15(4): e2492. DOI: 10.4136/ambi-agua.2492 .

222. Alvarenga, L.A., V.S.O. Carvalho, Vinícius Augusto de Oliveira1 ; Carlos Rogério de Mello1 ; Alberto Colombo1 ; Javier Tomasella3 ; Pâmela Aparecida Melo. 2020. Hydrological simulation with SWAT and VIC Models in the Verde River Watershed, Minas Gerais. Ambiente & Água. 15(4): 2492. DOI: 10.4136/ambi-agua.2492 .

223. Alves, J.C.B., L.L. Martins, W.A. Martins, J.F.L. de Moraes and G.C. Blain. 2021. Use of reanalysis meteorological data for streamflow simulation in the Ribeorão do Pinhal River Basin, Limeira / State of São Paulo SP. Caminhos de Geografia. 22(80): 234-252. DOI: 10.14393/RCG228054849 .

224. Alves, W. dos S., A.P. Martins and R.S. Ferrerira. 2022. Modeling applied to the flow estimate of a hydrodynamic basin in the southwestern of Goiás, Brazilian Cerrado. Revista Caminhos de Geografia. 53(10): 261-282. DOI: 10.14393/RCG238557899 .

225. Amadou, A., G.D. Abdouramane, S. Ousmane, S.S. Ibrah and K. Sittichok. 2015. Changes to flow regime on the Niger River at Koulikoro under a changing climate. Hydrological Sciences Journal. 60(10): 1709-1723. DOI: 10.1080/02626667.2014.916407 .

226. Amatya, D.M., C.G. Rossi, A. Saleh, Z. Dai, M.A. Youssef, R.G. Williams, D.D. Bosch, G.M. Chescheir, G. Sun, R.W. Skaggs, C.C. Trettin, E.D. Vance, J.E. Nettles and S. Tian. 2013. Review of nitrogen fate models applicable to forest landscapes in the southern U.S. Transactions of the ASABE. 56(5): 1731-1757. DOI: 10.13031/trans.56.10096 .

227. Amatya, D.M., K.R. Douglas-Mankin, T.M. Williams, R.W. Skaggs and J.E. Nettles. 2011. Advances in forest hydrology: Challenges and opportunities. Transactions of the ASABE. 54(6): 2049-2056. DOI: 10.13031/2013.40672 .

228. Amatya, D.M., M. Jha, A.E. Edwards, T.M. Williams and D.R. Hitchcock. 2011. SWAT-based streamflow and embayment modeling of karst-affected Chapel Branch Watershed, South Carolina. Transactions of the ASABE. 54(4): 1311-1323. DOI: 10.13031/2013.39033 .

229. Amatya, K.M. and M.K. Jha. 2011. Evaluating the SWAT model for a low-gradient forested watershed in coastal South Carolina. Transactions of the ASABE. 54(6): 2151-2163. URL: http://elibrary.asabe.org/abstract.asp?aid=40671&t=3&dabs=Y&redir=&redirType=.

230. Ambrose, R.B., T.A. Wool and T.O. Barnwell, Jr. 2009. Development of water quality modeling in the United States. Environmental Engineering Research. 14(4): 200-210. DOI: 10.4491/eer.2009.14.4.200 .

231. Ambrosio, E.D’., A.M. De Girolamo, M. Spanò, V. Corbelli, G. Capasso, M. Morea, R. Velardo, O.M.M. Abdelwahab, A. Lonigro, F. Milillo, G.F. Ricci, G. Romano, A. Calabrese, B. Casale, R. Mauro, G. Pappagallo and F. Gentile. 2019. A spatial analysis to define data requirements for hydrological and water quality models in data-limited regions. Water. 11(2): 267. DOI: 10.3390/w11020267 .

232. Amin, M.G.M., H.D. Karsten, T.L. Veith, D.B. Beegle and P.J. Kleinman. 2018. Conservation dairy farming impact on water quality in a karst watershed in northeastern US. Agricultural Systems. 165: 187-196. DOI: 10.1016/j.agsy.2018.06.010 .

233. Amin, M.G.M., T.L. Veith, J.S. Shortle, H.D. Karsten and P.J.A. Kleinman. 2020. Addressing the spatial disconnect between national-scale total maximum daily loads and localized land management decisions. Journal of Environmental Quality. 49(3): 613-627. DOI: 10.1002/jeq2.20051 .

234. Amin, M.G.M., T.L. Vieth, A.S. Collick, H.D. Karsten and A.R. Buda. 2017. Simulating hydrological and nonpoint source pollution processes in a karst watershed: A variable source area hydrology model evaluation. Agricultural Water Management. 180(Part B): 212–223. DOI: 10.1016/j.agwat.2016.07.011 .

235. Amini, M.A., Gh. Torkan, S. Eslamian, M.J. Zareian and A.A. Besalatpour. 2018. Assessment of SWAT hydrological model in catchments' water balance simulation located in semi-arid regions (Case study: Zayandeh-Rud River Basin). Journal of Water and Soil. 32(5): 849-863. DOI: 10.22067/jsw.v32i5.68815 .

236. Ammar, M.E., A. Gharib, Z. Islam, E.G.R. Davies, M. Seneka and M. Faramarzi. 2020. Future floods using hydroclimatic simulations and peaks over threshold: An alternative to nonstationary analysis inferred from trend tests. Advances in Water Resources. 136: 103463. DOI: 10.1016/j.advwatres.2019.103463 .

237. Amon-Armah, F., E. K. Yiridoe, R. Jamieson and D. Hebb. 2015. Comparison of crop yield and pollution production response to nitrogen fertilization models, accounting for crop rotation effect. Agroecology and Sustainable Food Systems . 39(3): 245-275. DOI: 10.1080/21683565.2014.967435 .

238. Amon-Armah, F., E.K. Yiridoe, N.H.M. Ahmad, D. Hebb, R. Jamieson, D. Burton and A. Madani. 2013. Effect of nutrient management planning on crop yield, nitrate leaching and sediment loading in Thomas Brook watershed. Environmental Management. 52(5): 1177-1191. DOI: 10.1007/s00267-013-0148-z .

239. An, H. and J.W. Eheart. 2006. Evaluation of programs for regulating withdrawal of surface water under the riparian legal system. Journal of Water Resources Planning and Management. 132(5): 385-394. DOI: 10.1061/(ASCE)0733-9496(2006)132:5(385) .

240. An, H., J.W. Eheart and R.D. Braatz. 2004. Stability-oriented programs for regulating water withdrawals in riparian regions. Water Resources Research. 40(12): W12301. DOI: 10.1029/2004WR003398 .

241. Anand, J., A.K. Gosain and R. Khosa. 2018. Optimisation of multipurpose reservoir operation by coupling Soil and Water Assessment Tool (SWAT) and genetic algorith for optimal operating policy (case study: Ganga River Basin). Zeitschrift für Kulturtechnik und Landentwicklung. 10(5): 1660. DOI: 10.3390/su10051660 .

242. Anand, J., A.K. Gosain and R. Khosa. 2018. Prediction of land use changes based on land change modeler and attribution of changes in the water balance of Ganga Basin to land use change using the SWAT model. Science of the Total Environment. 644: 503-519. DOI: 10.1016/j.scitotenv.2018.07.017 .

243. Anand, J., A.K. Gosain and R. Khosa. 2021. Impacts of climate and land use change on hydrodynamics and sediment transport regime of the Ganga River Basin. Regional Environmental Change. 21(3): 79. DOI: 10.1007/s10113-021-01806-x .

244. Anand, J., A.K. Gosain, R. Khosa and R. Srinivasan. 2018. Regional scale hydrologic modeling for prediction of water balance, analysis of trends in streamflow and variations in streamflow: The case study of the Ganga River basin. Journal of Hydrology: Regional Studies. 16: 32-53. DOI: 10.1016/j.ejrh.2018.02.007 .

245. Anand, J., M. Devak, A.K. Gosain, R. Khosa and C.T. Dhanya. 2021. Spatio-temporal effect of climate and land-use change on water balance of the Ganga River Basin. Journal of Hydro-environment Research. 36: 50-66. DOI: 10.1016/j.jher.2021.03.004 .

246. Anand, S., K.R. Mankin, K.A. McVay, K.A. Janssen, P.L. Barnes and G.M. Pierzynski. 2007. Calibration and validation of ADAPT and SWAT for field-scale runoff prediction. Journal of the American Water Resources Association. 43(4): 899-910. DOI: 10.1111/j.1752-1688.2007.00061.x .

247. Anand, V. and B. Oinam. 2019. Future climate change impact on hydrological regime of river basin using SWAT model. Global Journal of Environmental Science and Management. 5(4): 471-484. DOI: 10.22034/gjesm.2019.04.07 .

248. Anand, V., B. Oinam and B.R. Parida. 2020. Uncertainty in hydrological analysis using multi-GCM predictions and multi-parameters under RCP 2.6 and 8.5 scenarios in Manipur River Basin, India. Journal of Earth System Science. 129: 223. DOI: 10.1007/s12040-020-01492-z .

249. Anandan, K.S., S.N. Sahay and S. Karthikenyan. 2010. Delineation of Recharge Area and Artificial Recharge Studies in the Neyveli Hydrogeological Basin. Mine Water and the Environment. 29(1): 14-22. DOI: 10.1007/s10230-009-0090-8 .

250. Anandhi, A. and N. Kannan. 2017. Vulnerability assessment of water resources – Translating a theoretical concept to an operational framework using systems thinking approach in a changing climate: Case study in Ogallala Aquifer. Journal of Hydrology. 557: 460-474. DOI: 10.1016/j.jhydrol.2017.11.032 .

251. Ancev, T., A.L. Stoecker, D.E. Storm and M.J. White. 2006. The economics of efficient phosphorus abatement in a watershed. Journal of Agricultural and Resource Economics Association. 31(3): 529-548. URL: http://www.jstor.org/stable/40987334?seq=1#page_scan_tab_contents.

252. Andaryani, S., D. Trolle, M.R. Nikjoo, M.H.R. Moghadam and D. Mokhtari. 2019. Forecasting near-future impacts of land use and climate change on the Zilbier River hydrological regime, northwestern Iran. Environmental Earth Sciences. 78: 188. DOI: 10.1007/s12665-019-8193-4 .

253. Andaryani, S., V. Nourani, D. Trolle, M. Dehgani and A.M. Asl. 2019. Assessment of land use and climate change effects on land subsidence using a hydrological model and radar technique. Journal of Hydrology. 578: 124070. DOI: 10.1016/j.jhydrol.2019.124070 .

254. Andaryani, S., V. Nourani, J. Ball, S. Jahanbakhsh Asl, H. Keshtkar and D. Trolle. 2021. A comparison of frameworks for separating the impacts of human activities and climate change on river flow in existing records and different near-future scenarios. Hydrological Processes. 35(7): e14301. DOI: 10.1002/hyp.14301 .

255. Andersson, J.C.M., A.J.B. Zehnder, G.P.W. Jewitt and H.Yang. 2009. Water availability, demand and reliability of in situ water harvesting in smallholder rain-fed agriculture in the Thukela River Basin, South Africa. Hydrology and Earth System Sciences. 13(12): 2329-2347. DOI: 10.5194/hess-13-2329-2009 .

256. Andersson, J.C.M., A.J.B. Zehnder, J. Rockstrom and H. Yang. 2011. Potential impacts of water harvesting and ecological sanitation on crop yield, evaporation and river flow regimes in the Thukela River basin, South Africa. Agricultural Water Management. 98(7): 1113-1124. DOI: 10.1016/j.agwat.2011.02.004 .

257. Andersson, J.C.M., A.J.B. Zehnder, B. Whrli and H. Yang. 2012. Improved SWAT model performance with time-dynamic Voronoi tessellation of climatic input data in Southern Africa. Journal of the American Water Resources Association. 48(3): 480–493. DOI: 10.1111/j.1752-1688.2011.00627.x .

258. Andersson, J.C.M., A.J.B. Zehnder, B. Wehrli, G.P.M. Jewitt, K.C. Abbaspour and H. Yang. 2013. Improving crop yield and water productivity by ecological sanitation and water harvesting in South Africa. Environmental Science & Technology. 47(9): 4341-4348. DOI: 10.1021/es304585p .

259. Andrade, M.A., C.R. de Mello and S. Beskow. 2013. Hydrological simulation in a watershed with predominance of Oxisol in the Upper Grande river region, MG - Brazil. Revista Brasileira de Engenharia Agricola e Ambiental. 17(1): 69-76. DOI: 10.1590/S1415-43662013000100010 .

260. Andres, K.J., H. Chien and J.H. Knouft. 2019. Hydrology induces intraspecific variation in freshwater fish morphology under contemporary and future climate scenarios. Science of the Total Environment. 671: 412-430. DOI: 10.1016/j.scitotenv.2019.03.292 .

261. Andrianaki, M., J. Shrestha, F. Kobierska, N.P. Nikolaidis and S.M. Bernasconi. 2019. Assessment of SWAT spatial and temporal transferability for a high-altitude glacierized catchment. Hydrology and Earth System Sciences. 23(8): 3219-3232. DOI: 10.5194/hess-23-3219-2019 .

262. Andualem, T.G., A. Guadie, G. Belay, I. Ahmad and M.A. Dar. 2020. Hydrological modeling of Upper Ribb Watershed, Abbay Basin, Ethiopia. Global Nest Journal. 72(2): 158-164. DOI: 10.30955/gnj.003152 .

263. Andualem, T.G., G.A. Hewa, B.R. Myers, S. Peters and J. Boland. 2023. Erosion and sediment transport modeling: A systematic review. Land. 12(7): 1396. DOI: 10.3390/land12071396 .

264. Ang, R. and C. Oeurng. 2018. Simulating streamflow in an ungauged catchment of Tonlesap Lake Basin in Cambodia using Soil and Water Assessment Tool (SWAT) model. Water Science. 32: 89-101. DOI: 10.1016/j.wsj.2017.12.002 .

265. Ang, R., T. Kinouchi and W. Zhao. 2023. Sediment load estimation using a novel regionalization sediment-response similarity method for ungauged catchments. Journal of Hydrology. 618: 129198. DOI: 10.1016/j.jhydrol.2023.129198 .

266. Ang, R., T. Kinouchi and W.P. Zhao. 2022. Evaluation of daily gridded meteorological datasets for hydrological modeling in data-sparse basins of the largest lake in Southeast Asia. Journal of Hydrology: Regional Studies. 42: 101135. DOI: 10.1016/j.ejrh.2022.101135 .

267. Angelidis, P., M. Kotsikas and N. Kotsovinos. 2010. Management of upstream dams and flood protection of the transboundary River Evros/Maritza. Water Resources Management. 24(11): 2467-2484. DOI: 10.1007/s11269-009-9563-6 .

268. Anguita, P.M.d., S. Rivera, J.M. Beneitez, F. Cruz, and F.M. Espinal. 2011. A GIS cost-benefit analysis-based methodology to establish a payment for environmental services system in watersheds: Application to the Calan River in Honduras. Journal of Sustainable Forestry. 30: 79-110. DOI: 10.1080/10549811003742225 .

269. Anh, N.V. 2019. Evaluation of Swat model performance to hydrologic cycle simulation in the Cong watershed, Viet Nam. Tạp chí Khoa học kỹ thuật Thủy lợi và Môi trường. 65(6): 163-171. URL: http://tapchivatuyentap.tlu.edu.vn/Home/groupid/90.

270. Anh, N.V., S. Fukuda, K. Hiramatsu and M. Harada. 2015. Sensitivity-based calibration of the Soil and Water Assessment Tool for hydrologic cycle simulation in the Cong watershed, Vietnam. Water Environment Research. 87(8): 735-750. DOI: 10.2175/106143015X14338845156948 .

271. Anil, A.P. and H. Ramesh. 2017. Analysis of climate trend and effect of land use land cover change on Harangi streamflow, South India: A case study. Sustainable Water Resources Management. 3(3): 257–267. DOI: 10.1007/s40899-017-0088-5 .

272. Anjuma, M.N., Y. Dinga and D. Shangguan. 2019. Simulation of the projected climate change impacts on the river flow regimes under CMIP5 RCP scenarios in the westerlies dominated belt, northern Pakistan. Atmospheric Research. 227: 233-248.

273. Anoh, K. A., T. J. J. Koua, W. E. Yeo, A. G. Eblin, K. J. Kouamé and J. P. Jourda. 2021. Application of the agro-hydrologic SWAT model on the Taabo River Basin (Côte d’Ivoire) to evaluate the effect of three vegetative filter strip scenarios on streamflow and nutrients. Environmental Engineering and Management Journal. 20(1): 13-23. URL: http://www.eemj.icpm.tuiasi.ro/issues/vol20/vol20no1.htm.

274. Anoh, K.A., T.J.J. Koua, K. J. Kouamé, J.P. Jourda and F. Laurent. 2018. Modelling water flow in a complex watershed in humid a tropical area using swat: A case study of Taabo watershed in Ivory Coast. International Journal of River Basin Management. 16(2): 157-167. DOI: 10.1080/15715124.2017.1387122 .

275. Ansari, A., T. Kato and A. Fitriah. 2019. Simulating streamflow through the SWAT model in the Keduang Sub-Watershed, Wonogiri Regency, Indonesia. AGRITECH. 39(1): 60-69. DOI: 10.22146/agritech.29737 .

276. Anshuman, A., A. Kunnath-Poovakka and T.I. Eldho. 2019. Towards the use of conceptual models for water resource assessment in Indian tropical watersheds under monsoon‐driven climatic conditions. Environmental Earth Sciences. 78: 282. DOI: 10.1007/s12665-019-8281-5 .

277. Aouissi, J., B. Sihem, L.C. Zohra and C. Christophe. 2014. Modelling water quality to improve agricultural practices and land management in a Tunisian catchment using SWAT. Journal of Environmental Quality. 43(1): 18-25. DOI: 10.2135/jeq2011.0375 .

278. Aouissi, J., S. Benabdallah, Z.L. Chabaâne and C. Cudennec. 2016. Evaluation of potential evapotranspiration assessment methods for hydrological modelling with SWAT—Application in data-scarce rural Tunisia. Agricultural Water Management. 174: 39-51. DOI: 10.1016/j.agwat.2016.03.004 .

279. Aparecida, T.L. and M.L. Calijuri. 2010. Hydrosedimentological modeling of watershed in southeast Brazil using SWAT. Revista Ambiente & Água. 5(2): 158-174. DOI: 10.4136/ambi-agua.145 .

280. Aparício, B.A., J.P. Nunes, L. Bernard-Jannin, L.F. Dias, A. Fonseca and T. Ferreira. 2023. Modelling the role of ground-true riparian vegetation for providing regulating services in a Mediterranean watershed. International Soil and Water Conservation Research. 11(1): 159-168. DOI: 10.1016/j.iswcr.2022.07.005 .

281. Apostel, A., M. Kalcic, A. Dagnew, G. Evenson, J. Kast, K. King, J. Martin, R.L. Muenich and D. Scavia. 2021. Simulating internal watershed processes using multiple SWAT models. Science of the Total Environment. 759: 143920. DOI: 10.1016/j.scitotenv.2020.143920 .

282. Aqnouy, M, J.E.S. El Messari, H. Ismail, A. Bouadila, J.G.M. Navarro, B. Loubna and M.R.A. Mansour. 2019. Assessment of the SWAT model and the parameters affecting the flow simulation in the Watershed of Oued Laou (northern Morocco). Journal of Ecological Engineering. 20(4): 104-113. DOI: 10.12911/22998993102794 .

283. Arabi, M., J.R. Frankenberger, B.A. Engel, and J.G. Arnold. 2008. Representation of agricultural conservation practices with SWAT. Hydrological Processes. 22(16): 3042-3055. DOI: 10.1002/hyp.6890 .

284. Arabi, M., R.S. Govindaraju and M.M. Hantush. 2006. Cost-effective allocation of watershed management practices using a genetic algorithm. Water Resources Research. 42(10): W10429. DOI: 10.1029/2006WR004931 .

285. Arabi, M., R.S. Govindaraju and M.M. Hantush. 2007. A probabilistic approach for analysis of uncertainty in the evaluation of watershed management practices. Journal of Hydrology. 333(2-4): 459-471. DOI: 10.1016/j.jhydrol.2006.09.012 .

286. Arabi, M., R.S. Govindaraju, M.M. Hantush and B.A. Engel. 2006. Role of watershed subdivision on modeling the effectiveness of best management practices with SWAT. Journal of the American Water Resources Association. 42(2): 513-528. DOI: 10.1111/j.1752-1688.2006.tb03854.x .

287. Arabi, M., R.S. Govindaraju, M.M. Hantush and B.A. Engel. 2007. Multiobjective sensitivity analysis of sediment and nitrogen processes with a watershed model. Water Resources Research. 43(6): 1-11. DOI: 10.1029/2006WR005463 .

288. Aragaw, H.M. and S.K. Mishra. 2022. Multi‑site multi‑objective calibration of SWAT model using a large dataset for improved performance in Ethiopia. Arabian Journal of Geosciences. 15(4): 320. DOI: 10.1007/s12517-022-09602-5 .

289. Aragaw, H.M., M.K. Goel and S.K. Mishra. 2021. Hydrological responses to human-induced land use/land cover changes in the Gidabo River Basin, Ethiopia. Hydrological Sciences Journal. 66(4): 640-655. DOI: 10.1080/02626667.2021.1890328 .

290. Aragawa, H.M., S.K. Mishra and M.K. Goel. 2022. Responses of water balance component to land use/land cover and climate change using geospatial and hydrologic modeling in the Gidabo watershed. Geocarto International. 37(27): 17119–17144. DOI: 10.1080/10106049.2022.2123956 .

291. Araza, A., M. Perez, R.V. Cruz, L.F. Aggabao and E. Soyosa. 2021. Probable streamflow changes and its associated risk to the water resources of Abuan Watershed, Philippines caused by climate change and land use changes. Stochastic Environmental Research and Risk Assessment. 35(2): 389–404. DOI: 10.1007/s00477-020-01953-3 .

292. Arbab, N.N., A.R. Collins and J.F. Conley. 2018. Projections of watershed pollutant loads using a spatially explicit, agent-based land use conversion model: A case study of Berkeley County, West Virginia. Applied Spatial Analysis and Policy. 11(1): 147–181. DOI: 10.1007/s12061-016-9197-z .

293. Arceo, M.G.A.S., R.V.O. Cruz, C.L. Tiburan Jr., J.B. Balatibat and N.R. Alibuyog. 2018. Modeling the hydrologic responses to land cover and climate changes of selected watersheds in the Philippines using Soil and Water Assessment Tool (SWAT) model. DLSU Business and Economics Review. 28(SI): 84-101. URL: https://dlsu-ber.com/modeling-the-hydrologic-responses-to-land-cover-and-climate-changes-of-selected-watersheds-in-the-philippines-using-soil-and-water-assessment-tool-swat-model/.

294. Arhonditsis, G.B., A. Neumann, Y. Shimoda, D.-K. Kim, F. Dong, G. Onandia, C. Yang, A. Javed, M. Brady, A. Visha, F. Ni and V. Cheng. 2019. Castles built on sand or predictive limnology in action? Part A: Evaluation of an integrated modelling framework to guide adaptive management implementation in Lake Erie. Ecological Informatics. 52: 100968. DOI: 10.1016/j.ecoinf.2019.05.014 .

295. Arias, M.E., T. Piman, H. Lauri, T.A. Cochrane and M. Kummu. 2014. Dams on Mekong tributaries as significant contributors of hydrological alterations to the Tonle Sap Floodplain in Cambodia. Hydrology and Earth System Sciences. 18(12): 5303-5315. DOI: 10.5194/hess-18-5303-2014 .

296. Arias, M.E., T.A. Cochrane, K.S. Lawrence, T.J. Killeen and T.A. Farrell. 2011. Paying the forest for electricity: A modelling framework to market forest conservation as payment for ecosystem services benefiting hydropower generation. Environmental Conservation. 38(4): 473-484. DOI: 10.1017/S0376892911000464 .

297. Arias, R., M. L. Rodriguez-Blanco, M. M. Taboada-Castro, J. P. Nunes, J. J. Keizer and M. T. Taboada-Castro. 2014. Water resources response to changes in temperature, rainfall and CO2 concentration: a first approach in NW Spain. Water. 6(10): 3049-3067. DOI: 10.3390/w6103049 .

298. Arjomandi, A., S.A. Mortazavi, S. Khalilian and A.Z. Garizi. 2021. Optimal land-use allocation using MCDM and SWAT for the Hablehroud Watershed, Iran. Land Use Policy. 100: 104930. DOI: 10.1016/j.landusepol.2020.104930 .

299. Armağan, K., B.N. Egoh, D. Lanzanova, B. Grizzetti, G. Bidoglio, L. Pagliero, F. Bouraoui, A. Aloe, A. Reynaud, J. Maes, I. Vandecasteele and S. Mubareka. 2016. Mapping water provisioning services to support the ecosystem–water–food–energy nexus in the Danube River Basin. Ecosystem Services. 17: 278-292. DOI: 10.1016/j.ecoser.2015.08.002 .

300. Armoa, O.L.B., S. Sauvage, T. Houska, K. Bieger, C. Schürz and J.M.S. Pérez. 2023. Representation of hydrological components under a changing climate—A case study of the Uruguay River Basin using the new version of the Soil and Water Assessment Tool model (SWAT+). Water. 15(14): 2604. DOI: 10.3390/w15142604 .

301. Arnillas, C.A., C. Yang, S.A. Zamaria, A. Neumann, A. Javed, Y. Shimoda, N. Feisthauer, A. Crolla, F. Dong, A. Blukacz-Richards, Y.R. Rao, D. Paredes and G.B. Arhonditsis. 2021. Integrating watershed and ecosystem service models to assess best management practice efficiency: Guidelines for Lake Erie managers and watershed modellers. Environmental Reviews. 29(1): 31–63. DOI: 10.1139/er-2020-0071 .

302. Arnold J. G., D. Harmel, M. V. Johnson, R. Bingner, T. C. Strickland, M. Walbridge, C. Santhi, M. DiLuzio and X. Wang. 2014. Impact of the Agricultural Research Service watershed assessment studies on the Conservation Effects Assessment Project Cropland National Assessment. Journal of Soil and Water Conservation. 69(5): 137A-144A. DOI: 10.2489/jswc.69.5.137A .

303. Arnold, J.G. and J.R. Williams. 1987. Validation of SWRRB-- Simulator for water resources in rural basins. Journal of Water Resources Planning and Management. 113(2): 243-256. DOI: 10.1061/(ASCE)0733-9496(1987)113:2(243) .

304. Arnold, J.G. and N. Fohrer. 2005. SWAT2000: current capabilities and research opportunities in applied watershed modeling. Hydrological Processes. 19(3): 563-572. DOI: 10.1002/hyp.5611 .

305. Arnold, J.G. and P.M. Allen. 1996. Estimating hydrologic budgets for three Illinois watersheds. Journal of Hydrology. 176(1-4): 57‑77. DOI: 10.1016/0022-1694(95)02782-3 .

306. Arnold, J.G. and P.M. Allen. 1999. Automated methods for estimating baseflow and groundwater recharge from streamflow records. Journal of the American Water Resources Association. 35(2): 411-424. DOI: 10.1111/j.1752-1688.1999.tb03599.x .

307. Arnold, J.G., Allen, P.M. and G. Bernhardt. 1993. A comprehensive surface‑groundwater flow model. Journal of Hydrology. 142(1-4): 47‑69. DOI: 10.1016/0022-1694(93)90004-S .

308. Arnold, J.G., D.N. Moriasi, P.W. Gassman, K.C. Abbaspour, M.J. White, R. Srinivasan, C. Santhi, R.D. Harmel, A. van Griensven, M.W. Van Liew, N. Kannan and M.K. Jha. 2012. SWAT: Model use, calibration, and validation. Transactions of the ASABE. 55(4): 1491-1508. DOI: 10.13031/2013.42256 .

309. Arnold, J.G., J.R. Williams and D.A. Maidment. 1995. Continuous-time water and sediment-routing model for large basins. Journal of Hydraulic Engineering. 121(2): 171-183. DOI: 10.1061/(ASCE)0733-9429(1995)121:2(171) .

310. Arnold, J.G., K. Bieger, M.J. White, R. Srinivasan, J.A. Dunbar and P.M. Allen. 2018. Use of decision tables to simluate management in SWAT+. Water. 10(6). DOI: 10.3390/w10060713 .

311. Arnold, J.G., K.N. Potter, K.W. King and P.M. Allen. 2005. Estimation of soil cracking and the effect on surface runoff in a Texas Blackland Prairie watershed. Hydrological Processes. 19(3): 589-603. DOI: 10.1002/hyp.5609 .

312. Arnold, J.G., M.A. Youssef, H. Yen, M.J. White, A.Y. Sheshukov, A.M. Sadeghi, D.N. Moriasi, J.L. Steiner, D.M. Amatya, R.W. Skaggs, E.B. Haney, J. Jeong, M. Arabi and P.H. Gowda. 2015. Hydrological processes and model representation: Impact of soft data on calibration. Transactions of the ASABE. 58(6): 1637-1660. DOI: 10.13031/trans.58.10710 .

313. Arnold, J.G., M.J. White, P.M. Allen, P.W. Gassman and K. Bieger. 2021. Conceptual framework of connectivity for a national agroecosystem model based on transport processes and management practices. Journal of the American Water Resources Association. 54(1): 154-169. DOI: 10.1111/1752-1688.12890 .

314. Arnold, J.G., P.M. Allen and D. Morgan. 2001. Hydrologic model for design and constructed wetlands. Wetlands. 21(2): 167-178. DOI: 10.1672/0277-5212(2001)021[0167:HMFDAC]2.0.CO;2 .

315. Arnold, J.G., P.M. Allen, M. Volk, J.R. Williams and D.D. Bosch. 2010. Assessment of different representations of spatial variability on SWAT model performance. Transactions of the ASABE. 53(5): 1433-1443. DOI: 10.13031/2013.34913 .

316. Arnold, J.G., P.M. Allen, R.S. Muttiah and G. Bernhardt. 1995. Automated base flow separation and recession analysis techniques. Groundwater. 33(6): 1010‑1018. DOI: 10.1111/j.1745-6584.1995.tb00046.x .

317. Arnold, J.G., R. Srinivasan and B.A. Engel. 1994. Flexible watershed configurations for simulating models. Hydrological Science and Technology. 10(1‑4): 5‑14.

318. Arnold, J.G., R. Srinivasan, R.S. Muttiah and J.R. Williams. 1998. Large area hydrologic modeling and assessment part I: Model development. Journal of the American Water Resources Association. 34(1): 73‑89. DOI: 10.1111/j.1752-1688.1998.tb05961.x .

319. Arnold, J.G., R. Srinivasan, R.S. Muttiah and P.M. Allen. 1999. Continental scale simulation of the hydrologic balance. Journal of the American Water Resources Association. 35(5): 1037-1052. DOI: 10.1111/j.1752-1688.1999.tb04192.x .

320. Arnold, J.G., R. Srinivasan, T.S. Ramanarayanan and M. Di Luzio. 1999. Water resources of the Texas Gulf Basin. Water Science and Technology. (39)3: 121-133. DOI: 10.1016/S0273-1223(99)00044-X .

321. Arnold, J.G., R.S. Muttiah, R. Srinivasan and P.M. Allen. 2000. Regional estimation of base flow and groundwater recharge in the Upper Mississippi River Basin. Journal of Hydrology. 227(1-4): 21-40. DOI: 10.1016/S0022-1694(99)00139-0 .

322. Arora, P., J. Lamba, P. Srivastava and L. Kalin. 2019. Modeling effectiveness of broiler litter application method for reducing phosphorus and nitrogen losses. Hydrology Research. 50(4): 1047-1061. DOI: 10.2166/nh.2019.017 .

323. Arrueta, L., D. Jackson-Smith and M. Kalcic. 2022. Simulating behavioral heterogeneity in watershed models: A systematic review of fertilizer use in SWAT studies. Journal of Soil and Water Conservation. 77(3): 249-260. DOI: 10.2489/jswc.2022.00055 .

324. Arshad, A., A.M. shir Ahmad, M. Samimi and B. Ahmad. 2022. Combining downscaled-GRACE data with SWAT to improve the estimation of groundwater storage and depletion variations in the Irrigated Indus Basin (IIB). Science of the Total Environment. 838(Part2): 156044. DOI: 10.1016/j.scitotenv.2022.156044 .

325. Artita, K.S., P. Kaini and J.W. Nicklow. 2013. Examining the possibilities: Generating alternative watershed-scale BMP designs with evolutionary algorithms. Water Resources Management. 27(12): 3849-3863. DOI: 10.1007/s11269-013-0375-3 .

326. Aryal, A., S. Shrestha and M.S. Babel. 2019. Quantifying the sources of uncertainty in an ensemble of hydrological climate-impact projections. Theoretical and Applied Climatology. 135(1-2): 193–209. DOI: 10.1007/s00704-017-2359-3 .

327. Asadi, S., S.J. Mousavi, A. López-Ballesteros and J. Senent-Aparicio. 2024. Analyzing hydrological alteration and environmental flows in a highly anthropized agricultural river basin system using SWAT+, WEAP and IAHRIS. Journal of Hydrology: Regional Studies. 52: 101738. DOI: /10.1016/j.ejrh.2024.101738 .

328. Asadzadeh, M., B. Tolson and D.H. Burn. 2014. A new selection metric for multi-objective hydrologic model calibration. Water Resources Research. 50(9): 7082-7099. DOI: 10.1002/2013WR014970 .

329. Asadzadeh, M., L. Leon, C. McCrimmon, W. Yang, Y. Liu, I. Wong, P. Fong and G. Bowen. 2015. Watershed derived nutrients for lake Ontario inflows: Model calibration considering typical land operations in southern Ontario. Journal of Great Lakes Research. 41(4): 1037-1051. DOI: 10.1016/j.jglr.2015.09.002 .

330. Asadzadeh, M., L. Leon, W. Yang and D. Bosch. 2016. One-day offset in daily hydrologic modelling: An exploration of the issue in automatic model calibration. Journal of Hydrology. 534: 164–177. DOI: 10.1016/j.jhydrol.2015.12.056 .

331. Asante, K., M.D. Leh, J.D. Cothren, M. Di Luzio and J.V. Brahana. 2017. Effects of land-use land-cover data resolution and classification methods on SWAT model flow predictive reliability. International Journal of Hydrology Science and Technology. 7(1): 39-62. URL: http://www.inderscienceonline.com/doi/abs/10.1504/IJHST.2017.080956.

332. Asgari, M., W. Yang, J. Lindsay, B. Tolson and M.M. Dehnavi. 2022. A review of parallel computing applications in calibrating watershed hydrologic models. Environmental Modelling & Software. 151: 105370. DOI: 10.1016/j.envsoft.2022.105370 .

333. Ashagre, B.B., P.J. Platts, M. Njana, N.D. Burgess, A. Balmford, R.K. Turner and M. Schaafsma. 2018. Integrated modelling for economic valuation of the role of forests and woodlands in drinking water provision to two African cities. Ecosystem Services. 32: 50-61. DOI: 10.1016/j.ecoser.2018.05.004 .

334. Ashraf, A. and Hanif-ur-Rehman. 2019. Upstream and downstream response of water resource regimes to climate change in the Indus River Basin. Arabian Journal of Geosciences. 12(16): 516. DOI: 10.1007/s12517-019-4667-7 .

335. Ashraf, S., M. Ali, S. Shrestha, M.A. Hafeez, A. Moiz and Z.A. Sheikh. 2022. Impacts of climate and land-use change on groundwater recharge in the semi-arid lower Ravi River Basin, Pakistan. Groundwater for Sustainable Development. 17: 100743. DOI: 10.1007/s40899-022-00733-x .

336. Ashu, A.B. and S.-I. Lee. 2023. Multi-site calibration of hydrological model and spatio-temporal assessment of water balance in a monsoon watershed. Water. 15(2): 360. DOI: 10.3390/w15020360 .

337. Ashu, A.B. and S-I. Lee. 2020. Assessing climate change effects on water balance in a monsoon watershed. Water. 12(9): 2564. DOI: 10.3390/w12092564 .

338. Askar, M.A.A. and M. Basibuyuk. 2020. AssessIng climate change impacts on water resources of Seyhan River Basin by using SWAT model. Çukurova Üniversitesi Fen Bilimleri Enstitüsü. 39(2): 1-10. URL: https://fbe.cukurova.edu.tr/cu/e-dergi/makaleler/2020%20Y%C4%B1l%C4%B1.

339. Aslam, R.A., S. Shrestha, M.N. Usman, S.N. Khan, S. Ali, M.S. Sharif, M.W. Sarwar, N. Saddique, A. Sarwar, M.U. Ali and A. Arshad. 2022. Integrated SWAT-MODFLOW modeling-based groundwater adaptation policy guidelines for Lahore, Pakistan under projected climate change, and human development scenarios. Atmosphere. 13(12): 2001. DOI: 10.3390/atmos13122001 .

340. Asl-Rousta, B. and S.J. Mousavi. 2019. A TOPSIS-based multicriteria approach to the calibration of a basin-scale SWAT hydrological model. Water Resources Management. 33(1): 439–452. DOI: 10.1007/s11269-018-2111-5 .

341. Asl-Rousta, B., S.J. Mousavi, M. Ehtiat and M. Ahmadi. 2018. SWAT-based hydrological modelling using model selection criteria. Water Resources Management. 32(6): 2181-2197. DOI: 10.1007/s11269-018-1925-5 .

342. Aslund, M.W., R.L. Breton, L. Padilla, M. Winchell, K.L. Wooding, D.R.J. Moore, R.S. Teed, R. Reiss and P. Whatling. 2017. Ecological risk assessment for pacific salmon exposed to Dimethoate in California. Environmental Toxicology and Chemistry. 36(2): 532–543. DOI: 10.1002/etc.3563 .

343. Asmaranto, R., E. Suhartanto and M. Yuanita. 2011. Aplikasi model AVSWAT 2000 untuk memprediksi erosi, sedimentasi dan limpasan di DAS Sampean. Jurnal Teknik Pengairan. 2(1): 79-85. URL: http://jurnalpengairan.ub.ac.id/index.php/jtp/article/view/123.

344. Asres, M.T. and S.B. Awulachew. 2010. SWAT based runoff and sediment yield modelling: A case study of the Gumera watershed in the Blue Nile basin. Ecohydrology & Hydrobiology. 10(2-4): 191-200. DOI: 10.2478/v10104-011-0020-9 .

345. Assfaw, A.T. 2019. Calibration, validation and performance evaluation of SWAT model for sediment yield modeling in Megech Reservoir Catchment, Ethiopia. Journal of Environmental Geography. 12(3-4): 21-31. DOI: 10.2478/jengeo-2019-0009 .

346. Astsatryan, H., W. Narsisian and Sh. Asmaryan. 2016. SWAT hydrological model as a DaaS cloud service. Earth Science Informatics. 9(3): 401–407. DOI: 10.1007/s12145-016-0254-6 .

347. Astuti, I.S., K. Sahoo, A. Milewski and D.R. Mishra. 2019. Impact of land use land cover (LULC) change on surface runoff in an increasingly urbanized tropical watershed. Water Resources Management. 33: 4087–4103. DOI: 10.1007/s11269-019-02320-w .

348. Asurza-Véliz, F.A. and W.S. Lavado-Casimiro. 2020. Regional parameter estimation of the SWAT model: Methodology and application to River Basins in the Peruvian Pacific drainage. Water. 12(11). DOI: 10.3390/w12113198 .

349. Athira, P. and K. P. Sudheer. 2015. A method to reduce the computational requirement while assessing uncertainty of complex hydrological models. Stochastic Environmental Research and Risk Assessment. 29(3): 847-859. DOI: 10.1007/s00477-014-0958-4 .

350. Athira, P. and K.P. Sudheer. 2021. Calibration of distributed hydrological models considering the heterogeneity of the parameters across the basin: A case study of SWAT model. Environmental Earth Sciences. 80(4): 131. DOI: 10.1007/s12665-021-09434-8 .

351. Athira, P., C. Nanda and K.P. Sudheer. 2018. A computationally efficient method for uncertainty analysis of SWAT model simulations. Stochastic Environmental Research and Risk Assessment. 32(6): 1479-1492. DOI: 10.1007/s00477-018-1538-9 .

352. Athira, P., K.P. Sudheer, R. Cibin and I. Chaubey. 2016. Predictions in ungauged basins: An approach for regionalization of hydrological models considering the probability distribution of model parameters. Stochastic Environmental Research and Risk Assessment. 30(4): 1131-1149. DOI: 10.1007/s00477-015-1190-6 .

353. Athira, R.A. 2021. Calibration of hydrological models considering process interdependence: A case study of SWAT model. Environmental Modelling & Software. 144: 105131. DOI: 10.1016/j.envsoft.2021.105131 .

354. Attwood, J.D., B. McCarl, C.C. Chen, B.R. Eddleman, B. Nayda and R. Srinivasan. 2000. Assessing regional impacts of change: Linking economic and environmental models. Agricultural Systems. 63(3): 147-159. DOI: 10.1016/S0308-521X(99)00077-3 .

355. Atullley, J.A., A.A. Kwaku, E.D.J. Owusu-Ansah, S. Ampofo, A. Jacob and O.S. Nii. 2022. Modeling the impact of land cover changes on water balance in the Vea Catchment of Ghana, 1985–2040. Sustainable Water Resources Management. 8(5): 148. DOI: 10.1007/s40899-022-00727-9 .

356. Auerbach, D.A., Z.M. Easton, M.T. Walter, A.S. Flecker and D.R. Fuka. 2016. Evaluating weather observations and the Climate Forecast System Reanalysis as inputs for hydrologic modeling in the tropics. Hydrological Processes. 30(19): 3466–3477. DOI: 10.1002/hyp.10860 .

357. Avci, B.C., E. Kesgin, M. Atam and R.I. Tan. 2022. Modeling agricultural practice impacts on surface water quality: Case of Northern Aegean watershed, Turkey. International Journal of Environmental Science and Technology. 20(5): 5265–5280. DOI: 10.1007/s13762-022-04477-1 .

358. Avellaneda, P.M. and A.J. Jefferson. 2020. Sensitivity of streamflow metrics to infiltration‐based stormwater management networks. Water Resources Research. 56: e2019WR026555. DOI: 10.1029/2019WR026555 .

359. Avellaneda, P.M., D.L. Ficklin, C.S. Lowry, J.H. Knouft and D.M. Hall. 2020. Improving hydrological models with the assimilation of crowdsourced data. Water Resources Research. 56(5): 02019WR026325. DOI: 10.1029/2019WR026325 .

360. Avila-Aceves, E., W. Plata-Rocha, S.A. Monjardin-Armenta and J.G. Rangel-Peraza. 2023. Geospatial modelling of floods: A literature review. Stochastic Environmental Research and Risk Assessment. 37(11): 4109-4128. DOI: 10.1007/s00477-023-02505-1 .

361. Awan, U.K. and A. Ismaeel. 2014. A new technique to map groundwater recharge in irrigated areas using a SWAT model under changing climate. Journal of Hydrology. 519 (Part B): 1368–1382. DOI: 10.1016/j.jhydrol.2014.08.049 .

362. Awan, U.K., U.W. Liaqat, M. Choi and A. Ismaeel. 2016. A SWAT modeling approach to assess the impact of climate change on consumptive water use in Lower Chenab Canal area of Indus basin. Hydrology Research. 47(5): 1025-1037. DOI: 10.2166/nh.2016.102 .

363. Awotwi, A., F. Yeboah and M. Kumi. 2014. Assessing the impact of land cover changes on water balance components of White Volta Basin in West Africa. Water and Environment Journal. 29(2): 259-267. DOI: 10.1111/wej.12100 .

364. Awotwi, A., G.K. Anornu, J.A. Quaye-Ballard, T. Annor, E.K. Forkuo, E. Harris, J. Agyekum and J.L. Terlabie. 2019. Water balance responses to land-use/land-cover changes in the Pra River Basin of Ghana, 1986–2025. Catena. 182: 104129. DOI: 10.1016/j.catena.2019.104129 .

365. Awotwi, A., G.K. Anornu, J.A. Quaye-Ballard, T. Annor, I.K. Nti, S.N. Odai, E. Arhin and C. Gyamfi. 2021. Impact of post-reclamation of soil by large-scale, small-scale and illegal mining on water balance components and sediment yield: Pra River Basin case study. Soil & Tillage Research. 211: 105026. DOI: 10.1016/j.still.2021.105026 .

366. Ayalew, A.D., P.D. Wagner, T.B. Tigabu, D. Sahlu and N. Fohrer. 2023. Hydrological responses to land use and land cover change and climate dynamics in the Rift Valley Lakes Basin, Ethiopia. Journal of Water and Climate Change. 14(8): 2788-2807. DOI: 10.2166/wcc.2023.138 .

367. Ayalew, D.W., T. Asefa, M.A. Moges and S.M. Leyew. 2022. Evaluating the potential impact of climate change on the hydrology of Ribb Catchment, Lake Tana Basin, Ethiopia. Journal of Water and Climate Change. 13(1): 190-205. DOI: 10.2166/wcc.2021.049 .

368. Ayalew, L.T. and R. Bharti. 2022. Modelling sediment yield of Rib Watershed, northwest Ethiopia. ISH Journal of Hydraulic Engineering. 28(S1): 491-502. DOI: 10.1080/09715010.2020.1797544 .

369. Ayana, A.B., D.C. Edossa and E. Kositsakulchai. 2012. Simulation of sediment yield using SWAT model in Fincha Watershed, Ethiopia. Kasetsart Journal Natural Sciences. 46: 283-297. URL: http://kasetsartjournal.ku.ac.th/abstractShow.aspx?param=YXJ0aWNsZUlEPTUxMDN8bWVkaWFJRD01MzI3.

370. Ayana, E.K., A.W. Worqlul and T.S. Steenhuis. 2015. Evaluation of streamwater quality data generated from MODIS images in modeling total suspended solid emission to a freshwater lake. Science of the Total Environment. 523: 170-177. DOI: 10.1016/j.scitotenv.2015.03.132 .

371. Ayana, E.K., Y.T. Dile, B. Narasimhan and R. Srinivasan. 2019. Dividends in flow prediction improvement using high-resolution soil database. Journal of Hydrology: Regional Studies. 21: 159-175. DOI: 10.1016/j.ejrh.2019.01.003 .

372. Ayana, M.T., Y.K. Bizuneh, A.E. Koshuma, A.C. Workneh, B.M. Ali and T.K. Loahni. 2022. Developing a DEM and elucidating through SWAT to Conserve Soil in Kulfo Watershed of Rift Valley Basin, Ethiopia. Applied and Environmental Soil Science. : 7702739. DOI: 10.1155/2022/7702739 .

373. Ayanshola, A., O. Olonfintoye and E. Obadofin. 2018. The impact of global warming on precipitation patterns in Ilorin and the hydrological balance of the Awun Basin. Slovak Journal of Civil Engineering. 26(1): 40-46. DOI: 10.2478/sjce-2018-0006 .

374. Ayele, G.T., A. Kuriqi, M.A. Jemberrie, S.M. Saia, A.M. Seka, E.Z. Teshale, M.H. Daba, S.A. Bhat, S.S. Demissie, J. Jeong and A.M. Melesse. 2021. Sediment yield and reservoir sedimentation in highly dynamic watersheds: The case of Koga Reservoir, Ethiopia. Water. 13(23): 3374. DOI: 10.3390/w13233374 .

375. Ayele, W.T., D.Y. Tenagashaw, A.Z. Belew and T.G. Andualem. 2022. Optimal water allocation under climate change, based on stochastic dynamic programming model approach in Ribb Reservoir, Amhara, Ethiopia. Water Conservation Science and Engineering. 7: 33-44. DOI: 10.1007/s41101-021-00125-w .

376. Ayers, J., D.L. Ficklin, I.T. Stewart and M. Strunk. 2016. Comparison of CMIP3 and CMIP5 projected hydrologic conditions over the Upper Colorado River Basin. International Journal of Climatology. 36(11): 3807–3818. DOI: 10.1002/joc.4594 .

377. Ayivi, F. and M.K. Jha. 2018. Estimation of water balance and water yield in the Reedy Fork-Buffalo Creek watershed in North Carolina using SWAT. International Soil and Water Conservation Research. DOI: 10.1016/j.iswcr.2018.03.007 .

378. Aytaç, E. 2020. Unsupervised learning approach in defining the similarity of catchments: Hydrological response unit based k-means clustering, a demonstration on Western Black Sea Region of Turkey. International Soil and Water Conservation Research. 8: 321-331. DOI: 10.1016/j.iswcr.2020.05.002 .

379. Ayuba, S.R. and N.A. Budiprabowo. 2019. Analisis ketersediaan air di sub das Batu Layar melalui pemodelan SWAT. Jurnal Azimut. 2(2): 116-120. URL: https://ojs.unitas-pdg.ac.id/index.php/azimut/article/view/482.

380. Ayuba, S.R., M. Nurshaputra and Tisen. 2018. Classification of drought level in Limboto watershed. Jurnal Sains Informasi Geografi. 1(2): 12-20. DOI: 10.31314/jsig.v1i2.174 .

381. Azari, M., B. Saghafian, H.R. Moradi and M. Faramarzi. 2017. Effectiveness of Soil and Water Conservation practices under climate change in the Gorganroud Basin, Iran. Clean - Soil, Air, Water. 45(8): 1700888. DOI: 10.1002/clen.201700288 .

382. Azari, M., H.R. Moradi, B. Saghafian and M. Faramarzi. 2013. Assessment of hydrological effects of climate change in Gourganroud River Basin. Journal of Water and Soil. 27(3): 573-547. URL: http://jm.um.ac.ir/index.php/jsw/article/view/26051.

383. Azari, M., H.R. Moradi, B. Saghafian and M. Faramarzi. 2016. Climate change impacts on streamflow and sediment yield in the North of Iran. Hydrological Sciences Journal. 61(1): 123-133. DOI: 10.1080/02626667.2014.967695 .

384. Azgin, S.T. and F.D. Celik. 2020. Evaluating surface runoff responses to land use changes in a data scarce basin: A case study in Palas Basin, Turkey. Water Resources. 47(5): 828-834. DOI: 10.1134/S0097807820050206 .

385. Azimi, M. and S. Mahzari. 2018. Simulation of the effects of different rangeland improvements scenarios on evapotranspiration of Gorganrud Watershed-Golestan. Iranian Journal of Range and Desert Research. 25(1): 129-139. DOI: 10.22092/ijrdr.2018.116231 .

386. Azimi, M., G.A. Heshmati, M. Farahpour, M. Faramarzi and K.C. Abbaspour. 2013. Modeling the impact of rangeland management on forage production of sagebrush species in arid and semi-arid regions of Iran. Ecological Modelling. 250: 1-44. DOI: 10.1016/j.ecolmodel.2012.10.017 .

387. Azimi, M., M. Barzali, M. Abdolhosseini and A. Lotfi. 2021. Examining the impact of rangeland condition on water conservation by using an integrated modelling approach. Land Degradation & Development. 32(13): 3711-3719. DOI: 10.1002/ldr.3830 .

388. Azimia, S., A.B. Dariane, S. Modanesi, B. Bauer-Marschallinger, R. Bindlish, W. Wagner and C. Massari. 2020. Assimilation of Sentinel 1 and SMAP – based satellite soil moisture retrievals into SWAT hydrological model: The impact of satellite revisit time and product spatial resolution on flood simulations in small basins. Journal of Hydrology. 581: 124367. DOI: 10.1016/j.jhydrol.2019.124367 .

389. Aznarez, C., P. Jimeno-Sáez, A. López-Ballesteros, J.P. Pacheco and J. Senent-Aparicio. 2021. Analysing the impact of climate change on hydrological ecosystem services in Laguna del Sauce (Uruguay) using the SWAT model and remote sensing data. Remote Sensing. 13(10): 2014. DOI: 10.3390/rs13102014 .

390. Azzellino, A., M. Carpani, S. Cevirgen, C. Giupponi, P. Parati, F. Ragusa and R. Salvetti. 2013. Managing the nutrient loads of the Venice Lagoon Watershed: Are the loads external to the watershed relevant under the WFD River Basin District framework? Journal of Coastal Research. SI65: 25-30. DOI: 10.2112/SI65-005.1 .

391. Azzellino, A., S. Çevirgen, C. Giupponi, P. Parati, F. Ragusa and R. Salvetti. 2015. SWAT meta-modeling as support of the management scenario analysis in large watersheds. Water Science and Technology. 72(12): 2103-2111. DOI: 10.2166/wst.2015.430 .

392. B. 2020. Assessment of hydrological response in Subarnarekha River Basin under anticipated climate change scenarios. Global Nest Journal. 22(2): 207-219. DOI: 10.30955/gnj.003191 .

393. Ba, W., P. Du, T. Liu, A. Bao, M. Luo, M. Hassan and C. Qin. 2018. Simulating hydrological responses to climate change using dynamic and statistical downscaling methods: A case study in the Kaidu River Basin, Xinjiang, China. Journal of Arid Land. 10(6): 905–920. DOI: 10.1007/s40333-018-0068-0 .

394. Ba, W., P. Du, T. Liu, A. Bao, X. Chen, J. Liu and C. Qin. 2020. Impacts of climate change and agricultural activities on water quality in the Lower Kaidu River Basin, China. Journal of Geographical Sciences. 30(1): 164-176. DOI: 10.1007/s11442-020-1721-z .

395. Babaei, H., M. Nazari-Sharabian, M. Karakouzian and S. Ahmad. 2019. Identification of critical source areas (CSAs) and evaluation of best management practices (BMPs) in controlling eutrophication in the Dez River Basin. Environments. 6: 20. DOI: 10.3390/environments6020020 .

396. Babaei, N., M. Shourian and A. Moridi. 2021. Estimating evapotranspiration values in river basin scale using SWAT model and SEBAL Algorithm. Iranian Journal of Soil and Water Research. 54(9): 719-730. DOI: 10.22059/ijswr.2020.300306.668567 .

397. Babaei, N., M. Shourian and A. Moridi. 2021. Estimating evapotranspiration values in river basin scale using SWAT model and SEBAL algorithm. Iranian Journal of Soil and Water Research. 52(1): 175-194. DOI: 10.22059/ijswr.2020.300306.668567 .

398. Babaeian, F., M. Delavar, S. Morid and R. Srinivasan. 2021. Robust climate change adaptation pathways in agricultural water management. Agricultural Water Management. 252: 106904. DOI: 10.1016/j.agwat.2021.106904 .

399. Babar, S. and H. Ramesh. 2015. Streamflow response to land use-land cover change over the Nethravathi River Basin, India. Journal of Hydrologic Engineering. 20(10). DOI: 10.1061/(ASCE)HE.1943-5584.0001177 .

400. Babbar-Sebens, M., R. Barr, L.Tedesco and M. Anderson. 2013. Spatial identification and optimization of upland wetlands in agricultural watersheds. Ecological Engineering. 52: 130-142. DOI: 10.1016/j.ecoleng.2012.12.085 .

401. Babbar-Sebens, M., S. Mukhopadhyay, V.B. Singh and A.D. Piemonti. 2015. A web-based software tool for participatory optimization of conservation practices in watersheds. Environmental Modelling & Software. 69: 111-127. DOI: 10.1016/j.envsoft.2015.03.011 .

402. Babel, M.S., B. Shrestha and S.R. Perret. 2011. Hydrological impact of biofuel production: A case study of the Khlong Phlo Watershed in Thailand. Agricultural Water Management. 101(1): 8-26. DOI: 10.1016/j.agwat.2011.08.019 .

403. Babel, M.S., M.B. Gunathilake and M.K. Jha. 2021. Evaluation of ecosystem-based adaptation measures for sediment yield in a tropical watershed in Thailand. Water. 13(19): 2767. DOI: 10.3390/w13192767 .

404. Babur M., S. Shrestha, B. Bhatta, A. Datta and H. Ullah. 2020. Integrated assessment of extreme climate and landuse change impact on sediment yield in a mountainous transboundary watershed of India and Pakistan. Journal of Mountain Science. 17(3): 624-640. DOI: 10.1007/s11629-019-5547-z .

405. Babur, M., M.S. Babel, S. Shrestha, A. Kawasaki and N.K. Tripathi. 2016. Assessment of climate change impact on reservoir inflows using multi climate-models under RCPs—The case of Mangla Dam in Pakistan. Water. 8(9): 389. DOI: 10.3390/w8090389 .

406. Bacopoulos, P., Y. Tang, D. Wang and S.C. Hagen. 2017. Integrated hydrologic-hydrodynamic modeling of estuarine-riverine flooding: 2008 Tropical Storm Fay. Journal of Hydrologic Engineering. 22(8): 04017022. DOI: 10.1061/(ASCE)HE.1943-5584.0001539 .

407. Bacu, V., D. Mihon, T. Stefanut, D. Rodila and D. Gorgan. 2013. Calibration of SWAT hydrological models in a distributed environment using the gSWAT application. International Journal of Advanced Computer Science and Applications. EnviroGRIDS special Issue: 66-74. URL: http://thesai.org/Publications/ViewIssue?volume=3&issue=3&code=SpecialIssue.

408. Bae, D.-H., I.-W. Jung and D.P. Lettenmaier. 2011. Hydrologic uncertainties in climate change from IPCC AR4GCM simulations of the Chungju Basin, Korea. Journal of Hydrology. 401(1-2): 90-105. DOI: 10.1016/j.jhydrol.2011.02.012 .

409. Baek, S.S., J. Jeon, H. Lee, J. Park and K.H. Cho. 2019. Investigating influence of hydrological regime on organic matters characteristic in a Korean Watershed. Water. 11(3). DOI: 10.3390/w11030512 .

410. Baffaut, C. and A. Sadeghi. 2010. Bacteria modeling with SWAT for assessment and remediation studies: A review. Transactions of the ASABE. 53(5): 1585-1594. DOI: 10.13031/2013.34907 .

411. Baffaut, C. and V.W. Benson. 2009. Modeling flow and pollutant transport in a karst watershed with SWAT. Transactions of the ASABE. 52(2): 469-479. DOI: 10.13031/2013.26840 .

412. Baffaut, C., E.J. Sadler, F. Ghidey and S.H. Anderson. 2015. Long-term agroecosystem research in the Central Mississippi River Basin: SWAT simulation of flow and water quality in the Goodwater Creek Experimental Watershed. Journal of Environmental Quality. 44: 84-96. DOI: 10.2134/jeq2014.02.0068 .

413. Baffaut, C., S.M. Dabney, M.D. Smolen, M.A. Youssef, J.V. Bonta, M.L. Chu, J.A. Guzman, V.S. Shedekar, M.K. Jha and J.G. Arnold. 2015. Hydrologic and water quality modeling: Spatial and temporal considerations. Transactions of the ASABE. 58(6): 1661-1680. DOI: 10.13031/trans.58.10714 .

414. Bahati, H.K., A. Ogenrwoth and J.I. Sempewo. 2021. Quantifying the potential impacts of land-use and climate change on hydropower reliability of Muzizi Hydropower Plant, Uganda. Journal of Water and Climate Change. 12(6): 2526-2554. DOI: 10.2166/wcc.2021.273 .

415. Bahattacharjee, N.V., P. Ranjan, A. Mandal and E.W. Tollner. 2019. A history matching approach for calibrating hydrological models. Environmental and Ecological Statistics. 26: 87-105. DOI: 10.1007/s10651-019-00420-9 .

416. Bai, J., Z. Shen and T. Yan. 2016. Effectiveness of vegetative filter strips in abating fecal coliform based on modified soil and water assessment tool. International Journal of Environmental Science and Technology. 13(7): 1723-1730. DOI: 10.1007/s13762-016-1011-6 .

417. Bai, J., Z. Shen and T. Yan. 2017. A comparison of single- and multi-site calibration and validation: A case study of SWAT in the Miyun Reservoir watershed, China. Frontiers in Earth Science. 11(3): 592–600. DOI: 10.1007/s11707-017-0656-x .

418. Bai, J., Z. Shen, T. Yan, J. Qui and Y. Li. 2017. Predicting fecal coliform using the interval-to-interval approach and SWAT in the Miyun watershed, China. Environmental Science and Pollution Research. 24(18): 15462–15470. DOI: 10.1007/s11356-017-9101-7 .

419. Bai, J., Z. Zhou, Y. Zou, B. Pulatov and K.H.M. Siddique. 2021. Watershed drought and ecosystem services: Spatiotemporal characteristics and gray relational analysis. International Journal of Geo-Information. 10(2): 43(2). DOI: 10.3390/ijgi10020043 .

420. Bailey, R., H. Rathjens, K. Bieger, I. Chaubey and J. Arnold. 2017. SWATMOD-PREP: Graphical user interface for preparing coupled SWAT-MODFLOW simulations. Journal of the American Water Resources Association. 53(2): 400-410. DOI: 10.1111/1752-1688.12502 .

421. Bailey, R.T., K. Bieger, J.G. Arnold and D.D. Bosch. 2020. A new physically-based spatially-distributed groundwater flow module for SWAT+. Hydrology. 7(4): 75. DOI: 10.3390/hydrology7040075 .

422. Bailey, R.T., K. Bieger, L. Flores and M. Tomer. 2021. Evaluating the contribution of subsurface drainage to watershed water yield using SWAT+ with groundwater modeling. Science of the Total Environment. 802: 149962. DOI: 10.1016/j.scitotenv.2021.149962 .

423. Bailey, R.T., S. Abbas, J. Arnold, M. White, J. Gao and N. Čerkasova. 2023. Augmenting the National Agroecosystem Model with physically based spatially distributed groundwater modeling. Environmental Modelling & Software. 160: 105589. DOI: 10.1016/j.envsoft.2022.105589 .

424. Bailey, R.T., S. Park, K. Bieger, J.G. Arnold and P.M. Allen. 2020. Enhancing SWAT+ simulation of groundwater flow and groundwater-surface water interactions using MODFLOW routines. Environmental Modelling & Software. 126: 104660. DOI: 10.1016/j.envsoft.2020.104660 .

425. Bailey, R.T., S. Tavakoli-Kivi and X. Wei. 2019. A salinity module for SWAT to simulate salt ion fate and transport at the watershed scale. Hydrology and Earth System Sciences. 23(7): 3155-3174. DOI: 10.5194/hess-23-3155-2019 .

426. Bailey, R.T., T.C. Wible, M. Arabi, R.M. Records and J. Ditty. 2016. Assessing regional-scale spatio-temporal patterns of groundwater-surface water interactions using a coupled SWAT-MODFLOW model. Hydrological Processes. 30(23): 4420–4433. DOI: 10.1002/hyp.10933 .

427. Bajracharya, A.R., S.R. Bajracharya, A.B. Shrestha and S.B. Maharjan. 2018. Climate change impact assessment on the hydrological regime of the Kaligandaki Basin, Nepal. Science of the Total Environment. 625: 837-848. DOI: 10.1016/j.scitotenv.2017.12.332 .

428. Bajwa, S.G. and V. Vibhava. 2009. A distributed artificial neural network model for watershed-scale rainfall-runoff modeling. Transactions of the ASABE. 52(5): 813-823. URL: http://www.cabdirect.org/abstracts/20093231125.html?freeview=true.

429. Bakanlığı, T. ve O., S.Y.G. Müdürlüğü and Y. Ankara. 2021. Evaluation of climate change impacts on runoff and sediment at the basin scale: Yuvacık Dam Lake Basin. Journal of Geological Engineering. 45: 129-154. DOI: 10.24232/jmd.941528 .

430. Baker, T. and S.N. Miller. 2013. Using the Soil and Water Assessment Tool (SWAT) to assess land use impact on water resources in an East African watershed. Journal of Hydrology. 486: 100–111. DOI: 10.1016/j.jhydrol.2013.01.041 .

431. Baker, T.J., B. Cullen, L. Debevec and Y. Abebe. 2015. A socio-hydrological approach for incorporating gender into biophysical models and implications for water resources research. Applied Geography. 62: 325-338. DOI: 10.1016/j.apgeog.2015.05.008 .

432. Bakhtiar, J. Hadihardaja and I.K Hadihardaja. 2013. Pengaruh curah hujan rata-rata tahunan terhadap indeks erosi dan umur waduk pada DAS Citarum Hulu. Jurnal Media Komunikasi Teknik Sipil. 19(6): 41-54. URL: https://ejournal.undip.ac.id/index.php/mkts/article/view/7834.

433. Bakken, T.H., M. Szomolanyi, A. Lazar, T. Tjomsland and S.A. Borgvang. 2009. Simulation of nutrient reduction scenarios with three different models. Does the selection of model affect the recommended set of measures? International Journal of River Basin Management. 7(1): 15-22. DOI: 10.1080/15715124.2009.9635366 .

434. Bal, M., A.K. Dandpat and B. Naik. 2021. Hydrological modeling with respect to impact of land-use and land-cover change on the runoff dynamics in Budhabalanga River Basing using ArcGIS and SWAT model. Remote Sensing Applications: Society and Environment. 23: 100527. DOI: 10.1016/j.rsase.2021.100527 .

435. Balathandayutham, K. and C. Mayilswami. 2014. A semi-distributed water balance model for Walayar Sub basin using SWAT model. International Journal of Agricultural Engineering. 7(1): 198-202. URL: http://www.researchjournal.co.in/online/IJAE/IJAE-7-1-2014-2.htm.

436. Balcha, S.K., A.A. Awass, T.A. Hulluka, G.T. Ayele and A. Bantider. 2022. Hydrological simulation in a rift-bounded lake system and implication of water abstraction: Central Rift Valley Lakes Basin, Ethiopia. Water. 14(23): 3929. DOI: 10.3390/w14233929 .

437. Balcha, S.K., A.A. Awass, T.A. Hulluka, A. Bantider and G.T. Ayele. 2023. Assessment of future climate change impact on water balance components in Central Rift Valley Lakes Basin, Ethiopia. Journal of Water and Climate Change. 14(1): 175-199. DOI: 10.2166/wcc.2022.249 .

438. Baldan, D., B. Mehdi, E. Feldbacher, M. Piniewski, C. Hauer and T. Hein. 2021. Assessing multi-scale effects of natural water retention measures on in-stream fine bed material deposits with a modeling cascade. Journal of Hydrology. 594: 125702. DOI: 10.1016/j.jhydrol.2020.125702 .

439. Baljeet, K., N.K. Shrestha, P. Daggupati, R. Rudra, P.K. Goel, R. Shukla and N. Allataifeh. 2019. Water Security Assessment of the Grand River Watershed in Southwestern Ontario, Canada. Sustainability. 11(7): 1883. DOI: 10.3390/su11071883 .

440. Baltokoski, V., M.H.F. Tavares, R.E. Machado and M.P. de Oliveira. 2010. Model calibration for flow rate and total phosphorous export simulations in the watersheds of the Rivers Conrado and Pinheiro, Pato Branco (PR). Revista Brasileira de Ciência do Solo. 34: 253-261. DOI: 10.1590/S0100-06832010000100026 .

441. Bandi, A.S., S. Meshapam and P. Deva. 2019. A geospatial approach to flash flood hazard mapping in the city of Warangal, Telangana, India. Environmental & Socio-economic Studies. 7(3): 1-13. DOI: 10.2478/environ-2019-0013 .

442. Bannwarth, M.A., C. Grovermann, P. Schreinemachers, J. Ingwersen, M. Lamers, T. Berger and T. Streck. 2016. Non-hazardous pesticide concentrations in surface waters: An integrated approach simulating application thresholds and resulting farm income effects. Journal of Environmental Management. 165: 298-312. DOI: 10.1016/j.jenvman.2014.12.001 .

443. Bannwarth, M.A., C. Hugenschmidt, W. Sangchan, M. Lamers, J. Ingwersen, A.D. Ziegler and T. Streck. 2015. Simulation of stream flow components in a mountainous catchment in northern Thailand with SWAT, using the ANSELM calibration approach. Hydrological Processes. 29(6): 1340-1352. DOI: 10.1002/hyp.10268 .

444. Bannwarth, M.A., W. Sangchan, C. Hugenschmidt, M. Lamers, J. Ingwersen, A.D. Ziegler and T. Streck. 2014. Pesticide transport simulation in a tropical catchment by SWAT. Environmental Pollution. 191: 70-79. DOI: 10.1016/j.envpol.2014.04.011 .

445. Bar, R., E. Rouholahnedjad, K. Rahman, K.C. Abbaspour and A. Lehmann. 2015. Climate change and agricultural water resources: A vulnerability assessment of the Black Sea catchment. Environmental Science and Policy. 46: 57-69. DOI: 10.1016/j.envsci.2014.04.008 .

446. Barkey, R. A., M. F. Mappiasse and M. Nursaputra. 2017. Model of climate and land-use changes impact on water security in Ambon City, Indonesia. Geoplanning: Journal of Geomatics and planning. 4(1): 97-108. DOI: 10.14710/geoplanning.4.1.97-108 .

447. Bärlund, I. and T. Kirkkala. 2008. Examining a model and assessing its performance in describing nutrient and sediment transport dynamics in a catchment in southwestern Finland. Boreal Environment Research. 13(3): 195-207. URL: http://cat.inist.fr/?aModele=afficheN&cpsidt=20471109.

448. Bärlund, I., T. Kirkkala, O. Malve, and J. Kämäri. 2007. Assessing SWAT model performance in the evaluation of management actions for the implementation of the Water Framework Directive in a Finnish catchment. Environmental Modelling & Software. 22(5): 719-724. DOI: 10.1016/j.envsoft.2005.12.030 .

449. Barnhart, B.L., G.W. Whittaker and D.L. Ficklin. 2014. Improved stream temperature simulations in SWAT using NSGA-II for automatic multi-site calibration. Transactions of the ASABE. 57(2): 517-530. DOI: 10.13031/trans.57.10472 .

450. Barnhart, B.L., H.E. Golden, J.R. Kasprzyk, J.J. Pauer, C.E. Jones, K.A. Sawicz, N. Hoghooghi, M. Simon, R.B. McKane, P.M. Mayer, A.N. Piscopo, D.L. Ficklin, J.J. Halama, P.B. Pettus and B. Rashleigh. 2018. Embedding co-production and addressing uncertainty in watershed modeling decision-support tools: Successes and challenges. Environmental Modelling & Software. 109: 368-379. DOI: 10.1016/j.envsoft.2018.08.025 .

451. Barreto-Martin, C., R. Sierra-Parada, D. Calderón-Rivera, A. Jaramillo-Londono and D. Mesa-Fernández. 2021. Spatio-temporal analysis of the hydrological response to land cover changes in the sub-basin of the Chicú River, Colombia. Heliyon. 7(7): e07358. DOI: 10.1016/j.heliyon.2021.e07358 .

452. Barron, J., E. Enfors, H. Cambridge and A.M. Moustapha. 2010. Coping with rainfall variability: Dry spell mitigation and implication on landscape water balances in small-scale farming systems in semi-arid Niger. Water Resources Development. 26(4): 543-559. DOI: 10.1080/07900627.2010.519519 .

453. Basheer, A.K., H. Lu, A. Omer, A.B. Ali and A.M.S. Abdelgader. 2016. Impacts of climate change under CMIP5 RCP scenarios on the streamflow in the Dinder River and ecosystem habitats in Dinder National Park, Sudan. Hydrology and Earth System Sciences. 20(4): 1331-1353. DOI: 10.5194/hess-20-1331-2016 .

454. Basirani, N., H. Karimi, A. Moghadamnia and H. Ebrahimi. 2015. Optimization and sensitivity analysis of the effective parameters in sediment yield based on SUFI2 algorithm (Case study: Doiraj River Basin, Iran). Journal of Science and Technology of Agriculture and Natural Resources. 19(72): 243-254. URL: http://jstnar.iut.ac.ir/browse.php?a_id=3079&sid=1&slc_lang=en.

455. Baskaran, L., H.I. Jager, P.E. Schweizer and R. Srinivasan. 2010. Progress toward evaluating the sustainability of switchgrass as a bioenergy crop using the SWAT model. Transactions of the ASABE. 53(5): 1547-1556. DOI: 10.13031/2013.34905 .

456. Basso, M., D. Serpa, J. Rocha, M.A.S. Martins, J. Keizer and D.C.S. Vierira. 2022. A modelling approach to evaluate land management options for recently burnt catchments. European Journal of Soil Science. 73(4): e13275. DOI: 10.1111/ejss.13275 .

457. Basso, M., D.C.S. Vieira, T.B. Ramos and M. Mateus. 2020. Assessing the adequacy of SWAT model to simulate postfire effects on the watershed hydrological regime and water quality. Land Degradation & Development. 31(5): 619-631. DOI: 10.1002/ldr.3476 .

458. Basso, M., M. Mateus, T.B. Ramos and D.C.S. Vieira. 2021. Potential post-fire impacts on a water supply reservoir: An integrated watershed-reservoir approach. Frontiers in Environmental Science. 9: 684703. DOI: 10.3389/fenvs.2021.684703 .

459. Basthoni, M.K.R., G. Halik and E. Hidayah. 2020. Analisis perubahan tata guna lahan terhadap debit banjir Sub-Sub DAS Keyang-Slahung-Tempuran (KST). Teras Jurnal . 10(2): 189-202. DOI: 10.29103/tj.v10i2.309 .

460. Basu, A.S., L.W. Gill, F. Pilla and B. Basu. 2022. Assessment of climate change impact on the annual maximum flood in an urban river in Dublin, Ireland. Sustainability. 14(8): 4670. DOI: 10.3390/su14084670 .

461. Basu, N.B., P.S.C. Rao, H.E. Winzeler, S. Kumar, P. Owens and V. Merwade. 2010. Parsimonious modeling of hydrologic responses in engineered watersheds: Structural heterogeneity versus functional homogeneity. Water Resources Research. 46(W04501): 1-16. DOI: 10.1029/2009WR007803 .

462. Batelis, S.-C. and I. Nalbantis. 2014. Potential effects of forest fires on streamflow in the Enipeas River basin, Thessaly, Greece. Environmental Processes. 1(1): 73-85. DOI: 10.1007/s40710-014-0004-z .

463. Baucke, A.S., A. Pinheiro and V. Kaufmann. 2019. Hydrossedimentological contribution of rural roads in river basins with small and medium properties. Brazilian Journal of Environmental Sciences. 53: 13-32. DOI: 10.5327/Z2176-947820190503 .

464. Bautista-Avalos, D., G. Cruz-Cardenas, R. Moncayo-Estrada, J.T. Silva Garcia and F. Estrada-Godoy. 2014. Aplicacion del modelo SWAT para evaluar la contaminacion por fuentes difusas en la subcuenca del lago de Chapala, Mexico. Revista Internacional de Contaminacion Ambiental. 30(3): 263-274. URL: http://www.revistas.unam.mx/index.php/rica/article/view/45548.

465. Bauwe A., P. Kahle and B. Lennartz. 2019. Evaluating the SWAT model to predict streamflow, nitrate loadings and crop yields in a small agricultural catchment. Advances in Geosciences. 48: 1-9. DOI: 10.5194/adgeo-48-1-2019 .

466. Bauwe, A., K.-U. Eckhardt and B. Lennartz. 2019. Predicting dissolved reactive phosphorus in tile-drained catchments using a modified SWAT model. Ecohydrology & Hydrobiology. 19(2): 198-209. DOI: 10.1016/j.ecohyd.2019.03.003 .

467. Bauwe, A., K.-U. Eckhardt and B. Lennartz. 2022. Potential of constructed wetlands to reduce nitrate pollution in agricultural catchments. Ecological Engineering. 178: 106597. DOI: 10.1016/j.ecoleng.2022.106597 .

468. Bauwe, A., P. Kahle and B. Lennartz. 2016. Hydrologic evaluation of the curve number and Green and Ampt infiltration methods by applying Hooghoudt and Kirkham tile drain equations using SWAT. Journal of Hydrology. 537: 311-321. DOI: 10.1016/j.jhydrol.2016.03.054 .

469. Bauwe, A., P. Kahle and B. Lennartz. 2019. Impact of filters to reduce phosphorus losses: Field observations and modelling tests in tile-drained lowland catchments. Water. 11(12): 2638. DOI: 10.3390/w11122638 .

470. Bauwe, A., S. Tiedemann, P. Kahle and B. Lennartz. 2017. Does the temporal resolution of precipitation input influence the simulated hydrological components employing the SWAT Model? Journal of the American Water Resources Association. 53(6): 997-1007. DOI: 10.1111/1752-1688.12560 .

471. Bawa, A., J.D. Perez-Gutierrez and S. Kumar. 2021. Simulating hydrological responses of integrated crop-livestock systems under future climate changes in an agricultural watershed. Journal of the American Water Resources Association. 57(3): 474-492. DOI: 10.1111/1752-1688.12908 .

472. Bayabil, H.K. and Y.T. Dile. 2020. Improving hydrologic simulations of a small watershed through soil data integration. Water. 12(10): 2763. DOI: 10.3390/w12102763 .

473. Bayat, M., H. Alizadeh and B. Mojaradi. 2022. SWAT_DA: Sequential multivariate data assimilation-oriented modification of SWAT. Water Resources Research. 58(10): e2022WR032397. DOI: 10.1029/2022WR032397 .

474. Bayat, M., H. Alizadeh and B. Mojaradi. 2023. Assimilation versus optimization for SWAT calibration: accuracy, uncertainty, and computational burden analysis. Water Supply. 23(3): 1189. DOI: 10.2166/ws.2023.055 .

475. Bayissa, Y., S. Maskey, T. Tadesse, S.J. van Andel, S., Moges, A. Van Griensven and D. Solomatine. 2018. Comparison of the performance of six drought indices in characterizing historical drought for the Upper Blue Nile Basin, Ethiopia. Geosciences. 8(3): 81. DOI: 10.3390/geosciences8030081 .

476. Beachum, C.E., M.J. Michel and J.H. Knouft. 2016. Differential responses of body shape to local and reach scale stream flow in two freshwater fish species. Ecology of Freshwater Fish. 25(3): 446-454. DOI: 10.1111/eff.12225 .

477. Becker, R., A. Koppa, S. Schulz, M. Usman, T. aus der Beek and C. Schüth. 2019. Spatially distributed model calibration of a highly managed hydrological system using remote sensing-derived ET data. Journal of Hydrology. 577: 123944. DOI: 10.1016/j.jhydrol.2019.123944 .

478. Beeram, S.N.R., P.V. Shahanas, S.K. Pramada and R. Thendiyath. 2023. Impact of change in land use/land cover and climate variables on groundwater recharge in a tropical river basin. Environment, Development, and Sustainability. DOI: 10.1007/s10668-023-03216-x .

479. Beeson, P.C., A.M. Sadeghi, M.W. Lang, M.D. Tomer and C.S.T. Daughtry. 2014. Sediment delivery estimates in water quality models altered by resolution and source of topographic data. Journal of Environmental Quality. 43(1): 26-36. DOI: 10.2134/jeq2012.0148 .

480. Beeson, P.C., P.C. Doraiswamy, A.M. Sadeghi, M. Di Luzio, M.D. Tomer, J.G. Arnold and C.S.T. Daughtry. 2011. Treatments of precipitation inputs to hydrologic models. Transactions of the ASABE. 54(6): 2011-2020. DOI: 10.13031/2013.40652 .

481. Begou, J.C., S. Jomaa, S. Benabdallah, P. Bazie, A. Afouda and M. Rode. 2016. Multi-Site validation of the SWAT model on the Bani catchment: Model performance and predictive uncertainty. Water. 8(5): 178. DOI: 10.3390/w8050178 .

482. Beharry, S.L., D. Gabriels, D. Lobo, D. Ramsewak and R.M. Clarke. 2021. Use of the SWAT model for estimating reservoir volume in the Upper Navet Watershed in Trinidad. SN Applied Sciences. 3(2): 163. DOI: 10.1007/s42452-021-04201-7 .

483. Behboudian, M. and R. Kerachian. 2021. Evaluating the resilience of water resources management scenarios using the evidential reasoning approach: The Zarrinehrud River Basin experience. Journal of Environmental Management. 284: 112025. DOI: 10.1016/j.jenvman.2021.112025 .

484. Behboudian, M., R. Kerachian and P. Pourmoghim. 2021. Evaluating the long-term resilience of water resources systems: Application of a generalized grade-based combination approach. Science of the Total Environment. 786: 147447. DOI: 10.1016/j.scitotenv.2021.147447 .

485. Behera, S. and R.K. Panda. 2006. Evaluation of management alternatives for an agricultural watershed in a sub-humid subtropical region using a physical process based model. Agriculture Ecosystems and Environment. 113(1-4): 62-72. DOI: 10.1016/j.agee.2005.08.032 .

486. Bekele, D., R. Srinivasan, J.-Y. Parlange. 2009. Hourly Analyses of Hydrological and Water Quality Simulations Using the ESWAT Model. Water Resources Management. 32(2): 303-324. DOI: 10.1007/s11269-008-9276-2 .

487. Bekele, D., T. Alamirew, A. Kebede, G. Zeleke and A.M. Melesse. 2019. Modeling climate change impact on the hydrology of Keleta Watershed in the Awash River Basin, Ethiopia. Environmental Modeling & Assessment. 24: 95-107. DOI: 10.1007/s10666-018-9619-1 .

488. Bekele, D., T. Alamirew, A. Kebede, G. Zeleke and A.M. Melesse. 2021. Modeling the impacts of land use and land cover dynamics on hydrological processes of the Keleta Watershed, Ethiopia. Sustainable Environment. 7(1). DOI: 10.1080/27658511.2021.1947632 .

489. Bekele, E., C. Lant, S. Soman and G. Misgna. 2013. The evolution and empirical estimation of ecological-economic production possibilities frontiers. Ecological Economics. 90: 1-9. DOI: 10.1016/j.ecolecon.2013.02.012 .

490. Bekele, E.G. and H.V. Knapp. 2010. Watershed modeling to assessing impacts of potential climate change on water supply availability. Water Resources Management. 24(13): 3299-3320. DOI: 10.1007/s11269-010-9607-y .

491. Bekele, E.G. and J.W. Nicklow. 2005. Multiobjective management of ecosystem services by integrative watershed modeling and evolutionary algorithms. Water Resources Research. 41(10): W10406. DOI: 10.1029/2005WR004090 .

492. Bekele, E.G. and J.W. Nicklow. 2007. Multi-objective automatic calibration of SWAT using NSGA-II. Journal of Hydrology. 341(3-4): 165-176. DOI: 10.1016/j.jhydrol.2007.05.014 .

493. Bekiaris, I.G., I.N. Panagopoulos and M.A. Minikou. 2005. Application of the SWAT (Soil and Water Assessment Tool) model in the Ronnea Catchment of Sweden. Global Nest Journal. 7(3): 252-257. DOI: 10.30955/gnj.000343 .

494. Belete, M.D. 2022. Strategic management of wetlands within DPSER framework: A case study at Cheleleka Wetland, Rift Valley Lakes Basin, Ethiopia. Ethiopian Journal of Engineering and Technology . 2(1): 26-42. URL: https://journals.hu.edu.et/hu-journals/index.php/ejet/ article/view/672.

495. Belmont, P., J.R. Stevens, J.A. Czuba, K. Kumarasamy and S.A. Kelly. 2016. Comment on ‘‘Climate and agricultural land use change impacts on streamflow in the upper midwestern United States’’ by Satish Gupta et al. Water Resources Research. 52(9): 7523–7528. DOI: 10.1002/2015WR018476 .

496. Benaman, J. and C.A. Shoemaker. 2004. Methodology for analyzing ranges of uncertain model parameters and their impact on total maximum daily load processes. Journal of Environmental Engineering. 130(6): 648-656. DOI: 10.1061/(ASCE)0733-9372(2004)130:6(648) .

497. Benaman, J. and C.A. Shoemaker. 2005. An analysis of high-flow sediment event data for evaluating model performance. Hydrological Processes. 19(3): 605-620. DOI: 10.1002/hyp.5608 .

498. Benaman, J., C.A. Shoemaker and D.A. Haith. 2005. Calibration and validation of soil and water assessment tool on an agricultural watershed in upstate New York. Journal of Hydrologic Engineering. 10(5): 363-374. DOI: 10.1061/(ASCE)1084-0699(2005)10:5(363) .

499. Benavides, F. and J.N. Veenstra. 2005. The impact of tropical deforestation on river chemical pollution. Global Nest Journal. 7(2): 180-187. DOI: 10.30955/gnj.000336 .

500. Benavides-Solorio, J. D., M.J. Gonzalez-Guillen, C. Lopez-Paniagua and J.R. Valdez-Lazalde. 2008. Water supply of the Tapalpa forestry watershed in Jalisco, focused to environmental services provision. Madera y Bosques. 14(2): 5-28. URL: http://www.scielo.org.mx/scielo.php?script=sci_abstract&pid=S1405-04712008000200002&lng=en&nrm=iso&tlng=en.

501. Benham, B.L., C. Baffaut, R.W. Zeckoski, K.R. Mankin, Y.A. Pachepsky, A.M. Sadeghi, K.M. Brannan, M.L. Soupir and M.J. Habersack. 2006. Modeling bacteria fate and transport in watersheds to support TMDLs. Transactions of the ASABE. 49(4): 987-1002. DOI: 10.13031/2013.21739 .

502. Benham, B.L., G. Yagow, I. Chaubey and K.R. Douglas-Mankin. 2011. Advances in watershed management: Modeling, monitoring, and assessment. Transactions of the ASABE. 54(6): 2167-2170. DOI: 10.13031/2013.40915 .

503. Bennett, M.E. and K.J. Tobin. 2013. The evolution of remotely sensed precipitation products for hydrological applications with a focus on the Tropical Rainfall Measurement Mission (TRMM). Journal of Environmental Hydrology. 21: 1-16. URL: http://www.hydroweb.com/journal-hydrology-2013-paper-10.html.

504. Bennour, A., L. Jia, M. Menenti, C. Zheng, Y. Zeng, B.A. Barnieh and M. Jiang. 2022. Calibration and validation of SWAT model by using hydrological remote sensing observables in the Lake Chad Basin. Remote Sensing. 14(6): 1511. DOI: 10.3390/rs14061511 .

505. Bera, S. and R. Maiti. 2021. Assessment of water availability with SWAT model: A study on Ganga River. Journal of the Geological Society of India. 97: 781-788. DOI: 10.1007/s12594-021-1760-9 .

506. Berezowski, T., M. Szczesniak, I. Kardel, R. Michalowski, T. Okruszko, A. Mezghani and M. Piniewski. 2016. CPLFD-GDPT5: High-resolution gridded daily precipitation and temperature data set for two largest Polish river basins. Earth System Science Data. 8(1): 127-139. DOI: 10.5194/essd-8-127-2016 .

507. Bergion, V., A. Lindhe, E. Sokolova and L. Rosén. 2021. Accounting for unexpected risk events in drinking water systems. Exposure and Health. 13(1): 15-31. DOI: 10.1007/s12403-020-00359-4 .

508. Bergion, V., E. Sokolova, J. Åström, A. Lindhe, K. Sörén and L. Rosén. 2017. Hydrological modelling in a drinking water catchment area as a means of evaluating pathogen risk reduction. Journal of Hydrology. 544: 74-85. DOI: 10.1016/j.jhydrol.2016.11.011 .

509. Berihun, M.L., A. Tsunekawa, N. Haregeweyn, Y.T. Dile, M. Tsubo, A.A. Fenta, D.T. Meshesha, K. Ebabu, D. Sultan and R. Srinivasan. 2020. Evaluating runoff and sediment responses to soil and water conservation practices by employing alternative modeling approaches. Science of the Total Environment. 747: 141118. DOI: 10.1016/j.scitotenv.2020.141118 .

510. Berihun, M.L., A. Tsunekawa, N. Haregeweyn, M. Tsubo, A.A. Fenta, K. Ebabu, D. Sultan and Y.T. Dile. 2022. Reduced runoff and sediment loss under alternative land capability-based land use and management options in a sub-humid watershed of Ethiopia. Journal of Hydrology: Regional Studies. 40: 100998. DOI: 10.1016/j.ejrh.2022.100998 .

511. Berihun, M.L., A. Tsunekawa, N. Haregeweyn, M. Tsubo, A.A. Fenta, K. Ebabu, H.K. Bayabil and Y.T. Dile. 2023. Predicting runoff and sediment responses to climate-resilient land use and management scenarios. Environmental Science and Pollution Research. 30(28): 72262-72283. DOI: 10.1007/s11356-023-27452-w .

512. Berkowitz, J.F., D.A. Schlea, C.M. VanZomeren and C.M.W. Boles. 2020. Coupling watershed modeling, public engagement, and soil analysis improves decision making for targeting P retention wetland locations. Journal of Great Lakes Research. 46(5): 1331-1339. DOI: 10.1016/j.jglr.2020.06.016 .

513. Bernini, A., R. Becker, O.D. Adeniyi, G. Pilla, S.H. Sadeghi and M. Maerker. 2023. Hydrological implications of recent droughts (2004-2022): A SWAT-based study in an ancient lowland irrigation area in Lombardy, Northern Italy. Sustainability. 15(24): 16771. DOI: 10.3390/su152416771 .

514. Besalatpour, A. M.A. Hajabbasi, S. Ayoubi and A. Jalalian. 2012. Identification and prioritization of critical sub-basins in a highly mountainous watershed using SWAT model. Eurasian Journal of Soil Science. 1(1): 58 - 63. URL: http://www.fesss.org/download/arsiv/GO3Y16FZ.pdf.

515. Besalatpour, A.A., Sh. Ayoubi, M.A. Hajabbasi and A. Jalalian. 2015. Calibration and validation of SWAT model using PSO algorithm for the simulation of runoff and sediment in a mountainous watershed with limited climate data. Electronic Journal of Soil Management and Sustainable Production. 4(4). URL: http://en.journals.sid.ir/ViewPaper.aspx?ID=466787.

516. Betrie, G.D., A. van Griensven, Y.A. Mohamed, I. Popescu, A.E. Mynett and S. Hummel. 2011. Linking SWAT and SOBEK using open modeling interface (OpenMI) for sediment transport simulation in the Blue Nile River Basin. Transactions of the ASABE. 54(5): 1749-1757. DOI: 10.13031/2013.39847 .

517. Betrie, G.D., Y.A. Mohamed, A. van Griensven and R. Srinivasan. 2011. Sediment management modelling in the Blue Nile Basin using SWAT model. Hydrology and Earth System Sciences. 15(3): 807-818. URL: http://swatmodel.tamu.edu/publications/peer-reviewed-publications/.

518. Bhanja, S.N. and J. Wang. 2020. Estimating influences of environmental drivers on soil heterotrophic respiration in the Athabasca River Basin, Canada. Environmental Pollution. 257: 113630. DOI: 10.1016/j.envpol.2019.113630 .

519. Bhanja, S.N. and J. Wang. 2021. Influence of environmental factors on autotrophic, soil and ecosystem respirations in Canadian boreal forest. Ecological Indicators. 125: 107517. DOI: 10.1016/j.ecolind.2021.107517 .

520. Bhanja, S.N., J. Wang and R. Bol. 2022. Soil CO2 emission largely dominates the total ecosystem CO2 emission at Canadian boreal forest. Frontiers in Environmental Science. 10: 898199. DOI: 10.3389/fenvs.2022.898199 .

521. Bhanja, S.N., J. Wang, J., N.K. Shrestha and X. Zhang. 2019. Modelling microbial kinetics and thermodynamic processes for quantifying soil CO2 emission. Atmospheric Environment. 209: 125-135. DOI: 10.1016/j.atmosenv.2019.04.014 .

522. Bhanja, S.N., J. Wang, N.K. Shrestha and X. Zhang. 2019. Microbial kinetics and thermodynamic (MKT) processes for soil organic matter decomposition and dynamic oxidation-reduction potential: Model descriptions and applications to soil N2O emissions. Environmental Pollution. 247: 812-823. DOI: 10.1016/j.envpol.2019.01.062 .

523. Bharati, L. and P. Jayakody. 2011. Hydrological impacts of inflow and land-use changes in the Gorai River catchment, Bangladesh. Water International. 36(3): 357-369. DOI: 10.1080/02508060.2011.586200 .

524. Bharati, L., P. Gurung and P. Jayakody. 2012. Hydrologic characterization of the Koshi Basin and the impact of climate change. Hydro Nepal: Journal of Water, Energy and Environment. April 2012: 18-22, 120. URL: http://www.iwmi.cgiar.org/offices/asia/south_asia/nepal/pdf/specia_issue_hn_bulletin_final_web.pdf.

525. Bharati, L., P. Gurung, L. Maharjan and U. Bhattarai. 2016. Past and future variability in the hydrological regime of the Koshi basin, Nepal. Hydrological Sciences Journal. 61(1): 75-93. DOI: 10.1080/02626667.2014.952639 .

526. Bharati, L., P. Gurung, P. Jayakody, V. Smakhtin and U. Bhattarai. 2014. The projected impact of climate chage on water availability and development in the Koshi Basin, Nepal. Mountain Research and Development. 34(2): 118-130. DOI: 10.1659/MRD-JOURNAL-D-1300096.1 .

527. Bhati, D.S., S.K. Dubey and D. Sharma. 2021. Application of satellite-based and observed precipitation datasets for hydrological simulation in the Upper Mahi River Basin of Rajasthan, India. Sustainability. 13(14): 7560. DOI: 10.3390/su13147560 .

528. Bhatt V.K., A.K. Tiwari and D.R. Sena. 2016. Application of SWAT model for simulation of runoff in micro watersheds of lower Himalayan region of India. Indian Journal of Soil Conservation. 44(2): 133-140. URL: http://indianjournals.com/ijor.aspx?target=ijor:ijsc&type=home.

529. Bhatta, B., S. Shrestha, P.K. Shrestha and R. Talchabhadel. 2019. Evaluation and application of a SWAT model to assess the climate change impact on the hydrology of the Himalayan river basin. Catena. 181: 104082. DOI: 10.1016/j.catena.2019.104082 .

530. Bhatta, B., S. Shrestha, P.K. Shrestha and R. Talchabhadel. 2020. Modelling the impact of past and future climate scenarios on streamflow in a highly mountainous watershed: A case study in the West Seti River Basin, Nepal. Science of the Total Environment. 740: 140156. DOI: 10.1016/j.scitotenv.2020.140156 .

531. Bhattacharya, R.K., N.D. Chatterjee and K. Das. 2020. Sub-basin prioritization for assessment of soil erosion susceptibility in Kangsabati, a plateau basin: A comparison between MCDM and SWAT models. Science of the Total Environment. 734: 139474. DOI: 10.1016/j.scitotenv.2020.139474 .

532. Bhattacharya, T., D. Khare and M. Arora. 2019. A case study for the assessment of the suitability of gridded reanalysis weather data for hydrological simulation in Beas River basin of north western Himalaya. Applied Water Science. 9: 110. DOI: 10.1007/s13201-019-0993-x .

533. Bhattacharyya, S. and J. Sanyal. 2019. Impact of different types of meteorological data inputs on predicted hydrological and erosive responses to projected land use changes. Journal of Earth System Science. 128: 60. DOI: 10.1007/s12040-019-1076-y .

534. Bhattarai, G., P. Srivastava, L. Marzen, D. Hite, and U. Hatch. 2008. Assessment of Economic and water quality impacts of land use change using a simple bioeconomic model. Journal of Environmental Management. 42(1): 122-131. DOI: 10.1007/s00267-008-9111-9 .

535. Bhattarai, S., P.B. Parajuli and F. To. 2023. Comparison of flood frequency at different climatic scenarios in forested coastal watersheds. Climate. 11(2): 41. DOI: 10.3390/cli11020041 .

536. Bhatti, A.Z., A.A. Farooque, N. Krouglicof, W. Peters, B. Acharya, Q. Li and M.S. Ahsan. 2021. Spatiotemporal hydrological analysis of streamflows and groundwater recharge for sustainable water management in Prince Edward Island, Canada. World Water Policy. 7(2): 253-282. DOI: 10.1002/wwp2.12065 .

537. Bhuvaneswari, K., V. Geethalakshmi, A. Lakshmanan, R. Srinivasan and N.U. Sekhar. 2013. Impact of El Niño/Southern Oscillation on hydrology and rice productivity in Cauvery basin, India: application of soil and water assessment tool. Weather and Climate Extremes. 2: 39-47. DOI: 10.1016/j.wace.2013.10.003 .

538. Bi, W., B. Weng, Z. Yuan, M. Ye, C. Zhang, Y. Zhao, D. Yan and T. Xu. 2018. Evolution characteristics of surface water quality due to climate change and LUCC under scenario simulations: A case study in the Luanhe River Basin. International Journal of Environmental Research and Public Health. 15(8): 1729. DOI: 10.3390/ijerph15081724 .

539. Bi, W., B. Weng, Z. Yuan, Y. Yang, T. Xu, D. Yan and J. Ma. 2019. Evolution of drought–flood abrupt alternation and its impacts on surface water quality from 2020 to 2050 in the Luanhe River Basin. International Journal of Environmental Research and Public Health. 16: 691. DOI: 10.3390/ijerph16050691 .

540. Bi, Z., Y. Zhang, P. Shi, X. Zhang, Z. Shan and L. Ren. 2021. The impact of land use and socio-economic factors on ammonia nitrogen pollution in Weihe River Watershed, China. Environmental Science and Pollution Research. 28(14): 17659-17679. DOI: 10.1007/s11356-020-11960-0 .

541. Bian, G., G. Wang, J. Chen, J. Zhang and M. Song. 2021. Spatial and seasonal variations of hydrological responses to climate and land-use changes in a highly urbanized basin of southeastern China. Hydrology Research. 52(2): 506-522. DOI: 10.2166/nh.2021.087 .

542. Bian, L. and S. Hu. 2007. Identifying components for interoperable process models using concept lattice and semantic reference system. International Journal of Geographical Information Science. 21(9): 1009-1032. DOI: 10.1080/13658810601169907 .

543. Biancamaria, S., M. Mballo, P. Le Moigne, J.M.S. Pérez, G. Espitalier-Noël, Y. Grusson, R. Cakir, V. Häfliger, F. Barathieu, M. Trasmonte, A. Boone, E Martin and S. Sauvage. 2019. Total water storage variability from GRACE mission and hydrological models for a 50,000 km2 temperate watershed: The Garonne River Basin (France). Journal of Hydrology: Regional Studies. 24: 100609. DOI: 10.1016/j.ejrh.2019.100609 .

544. Bieger, K., G. Hormann and N. Fohrer. 2012. Using residual analysis, auto- and cross-correlations to indentify key processes for the calibration of the SWAT model in a data scarce region. Advances in Geosciences. 31: 23-30. DOI: 10.5194/adgeo-31-23-2012 .

545. Bieger, K., G. Hormann and N. Fohrer. 2014. Simulation of streamflow and sediment with the SWAT model in a data scarce catchment in the Three Gorges Region, China. Journal of Environmental Quality. 43(1): 37-45. DOI: 10.2134/jeq2011.0383 .

546. Bieger, K., G. Hormann and N. Fohrer. 2015. Detailed spatial analysis of SWAT-simulated surface runoff and sediment yield in a mountainous watershed in China. Hydrological Sciences Journal. 60(5): 784-800. DOI: 10.1080/02626667.2014.965172 .

547. Bieger, K., G. Hörmann and N. Fohrer. 2015. The impact of land use change in the Xiangxi Catchment (China) on water balance and sediment transport. Regional Environmental Change. 15(3): 485-498. DOI: 10.1007/s10113-013-0429-3 .

548. Bieger, K., H. Rathjens, P.M. Allen and J.G. Arnold. 2015. Development and evaluation of bankfull hydraulic geometry relationships for the physiographic regions of the United States. Journal of the American Water Resources Association. 51(3): 842-858. DOI: 10.1111/jawr.12282 .

549. Bieger, K., J.G. Arnold, H. Rathjens, M.J. White, D.D. Bosch, P.M. Allen, M. Volk and R. Srinivasan. 2017. Introduction to SWAT+, a completely restructured version of the Soil and Water Assessment Tool. Journal of the American Water Resources Association. 53(1): 115–130. DOI: 10.1111/1752-1688.12482 .

550. Bieger, K., J.G. Arnold, H. Rathjens, M.J. White, D.D. Bosch and P.M. Allen. 2019. Representing the connectivity of upland areas to floodplains and streams in SWAT+. Journal of the American Water Resources Association. 55(3): 578-590. DOI: 10.1111/1752-1688.12728 .

551. Billah, K., T.B. Le and H.O. Sharif. 2021. Data- and model-based discharge hindcasting over a subtropical river basin. Water. 13(18): 2560. DOI: 10.3390/w13182560 .

552. Bilondi, M.P., K.C. Abbaspour and B. Ghahraman. 2013. Application of three different calibration-uncertainty analysis methods in a semi-distributed rainfall-runoff model application. Middle-East Journal of Scientific Research. 15(9): 1255-1263. URL: http://www.idosi.org/mejsr/mejsr15%289%2913.htm.

553. Bingner, R. L. 1996. Runoff simulated from Goodwin Creek watershed using SWAT. Transactions of the ASAE. 39(1): 85-90. DOI: 10.13031/2013.27483 .

554. Bingner, R.L., J. Garbrecht, J.G. Arnold and R. Srinivasan. 1997. Effect of watershed subdivision on simulation runoff and fine sediment yield. Transactions of the ASAE. 40(5): 1329‑1335. DOI: 10.13031/2013.21391 .

555. Biru, Z. and D. Kumar. 2018. Calibration and validation of SWAT model using stream flow and sediment load for the Mojo Watershed, Ethiopia. Sustainable Water Resources Management. 9: 937-949. DOI: 10.1007/s40899-017-0189-1 .

556. Bitew, M.M. and M. Gebremichael. 2011. Assessment of satellite rainfall products for streamflow simulation in medium watersheds of the Ethiopian highlands. Hydrology and Earth System Sciences. 15: 1147-1155. DOI: 10.5194/hess-15-1147-2011 .

557. Bitew, M.M., M. Gebremichael, L.T. Ghebremichael and Y.A. Bayissa. 2012. Evaluation of high-resolution satellite rainfall products through streamflow simulation in a hydrological modeling of a small mountainous watershed in Ethiopia. Journal of Hydrometeorology. 13(1): 338-350. DOI: 10.1175/2011JHM1292.1 .

558. Bittencourt, S. and E.F. Gobbi. 2006. Maximum allowable phosphorus load in the Piraquara II Reservoir, a TMDL process application. Revista Brasileira de Ciência do Solo. 30(3): 595-603. DOI: 10.1590/S0100-06832006000300019 .

559. Bizimana, J.C. and J.W. Richardson. 2019. Agricultural technology assessment for smallholder farms: An analysis using a farm simulation model. Computers and Electronics in Agriculture. 156: 406-425. DOI: 10.1016/j.compag.2018.11.038 .

560. Blainski, E., E. Acosta, P.C. do Prado Nogueira. 2017. Calibration and validation of the SWAT model for hydrologic simulation in a river basin located in the north coast of Santa Catarina. Revista Ambiente & Água. 12(2): 226-236. DOI: 10.4136/ambi-agua.1951 .

561. Blainski, E., E.A.A. Porras, L.H.P. Garbossa and A. Pinheiro. 2017. Simulation of land use scenarios in the Camboriú River Basin using the SWAT model. Revista Brasileira de Recursos Hidricos. 22: e33. DOI: 10.1590/2318-0331.011716110 .

562. Blainski, É., F.A. Silveira, G. Conceição, L.H. Pospissil Garbossa and L.F. Vianna. 2011. Estimated soil use impacts in the Ararangua river basin through the use of the hydrologic modeling technique. Agropecuária Catarinense. 29(1): 65. URL: http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CB4QFjAA&url=http%3A%2F%2Fintranetdoc.epagri.sc.gov.br%2Fproducao_tecnico_cientifica%2FDOC_4003.pdf&ei=eb3XVLiDB4r8yQTns4HgDQ&usg=AFQjCNH6wZx1_0IzlyCaZf_GRj6GNA_6tA&bvm=bv.85464276,d.aWw.

563. Blanc, E., K. Strzepek, A. Schlosser, H. Jacoby, A. Gueneau, C. Fant, S. Rausch and J. Reilly. 2014. Modeling U.S. water resources under climate change. Earth's Future. 2(4): 197-224. DOI: 10.1002/2013EF000214 .

564. Blanco-Gómez, P., P. Jimeno-Sáez, J. Senent-Aparicio and J. Pérez-Sánchez. 2019. Impact of climate change on water balance components and droughts in the Guajoyo River Basin (El Salvador). Water. 11(11): 2360. DOI: 10.3390/w11112360 .

565. Bliznyuk, N., D. Ruppert and C.A. Shoemaker. 2012. Local derivative-free approximation of computationally expensive posterior densities. Journal of Computational and Graphical Statistics. 21(2): 476-495. DOI: 10.1080/10618600.2012.681255 .

566. Blount, J.D., L.E.K. Lenoch and F.A. Fitzpatrick. 2022. Stream corridor and upland sources of fluvial sediment and phosphorus from a mixed urban-agricultural tributary to the Great Lakes. Journal of Great Lakes Research. 48(6): 1536-1549. DOI: 10.1016/j.jglr.2022.08.024 .

567. Bo, H., X. Dong, Z. Li, G. Reta, L. Li and C. Wei. 2022. Comparison of two versions of SWAT models in predicting the streamflow in the Xuanmiaoguan Reservior Catchment. Nature Environment and Pollution Technology. 21(2): 529-541. DOI: 10.46488/NEPT.2022.v21i02.011 .

568. Bo, H., X. Dong, Z. Li, X. Hu, G. Reta, C. We, and B. Su. 2019. Impacts of climate change and human activities on runoff variation of the intensive phosphate mined Huangbaihe River Basin, China. Water. 11(10): 2039. DOI: 10.3390/w11102039 .

569. Bobal, P., B. Sir, J. Richnavsky and J. Unucka. 2010. Analysis of the impact of land cover spatial structure change on the erosion processes in the catchment. Acta Montanistica Slovaca. 15(4): 269-276. URL: http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CCAQFjAA&url=http%3A%2F%2Factamont.tuke.sk%2Fpdf%2F2010%2Fn4%2F2bobal.pdf&ei=yoJOVOD9MsuAygSHn4HAAw&usg=AFQjCNF-kz7eJ7UduSeFzj0E2oCwY4Gekg.

570. Bochenek, W. and L. Wiejaczka. 2023. Current and future variability of water supply to a mountain reservoir (Polish Carpathians). Stochastic Environmental Research and Risk Assessment. 37(12): 5051–5069. DOI: 10.1007/s00477-023-02527-9 .

571. Bodrud-Doza, Md., W. Yang, R. de Q. Miranda, A. Martin, B. Vries, and E.D.G. Fraser. 2023. Towards implementing precision conservation practices in agricultural watersheds: A review of the use and prospects of spatial decision support systems and tools. Science of the Total Environment. 905: 167118. DOI: 10.1016/j.scitotenv.2023.167118 .

572. Boithias, L., R. Srinivasan, S. Sauvage, F. Macary and J.M. Sanchez-Perez. 2014. Daily nitrate losses: Implication on long-term river quality in an intensive agricultural catchment of south-western France. Journal of Environmental Quality. 43(1): 46-54. DOI: 10.2135/jeq2011.0367 .

573. Boithias, L., S. Sauvage, A. Lenica, H. Roux, K.C. Abbaspour, K. Larnier, D. Dartus and J.M. Sánchez-Pérez. 2017. Simulating flash floods at hourly time-step using the SWAT model. Water. 9(12): 929. DOI: 10.3390/w9120929 .

574. Boithias, L., S. Sauvage, G. Merlina, S. Jean, J.-L. Probst and J.M. Sánchez Pérez. 2014. New insight into pesticide partition coefficient Kd for modelling pesticide fluvial transport: Application to an agricultural catchment in south-western France. Chemosphere. 99: 134-142. DOI: 10.1016/j.chemosphere.2013.10.050 .

575. Boithias, L., S. Sauvage, L. Taghavi, G. Merlina, J.-L. Probst and J.M.S. Perez. 2011. Occurrence of metolachlor and trifluralin losses in the Save river agricultural catchment during floods. Journal of Hazardous Materials. 196: 210-219. DOI: 10.1016/j.jhazmat.2011.09.012 .

576. Boithias, L., S. Sauvage, R. Srinivasan, O. Leccia and J.M. Sánchez Pérez. 2014. Application date as a controlling factor of pesticide transfers to surface water during runoff events. Catena. 119: 97-103. DOI: 10.1016/j.catena.2014.03.013 .

577. Bojanowski, D., P. Orlińska-Woźniak, P. Wilk and E. Szalińska. 2022. Estimation of nutrient loads with the use of mass-balance and modelling approaches on the Wełna River Catchment example (central Poland). Scientific Reports. 12: 13052. DOI: 10.1038/s41598-022-17270-4 .

578. Bojorquez-Tapia, L.A., L. Luna-Gonzalez, G.M. Cruz-Bello, P. Gomez-Priego, L. Juarez-Marusich and I. Rosas-Perez. 2011. Regional environmental assessment for multiagency policy making: implementing an environmental ontology through GIS-MCDA. Environment and Planning B: Planning and Design. 38: 539-563. URL: http://envplan.com/abstract.cgi?id=b36129.

579. Boles, C.M.W, J.R. Frankenberger and D.N. Moriasi. 2015. Tile drainage simulation in SWAT2012: Parameterization and evaluation in an Indiana watershed. Transactions of the ASABE. 58(5): 1201-1213. DOI: 10.13031/trans.58.10589 .

580. Bolster, C.H., A. Forsberg, A. Mittelstet, D.E. Radcliffe, D. Storm, J. Ramirez-Avila, A.N. Sharpley and D. Osmond. 2017. Comparing an annual and a daily time-step model for predicting field-scale phosphorus loss. Journal of Environmental Quality. 46(6): 1314-1322. DOI: 10.2134/jeq2016.04.0159 .

581. Boluwade, A. and C. Madramootoo. 2013. Modeling the impacts of spatial heterogeneity in the Castor Watershed on runoff, sediment, and phosphorus loss using SWAT: I. Impacts of spatial variability of soil properties. Water, Air, and Soil Pollution. 224(1692): 1-16. DOI: 10.1007/s11270-013-1692-0 .

582. Boluwade, A. and C. Madramootoo. 2015. Determining the influence of land use change and soil heterogeneities on discharge, sediment and phosphorus. Journal of Environmental Informatics. 25(2): 126-135. URL: http://www.iseis.org/jei/abstract.asp?no=201500290.

583. Bond, J., E. Défranoux and Z. Makkeb. 2020. Discussion of “Using the SWAT Model in Intensively Managed Irrigated Watersheds: Model Modification and Application” by Xiaolu Wei, Ryan T. Bailey, and Ali Tasdighi. Journal of Hydraulic Engineering. 25(6): 07020006. URL: https://ascelibrary.org/doi/abs/10.1061/%28ASCE%29HE.1943-5584.0001930.

584. Bonumá, N.B., C.G. Rossi, J.G. Arnold, J.M. Reichert and E.M.C.D. Paiva. 2013. Hydrology evaluation of the Soil and Water Assessment Tool considering measurement uncertainty for a small watershed in southern Brazil. Applied Engineering in Agriculture. 29(2): 189-200. DOI: 10.13031/2013.42651 .

585. Bonumá, N.B., C.G. Rossi, J.G. Arnold, J.M. Reichert, J.P. Minella, P.M. Allen and M. Volk. 2014. Simulating landscape sediment transport capacity by using a modified SWAT model. Journal of Environmental Quality. 43(1): 55-66. DOI: 10.2134/jeq2012.0217 .

586. Boongaling, C.G.K., D.V. Faustino-Eslava and F.P. Lansigan. 2018. Modeling land use change impacts on hydrology and the use of landscape metrics as tools for watershed management: The case of an ungauged catchment in the Philippines. Land Use Policy. 72: 116-128. DOI: 10.1016/j.landusepol.2017.12.042 .

587. Boonwichai, S., S. Shrestha, P. Pradhan, M.S. Babel and A. Datta. 2021. Adaptation strategies for rainfed rice water management under climate change in Songkhram River Basin, Thailand. Journal of Water and Climate Change. 12(6): 2182-2198. DOI: 10.2166/wcc.2021.220 .

588. Boorman, D.B. 2003. Climate, Hydrochemistry and Economics of Surface-water Systems (CHESS): Adding a European dimension to the catchment modelling experience developed under LOIS. Science of the Total Environment. 314-316: 411-437. DOI: 10.1016/S0048-9697(03)00066-4 .

589. Borah, D. K., J. G. Arnold, M. Bera; E. C. Krug and X. Liang. 2007. Storm event and continuous hydrologic modeling for comprehensive and efficient watershed simulations. Journal of Hydrologic Engineering. 12: 605-616. DOI: 10.1061/(ASCE)1084-0699(2007)12:6(605) .

590. Borah, D.K. and M. Bera. 2003. Watershed-scale hydrologic and nonpoint-source pollution models: Review of mathematical bases. Transactions of the ASAE. 46(6): 1553-1566. DOI: 10.13031/2013.15644 .

591. Borah, D.K. and M. Bera. 2004. Watershed-scale hydrologic and nonpoint-source pollution models: Review of applications. Transactions of the ASAE. 47(3): 789-803. DOI: 10.13031/2013.16110 .

592. Borah, D.K., E. Ahmadisharaf, G. Padmanabhan, S. Imen and Y.M. Mohamoud. 2019. Watershed models for development and implementation of total maximum daily loads. Journal of Hydrologic Engineering. 24(1): 03118001. DOI: 10.1061/(ASCE)HE.1943-5584.0001724 .

593. Borah, D.K., G. Yagow, A. Saleh, P.L. Barnes, W. Rosenthal, E.C. Krug and L.M. Hauck. 2006. Sediment and nutrient modeling for TMDL development and implementation. Transactions of the ASABE. 49(4): 967-986. DOI: 10.13031/2013.21742 .

594. Bormann, H., L. Breuer, T. Graff, and J. A. Huisman. 2007. Analysing the effects of soil properties changes associated with land use changes on the simulated water balance: A comparison of three hydrological catchment models for scenario analysis. Ecological Modelling. 209(1): 29-40. DOI: 10.1016/j.ecolmodel.2007.07.004 .

595. Bormann, H., L. Breuer, T. Graff, J.A. Huisman, B. Croke. 2008. Assessing the impact of land use change on hydrology by ensemble modelling (LUCHEM) IV: Model sensitivity on data aggregation and spatial (re-)distribution. Advances in Water Resources. 32(2): 171-192. DOI: 10.1016/j.advwatres.2008.01.002 .

596. Borrelli, P., C. Alewell, P. Alvarez, J.A.A. Anache, J. Baartman, C. Ballabio, N. Bezak, M. Biddoccu, A. Cerdà, D. Chalise, S. Chen, W. Chen, A.M. De Girolamo, G.D. Gessesse, D. Deumlich, N. Diodato, N. Efthimiou, G. Erpul, P. Fiener, M. Freppaz, F. Gentile, A. Gericke, N. Haregeweyn, B. Hu, A. Jeanneau, K. Kaffas, M. Kiani-Harchegani, I.L. Villuendas, C. Li, L. Lombardo, M. López-Vicente, M.E. Lucas-Borja, M. Märker, F. Matthews, C. Miao, M. Mikoš, S. Modugno, M. Möller, V. Naipal, M. Nearing, S. Owusu, D. Panday, E. Patault, C.V. Patriche, L. Poggio, R. Portes, L. Quijano, M.R. Rahdari, M. Renima, G.F. Ricci, J. Rodrigo-Comino, S. Saia, A.N. Samani, C. Schillaci, V. Syrris, H.S. Kim, D.N. Spinola, P.T. Oliveira, H. Teng, R. Thapa, K. Vantas, D. Vieira, J.E. Yang, S. Yin, D.A. Zema, G. Zhao and P. Panagos. 2021. Soil erosion modelling: A global review and statistical analysis. Science of the Total Environment. DOI: 10.1016/j.scitotenv.2021.146494 .

597. Boru, G.F., Z.B. Gonfa and G.M. Diga. 2019. Impacts of climate change on stream flow and water availability in Anger Sub‑Basin, Nile Basin of Ethiopia. Sustainable Water Resources Management. DOI: 10.1007/s40899-019-00327-0 .

598. Bosch, D.D., J.G. Arnold, M. Volk and P.M. Allen. 2010. Simulation of a low-gradient coastal plain watershed using the SWAT landscape model. Transactions of the ASABE. 53(5): 1445-1456. DOI: 10.13031/2013.34899 .

599. Bosch, D.D., J.M. Sheridan, H.L. Batten and J.G. Arnold. 2004. Evaluation of the SWAT model on a coastal plain agricultural watershed. Transactions of the ASAE. 47(5): 1493-1506. DOI: 10.13031/2013.17629 .

600. Bosch, D.J., M.B. Wagena, A.C. Ross, A.S. Collick and Z.M. Easton. 2018. Meeting water quality goals under climate change in Chesapeake Bay Watershed, USA. Journal of the American Water Resources Association. 54(6): 1239-1257. DOI: 10.1111/1752-1688.12684 .

601. Bosch, N.S. 2008. The influence of impoundments on riverine nutrient transport: An evaluation using the Soil and Water Assessment Tool. Journal of Hydrology. 355(1): 185-193. DOI: 10.1016/j.jhydrol.2008.03.012 .

602. Bosch, N.S., J.D. Allan, D.M. Dolan, H. Han and R.P. Richards. 2011. Application of the Soil and Water Assessment Tool for six watersheds of Lake Erie: Model parameterization and calibration. Journal of Great Lakes Research. 37(2): 263-271. DOI: 10.1016/j.jglr.2011.03.004 .

603. Bosch, N.S., J.D. Allen, J.P. Selegean and D. Scavia. 2013. Scenario-testing of agricultural best management practices in Lake Erie watersheds. Journal of Great Lakes Research. 39: 429–436. DOI: 10.1016/j.jglr.2013.06.004 .

604. Bosch, N.S., M.A. Evans, D. Scavia and J.D. Allan. 2014. Interacting effects of climate change and agricultural BMPs on nutrient runoff entering Lake Erie. Journal of Great Lakes Research. 40(3): 581-589. DOI: 10.1016/j.jglr.2014.04.011 .

605. Boskidis, I., G.D. Gikas, G.K. Sylalos and V.A. Tsihrintzis. 2012. Hydrologic and water quality modeling of Lower Nestos River Basin. Water Resources Management. 26(10): 3023-3051. DOI: 10.1007/s11269-012-0064-7 .

606. Boskidis, I., G.D. Gikas, V. Pisinaras and V.A. Tsihrintzis. 2010. Spatial and temporal changes of water quality, and SWAT modeling of Vosvozis river basin, North Greece. Journal of Environmental Science and Health, Part A - Toxic/Hazardous Substances and Environmental Engineering. 45(11): 1421-1440. DOI: 10.1080/10934529.2010.500936 .

607. Bossa, A,Y., B. Diekkrüger, S. Giertz, G. Steup, L.O. Sintondji, E.K. Agbossou and C. Hiepe. 2012. Modeling the effects of crop patterns and management scenarios on N and P loads to surface water and groundwater in a semi-humid catchment (West Africa). Agricultural Water Management. 115: 20-37. DOI: 10.1016/j.agwat.2012.08.011 .

608. Bossa, A. Y., B. Diekkuger and E. K. Agbossou. 2014. Scenario-based impacts of land use and climate change on land and water degradation from the meso to regional scale. Water. 6(10): 3152-3181. DOI: 10.3390/w6103152 .

609. Bossa, A.Y., B. Diekkruger, A.M. Igue and T. Gaiser. 2012. Analyzing the effects of different soil databases on modeling of hydrological processes and sediment yield in Benin (West Africa). Geoderma. 173-174: 61-74. DOI: 10.1016/j.geoderma.2012.01.012 .

610. Bostian, M., G. Whittaker, B. Barnhart, R. Färe and S. Grosskopf. 2015. Valuing water quality tradeoffs at different spatial scales: An integrated approach using bilevel optimization. Water Resources and Economics. 11: 1–12. DOI: 10.1016/j.wre.2015.06.002 .

611. Bostian, M.B., B.L. Barnhart, L.A. Kurkalova, M.K. Jha and G.W. Whittaker. 2021. Bilevel optimization of conservation practices for agricultural production. Journal of Cleaner Production. 300: 126874. DOI: 10.1016/j.jclepro.2021.126874 .

612. Boufala, M., A. El Hmaidi, A. Essahlaoui, K. Chadli, A. El Ouali and A. Lahjouj. 2022. Assessment of the best management practices under a semi‑arid basin using SWAT model (case of M’dez Watershed, Morocco). Modeling Earth Systems and Environment. 8(1): 713-731. DOI: 10.1007/s40808-021-01123-6 .

613. Boufala, M., A. El Hmaidi, K. Chadli, A. Essahlaoui, A. El Ouali and S. Taia. 2019. Hydrological modeling of water and soil resources in the basin upstream of the Allal El Fassi Dam (Upper Sebou Watershed, Morocco). Modeling Earth Systems and Environment. 5: 1163–1177. DOI: 10.1007/s40808-019-00621-y .

614. Bougamouza, A. and B. Remini. 2022. Hydrological modeling of Oued El Abiod Watershed using the SWAT model. Arabian Journal of Geosciences. 15(13): 1227. DOI: 10.1007/s12517-022-10512-9 .

615. Bougeard, M., J.-C. Le Saux, A. Teillon, J. Belloir, C. Le Mennec, S. Thome, G. Durand and M. Pommepuy. 2011. Combining modeling and monitoring to study fecal contamination in a small rural catchment. Journal of Water and Health. 9(3): 467-482. DOI: 10.2166/wh.2011.189 .

616. Bougeard, M., J.C. Le Saux, M. Jouan, G. Durand and M. Pommepuy. 2010. Modeling and evaluation of compliance to water quality regulations in bathing areas on the Daoulas catchment and estuary (France). Water Science and Technology. 61(10): 2521-2530. DOI: 10.2166/wst.2010.142 .

617. Bougeard, M., J.-C. Le Saux, N. Perenne, C. Baffaut, M. Robin and M. Pommepuy. 2011. Modeling of Escherichia Coli fluxes on a catchment and the impact on coastal water and shellfish quality. Journal of the American Water Resources Association. 47(2): 350-366. DOI: 10.1111/j.1752-1688.2010.00520.x .

618. Boulange, J., H. Watanabe, K. Inao, T. Iwafune, M. Zhang, Y, Luo and J. Arnold. 2014. Development and validation of a basin scale model PCPF-1@SWAT for simulating fate and transport of rice pesticides. Journal of Hydrology. 517: 146–156. DOI: 10.1016/j.jhydrol.2014.05.013 .

619. Bouma, J., P. Droogers, M.P.W. Sonneveld, C.J. Ritsema, J.E. Hunink, W.W. Immerzeel and S. Kauffman. 2011. Hydropedological insights when considering catchment classification. Hydrology and Earth System Sciences. 15(6): 1909-1919. DOI: 10.5194/hess-15-1909-2011 .

620. Bouraoui, F. and B. Grizzetti. 2008. An integrated modelling framework to estimate the fate of nutrients: Application to the Loire (France). Ecological Modelling. 212(3-4): 450-459. DOI: 10.1016/j.ecolmodel.2007.10.037 .

621. Bouraoui, F. and B. Grizzetti. 2014. Modelling mitigation options to reduce diffuse nitrogen water pollution from agriculture. Science of the Total Environment. 468–469: 1267–1277. DOI: 10.1016/j.scitotenv.2013.07.066 .

622. Bouraoui, F., B. Grizzetti, G. Adelskold, H. Behrendt, I. de Miguel, M. Silgram, S. Gomez, K. Granlund, L. Hoffmann, B. Kronvang, S. Kvaerno, A. Lazar, M. Minikou, G. Passarella, P. Panagos, H. Reisser, B. Schwarzl, C. Siderius, A.S. Sileika, A.A.M.F.R. Smit, R. Sugrue, M. VanLiedekerke and J. Zaloudik. 2009. Basin characteristics and nutrient losses: the EUROHARP catchment network perspective. Journal of Environmental Monitoring. 11(3): 515-525. DOI: 10.1039/b822931g .

623. Bouraoui, F., B. Grizzetti, K. Granlund, S. Rekolainen and G. Bidoglio. 2004. Impact of climate change on the water cycle and nutrient losses in a Finnish catchment. Climatic Change. 66(1-2): 109-126. DOI: 10.1023/B:CLIM.0000043147.09365.e3 .

624. Bouraoui, F., L. Galbiati and G. Bidoglio. 2002. Climate change impacts on nutrient loads in the Yorkshire Ouse catchment (UK). Hydrology and Earth System Sciences. 6(2): 197-209. DOI: 10.5194/hess-6-197-2002 .

625. Bouraoui, F., S. Benabdallah, A. Jrad and G. Bidoglio. 2005. Application of the SWAT model on the Medjerda River Basin (Tunisia). Physics and Chemistry of the Earth. 30(8-10): 497-507. DOI: 10.1016/j.pce.2005.07.004 .

626. Bouslihim, Y., A. Rochdi and N. El Amrani Paaza. 2020. Combining SWAT model and regionalization approach to estimate soil erosion under limited data availability conditions. Eurasian Journal of Soil Science. 53(9): 1280-1292. DOI: 10.1134/S1064229320090021 .

627. Bouslihim, Y., A. Rochdi, N. El Amrani Paaza and L. Liuzzo. 2019. Understanding the effects of soil data quality on SWAT model performance and hydrological processes in Tamedroust Watershed (Morocco). Journal of African Earth Sciences. 160: 103616. DOI: 10.1016/j.jafrearsci.2019.103616 .

628. Bracmort, K.S., M. Arabi, J.R. Frankenberger, B.A. Engel and J.G. Arnold. 2006. Modeling long-term water quality impact of structural BMPs. Transactions of the ASABE. 49(2): 367-374. DOI: 10.13031/2013.20411 .

629. Brauer, D., R.L. Baumhardt, D. Gitz, P. Gowda and J. Mahan. 2015. Characterization of trends in reservoir storage, streamflow, and precipitation in the Canadian River Watershed in New Mexico and Texas. Lake and Reservoir Management. 31(1): 64-79. DOI: 10.1080/10402381.2015.1006348 .

630. Breen, K.H., S.C. James, J.D. White, P.M. Allen and J.G. Arnold. 2020. A hybrid artificial neural network to estimate soil moisture using SWAT+ and SMAP data. Machine Learning and Knowledge Extraction. 2: 283-306. DOI: 10.3390/make2030016 .

631. Bremer, L.L., D.A. Auerbach, J.H. Goldstein, A.L. Vogl, D. Shemie, T. Kroeger, J.L. Nelson, S.P. Benítez, A. Calvache, J. Guimarães, C. Herron, J. Higgins, C. Klemz, J. León, J.S. Lozano, P.H. Moreno, F. Nuñez, F. Veiga and G. Tiepolo. 2016. One size does not fit all: Natural infrastructure investments within the Latin American Water Funds Partnership. Ecosystem Services. 17: 217-236. DOI: 10.1016/j.ecoser.2015.12.006 .

632. Bressiani, D. de A., P.W. Gassman, J.G. Fernandes, L.H.P. Garbossa, R. Srinivasan, N.B. Bonumá and E.M. Mendiondo. 2015. A review of Soil and Water Assessment Tool (SWAT) applications in Brazil: Challenges and prospects. International Journal of Agricultural and Biological Engineering. 8(3): 9-35. DOI: 10.3965/j.ijabe.20150803.1765 .

633. Bressiani, D. de A., R. Srinivasan, C.A. Jones and E.M. Mendiondo. 2015. Effects of different spatial and temporal weather data resolutions on the streamflow modeling of a semi-arid basin, Northeast Brazil. International Journal of Agricultural and Biological Engineering. 8(3): 125-139. DOI: 10.3965/j.ijabe.20150803.970 .

634. Breuer L., J. A. Huisman and H.-G. Frede. 2006. Monte Carlo assessment of uncertainty in the simulated hydrological response to land use change. Environmental Modeling & Assessment. 11(3): 209-218. DOI: 10.1007/s10666-006-9051-9 .

635. Breuer, L. and J.A. Huisman. 2008. Assessing the impact of land use change on hydrology by ensemble modeling (LUCHEM). Advances in Water Resources. 32(2): 127-128. DOI: 10.1016/j.advwatres.2008.10.010 .

636. Breuer, L., J.A. Huisman, P. Willems, H. Bormann, A. Bronstert, B.F.W. Croke, H.-G. Frede, T. Graff, L. Hubrechts, A.J. Jakeman, G. Kite, J. Lanini, G. Leavesley, D.P. Lettenmaier, G. Lindstrom, J. Seibert, M. Sivapalan and N.R. Viney. 2008. Assessing the impact of land use change on hydrology by ensemble modeling (LUCHEM). I: Model intercomparison with current land use. Advances in Water Resources. 32(2): 129-146. DOI: 10.1016/j.advwatres.2008.10.003 .

637. Breuer, L., K. Eckhardt and H.-G. Frede. 2003. Plant parameter values for models in temperate climates. Ecological Modelling. 169(2-3): 237-293. DOI: 10.1016/S0304-3800(03)00274-6 .

638. Breuer, L., K.B. Vache, S. Julich and H.-G. Frede. 2008. Current concepts in nitrogen dynamics for mesoscale catchments. Hydrological Sciences Journal. 53(5): 1059-1074. DOI: 10.1623/hysj.53.5.1059 .

639. Brewer, S.K., T.A. Worthington, R. Mollenhauer, D.R. Stewart, R.A. McManamay, L. Guertault and D. Moore. 2018. Synthesizing models useful for ecohydrology and ecohydraulic approaches: An emphasis on integrating models to address complex research questions. Ecohydrology. 11(7): e1966. DOI: 10.1002/eco.1966 .

640. Briak, H., R. Moussadek, K. Aboumaria and R. Mrabet. 2016. Assessing sediment yield in Kalaya gauged watershed (Northern Morocco) using GIS and SWAT model. International Soil and Water Conservation Research. 4(3): 177-185. DOI: 10.1016/j.iswcr.2016.08.002 .

641. Briak, H., R. Mrabet, R. Moussadek and K. Aboumaria. 2019. Use of a calibrated SWAT model to evaluate the effects of agricultural BMPs on sediments of the Kalaya River basin (North of Morocco). International Soil and Water Conservation Research. 7: 176-183. DOI: 10.1016/j.iswcr.2019.02.002 .

642. Bridhikitti, A., A. Ketuthong, T. Prabamroong, R. Li, J. Li and G. Liu. 2022. How do sustainable development-induced land use change and climate change affect water balance? A case study of the Mun River Basin, NE Thailand. Water Resources Management. DOI: 10.1007/s11269-022-03298-8 .

643. Brighenti T.M., N.B. Bonumá, F. Grison, A. de Almeida Mota, M. Kobiyama and P.L.B. Chaffe. 2019. Two calibration methods for modeling streamflow and suspended sediment with the swat model. Ecological Engineering. 127: 103-113. DOI: 10.1016/j.ecoleng.2018.11.007 .

644. Brighenti, T.M., N.B. Bonumá and P.L.B. Chaffe. 2016. Hierarchical calibration of SWAT model for a watershed in southern Brazil. Revista Brasileira de Recursos Hidricos. 21(1): 53-64. URL: http://www.abrh.org.br/SGCv3/index.php?PUB=1&ID=188&SUMARIO=5147&ST=calibracao_hierarquica_do_modelo_swat_em_uma_bacia_hidrografica_catarinense_hierarchical_calibration_of_swat_model_for_a_watershed_in_southern_brazil.

645. Brighenti, T.M., N.B. Bonuma, R. Srinivasan and P.L.B. Chaffe. 2019. Simulating sub-daily hydrological process with SWAT: A review. Hydrological Sciences Journal. 64(12): 1415-1423. DOI: 10.1080/02626667.2019.1642477 .

646. Brighenti, T.M., P.W. Gassman, K.E. Schilling, R. Srinivasan, M. Liebmand and J.R. Thompson. 2022. Determination of accurate baseline representation for three Central Iowa watersheds within a HAWQS-based SWAT analyses. Science of the Total Environment. 839: 156302. DOI: 10.1016/j.scitotenv.2022.156302 .

647. Brighenti, T.M., P.W. Gassman, W.J. Gutowski, Jr. and J.R. Thompson. 2023. Assessing the influence of a bias correction method on future climate scenarios using SWAT as an impact model indicator. Water. 15(4): 750. DOI: 10.3390/w15040750 .

648. Brighenti, T.M., P.W. Gassman, J. Arnold and J. Thompson. 2023. Comparison of two tile-drain methods in SWAT via temporal and spatial testing for an Iowa watershed. Journal of the ASABE. 66(6): 1555-1569. DOI: 10.13031/ja.15534 .

649. Briones, R.U., V.B. Ella and N.C. Bantayan. 2016. Hydrologic impact evaluation of land use and land cover change in Palico Watershed, Batangas, Philippines using the SWAT model. Journal of Environmental Science and Management. 19(1): 96-107. URL: http://jesam-uplb.org/article.php?aid=168-hydrologic-impact-evaluation-of-land-use-and-land-cover-change-in-palico-watershed--batangas--philippines-using-the-swat-model-nbsp-.

650. Brito, D., R. Neves, M.A. Branco, A. Prazeres, S. Rodrigues, M.C. Gonçalves and T.B. Ramos. 2019. Assessing water and nutrient long-term dynamics and loads in the Enxoé Temporary River Basin (Southeast Portugal). Water. 11(2): 354. DOI: 10.3390/w11020354 .

651. Brito, D., T. B. Ramos, M.C. Gonçalves, M. Morais and R. Neves. 2018. Integrated modelling for water quality management in a eutrophic reservoir in south‑eastern Portugal. Environmental Earth Sciences. 77: 40. DOI: 10.1007/s12665-017-7221-5 .

652. Britto, F.B., A.O. Aguiar Netto, A.N. do Vasco and M.G. Silva. 2017. SWAT model for in potential contamination a tributary of the Rio São Francisco, Brazil. Scientia Plena. 13(16): 109910. URL: https://www.scientiaplena.org.br/sp/article/view/3779.

653. Britto, F.B., E.L.M. Neto, A. de O.A. Netto and N.A.C. Rego. 2014. Water sustainability in sub-basin Sangradouro River, Sergipe. Revista Brasileira de Geografia Física. 7(1): 155-164. URL: http://www.revista.ufpe.br/rbgfe/index.php/revista/article/viewArticle/607.

654. Brochet, E., Y. Grusson, S. Sauvage, L. Lhuissier and V. Demarez. 2024. How to account for irrigation withdrawals in a watershed model. Hydrology and Earth System Sciences. 28(1): 49–64. DOI: 10.5194/hess-28-49-2024 .

655. Brou, D., A.K. Armand, K.-W.A. Brice, K.T. Jean-Jaques and K.K. Lazare. 2021. Coupling modeling and remote sensing for the determination of high-flow drilling locations in the Lobo Watershed at Nibehibé in Côte d'Ivoire. Environmental and Water Sciences, Public Health & Territorial Intelligence. 5(2): 578-587. URL: https://revues.imist.ma/index.php/ewash-ti/issue/view/1646/showToc.

656. Brouziyne, Y., A. Abouabdillah, A. Hirich, R. Bouabid, R. Zaaboul and L. Benaabidate. 2018. Modeling sustainable adaptation strategies toward a climate-smart agriculture in a Mediterranean watershed under projected climate change scenarios. Agricultural Systems. 162: 154-163. DOI: 10.1016/j.agsy.2018.01.024 .

657. Brouziyne, Y., A. Abouabdillah, A. Chehbouni, L. Hanich, K. Bergaoui, R. McDonnell and L. Benaabidate. 2020. Assessing hydrological vulnerability to future droughts in a Mediterranean watershed: Combined indices-based and distributed modeling approaches. Water. 12(9): 2333. DOI: 10.3390/w12092333 .

658. Brouziyne, Y., A.M. De Girolamo, A. Aboubdillah, L. Benaabidate, L. Bouchaou and A. Chehbouni. 2021. Modeling alterations in flow regimes under changing climate in a Mediterranean watershed: An analysis of ecologically-relevant hydrological indicators. Ecological Informatics. 61: 101219. DOI: 10.1016/j.ecoinf.2021.101219 .

659. Brouziyne, Y., S. Belaqziz, L. Benaabidate, A. Aboubdillah, A.E. Bilali, A. Elbeltagi, O. Tzoraki and A. Chehbouni. 2022. Modeling long term response of environmental flow attributes to future climate change in a North African watershed (Bouregreg watershed, Morocco). Ecohydrology & Hydrobiology. 22(1): 155-167. DOI: 10.1016/j.ecohyd.2021.08.005 .

660. Brown, S.C., V.L. Versace, R.E. Lester and M.T. Walter. 2015. Assessing the impact of drought and forestry on streamflows in south-eastern Australia using a physically based hydrological model. Environmental Earth Sciences. 74(7): 1-17. DOI: 10.1007/s12665-015-4628-8 .

661. Brulebois, E., M. Ubertosi, T. Castel, Y. Richard, S. Sauvage, J.-M. S. Perez, N. Le Moine and P. Amoitte-Suchet. 2018. Robustness and performance of semi-distributed (SWAT) and global (GR4J) hydrological models throughout an observed climatic shift over contrasted French watersheds. Open Water. 5(1): 41-56. URL: https://scholarsarchive.byu.edu/openwater/vol5/iss1/4/.

662. Bruno, D., R. Sorando, B. Álvarez-Farizo, C. Castellano, V. Céspedes, B. Gallardo, J.J. Jiménez, M.V. López, R. López-Flores, D. Moret-Fernández, E. Navarro, F. Picazo, M. Sevilla-Callejo, J. Tormo, J.J. Vidal-Macua, J.M. Nicolau and F.A. Comín. 2021. Depopulation impacts on ecosystem services in Mediterranean rural areas. Ecosystem Services. 52: 101369. DOI: 10.1016/j.ecoser.2021.101369 .

663. Bryant, R. B., W. J. Gburek, T. L. Veith and W. D. Hively. 2006. Perspectives on the potential for hydropedology to improve watershed modeling of phosphorus loss. Geoderma. 131(3-4): 299-307. DOI: 10.1016/j.geoderma.2005.03.011 .

664. Bryant, R.B., T.L. Vieth, P.J.A. Kleinman and W.J. Gburek. 2008. Cannonsville Reservoir and Town Brook Watersheds: Documenting conservation efforts to protect New York City's drinking water. Journal of Soil and Water Conservation. 63(6): 339-344. DOI: 10.2489/jswc.63.6.339 .

665. Brzozowski, J., Z. Miatowski, D. Sliwinski, K. Smarzynska and M. Smietanka. 2011. Application of SWAT model to small agricultural catchment in Poland. Journal of Water and Land Development. 15: 157-166. DOI: 10.2478/v10025-012-0014-z .

666. Bu, J.Y., C.X. Lu, J. Niu and Y.C. Gao. 2018. Attribution of Runoff Reduction in the Juma River Basin to Climate Variation, Direct Human Intervention, and Land Use Change. Water. 10(12): 1775. DOI: 10.3390/w10121775 .

667. Bucak, T., D. Trolle, H.E. Andersen, H. Thodsen, Ş. Erdoğan, E.E. Levi, N. Filiz, E. Jeppesen and M. Beklioğlu. 2017. Future water availability in the largest freshwater Mediterranean lake is at great risk as evidenced from simulations with the SWAT model. Science of the Total Environment. 581–582: 413–425. DOI: 10.1016/j.scitotenv.2016.12.149 .

668. Bucak, T., D. Trolle, Ü.N. Tavşanoğlu, A.I. Çakıroğlu, A. Özen, E. Jeppesen and M. Beklioğlu. 2018. Modeling the effects of climatic and land use changes on phytoplankton and water quality of the largest Turkish freshwater lake: Lake Beyşehir. Science of the Total Environment. 621: 802-816. DOI: 10.1016/j.scitotenv.2017.11.258 .

669. Bučienė, A., A. Povilaitis, V. Langas, M. Bučas, J. Petkuviene, D. Vaičiūtė and S. Gužys. 2019. Changes in nutrient concentrations of two streams in Western Lithuania with focus on shrinkage of agriculture and effect of climate, drainage runoff and soil factors. Water. 11(8): 1590. DOI: 10.3390/w11081590 .

670. Bucton, B.G.B., S. Shrestha, S. KC, S. Mohanasundaram, S.G.P. Virdis and W. Chaowiwat. 2022. Impacts of climate and land use change on groundwater recharge under shared socioeconomic pathways: A case of Siem Reap, Cambodia. Environmental Research. 211: 113070. DOI: 10.1016/j.envres.2022.113070 .

671. Budamala, V. and A. Mahindrakar. 2020. Approximation of metro water district basin using parallel computing of Emulator Based Spatial Optimization (PCESO). Water Resources Management. 34(1): 121-137. DOI: 10.1007/s11269-019-02424-3 .

672. Budamala, V. and A.B. Mahindrakar. 2019. Enhance the prediction of complex hydrological models by pseudo-simulators. Geocarto International. DOI: 10.1080/10106049.2019.1629646 .

673. Budamala, V. and A.B. Mahindrakar. 2020. Integration of adaptive emulators and sensitivity analysis for enhancement of complex hydrological models. Environmental Processes. 7(4): 1235–1253. DOI: 10.1007/s40710-020-00468-x .

674. Budamala, V. and A.B. Mahindrakar. 2021. Adaptive hybrid architecture for enhancement of the complex hydroclimatic system and assessment of freshwater security. Journal of Hydroinformatics. 23(5): 950-965. DOI: 10.2166/hydro.2021.182 .

675. Budhathoki, A., M.S. Babel, S. Shrestha, G. Meon and A.G. Kamalmma. 2021. Climate change impact on water balance and hydrological extremes in different physiographic regions of the West Seti River Basin, Nepal. Ecohydrology & Hydrobiology. 21(1): 79-95. DOI: 10.1016/j.ecohyd.2020.07.001 .

676. Bugaets, A.N., B.I. Gartsman, S.Y. Lupakov, V.V. Shamov, L.V. Gonchukov, N.F. Pshenichnikova and A.A. Tereshkina. 2019. Modeling the hydrological regime of small testbed catchments based on field observations: A case study of the Pravaya Sokolovka River, the Upper Ussuri River Basin. Water Resources. 46(Suppl. 2): S8-S16. DOI: 10.1134/S0097807819080037 .

677. Bugaets, A.N., G.I. Gartsman, A.A. Tereshkina, L.V. Gonchukov, N.D. Bugaets, N.Y. Sidorenko, N.F. Pshenichnikova and S.M. Krasnopeyev. 2018. Using the SWAT model for studying the hydrological regime of a small river basin (the Komarovka River, Primorsky Krai). Russian meteorology and hydrology. 43(5): 323-331. DOI: 10.3103/S1068373918050060 .

678. Bugaets, A.N., N.F. Pshenichnikova, A.A. Tereshkina, S.Y. Lupakov, B.I. Gartsman, V.V. Shamov, L.V. Gonchukov, O.M. Golodnaya, S.M. Krasnopeyev and N.K. Kozhevnikova. 2021. Digital soil mapping for hydrological modeling by the example of experimental catchments in the south of Primorsky Krai. Eurasian Journal of Soil Science. 54(9): 1375-1384. DOI: 10.1134/S1064229321050057 .

679. Buhr, D.X., R.W. Lammers and B.P. Bledsoe. 2022. Global sensitivity analyses of key riparian nitrogen models. Environmental Modelling & Software. 158: 105542. DOI: 10.1016/j.envsoft.2022.105542 .

680. Bui, M.T., J. Lu and L. Nie. 2020. A review of hydrological models applied in the permafrost-dominated arctic region. Geosciences. 10(10): 401. DOI: 10.3390/geosciences10100401 .

681. Bui, M.T., J. Lu and L. Nie. 2021. Evaluation of the climate forecast system reanalysis data for hydrological model in the Arctic Watershed Målselv. Journal of Water and Climate Change. 12(8): 3481-3504. DOI: 10.2166/wcc.2021.346 .

682. Bui, M.T., J. Lu and L. Nie. 2021. Quantifying the effects of watershed subdivision scale and spatial density of weather inputs on hydrological simulations in a Norwegian Arctic watershed. Journal of Water and Climate Change. 12(8): 3518–3543. DOI: 10.2166/wcc.2021.173 .

683. Bùi, Q.H., H.H. Uông, V.H. Bùi and V.D. Bùi. 2019. Application SWAT model for evaluation of water quality in the Cong River Basin. Journal of Water Resources & Environmental Engineering. 65(6): 117-123. URL: http://tapchivatuyentap.tlu.edu.vn/Home/groupid/90.

684. Bulti, A.T. 2021. The infuence of dam construction on the catchment hydrologic behavior and its effects on a discharge forecast in hydrological models. Water Resources Management. 35(6): 2023-2037. DOI: 10.1007/s11269-021-02829-z .

685. Bulut, E. and A. Aksoy. 2008. Impact of fertilizer usage on phosphorus loads to Lake Uluabat. Desalination. 226: 289-297. DOI: 10.1016/j.desal.2007.02.112 .

686. Buonocore, C., J.J.G. Pascual, M.L.P. Cayeiro, R.M. Salinas and M.B. Mejías. 2021. Modelling the impacts of climate and land use changes on water quality in the Guadiana Basin and the adjacent coastal area. Science of the Total Environment. 776: 146034. DOI: 10.1016/j.scitotenv.2021.146034 .

687. Burigato Costa, C.M. da S., L. da Silva Marques, A.K. Almeida, I.R. Leite and I.K. de Almeida. 2019. Applicability of water quality models around the world—a review. Environmental Science and Pollution Research. DOI: 10.1007/s11356-019-06637-2 .

688. Burkart, C.S. and M.K. Jha. 2012. Site-specific simulation of nutrient control policies: Integrating economic and water quality effects. Journal of Agricultural and Resource Economics Association. 37(1): 20-33. URL: https://jareonline.org/articles/site-specific-simulation-of-nutrient-control-policies-integrating-economic-and-water-quality-effects/.

689. Burke, W.D. and D.L. Ficklin. 2017. Future projections of streamflow magnitude and timing differ across coastal watersheds of the western United States. International Journal of Climatology. 37(13): 4493–4508. DOI: 10.1002/joc.5099 .

690. Busico, G., M.M. Ntona, S.C.P. Carvalho, O. Patrikaki, K. Voudouris and N. Kazakis. 2021. Simulating future groundwater recharge in coastal and inland catchments. Water Resources Management. 35(11): 3617-3632. DOI: 10.1007/s11269-021-02907-2 .

691. Busico, G., N. Colombani, D. Fronzi, M. Pellegrini, A. Tazioli and M. Mastrocicco. 2020. Evaluating SWAT model performance, considering different soils data input, to quantify actual and future runoff susceptibility in a highly urbanized basin. Journal of Environmental Management. 266: 110625. DOI: 10.1016/j.jenvman.2020.110625 .

692. Butcher, J.B., T.E. Johnson, D. Nover and S. Sarkar. 2014. Incorporating the effects of increased atmospheric CO2 in watershed model projections of climate change impacts. Journal of Hydrology. 513: 322-334. DOI: 10.1016/j.jhydrol.2014.03.073 .

693. Butler, G.B. and P. Srivastava. 2007. An Alabama BMP database for evaluating water quality impacts of alternative management practices. Applied Engineering in Agriculture. 23(6): 727-736. URL: http://lshs.tamu.edu/docs/lshs/end-notes/an%20alabama%20bmp%20database%20for%20evaluating%20water-3142773258/an%20alabama%20bmp%20database%20for%20evaluating%20water%20quality%20impacts%20of%20alternative%20management%20practices.pdf.

694. Byun, J. and M. Son. 2018. Effects of climate change and reduction method on water quality in Cheongmicheon Watershed. Journal of Korea Water Resources Association. 51(7): 585-597. DOI: 10.3741/JKWRA.2018.51.7.585 .

695. Cai, T., Q. Li, M. Yu, G. Lu, L. Cheng and X. Wei. 2012. Investigation into the impacts of land-use change on sediment yield characteristics in the Upper Huaihe River Basin, China. Physics and Chemistry of the Earth. 53-54: 1-9. DOI: 10.1016/j.pce.2011.08.023 .

696. Cai, W., J. Liu, X. Zhu, X. Zhao and X. Zhang. 2022. Estimating the role of climate internal variability and sources of uncertainties in hydrological climate-impact projections. Sustainability. 14(19): 12201. DOI: 10.3390/su141912201 .

697. Cai, X., R. Zeng, W.H. Kang, J. Song and A.J. Valocchi. 2015. Strategic planning for drought mitigation under climate change. Journal of Water Resources Planning and Management. 141(9). DOI: 10.1061/(ASCE)WR.1943-5452.0000510 .

698. Cakir, R., M. Raimonet, S. Sauvage, J. Paredes-Arquiola, Y. Grusson, L. Roset, M. Meaurio, E. Navarro, M. Sevilla-Callejo, J.L. Lechuga-Crespo, J.J.G. Pascual , J.M. Bodoque and J.M. Sánchez-Pérez. 2020. Hydrological alteration index as an indicator of the calibration complexity of water quantity and quality modeling in the context of global change. Water. 12(1): 115. DOI: 10.3390/w12010115 .

699. Cakir, R., M. Raimonet, S. Sauvage, R. Walcker, M. Gerino and J. Sánchez-Pérez. 2021. Assessment of water quality regulation functions in southwestern Europe watersheds. Water. 13(21): 2980. DOI: 10.3390/w13212980 .

700. Cakir, R., S. Sauvage, M. Gerino, M. Volk and J.M. Sánchez-Pérez. 2020. Assessment of ecological function indicators related to nitrate under multiple human stressors in a large watershed. Ecological Indicators. 111: 106016. DOI: 10.1016/j.ecolind.2019.106016 .

701. Caldwell, P.V., J.G. Kennen, G. Sun, J.E. Kiang, J.B. Butcher, M.C. Eddy, L.E. Hay, J.H. LaFontaine, E.F. Hain, S.A.C. Nelson and S.G. McNulty. 2015. A comparison of hydrologic models for ecological flows and water availability. Ecohydrology. 8(8): 1525-1546. DOI: 10.1002/eco.1602 .

702. Camargos, C., S. Julich, T. Houska, M. Bach and L. Breuer. 2018. Effects of input data content on the uncertainty of simulating water resources. Water. 10(5): 621. DOI: 10.3390/w10050621 .

703. Cambien, N., S. Gobeyn, I. Nolivos, M.A. Eurie Forio, M. Arias-Hidalgo, L. Dominguez-Granda, F. Witing, M. Volk and P.L.M. Goethals. 2020. Using the Soil and Water Assessment Tool to simulate the pesticide dynamics in the data scarce Guayas River Basin, Ecuador. Water. 12(3): 696. DOI: 10.3390/w12030696 .

704. Campbell, A., S.M. Pradhanang, S.K. Anbaran, J. Sargent, Z. Palmer and M. Audette. 2018. Assessing the impact of urbanization on flood risk and severity for the Pawtuxet Watershed, Rhode Island. Lake and Reservoir Management. 34: 74-87. DOI: 10.1080/10402381.2017.1390016 .

705. Candela, A., G. Freni, G. Mannina and G. Viviani. 2012. Receiving water body quality assessment: an integrated mathematical approach applied to an Italian case study. Journal of Hydroinformatics. 14(1): 30-47. DOI: 10.2166/hydro.2011.099 .

706. Cao, C., B. Yan, J. Guo, H. Jiang, Z. Li and Y. Liu. 2021. A framework for projecting future streamflow of the Yalong River basin to climate change. Stochastic Environmental Research and Risk Assessment. 35(8): 1549-1562. DOI: 10.1007/s00477-021-02009-w .

707. Cao, W., W.B. Bowden, T. Davie and A. Fenemor. 2006. Multi-variable and multi-site calibration and validation of SWAT in a large mountainous catchment with high spatial variability. Hydrological Processes. 20(5): 1057-1073. DOI: 10.1002/hyp.5933 .

708. Cao, W., W.B. Bowden, T. Davie, A. Fenemor. 2008. Modelling impacts of land cover change on critical water resources in the Motueka River Catchment, New Zealand. Water Resources Management. 23(1): 137-151. DOI: 10.1007/s11269-008-9268-2 .

709. Cao, Y., C. Fu, X. Wang, L. Dong, S. Yao, B. Xue, H. Wu and H. Wu. 2021. Decoding the dramatic hundred-year water level variations of a typical great lake in semi-arid region of northeastern Asia. Science of the Total Environment. 770: 145353. DOI: 10.1016/j.scitotenv.2021.145353 .

710. Cao, Y., J. Zhang, M. Yang, X. Lei, B. Guo, L. Yang, Z. Zeng and J. Qu. 2018. Application of SWAT model with CMADS data to estimate hydrological elements and parameter uncertainty based on SUFI-2 algorithm in the Lijiang River Basin, China. Water. 10(6): 742. DOI: 10.3390/w10060742 .

711. Cao, Y., Z. Zhou, Q. Liao, S. Shen, W. Wang, P. Xiao and J. Liao. 2023. Effects of landscape conservation on the ecohydrological and water quality functions and services and their driving factors. Science of the Total Environment. 861: 160695. DOI: 10.1016/j.scitotenv.2022.160695 .

712. Capel, P.D., K.A. McCarthy and J.E. Barbash. 2008. National, holistic, watershed-scale approach to understand the sources, transport, and fate of agricultural chemicals. Journal of Environmental Quality. 37: 983-993. DOI: 10.2134/jeq2007.0226 .

713. Caprario, J., A.S. Rech, G.N. Caprario and A.R. Finotti. 2017. Hydrossedimentological simulation of the Quatorze River Watershed, Francisco Beltrão (Paraná, Brazil). Anuário do Instituto de Geociências. 40(1): 102-114. DOI: 10.11137/2017_1_102_114 .

714. Carl, P. and H. Behrendt. 2008. Regularity-based functional streamflow disaggregation: 1. Comprehensive foundation. Water Resources Research. 44: 1-12. DOI: 10.1029/2004WR003724 .

715. Carl, P., K. Gerlinger, F.F. Hattermann, V. Krysanova, C. Schilling and H. Behrendt. 2008. Regularity-based functional streamflow disaggregation: 2. Extended demonstration. Water Resources Research. 44: 1-19. DOI: 10.1029/2006WR005056 .

716. Carneiro, L., A. Ostroski and E.G.F. Mercuri. 2020. Trophic state index for heavily impacted watersheds: Modeling the influence of diffuse pollution in water bodies. Hydrological Sciences Journal. 65(15): 2548-2560. DOI: 10.1080/02626667.2020.1828588 .

717. Caro-Borrero, A., J. Carmona-Jiménez, T. González-Martínez and M. Mazari-Hiriart. 2015. Hydrological evaluation of a peri-urban stream and its impact on ecosystem services potential. Global Ecology and Conservation. 3: 628-644. DOI: 10.1016/j.gecco.2015.02.008 .

718. Carpenter, S.R. and R.C. Lathrop. 2014. Phosphorus loading, transport and concentrations in a lake chain: A probabilistic model to compare management options. Aquatic Sciences. 76(1): 145-154. DOI: 10.1007/s00027-013-0324-5 .

719. Cartwright, J.H., S.A. Shammi and J.C. Rodgers III. 2022. Use of a multi-criteria decision analysis (MCDA) for mapping erosion potential in Gulf of Mexico watersheds. Water. 14(12): 1923. DOI: 10.3390/w14121923 .

720. Carvalho, V.S.O., L.A. Alvarenga, C. de M.M. de Oliveria, J. Tomasella, A. Colombo and P.A. Melo. 2021. Impact of climate change on monthly streamflow in the Verde River Basin using two hydrological models. Revista Ambiente & Água. 16(4): e2683. DOI: 10.4136/ambi-agua.2683 .

721. Carvalho-Santos, C., A.T. Monteiro, J.C. Azevedo, J.P. Honrado and J.P. Nunes. 2017. Climate change impacts on water resources and reservoir management: Uncertainty and adaption for a mountain catchment in northeast Portugal. Water Resources Management. 31(11): 3355–3370. DOI: 10.1007/s11269-017-1672-z .

722. Carvalho-Santos, C., B. Marcos, J.P. Nunes, A. Regos, E. Palazzi, S. Terzago, A.T. Monteiro and J.P. Honrado. 2019. Hydrological impacts of large fires and future climate: Modeling approach supported by satellite data. Remote Sensing. 11(23): 2832. DOI: 10.3390/rs11232832 .

723. Carvalho-Santos, C., J.P. Nunes, A.T. Monteiro, L. Hein and J.P. Honrado. 2016. Assessing the effects of land cover and future climate conditions on the provision of hydrological services in a medium-sized watershed of Portugal. Hydrological Processes. 30(5): 720-738. DOI: 10.1002/hyp.10621 .

724. Carvalho-Santos, C., R. Sousa-Silva, J. Goncalves and J.P. Honrado. 2016. Ecosystem services and biodiversity conservation under forestation scenarios: Options to improve management in the Vez watershed, NW Portugal. Regional Environmental Change. 16(6): 1557–1570. DOI: 10.1007/s10113-015-0892-0 .

725. Casper, A.F., B.Dixon, J. Earls and J.A. Gore. 2010. Linking a spatially explicit watershed model (SWAT) with an in-stream fish habitat model (PHABSIM): A case study of setting minimum flows and levels in a low gradient, sub-tropical river. River Research and Applications. 27(3): 269-282. DOI: 10.1002/rra.1355 .

726. Castellanos-Osorio, G., A. López-Ballesteros, J. Pérez-Sánchez and J. Senent-Aparicio. 2023. Disaggregated monthly SWAT+ model versus daily SWAT+ model for estimating environmental flows in Peninsular Spain. Journal of Hydrology. 623: 129837. DOI: 10.1016/j.jhydrol.2023.129837 .

727. Castelli, G., C. Foderi, B.H. Guzman, L. Ossoli, Y. Kempff, E. Bresci and F. Salbitano. 2017. Planting waterscapes: Green infrastructures, landscape and hydrological modeling for the future of Santa Cruz de la Sierra, Bolivia. Forests. 8(11): 437. DOI: 10.3390/f8110437 .

728. Castillo, C.R., I. Güneralp and B. Güneralp. 2014. Influence of changes in developed land and precipitation on hydrology of a coastal Texas watershed. Applied Geography. 47: 154-167. DOI: 10.1016/j.apgeog.2013.12.009 .

729. Castro, R.A. 2014. Simulacao de producao de sedimentos com a utilizacao o modelo SWAT na bacia dp Rio das Pedras (Guarapuava-PR). Revista Geonorte. 4(1): 297-301. URL: http://www.periodicos.ufam.edu.br/index.php/revista-geonorte/article/view/1401.

730. Cau, P. and C. Paniconi. 2007. Assessment of alternative land management practices using hydrological simulation and a decision support tool: Arborea agricultural region, Sardinia. Hydrology and Earth System Sciences. 11(6): 1811-1823. DOI: 10.5194/hess-11-1811-2007 .

731. Cau, P., S. Manca, C. Soru, D. Muroni, D. Gorgan, V. Bacu, A. Lehman, N. Ray and G. Giuliani. 2013. An interoperable GIS oriented information and support system for water resources management. International Journal of Advanced Computer Science and Applications. EnviroGRIDS special Issue: 75-82. URL: http://thesai.org/Publications/ViewIssue?volume=3&issue=3&code=SpecialIssue.

732. Cecílio, R.A., Pimentel, S.M. and S.S. Zanetti. 2019. Modeling the influence of forest cover on streamflows by different approaches. Catena. 178: 49-58. DOI: 10.1016/j.catena.2019.03.006 .

733. Celine, G. and E.J. James. 2015. Assessing the implications of extension of rubber plantation on the hydrology of humid tropical river basin. International Journal of Environmental Research. 9(3): 841-852. URL: https://ijer.ut.ac.ir/article_971.html.

734. Centanni, M., G.F. Ricci, A.M. De Girolamo, G Romano and F. Gentile. 2023. A review of modeling pesticides in freshwaters: Current status, progress achieved and desirable improvements. Environmental Pollution. 316(Part 2): 120553. DOI: 10.1016/j.envpol.2022.120553 .

735. Čerkasova, N., A. Ertürk, P. Zemlys, V. Denisov and G. Umgiesser. 2016. Curonian Lagoon drainage basin modelling and assessment of climate change impact. Oceanologia. 58 (2): 90–102. DOI: 10.1016/j.oceano.2016.01.003 .

736. Čerkasova, N., G. Umgiesser and A. Ertürk. 2018. Development of a hydrology and water quality model for a large transboundary river watershed to investigate the impacts of climate change – A SWAT application. Ecological Engineering. 124: 99-115. DOI: 10.1016/j.ecoleng.2018.09.025 .

737. Čerkasova, N., G. Umgiesser and A. Ertürk. 2019. Assessing climate change impacts on streamflow, sediment and nutrient loadings of the Minija River (Lithuania): A hillslope watershed discretization application with high-resolution spatial inputs. Water. 11(4): 676. DOI: 10.3390/w11040676 .

738. Čerkasova, N., G. Umgiesser and A. Ertürk. 2021. Modelling framework for flow, sediments and nutrient loads in a large transboundary river watershed: A climate change impact assessment of the Nemunas River Watershed. Journal of Hydrology. 598: 126422. DOI: 10.2166/nh.2021.096 .

739. Čerkasova, N., M. White, J. Arnold, K. Bieger, P. Allen, J. Gao, M. Gambone, M. Meki, J. Kiniry and P. W. Gassman. 2023. Field scale SWAT+ modeling of corn and soybean yields for the contiguous United States: National Agroecosystem Model Development. Agricultural Systems. 210: 103695. DOI: 10.1016/j.agsy.2023.103695 .

740. Cerro, I., I. Antiguedad, R. Srinavasan, S. Sauvage, M. Volk and J.M. Sanchez-Perez. 2014. Simulating land management options to reduce nitrate pollution in an agricultural watershed dominated by an alluvial aquifer. Journal of Environmental Quality. 43(1): 67-74. DOI: 10.2134/jeq2011.0393 .

741. Cerucci, M. and J.M. Conrad. 2003. The use of binary optimization and hydrologic models to form riparian buffers. Journal of the American Water Resources Association. 39(5): 1167-1180. DOI: 10.1111/j.1752-1688.2003.tb03700.x .

742. Česonienė, L., D. Šileikienė, V. Marozas and L. Čiteikė. 2021. Influence of anthropogenic loads on surface water status: A case study in Lithuania. Sustainability. 13(8): 4341. DOI: 10.3390/su13084341 .

743. Česonienė, L., D. Sileikiene, M. Dapkiene, A. Radzevicius and K. Räsänen. 2019. Assessment of chemical and microbiological parameters on the Leite River Lithuania. Environmental Science and Pollution Research. 26: 18752-18765. DOI: 10.1007/s11356-019-04665-6 .

744. Cha, S.M. and S.W. Lee. 2021. Advanced hydrological streamflow simulation in a watershed using adjusted radar-rainfall estimates as meteorological input data. Journal of Environmental Management. 277: 111393. DOI: 10.1016/j.jenvman.2020.111393 .

745. Chaâbane, N., B. Salah and H. Abida. 2016. Runoff and sediment yield modeling using SWAT model: Case of Wadi Hatab basin, central Tunisia. Arabian Journal of Geosciences. 9(11): 579. DOI: 10.1007/s12517-016-2607-3 .

746. Chaemiso, S.E., S.A. Kartha and S.M. Pingale. 2021. Effect of land use/land cover changes on surface water availability in the Omo-Gibe Basin, Ethiopia. Hydrological Sciences Journal. 66(13): 1936-1962. DOI: 10.1080/02626667.2021.1963442 .

747. Chagas, A.M.S. das, A.A. de A. Montenegro, F.A.C. Lins and C.W.L. de A. Farias. 2022. Soil moisture analysis in an experimental basin in the semiarid region of Pernambuco using the SWAT model. Agrometeoros, Passo Fundo. 30: e026993. DOI: 10.31062/agrom.v30.e026993 .

748. Chahinian, N., M.-G. Tournoud, J.-L. Perrin and B. Picot. 2011. Flow and nutrient transport in intermittent rivers: A modelling case-study on the Vene River using SWAT 2005. Hydrological Sciences Journal. 56(2): 268-287. DOI: 10.1080/02626667.2011.559328 .

749. Chakilu, G.G., S. Sándor and T. Zoltán. 2020. Change in stream flow of Gumara watershed, Upper Blue Nile Basin, Ethiopia under representative concentration pathway climate change scenarios. Water. 12(11): 3046. DOI: 10.3390/w12113046 .

750. Chakilu, G.G., S. Sándor, T. Zoltán and K. Phinzi. 2022. Climate change and the response of streamflow of watersheds under the high emission scenario in Lake Tana sub-basin, Upper Blue Nile Basin, Ethiopia. Journal of Hydrology: Regional Studies. 42: 101175. DOI: 10.1016/j.ejrh.2022.101175 .

751. Chambers, B., S.M. Pradhanang and A.J. Gold. 2017. Assessing thermally stressful events in a Rhode Island coldwater fish habitat using the SWAT model. Water. 9(9): 667. DOI: 10.3390/w9090667 .

752. Chambers, B.M., S.M. Pradhanang and A.J. Gold. 2017. Simulating climate change induced thermal stress in coldwater fish habitat using SWAT Model. Water. 9(10): 732. DOI: 10.3390/w9100732 .

753. Chan, R., C. Baffaut, A. Thompson and J. Sadler. 2017. Validating the soil vulnerability index for a claypan watershed. Catena. 148(2): 185–194. DOI: 10.1016/j.catena.2016.03.009 .

754. Chanapathi, T., S. Thatikonda, V.R. Keesara and N.S. Ponguru. 2020. Assessment of water resources and crop yield under future climate scenarios: A case study in a Warangal District of Telangana, India. Journal of Earth System Science. 129(1): 20. DOI: 10.1007/s12040-019-1294-3 .

755. Chanasyk, D.S., E. Mapfumo and W. Willms. 2003. Quantification and simulation of surface runoff from fescue grassland watersheds. Agricultural Water Management. 59(2): 137-153. DOI: 10.1016/S0378-3774(02)00124-5 .

756. Chandra, P., P.L. Patel, P.D. Porey and I.D. Gupta. 2014. Estimation of sediment yield using SWAT model for Upper Tapi Basin. ISH Journal of Hydraulic Engineering. 20(3): 291-300. DOI: 10.1080/09715010.2014.902170 .

757. Chang, C., D. Sun, P. Feng, M. Zhang and N. Ge. 2017. Impacts of nonpoint source pollution on water quality in the Yuqiao Reservoir. Environmental Engineering Science. 34(6): 418-432. DOI: 10.1089/ees.2016.0124 .

758. Chang, C.-H., J.F. Harrison and Y.-C. Huang. 2015. Modeling typhoon-induced alterations on river sediment transport and turbidity based on dynamic landslide inventories: Gaoping River Basin, Taiwan. Water. 7(12): 6910-6930. DOI: 10.3390/w7126666 .

759. Chang, D., Z. Lai, S. Li, D. Li and J. Zhou. 2021. Critical source areas’ identification for non-point source pollution related to nitrogen and phosphorus in an agricultural watershed based on SWAT model. Environmental Science and Pollution Research. 28(34): 47162-47181. DOI: 10.1007/s11356-021-13973-9 .

760. Chang, H.-S., Z.-H. Lin and Y.-Y. Hsu. 2022. Planning for green infrastructure and mapping synergies and trade-offs: A case study in the Yanshuei River Basin, Taiwan. Urban Forestry & Urban Greening. 65: 127325. DOI: 10.1016/j.scitotenv.2022.152955 .

761. Chang, S. and I.-M. Chung. 2014. Analysis of groundwater variations using the relationship between groundwater use and daily minimum temperature in a water curtain cultivation site. The Journal of Engineering Geology. 24(2): 217-225. DOI: 10.9720/kseg.2014.2.217 .

762. Chang, S.W. and I.-M. Chung. 2021. Water budget analysis considering surface water–groundwater interactions in the exploitation of seasonally varying agricultural groundwater. Hydrology. 8(2): 60. DOI: 10.3390/hydrology8020060 .

763. Chang, S.W., K. Nemec, L. Kalin and T.P. Clement. 2016. Impacts of climate change and urbanization on groundwater resources in a Barrier island. Journal of Environmental Engineering. 142(12). DOI: 10.1061/(ASCE)EE.1943-7870.0001123 .

764. Chang, W., W. Li, H. Ma, D. Wang, E.R. Bandala, Y. Yu and J. Rodrigo-Comino. 2022. An integrated approach for shaping drought characteristics at the watershed scale. Journal of Hydrology. 604: 127248. DOI: 10.1016/j.jhydrol.2021.127248 .

765. Chang, Z., Z. Jiang and P. Wang. 2022. Inflow combination forecast of reservoir based on SWAT, XAJ model and Bayes model averaging method. Water Supply. 22(12): 8440-8463. DOI: 10.2166/ws.2022.405 .

766. Changkun, M., L. Sun, S. Liu, M. Shao and Y. Luo. 2015. Impact of climate change on the streamflow in the glacierized Chu River Basin, Central Asia. Journal of Arid Land. 7(4): 501-513. DOI: 10.1007/s40333-015-0041-0 .

767. Chann, K., T. Sok, R. Khoeun, V. Men, S. Visessri, C. Oeurng, R. Sor and S.E. Null. 2022. Prolonged and severe drought in the most dammed tributaries of the Lower Mekong Basin. Sustainability. 14(23): 16254. DOI: 10.3390/su142316254 .

768. Chao, G. and R. Tian. 2018. The influence of climate change and human activities on runoff in the middle reaches of the Huaihe River Basin, China. Journal of Geographical Sciences. 28(1): 79-92. DOI: 10.1007/s11442-018-1460-6 .

769. Chaplot, V. 2005. Impact of DEM mesh size and soil map scale on SWAT runoff, sediment, and NO3-N loads predictions. Journal of Hydrology. 312(1-4): 207-222. DOI: 10.1016/j.jhydrol.2005.02.017 .

770. Chaplot, V. 2007. Water and soil resources response to rising levels of atmospheric CO2 concentration and to changes in precipitation and air temperature. Journal of Hydrology. 337(1-2): 159-171. DOI: 10.1016/j.jhydrol.2007.01.026 .

771. Chaplot, V. 2014. Impact of spatial input data resolution on hydrological and erosion modeling: Recommendations from a global assessment. Physics and Chemistry of the Earth. 67-69: 23-35. DOI: 10.1016/j.pce.2013.09.020 .

772. Chaplot, V., A. Saleh and D.B. Jaynes. 2005. Effect of the accuracy of spatial rainfall information on the modeling of water, sediment, and NO3-N loads at the watershed level. Journal of Hydrology. 312(1-4): 223-234. DOI: 10.1016/j.jhydrol.2005.02.019 .

773. Chaplot, V., A. Saleh, D.B. Jaynes and J. Arnold. 2004. Predicting water, sediment and NO3-N loads under scenarios of land-use and management practices in a flat watershed. Water, Air, and Soil Pollution. 154 (1-4): 271-293. DOI: 10.1023/B:WATE.0000022973.60928.30 .

774. Chaponniere, A., G.Boulet, A. Chehbouni and M. Aresmouk. 2008. Understanding hydrological processes with scarce data in a mountain environment. Hydrological Processes. 22(12): 1908-1921. DOI: 10.1002/hyp.6775 .

775. Charbonnel, A., L. Buisson, M. Biffi, F. D'Amico, A. Besnard, S. Aulagnier, F. Blanc, F. Gillet, V. Lacaze, J.R. Michaux, M. Némoz, C. Pagé, J.M. Sanchez-Perez, S. Sauvage and P. Laffaille. 2015. Integrating hydrological features and genetically validated occurrence data in occupancy modelling of an endemic and endangered semi-aquatic mammal, Galemys pyrenaicus, in a Pyrenean catchment. Biological Conservation. 184: 182-192. DOI: 10.1016/j.biocon.2015.01.019 .

776. Charbonnel, A., P. Laffaille, M. Biffi, F. Blanc, A. Maire, M. Némoz, J.M. Sanchez-Perez, S. Sauvage and L. Buisson. 2016. Can recent global changes explain the dramatic range contraction of an endangered semi-aquatic mammal species in the French Pyrenees? PLoS ONE. 11(7): e0159941. DOI: 10.1371/journal.pone.0159941 .

777. Chathuranika, I.M., M.B. Gunathilake, P.K. Baddewela, E. Sachinthanie, M.S. Babel, S. Shrestha, M.K. Jha and U.S. Rathnayake. 2022. Comparison of two hydrological models, HEC-HMS and SWAT in runoff estimation: Application to Huai Bang Sai Tropical Watershed, Thailand. Fluids. 7(8): 267. DOI: 10.3390/fluids7080267 .

778. Chattopadhyay, S. and M. K Jha. 2016. Hydrological response due to projected climate variability in Haw River Watershed, North Carolina. Hydrological Sciences Journal. 61(3): 495-506. DOI: 10.1080/02626667.2014.934823 .

779. Chattopadhyay, S., D.R. Edwards, Y. Yu and A. Hamidisepehr. 2017. An assessment of climate change impacts on future water availability and droughts in the Kentucky River Basin. Environmental Processes. 4(3): 477-507. DOI: 10.1007/s40710-017-0259-2 .

780. Chattopadhyay, S., E. Szałkiewicz, M. Dytkiewicz, P. Marcinkowski, D. Mirosław-Świątek,, P. Oglęcki and M. Piniewski. 2023. Development of an integrated modelling framework to evaluate impacts of pressures on habitat conditions and riverine biota. Ecohydrology. : e2585. DOI: 10.1002/eco.2585 .

781. Chattrairat, K., A. Jattamart, and A. Leelasantitham. 2022. Estimating water runoff from downscaling climate change scenarios using Soil and Water Assessment Tool and machine learning: A case study of Lake Tana Basin in Ethiopia. Science, Engineering and Health Studies. 16: 22020012. DOI: 10.14456/sehs.2022.62 .

782. Chaubey, I., A.S. Cotter. T.A. Costello and T.S. Soerens. 2005. Effect of DEM data resolution on SWAT output uncertainty. Hydrological Processes. 19(3): 621-628. DOI: 10.1002/hyp.5607 .

783. Chaubey, I., L. Chiang, M.W. Gitau and S. Mohamed. 2010. Effectiveness of best management practices in improving water quality in a pasture-dominated watershed. Journal of Soil and Water Conservation. 65(6): 424-437. DOI: 10.2489/jswc.65.6.424 .

784. Chauhan, N., V. Kumar and P. Paliwal. 2020. Quantifying the impacts of decadal landuse change on the water balance components using Soil and Water Assessment Tool in Ghaggar River Basin. SN Applied Sciences. 2(11): 1777. DOI: 10.1007/s42452-020-03606-0 .

785. Chawanda, C.J., A. Nkwasa, W. Thiery and A. van Griensven. 2024. Combined impacts of climate and land-use change on future water resources in Africa. Hydrology and Earth System Sciences. 28(1): 117–138. DOI: 10.5194/hess-28-117-2024 .

786. Chawanda, C.J., C. George, W. Thiery, A. van Griensven, J. Tech, J. Arnold and R. Srinivasan. 2020. User-friendly workflows for catchment modelling: Towards reproducible SWAT+ model studies. Environmental Modelling & Software. 134: 104812. DOI: 10.1016/j.envsoft.2020.104812 .

787. Chawanda, C.J., J. Arnold, W. Thiery and A. van Griensven. 2020. Mass balance calibration and reservoir representations for large-scale hydrological impact studies using SWAT+. Climatic Change. 163(3): 1307–1327. DOI: 10.1007/s10584-020-02924-x .

788. Chebet, C., V.A.O. Odenyo and E.C. Kipkorir. 2017. Modeling the impact of land use changes on river flows in Arror watershed, Elgeyo Marakwet County, Kenya. Water Practice and Technology. 12(2): 344-353. DOI: 10.2166/wpt.2017.028 .

789. Cheema, M., W. Immerzeel and W. Bastiaanssen. 2014. Spatial quantification of groundwater abstraction in the irrigated Indus basin. Groundwater. 52(1): 25–36. DOI: 10.1111/gwat.12027 .

790. Chegnizadeh, A., H. Rabieifar, H. Ebrahimi and M.Z. Nayeri. 2022. Evaluating the hydrological response due to the changes in climate and land use on streamflow in the Karkheh basin, Iran. Journal of Water and Climate Change. 13(11): 4054-4068. DOI: 10.2166/wcc.2022.278 .

791. Chegwin, M.R. and S. Kumara. 2018. Energy, land and water nexus in Sri Lanka’s Mahaweli basin. Energy. 17(13): 93-111. DOI: 10.1680/jener.17.00026 .

792. Chen, C., Y. Zhang, Y. Xiang and L. Wang. 2014. Study on runoff responses to land use change in Ganjiang Basin. Floresta e Ambiente. 29(10): 1758-1769. DOI: 10.11849/zrzyxb.2014.10.011 .

793. Chen, D., J. Li, Z. Zhou, Y. Liu, T. Li and J. Liu. 2018. Simulating and mapping the spatial and seasonal effects of future climate and land -use changes on ecosystem services in the Yanhe watershed, China. Environmental Science and Pollution Research. 25(2): 1115-1131. DOI: 10.1007/s11356-017-0499-8 .

794. Chen, E. and D.S. Mackay. 2004. Effects of distribution-based parameter aggregation on a spatially distributed agricultural nonpoint source pollution model. Journal of Hydrology. 295(1-4): 211-224. DOI: 10.1016/j.jhydrol.2004.03.029 .

795. Chen, F. and J. Li. 2016. Quantifying drought and water scarcity: A case study in the Luanhe river basin. Natural Hazards. 81(3): 1913-1927. DOI: 10.1007/s11069-016-2162-y .

796. Chen, F., W.T. Crow, P.J. Starks and D.N. Moriasi. 2011. Improving hydrologic predictions of a catchment model via assimilation of surface soil moisture. Advances in Water Resources. 34(4): 526-536. DOI: 10.1016/j.advwatres.2011.01.011 .

797. Chen, H., J. Chen, Y. Liu and J. He. 2021. Study of nitrogen pollution Simulation and management measures on SWAT model in typhoon period of Shanxi Reservoir Watershed, Zhejiang Province, China. Polish Journal of Environmental studies. 30(3): 1-9. DOI: 10.15244/pjoes/130038 .

798. Chen, H., Y. Luo, C. Potter, P.J. Moran, M.L. Grieneisen and M. Zhang. 2017. Modeling pesticide diuron loading from the San Joaquin watershed into the Sacramento-San Joaquin Delta using SWAT. Water Research. 121: 374–385. DOI: 10.1016/j.watres.2017.05.032 .

799. Chen, J. and Y. Wu. 2012. Advancing representation of hydrologic processes in the Soil and Water Assessment Tool (SWAT) through integration of the TOPographic MODEL (TOPMODEL) features. Journal of Hydrology. 420-421: 319-328. DOI: 10.1016/j.jhydrol.2011.12.022 .

800. Chen, J. and H. Chang. 2021. Relative impacts of climate change and land cover change on streamflow using SWAT in the Clackamas River Watershed, USA. Journal of Water and Climate Change. 12(5): 1454–1470. DOI: 10.2166/wcc.2020.123 .

801. Chen, J. and X. Li. 2004. Simulation of hydrological response to land-cover changes. Chinese Journal of Applied Ecology. 15(5): 833-836. URL: http://www.cjae.net/EN/Y2004/V/I5/833.

802. Chen, J., C. Du, T. Nie, X. Han and S. Tang. 2022. Study of non-point pollution in the Ashe River Basin based on SWAT model with different land use. Water. 14(14): 2177. DOI: 10.3390/w14142177 .

803. Chen, J., C. Gao, X. Zeng, M. Xiong, Y. Wang, C. Jing, V. Krysanova, J. Huang, N. Zhao and B. Su. 2017. Assessing changes of river discharge under global warming of 1.5 °C and 2 °C in the upper reaches of the Yangtze River Basin: Approach by using multiple- GCMs and hydrological models. Quaternary International. 453: 63-73. DOI: 10.1016/j.quaint.2017.01.017 .

804. Chen, J., L. Xiubin and Z. Ming. 2005. Simulating the impacts of climate variation and land-cover changes on basin hydrology: A case study of the Suomo basin. Science in China Series D: Earth Sciences. 48(9): 1501-1509. DOI: 10.1360/03yd0269 .

805. Chen, J., L. Zhang, P. Chen and Y. Ma. 2022. Application of spatially distributed calibrated hydrological model in evapotranspiration simulation of three gorges reservior area of China: A case study in the Madu River Basin. Chinese Geographical Science. 32(6): 1083-1098. DOI: 10.1007/s11769-022-1318-9 .

806. Chen, J., R. Arsenault, F.P. Brissette, P. Côté and T. Su. 2019. Coupling annual, monthly and daily weather generators to simulate multisite and multivariate climate variables with low-frequency variability for hydrological modelling. Climate Dynamics. 53: 3841-3860. DOI: 10.1007/s00382-019-04750-z .

807. Chen, L., A. Zhu, C. Qin and J. Liu. 2012. Effectiveness assessment of soil erosion critical source areas for soil and water conservation. Journal of Resources and Ecology. 3(2): 138-143. DOI: 10.5814/j.issn.1674-764x.2012.02.005 .

808. Chen, L., G. Wang, Y. Zhong and Z. Shen. 2016. Evaluating the impacts of soil data on hydrological and nonpoint source pollution prediction. Science of the Total Environment. 563-564: 19-28. DOI: 10.1016/j.scitotenv.2016.04.107 .

809. Chen, L., G. Wang, Y. Zhong, X. Zhao and Z. Shen. 2016. Using site-specific soil samples as a substitution for improved hydrological and nonpoint source predictions. Environmental Science and Pollution Research. 23(16): 16037–16046. DOI: 10.1007/s11356-016-6789-8 .

810. Chen, L., G. Wei and Z. Shen. 2015. An auto-adaptive optimization approach for targeting nonpoint source pollution control practices. Scientific Reports. 5:15393. DOI: 10.1038/srep15393 .

811. Chen, L., G. Wei and Z. Shen. 2016. Incorporating water quality responses into the framework of best management practices optimization. Journal of Hydrology. 541(Part B): 1363–1374. DOI: 10.1016/j.jhydrol.2016.08.038 .

812. Chen, L., G. Wei, Y. Zhong, G. Wang and Z. Shen. 2014. Targeting priority management areas for multiple pollutants from non-point sources. Journal of Hazardous Materials. 280: 244–251. DOI: 10.1016/j.jhazmat.2014.08.012 .

813. Chen, L., J. Li, J. Xu, G. Liu, W. Wang, J. Jiang and Z. Shen. 2022. New framework for nonpoint source pollution management based on downscaling priority management areas. Journal of Hydrology. 606: 127433. DOI: 10.1016/j.jhydrol.2022.127433 .

814. Chen, L., J. Qiu, G. Wei and Z. Shen. 2015. A preference-based multi-objective model for the optimization of best management practices. Journal of Hydrology. 520: 356–366. DOI: 10.1016/j.jhydrol.2014.11.032 .

815. Chen, L., J. Xu, G. Wang and Z. Shen. 2019. Comparison of the multiple imputation approaches for imputing rainfall data series and their applications to watershed models. Journal of Hydrology. 572: 449-460. DOI: 10.1016/j.jhydrol.2019.03.025 .

816. Chen, L., J. Xu, G. Wang, H. Liu, L. Zhai, S. Li, C. Sun and Z. Shen. 2018. Influence of rainfall data scarcity on non-point source pollution prediction: Implications for physically based models. Journal of Hydrology. 562: 1-16. DOI: 10.1016/j.jhydrol.2018.04.044 .

817. Chen, L., S. Chen, S. Li and Z. Shen. 2019. Temporal and spatial scaling effects of parameter sensitivity in relation to non-point source pollution simulation. Journal of Hydrology. 571: 36-49. DOI: 10.1016/j.jhydrol.2019.01.045 .

818. Chen, L., S. Li, Y. Zhong and Z. Shen. 2018. Improvement of model evaluation by incorporating prediction and measurement uncertainty. Hydrology and Earth System Sciences. 22(8): 4145-4154. DOI: 10.5194/hess-22-4145-2018 .

819. Chen, L., Y. Dai, X. Zhi, H. Xie and Z. Shen. 2018. Quantifying nonpoint source emissions and their water quality responses in a complex catchment: A case study of a typical urban-rural mixed catchment. Journal of Hydrology. 559: 110-121. DOI: 10.1016/j.jhydrol.2018.02.034 .

820. Chen, L., Y. Gong and Z. Shen. 2016. Structural uncertainty in watershed phosphorus modeling: Toward a stochastic framework. Journal of Hydrology. 537: 36-44. DOI: 10.1016/j.jhydrol.2016.03.039 .

821. Chen, L., Y. Wang, N. Yang, K. Zhu, X. Yan, Z. Bai, L. Zhai and Z. Shen. 2023. Improving crop-livestock integration in China using numerical experiments at catchment and regional scales. Agriculture Ecosystems and Environment. 341: 108192. DOI: 10.1016/j.agee.2022.108192 .

822. Chen, L., Y. Zhong, G. Wei, Y. Cai and Z. Shen. 2014. Development of an integrated modeling approach for identifying multilevel non-point-source priority management areas at the watershed scale. Water Resources Research. 50(5): 4095-4109. DOI: 10.1002/2013WR015041 .

823. Chen, L., Z. Shen, X. Yang, Q. Liao and S.L. Yu. 2014. An Interval-Deviation Approach for hydrology and water quality model evaluation within an uncertainty framework. Journal of Hydrology. 509: 207–214. DOI: 10.1016/j.jhydrol.2013.11.043 .

824. Chen, M., C. Yang, T. Hou, G. Lu, Y. Wen, and S. Yue. 2018. Developing a data model for understanding geographical analysis models with consideration of their evolution and application processes. Transactions in GIS. 22: 1498-1521. DOI: 10.1111/tgis.12484 .

825. Chen, M., P.W. Gassman, R. Srinivasan, Y. Cui and R. Arritt. 2020. Analysis of alternative climate datasets and evapotranspiration methods for the Upper Mississippi River Basin using SWAT within HAWQS. Science of the Total Environment. 720: 137562. DOI: 10.1016/j.scitotenv.2020.137562 .

826. Chen, M., S. Yue, G. Lü, H. Lin, C. Yang, Y. Wen, T. Hou, D. Xiao and H. Jiang. 2019. Teamwork-oriented integrated modeling method for geo-problem solving. Environmental Modelling & Software. 119: 111-123. DOI: 10.1016/j.envsoft.2019.05.015 .

827. Chen, M., Y. Cui, P.W. Gassman and R. Srinivasan. 2021. Effect of Watershed Delineation and Climate Datasets density on runoff predictions for the Upper Mississippi River Basin using SWAT within HAWQS. Water. 13(4): 422. DOI: 10.3390/w13040422 .

828. Chen, P. and W. Li. 2022. Assessing reservoir effect on water quality in the Missouri River Basin using the Soil and Water Assessment Tool (SWAT) model. River Research and Applications. 38: 1775–1786. DOI: 10.1002/rra.4044 .

829. Chen, P., W. Li and K. He. 2022. Impacts of different types of El Niño events on water quality over the Corn Belt, United States. Hydrology and Earth System Sciences. 26(19): 4875-4892. DOI: 10.5194/hess-26-4875-2022 .

830. Chen, P., Y. Yuan, W. Li, S.D. LeDuc, T.J. Lark, X. Zhang and C. Clark. 2021. Assessing the impacts of recent crop expansion on water quality in the Missouri River Basin Using the Soil and Water Assessment Tool. Journal of Advances in Modeling Earth Systems. 13: e2020MS002284. DOI: 10.1029/2020MS002284 .

831. Chen, Q., H. Chen, J. Wang, Y. Zhao, J. Chen and C. Xu. 2019. Impacts of climate change and land-use change on hydrological extremes in the Jinsha River Basin. Water. 11(7): 1398. DOI: 10.3390/w11071398 .

832. Chen, Q., H. Chen, J. Zhang, Y. Hou, M. Shen, J. Chen and C. Xu. 2020. Impacts of climate change and LULC change on runoff in the Jinsha River Basin. Journal of Geographical Sciences. 30(1): 85-102. DOI: 10.1007/s11442-020-1716-9 .

833. Chen, S., L. Chen, X. Liu, Y. Pan, F. Zhou, J. Guo, T. Huang, F. Chen and Z. Shen. 2022. Unexpected nitrogen flow and water quality change due to varying atmospheric deposition. Journal of Hydrology. 609: 127679. DOI: 10.1016/j.jhydrol.2022.127679 .

834. Chen, W., D. Nover, H. Yen, Y. Xia, B. He, W. Sun and J. Viers. 2020. Exploring the multiscale hydrologic regulation of multipond systems in a humid agricultural catchment. Water Research. 184: 115987. DOI: 10.1016/j.watres.2020.115987 .

835. Chen, X. and G. Huang. 2020. Applicability and hydrologic substitutability of TMPA satellite precipitation product in the Feilaixia Catchment, China. Water. 12(6): 1803. DOI: 10.3390/w12061803 .

836. Chen, X., B. Xu, Y. Zheng and C. Zhang. 2019. Nexus of water, energy and ecosystems in the Upper Mekong River: A system analysis of phosphorus transport through cascade reservoirs. Science of the Total Environment. 671: 1179-1191. DOI: 10.1016/j.scitotenv.2019.03.324 .

837. Chen, X., C. Bing and W. Hongjing. 2014. Parameter uncertainty analysis of surface flow and sediment yield in the Huolin Basin, China. Journal of Hydrologic Engineering. 19(6): 1224-1236. DOI: 10.1061/(ASCE)HE.1943-5584.0000909 .

838. Chen, X., F. Li, J.-z. Li and P. Feng. 2019. Three-dimensional identification of hydrological drought and multivariate drought risk probability assessment in the Luanhe River Basin, China. Theoretical and Applied Climatology. DOI: 10.1007/s00704-019-02780-5 .

839. Chen, X., F.-W. Li, Y.-X. Wang, P. Feng and R.-Z. Yang. 2019. Evolution properties between meteorological, agricultural and hydrological droughts and their related driving factors in the Luanhe River Basin, China. Hydrology Research. 50(4): 1096-1119. DOI: 10.2166/nh.2019.141 .

840. Chen, X., G. Xu, W. Zhang, H. Peng, H. Xia, X. Zhang, Q. Ke and J. Wan. 2019. Spatial variation pattern analysis of hydrologic processes and water quality in Three Gorges Reservoir Area. Water. 11(12): 2608. DOI: 10.3390/w11122608 .

841. Chen, X., K. Alizad, D. Wang and S.C. Hagen. 2014. Climate change impact on runoff and sediment loads to the Apalachicola River at seasonal and event scales. Journal of Coastal Research. 68: 35-42. DOI: 10.2112/SI68-005.1 .

842. Chen, X., R. Han, P. Feng and Y. Wang. 2022. Combined effects of predicted climate and land use changes on future hydrological droughts in the Luanhe River Basin, China. Natural Hazards. 110(2): 1305-1337. DOI: 10.1007/s11069-021-04992-3 .

843. Chen, X., W. Chen and G. Huang. 2021. Future climatic projections and hydrological responses in the Upper Beijiang River Basin of south China using bias-corrected RegCM 4.6 data. JGR Atmospheres. 126(19): e2021JD034550. DOI: 10.1029/2021JD034550 .

844. Chen, X., Y. Liu, J. Zhang, T. Guan, Z. Sun, J. Jin, C. Liu, G. Wang and Z. Bao. 2022. Quantify runoff reduction in the Zhang River due to water diversion for irrigation. Water. 14(12): 1918. DOI: 10.3390/w14121918 .

845. Chen, Y. and M. Nakatsugawa. 2021. Analysis of changes in land use/land cover and hydrological processes caused by earthquakes in the Atsuma River Basin in Japan. Sustainability. 13(23): 13041. DOI: 10.3390/su132313041 .

846. Chen, Y. J. Shuai, Z. Zhang, P. Shi and F. Tao. 2013. Simulating the impact of watershed management for surface water quality protection: A case study on reducing inorganic nitrogen load at a watershed scale. Ecological Engineering. 62: 61-70. DOI: 10.1016/j.ecoleng.2013.10.023 .

847. Chen, Y., C.-Y. Xu, X. Chen, Y. Xu, Y. Yin, L. Gao and M. Liu. 2019. Uncertainty in simulation of land-use change impacts on catchment runoff with multi-timescales based on the comparison of the HSPF and SWAT models. Journal of Hydrology. 573: 486-500. DOI: 10.1016/j.jhydrol.2019.03.091 .

848. Chen, Y., G.W. Marek, T.H. Marek, D.K. Brauer and R. Srinivasan. 2017. Assessing the efficacy of the SWAT auto-irrigation function to simulate irrigation, evapotranspiration, and crop response to management strategies of the Texas High Plains. Water. 9(7): 509. DOI: 10.3390/w9070509 .

849. Chen, Y., G.W. Marek, T.H. Marek, J.E. Moorhead, K.R. Heflin, D.K. Brauer, P.H. Gowda and R. Srinivasan. 2018. Assessment of alternative agricultural land use options for extending the availability of the Ogallala Aquifer in the northern high plains of Texas. Hydrology. 5(4): 53. DOI: 10.3390/hydrology5040053 .

850. Chen, Y., G.W. Marek, T.H. Marek, D.K. Brauer and R. Srinivasan. 2018. Improving SWAT auto-irrigation functions for simulating agricultural irrigation management using long-term lysimeter field data. Environmental Modelling & Software. 99: 25-38. DOI: 10.1016/j.envsoft.2017.09.013 .

851. Chen, Y., G.W. Marek, T.H. Marek, Q. Xue, D.K. Brauer and R. Srinivasan. 2019. Assessing soil and water assessment tool plant stress algorithms using full and deficit irrigation treatments. Agronomy Journal. 111(3): 1266-1280. DOI: 10.2134/agronj2018.09.0556 .

852. Chen, Y., G.W. Marek, T.H. Marek, P.H. Gowda, Q. Xue, J.E. Moorhead, D.K. Brauer, R. Srinivasan and K.R. Heflin. 2019. Multisite evaluation of an improved SWAT irrigation scheduling algorithm for corn (Zea mays L.) production in the U.S. Southern Great Plains. Environmental Modelling & Software. 118: 23-34. DOI: 10.1016/j.envsoft.2019.04.001 .

853. Chen, Y., G.W. Marek, T.H. Marek, D.O. Porter, J.E. Moorhead, K.R. Heflin, D.K. Brauer and R. Srinivasan. 2020. Watershed scale evaluation of an improved SWAT auto-irrigation function. Environmental Modelling & Software. 131: 104789. DOI: 10.1016/j.envsoft.2020.104789 .

854. Chen, Y., G.W. Marek, T.H. Marek, D.O. Porter, D.K. Brauer and R. Srinivasan. 2021. Modeling climate change impacts on blue, green, and grey water footprints and crop yields in the Texas High Plains, USA. Agricultural and Forest Meteorology. 310: 108649. DOI: 10.1016/j.agrformet.2021.108649 .

855. Chen, Y., G.W. Marek, T.H. Marek, D.O. Porter, D.K. Brauer and R. Srinivasan. 2021. Simulating the effects of agricultural production practices on water conservation and crop yields using an improved SWAT model in the Texas High Plains, USA. Agricultural Water Management. 244: 1065. DOI: 10.1016/j.agwat.2020.106574 .

856. Chen, Y., M. Nakatsugawa and H. Ohashi. 2021. Research of impacts of the 2018 Hokkaido Eastern Iburi Earthquake on sediment transport in the Atsuma River Basin using the SWAT model. Water. 13(3): 356. DOI: 10.3390/w13030356 .

857. Chen, Y., S. Ale, N. Rajan and C. Munster. 2017. Assessing the hydrologic and water quality impacts of biofuel-induced changes in land use and management. Global Change Biology Bioenergy. 9(9): 1461-1475. DOI: 10.1111/gcbb.12434 .

858. Chen, Y., S. Ale, N. Rajan and R. Srinivasan. 2017. Modeling the effects of land use change from cotton (Gossypium hirsutum L.) to perennial bioenergy grasses on watershed hydrology and water quality under changing climate. Agricultural Water Management. 192: 198-208. DOI: 10.1016/j.agwat.2017.07.011 .

859. Chen, Y., S. Ale, N. Rajan, C.L.S. Morgan and J. Park. 2016. Hydrological responses of land use change from cotton (Gossypium hirsutum L.) to cellulosic bioenergy crops in the Southern High Plains of Texas, USA. Global Change Biology Bioenergy. 8(5): 981–999. DOI: 10.1111/gcbb.12304 .

860. Chen, Y., X. Chen, C.-Y. Xu, M. Zhang, M. Liu and L. Gao. 2018. Toward improved calibration of SWAT using season-based multi-objective optimization: A case study in the Jinjiang Basin in southeastern China. Water Resources Management. 32(4): 1193–1207. DOI: 10.1007/s11269-017-1862-8 .

861. Chen, Y., X. Song, Z. Zhang, P. Shi and F. Tao. 2015. Simulating the impact of flooding events on non-point source pollution and the effects of filter strips in an intensive agricultural watershed in China. Limnology. 16(2): 91-101. DOI: 10.1007/s10201-014-0443-2 .

862. Chen, Y., Y. Xu and X. Chen. 2011. Hydrologic response to future urbanization in small or medium basins in the Yangtze River Delta region. Resources Science. 33(1): 64-69. URL: http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZRZY201101010.htm.

863. Chen, Z., R. Zhu, Z. Yin, Q. Feng, L. Yang, L. Wang, R. Lu and C. Fang. 2022. Hydrological response to future climate change in a mountainous watershed in the northeast of Tibetan Plateau. Journal of Hydrology: Regional Studies. 44: 101256. DOI: 10.1016/j.ejrh.2022.101256 .

864. Cheng K., X. Xu, L. Cui, Y. Li, J. Zheng, W. Wu, J. Sun and G. Pan. 2021. The role of soils in regulation of freshwater and coastal water quality. Philosophical Transactions of the Royal Society B: Biological Sciences. 376: 20200176. DOI: 10.1098/rstb.2020.0176 .

865. Cheng, C., Y.C.E. Yang, R. Ryan, Q. Yu and E. Brabec. 2017. Assessing climate change-induced flooding mitigation for adaptation in Boston’s Charles River watershed, USA. Landscape and Urban Planning. 167: 25-36. DOI: 10.1016/j.landurbplan.2017.05.019 .

866. Cheng, D., H. Li, W. Zhang, S.G. Pueppke, J. Pang and Y. Diao. 2020. Spatiotemporal dynamics of nitrogen transport in the Qiandao Lake Basin, a large hilly monsoon basin of southeastern China. Water. 12(4): 1075. DOI: 10.3390/w12041075 .

867. Cheng, H., F. Hao, X. Ren, S. Yang, W. Xiong and S. Lei. 2008. Loss coefficient of nitrogenous non-point source pollution under various precipitation conditions. Frontiers of Environmental Science & Engineering in China. 26(3): 392-397. DOI: 10.1007/s11783-008-0043-7 .

868. Cheng, H., W. Ouyang, F. Hao, X. Ren, and S. Yang. 2006. The non-point source pollution in livestock-breeding areas of the Heihe River basin in Yellow River. Stochastic Environmental Research and Risk Assessment. 21(3): 213-221. DOI: 10.1007/s00477-006-0057-2 .

869. Cheng, J., Y. Gong, D.Z. Zhu, M. Xiao, Z. Zhang, J. Bi and K. Wang. 2021. Modeling the sources and retention of phosphorus nutrient in a coastal river system in China using SWAT. Journal of Environmental Management. 278(Part 2): 111556. DOI: 10.1016/j.jenvman.2020.111556 .

870. Cheng, L., G. Wan, M. Yang, X. Wang and Y. Li. 2022. The runoff in the Upper Taohe River Basin and its responses to climate change. Water. 14(13): 2094. DOI: 10.3390/w14132094 .

871. Cheng, M., Y. Wang, B. Engel, W. Zhang, H. Peng, X. Chen and H. Xia. 2017. Performance assessment of spatial interpolation of precipitation for hydrological process simulation in Three Gorges Basin. Water. 9(11): 836. DOI: 10.3390/w9110838 .

872. Cheng, Q., X. Chen, C. Xu, C. Reinhardt-Imjela and A. Schulte. 2014. Improvement and comparison of likelihood functions for model calibration and parameter uncertainty analysis within a Markov chain Monte Carlo scheme. Journal of Hydrology. 519(Part B): 2202–2214. DOI: 10.1016/j.jhydrol.2014.10.008 .

873. Cheng, Q.-B., X. Chen, C.-Y. Xu, Z.-C. Zhang, C. Reinhardt-Imjela and A. Schulte. 2018. Using maximum likelihood to derive various distance-based goodness-of-fit indicators for hydrologic modeling assessment. Stochastic Environmental Research and Risk Assessment. 32: 949-966. DOI: 10.1007/s00477-017-1507-8 .

874. Cheng, Q.-B., X. Chen, J. Wang, Z.-C. Zhang, R.-R. Zhang, Y.-Y. Xie, C. Reinhardt-Imjela and A. Schulte. 2018. The use of river flow discharge and sediment load for multi-objective calibration of SWAT based on the Bayesion inference. Water. 10(11): 1662. DOI: 10.3390/w10111662 .

875. Cheng, Q-B., C. Reinhardt-Imjela, X. Chen, A. Schulte, X. Ji and F-L. Lie. 2016. Improvement and comparison of the rainfall-runoff methods in SWAT at the monsoonal watershed of Baocun, Eastern China. Hydrological Sciences Journal. 61(8): 1460-1476. DOI: 10.1080/02626667.2015.1051485 .

876. Cheng, Y., J. Zhou, J. Liao, D. Mao, W. Chen and Z. Shan. 2020. Coupled modeling using PRZM/RICEWQ and SWAT for the North Tiaoxi Watershed. Environmental Science and Pollution Research. 27(11): 12635-12645. DOI: 10.1007/s11356-019-06418-x .

877. Cherkauer, K.A., L.C. Bowling, K. Byun, I. Chaubey, N. Chin, D.L. Ficklin, A.F. Hamlet, S.J. Kines, C.I. Lee, R. Neupane, G.W. Pignotti, S. Rahman, S. Singh, P.V. Femeena and T.N. Williamson. 2021. Climate change impacts and strategies for adaptation for water resource management in Indiana. Climatic Change. 165(1-2): 21. DOI: 10.1007/s10584-021-02979-4 .

878. Cherry, K.A., M. Shepherd, P.J.A. Withers and S.J. Mooney. 2008. Assessing the effectiveness of actions to mitigate nutrient loss from agriculture: A review of methods. Science of the Total Environment. 406: 1-23. DOI: 10.1016/j.scitotenv.2008.07.015 .

879. Chhuon, K., E. Herrera and K. Nadaoka. 2016. Application of integrated hydrologic and river basin management modeling for the optimal development of a multi-purpose reservoir project. Water Resources Management. 30(9): 3143-3157. DOI: 10.1007/s11269-016-1336-4 .

880. Chhuon, K., H. Lin, Y. Guo and A. Math. 2020. Impact assessment of land cover change on hydrology and suspended sediment in an upland watershed of Mekong River Basin in Cambodia, using ArcSWAT. International Journal of Advanced Science and Technology. 29(6): 6948-6956. URL: http://sersc.org/journals/index.php/IJAST/article/view/22447.

881. Chiang, L., I. Chaubey, M.W. Gitau and J.G. Arnold. 2010. Differentiating impacts of land use changes from pasture management in a CEAP watershed using the SWAT model. Transactions of the ASABE. 53(5): 1569-1584. DOI: 10.13031/2013.34901 .

882. Chiang, L.-C. and Y. Yuan. 2015. The NHDPlus dataset, watershed subdivision and SWAT model performance. Hydrological Sciences Journal. 60(10): 1690-1708. DOI: 10.1080/02626667.2014.916408 .

883. Chiang, L.-C., C.-J. Liao, C.-M. Lu and Y.-C. Wang. 2021. Applicability of modified SWAT model (SWAT‑Twn) on simulation of watershed sediment yields under different land use/cover scenarios in Taiwan. Environmental Monitoring and Assessment. 193(8): 520. DOI: 10.1007/s10661-021-09283-9 .

884. Chiang, L.-C., I. Chaubey , C. Maringanti and T. Huang. 2014. Comparing the selection and placement of best management practices in improving water quality using the multiobjective optimization and targeting method. International Journal of Environmental Research and Public Health. 11(3): 2992-3014. DOI: 10.3390/ijerph110302992 .

885. Chiang, L.-C., I. Chaubey , N.-M. Hong, Y. Lin and T. Huang. 2012. Implementation of BMP strategies for adaptation to climate change and land use change in a pasture-dominated watershed. International Journal of Environmental Research and Public Health. 9(10): 3654-3684. DOI: 10.3390/ijerph9103654 .

886. Chiang, L.-C., Y. Yuan, M. Mehaffey, M. Jackson and I. Chaubey. 2014. Assessing SWAT's performance in the Kaskaskia River watershed as influenced by the number of calibration stations used. Hydrological Processes. 28(3): 676–687. DOI: 10.1002/hyp.9589 .

887. Chiang, L.-C., Y.-T. Chuang and C.-C. Han. 2019. Integrating landscape metrics and hydrologic modeling to assess the impact of natural disturbances on ecohydrological processes in the Chenyulan Watershed, Taiwan. International Journal of Environmental Research and Public Health. 16(2): 266. DOI: 10.3390/ijerph16020266 .

888. Chien, H., P.J.-F. Yeh and J.H. Knouft. 2013. Modeling the potential impacts of climate change on streamflow in agricultural watersheds of the Midwestern United States. Journal of Hydrology. 491: 73–88. DOI: 10.1016/j.jhydrol.2013.03.026 .

889. Chilkoti, V., T. Bolisetti and R. Balachandar. 2018. Multi-objective autocalibration of SWAT model for improved low flow performance for a small snowfed catchment. Hydrological Sciences Journal. 63(10): 1482-1501. DOI: 10.1080/02626667.2018.1505047 .

890. Chilkoti, V., T. Bolisetti and R. Balachandar. 2020. Investigating the role of hydrological model parameter uncertainties in future streamflow projections. Journal of Hydrologic Engineering. 25(10): 05020035. DOI: 10.1061/(ASCE)HE.1943-5584.0001994 .

891. Chim, K., J. Tunnicliffe, A. Shamseldin and S. Sarun. 2021. Sustainable water management in the Angkor Temple Complex, Cambodia. SN Applied Sciences. 3: 74. DOI: 10.1007/s42452-020-04030-0 .

892. Chim, K., J. Tunnicliffe, A.Y. Shamseldin and H. Bun. 2021. Assessment of land use and climate change effects on hydrology in the Upper Siem Reap River and Angkor Temple Complex, Cambodia. Environmental Development. 39: 100615. DOI: 10.1016/j.envdev.2021.100615 .

893. Chimdessa, K., S. Quraishi, A. Kebede and T. Alamirew. 2019. Effect of land use land cover and climate change on river flow and soil loss in Didessa River Basin, South West Blue Nile, Ethiopia. Hydrology. 6(1): 2. DOI: 10.3390/hydrology6010002 .

894. Chin, D.A. 2011. Quantifying pathogen sources in streams by hydrograph separation. Journal of Environmental Engineering. 137(9): 770-781. DOI: 10.1061/(ASCE)EE.1943-7870.0000394 .

895. Chin, D.A., D. Sakura‐Lemessy, D.D. Bosch and P.A. Gay. 2009. Watershed-scale fate and transport of bacteria. Transactions of the ASABE. 52(1): 145-154. DOI: 10.13031/2013.25955 .

896. Chin, D.A., S.H. Fan and Y.C. Li. 2011. Validation of growth and nutrient uptake models for tomato on a gravelly South Florida soil under greenhouse conditions. Pedosphere. 21(1): 46-55. DOI: 10.1016/S1002-0160(10)60078-1 .

897. Chinnasamy, P. and A. Sood. 2020. Estimation of sediment load for Himalayan Rivers: Case study of Kaligandaki in Nepal. Journal of Earth System Science. 129(1): 181. DOI: 10.1007/s12040-020-01437-6 .

898. Chinnasamy, P., L. Muthuwatta, N. Eriyagama, P. Pavelic and S. Lagudu. 2018. Modeling the potential for floodwater recharge to offset groundwater depletion: A case study from the Ramganga Basin, India. Sustainable Water Resources Management. 4(2): 331-344. DOI: 10.1007/s40899-017-0168-6 .

899. Chiogna, G., G. Marcolini, W. Liu, T.P. Ciria and Y. Tuo. 2018. Coupling hydrological modeling and support vector regression to model hydropeaking in alpine catchments. Science of the Total Environment. 633: 220-229. DOI: 10.1016/j.scitotenv.2018.03.162 .

900. Chiphang, N., A. Bandyopadhyay and B. Aditi. 2020. Assessing the effects of snowmelt dynamics on streamflow and water balance components in an eastern Himalayan river basin using SWAT model. Environmental Modeling & Assessment. 25(4): 861 - 863. DOI: 10.1007/s10666-020-09716-8 .

901. Chirachawala, C., S. Shrestha, M.S. Babel, S.G.P. Virdis and S. Wichakul. 2020. Evaluation of global land use/land cover products for hydrologic simulation in the Upper Yom River Basin, Thailand. Science of the Total Environment. 708: 135148. DOI: 10.1016/j.scitotenv.2019.135148 .

902. Chiu, M.-C., L. Hunt and V.H. Resh. 2016. Response of macroinvertebrate communities to temporal dynamics of pesticide mixtures: A case study from the Sacramento River watershed, California. Environmental Pollution. 214: 89-98. DOI: 10.1016/j.envpol.2016.09.048 .

903. Chiu, M.-C., L. Hunt and V.H. Resh. 2017. Climate-change influences on the response of macroinvertebrate communities to pesticide contamination in the Sacramento River, California watershed. Science of the Total Environment. 581–582: 741–749. DOI: 10.1016/j.scitotenv.2017.01.002 .

904. Chiu, Y. and M. Wu. 2014. Assessing county-level water footprints of different cellulosic-biofuel feedstock pathways. Environmental Science & Technology. 46: 9155-9162. DOI: 10.1021/es3002162 .

905. Cho, H. and F. Olivera. 2014. Application of multimodal optimization for uncertainty estimation of computationally expensive hydrologic models. Journal of Water Resources Planning and Management. 140(3): 313–321. DOI: 10.1061/(ASCE)WR.1943-5452.0000330 .

906. Cho, J., C. Oh, J. Choi and Y. Cho. 2016. Climate change impacts on agricultural non-point source pollution with consideration of uncertainity in CMIP5. Irrigation and Drainage. 65(S2): 209–220. DOI: 10.1002/ird.2036 .

907. Cho, J., C.G. Kim, S. Hwang, J. Shin and J. Park. 2019. Hydrologic evaluation of grid-based global climate data for use in ungauged watershed. Journal of Climate Change Research. 10(1): 23-34. DOI: 10.15531/KSCCR.2019.10.1.23 .

908. Cho, J., D. Bosch, G. Vellidis, R. Lowrance and T. Strickland. 2013. Multi-site evaluation of hydrology component of SWAT in the coastal plain of southwest Georgia. Hydrological Processes. 27(12): 1-25. DOI: 10.1002/hyp.9341 .

909. Cho, J., D. Bosch, R. Lowrance, T. Strickland and G. Vellidis. 2009. Effect of spatial distribution of rainfall on temporal and spatial uncertainty of SWAT output. Transactions of the ASABE. 52(5): 1545-1555. URL: http://ddr.nal.usda.gov/handle/10113/37985.

910. Cho, J., G.Vellidis, D.D. Bosch, R. Lowrance and T. Strickland. 2010. Water quality effects of simulated conservation practice scenarios in the Little River Experimental watershed. Journal of Soil and Water Conservation. 65(6): 463-473. DOI: 10.2489/jswc.65.6.463 .

911. Cho, J., R.R. Lowrance, D.D. Bosch, T.C. Strickalnd, Y. Her and G. Vellidis. 2010. Effect of watershed subdivision and filter width on SWAT simulation of a coastal plain watershed. Journal of the American Water Resources Association. 46(3): 586-602. DOI: 10.1111/j.1752-1688.2010.00436.x .

912. Cho, J., S. Hwang, G. Go, K.-Y. Kim and J. Kim. 2015. Assessing the climate change impacts on agricultural reservoirs using the SWAT model and CMIP5 GCMs. Journal of the Korean Society of Agricultural Engineers. 57(5): 1-12. DOI: 10.5389/KSAE.2015.57.5.001 .

913. Cho, J., W. Jung, C.G. Kim, T.G. Kim. 2016. One-month lead dam inflow forecast using climate indices based on tele-connection. Journal of Korea Water Resources Association. 49(5): 361-372. DOI: 10.3741/JKWRA.2016.49.5.361 .

914. Cho, J., Y. Her and D. Bosch. 2016. Sensitivity of simulated conservation practice effectiveness to representation of field and in-stream processes in the Little River Watershed. Environmental Modeling & Assessment. 159-173: 22(2). DOI: 10.1007/s10666-016-9530-6 .

915. Cho, K.H., Y.A. Pachepsky, D.M. Oliver, R.W. Muirhead, Y. Park, R.S. Quilliam and D. Shelton. 2016. Modeling fate and transport of fecally-derived microorganisms at the watershed scale: State of the science and future opportunities. Water Research. 100: 38–56. DOI: 10.1016/j.watres.2016.04.064 .

916. Cho, K.H., Y.A. Pachepsky, J.H. Kim, J.-W. Kim and M.-H. Park. 2012. The modified SWAT model for predicting fecal coliforms in the Wachusett Reservoir Watershed, USA. Water Research. 46(15): 4750-4760. DOI: 10.1016/j.watres.2012.05.057 .

917. Cho, K.H., Y.A. Pachepsky, M. Kim, J.C. Pyo, M.-H. Park, Y.M. Kim, J.-W. Kim and J.H. Kim. 2016. Modeling seasonal variability of fecal coliform in natural surface waters using the modified SWAT. Journal of Hydrology. 535: 377-385. DOI: 10.1016/j.jhydrol.2016.01.084 .

918. Cho, S.J., P. Wilcock and B. Hobbs. 2018. Topographic filtering simulation model for sediment source apportionment. Geomorphology. 309: 1-19. DOI: 10.1016/j.geomorph.2018.02.014 .

919. Cho, S.M. and L.M. Lee. 2001. Sensitivity considerations when modeling hydrologic processes with digital elevation model. Journal of the American Water Resources Association. 37(4): 931-934. DOI: 10.1111/j.1752-1688.2001.tb05523.x .

920. Choi, D., H. Jun, H.S. Shin, Y.S. Yoon and S. Kim. 2010. The effect of climate change on Byeongseong stream's water quantity and quality. Desalination and Water Treatment. 19: 105-112. DOI: 10.5004/dwt.2010.1902 .

921. Choi, D., M.S. Keem, N.W. Kim and S. Kim. 2009. An analysis of the effect of climate change on Byeongseong Stream's hydrologic and water quality responses using CGCM's future climate information. Journal of the Korean Water Resources Association. 42(11): 921-931. DOI: 10.3741/JKWRA.2009.42.11.921 .

922. Choi, D.S., R.C. Ready and J.S. Shortle. 2020. Valuing water quality benefits from adopting best management practices: A spatial approach. Journal of Environmental Quality. 49: 582-592. DOI: 10.1002/jeq2.20005 .

923. Choi, H., W. Lee, C. Song, J.Y. Lee, S.W. Jeon and J.S. Kim. 2014. Applicability analysis of water provisioning services quantification model of forest ecosystem. Journal of the Korea Society of Environmental Restoration Technology. 17(4): 1-15. DOI: 10.13087/kosert.2014.17.4.1 .

924. Choi, H.S. 2013. Parameter estimation of SWAT model using SWAT-CUP in Seom-River Experimental Watershed. Journal of the Korean Society of Civil Engineers. 33(2): 529-536. DOI: 10.12652/Ksce.2013.33.2.529 .

925. Choi, J.R. H.J. Jo, D.H. La and J.T. Kim. 2019. A study on drought prediction and diffusion of water supply intake source using SWAT model. Journal of the Korean Society of Civil Engineers. 39(6): 743-750. DOI: 10.12652/Ksce.2019.39.6.0743 .

926. Choi, J.-R., B.-S. Kim, D.-H. Kang and I.-M. Chung. 2022. Evaluation of water supply capacity of a small forested basin water supply facilities using SWAT model and flow recession curve. KSCE Journal of Civil Engineering. 26(8): 3665-3675. DOI: 10.1007/s12205-022-1075-4 .

927. Choi, J.R., I.M. Chung and H.J. Jo. 2019. A study on the establishment of water supply and demand monitoring system and drought response plan of small-scale water facilities. The Journal of Engineering Geology. 29(4): 469-481. DOI: 10.9720/kseg.2019.4.469 .

928. Choi, J.-R., I.-M. Chung, S.-J. Jeung, K.-S. Choo, C.-H. Oh and B.-S. Kim. 2021. Development and verification of the available number of water intake days in ungauged local water source using the SWAT model and flow recession curves. Water. 13(11): 1511. DOI: 10.3390/w13111511 .

929. Choi, Y., J. Kim, D.J. Lee, J. Han, G. Lee, M. Park, K. Kim and K.J. Lim. 2019. Analysis of baseflow using future land use and climate change scenario. Journal of the Korean Society of Agricultural Engineers. 61(1): 45-59. DOI: 10.5389/KSAE.2019.61.1.045 .

930. Choi, Y.H., J.C. Ryu, H.S. Hwang, D.H. Kum, Y.S. Park, Y.H. Jung, J.D. Choi and K.J. Lim. 2015. Analysis of pollutant load reduction efficiency with riparian buffer system using the SWAT-REMM. Journal of Korean Society on Water Environment. 31(2): 166-180. DOI: 10.15681/KSWE.2015.31.2.166 .

931. Choo, T., Y. Kim, Y. Kim and G. Yun. 2019. Analysis on dam operation effect and development of an function formula and automated model for estimating suitable site. Journal of Korea Water Resources Association. 52(3): 187-194. DOI: 10.3741/JKWRA.2019.52.3.187 .

932. Chordia, J., U.R. Panikkar, R. Srivastav and R.U. Shaik. 2022. Uncertainties in prediction of streamflows using SWAT model - Role of remote sensing and precipitation sources. Remote Sensing. 14(21): 5385. DOI: 10.3390/rs14215385 .

933. Choto, M. and A. Fetene. 2019. Impacts of land use/land cover change on stream flow and sediment yield of Gojeb Watershed, Omo-Gibe Basin, Ethiopia. Remote Sensing Applications: Society and Environment. 14: 84-99. DOI: 10.1016/j.rsase.2019.01.003 .

934. Chotpantarat, S. and S. Boonkaewwan. 2018. Impacts of land-use changes on watershed discharge and water quality in a large intensive agricultural area in Thailand. Hydrological Sciences Journal. 63(9): 1386-1407. DOI: 10.1080/02626667.2018.1506128 .

935. Choubin, B., K. Solaimani, F. Rezanezhad, M. Habibnejad Roshan, A. Malekian and S. Shamshirband. 2019. Streamflow regionalization using a similarity approach in ungauged basins: Application of the geo-environmental signatures in the Karkheh River Basin, Iran. Catena. 182: 104128. DOI: 10.1016/j.catena.2019.104128 .

936. Choudhary, R. and P. Athira. 2021. Effect of root zone soil moisture on the SWAT model simulation of surface and subsurface hydrological fluxes. Environmental Earth Sciences. 80: 620. DOI: 10.1007/s12665-021-09912-z .

937. Choukri, F., D. Raclot, M. Naimi, M. Chikhaoui, J.P. Nune, F. Huard, C. Hérivaux, M. Sabir and Y. Pepin. 2020. Distinct and combined impacts of climate and land use scenarios on water availability and sediment loads for a water supply reservoir in northern Morocco. International Soil and Water Conservation Research. 8: 141-153. DOI: 10.1016/j.iswcr.2020.03.003 .

938. Choukri, F., M. Chikhaoui, M. Naimi, Y. Pepin and D. Raclot. 2019. Analysis of the hydro-sedimentary functioning of Tleta Watershed of the Western Rif of Morocco using the SWAT model. Revue Marocaine des Sciences Agronomiques et Vétérinaires . 7(2): 304-312. URL: https://www.agrimaroc.org/index.php/Actes_IAVH2/article/view/695#sec-4.

939. Christanto, N., M.A. Setiawan, A. Nurkholis, S. Istiqomah, J. Sartohadi and M.P. Hadi. 2018. Analisis Laju Sedimen DAS Serayu Hulu dengan Menggunakan Model SWAT. Majalah Geograf Indonesia. 32: 50-58. DOI: 10.22146/mgi.32280 .

940. Christiansen, J.H. and M. Altaweel. 2006. Simulation of natural and social process interactions: An example from Bronze Age Mesopotamia. Social Science Computer Review. 24(2): 209-226. DOI: 10.1177/0894439305281500 .

941. Christopher, S.F., J.L. Tanka, U.H. Mahl, H.Yen, J.G. Arnold, M.T. Trentman, S.P. Sowa, M.E. Herbert, J.A. Ross, M.J. White and T.V. Royer. 2017. Modeling nutrient removal using watershed-scale implementation of the two-stage ditch. Ecological Engineering. 108(Part B): 358-369. DOI: 10.1016/j.ecoleng.2017.03.015 .

942. Christopher, S.F., S.H. Schoenholtz and J.E. Nettles. 2015. Water quantity implications of regional-scale switchgrass production in the southeastern U.S. Biomass & Bioenergy. 83: 50-59. DOI: 10.1016/j.biombioe.2015.08.012 .

943. Chu, J., C. Zhang, Y. Wang, H. Zhou and C.A. Shoemaker. 2011. A watershed rainfall data recovery approach with application to distributed hydrological models. Hydrological Processes. 26(13): 1937–1948. DOI: 10.1002/hyp.8242 .

944. Chu, J., Y. Peng, W. Ding and Y. Li. 2015. A heuristic dynamically dimensioned search with sensitivity information (HDDS-S) and application to river basin management. Water. 7(5): 2214-2238. DOI: 10.3390/w7052214 .

945. Chu, T.W. and A. Shirmohammadi. 2004. Evaluation of the SWAT model’s hyrodology component in the piedmont physiographic region of Maryland. Transactions of the ASAE. 47(4): 1057-1073. DOI: 10.13031/2013.16579 .

946. Chu, T.W., A. Shirmohammadi, H. Montas and A. Sadeghi. 2004. Evaluation of the SWAT model’s sediment and nutrient components in the Piedmont Physiographic Region of Maryland. Transactions of the ASAE. 47(5): 1523-1538. URL: https://naldc.nal.usda.gov/download/9719/PDF.

947. Chu, X., Z. Lin, M.T. Nasab, L. Zeng, K. Grimm, M.H. Bazrkar, N. Wang, X. Liu, X. Zhang and H. Zheng. 2019. Macro-scale grid-based and subbasin-based hydrologic modeling: Joint simulation and cross-calibration. Journal of Hydroinformatics. 21(1): 77-91. DOI: 10.2166/hydro.2018.026 .

948. Chueh, Y.-Y., C. Fan and Y.-Z. Huang. 2021. Copper concentration simulation in a river by SWAT-WASP integration and its application to assessing the impacts of climate change and various remediation strategies. Journal of Environmental Management. 279: 111613. DOI: 10.1016/j.jenvman.2020.111613 .

949. Chun, J.A., J. Baik, D. Kim and M. Choi. 2018. A comparative assessment of SWAT-model-based evapotranspiration against regional-scale estimates. Ecological Engineering. 122: 1-9. DOI: 10.1016/j.ecoleng.2018.07.015 .

950. Chun, J.A., J. Baik, D. Kim and M. Choi. 2018. A comparitive assessment of SWAT-model-based evapotranspiration against regional-scale estimates. Ecological Engineering. 122: 1-9. DOI: 10.1016/j.ecoleng.2018.07.015 .

951. Chung, E.-S., P.J. Abdulai, H. Park, Y. Kim, S.R. Ahn and S.J. Kim. 2017. Multi-Criteria assessment of spatial robust water resource vulnerability using the TOPSIS method coupled with objective and subjective weights in the Han River Basin. Sustainability. 9(1): 29. DOI: 10.3390/su9010029 .

952. Chung, I., N. Kim, J. Lee and M. Sophoceous. 2010. Assessing distributed groundwater recharge rate using integrated surface water-groundwater modelling: Application to Mihocheon Watershed, South Korea. Hydrogeology Journal. 18(5): 1253-1264. DOI: 10.1007/s10040-010-0593-1 .

953. Chung, I.-M. and J. Lee. 2013. A method of estimating the volume of exploitable groundwater considering minimum desirable streamflow. The Journal of Engineering Geology. 23(4): 375-380. DOI: 10.9720/kseg.2013.4.375 .

954. Chung, I.-M., J. Lee, J.E. Lee and M.S. Kim. 2019. Method of estimating exploitable groundwater amount considering relationship between precipitation and recharge and the variation of 10-year minimum precipitation. Journal of Korea Water Resources Association. 52(6): 421-427. DOI: 10.3741/JKWRA.2019.52.6.421 .

955. Chung, I.-M., J. Lee, N.W. Kim, H. Na, S.W. Chang, Y. Kim and G.-B. Kim. 2015. Estimating exploitable amount of groundwater abstraction using an integrated surface water-groundwater model: Mihocheon watershed, South Korea. Hydrological Sciences Journal. 60(5): 863-872. DOI: 10.1080/02626667.2014.980261 .

956. Chung, I.-M., N.W. Kim and J. Lee. 2007. Estimation of groundwater recharge by considering runoff process and groundwater level variation in watershed. Journal of Soil and Groundwater Environment. 12(5): 19-32. URL: http://www.koreascience.or.kr/article/JAKO200715651243526.page.

957. Chung, I.-M., N.W. Kim, H. Na, J. Lee, S. Yoo, J. Kim and S. Yang. 2011. Integrated surface-groundwater analysis for the Pyoseon region, Jeju Island in Korea. Applied Engineering in Agriculture. 27(6): 875-886. DOI: 10.13031/2013.40629 .

958. Chung, I.M., Y.J. Kim and N.W. Kim. 2021. Estimating the temporal distribution of groundwater recharge by using the transient water table fluctuation method and watershed hydrologic model. Transactions of the ASABE. 37(1): 95-104. DOI: 10.13031/aea.13376 .

959. Chung-Gil, J., J.-W. Lee, S.-R. Ahn, S.-J. Hwang and S.-J. Kim. 2016. Assessment of ecological streamflow for maintaining good ecological water environment. Journal of the Korean Society of Agricultural Engineers. 58(3): 1-12. DOI: 10.5389/KSAE.2016.58.3.001 .

960. Chunn, D., M. Faramarzi, B. Smerdon and D.S. Alessi. 2019. Application of an integrated SWAT–MODFLOW model to evaluate potential impacts of climate change and water withdrawals on groundwater–surface water interactions in west-central Alberta. Water. 11(1): 110. DOI: 10.3390/w11010110 .

961. Cianfrani, C.M., S Mazeika, P. Sullivan, W. Cully Hession and M.C. Watzin. 2012. A multitaxonomic approach to understanding local versus watershed-scale influences on stream biota in the Lake Champlain Basin, Vermont, USA. River Research and Applications. 28(7): 973-988. DOI: 10.1002/rra.1470 .

962. Cibin, R. and I. Chaubey. 2015. A computationally efficient approach for watershed scale spatial optimization. Environmental Modelling & Software. 66: 1-11. DOI: 10.1016/j.envsoft.2014.12.014 .

963. Cibin, R., I. Chaubey and B. Engel. 2012. Simulated watershed scale impacts of corn stover removal for biofuel on hydrology and water quality. Hydrological Processes. 26(11): 1629–1641. DOI: 10.1002/hyp.8280 .

964. Cibin, R., I. Chaubey, M. Helmers, K.P. Sudheer, M.J. White and J.G. Arnold. 2018. An improved representation of vegetative filter strips in SWAT. Transactions of the ASABE. 61(3): 1017-1024. DOI: 10.13031/trans.12661 .

965. Cibin, R., I. Chaubey, R.L. Muenich, K.A. Cherkauer, P.W. Gassman, C.L. Kling and Y. Panagopoulos. 2017. Influence of bioenergy crop production and climate change on ecosystem services. Journal of the American Water Resources Association. 53(6): 1323-1335. DOI: 10.1111/1752-1688.12591 .

966. Cibin, R., K.P. Sudheer and I. Chaubey. 2010. Sensitivity and identifiability of stream flow generation parameters of the SWAT model. Hydrological Processes. 24(9): 1133-1148. DOI: 10.1002/hyp.7568 .

967. Cibin, R., P. Athira, K. Sudheer and I. Chaubey. 2014. Application of distributed hydrological models for predictions in ungauged basins: A method to quantify predictive uncertainty. Hydrological Processes. 28(4): 2033–2045. DOI: 10.1002/hyp.9721 .

968. Cibin, R., Trybula, E., Chaubey, I., Brouder, S. and J.J. Volenec. 2016. Watershed scale impacts of bioenergy crops on hydrology and water quality using improved SWAT model. Global Change Biology Bioenergy. 8(4): 837-848. DOI: 10.1111/gcbb.12307 .

969. Clark, N., J.-C. Bizimana, Y. Dile, A. Worqlul, J. Osorio, B. Herbst, J.W. Richardson, R. Srinivasan, T.J. Gerik, J. Williams, C.A. Jones and J. Jeong. 2017. Evaluation of new farming technologies in Ethiopia using the Integrated Decision Support System (IDSS). Agricultural Water Management. 180(Part B): 267–279. DOI: 10.1016/j.agwat.2016.07.023 .

970. Clemow, Y.H., G.E. Manning, R.L. Breton, M.F. Winchell, L. Padilla, S.I. Rodney, J.P. Hanzas, T.L. Estes, K. Budreski, B. N. Toth., K. L. Hill, C.D. Priest, R.S. Teed, L.D. Knopper, D.R.J. Moore, C.T. Stone and P. Whatling. 2019. A refined ecological risk assessment for California red-legged frog, delta smelt and California tiger salamander exposed to malathion in California. Integrated Environmental Assessment and Management. 14(2): 224-239. DOI: 10.1002/ieam.2002 .

971. Coffey, M.E., S.R. Workman, J.L. Taraba and A.W. Fogle. 2004. Statistical procedures for evaluating daily and monthly hydrologic model predictions. Transactions of the ASAE. 47(1): 59-68. DOI: 10.13031/2013.15870 .

972. Coffey, R., B. Benham, M.L. Wolfe, S. Dorai-Raj, N. Bhreathnach, V. O'Flaherty, M. Cormican and E. Cummins. 2016. Sensitivity of streamflow and microbial water quality to future climate and land use change in the West of Ireland. Regional Environmental Change. 16(7): 2111–2128. DOI: 10.1007/s10113-015-0912-0 .

973. Coffey, R., E. Cummins, M. Cormican, V.O. Flaherty and S. Kelly. 2007. Microbial exposure assessment of waterborne pathogens. Human and Ecological Risk Assessment: An International Journal. 13(6): 1313-1351. DOI: 10.1080/10807030701655582 .

974. Coffey, R., E. Cummins, N. Breathnach, V.O. Glaherty and M. Cormican. 2010. Development of a pathogen transport model for Irish catchments using SWAT. Agricultural Water Management. 97(1): 101-111. DOI: 10.1016/j.agwat.2009.08.017 .

975. Coffey, R., E. Cummins, V. O' Flaherty and M. Cormican. 2010. Analysis of the soil and water assessment tool (SWAT) to model Cryptosporidium in surface water sources. Biosystems Engineering. 106(3): 303-314. DOI: 10.1016/j.biosystemseng.2010.04.003 .

976. Coffey, R., E. Cummins, V. O'Flaherty and M. Comican. 2010. Pathogen sources estimation and scenario analysis using the Soil and Water Assessment Tool (SWAT). Human and Ecological Risk Assessment: An International Journal. 16(4): 913-933. DOI: 10.1080/10807039.2010.502051 .

977. Coffey, R., S. Dorai-Raj, V. O’Flaherty, M. Cormican, and E. Cummins. 2013. Modeling of pathogen indicator organisms in a small-scale agricultural catchment using SWAT. Human and Ecological Risk Assessment: An International Journal. 19(1): 232-233. DOI: 10.1080/10807039.2012.701983 .

978. Cohen Liechti, T., J.P. Matos, D. Ferras Segura, J.-L. Boillat and A.J. Schleiss. 2014. Hydrological modeling of the Zambezi River Basin taking into account floodplain behavior by a modified reservoir approach. International Journal of River Basin Management. 12(1): 29-41. DOI: 10.1080/15715124.2014.880707 .

979. Collender, P.A., O.C. Cooke, L.D. Bryant, T.R. Kjeldsen and J.V. Remais. 2016. Estimating the microbiological risks associated with inland flood events: Bridging theory and models of pathogen transport. Critical Reviews in Environmental Science and Technology. 46(23-24): 1787-1833. DOI: 10.1080/10643389.2016.1269578 .

980. Collick, A.S., D.R. Fuka, P.J.A. Kleinman, A.R. Buda, J.L. Weld, M.J. White, T.L. Veith, R.B. Bryant, C.H.Bolster and Z.M. Easton. 2015. Predicting phosphorus dynamics in complex terrains using a variable source area hydrology model. Hydrological Processes. 29(4): 588-601. DOI: 10.1002/hyp.10178 .

981. Collick, A.S., T.L. Veith, D.R. Fuka, P.J.A. Kleinman, A.R. Buda, J.L. Weld, R.B. Bryant, P.A. Vadas, M.J. White, R.D. Harmel and Z.M. Easton. 2016. Improved simulation of edaphic and manure phosphorus loss in SWAT. Journal of Environmental Quality. 45(4): 1215-1225. DOI: 10.2134/jeq2015.03.0135 .

982. Comin, F.A., R. Sorando, N. Darwiche-Criado, M. Garcia and A. Masip. 2014. A protocol to prioritize wetland restoration and creation for water quality improvement in agricultural watersheds. Ecological Engineering. 66: 10–18. DOI: 10.1016/j.ecoleng.2013.04.059 .

983. Conan, C., F. Bouraoui, N. Turpin, G. de Marsily and G. Bidoglio. 2003. Modeling flow and nitrate fate at catchment scale in Brittany (France). Journal of Environmental Quality. 32(6): 2026-2032. DOI: 10.2134/jeq2003.2026 .

984. Conan, C., G. de Marsily, F. Bouraoui and G. Bidoglio. 2003. A long-term hydrological modelling of the Upper Guadiana river basin (Spain). Physics and Chemistry of the Earth. 28(4-5): 193-200. DOI: 10.1016/S1474-7065(03)00025-1 .

985. Confesor, R.B. Jr. and G.W. Whittaker. 2007. Automatic calibration of hydrologic models with multi-objective evolutionary algorithm and pareto optimization. Journal of the American Water Resources Association. 43(4): 981-989. DOI: 10.1111/j.1752-1688.2007.00080.x .

986. Cong, W., X. Sun, H. Guo and R. Shan. 2020. Comparison of the SWAT and InVEST models to determine hydrological ecosystem service spatial patterns, priorities and trade-offs in a complex basin. Ecological Indicators. 112: 106089. DOI: 10.1016/j.ecolind.2020.106089 .

987. Conradt, T., H. Koch, F.F. Hattermann and F. Wechsung. 2012. Precipitation or evapotranspiration? Bayesian analysis of potentail error sources in the simulation of sub-basin discharges in the Czech Elbe River Basin. Regional Environmental Change. 12(3): 649-661. DOI: 10.1007/s10113-012-0280-y .

988. Conradt, T., H. Koch, F.F. Hattermann and F. Wechsung. 2012. Spatially differentiated management-revised discharge scenarios for an integrated analysis of multi-realisation climate and land use scenarios for the Elbe River Basin. Regional Environmental Change. 12(3): 633-648. DOI: 10.1007/s10113-012-0279-4 .

989. Conradt, T., M. Kaltofen, M. Hentschel, F.F. Hattermann and F. Wechsung. 2007. Impacts of global change on water-related sectors and society in a trans-boundary central European river basin - Part 2: From eco-hydrology to water demand management. Advances in Geosciences. 11: 93-99. DOI: 10.5194/adgeo-11-93-2007 .

990. Cools, J., S. Broekx, V. Vandenberghe, H. Sels, E. Meynaerts, P. Vercaemst, P. Seuntjens, S. Van Hulle, H. Wustenberghs, W. Bauwens and M. Huygens. 2011. Coupling a hydrological water quality model and an economic optimization model to set up a cost-effective emission reduction scenario for nitrogen. Environmental Modelling & Software. 26(1): 44-51. DOI: 10.1016/j.envsoft.2010.04.017 .

991. Copetti, D., F. Salerno, L. Valsecchi, G. Viviano, F. Buzzi, C. Agostinelli, R. Formenti, A. Marieri and G. Tartari. 2017. Restoring lakes through external phosphorus load reduction: The case of Lake Pusiano (Southern Alps). Inland Waters. 7(1): 100-108. DOI: 10.1080/20442041.2017.1294354 .

992. Coppens, J., A. Özen, Ü.N. Tavşanoğlu, S. Erdoğan, E.E. Levi, C. Yozgatlıgil, E. Jeppesen and M. Beklioğlu. 2016. Impact of alternating wet and dry periods on long-term seasonal phosphorus and nitrogen budgets of two shallow Mediterranean lakes. Science of the Total Environment. 563–564: 456–467. DOI: 10.1016/j.scitotenv.2016.04.028 .

993. Coppens, J., D. Trolle, E. Jeppesen and M. Beklioğlu. 2020. The impact of climate change on a Mediterranean shallow lake: Insights based on catchment and lake modelling. Regional Environmental Change. 20: 62. DOI: 10.1007/s10113-020-01641-6 .

994. Cordeiro, M.R.C., G. Lelyk, R. Krobel, G. Legesse, M. Faramarzi, M.B. Masud and T. McAllister. 2018. Deriving a dataset for agriculturally relevant soils from the Soil Landscapes of Canada (SLC) database for use in Soil and Water Assessment Tool (SWAT) simulations. Earth System Science Data. 10: 1673-1686. DOI: 10.5194/essd-10-1673-2018 .

995. Corona, J., T. Doley, C. Griffiths, M. Massey, C. Moore, S. Muela, B. Rashleigh, W. Wheeler, S.D. Whitlock and J. Hewitt. 2020. An integrated assessment model for valuing water quality changes in the United States. Land Economics. 96(4): 478-492. DOI: 10.3368/wple.96.4.478 .

996. Corona, J.A.I., T. Lakhankar, S. Pradhanang and R. Khanbilvardi. 2014. Remote sensing and ground-based weather forcing data analysis for streamflow simulation. Hydrology. 1(1): 89-111. DOI: 10.3390/hydrology1010089 .

997. Corona-López, A.D. Román-Gutiérrez, E.M. Otazo-Sánchez, F.A. Guzman-Ortiz and O.A. Acevedo-Sandoval. 2021. Water–Food Nexus Assessment in agriculture: A systematic review. Water. 13(9): 1202. DOI: 10.3390/ijerph18094983 .

998. Corral, C., J. Winklmaier and T.S. Narany. 2022. Linear modelling of water potential and supply for decentralized energy-water-food systems - case study St. Rupert Mayer, Zimbabwe. Journal of Sustainable Development of Energy, Water and Environment Systems. 10(4): 1080421. DOI: 10.13044/j.sdewes.d10.0422 .

999. Correa-González, A., J. Hernández-Bedolla, M.A. Martínez-Cinco, S.T. Sánchez-Quispe and M.A. Hernández-Hernández. 2023. Assessment of nitrate in groundwater from diffuse sources considering spatiotemporal patterns of hydrological systems using a coupled SWAT/MODFLOW/MT3DMS model. Hydrology. 10(11): 209. DOI: 10.3390/hydrology10110209 .

1000. Ćosić-Flajsig, G., B. Karleuša and M. Glavan. 2021. Integrated water quality management model for the rural transboundary river basin - A case study of the Sulta/Solta River. Water. 13(8): 2569. DOI: 10.3390/w13182569 .

1001. Cotter, A.S., I. Chaubey, T.A. Costello, T.S. Soerens and M.A. Nelson. 2003. Water quality model output uncertainty as affected by spatial resolution of input data. Journal of the American Water Resources Association. 39(4): 977-986. DOI: 10.1111/j.1752-1688.2003.tb04420.x .

1002. Cotugno, A., V. Smith, T. Baker and R. Srinivasan. 2021. A framework for calculating peak discharge and flood inundation in ungauged urban watersheds using remotely sensed precipitation data: A case study in Freetown, Sierra Leone. Remote Sensing. 13: 3806. DOI: 10.3390/rs13193806 .

1003. Coupe, R.H. 2010. Use of a watershed model to characterize the fate and transport of fluometuron, a soil-applied cotton herbicide, in surface water. International Journal of Environmental Analytical Chemistry. 87(13-14,15): 883-896. DOI: 10.1080/03067310701627819 .

1004. Cousino, L.K., R.H. Becker and K.A. Zmijewski. 2015. Modeling the effects of climate change on water, sediment, and nutrient yields from the Maumee River watershed. Journal of Hydrology: Regional Studies. 4(Part B): 762–775. DOI: 10.1016/j.ejrh.2015.06.017 .

1005. Creech C.T., R.B. Siqueira, J.P. Selegean and C. Miller. 2015. Anthropogenic impacts to the sediment budget of São Francisco River navigation channel using SWAT. International Journal of Agricultural and Biological Engineering. 8(3): 140-157. DOI: 10.3965/j.ijabe.20150803.1372 .

1006. Cruise, J.F., A.S. Limaye and N. Al-Abed. 1999. Assessment of impacts of climate change on water quality in the Southeastern United States. Journal of the American Water Resources Association. 35(6): 1539-1550. DOI: 10.1111/j.1752-1688.1999.tb04236.x .

1007. Cruz, M A D., S. Nakamura, N. Hanasaki and J. Boulange. 2021. Integrated evaluation of changing water resources in an active ecotourism area: The case of Puerto Princesa City, Palawan, Philippines. Sustainability. 13(9): 4826. DOI: 10.3390/su13094826 .

1008. Cruz-Arévalo, B., F. Gavi-Reyes, M. Martínez-Menez and J. Juárez-Méndez. 2021. Land use and its effect on runoff modeled with SWAT. Tecnología y Ciencias del Agua. 12(2): 157-206. DOI: 10.24850/j-tyca-2021-02-04 .

1009. Cruz-González, A., I. Sánchez-Cohen, M.A. Macías-Corral, M.A. Velásquez-Valle and T.R. Trejo-Calzada. 2021. Hydrologic modeling to measure the impact of climate change in the Yaqui River Basin. Agricultural and Biosystems Engineering. 13(1): 77-94. URL: https://www.scielo.org.mx/scielo.php?pid=S2007-40262021000100077&script=sci_arttext.

1010. Cuceloglu, C. and I. Ozturk. 2019. Assessing the impact of CFSR and local climate datasets on hydrological modeling performance in the mountainous Black Sea catchment. Water. 11(11): 2277. DOI: 10.3390/w11112277 .

1011. Cuceloglu, G., K.C. Abbaspour and I. Ozturk. 2017. Assessing the water-resources potential of Istanbul by using a Soil and Water Assessment Tool (SWAT) hydrological model. Water. 9(10): 814. DOI: 10.3390/w9100814 .

1012. Cuceoglu, G., D.Z. Seker, A. Tanik and I. Ozturk. 2021. Analyzing effects of two different land use datasets on hydrological simulations by using SWAT model. International Journal of Environment and Geoinformatics . 8(2): 172-185. DOI: 10.30897/ijegeo.828112 .

1013. Cui, B., J. Ma, L. Liu, X. Hao, Z. Song and C. Fang. 2022. Dynamic characteristics of drought conditions during the growth of summer maize. Water Policy. 24(11): 1741. DOI: 10.2166/wp.2022.065 .

1014. Cui, J., Y. Zhao, W. Sun, Y. Chen, B. Wu, B. Xue, H. Chen, Z. Li and Z. Tian. 2021. Evaluating the influence of hydrological condition on the phosphorus loads in an agricultural river basin using the SWAT model. Hydrology Research. 52(5): 1143-1158. DOI: 10.2166/nh.2021.165 .

1015. Cui, Q., M.E. Ammar, M. Iravani, J. Kariyeva and M. Faramarzi. 2021. Regional wetland water storage changes: The influence of future climate on geographically isolated wetlands. Ecological Indicators. 120: 106941. DOI: 10.1016/j.ecolind.2020.106941 .

1016. Culbertson, A.M., J.F. Martin, N. Aloysius and S.A. Ludsin. 2016. Anticipated impacts of climate change on 21st century Maumee River discharge and nutrient loads. Journal of Great Lakes Research. 42(6): 1332-1342. DOI: 10.1016/j.jglr.2016.08.008 .

1017. Cunha, M.C., D. Serpa, J. Marques, J.J. Keizer and N. Abrantes. 2023. On sustainable improvements of agricultural practices in the Bairrada Region (Portugal). Environment, Development, and Sustainability. 25(3): 2735-2757. DOI: 10.1007/s10668-022-02155-3 .

1018. Curk, M., M. Glavan and M. Pintar. 2020. Analysis of nitrate pollution pathways on a vulnerable agricultural plain in Slovenia: Taking the local approach to balance ecosystem services of food and water. Water. 12(3): 707. DOI: 10.3390/w12030707 .

1019. D’Ambrosio, E, F. Gentile, A.M. De Girolamo. 2020. Assessing the sustainability in water use at the basin scale through water footprint indicators. Journal of Cleaner Production. 244: 118847. DOI: 10.1016/j.jclepro.2019.118847 .

1020. D’Ambrosio, E., A.M. De Girolamo, E. Barca, P. Ielpo and M.C. Rulli. 2017. Characterising the hydrological regime of an ungauged temporary river system: A case study. Environmental Science and Pollution Research. 24(16): 13950-13966. DOI: 10.1007/s11356-016-7169-0 .

1021. da Fonseca, C.A.B., N. Al-Ansari, R.M. da Silva, C.A.G. Santos, B. Zerouali, D.B. de Oliveira and A. Elbeltagi. 2022. Investigating relationships between runoff-erosion processes and land use and land cover using remote sensing multiple gridded datasets. ISPRS International Journal of Geo-Information. 11(5): 272. DOI: 10.3390/ijgi11050272 .

1022. da S. Amorim, J., M.R. Viola, R. Junqueira , V.A. de Oliveira and C.R. de Mello. 2020. Evaluation of satellite precipitation products for hydrological modeling in the Brazilian Cerrado Biome. Water. 12(9): 2571. DOI: 10.3390/w12092571 .

1023. da Silva Amorim, J., M.R. Viola, R. Junqueira, C.R. de Mello, N.L. Bento and J.C. Avanzi. 2022. Quantifying the climate change-driven impacts on the hydrology of a data-scarce watershed located in the Brazilian Tropical Savanna. Hydrological Processes. 36(7): e14638. DOI: 10.1002/hyp.14638 .

1024. da Silva Burigato Costa, C.M., I.R. Leite, A.K. Almeida and I.K. de Almeida. 2021. Choosing an appropriate water quality model—a review. Environmental Monitoring and Assessment. 193: 38. DOI: 10.1007/s10661-020-08786-1 .

1025. da Silva, R.M. and I. de Carvalho Medeiros. 2014. Runoff-erosion analysis in GIS environment using the SWAT model. GeoFocus. Revista Internacional de Ciencia y Tecnología de la Información Geográfica. 14: 211-231. URL: http://www.geofocus.org/index.php/geofocus/article/view/308.

1026. da Silva, R.M., C.A.G. Santos, V.C. de L. Silva, I.C. Medeiros, M. Moreira and J. Corte-Real. 2016. Effects of scenarios of land use on runoff and sediment yield for Cobres River Basin, Portugal. Revista Geociências. 35(4): 609-622. URL: http://www.ppegeo.igc.usp.br/index.php/GEOSP/article/view/9975.

1027. da Silva, R.M., Henrique, I.G.N. and J.F. Caze. 2018. Simulation of land use/land cover change and its effects on the runoff-erosion characteristics in the catchment of Caatinga Biome. Revista de Geografia (Recife). 35(1): 158-179. URL: https://periodicos.ufpe.br/revistas/revistageografia/article/view/229325.

1028. da Silva, R.M., J.C. Dantas, J. de Araújo Beltrão and C.A.G. Santos. 2018. Hydrological simulation in a tropical humid basin in the Cerrado Biome using the SWAT model. Hydrology Research. 49(2): nh2018222. DOI: 10.2166/nh.2018.222 .

1029. da Silva, V. de P.R., M.T. Silva and E.P. de Souza. 2016. Influence of land use change on sediment yield: A case study of the sub-middle of the São Francisco River Basin. Engenharia Agricola. 36(6): 1005-1015. DOI: 10.1590/1809-4430-Eng.Agric.v36n6p1005-1015/2016 .

1030. da Silva, V. de P.R., M.T. Silva, V.P. Singh, E.P. de Souza, C.C. Braga, R.M. de Holanda, R.S.R. Almeida, F. de A.S. de Sousa and A.C.R. Braga. 2018. Simulation of stream flow and hydrological response to land-cover changes in a tropical river basin. Catena. 162: 166-176. DOI: 10.1016/j.catena.2017.11.024 .

1031. da Silva, V.V.M., E.A. Miranda, J.L. Junior, V. de P.S. de Oliveira, S.V. Silva , G.G. dos Santos, E.Av. Guimaraes and A.J. da S. Neto. 2023. Hydrological modeling and transport of pollutants in water basins: A systematic review. Revista Cereus. 15(3): 18-33. DOI: 10.18605/2175-7275/cereus.v15n3p18-33 .

1032. da Veiga, D.P.B., M.E.G. Guandique and A.C. Nardocci. 2019. Land use and water quality in watersheds in the State of São Paulo, based on GIS and SWAT data. Ambiente & Água. 14 (5): e2325. DOI: 10.4136/ambi-agua.2325 .

1033. Daba, B.I., T.A. Demissie and F.G. Tufa. 2023. Sediment yield modeling in Awash Melkasa Dam Watershed, Upper Awash River Basin, Ethiopia. Acta Geophysica. 71(5): 2287-2306. DOI: 10.1007/s11600-022-00972-8 .

1034. Daba, M.H. and S. You. 2020. Assessment of climate change impacts on river flow regimes in the upstream of Awash Basin, Ethiopia: Based on IPCC Fifth assessment report (AR5) climate change scenarios. Hydrology. 7(4): 98. DOI: 10.3390/hydrology7040098 .

1035. Dabrowski, J.M. 2014. Applying SWAT to predict ortho-phosphate loads and trophic status in four reservoirs in the Upper Olifants Catchment, South Africa. Hydrology and Earth System Sciences. 18: 2629-2643. DOI: 10.5194/hess-18-2629-2014 .

1036. Dadhich, A.P. and K. Nadaoka. 2012. Analysis of terrestrial discharge from agricultural watersheds and its impact on nearshore and offshore reefs in Fiji. Journal of Coastal Research. 28(5): 1225-1235. DOI: 10.2112/JCOASTRES-D-11-00149.1 .

1037. Daggupati, P., R. Shukla, B. Mekonnen, R. Rudra, A. Biswas, P.K. Goel, S. Prasher and W. Yang. 2018. Hydrological responses to various land use, soil and weather inputs in northern Lake Erie Basin in Canada. Water. 10(2): 222. DOI: 10.3390/w10020222 .

1038. Daggupati, P., A.Y. Sheshukov and K.R. Douglas-Mankin. 2014. Evaluating ephemeral gullies with a process-based topographic index model. Catena. 113: 177-186. DOI: 10.1016/j.catena.2013.10.005 .

1039. Daggupati, P., D. Deb, R. Srinivason, D. Yeganantham, V.M. Mehta and N.J. Rosenberg. 2016. Large-scale fine-resolution hydrological modeling using parameter regionalization in the Missouri River basin. Journal of the American Water Resources Association. 52(3): 648–666. DOI: 10.1111/1752-1688.12413 .

1040. Daggupati, P., H. Yen, M.J. White, R. Srinivasan, J.G. Arnold, C.S. Keitzerd and S.P. Sowa. 2015. Impact of model development, calibration and validation decisions on hydrological simulations in West Lake Erie basin. Hydrological Processes. 29(26): 5307–5320. DOI: 10.1002/hyp.10536 .

1041. Daggupati, P., K.R. Douglas-Mankin, A.Y. Sheshukov, P.L. Barnes and D.L. Devlin. 2011. Field-level targeting using SWAT: Mapping output from HRUs to fields and assessing limitations of GIS imput data. Transactions of the ASABE. 54(2): 501-514. URL: http://www.bae.ksu.edu/watershed/ashesh/publications/Daggupati%20et%20al%20-%202011%20-%20Field-level%20targeting%20using%20SWAT.pdf.

1042. Daggupati, P., N. Pai, S. Ale, K.R. Douglas-Mankin, R.W. Zeckoski, J. Jeong, P.B. Parajuli, D. Saraswat and M.A. Youssef. 2015. A recommended calibration and validation strategy for hydrologic and water quality models. Transactions of the ASABE. 58(6): 1705-1719. DOI: 10.13031/trans.58.10712 .

1043. Daggupati, P., R. Srinivasan, Y.T. Dile and D. Verma. 2017. Reconstructing the historical water regime of the contributing basins to the Hawizeh marsh: Implications of water control structures. Science of the Total Environment. 580: 832-845. DOI: 10.1016/j.scitotenv.2016.12.029 .

1044. Dagnew, A., D. Scavia, Y.-C. Wang, R. Muenich, C. Long and M. Kalcic. 2019. Modeling flow, nutrient, and sediment delivery from a large international watershed using a field-scale SWAT model. Journal of the American Water Resources Association. 55(5): 1288-1305. DOI: 10.1111/1752-1688.12779 .

1045. Dagnew, A., D. Scavia, Y.-C. Wang, R. Muenich and M. Kalcic. 2019. Modeling phosphorus reduction strategies from the international St. Clair-Detroit River system watershed. Journal of Great Lakes Research. 45(4): 742-751. DOI: 10.1016/j.jglr.2019.04.005 .

1046. Dahal, P., M.L. Shrestha, J. Panthi and D. Pradhananga. 2020. Modeling the future impacts of climate change on water availability in the Karnali River Basin of Nepal Himalaya. Environmental Research. 185: 109430. DOI: 10.1016/j.envres.2020.109430 .

1047. Dahal, V., N.M. Shakya and R. Bhattarai. 2016. Estimating the impact of climate change on water availability in Bagmati Basin, Nepal. Environmental Processes. 3: 1-17. DOI: 10.1007/s40710-016-0127-5 .

1048. Dahl, T.A., A.D. Kendall and D.W. Hyndman. 2018. Impacts of projected climate change on sediment yield and dredging costs. Hydrological Processes. 32: 1223-1234. DOI: 10.1002/hyp.11486 .

1049. Dahl, T.A., A.D. Kendall and D.W. Hyndman. 2021. Climate and hydrologic ensembling lead to differing streamflow and sediment yield predictions. Climatic Change. 8(1-2): 165. DOI: 10.1007/s10584-021-03011-5 .

1050. Dai, C. and X.S. Qin. 2019. Assessment of the effectiveness of a multi-site stochastic weather generator on hydrological modelling in the Red Deer River Watershed, Canada. Hydrological Sciences Journal. 64(13): 1616–1628. DOI: 10.1080/02626667.2019.1661416 .

1051. Dai, C., X.S. Qin, Q. Tan and H.C. Guo. 2018. Optimizing best management practices for nutrient pollution control in a lake watershed under uncertainty. Ecological Indicators. 92: 288-300. DOI: 10.1016/j.ecolind.2017.05.016 .

1052. Dai, J., S. Wu, G. Han, J. Weinberg, X. Xie, X. Wu, X. Song, B. Jia, W. Xue and Q. Yang. 2018. Water-energy nexus: A review of methods and tools for macro-assessment. Applied Energy. 210: 393-408. DOI: 10.1016/j.apenergy.2017.08.243 .

1053. Dai, J., Y. Cui, X. Cai, L.C. Brown and Y. Shang. 2016. Influence of water management on the water cycle in a small watershed irrigation system based on a distributed hydrologic model. Agricultural Water Management. 174: 52-60. DOI: 10.1016/j.agwat.2016.02.029 .

1054. Dai, J.-f., J.-z. Chen, G.-a. Lü, L.C. Brown, L. Gan and Q.-x. Xu. 2017. Application of SWAT99.2 to sensitivity analysis of water balance components in unique plots in a hilly region. Water Science and Engineering. 10(3): 209-216. DOI: 10.1016/j.wse.2017.09.002 .

1055. Dai, J.-F., J.-Z. Chen, Y.-L. Cui, Y.-Q. He and J.-G. Ma. 2006. Impact of forest and grass ecosystems on the water budget of the catchments. Physical Geography Research Quarterly. 17(4): 435-443. URL: http://skxjz.nhri.cn/EN/volumn/volumn_1178.shtml.

1056. Dakhlalla, A.O. and P.B. Parajuli. 2016. Evaluation of the best management practices at the watershed scale to attenuate peak streamflow under climate change scenarios. Water Resources Management. 30(3): 963-982. DOI: 10.1007/s11269-015-1202-9 .

1057. Dakhlalla, A.O. and P.B. Parajuli. 2019. Assessing model parameters sensitivity and uncertainty of streamflow, sediment, and nutrient transport using SWAT. Information Processing in Agriculture. 6(1): 61-72. DOI: 10.1016/j.inpa.2018.08.007 .

1058. Dakhlalla, A.O. and P.B. Parajuli. 2020. Sensitivity of fecal coliform bacteria transport to climate change in an agricultural watershed. Journal of Water and Climate Change. 11(4): 1250-1262. DOI: 10.2166/wcc.2019.211 .

1059. Dakhlalla, A.O., P.B. Parajuli, Y. Ouyang and D.W. Schmitz. 2016. Evaluating the impacts of crop rotations on groundwater storage andrecharge in an agricultural watershed. Agricultural Water Management. 163: 332-343. DOI: 10.1016/j.agwat.2015.10.001 .

1060. Dalibard, M., P. Laffaille, J.M. Sánchez-Pérez, S. Sauvage and L. Buisson. 2021. Accounting for flow intermittence in freshwater species distribution modelling. Ecohydrology. 14(8): e2346. DOI: 10.1002/eco.2346 .

1061. Dalilsafaee, S., M.H. Niksokhan and B. Moshtaghi. 2018. Impact of climate change on basin hydrological characteristics and thermal structure of reservoirs. Irrigation and Drainage. 67(2): 306-322. DOI: 10.1002/ird.2195 .

1062. Dallison, R.J.H., A.P. Williams, I.M. Harris and S.D. Patil. 2022. Modelling the impact of future climate change on streamflow and water quality in Wales, UK. Hydrological Sciences Journal. 67(6): 939-962. DOI: 10.1080/02626667.2022.2044045 .

1063. Dallison, R.J.H., S.D. Patil and A.P. Williams. 2021. Impacts of climate change on future water availability for hydropower and public water supply in Wales, UK. Journal of Hydrology: Regional Studies. 36: 100866. DOI: 10.1016/j.ejrh.2021.100866 .

1064. Daloglu, I., J.I. Nassauer, R.L. Riolo and D. Scavia. 2014. Development of a farmer typology of agricultural conservation behavior in the American Corn Belt. Agricultural Systems. 129: 93-102. DOI: 10.1016/j.agsy.2014.05.007 .

1065. Daloglu, I., K.H. Cho and D. Scavia. 2012. Evaluating Causes of Trends in Long-Term Dissolved Reactive Phosphorus Loads to Lake Erie. Environmental Science & Technology. 46(19): 10660–10666. DOI: 10.1021/es302315d .

1066. Daloğlu, M., J.I. Nassauer, R. Riolo and D. Scavia. 2014. An integrated social and ecological modeling framework—impacts of agricultural conservation practices on water quality. Ecology and Society. 19(3): 12. DOI: 10.5751/ES-06597-190312 .

1067. Dalzell, B.J. and D.J. Mulla. 2018. Perennial vegetation impacts on stream discharge and channel sources of sediment in the Minnesota River Basin. Journal of Soil and Water Conservation. 73(2): 120-132. DOI: 10.2489/jswc.73.2.120 .

1068. D'Ambrosio, E., G.F. Ricci, F. Gentile and A.M. De Girolamo. 2020. Using water footprint concepts for water security assessment of a basin under anthropogenic pressures. Science of the Total Environment. 748: 141356. DOI: 10.1016/j.scitotenv.2020.141356 .

1069. Dams, J., J. Nossent, T.B. Senbeta, P. Willems and O. Batelaan. 2015. Multi-model approach to assess the impact of climate change on runoff. Journal of Hydrology. 529 (Part 3): 1601-1616. DOI: 10.1016/j.jhydrol.2015.08.023 .

1070. Dan, D., C. Xi, Z. Haijun, W. Zhiqiang, X. Yingying and W. Na. 2022. Quantitative impacts of climate change and human activities on runoff in the Huolin River Catchment. Journal of Water and Climate Change. 13(11): 3851-3866. DOI: 10.2166/wcc.2022.223 .

1071. Dananto, M., A.O. Aga, P. Yohannes and L. Shura. 2022. Assessing the water-resources potential and soil erosion hotspot areas for sustainable land management in the Gidabo Watershed, Rift Valley Lake Basin of Ethiopia. Sustainability. 14(9): 5262. DOI: 10.3390/su14095262 .

1072. Dandapat A.K. and S.N. Sahoo. 2019. Evaluation of loss models and effect of LU/LC changes on surface runoff in Subarnarekha River Basin. ISH Journal of Hydraulic Engineering. DOI: 10.1080/09715010.2019.1619489 .

1073. Daneshvar, F., A.P. Nejadhashemi, U. Adhikari, B. Elahi, M. Abouali, M.R. Herman, E. Martinez-Martinez, T.J. Calappi and B.G. Rohn. 2017. Evaluating the significance of wetland restoration scenarios on phosphorus removal. Journal of Environmental Management. 192: 104-196. DOI: 10.1016/j.jenvman.2017.01.059 .

1074. Daneshvar, F., A.P. Nejadhashemi, M.R. Herman and M. Abouali. 2017. Response of benthic macroinvertebrate communities to climate change. Ecohydrology & Hydrobiology. 17(1): 63–72. DOI: 10.1016/j.ecohyd.2016.12.002 .

1075. Daneshvar, F., A.P. Nejadhashemi, Z. Zhang and M.R. Herman. 2018. Assessing the relative importance of parameter estimation in stream health based environmental justice modeling. Journal of Hydrology. 563: 211-222. DOI: 10.1016/j.jhydrol.2018.06.004 .

1076. Daneshvar, F., J.R. Frankenberger, K.E. Mazer, L.C. Bowling and E.F. Bocardo Delgado. 2019. Increasing access to hydrologic modelling through a two-phase course. Global Journal of Engineering Education. 21(2): 121-127. URL: http://www.wiete.com.au/journals/GJEE/Publish/TOCVol21No2.html.

1077. Daneshvar, F., J.R. Frankenberger, L.C. Bowling, K.A. Cherkauer and A.G. de Lima Moraes. 2021. Development of strategy for SWAT hydrologic modeling in data-scarce regions of Peru. Journal of Hydrologic Engineering. 26(7): 05021016. DOI: 10.1061/(ASCE)HE.1943-5584.0002086 .

1078. Daniel, H. 2023. Modeling surface water potential using the SWAT model combined with principal component analysis in the ungauged Gelana Watershed, Ethiopia. Journal of Water and Climate Change. DOI: 10.2166/wcc.2023.548 .

1079. Daniel, H. and B. Abate. 2022. Effect of climate change on streamflow in the Gelana Watershed, Rift Valley Basin, Ethiopia. Journal of Water and Climate Change. 13(5): 2205-2232. DOI: 10.2166/wcc.2022.059 .

1080. Dantas, J.C., M.A. da Silva, R.M. da Silva and P.C.G. Vianna. 2015. Simulação vazão-erosão usando o modelo SWAT para uma grande bacia da região semiárida da Paraíba. Revista Geociências. 34(4): 816- 827. URL: http://www.ppegeo.igc.usp.br/index.php/GEOSP/article/view/9033.

1081. Danvi, A., S. Giertz, S.J. Zwart and B. Diekkrüger. 2017. Comparing water quantity and quality in three inland valley watersheds with different levels of agricultural development in central Benin. Agricultural Water Management. 192: 257-270. DOI: 10.1016/j.agwat.2017.07.017 .

1082. Danvi, A., S. Giertz, S.J. Zwart and B. Diekkrüger. 2018. Rice intensification in a changing environment: Impact of water availability in inland valley landscapes in Benin. Water. 10(1): 74. DOI: 10.3390/w10010074 .

1083. Dao, D.M., J. Lu, X. Chen, S.A. Kantoush, D.V. Binh, P. Phan and N.X. Tung. 2021. Predicting tropical monsoon hydrology using CFSR and CMADS data over the Cau River Basin in Vietnam. Water. 13(9): 1314. DOI: 10.3390/w13091314 .

1084. Daramola, J., E.J. Adepehin, T.M. Ekhwan, L.K. Choy, J. Mokhtar and T.S. Tabiti. 2022. Impacts of land-use change, associated land-use area and runoff on watershed sediment yield: Implications from the Kaduna Watershed. Water. 14(3): 325. DOI: 10.3390/w14030325 .

1085. Daramola, J., T.M. Ekhwan, J. Mokhtar, K.C. Lam and G.A. Adeogun. 2019. Estimating sediment yield at Kaduna Watershed, Nigeria using Soil and Water Assessment Tool (SWAT) model. Heliyon. 5(7): e02106. DOI: 10.1016/j.heliyon.2019.e02106 .

1086. Daramola, J., T.M. Ekhwan, L.K. Choy, J. Mokhtar and J.A. Alakeji. 2022. Impacts of climatic variation on water balance and yield of watershed (insights from the Kaduna Watershed, north central Nigeria). Indonesian Journal of Geography. 54(1): 135-146. DOI: 10.22146/ijg.68138 .

1087. Dargahi, B. and S.G. Setegn. 2011. Combined 3D hydrodynamic and watershed modelling of Lake Tana, Ethiopia. Journal of Hydrology. 398: 44-64. DOI: 10.1016/j.jhydrol.2010.12.009 .

1088. Darji, J. P. Lodha and S. Tyagi. 2022. Assimilative capacity and water quality modeling of rivers: A review. Journal of Water Supply: Research and Technology - AQUA. 71(10): 1127–1147. DOI: 10.2166/aqua.2022.063 .

1089. Darradi, Y., E. Saur, R. Laplana, J.-M. Lescot, V. Kuentz and B.C. Meyer. 2012. Optimizing the enviromental performance of agricultural activities: A case study in La Boulouze watershed. Ecological Indicators. 22: 27–37. DOI: 10.1016/j.ecolind.2011.10.011 .

1090. Darwiche-Criado, N., F.A. Comín, A. Masip, M. García, S.G. Eismann and R. Sorando. 2017. Effects of wetland restoration on nitrate removal in an irrigated agricultural area: The role of in-stream and off-stream wetlands. Ecological Engineering. 103(Part B): 426–435. DOI: 10.1016/j.ecoleng.2016.03.016 .

1091. Das, B., S. Jain, S. Singh and P. Thakur. 2019. Evaluation of multisite performance of SWAT model in the Gomti River Basin, India. Applied Water Science. 9(5): 134. DOI: 10.1007/s13201-019-1013-x .

1092. Das, B., S.K. Jain, P.K. Thakur and S. Singh. 2021. Assessment of climate change impact on the Gomti River basin in India under different RCP scenarios. Arabian Journal of Geosciences. 14(2): 120. DOI: 10.1007/s12517-020-06359-7 .

1093. Das, S. K., A. Ahsan, Md. H.R.B. Khan, M.A. Ur R. Tariq, N. Muttil and A.W.M. Ng. 2022. Impacts of climate alteration on the hydrology of the Yarra River Catchment, Australia using GCMs and SWAT model. Water. 14(3): 445. DOI: 10.3390/w14030445 .

1094. Dasgupta, S., A.K. Gosain, S. Rao, S. Roy and M. Sarraf. 2013. A megacity in a changing climate: The case of Kolkata. Climatic Change. 116: 1-20. DOI: 10.1007/s10584-012-0516-3 .

1095. Dash, P. and M. Punia. 2019. Governance and disaster: Analysis of land use policy with reference to Uttarakhand flood 2013, India. International Journal of Disaster Risk Reduction. 36: 101090. DOI: 10.1016/j.ijdrr.2019.101090 .

1096. Dash, S.S., B. Sahoo and N.S. Raghuwanshi. 2019. A SWAT-Copula based approach for monitoring and assessment of drought propagation in an irrigation command. Ecological Engineering. 127: 417-430. DOI: 10.1016/j.ecoleng.2018.11.021 .

1097. Dash, S.S., B. Sahoo and N.S. Raghuwanshi. 2020. A novel embedded pothole module for Soil and Water Assessment Tool (SWAT) improving streamflow estimation in paddy-dominated catchments. Journal of Hydrology. 588: 125103. DOI: 10.1016/j.jhydrol.2020.125103 .

1098. Dash, S.S., B. Sahoo and N.S. Raghuwanshi. 2021. How reliable are the evapotranspiration estimates by Soil and Water Assessment Tool (SWAT) and Variable Infiltration Capacity (VIC) models for catchment-scale drought assessment and irrigation planning? Journal of Hydrology. 592: 125838. DOI: 10.1016/j.jhydrol.2020.125838 .

1099. Dash, S.S., B. Sahoo and N.S. Raghuwanshi. 2022. An adaptive multi-objective reservoir operation scheme for improved supply-demand management. Journal of Hydrology. 615(Part A): 128718. DOI: 10.1016/j.jhydrol.2022.128718 .

1100. Dash, S.S., B. Sahoo and N.S. Raghuwanshi. 2023. An integrated reservoir operation framework for enhanced water resources planning. Scientific Reports. 13: 21720. DOI: 10.1038/s41598-023-49107-z .

1101. Dash, S.S., B. Sahoo and N.S. Raghuwanshi. 2023. SWAT model calibration approaches in an integrated paddy-dominated catchment-command. Agricultural Water Management. 278: 108138. DOI: 10.1016/j.agwat.2023.108138 .

1102. Dash, S.S., D.R. Sena, U. Mandal, A. Kumar, G. Kumar, P.K. Mishra and M. Rawat. 2021. A hydrological modelling-based approach for vulnerable area identification under changing climate scenarios. Journal of Water and Climate Change. 12(2): 433-452. DOI: 10.2166/wcc.2020.202 .

1103. Datok, P., S. Sauvage, C. Fabre, A. Laraque, S. Ouillon, G.M. N'kaya and J. Sanchez-Perez. 2021. Sediment balance estimation of the ‘Cuvette Centrale’ of the Congo River Basin using the SWAT hydrological model. Water. 13(10): 1388. DOI: 10.3390/w13101388 .

1104. Datta A.R. and T. Bolisetti. 2016. Uncertainty analysis of a spatially-distributed hydrological model with rainfall multipliers. Canadian Journal of Civil Engineering. 43: 1062-1079. DOI: 10.1139/cjce-2015-0413 .

1105. Datta, A.R. and T. Bolisetti. 2013. Application of variance decomposition approach in the uncertainty analysis of a hydrological model. Canadian Journal of Civil Engineering. 40(4): 373-381. DOI: 10.1139/cjce-2012-0337 .

1106. Datta, A.R. and T. Bolisetti. 2015. Second-order autoregressive model based likelihood function for calibration and uncertainty analysis of SWAT model. Journal of Hydrologic Engineering. 20(2). DOI: 10.1061/(ASCE)HE.1943-5584.0000917 .

1107. David, M.B., S.J. Del Grosso, X. Hu, E.P. Marshall, G.F. McIsaac, W.J. Parton, C. Tonitto and M. Youssef. 2008. Modeling denitrification in a tile-drained, corn and soybean agroecosystem of Illinois, USA. Biogeochemistry. 93(1-2): 7-30. DOI: 10.1007/s10533-008-9273-9 .

1108. Dawit, M., B.D. Olika, F.B. Muluneh, O.T. Leta and M.O. Dinka. 2020. Assessment of surface irrigation potential of the Dhidhessa River Basin, Ethiopia. Hydrology. 7(3): 68. DOI: 10.3390/hydrology7030068 .

1109. Day, C.A. and J. Liebman. 2021. Modeling seasonal sediment yields for a medium-scale temperate forest/agricultural watershed. Physical Geography. DOI: 10.1080/02723646.2021.1934957 .

1110. de Amorim, P.B. and P.L.B. Chaffe. 2019. Integrating climate models into hydrological modelling: What’s going on in Brazil? Revista Brasileira de Recursos Hidricos. 24: e31. DOI: 10.1590/2318-0331.241920180176 .

1111. de Andrade Farias, C.W.L., S.M.G.L. Montenegro, A.A. de Assunção Montenegro, J.R. de Sousa Lima, R. Srinivasan and C.A. Jones. 2020. Modeling runoff response to land-use changes using the SWAT model in the Mundaú watershed, Brazil. Journal of Environmental Analysis and Progress. 5(2): 194-206. DOI: 10.24221/jeap.5.2.2020.2828.194-206 .

1112. de Andrade, C.W.L., S.M.G.L. Montenegro, J.R. de S. Lima, A.A. de A. Montenegro and A.G. Magalhães. 2017. Hydrological modeling on data scarcity in the Upper Mundaú Basin, northeast of Brazil. Journal of Environmental Analysis and Progress. 2(3): 227-238. DOI: 10.24221/jeap.2.3.2017.1443.227-238 .

1113. de Andrade, C.W.L., S.M.G.L. Montenegro, J.R. de S. Lima, A.A. de A. Montenegro and A.G. Magalhães. 2017. Hydrological modeling under vegetal cover changes of a watershed in the Brazilian Northeast. Journal of Environmental Analysis and Progress. 2(3): 239-248. DOI: 10.24221/jeap.2.3.2017.1446.239-248 .

1114. de Andrade, C.W.L., S.M.G.L. Montenegro, A.A.A. Montenegro, J.R. de S. Lima, R. Srinivasan and C.A. Jones. 2019. Soil moisture and discharge modeling in a representative watershed in northeastern Brazil using SWAT. Ecohydrology & Hydrobiology. 19(2): 238-251. DOI: 10.1016/j.ecohyd.2018.09.002 .

1115. de Aragão, R., M.A.S. Cruz, J.R.A. de Amorim, L.C. Mendonça, E.E. de Figueiredo and V.S. Srinivasan. 2013. Sensitivity analysis of the parameters of the SWAT model and simulation of the hydrosedimentological processes in a watershed in the northeastern region of Brazil. Revista Brasileira de Ciência do Solo. 37: 1091-1102. URL: http://www.scielo.br/scielo.php?script=sci_abstract&pid=S0100-06832013000400026&lng=en&nrm=iso&tlng=en.

1116. de Brauwere, A., N.K. Ouattara and P. Servais. 2014. Modeling fecal indicator bacteria concentrations in natural surface waters: A review. Critical Reviews in Environmental Science and Technology. 44: 2380-2453. DOI: 10.1080/10643389.2013.829978 .

1117. de Bruin, A., D. de Condappa, M. Mikhail, S.K. Tomer, M. Sekhar and J. Barron. 2012. Simulated water resource impacts and livelihood implications of stakeholder-developed scenarios in the Jaldhaka Basin, India. Water International. 37(4): 492-508. DOI: 10.1080/02508060.2012.708976 .

1118. de Carvalho Neto, J.G., V.S. Srinivasan and I.A.A. Rufino. 2011. Hydrosedimentological simulation, analyzing two dem, of two small sub-basins in the Paraibano Cariri using the SWAT Model. Revista Geográfica Acadêmica. 5(1): 48-58. URL: http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CCAQFjAA&url=http%3A%2F%2Frga.ggf.br%2Findex.php%3Fjournal%3Drga%26page%3Darticle%26op%3DviewFile%26path%255B%255D%3D152%26path%255B%255D%3D93&ei=I8jXVNmSLsOrNsHcgcAH&usg=AFQjCNFjeSun3Y3-vuBP7k59YCBcEphZJQ&bvm=bv.85464276,d.eXY.

1119. de Carvalho Neto, J.G., V.S. Srinivasan and I.A.A. Rufino. 2011. Study of hypothetical scenarios in the Riacho dos Namorados watershed in Cariri Paraibano using SWAT model. Revista Geográfica Acadêmica. 5(2): 30-40. URL: http://rga.ggf.br/index.php?journal=rga&page=article&op=view&path[]=166&path[]=109.

1120. de Freitas, L.D., J.F.L. de Moraes, A.M. da Costa, L.L. Martin, B.M. Silva, J.C. Avanzi and A. Uezu. 2022. How far can nature-based solutions increase water supply resilience to climate change in one of the most important Brazilian watersheds? Earth. 3(3): 748-767. DOI: 10.3390/earth3030042 .

1121. De Girolamo A.M., E. Barca, G. Pappagallo and A. Lo Porto. 2017. Simulating ecologically relevant hydrological indicators in a temporary river system. Agricultural Water Management. 180(Part B): 194–204. DOI: 10.1016/j.agwat.2016.05.034 .

1122. De Girolamo A.M., E. Barca, M. Leone and A. Lo Porto. 2022. Impact of long-term climate change on flow regime in a Mediterranean basin. Journal of Hydrology: Regional Studies. 41: 101061. DOI: 10.1016/j.ejrh.2022.101061 .

1123. De Girolamo, A.M. and A. Lo Porto. 2012. Land use scenario development as a tool for watershed management within the Rio Mannu Basin. Land Use Policy. 29(3): 691-701. DOI: 10.1016/j.landusepol.2011.11.005 .

1124. De Girolamo, A.M. and A. Lo Porto. 2020. Source apportionment of nutrient loads to a Mediterranean river and potential mitigation measures. Water. 12: 577. DOI: 10.3390/w12020577 .

1125. De Girolamo, A.M., A. Drouiche, G.F. Ricci, G. Parete, F. Gentile and T.-H. Debieche. 2022. Characterising flow regimes in a semi-arid region with limited data availability: The Nil Wadi case study (Algeria). Journal of Hydrology: Regional Studies. 41: 101062. DOI: 10.1016/j.ejrh.2022.101062 .

1126. De Girolamo, A.M., A. Lo Porto, G. Pappagallo, O. Tzoraki and F. Gallart. 2014. The hydrological status concept: Application at a temporary river (Candelaro, Italy). River Research and Applications. 31(7): 892-903. DOI: 10.1002/rra.2786 .

1127. De Girolamo, A.M., A. Lo Porto, G. Pappagallo and F. Gallart. 2015. Assessing flow regime alterations in a temporary river – the River Celone case study. Journal of Hydrology and Hydromechanics. 63(3): 263-272. DOI: 10.1515/johh-2015-0027 .

1128. De Girolamo, A.M., A.L. Porto and O. Oueslati. 2010. Modeling nutrient balances in the Rio Mannu Basin and scenario analysis of the impact of fertilizer reduction. Fresenius Environmental Bulletin. 19(9): 1854-1861. URL: http://www.psp-parlar.de/details_artikel.asp?tabelle=FEBArtikel&artikel_id=3240&jahr=2010.

1129. De Girolamo, A.M., F. Bouraoui, A. Buffagni, G. Pappagallo and A. Lo Porto. 2017. Hydrology under climate change in a temporary river system: Potential impact on water balance and flow regime. River Research and Applications. 33(7): 1219–1232. DOI: 10.1002/rra.3165 .

1130. De Girolamo, A.M., F. Gallart, G. Pappagallo, G. Santese and A. Lo Porto. 2015. An eco-hydrological assessment method for temporary rivers. The Celone and Salsola rivers case study (SE, Italy). International Journal of Limnology. 51(1): 1-10. DOI: 10.1051/limn/2014028 .

1131. De Girolamo, A.M., O. Cerdan, T. Grangeon, G.F. Ricci, R. Vandromme, and A. Lo Porto. 2022. Modelling effects of forest fire and post-fire management in a catchment prone to erosion: Impacts on sediment yield. Catena. 212: 106080. DOI: 10.1016/j.catena.2022.106080 .

1132. De Girolamo, A.M., P. Miscioscia, T. Politi and E. Barca. 2019. Improving grey water footprint assessment: Accounting for uncertainty. Ecological Indicators. 22: 822-833. DOI: 10.1016/j.ecolind.2019.03.040 .

1133. de Medeiros, I.C. and R.M. da Silva. 2014. Analise da erosao hidrica na regiao semiarida da paraiba usando o modelo SWAT acoplado a um sig. Geosciences. 33(3): 457-471.

1134. de Medeiros, I.C., J.F.C.B. da Costa Silva, R.M. Silva and C.A.G. Santos. 2018. Run-off-erosion modelling and water balance in the Epitácio Pessoa Dam River Basin, Paraíba State in Brazil. International Journal of Environmental Science and Technology. DOI: 10.1007/s13762-018-1940-3 .

1135. de Medelros, I.C., J.F.C.B. da Costa Silva and C.A.G. Santos. 2019. Run‑off–erosion modelling and water balance in the Epitácio Pessoa Dam River Basin, Paraíba State in Brazil. International Journal of Environmental Science and Technology. 16: 3035-3048. DOI: 10.1007/s13762-018-1940-3 .

1136. de Mello, C.R., L.D. Norton, L.C. Pinto, S. Beskow and N. Curi. 2016. Agricultural watershed modeling: A review for hydrology and soil erosion processes. Ciência e Agrotecnologia. 40(1): 7-25. DOI: 10.1590/S1413-70542016000100001 .

1137. de Mello, K., T.O. Randhir, R.A. Valente and C.V. Vettorazzi. 2017. Riparian restoration for protecting water quality in tropical agricultural watersheds. Ecological Engineering. 108: 519-529. DOI: 10.1016/j.ecoleng.2017.06.049 .

1138. de Melo Martins, M.S., C.A. Valera, M. Zanata, R.M.B. Santos, V.L. Abdala, F.A.L. Pacheco, L.F.S. Fernandes and T.C.T. Pissarra. 2021. Potential impacts of land use changes on water resources in a tropical headwater catchment. Water. 13(22): 3249. DOI: 10.3390/w13223249 .

1139. de Oliveira Serrão, E.A., M.T. Silva, T.R. Ferreira, V.P.R. Silva, F.A.S. Sousa, A.M.M. Lima, L.C.P Ataide and R.T.S. Wanzeler. 2020. Land use change scenarios and their effects on hydropower energy in the Amazon. Science of the Total Environment. 744: 140981. DOI: 10.1016/j.scitotenv.2020.140981 .

1140. de Oliveira Serrão, E.A., M.T. Silva, T.R. Ferreira, L.C.P. de Ataide, R.T. S. Wanzeler, V. de P.R. da Silva, A.M.M. de Lima and F. de A.S. de Sousa. 2021. Large-Scale hydrological modelling of flow and hydropower production, in a Brazilian watershed. Ecohydrology & Hydrobiology. 21(1): 23-35. DOI: 10.1016/j.ecohyd.2020.09.002 .

1141. de Oliveira Serrão, E.A., M.T. Silva, T.R. Ferreira, A.C.F. Xavier, C.A. dos Santos, L.C.P Ataide, P.R.M. Pontes and V.P.R da Silva. 2023. Climate and land use change: Future impacts on hydropower and revenue for the Amazon. Journal of Cleaner Production. 385: 135700. DOI: 10.1016/j.jclepro.2022.135700 .

1142. de Oliveira, V.A., C.R. de Mello, M.R. Viola and R. Srinivasan. 2017. Assessment of climate change impacts on streamflow and hydropower potential in the headwater region of the Grande River Basin, southeastern Brazil. International Journal of Climatology. 37(15): 5005-5023. DOI: 10.1002/joc.5138 .

1143. de Oliveira, V.A., C.R. de Mello, M.B. Viola and R. Srinivasan. 2018. Land-use change impacts on the hydrology of the Upper Grande River Basin, Brazil. CERNE. 24(4): 334-343. DOI: 10.1590/01047760201824042573 .

1144. de Oliveira, V.A., C.R. de Mello, S. Beskow, M.R. Viola and R. Srinivasan. 2019. Modeling the effects of climate change on hydrology and sediment load in a headwater basin in the Brazilian Cerrado Biome. Ecological Engineering. 133: 20-31. DOI: 10.1016/j.ecoleng.2019.04.021 .

1145. de Silva, R.M., C.A.G. Santos, V.C. de Lima Silva and L.P. e Silva. 2013. Erosivity, surface runoff, and soil erosion estimation using GIS-coupled runoff–erosion model in the Mamuaba catchment, Brazil. Environmental Monitoring and Assessment. 185(11): 8977–8990. DOI: 10.1007/s10661-013-3228-x .

1146. de Sousa Oliveira, A.E., R.R. Gracelli, A.A. e Silva, V.J. dos Santos, J. de Siqueira Castro and M.L. Calijuri. 2022. Projection of land use to 2030 and its impacts on water availability in a brazilian sub-basin: A LCM and SWAT approach. Geofísica Internacional. 61(1): 66-87. DOI: 10.22201/igeof.00167169p.2022.61.1.2189 .

1147. de Sousa, A.M.L., M.I. Vitorino N.M.d.R. Castro, M.d.N. Botelho and P.J.O.P. de Souza. 2015. Evapotranspiration from remote sensing to improve the SWAT Model in eastern Amazonia. Floresta e Ambiente. 22(4): 456-464. DOI: 10.1590/2179-8087.083814 .

1148. de Souza Dias, V., M.P. da Luz, G.M. Medero, D.T.F. Nascimento, W.N. de Oliveira and L.R. de Oliveira Merelles. 2018. Historical streamflow series analysis applies to Furnas HPP reservoir watershed using the SWAT model. Water. 10(4): 458. DOI: 10.3390/w10040458 .

1149. de Souza Viana, J.F., S.M.G.L. Montenegro, B.B. da Silva, R.M. da Silva and W. dos Santos Sousa. 2018. Hydrological modeling of the Pirapama River-PE Basin using the SWAT model. Journal of Environmental Analysis and Progress. 3(1): 155-172. DOI: 10.24221/jeap.3.1.2018.1709.155-172 .

1150. de Souza Viana, J.F., S.M.G.L. Montenegro, B.B. da Silva, R.M. da Silva, R. Srinivasan, C.A.G. Santos, D.C. dos Santos Araujo and C.G. Tavares. 2021. Evaluation of gridded meteorological datasets and their potential hydrological application to a humid area with scarce data for Pirapama River Basin, northeastern Brazil. Theoretical and Applied Climatology. 145(1-2): 393-410. DOI: 10.1007/s00704-021-03628-7 .

1151. de Souza, R.M. and I. dos Santos. 2013. Estimated spatial variablility of low flow in the Upper Negro River watershed, south Brazil region, with application of SWAT model. Ra'e Ga - O Espaco Geografico em Analise. 28: 134-153. DOI: 10.5380/raega.v28i0.32304 .

1152. de Vente, J., G. Poesen, G. Verstraeten, G. Govers, M. Vanmaercke, A. Van Rompaey, M. Arabkhedri and C. Boix-Fayos. 2013. Predicting soil erosion and sediment yield at regional scales: Where do we stand? Earth Science Reviews. 127: 16–29. DOI: 10.1016/j.earscirev.2013.08.014 .

1153. Deb, D., J. Butcher and R. Srinivasan. 2015. Projected hydrologic changes under mid-21st century climatic conditions in a sub-arctic watershed. Water Resources Management. 29(5): 1467-1487. DOI: 10.1007/s11269-014-0887-5 .

1154. Deb, D., P. Tuppad, P. Daggupati, R. Srinivasan and D. Varma. 2015. Spatio-temporal impacts of biofuel production and climate variability on water quantity and quality in Upper Mississippi River Basin. Water. 7(4): 3283-3305. DOI: 10.3390/w7073283 .

1155. Deb, P., A.S. Kiema and G. Willgoose. 2019. A linked surface water-groundwater modelling approach to more realistically simulate rainfall-runoff non-stationarity in semi-arid regions. Journal of Hydrology. 575: 273-291. DOI: 10.1016/j.jhydrol.2019.05.039 .

1156. Debela, S.K. and F.F. Feyessa. 2022. Rainfall-runoff modeling and its prioritization at sub-watershed level using SWAT model: A case of Finca'aa, Oromia, Western Ethiopia. Water Conservation & Management. 6(1): 22-29. DOI: 10.26480/wcm.01.2022.22.29 .

1157. Debele, B., R. Srinivasan, and J.-Y. Parlange. 2008. Coupling upland watershed and downstream waterbody hydrodynamic and water quality models (SWAT and CE-QUAL-W2) for better water resources management in complex river basins. Environmental Modeling & Assessment. 13(1): 135-153. URL: http://swatmodel.tamu.edu/publications/peer-reviewed-publications/.

1158. DeBoe, G., E. Bock, K. Stephenson, and Z. Easton. 2017. Nutrient biofilters in the Virginia Coastal Plain: Nitrogen removal, cost, and potential adoption pathways. Journal of Soil and Water Conservation. 72(2): 139-149. DOI: 10.2489/jswc.72.2.139 .

1159. Dechasa, A., A.O. Aga and T. Dufera. 2022. Erosion risk assessment for prioritization of conservation measures in the watershed of Genale Dawa-3 Hydropower Dam, Ethiopia. Quaternary. 5(4): 39. DOI: 10.3390/quat5040039 .

1160. Dechmi, F. and A. Skhiri. 2013. Evaluation of best management practices under intensive irrigation using SWAT model. Agricultural Water Management. 123: 55-64. DOI: 10.1016/j.agwat.2013.03.016 .

1161. Dechmi, F., A. Skhiri and D. Isidoro. 2021. Modeling environmental impact in a semi-arid intensive irrigated watershed. Agricultural Water Management. 256: 107115. DOI: 10.1016/j.agwat.2021.107115 .

1162. Dechmi, F., J. Burguete and A. Skhiri. 2012. SWAT application in intensive irrigation systems: Model modification, calibration and validation. Journal of Hydrology. 470-471: 1-47. DOI: 10.1016/j.jhydrol.2012.08.055 .

1163. Deelstra, J., S.H. Kvaerno, K. Granlund, A.S. Seleika, K. Gaigalis, K. Kyllmar and N. Vagstad. 2009. Runoff and nutrient losses during winter periods in cold climates - requirements to nutrient simulation models. Journal of Environmental Monitoring. 11(3): 602-609. DOI: 10.1039/b900769p .

1164. Definnas, A.F., R.F. Reyandal, E.R. Syofyan and Wisafri. 2020. Analysis of the effect of change in land use on the Batang Kuranji River Basin using Soil and Water Assessment Tool (SWAT) models. Jurnal Ilmiah Poli Rekayasa. 15(2): 1-12. URL: http://jpr-pnp.com/index.php/jpr/article/view/161.

1165. Dekongmen, B.W., G.K. Anornu, A.T. Kabo-Bah, I. Larbi, E.D. Sunkari, Y.T. Dile, A. Agyare and C. Gyamfi. 2022. Groundwater recharge estimation and potential recharge mapping in the Afram Plains of Ghana using SWAT and remote sensing techniques. Groundwater for Sustainable Development. 17: 100741. DOI: 10.1016/j.gsd.2022.100741 .

1166. Delaney, J.T., K.L. Bouska, J.D. Eash, P.J. Heglund and A.J. Allstadt. 2021. Mapping climate change vulnerability of aquatic-riparian ecosystems using decision-relevant indicators. Ecological Indicators. 125: 107581. DOI: 10.1016/j.ecolind.2021.107581 .

1167. Delavar, M., M.R. Eini, V.S. Kuchak, M.R. Zaghiyan, A. Shahbaz, F. Nourmohammadi and A. Motamedi. 2022. Model-based water accounting for integrated assessment of water resources systems at the basin scale. Science of the Total Environment. 830: 154810. DOI: 10.1016/j.scitotenv.2022.154810 .

1168. Delavar, M., S. Morid and N. Nikbakht. 2013. Distributed snowmelt simulation in ungauged mountainous chatchments, case study: Imamzadeh Davoud Catchment. Iran-Water Resources Research. 7(4). URL: http://www.iranwra.com/index.php?option=com_content&view=article&id=56&Itemid=80&lang=en.

1169. Delia, K.A., C.R. Haney, J.L. Dyer and V.G. Paul. 2021. Spatial analysis of a Chesapeake Bay Sub-Watershed: How land use and precipitation patterns impact water quality in the James River. Water. 13(11): 1592. DOI: 10.3390/w13111592 .

1170. Deliberty, T.L. and D.R. Legates. 2003. Interannual and seasonal variability of modelled soil moisture in Oklahoma. International Journal of Climatology. 23(9): 1057-1086. DOI: 10.1002/joc.904 .

1171. Delkash, M., F.A.M. Al-Faraj and M. Scholz. 2014. Comparing the export coefficient approach with the Soil and Water Assessment Tool to predict phosphorous pollution: The Kan Watershed case study. Water, Air, and Soil Pollution. 225:2122: 1-17. DOI: 10.1007/s11270-014-2122-7 .

1172. Demetropoulou, L., M.A. Lilli, I. Petousi, T. Nikolaou, M. Fountoulakis, M. Kritsotakis, S. Panakoulia, G.V. Giannakis, T. Manios and N.P. Nikolaidis. 2019. Innovative methodology for the prioritization of the program of the measures for integrated water resources management of the Region of Crete, Greece. Science of the Total Environment. 672: 61-70. DOI: 10.1016/j.scitotenv.2019.03.397 .

1173. Demirel, M.C., A. Venancio and E. Kahya. 2009. Flow forecast by SWAT model and ANN in Pracana Basin, Portugal. Advances in Engineering Software. 40(7): 467-473. DOI: 10.1016/j.advengsoft.2008.08.002 .

1174. Demissie, T.A. 2022. Land use and land cover change dynamics and its impact on watershed hydrological parameters: The case of Awetu Watershed, Ethiopia. Journal of Sedimentary Environments. 7(1): 79-94. DOI: 10.1007/s43217-021-00084-1 .

1175. Demissie, Y., E. Yan and M. Wu. 2012. Assessing regional hydrology and water quality implications of large-scale biofuel feedstock production in the upper Mississippi River basin. Environmental Science & Technology. 46: 9174-9182. DOI: 10.1021/es300769k .

1176. Demissie, Y., E. Yan and M. Wu. 2017. Hydrologic and water quality impacts of biofuel feedstock production in the Ohio River Basin. Global Change Biology Bioenergy. 9(12): 1736–1750. DOI: 10.1111/gcbb.12466 .

1177. Deneufbourg, M., C. Vandenberghe, D. Gaule, P.-Y. Bolly and J.M. Marcoen. 2013. Application of the Sustainable Nitrogen Management Program in two small agricultural watersheds (Arquennes – Belgium) and impact evaluation by monitoring of nitrate fluxes at outlets and by numerical modeling. Biotechnologie, Agronomie, Société et Environnement. 17(51): 164-176. URL: https://popups.uliege.be/1780-4507/index.php?id=9652.

1178. Deng, C., B. Pisani, H. Hernández and Y. Li. 2020. Assessing the impact of climate change on water resources in a semi-arid area in central Mexico using a SWAT model. Boletín de la Sociedad Geológica Mexicana. 72(2): A150819. DOI: 10.18268/BSGM2020v72n2a150819 .

1179. Deng, L., J. Yin, J. Tian, Q. Li and S. Guo. 2021. Comprehensive evaluation of water resources carrying capacity in the Han River Basin. Water. 13(3): 249. DOI: 10.3390/w13030249 .

1180. Deng, P., M. Zhang, J. Bing, J. Jia and D. Zhang. 2019. Evaluation of the GSMaP_Gauge products using rain gauge observations and SWAT model in the Upper Hanjiang River Basin. Atmospheric Research. 219: 153-165. DOI: 10.1016/j.atmosres.2018.12.032 .

1181. Deng, X., Q. Shi, Q. Zhang, C. Shi and F. Yin. 2015. Impacts of land use and land cover changes on surface energy and water balance in the Heihe River Basin of China, 2000-2010. Physics and Chemistry of the Earth. 79–82: 2–10. DOI: 10.1016/j.pce.2015.01.002 .

1182. Deng, Z., X. Zhang, D. Li and G. Pan. 2015. Simulation of land use/land cover change and its effects on the hydrological characteristics of the upper reaches of the Hanjiang Basin. Environmental Earth Sciences. 73(3): 1119-1132. DOI: 10.1007/s12665-014-3465-5 .

1183. Dennedy-Frank P.J. and S.M. Gorelick. 2019. Insights from watershed simulations around the world: Watershed service-based restoration does not significantly enhance streamflow. Global Environmental Change. 50: 101938. DOI: 10.1016/j.gloenvcha.2019.101938 .

1184. Dennedy-Frank, P.J., R.L. Muenich, I. Chaubey and G. Ziv. 2016. Comparing two tools for ecosystem service assessments regarding water resources decisions. Journal of Environmental Management. 177: 331-340. DOI: 10.1016/j.jenvman.2016.03.012 .

1185. Deo, A., S. Karmakar and A. Arora. 2022. Rainwater harvesting and water balance simulation-optimization scheme to plan sustainable second crop in small rain-fed systems. Journal of Environmental Management. 323: 116135. DOI: 10.1016/j.jenvman.2022.116135 .

1186. Deraedt, D., G. Colinet, H. Claessens and A. Degre. 2014. Forest cover representation in hydrological modeling: a comparison of ten models. A review. Biotechnologie, Agronomie, Société et Environnement. 18(1). URL: https://popups.uliege.be/1780-4507/index.php?id=10817.

1187. Desai, S., D.K. Singh, A. Islam and A. Sarangi. 2021. Impact of climate change on the hydrology of a semi-arid river basin of India under hypothetical and projected climate change scenarios. Journal of Water and Climate Change. 12(3): 969-996. DOI: 10.2166/wcc.2020.287 .

1188. Desai, S., D.K. Singh, A. Islam and A. Sarangi. 2021. Multi-site calibration of hydrological model and assessment of water balance in a semi-arid river basin of India. Quaternary International. 571: 136-149. DOI: 10.1016/j.quaint.2020.11.032 .

1189. Deslandes, J., I. Beaudin., A.R. Michaud, F. Bonn and C.A. Madramootoo. 2007. Influence of landscape and cropping system on phosphorus mobility within the Pike River Watershed of southwestern Quebec: Model parameterization and validation. Canadian Water Resources Journal. 32(1): 21-42. DOI: 10.4296/cwrj3201021 .

1190. Dessie, M., N.E.C. Verhoest, V.R.N. Pauwels, T. Admasu, J. Poesen, E. Adgo, J. Deckers and J. Nyssen. 2014. Analyzing runoff processes through conceptual hydrological modeling in the Upper Blue Nile Basin, Ethiopia. Hydrology and Earth System Sciences. 18: 5149-5167. DOI: 10.5194/hess-18-5149-2014 .

1191. Dessu, S.B, A.M. Melesse, M.G. Bhat and M.E. McClain. 2014. Assessment of water resources availability and demand in the Mara River Basin. Catena. 115: 104-114. DOI: 10.1016/j.catena.2013.11.017 .

1192. Dessu, S.B. and A.M. Melesse. 2012. Modelling the rainfall-runoff process of the Mara River basin using the Soil and Water Assessment Tool. Hydrological Processes. 26(26): 1-12. DOI: 10.1002/hyp.9205 .

1193. Dessu, S.B. and A.M. Melesse. 2013. Impact and uncertainties of climate change on the hydrology of the Mara River basin, Kenya/Tanzania. Hydrological Processes. 27(20): 2973–2986. DOI: 10.1002/hyp.9434 .

1194. Desta, H. and B. Lemma. 2017. SWAT based hydrological assessment and characterization of Lake Ziway sub-watersheds, Ethiopia. Journal of Hydrology: Regional Studies. 13: 123-127. DOI: 10.1016/j.ejrh.2017.08.002 .

1195. Desta, H., B. Lemma and E. Gebremariam. 2017. Identifying sustainability challenges on land and water uses: The case of Lake Ziway watershed, Ethiopia. Applied Geography. 88: 130-143. DOI: 10.1016/j.apgeog.2017.09.005 .

1196. Destouni, G. and C. Prieto. 2003. On the possibility for generic modeling of submarine groundwater discharge. Biogeochemistry. 66: 171-186. DOI: 10.1023/B:BIOG.0000006101.12076.10 .

1197. Deval, C., E.S. Brooks, M. Dobre, R. Lew, P.R. Robichaud, A. Fowler, J. Boll, Z.M. Easton and A.S. Collick. 2022. Pi-VAT: A web-based visualization tool for decision support using spatially complex water quality model outputs. Journal of Hydrology. 607: 127529. DOI: 10.1016/j.jhydrol.2022.127529 .

1198. Devkota, L.P. and D.R. Gyawali. 2015. Impacts of climate change on hydrological regime and waterresources management of the Koshi River Basin, Nepal. Journal of Hydrology: Regional Studies. 4: 502-515. DOI: 10.1016/j.ejrh.2015.06.023 .

1199. Dey, A. and R. Remesan. 2022. Multimodel quantification of green and blue water components and its error propagations through parameter transferability approach across input choices. Journal of Hydrology. 607: 127579. DOI: 10.1016/j.jhydrol.2022.127579 .

1200. Dhami, B., S.K. Himanshu, A. Pandey and A.K. Gautam. 2018. Evaluation of the SWAT model for water balance study of a mountainous snowfed river basin of Nepal. Environmental Earth Sciences. 77: 21. DOI: 10.1007/s12665-017-7210-8 .

1201. Dhami, B.S. and A. Pandey. 2013. Comparative review of recently developed hydrologic models. Journal of Indian Water Resources Society. 33(3): 34-42. URL: https://www.researchgate.net/publication/331372417_COMPARATIVE_REVIEW_OF_RECENTLY_DEVELOPED_HYDROLOGICAL_MODELS/link/5c760e96299bf1268d284b41/download.

1202. Dhanesh, Y., V.M. Bindhu, J. Senent-Aparicio, T.M. Brighenti, E. Ayana, P.S. Smith, C. Fei and R. Srinivasan. 2020. A comparative evaluation of the performance of CHIRPS and CFSR data for different climate zones using the SWAT model. Remote Sensing. 12(18): 3088. DOI: 10.3390/rs12183088 .

1203. Dhar, A., S. Sahoo and M. Sahoo. 2015. Identification of groundwater potential zones considering water quality aspect. Environmental Earth Sciences. 74(7): 5663-5675. DOI: 10.1007/s12665-015-4580-7 .

1204. Dhar, S. and A. Mazumdar. 2009. Hydrological modelling of the Kangsabati river under changed climate scenario: case study in India. Hydrological Processes. 23(16): 2394-2406. DOI: 10.1002/hyp.7351 .

1205. Dhiraj, K., M.P. Tripathi, S. Patel and K. Love. 2021. Distributed parameter modelling for sediment yield estimation from Hamp watershed in Upper Mahanadi Basin. Journal of Soil and Water Conservation (India). 20(1): 22-34. DOI: 10.5958/2455-7145.2021.00005.9 .

1206. Dhoke, M.E., A. Kusumandari and dan Senawi. 2018. Erosion level and soil and water conservation engineering plan in Waewoki Sub Watershed, Aesesa Watershed, Ngada Regency, East Nusa Tenggara Province. Jurnal Manusia dan Lingkungan. 25(1): 7-17. DOI: 10.22146/jml.18811 .

1207. Dhungel, H., S. Sharma, R. Bhatt and K. Dhakal. 2020. Monitoring ungauged watersheds for investigating the variability of flow and salinity to implement the possible removal of salt fill sites. Environmental Monitoring and Assessment. 192(12): 762. DOI: 10.1007/s10661-020-08714-3 .

1208. Di Luzio, M. and J.G. Arnold. 2004. Formulation of a hybrid calibration approach for a physically based distributed model with NEXRAD data input. Journal of Hydrology. 298(1-4): 136-154. DOI: 10.1016/j.jhydrol.2004.03.034 .

1209. Di Luzio, M., G.L. Johnson, C. Daly, J.K. Eischeid and J.G. Arnold. 2008. Constructing retrospective gridded daily precipitation and temperature datasets for the conterminous United States. Journal of Applied Meteorology and Climatology. 47(2): 475-497. DOI: 10.1175/2007JAMC1356.1 .

1210. Di Luzio, M., J.G. Arnold and R. Srinivasan. 2004. Integration of SSURGO maps and soil parameters within a geographic information system and nonpoint source pollution model system. Journal of Soil and Water Conservation. 59(4): 123-133. URL: http://www.jswconline.org/content/59/4/123.short.

1211. Di Luzio, M., J.G. Arnold and R. Srinivasan. 2005. Effect of GIS data quality on small watershed stream flow and sediment simulations. Hydrological Processes. 19(3): 629-650. DOI: 10.1002/hyp.5612 .

1212. Di Luzio, M., M.J. White, J.G. Arnold, J.R. Williams and J.R. Kinary. 2017. Advancement of a soil parameters geodatabase for the modeling assessment of conservation practice outcomes in the United States. International Journal of Geospatial and Environmental Research. 4(1): 2. URL: http://dc.uwm.edu/ijger/vol4/iss1/2.

1213. Di Luzio, M., M.L. Norfleet, J.G. Arnold, J.R. Williams and J.R. Kiniry. 2014. A soil parameters geodatabase for the modeling assessment of agricultural conservation practices effects in the United States. International Journal of Geospatial and Environmental Research. 1(2): 1-23. URL: http://dc.uwm.edu/ijger/vol1/iss2/6/.

1214. Di Luzio, M., R. Srinivasan and J.G. Arnold. 2002. Integration of watershed tools and SWAT model into BASINS. Journal of the American Water Resources Association. 38(4): 1127-1141. DOI: 10.1111/j.1752-1688.2002.tb05551.x .

1215. Di Luzio, M., R. Srinivasan and J.G. Arnold. 2004. A GIS-coupled hydrological model system for the watershed assessment of agricultural nonpoint and point sources of pollution. Transactions in GIS. 8(1): 113-136. DOI: 10.1111/j.1467-9671.2004.00170.x .

1216. Dibaba, W.T. and D.G. Ebsa. 2022. Identifying erosion hot spot areas and evaluation of best management practices in the Toba Watershed, Ethiopia. Water Conservation Science and Engineering. 6(1): 30-38. DOI: 10.26480/wcm.01.2022.30.38 .

1217. Dibaba, W.T., Demissie, T.A. and K. Miegel. 2020. Watershed hydrological response to combined land use/land cover and climate change in Highland Ethiopia: Finchaa Catchment. Water. 12(6): 1801. DOI: 10.3390/w12061801 .

1218. Dibaba, W.T., T.A. Demissie and K. Miegel. 2021. Prioritization of sub-watersheds to sediment yield and evaluation of best management practices in Highland Ethiopia, Finchaa Catchment. Land. 10(6): 650. DOI: 10.3390/land10060650 .

1219. Dibike, Y. A. Muhammad, R.R. Shrestha, C. Spence, B. Bonsal, L. de Rhama, J. Rowley, G. Evenson and T. Stadnyk. 2021. Application of dynamic contributing area for modelling the hydrologic response of the Assiniboine River basin to a changing climate. Journal of Great Lakes Research. 47(3): 663-676. DOI: 10.1016/j.jglr.2020.10.010 .

1220. Didovets, I., A. Lobanova, A. Bronstert, S. Snizhko, C.F. Maule and V. Krysanova. 2017. Assessment of climate change impacts of water resources in three representative Ukrainian catchments using eco-hydrological modelling. Water. 9(3): 204. DOI: 10.3390/w9030204 .

1221. Dierauer, J.R. and C. Zhu. 2020. Drought in the twenty‐first century in a water‐rich region: Modeling study of the Wabash River Watershed, USA. Water. 12(1): 181. DOI: 10.3390/w12010181 .

1222. Dietrich, J. and M. Funke. 2009. Integrated catchment modelling within a strategic planning and decision making process: Werra case study. Physics and Chemistry of the Earth. 34(8-9): 580-588. DOI: 10.1016/j.pce.2008.11.001 .

1223. Dile, Y.T. and R. Srinivasan. 2014. Evaluation of CFSR climate data for hydrologic prediction in data-scarce watersheds: An application in the Blue Nile River basin. Journal of the American Water Resources Association. 50(5): 1226-1241. DOI: 10.1111/jawr.12182 .

1224. Dile, Y.T., L. Karlberg, P. Daggupati, R. Srinivasan, D. Wiberg and J. Rockström. 2016. Assessing the implications of water harvesting intensification on upstream–downstream ecosystem services: A case study in the Lake Tana Basin. Science of the Total Environment. 542: 22-35. DOI: 10.1016/j.scitotenv.2015.10.065 .

1225. Dile, Y.T., L. Karlberg, R. Srinivasan and J. Rockström. 2016. Investigation of the curve number method for surface runoff estimation in tropical regions. Journal of the American Water Resources Association. 52(5): 1155–1169. DOI: 10.1111/1752-1688.12446 .

1226. Dile, Y.T., P. Daggupati, C. George, R. Srinivasan and J. Arnold. 2016. Introducing a new open source GIS user interface for the SWAT model. Environmental Modelling & Software. 85: 129-138. DOI: 10.1016/j.envsoft.2016.08.004 .

1227. Dile, Y.T., R. Berndtsson and S.G. Setegn. 2013. Hydrological response to climate change for Gilgel Abay River, in the Lake Tana Basin-upper Blue Nile Basin of Ethiopia. PLoS ONE. 8(10): e79296. DOI: 10.1371/journal.pone.0079296 .

1228. Dile, Y.T., S. Tekleab, E.K. Ayana, S.G. Gebrehiwot, A.W. Worqlul, H.K. Bayabil, Y.T. Yimam, S.A. Tilahun, P. Daggupati, L. Karlberg and R. Srinivasan. 2018. Advances in water resources research in the Upper Blue Nile basin and the way forward: A review. Journal of Hydrology. 560: 407-423. DOI: 10.1016/j.jhydrol.2018.03.042 .

1229. Dill, J., R.N. Dagios, and V.G. Barros. 2022. Public policies on water resource management and its impacts on the context of climatic changes and alterations in land use and land cover in small and protected rainforest river basins. Environmental Science and Policy. 137: 191-204. DOI: 10.1016/j.envsci.2022.08.021 .

1230. Dilnesa, W. 2022. GIS and hydrological model based hydropower potential assessments of Temcha Watershed. International Journal of Environment and Geoinformatics . 9(1): 97-101. DOI: 10.30897/ijegeo.783157 .

1231. Ding, B., H. Liu, Y. Li, X. Zhang, P. Feng, D.L. Liu, G.W. Marek, S. Ale, D.K. Brauer, R. Srinivasan and Y. Chen. 2022. Post-processing R tool for SWAT efficiently studying climate change impacts on hydrology, water quality, and crop growth. Environmental Modelling & Software. 156: 105492. DOI: 10.1016/j.envsoft.2022.105492 .

1232. Ding, J., Q. Zhu, H. Zhang and G.-q. Chen. 2022. The impact of the calibration based on multisource evapotranspiration products on the daily streamflow simulation. China Rural Water and Hydropower. 10: 105-111,118. DOI: 10.12396/znsd.220049 .

1233. Ding, N., F. Tao and Y. Chen. 2023. Effects of climate change, crop planting structure, and agricultural management on runoff, sediment, nitrogen and phosphorus losses in the Hai-River Basin since the 1980s. Journal of Cleaner Production. 359: 132066. DOI: 10.1016/j.jclepro.2022.132066 .

1234. Ding, N., Y. Chen and F. Tao. 2022. Effects of climate and land use changes on runoff, sediment, nitrogen and phosphorus losses in the Haihe River Basin. Frontiers in Earth Science. 16(4): 934-948. DOI: 10.1007/s11707-022-0975-4 .

1235. Ding, Y., F. Dong, J. Zhao, W. Peng, Q. Chen and B. Ma. 2020. Non-point source pollution simulation and best management practices analysis based on control units in northern China. International Journal of Environmental Research and Public Health. 17(3): 868. DOI: 10.3390/ijerph17030868 .

1236. Ding, Z., G. Fang, X. Wen, Q. Tan, X. Lei, Z. Liu and X. Huang. 2020. Cascaded hydropower operation chart optimization balancing overall ecological benefits and ecological conservation in hydrological extremes under climate change. Water Resources Management. 34: 1231-1246. DOI: 10.1007/s11269-020-02496-6 .

1237. Dinh, K.D., T.N. Anh, N.Y. Nguyen, D.D. Bui and R. Srinivasan. 2020. Evaluation of grid-based rainfall products and water balances over the Mekong River Basin. Remote Sensing. 12(11): 1858. DOI: 10.3390/rs12111858 .

1238. Dippold, D.A., N.R. Aloysius, S.C Keitzer, H. Yen, J.G. Arnold, P. Daggupati, M.E. Fraker, J.F. Martin, D.M. Robertson, S.P. Sowa, M.-V. Johnson, M.J. White and S.A. Ludsin. 2020. Forecasting the combined effects of anticipated climate change and agricultural conservation practices on fish recruitment dynamics in Lake Erie. Freshwater Biology. 65: 1487-1508. DOI: 10.1111/fwb.13515 .

1239. Diriba, B.T. 2021. Surface runoff modeling using SWAT analysis in Dabus Watershed, Ethiopia. Sustainable Water Resources Management. 7(6): 96. DOI: 10.1007/s40899-021-00573-1 .

1240. Dixit, S. and K.V. Jayakumar. 2022. Spatio-temporal analysis of copula-based probabilistic multivariate drought index using CMIP6 model. International Journal of Climatology. 42(8): 4333-4350. DOI: 10.1002/joc.7469 .

1241. Dixon, B. and J. Earls. 2009. Resample or not?! Effects of resolution of DEMs in watershed modeling. Hydrological Processes. 23(12): 1714-1724. DOI: 10.1002/hyp.7306 .

1242. Dixon, B. and J. Earls. 2012. Effects of urbanization on streamflow using SWAT with real and simulated meteorological data. Applied Geography. 35: 174-190. DOI: 10.1016/j.apgeog.2012.06.010 .

1243. Djebou, D.C.S. 2018. Assessment of sediment inflow to a reservoir using the SWAT Model under undammed conditions: A case study for the Somerville Reservoir, Texas, USA. International Soil and Water Conservation Research. DOI: 10.1016/j.iswcr.2018.03.003 .

1244. Djebou, D.C.S. 2019. Streamflow drought interpreted using SWAT model simulations of past and future hydrologic scenarios: Application to Neches and Trinity River Basins, Texas. Journal of Hydrologic Engineering. 24(9): 05019024. DOI: 10.1061/(ASCE)HE.1943-5584.0001827 .

1245. Djebou, D.C.S., A.A. Szogi, K.C. Stone and J.M. Novak. 2020. Watershed scale nitrate-N abatement of instream wetlands: An appraisal using the Soil and Water Assessment Tool. Applied Engineering in Agriculture. 36(3): 387-397. DOI: 10.13031/aea.13736 .

1246. Dlamini, N.S., M.R. Kamal, M.A.B.M. Soom, M.S.F. bin Mohd, A.F.B. Abdullah and L.S. Hin. 2017. Modeling potential impacts of climate change on streamflow using projections of the 5th assessment report for the Bernam River Basin, Malaysia. Water. 9(4): 226. DOI: 10.3390/w9030226 .

1247. do Nascimento, T.V.M., R.P. de Oliveira and M.T.C. de Melo. 2023. Impacts of large-scale irrigation and climate change on groundwater quality and the hydrological cycle: A case study of the Alqueva Irrigation Scheme and the Gabros de Beja Aquifer System. Science of the Total Environment. DOI: 10.1016/j.scitotenv.2023.168151 .

1248. Do, X.K., T.H. Nguyen, L.A. Ngo, M.L. Felix and K. Jung. 2022. Prediction of reservoir sedimentation in the long term period due to the impact of climate change: A case study of Pleikrong Reservoir. Journal of Disaster Research. 17(4): 552-560. DOI: 10.20965/jdr.2022.p0552 .

1249. Dogan, F.N. and M.E. Karpuzcu. 2021. Effect of land use change on hydrology of forested watersheds. Hydrology Research. 15(1): e2367. DOI: 10.1002/eco.2367 .

1250. Domínguez-Acevedo, A., J.L. Oropeza-Mota, E. Palacios-Vélez and J. Garfias-Solís. 2005. Study of simulated hydrodynamic response in the Acambay Valley aquifer. Agrociencia. 39: 247-258. URL: https://www.researchgate.net/publication/242628506_ESTUDIO_DE_RESPUESTA_HIDRODINAMICA_SIMULADA_EN_EL_ACUIFERO_DEL_VALLE_DE_ACAMBAY_STUDY_OF_SIMULATED_HYDRODYNAMIC_RESPONSE_IN_THE_ACAMBAY_VALLEY_AQUIFER/link/59e0c4c50f7e9b97fbdb4a91/download.

1251. Dong, F., A. Javed, A. Sabar, A. Neumann, C.A. Arnillas, G. Kaltenecker and G. Arhonditsis. 2021. A flow-weighted ensemble strategy to assess the impacts of climate change on watershed hydrology. Journal of Hydrology. 594: 125898. DOI: 10.1016/j.jhydrol.2020.125898 .

1252. Dong, F., A. Neumann, D.-K. Kim, J. Huang and G.B. Arhonditsis. 2019. A season-specific, multi-site calibration strategy to study the hydrological cycle and the impact of extreme-flow events along an urban-to-agricultural gradient. Ecological Informatics. 54: 100993. DOI: 10.1016/j.ecoinf.2019.100993 .

1253. Dong, F., J. Li, C. Dai, J. Niu, Y. Chen, J. Huang and Y. Liu. 2022. Understanding robustness in multiscale nutrient abatement: Probabilistic simulation-optimization using Bayesian network emulators. Journal of Cleaner Production. 378: 134394. DOI: 10.1016/j.jclepro.2022.134394 .

1254. Dong, F., Y. Liu, Z. Wu, Y. Chen and H. Guo. 2018. Identification of watershed priority management areas under water quality constraints: A simulation-optimization approach with ideal load reduction. Journal of Hydrology. 562: 577-588. DOI: 10.1016/j.jhydrol.2018.05.033 .

1255. Dong, L., Z. Xin, C. Song, C. Zhang and X. Bai. 2022. Applicability of statistical and modeling methods in assessing the basin-scale grey water footprint. Ecological Indicators. 143: 109345. DOI: 10.1016/j.ecolind.2022.109345 .

1256. Dong, W., B. Cui, Z. Liu and K. Zhang. 2014. Relative effects of human activities and climate change on the river runoff in an arid basin in northwest China. Hydrological Processes. 28(18): 4854–4864. DOI: 10.1002/hyp.9982 .

1257. Dongyuk, K., M. Shin, N. Ya, S. Lee, D. Kim, Y. Sung and S.S. Lee. 2021. An analysis of the water quality improvement measures and evaluation of Wonju Stream. Journal of the Korean Society of Agricultural Engineers. 63(1): 61-73. DOI: 10.5389/KSAE.2021.63.1.061 .

1258. Donmez, C., O. Sari, S. Berberoglu, A. Cilek, O. Satir and M. Volk. 2020. Improving the Applicability of the SWAT model to simulate flow and nitrate dynamics in a flat data-scarce agricultural region in the Mediterranean. Water. 12(12): 3479. DOI: 10.3390/w12123479 .

1259. Donyaii, A. and A. Sarraf. 2021. Evaluation of hydro-climatic conditions of Gorganroud Catchment under the effect of climate change using MIROC-ESM mode. Journal of Hydrogeomorphology. 7(25): 183-204. DOI: 10.22034/hyd.2021.44082.1572 .

1260. dos Santos, F.M., N. de S. Pelinson, R.P. de Oliveria and J.A.D. Lollo. 2023. Using the SWAT model to identify erosion prone areas and to estimate soil loss and sediment transport in Mogi Guaçu River Basin in Sao Paulo State, Brazil. Catena. 222: 106872. DOI: 10.1016/j.catena.2022.106872 .

1261. dos Santos, F.M., R.P. de Oliveira and F.F. Mauad. 2018. Lumped versus distributed hydrological modeling of the Jacaré-Guaçu Basin, Brazil. Journal of Environmental Engineering. 144(8): 04018056. DOI: 10.1061/(ASCE)EE.1943-7870.0001397 .

1262. dos Santos, F.M., R.P. de Oliveira and J.A. Di Lollo. 2020. Effects of land use changes on streamflow and sediment yield in Atibaia River Basin—SP, Brazil. Water. 12(6): 1711. DOI: 10.3390/w12061711 .

1263. dos Santos, F.M., R.P. de Oliveira and F.F. Mauad. 2020. Evaluating a parsimonious watershed model versus SWAT to estimate streamflow, soil loss and river contamination in two case studies in Tietê River Basin, São Paulo, Brazil. Journal of Hydrology: Regional Studies. 29: 100685. DOI: 10.1016/j.ejrh.2020.100685 .

1264. dos Santos, J.T.S., H.G.G.C. Nunes, A.K. dos Santos Pontes and A.M.L. de Sousa. 2018. The SWAT Model as tool for water resources management: An example applied to Apeú River in Castanhal/PA. Revista de Gestão de Água da América Latina. 15: e3. DOI: 10.21168/rega.v15e2 .

1265. dos Santos, J.Y.G., S.M.G.L. Montenegro, R.M. da Silva, C.A.G. Santo, N.W. Quinn, A.P.X. Dantas and A.R. Neto. 2021. Modeling the impacts of future LULC and climate change on runoff and sediment yield in a strategic basin in the Caatinga/Atlantic Forest Ecotone of Brazil. Catena. 203: 105308. DOI: 10.1016/j.catena.2021.105308 .

1266. Dos Santos, V., F. Laurent, C. Abe and F. Messner. 2018. Hydrologic response to land use change in a large basin in eastern Amazon. Water. 10(4): 429. DOI: 10.3390/w10040429 .

1267. Dosdogru, F., L. Kalin, R. Wang and H. Yen. 2020. Potential impacts of land use/cover and climate changes on ecologically relevant flows. Journal of Hydrology. 584: 124654. DOI: 10.1016/j.jhydrol.2020.124654 .

1268. Douglas-Mankin, K.R. 2018. Current Research in land, water, and agroecosystems: ASABE journals 2017 year in review. Transactions of the ASABE. 61(5): 1639-1651. DOI: 10.13031/trans.12821 .

1269. Douglas-Mankin, K.R., P. Daggupati, A.Y. Sheshukov and P.L. Barnes. 2013. Paying for sediment: Field-scale conservation practice targeting, funding, and assessment using the Soil and Water Assessment Tool. Journal of Soil and Water Conservation. 68(1): 41-51. DOI: 10.2489/jswc.68.1.41 .

1270. Douglas-Mankin, K.R., R. Srinivasan and J.G. Arnold. 2010. Soil and Water Assessment Tool (SWAT) model: Current developments and applications. Transactions of the ASABE. 53(5): 1423-1431. URL: http://ddr.nal.usda.gov/handle/10113/46702.

1271. Doulabian, S., E.G. Tousi, R. Aghlmand, B. Alizadeh, A.G. Bafti and A. Abbasi. 2021. Evalution of integrating SWAT Model into a multi-criteria decision analysis towards reliable rainwater harvesting systems. Water. 13(14): 1935. DOI: 10.3390/w13141935 .

1272. Dourte, D., R.L. Bartel, S. George, J.J. Marois and D.L. Wright. 2016. A sod-based cropping system for irrigation reductions. Renewable Agriculture and Food Systems. 31(6): 485-494. DOI: 10.1017/S1742170515000393 .

1273. Dourte, D.R., C.W. Fraisse and O. Uryasev. 2014. WaterFootprint on AgroClimate: A dynamic, web-based tool for comparing agricultural systems. Agricultural Systems. 125: 33-41. DOI: 10.1016/j.agsy.2013.11.006 .

1274. Dourte, D.R., S. Shukla, D.Z. Haman, M.D. Reddy, M.U. Devi and A. Mani. 2014. Agricultural management impacts on groundwater: Simulations of existing and alternative management options in Peninsular India. Hydrological Processes. 28(19): 5021–5033. DOI: 10.1002/hyp.9990 .

1275. Dowlatabadi, S. and S.M.A. Zomorodian. 2016. Conjunctive simulation of surface water and groundwater using SWAT and MODFLOW in Firoozabad watershed. KSCE Journal of Civil Engineering. 20(1): 485-496. DOI: 10.1007/s12205-015-0354-8 .

1276. Drissia, T.K. and T.P. Anjali. 2022. Influential factors of water scarcity in Bharathapuzha Basin, India. Journal of Applied Water Engineering and Research. 10(2): 129-143. DOI: 10.1080/23249676.2021.1956377 .

1277. Drohan, P.J., M. Bechmann, A. Buda, F. Djodjic, D. Doody, J.M. Duncan, A. Iho, P. Jordan, P.J. Kleinman, R. McDowell, P.-E. Mellander, I.A. Thomas and P.l.J.A. Withers. 2019. A global perspective on phosphorus management decision support in agriculture: Lessons learned and future directions. Journal of Environmental Quality. 48: 1218-1223. DOI: 10.2134/jeq2019.03.0107 .

1278. Droogers, P. and J. Bouma. 2014. Simulation modelling for water governance in basins. International Journal of Water Resources Development. 30(3): 475-494. DOI: 10.1080/07900627.2014.903771 .

1279. Du, B., A. Saleh, D.B. Jaynes and J.G. Arnold. 2006. Evaluation of SWAT in simulating nitrate nitrogen and atrazine fates in a watershed with tiles and potholes. Transactions of the ASABE. 49(4): 949-959. URL: https://www.researchgate.net/publication/43254810_Evaluation_of_SWAT_in_Simulating_Nitrate_Nitrogen_and_Atrazine_Fates_in_a_Watershed_With_Tiles_and_Potholes/download.

1280. Du, B., J. G. Arnold, A. Saleh and D. B. Jaynes. 2005. Development and application of SWAT to landscapes with tiles and potholes. Transactions of the ASAE. 48(3): 1121-1133. DOI: 10.13031/2013.18522 .

1281. Du, B., X. Ji, R.D. Harmel and L.M. Hauck. 2009. Evaluation of a watershed model for estimating daily flow using limited flow measurements. Journal of the American Water Resources Association. 45(2): 475-484. DOI: 10.1111/j.1752-1688.2009.00303.x .

1282. Du, H., M.L. Tan, F. Zhang, K.P. Chun, L. Li and M.H. Kabir. 2024. Evaluating the effectiveness of CHIRPS data for hydroclimatic studies. Theoretical and Applied Climatology. DOI: 10.1007/s00704-023-04721-9 .

1283. Du, J., H. Rui, T. Zuo, Q. Li, D. Zheng, A. Chen, Y. Xu and C.-Y. Xu. 2013. Hydrological simulation by SWAT model with fixed and varied parameterization approaches under land use change. Water Resources Management. 27(8): 2823-2838. DOI: 10.1007/s11269-013-0317-0 .

1284. Du, Liuying, A. Rajib and V. Merwade. 2018. Large scale spatially explicit modeling of blue and green water dynamics in a temperate mid-latitude basin. Journal of Hydrology. 562: 84-102. DOI: 10.1016/j.jhydrol.2018.02.071 .

1285. Du, W., Y. Li, L. Hua, C. Wang, P. Wang, J. Wang, Y. Wang, L. Chen, R.B. Buoh, M. Jepkirui, B. Pan, Y. Jiang and K. Acharya. 2016. Water age responses to weather conditions in a hyper-eutrophic channel reservoir in Southern China. Water. 8(9): 372. DOI: 10.3390/w8090372 .

1286. Du, X, N.K. Shrestha and J. Wang. 2019. Assessing climate change impacts on stream temperature in the Athabasca River Basin using SWAT equilibrium temperature model and its potential impacts on stream ecosystem. Science of the Total Environment. 650: 1872-1881. DOI: 10.1016/j.scitotenv.2018.09.344 .

1287. Du, X, N.K. Shrestha and J. Wang. 2018. Integrating organic chemical simulation module into SWAT model with application for PAHs simulation in Athabasca oil sands region, Western Canada. Environmental Modelling & Software. DOI: 10.1016/j.envsoft.2018.10.011 .

1288. Du, X., D. Loiselle, D.S. Alessi and M. Faramarzi. 2020. Hydro-climate and biogeochemical processes control watershed organic carbon inflows: Development of an in-stream organic carbon module coupled with a process-based hydrologic model. Science of the Total Environment. 718: 137281. DOI: 10.1016/j.scitotenv.2020.137281 .

1289. Du, X., G. Goss and M. Faramarzi. 2020. Impacts of hydrological processes on stream temperature in a cold region watershed based on the SWAT equilibrium temperature model. Water. 12(4): 1112. DOI: 10.3390/w12041112 .

1290. Du, X., G. Silwal and M. Faramarzi. 2022. Investigating the impacts of glacier melt on stream temperature in a cold-region watershed: Coupling a glacier melt model with a hydrological model. Journal of Hydrology. 605: 127303. DOI: 10.1016/j.jhydrol.2021.127303 .

1291. Du, X., N.K. Shrestha and J. Wang. 2019. Incorporating a non-reactive heavy metal simulation module into SWAT model and its application in the Athabasca Oil Sands region. Environmental Science and Pollution Research. DOI: 10.1007/s11356-019-05334-4 .

1292. Du, X., N.K. Shrestha, D.L. Ficklin and J. Wang. 2018. Incorporation of the equilibrium temperature approach in a Soil and Water Assessment Tool hydroclimatological stream temperature model. Hydrology and Earth System Sciences. 22(4): 2343-2357. DOI: 10.5194/hess-22-2343-2018 .

1293. Du, X., X. Zhang, R. Mukundan, L. Hoang and E.M. Owens. 2019. Integrating terrestrial and aquatic processes toward watershed scale modeling of dissolved organic carbon fluxes. Environmental Pollution. 249: 125-135. DOI: 10.1016/j.envpol.2019.03.014 .

1294. Duan, W., B. He, K. Takara, P. Luo, D. Nover and M. Hu. 2017. Impacts of climate change on the hydro-climatology of the upper Ishikari River Basin, Japan. Environmental Earth Sciences. 76: 490. DOI: 10.1007/s12665-017-6805-4 .

1295. Duan, Y., F. Meng, T. Liu, Y. Huang, M. Luo, W. Xing and P. De Maeyer. 2019. Sub-daily simulation of mountain flood processes based on the modified Soil Water Assessment Tool (SWAT) model. International Journal of Environmental Research and Public Health. 16(17): 3118. DOI: 10.3390/ijerph16173118 .

1296. Duan, Y., M. Luo, X. Guo, P. Cai and F. Li. 2021. Study on the relationship between snowmelt runoff for different latitudes and vegetation growth based on an improved SWAT model in Xinjiang, China. Sustainability. 13(3): 1189. DOI: 10.3390/su13031189 .

1297. Duan, Y., T. Liu, F. Meng, M. Luo, A. Frankl, P. De Maeyer, A. Bao, A. Kurban and X. Feng. 2018. Inclusion of modified snow melting and flood processes in the SWAT model. Water. 10(12): 1715. DOI: 10.3390/w10121715 .

1298. Duan, Z., Y. Tuo, J. Liu, H. Gao, X. Song, Z. Zhang, L. Yang and D.F. Mekonnen. 2019. Hydrological evaluation of open-access precipitation and air temperature datasets using SWAT in a poorly gauged basin in Ethiopia. Journal of Hydrology. 569: 612-626. DOI: 10.1016/j.jhydrol.2018.12.026 .

1299. Dubey, S.K., J. Kim, Y. Her, D. Sharma and H. Jeong. 2023. Hydroclimatic impact assessment using the SWAT model in India—State of the art review. Sustainability. 15(22): 15779. DOI: 10.3390/su152215779 .

1300. Dubeya, S.K., D. Sharmab, M.S. Babel and N. Mundetia. 2020. Application of hydrological model for assessment of water security using multi-model ensemble of CORDEX-South Asia experiments in a semi-arid river basin of India. Ecological Engineering. 143: 105641. DOI: 10.1016/j.ecoleng.2019.105641 .

1301. Duke, J.R., J.D. White, S.J. Prochnow, L. Zygo, P.M. Allen and R.S. Muttiah. 2007. The use of remote sensing and modelling to detect small-dam influences on land-use changes along downstream riparian zones. Ecohydrology & Hydrobiology. 7(1): 23-35. DOI: 10.1016/S1642-3593(07)70186-6 .

1302. Duku, C., H. Rathjens, S.J. Zwart and L. Hein. 2015. Towards ecosystem accounting: A comprehensive approach to modelling multiple hydrological ecosystem services. Hydrology and Earth System Sciences. 19(10): 4377-4396. DOI: 10.5194/hess-19-4377-2015 .

1303. Duku, C., S.J. Zwart and L. Hein. 2016. Modelling the forest and woodland-irrigation nexus in tropical Africa: A case study in Benin. Agriculture Ecosystems and Environment. 230: 105-115. DOI: 10.1016/j.agee.2016.06.001 .

1304. Duku, C., S.J. Zwart and L. Hein. 2018. Impacts of climate change on cropping patterns in a tropical, sub-humid watershed. PLoS ONE. 13(3): e0192642. DOI: 10.1371/journal.pone.0192642 .

1305. Duku, C., S.J. Zwart, L.G.J. van Bussel and L. Hein. 2018. Quantifying trade-offs between future yield levels, food availability and forest and woodland conservation in Benin. Science of the Total Environment. 610–611: 1581-1589. DOI: 10.1016/j.scitotenv.2017.06.115 .

1306. Dumedah, G. and P. Coulibaly. 2013. Evolutionary assimilation of streamflow in distributed hydrologic modeling using in-situ soil moisture data. Advances in Water Resources. 53: 231–241. DOI: 10.1016/j.advwatres.2012.07.012 .

1307. Dumedah, G., A.A. Berg and M. Wineberg. 2012. Evaluating autoselection methods used for choosing solutions from Pareto-optimal set: Does nondominance persist from calibration to validation phase? Journal of Hydrologic Engineering. 17(1): 150-159. DOI: 10.1061/(ASCE)HE.1943-5584.0000389 .

1308. Dumedah, G., A.A. Berg, M. Wineberg and R. Collier. 2010. Selecting model parameter sets from a trade-off surface generated from the non-dominated sorting genetic algorithm-II. Water Resources Management. 24: 4469-4489. DOI: 10.1007/s11269-010-9668-y .

1309. Dunea, D., P. Bretcan, D. Tanislav, G. Serban, R. Teodorescu, S. Iordache, N. Petrescu and E. Tuchiu. 2020. Evaluation of water quality in Ialomita River Basin in relationship with land cover patterns. Water. 12(3): 735. DOI: 10.3390/w12030735 .

1310. Dunn, S.M. and C.F. Dilks. 2006. Benchmark models for diffuse pollution: The challenges. Archiv für Hydrobiologie Supplement. 17(1-2): 49-73. DOI: 10.1127/lr/17/2006/49 .

1311. Duong, H.N., H.T. Nguyen, S. Vaclav and L. Sanghyuk. 2016. A comparative study of SWAT, RFNN and RFNN-GA for predicting river runoff. Indian Journal of Science and Technology. 9(17). DOI: 10.17485/ijst/2016/v9i17/92308 .

1312. Durães, M.F, C.R. de Mello and M Naghettini. 2011. Applicability of the SWAT model for hydrological simulation in Paraopeba river basin, MG. CERNE. 17(4): 481-488. DOI: 10.1590/S0104-77602011000400006 .

1313. Duriancik, L.F., D. Bucks, J.P. Dobrowolski, T. Drewes, S.D. Eckles, L. Jolley, R.L. Kellogg, D. Lund, J.R. Makuch, M.P. O'Neill, C.A. Rewa, M.R. Walbridge, R. Parry and M.A. Weltz. 2008. The first five years of the Conservation Effects Assessment Project. Journal of Soil and Water Conservation. 63(6): 185A-197A. DOI: 10.2489/jswc.63.6.185A .

1314. Duru, U., E. Wohl and M. Ahmadi. 2017. Factors controlling sediment load in the Central Anatolia Region of Turkey: Ankara River Basin. Environmental Management. 59(5): 826–841. DOI: 10.1007/s00267-016-0818-8 .

1315. Duru, U., M. Arabi and E.E. Wohl. 2017. Modeling stream flow and sediment yield using the SWAT model: A case study of Ankara River basin, Turkey. Physical Geography. 39(3): 264-289. URL: http://www.tandfonline.com/doi/abs/10.1080/02723646.2017.1342199.

1316. Dutta, D., R. Das and A. Mazumdar. 2017. Assessment of runoff and sediment yield in the Tilaya Reservoir, India, using SWAT Model. Asian Journal of Water, Environment and Pollution. 19(3): 9-18. DOI: 10.3233/AJW-170021 .

1317. Dutta, P and A.K. Sarma. 2021. Hydrological modeling as a tool for water resources management of the data-scarce Brahmaputra Basin. Journal of Water and Climate Change. 12(1): 152-165. DOI: 10.2166/wcc.2020.186 .

1318. Dutta, S. and D. Sen. 2017. Application of SWAT model for predicting soil erosion and sediment yield. Sustainable Water Resources Management. DOI: 10.1007/s40899-017-0127-2 .

1319. Duvvuri, S. 2018. Hydrological modelling of Cooum River Basin using GIS and SWAT MODEL. Journal of Indian Water Works Association. Oct.-Dec.: 306-310. URL: https://www.iwwa.info/widgetkit/journal-archives/325-decade/2011-2015/2018/oct-dec.

1320. Dybowski, D., M. Janecki, A. Nowicki and L.A. Dzierzbicka-Glowacka. 2020. Assessing the impact of chemical loads from agriculture holdings on the Puck Bay environment with the high-resolution ecosystem model of the Puck Bay, Southern Baltic Sea. Water. 12(7): 2068. DOI: 10.3390/w12072068 .

1321. Dzierzbicka-Glowacka, L., D. Dybowski, M. Janecki, E. Wojciechowska, B. Szymczycha, D. Potrykus, A. Nowicki, A. Szymkiewicz, P. Zima, B. Jaworska-Szulc, S. Pietrzak, G. Pazikowska-Sapota, D. Kalinowska, N. Nawrot, P. Wielgat, G. Dembska, K. Matej-Lukowicz, K. Szczepanska and T. Puszkarczuk. 2022. Modelling the impact of the agricultural holdings and land-use structure on the quality of inland and coastal waters with an innovative and interdisciplinary toolkit. Agricultural Water Management. 263: 107438. DOI: 10.1016/j.agwat.2021.107438 .

1322. Dzierzbicka-Głowacka, L., M. Janecki, D. Dybowski, B. Szymczycha, H. Obarska-Pempkowiak, E. Wojciechowska, P. Zima, S. Pietrzak, G. Pazikowska-Sapota, B. Jaworska-Szulc, A. Nowicki, Z. Kłostowska, A. Szymkiewicz, K. Galer-Tatarowicz, M. Wichorowski, M. Białoskórski and T. Puszkarczuk. 2019. A new approach for investigating the impact of pesticides and nutrient flux from agricultural holdings and land-use structures on Baltic Sea coastal waters. Polish Journal of Environmental studies. 28(4): 2531-2539. DOI: 10.15244/pjoes/92524 .

1323. Dziubanski, D.J., K.J. Franz and M.J. Helmers. 2017. Effects of spatial distribution of prairie vegetation in an agricultural landscape on curve number values. Journal of the American Water Resources Association. 53(2): 365–381. DOI: 10.1111/1752-1688.12510 .

1324. Earls, J. and B. Dixon. 2008. A comparison of SWAT nodel-predicted potential evapotranspiration using real and modeled meteorological data. Vadose Zone Journal. 7: 570-580. DOI: 10.2136/vzj2007.0012 .

1325. Easton, Z.M., D. R. Fuka, M.T. Walter, D.M. Cowan, E.M. Schneiderman and T.S. Steenhuis. 2008. Re-conceptualizing the Soil and Water Assessment Tool (SWAT) model to predict runoff from variable source areas. Journal of Hydrology. 348(3-4): 279-291. DOI: 10.1016/j.jhydrol.2007.10.008 .

1326. Easton, Z.M., D.R. Fuka, E.D. White, A.S. Collick, B. Biruk Ashagre, M. McCartney, S.B. Awulachew, A.A. Ahmed and T.S. Steenhuis. 2010. A multi basin SWAT model analysis of runoff and sedimentation in the Blue Nile, Ethiopia. Hydrology and Earth System Sciences. 14(10): 1827-1841. DOI: 10.5194/hess-14-1827-2010 .

1327. Easton, Z.M., M.T. Walter, D.R. Fuka, E.D. White and T.S. Steenhuis. 2011. A simple concept for calibrating runoff thresholds in quasi-distributed variable source area watershed models. Hydrological Processes. 25(20): 3131-3143. DOI: 10.1002/hyp.8032 .

1328. Easton, Z.M., P.J.A. Kleinman, A.R. Buda, D. Goering, N. Emberston, S. Reed, P.J. Drohan, M.T. Walter, P.Guinan, J.A. Lory, A.R. Sommerlot and A. Sharpley. 2017. Short-term forecasting tools for agricultural nutrient management. Journal of Environmental Quality. 46(6): 1257-1269. DOI: 10.2134/jeq2016.09.0377 .

1329. Ebodé, V.B., J.G. Dzana, E. Nkiaka, B.N. Nnomo, J.J. Braun and J. Riotte. 2022. Effects of climate and anthropogenic changes on current and future variability in flows in the So'o River Basin (south of Cameroon). Hydrology Research. 53(9): 1203--1220. DOI: 10.2166/nh.2022.047 .

1330. Echogdali, F.Z., S. Boutaleb, M. Ouchchen, M. Id-Belqas, R.B. Kpan, M. Abioui, J. Aswathi and K.S. Sajinkumar. 2022. Assessment of soil erosion risk in a semi‑arid climate watershed using SWAT model: Case of Tata Basin, south‑east of Morocco. Applied Water Science. 12(6): 137. DOI: 10.1007/s13201-022-01664-w .

1331. Eckhardt, K. and J.G. Arnold. 2001. Automatic calibration of a distributed catchment model. Journal of Hydrology. 251(1-2): 103-109. DOI: 10.1016/S0022-1694(01)00429-2 .

1332. Eckhardt, K. and U. Ulbrich. 2003. Potential impacts of climate change on groundwater recharge and streamflow in a central European low mountain range. Journal of Hydrology. 284(1-4): 244-252. DOI: 10.1016/j.jhydrol.2003.08.005 .

1333. Eckhardt, K., L. Breuer and H.-G. Frede. 2003. Parameter uncertainty and the significance of simulated land use change effects. Journal of Hydrology. 273(1-4): 164-176. DOI: 10.1016/S0022-1694(02)00395-5 .

1334. Eckhardt, K., N. Fohrer and H.-G. Frede. 2005. Automatic model calibration. Hydrological Processes. 19(3): 651-658. DOI: 10.1002/hyp.5613 .

1335. Eckhardt, K., S. Haverkamp, N. Fohrer and H.-G. Frede. 2002. SWAT-G, a version of SWAT99.2 modified for application to low mountain range catchments. Physics and Chemistry of the Earth. 27(9-10): 641-644. DOI: 10.1016/S1474-7065(02)00048-7 .

1336. Edmonds, J.A. and N.J. Rosenberg. 2005. Climate change impacts for the conterminous USA: An integrated assessment summary. Climatic Change. 69(1): 151-162. DOI: 10.1007/s10584-005-3608-5 .

1337. Eduardo, E.N., C.R. de Mello, M.R. Viola, P.R. Owens and N. Curi. 2016. Hydrological simulation as subside for management of surface water resources at the Mortes River Basin. Ciência e Agrotecnologia. 40(4): 390-404. DOI: 10.1590/1413-70542016404009516 .

1338. Efthimiou, N. 2018. Hydrological simulation using the SWAT model: The case of Kalamas River Catchment. Journal of Applied Water Engineering and Research. 6(3): 210-227. DOI: 10.1080/23249676.2016.1265471 .

1339. Eger, G.Z.S., G.C.S. Junior, E.A.G. Marques, B.R.C. Leão, D.G.T.B. da Rocha, T.E. Gilmore, L.G.H. do Amaral, J.A.O. Silva and C. Neale. 2021. Recharge assessment in the context of expanding agricultural activity: Urucuia Aquifer System, western State of Bahia, Brazil. Journal of South American Earth Sciences. 112(Part 1): 103601. DOI: 10.1016/j.jsames.2021.103601 .

1340. Eheart, J.W. and D.W. Tornil. 1999. Low-flow frequency exacerbation by irrigation withdrawals in the agricultural midwest under various climate change scenarios. Water Resources Research. 35(7): 2237-2246. DOI: 10.1029/1999WR900114 .

1341. Ehtiat, M., S.J. Mousavi and A. Ghaheri. 2015. Ranking of conceptualized groundwater models based on model information criteria. Journal of Water Supply: Research and Technology - AQUA. 64(6): 670-687. DOI: 10.2166/aqua.2015.109 .

1342. Ehtiat, M., S.J. Mousavi and R. Srinivasan. 2018. Groundwater modeling under variable operating conditions using SWAT, MODFLOW and MT3DMS: A catchment scale approach to water resources management. Water Resources Management. 32(5): 1631–1649. DOI: 10.1007/s11269-017-1895-z .

1343. Ehtiat, M., S.J. Mousavi, S.A. Vaghefi and A. Ghaheri. 2016. Analysis of recharge conceptualization in inverse groundwater modeling. Hydrological Sciences Journal. 61(15): 2789-2801. DOI: 10.1080/02626667.2016.1151978 .

1344. Eingrüber, N. and W. Korres. 2022. Climate change simulation and trend analysis of extreme precipitation and floods in the mesoscale Rur Catchment in western Germany until 2099 using Statistical Downscaling Model (SDSM) and the Soil & Water Assessment Tool (SWAT model). Science of the Total Environment. 838(Part 1): 155775. DOI: 10.1016/j.scitotenv.2022.155775 .

1345. Einheuser, M., A.P. Nejadhashemi and S.A. Woznicki. 2013. Simulating stream health sensitivity to landscape changes due to bioenergy crops expansion. Biomass & Bioenergy. 58: 198-209. DOI: 10.1016/j.biombioe.2013.08.025 .

1346. Einheuser, M.D., A.P, Nejadhashemi, L. Wang, S.P. Sowa and S.A. Woznicki. 2014. Linking biological integrity and watershed models to assess the impacts of historical land use and climate changes on stream health. Environmental Management. 51(6): 1147-1163. DOI: 10.1007/s00267-013-0043-7 .

1347. Einheuser, M.D., A.P. Nejadhashemi, S,P. Sowa, L. Wang, Y.A. Hamaamin and S.A. Woznicki. 2012. Modeling the effects of conservation practices on stream health. Science of the Total Environment. 435-436: 380-391. DOI: 10.1016/j.scitotenv.2012.07.033 .

1348. Eini, M.R. 2019. Discussion of ‘Intra- and interannual streamflow variations of Wardha watershed under changing climate’ (2018) by Naga Sowjanya P., Venkata Reddy K. & Shashi M. (ISH Journal of Hydraulic Engineering, DOI: 10.1080/09715010.2018.1473057). ISH Journal of Hydraulic Engineering. DOI: 10.1080/09715010.2018.1564376 .

1349. Eini, M.R., A. Rahmati and M. Piniewki. 2022. Hydrological application and accuracy evaluation of PERSIANN satellite-based precipitation estimates over a humid continental climate catchment. Journal of Hydrology: Regional Studies. 41: 101109. DOI: 10.1016/j.ejrh.2022.101109 .

1350. Eini, M.R., C. Massari and M. Piniewski. 2023. Satellite-based soil moisture enhances the reliability of agro-hydrological modeling in large transboundary river basins. Science of the Total Environment. 873: 162396. DOI: 10.1016/j.scitotenv.2023.162396 .

1351. Eini, M.R., H. Salmani and M. Piniewski. 2023. Comparison of process-based and statistical approaches for simulation and projections of rainfed crop yields. Agricultural Water Management. 277: 108107. DOI: 10.1016/j.agwat.2022.108107 .

1352. Eini, M.R., S. Javadi and M. Delavar. 2018. Evaluating the performance of CRU and NCEP CFSR global reanalysis climate datasets, in hydrological simulation by SWAT model, case study: Maharlu Basin. Iran-Water Resources Research. 14(1): 32-44. URL: http://iwrr.ir/article_48378_en.html.

1353. Eini, M.R., S. Javadi, M. Delavar and M. Darand. 2018. Assessment of Asfezari national database precipitation data in runoff evaluating and monitoring regional drought. Iranian Journal of EcoHydrology. 5(1): 99-120. DOI: 10.22059/ije.2017.235625.643 .

1354. Eini, M.R., S. Javadi, M. Delavar, J.A.F Monteiro and M. Darand. 2019. High accuracy of precipitation reanalyses resulted in good river discharge simulations in a semi-arid basin. Ecological Engineering. 131: 107-119. DOI: 10.1016/j.ecoleng.2019.03.005 .

1355. Eini, M.R., S. Javadi, M. Delavarb, P.W. Gassman and B. Jarihan. 2020. Development of alternative SWAT-based models for simulating water budget components and streamflow for a karstic-influenced watershed. Catena. 195: 104801. DOI: 10.1016/j.catena.2020.104801 .

1356. Eini, M.R., S. Javadi, M.H. Shahdany and O. Kisi. 2021. Comprehensive assessment and scenario simulation for the future of the hydrological processes in Dez River Basin, Iran. Water Supply. 21(3): 1157-1176. DOI: 10.2166/ws.2020.363 .

1357. Eisner, S., M. Flörke, A. Chamorro, P. Daggupati, C. Donnelly, J. Huang, Y. Hundecha, H. Koch, A. Kalugin, I. Krylenko, V. Mishra, M. Piniewski, L. Samaniego, O. Seidou, M. Wallner and V. Krysanova. 2017. An ensemble analysis of climate change impacts on streamflow seasonality across 11 large river basins. Climatic Change. 141(3): 401-417. DOI: 10.1007/s10584-016-1844-5 .

1358. Ekstrand, S., P. Wallenberg and F. Djodjic. 2010. Process based modelling of phosphorus losses from arable land. Ambio. 39: 100-115. DOI: 10.1007/s13280-010-0016-5 .

1359. El Harraki, W., D. Ouazar, A. Bouziane, I. El Harraki and D. Hasnaoui. 2021. Streamflow prediction upstream of a dam using SWAT and assessment of the impact of land use spatial resolution on model performance. Environmental Processes. 8(3): 1165-1186. DOI: 10.1007/s40710-021-00532-0 .

1360. Elçi, A. 2017. Evaluation of nutrient retention in vegetated filter strips using the SWAT model. Water Science and Technology. 76(10): 2742-2752. DOI: 10.2166/wst.2017.448 .

1361. Elhassan, A., H. Xie, A.A. Al-Othman, J. McClelland and H.O. Sharif. 2016. Water quality modelling in the San Antonio River Basin driven by radar rainfall data. Geomatics, Natural Hazards and Risk. 7(3): 953-970. DOI: 10.1080/19475705.2015.1009500 .

1362. El-Khoury, A., O. Seidou, D.R.L. Lapen, Z. Que, M. Mohammadian, M. Sunohara and D. Bahram. 2015. Combined impacts of future climate and land use changes on discharge, nitrogen and phosphorus loads for a Canadian river basin. Journal of Environmental Management. 151: 76-86. DOI: 10.1016/j.jenvman.2014.12.012 .

1363. El-Nasr, A.A., J.G. Arnold, J. Feyen and J. Berlamont. 2005. Modelling the hydrology of a catchment using a distributed and a semi-distributed model. Hydrological Processes. 19(3): 573-587. DOI: 10.1002/hyp.5610 .

1364. El-Sadek, A. and A. Irevem. 2014. Evaluating the impact of land use uncertainty on the simulated streamflow and sediment yield of the Seyhan River basin using the SWAT model. Turkish Journal of Agriculture and Forestry. 38(4): 515-530. DOI: 10.3906/tar-1309-89 .

1365. El-Sadek, A., M. Bleiweiss, M. Shukla, S. Guldan and A. Fernald. 2011. Alternative climate data sources for distributed hydrological modelling on a daily time step. Hydrological Processes. 25(10): 1542-1557. DOI: 10.1002/hyp.7917 .

1366. Emam, A.R., M. Kappas and S.Z. Hosseini. 2015. Assessing the impact of climate change on water resources, crop production and land degradation in a semi-arid river basin. Hydrology Research. 46(6): 854-870. DOI: 10.2166/nh.2015.143 .

1367. Emam, A.R., M. Kappas, N.H.K. Linh and T. Renchin. 2017. Hydrological modeling and runoff mitigation in an ungauged basin of central Vietnam using SWAT model. Hydrology. 4(1): 16. DOI: 10.3390/hydrology4010016 .

1368. Emam, A.R., M. Kappas, S. Akhavan, S.Z. Hosseini and K.C. Abbaspour. 2015. Estimation of groundwater recharge and its relation to land degradation: Case study of a semi-arid river basin in Iran. Environmental Earth Sciences. 74(9): 6791-6803. DOI: 10.1007/s12665-015-4674-2 .

1369. Emam, A.R., M. Kappas, S. Fassnacht and N.H.K. Linh. 2018. Uncertainty analysis of hydrological modeling in a tropical area using different algorithms. Frontiers in Earth Science. 12(4): 661–671. DOI: 10.1007/s11707-018-0695-y .

1370. Emami, F. and M. Koch. 2017. Evaluating the water resources and operation of the Boukan Dam in Iran under climate change. European Water. 59: 17-24. URL: http://www.ewra.net/ew/pdf/EW_2017_59_03.pdf.

1371. Emami, F. and M. Koch. 2018. Agricultural water productivity-based hydro-economic modeling for optimal crop pattern and water resources planning in the Zarrine River Basin, Iran, in the wake of climate change. Sustainability. 10(11): 3953. DOI: 10.3390/su10113953 .

1372. Emami, F. and M. Koch. 2018. Evaluation of statistical-downscaling/bias-correction methods to predict hydrologic responses to climate change in the Zarrine River Basin, Iran. Water. 6(2): 30. DOI: 10.3390/cli6020030 .

1373. Emami, F. and M. Koch. 2018. Sustainability assessment of the water management system for the Boukan Dam, Iran, using CORDEX - South Asia climate projections. Water. 10(12): 1723. DOI: 10.3390/w10121723 .

1374. Emami, F. and M. Koch. 2019. Modeling the impact of climate change on water availability in the Zarrine River Basin and inflow to the Boukan Dam, Iran. Climate. 7: 51. DOI: 10.3390/cli7040051 .

1375. Engebretsen A., R.D. Vogt and M. Bechmann. 2019. SWAT model uncertainties and cumulative probability for decreased phosphorus loading by agricultural Best Management Practices. Catena. 175: 154-166. DOI: 10.1016/j.catena.2018.12.004 .

1376. Engel, B., D. Storm, M. White, J. Arnold and M. Arabi. 2007. A hydrologic/water quality model application protocol. Journal of the American Water Resources Association. 43(5): 1223-1236. DOI: 10.1111/j.1752-1688.2007.00105.x .

1377. Engel, B., I. Chaubey, M. Thomas, D. Saraswat, P. Murphy and B. Bhaduri. 2010. Biofuels and water quality: Challenges and opportunities for simulation modeling. Biofuels. 1(3): 463-477. DOI: 10.4155/bfs.10.17 .

1378. Engel, B.A., R. Srinivasan, J.G. Arnold, C. Rewerts and S.J. Brown. 1993. Nonpoint source (NPS) pollution modeling using models integrated with Geographic Information Systems (GIS). Water Science and Technology. 28(3‑5): 685-690. DOI: 10.2166/wst.1993.0474 .

1379. Engida, T.G., T.A. Nigussie, A.B. Aneseyee and J. Barnabas. 2021. Land use/land cover change impact on hydrological process in the Upper Baro Basin, Ethiopia. Applied and Environmental Soil Science. 10(2): 6617541. DOI: 10.1155/2021/6617541 .

1380. Epelde, A.M., I. Antiguedad, D. Brito, E. Jauch, R. Neves, C. Garneau, S. Sauvage and J.M. Sánchez-Pérez. 2016. Different modelling approaches to evaluate nitrogen transport and turnover at the watershed scale. Journal of Hydrology. 539: 478–494. DOI: 10.1016/j.jhydrol.2016.05.066 .

1381. Epelde, A.M., I. Cerro, J.M. Sanchez-Perez, S. Sauvage, R. Srinivasan and I. Antiguedad. 2015. Application of the SWAT model to assess the impact of changes in agricultural management practices on water quality. Hydrological Sciences Journal. 60(5): 825-843. DOI: 10.1080/02626667.2014.967692 .

1382. Eranki, P.L., J. Devkota and A.E. Landis. 2019. Carbon footprint of corn-soy-oats rotations in the US Midwest using data from real biological farm management practices. Journal of Cleaner Production. 210: 170-180. DOI: 10.1016/j.jclepro.2018.11.002 .

1383. Ercan, M.B. and J.L. Goodall. 2013. Estimating watershed-scale precipitation by combining gauge- and radar-derived observations. Journal of Hydrologic Engineering. 18(8): 983-994. DOI: 10.1061/(ASCE)HE.1943-5584.0000687 .

1384. Ercan, M.B. and J.L. Goodall. 2016. Design and implementation of a general software library for using NSGA-II with SWAT for multi-objective model calibration. Environmental Modeling & Assessment. 84: 112-120. DOI: 10.1016/j.envsoft.2016.06.017 .

1385. Ercan, M.B., I. Maghami, B.D. Bowes, M.M. Morsy and J.L. Goodall. 2020. Estimating potential climate change effects on the Upper Neuse Watershed water balance using the SWAT model. Journal of the American Water Resources Association. 56(1): 53-67. DOI: 10.1111/1752-1688.12813 .

1386. Ercan, M.B., J.L. Goodall, A.M. Castronova, M. Humphrey and N. Beekwilder. 2014. Calibration of SWAT models using the cloud. Environmental Modelling & Software. 62: 188-196. DOI: 10.1016/j.envsoft.2014.09.002 .

1387. Erima, G., I. Kabenge, A. Gidudu, Y. Bamutaze and A. Egeru. 2022. Differentiated spatial-temporal flood vulnerability and risk assessment in lowland plains in eastern Uganda. Hydrology. 9(11): 201. DOI: 10.3390/hydrology9110201 .

1388. Eriyagama, N., V. Smakhtin and L. Udamulla. 2021. Sustainable surface water storage development pathways and acceptable limits for river basins. Water. 13(5): 645. DOI: 10.3390/w13050645 .

1389. Ermolieva, T.Y., Y.M. Ermoliev, P. Havlk, A. Mosnier, D. Leclere, S. Fritz, H. Valin, M. Obersteiner, S.V. Kyryzyuk and O.M. Borodina. 2017. Dynamic merge of the global and local models for sustainable land use planning with regard for global projections from GLOBIOM and local technical-economic feasibility and resource constraints. Cybernetics and System Analysis. 53(2): 176-185. DOI: 10.1007/s10559-017-9917-7 .

1390. Ernst, M.R. and J. Owens. 2009. Development and application of a WASP model on a large Texas reservoir to assess eutrophication control. Lake and Reservoir Management. 25(2): 136-148. DOI: 10.1080/07438140902821389 .

1391. Ertürk, A. A. Ekdal, M. Gurel, N. Karakaya, G. Cuceloglu and E. Gönenç. 2017. Model-based assessment of groundwater vulnerability for the Dalyan Region of southwestern Mediterranean Turkey. Regional Environmental Change. 17(4): 1193-1203. DOI: 10.1007/s10113-017-1106-8 .

1392. Ertürk, A., A. Ekdal, M. Gürel, N. Karakaya, C. Guzel and E. Gönenç. 2014. Evaluating the impact of climate change on groundwater resources in a small Mediterranean watershed. Science of the Total Environment. 499: 437-447. DOI: 10.1016/j.scitotenv.2014.07.001 .

1393. Ervinia, A., J. Huang, Y. Huang and J. Lin. 2019. Coupled effects of climate variability and land use pattern on surface water quality: An elasticity perspective and watershed health indicators. Science of the Total Environment. 693: 133592. DOI: 10.1016/j.scitotenv.2019.133592 .

1394. Escurra, J.J., V. Vazquez, R. Cestti, E. De Nys and R. Srinivasan. 2014. Climate change impact on countrywide water balance in Bolivia. Regional Environmental Change. 14(2): 727-742. DOI: 10.1007/s10113-013-0534-3 .

1395. Esen, S.E. and L. Hein. 2021. Development of SEEA water accounts with a hydrological model. Science of the Total Environment. 737: 140168. DOI: 10.1016/j.scitotenv.2020.140168 .

1396. Esfahanian, E., A.P. Nejadhashemi, M. Abouali, F. Daneshvar, A.A. Renani, M.R. Herman and Y. Tang. 2016. Defining drought in the context of stream health. Ecological Engineering. 94: 668-681. DOI: 10.1016/j.ecoleng.2016.06.110 .

1397. Esfahanian, E., A.P. Nejadhashemi, M. Abouali, U. Adhikari, Z. Zhang, F. Daneshvar and M.R. Herman. 2017. Development and evaluation of a comprehensive drought index. Journal of Environmental Management. 185: 31-43. DOI: 10.1016/j.jenvman.2016.10.050 .

1398. Eshtawi, T., M. Evers and B. Tischbein. 2015. Potential impacts of urban area expansion on groundwater level in the Gaza Strip: A spatial-temporal assessment. Arabian Journal of Geosciences. 8(12): 10565–10584. DOI: 10.1007/s12517-015-1971-8 .

1399. Eshtawi, T., M. Evers and B. Tischbein. 2016. Quantifying the impact of urban area expansion on groundwater recharge and surface runoff. Hydrological Sciences Journal. 61(5): 826-843. DOI: 10.1080/02626667.2014.1000916 .

1400. Eshtawi, T., M. Evers, B. Tischbein and B. Diekkrüger. 2016. Integrated hydrologic modeling as a key for sustainable urban water resources planning. Water Research. 101: 411-428. DOI: 10.1016/j.watres.2016.05.061 .

1401. Esmaeili-Gisavandani, H., M. Lotfirad, M.S.D. Sofla and A. Ashrafzadeh. 2021. Improving the performance of rainfall-runoff models using the gene expression programming approach. Journal of Water and Climate Change. 12(7): 3308-3329. DOI: 10.2166/wcc.2021.064 .

1402. Esmali, A., M. Golshan and A. Kavian. 2021. Investigating the performance of SWAT and IHACRES in simulation streamflow under different climatic regions in Iran. Atmósfera. 34(1): 79-96. DOI: 10.20937/atm.52740 .

1403. Espinosa, C., A. La Rotta and Y.J. Perez. 2013. The preventive expenses method to assess benefit of sediments control in high watershed producers of drinking water. Revista Forestal Venezolana. 56(1): 51-61. URL: http://www.saber.ula.ve/handle/123456789/36850.

1404. Espinosa, J. and D. Rivera. 2016. Variations in water resources availability at the Ecuadorian páramo due to land-use changes. Environmental Earth Sciences. 75: 1173. DOI: 10.1007/s12665-016-5962-1 .

1405. Espinosa-García, J.A., J. Uresti-Gil, A. Velez-Izquierdo, G. Moctezuma-Lopez, H.D. Inurreta-Aguirre and S.F. Góngora-González. 2015. Productivity and profit potential of cocoa. Revista Mexicana de Ciencias Agrícolas. 6(5): 1051-1063. URL: http://www.scielo.org.mx/scielo.php?script=sci_abstract&pid=S2007-09342015000500012&lng=en&nrm=iso&tlng=en.

1406. Esse, C., N. Ríos, P. Saavedra, D. Fonseca, F. Encina-Montoya, R. Santander-Massa, P .De los Ríos-Escalante, G. Figeroa-Muñoz, A. López-Pérez and F. Correa-Arandea. 2021. Effects of land use change on water availability and water efficiency in the temperate basins of south-central Chile. Journal of King Saud University - Science. 33(8): 101650. DOI: 10.1016/j.jksus.2021.101650 .

1407. Essenfelder, A.H. and C. Giupponi. 2020. A coupled hydrologic-machine learning modelling framework to support hydrologic modelling in river basins under interbasin water transfer regimes. Environmental Modelling & Software. 131: 104779. DOI: 10.1016/j.envsoft.2020.104779 .

1408. Essenfelder, A.H., C.D. Pérez‐Blanco and A.S. Mayer. 2018. Rationalizing systems analysis for the evaluation of adaptation strategies in complex human-water systems. Earth's Future. 6(9): 1181-1206. DOI: 10.1029/2018EF000826 .

1409. Evenson, G., W.R. Osterholz, V.S. Shedekar, K. King, S. Mehan and M. Kalcic. 2022. Representing soil health practice effects on soil properties and nutrient loss in a watershed-scale hydrologic model. Journal of Environmental Quality. DOI: 10.1002/jeq2.20338 .

1410. Evenson, G.R., C.N. Jones, D.L. McLaughlin, H.E. Golden, C.R. Lane, B. DeVries, L.C. Alexander, M.W. Lang, G.W. McCarty and A. Sharifi. 2018. A watershed-scale model for depressional wetland-rich landscapes. Journal of Hydrology X. 1: 100002. DOI: 10.1016/j.hydroa.2018.10.002 .

1411. Evenson, G.R., H.E Golden, C.R. Lane, D.L. McLaughlin and E. D'Amico. 2018. Depressional wetlands affect watershed hydrological, biogeochemical, and ecological functions. Ecological Applications. 28(4): 953-966. DOI: 10.1002/eap.1701 .

1412. Evenson, G.R., H.E. Golden, C.R. Lane and E. D'Amico. 2015. Geographically isolated wetlands and watershed hydrology: A modified model analysis. Journal of Hydrology. 529(Part 1): 240–256. DOI: 10.1016/j.jhydrol.2015.07.039 .

1413. Evenson, G.R., H.E. Golden, C.R. Lane and E. D'Amico. 2016. An improved representation of geographically isolated wetlands in a watershed-scale hydrologic model. Hydrological Processes. 30(22): 4168–4184. DOI: 10.1002/hyp.10930 .

1414. Evenson, G.R., H.E. Golden, J.R. Christensen, C.R. Lane, A. Rajib, E. D'Amico, D.T. Mahoney, E. White and Q. Wu. 2021. Wetland restoration yields dynamic nitrate responses across the Upper Mississippi River Basin. Environmental Research Communications. 3(9): 095002. DOI: 10.1088/2515-7620/ac2125 .

1415. Evenson, G.R., M. Kalcic, Y.-C. Wang, D. Robertson, D. Scavia, J. Martin, N. Aloysius, A. Apostel, C. Boles, M. Brooker, R. Confesor, A.T. Dagnew, T. Guo, J. Kast, H. Kujawa, R.L. Muenich, A. Murumkar and T. Redder. 2021. Uncertainty in critical source area predictions from watershed-scale hydrologic models. Journal of Environmental Management. 279: 111506. DOI: 10.1016/j.jenvman.2020.111506 .

1416. Exbrayat, J.-F., N.R. Viney, H.-G. Frede and L. Breuer. 2011. Probabilistic multi-model ensemble predictions of nitrogen concentrations in river systems. Geophysical Research Letters. 38(L12401): 1-5. DOI: 10.1029/2011GL047522 .

1417. Exbrayat, J.-F., N.R. Viney, J. Seibert, S. Wrede, H.-G. Frede and L. Breuer. 2010. Ensemble modelling of nitrogen fluxes: Data fusion for a Swedish meso-scale catchment. Hydrology and Earth System Sciences. 14(12): 2383-2397. DOI: 10.5194/hess-14-2383-2010 .

1418. Ezz-Aldeen, M., R. Hassan, A. Ali, N. Al-Ansari and S. Knutsson. 2018. Watershed Sediment and its effect on storage capacity: Case study of Dokan Dam Reservoir. Water. 10(7): 858. DOI: 10.3390/w10070858 .

1419. Fabian, P.S., H.-H. Kwon, M. Vithanage and J.-H. Lee. 2023. Modeling, challenges, and strategies for understanding impacts of climate extremes (droughts and floods) on water quality in Asia: A review. Environmental Science. 225: 115617. DOI: 10.1016/j.envres.2023.115617 .

1420. Fabre, C., S. Sauvage, N. Tananaev, R. Srinivasan, R. Teisserenc and J.M.S. Pérez. 2017. Using modeling tools to better understand permafrost hydrology. Water. 9(6): 418. DOI: 10.3390/w9060418 .

1421. Fabre, C., S. Sauvage, N. Tananaev, G.E. Noël, R. Teisserenc, J.L. Probst and J.M. Sánchez Pérez. 2019. Assessment of sediment and organic carbon exports into the Arctic ocean: The case of the Yenisei River Basin. Water Research. 158: 118-135. DOI: 10.1016/j.watres.2019.04.018 .

1422. Faksomboon, B. 2022. Development of a hydrodynamic model for regulating water drainage of reservoir and water resources management, Lamtakong Watershed of Thailand. Nakhara: Journal of Environmental Design and Planning. 21(3): 217. DOI: 10.54028/NJ202221217 .

1423. Faksomboon, B. and N. Thangtham. 2017. Application of SWAT Model for Studying Land Use Changes on Suspended Sediment in Upper Tha Chin Watershed. Srinakharinwirot Science Journal. 33(2). URL: http://ejournals.swu.ac.th/index.php/ssj/article/view/8141.

1424. Faksomboon, B. and N. Thangtham. 2017. Development of Mathematical Model for Land Utilization on Suspended Sediment in Upper Tha Chin Watershed. Srinakharinwirot Science Journal. 33(2): 1-15. URL: http://ejournals.swu.ac.th/index.php/ssj/article/view/8141.

1425. Faksomboon, B. S. Bualert, N. Dampin and N. Thangtham. 2017. Dynamic Modeling for the investigation of changes in land uses on streamflow in the Upper Tha Chin Watershed. Burapha Science Journal. 22(2): 42-57. URL: http://science.buu.ac.th/ojs246/index.php/sci/article/view/1455.

1426. Faksomboon, B., W. Suanmali, N. Chaivino, N. Khamcharoen and S. Buasruang. 2019. Land use changes of head watershed area on streamflow, suspended sediment and water quality in Khlong Lan Watershed, Kamphaeng Phet Province. Burapha Science Journal. 24(2): 532-549. URL: http://science.buu.ac.th/ojs246/index.php/sci/issue/view/96/showToc.

1427. Fallatah O.A., M. Ahmed, D. Cardace, T. Boving and A.S. Akanda. 2019. Assessment of modern recharge to arid region aquifers using an integrated geophysical, geochemical, and remote sensing approach. Journal of Hydrology. 569: 600-611. DOI: 10.1016/j.jhydrol.2018.09.061 .

1428. Fallo, Y., R. Rispiningtati and D. Harisuseno. 2013. Analisis perubahan tataguna lahan terhadap usia bendungan Tilong di das Tilong Kabupaten Kupang propinsi NTT. Jurnal Teknik Pengairan. 4(2). URL: http://jurnalpengairan.ub.ac.id/index.php/jtp/article/view/188.

1429. Fan, H., M. Jiang, L. Xu, H. Zhu, J. Cheng and J. Jiang. 2020. Comparison of long short term memory networks and the hydrological model in runoff simulation. Water. 12(1): 175. DOI: 10.3390/w12010175 .

1430. Fan, J. F. Tian, Y. Yang, S. Han and G. Qiu. 2010. Quantifying the magnitude of the impact of climate change and human activity on runoff decline in Mian River Basin, China. Water Science and Technology. 62(4): 783-791. DOI: 10.2166/wst.2010.294 .

1431. Fan, J., M. Galoie, A. Motamedi and J. Huang. 2021. Assessment of land cover resolution impact on flood modeling uncertainty. Hydrology Research. 52(1): 78-90. DOI: 10.2166/nh.2020.043 .

1432. Fan, J., M. Li, F. Guo, Z. Yan, X. Zheng, Y. Zhang, Z. Xu and F. Wu. 2018. Prioritization of river restoration by coupling Soil and Water Assessment Tool (SWAT) and Support Vector Machine (SVM) models in the Taize River Basin, northern China. International Journal of Environmental Research and Public Health. 15(10): 2090. DOI: 10.3390/ijerph15102090 .

1433. Fan, M. and H. Shibata. 2014. Water yield, nitrogen and sediment retentions in Northern Japan (Teshio river watershed): Land use change. Mitigation and Adaptation Strategies for Global Change. 21(1): 119-133. DOI: 10.1007/s11027-014-9574-3 .

1434. Fan, M. and H. Shibata. 2015. Simulation of watershed hydrology and stream water quality under land use and climate change scenarios in Teshio River watershed, northern Japan. Ecological Indicators. 50: 79-89. DOI: 10.1016/j.ecolind.2014.11.003 .

1435. Fan, M., H. Shibata and L. Chen. 2018. Assessing high impacts of climate change: Spatial characteristics and relationships of hydrological ecosystem services in northern Japan (Teshio River watershed). Mitigation and Adaptation Strategies for Global Change. 23: 525-552. DOI: 10.1007/s11027-017-9748-x .

1436. Fan, M., H. Shibata and L. Chen. 2018. Spatial priority conservation areas for water yield ecosystem service under climate changes in Teshio watershed, northernmost Japan. Journal of Water and Climate Change. DOI: 10.2166/wcc.2018.088 .

1437. Fan, M., H. Shibata and Q. Wang. 2016. Optimal conservation planning of multiple hydrological ecosystem services under land use and climate changes in Teshio river watershed, northernmost of Japan. Ecological Indicators. 62: 1-13. DOI: 10.1016/j.ecolind.2015.10.064 .

1438. Fan, M., H. Shibata, and L. Chen. 2017. Environmental and economic risks assessment under climate changes for three land uses scenarios analysis across Teshio watershed, northernmost of Japan. Science of the Total Environment. 599-600: 451-463. DOI: 10.1016/j.scitotenv.2017.05.010 .

1439. Fan, M., M. Shi, Y. Liu, W. Chen, Y. Deng and M. Wang. 2022. Implications of spatial priority areas for hydrological ecosystem services through coupling hydrology model and Zonation model under diferent economic costs of water utilizations in northernmost of Japan. Mitigation and Adaptation Strategies for Global Change. 27(1): 2. DOI: 10.1007/s11027-021-09976-z .

1440. Fan, M., W. Ou and L. Chen. 2019. Spatial priority areas for individual and multiple hydrological ecosystem services with economic costs across Teshio Watershed, northernmost of Japan. Global Ecology and Conservation. 20: e00746. DOI: 10.1016/j.gecco.2019.e00746 .

1441. Fang, D., L. Hao, Z. Cao, X. Huang, M. Qin, J. Hu, Y. Liu and G. Sun. 2020. Combined effects of urbanization and climate change on watershed evapotranspiration at multiple spatial scales. Journal of Hydrology. 587: 124869. DOI: 10.1016/j.jhydrol.2020.124869 .

1442. Fang, G., J. Yang, Y. Chen, C. Xu and P. De Maeyer. 2015. Contribution of meteorological input in calibrating a distributed hydrologic model in a watershed in the Tianshan Mountains, China. Environmental Earth Sciences. 74(3): 2413-2424. DOI: 10.1007/s12665-015-4244-7 .

1443. Fang, G., J. Yang, Y. Chen, Z. Li and P. De Maeyer. 2017. Impact of GCM structure uncertainty on hydrological processes in an arid area of China. Hydrology Research. DOI: 10.2166/nh.2017.227 .

1444. Fang, G., J. Yang, Y. Chen, Z. Li, H. Ji and P. De Maeyer. 2018. How hydrologic processes differ spatially in a large basin: Multisite and multiobjective modeling in the Tarim River basin. Journal of Geophysical Research: Atmospheres. DOI: 10.1029/2018JD028423 .

1445. Fang, X., L. Ren, Q. Li, Q. Zhu, P. Shi and Y. Zhu. 2013. Hydrologic response to land use and land cover changes within the context of catchment-scale spatial information. Journal of Hydrologic Engineering. 18(11): 1539-1548. DOI: 10.1061/(ASCE)HE.1943-5584.0000482 .

1446. Fang, Y., X. Chen, J.G. Velez, X. Zhang, Z. Duan, G.E. Hammond, A.E. Goldman, V.A. Garayburu-Caruso and E.B. Graham. 2020. A multirate mass transfer model to represent the interaction of multicomponent biogeochemical processes between surface water and hyporheic zones (SWAT-MRMT-R 1.0). Geoscientific Model Development. 13(8): 3553-3569. DOI: 10.5194/gmd-13-3553-2020 .

1447. Fant, C., R. Srinivasan, B. Boehlert, L. Rennels, S.C. Chapra, K.M. Strzepek, J. Corona, A. Allen and J. Martinich. 2017. Climate change impacts on US water quality using two models: HAWQS and US Basins. Water. 9(2): 118. DOI: 10.3390/w9020118 .

1448. Faramarzi, M., K.C. Abbaspour, W.L. (Vic) Adamowicz, W. Lu, J. Fennell, A.J.B. Zehnder and G.G. Goss. 2017. Uncertainty based assessment of dynamic freshwater scarcity in semi-arid watersheds of Alberta, Canada. Journal of Hydrology: Regional Studies. 9: 48-68. DOI: 10.1016/j.ejrh.2016.11.003 .

1449. Faramarzi, M., H. Yang, J. Mousavi, R. Shulin, C.R. Binder and K.C. Abbaspour. 2010. Analysis of intra-country virtual water trade strategy to alleviate water scarcity in Iran. Hydrology and Earth System Sciences. 14(8): 1417-1433. DOI: 10.5194/hess-14-1417-2010 .

1450. Faramarzi, M., H. Yang, R. Schulin and K.C. Abbaspour. 2010. Modeling wheat yield and crop water productivity in Iran: Implications of agricultural water management for wheat production. Agricultural Water Management. 97(11): 1861-1875. DOI: 10.1016/j.agwat.2010.07.002 .

1451. Faramarzi, M., K.C. Abbaspour, R. Schulin and H. Yarn. 2009. Modelling blue and green water resources availability in Iran. Hydrological Processes. 23(3): 486-501. DOI: 10.1002/hyp.7160 .

1452. Faramarzi, M., K.C. Abbaspour, S.A. Vaghefi, M.R. Farzaneh, A.J.B. Zehnder, R. Srinivasan and H. Yang. 2013. Modelling impacts of climate change on freshwater availability in Africa. Journal of Hydrology. 480: 85–101. DOI: 10.1016/j.jhydrol.2012.12.016 .

1453. Faramarzi, M., R. Srinivasan, M. Iravani, K.D. Bladon, K.C. Abbaspour, A.J.B. Zehnder and G.G. Goss. 2015. Setting up a hydrological model of Alberta: Data discrimination analyses prior to calibration. Environmental Modelling & Software. 74: 48-65. DOI: 10.1016/j.envsoft.2015.09.006 .

1454. Farhan, A.A. and B. Sh. Abed. 2021. Estimation of surface runoff to Bahr AL-Najaf. Journal of Engineering. 27(9): 51-63. DOI: 10.31026/j.eng.2021.09.05 .

1455. Farhan, A.M. and H.A. Al Thamiry. 2020. Estimation of the surface runoff volume of Al-Mohammedi Valley for long-term period using SWAT Model. Iraqi Journal of Civil Engineering. 14(1): 7-12. URL: https://www.iasj.net/iasj/article/183107.

1456. Farkas, C., S.H. Kværnø, A. Engebretsen, R. Barneveld and J. Deelstra. 2016. Applying profile- and catchment-based mathematical models for evaluating the run-off from a Nordic catchment. Journal of Hydrology and Hydromechanics. 64: 218-225. DOI: 10.1515/johh-2016-0022 .

1457. Farsani, I.F., M.R. Farzaneh, A.A. Besalatpour, M.H. Salehi and M. Faramarzi. 2018. Assessment of the impact of climate change on spatiotemporal variability of blue and green water resources under CMIP3 and CMIP5 models in a highly mountainous watershed. Theoretical and Applied Climatology. DOI: 10.1007/s00704-018-2474-9 .

1458. Farzana, S.Z., A. Zafor and J.A. Shahariar. 2019. Application of SWAT model for assessing water availability in Surma River Basin. Journal of the Civil Engineering Forum. 5(1): 30-38. DOI: 10.22146/jcef.39191 .

1459. Fatehifar, A., M.R. Goodarzi, S.S.M. Hedesh and P.S. Dastjerdi. 2021. Assessing watershed hydrological response to climate change based on signature indices. Journal of Water and Climate Change. 12(6): 2579-2593. DOI: 10.2166/wcc.2021.293 .

1460. Fatemi, A. 2022. A survey of modeling for water quality prediction of Gharasou River, Kermanshah, Iran. Environmental Earth Sciences. 81(3): 66. DOI: 10.1007/s12665-022-10191-5 .

1461. Febrianingrum, N.D., A. Masrevaniah and E. Suhartanto. 2011. Pengaruh perubahan penggunaan lahan terhadap sedimen di Sungai Lesti. Jurnal Teknik Pengairan. 2(1): 86-98. URL: http://jurnalpengairan.ub.ac.id/index.php/jtp/article/view/124.

1462. Febrianti, I., I. Ridwan and N. Nurlina. 2018. Model SWAT (Soil And Water Assessment Tool) Untuk Analisis Erosi dan Sedimentasi di Catchment Area Sungai Besar Kabupaten Banjar. Jurnal Fisika FLUX. 15(1): 20-25. DOI: 10.20527/flux.v15i1.4506 .

1463. Feld, C.K., P. Segurado and C. Gutiérrez-Cánovas. 2016. Analysing the impact of multiple stressors in aquatic biomonitoring data: A ‘cookbook’ with applications in R. Science of the Total Environment. 573: 1320–1339. DOI: 10.1016/j.scitotenv.2016.06.243 .

1464. Felix, M.L. and K. Jung. 2022. Impacts of spatial interpolation methods on daily streamflow predictions with SWAT. Water. 14(20): 3340. DOI: 10.3390/w14203340 .

1465. Femeena, P.V., K.P. Sudheer, R. Cibin and I. Chaubey. 2018. Spatial optimization of cropping pattern for sustainable food and biofuel production with minimal downstream pollution. Journal of Environmental Management. 212: 198-209. DOI: 10.1016/j.jenvman.2018.01.060 .

1466. Femeena, P.V., R. Karki, R. Cibin and K.P. Sudheer. 2022. Reconceptualizing HRU threshold definition in the Soil and Water Assessment Tool. Journal of the American Water Resources Association. 58(4): 508–516. DOI: 10.1111/1752-1688.13000 .

1467. Feng G. and Y. Ge. 2008. Numerical simulations of nutrient transport changes in Honghu Lake Basin, Jianghan Plain. Chinese Science Bulletin. 53(15): 2353-3363. DOI: 10.1007/s11434-008-0315-4 .

1468. Feng, H., M. Jha, and P. Gassman. 2008. The allocation of nutrient load reduction across a watershed: Assessing delivery coefficients as an implementation tool. Review of Agricultural Economics. 31(1): 183-204. URL: https://onlinelibrary.wiley.com/doi/10.1111/j.1467-9353.2008.01432.x.

1469. Feng, M. and Z. Shen. 2021. Assessment of the impacts of land use change on non-point source loading under future climate scenarios using the SWAT mode. Water. 13(6): 874. DOI: 10.3390/w13060874 .

1470. Feng, Q., D.C. Flanagan, B.A. Engel, L. Yang and L. Chen. 2020. GeoAPEXOL, a web GIS interface for the Agricultural Policy Environmental eXtender (APEX) model enabling both field and small watershed simulation. Environmental Modelling & Software. 123: 104569. DOI: 10.1016/j.envsoft.2019.104569 .

1471. Feng, Q., I. Chaubey, B. Engel, R. Cibin, K.P. Sudheer and J. Volenec. 2017. Marginal land suitability for switchgrass, Miscanthus and hybrid poplar in the Upper Mississippi River Basin (UMRB). Environmental Modelling & Software. 93: 356-365. DOI: 10.1016/j.envsoft.2017.03.027 .

1472. Feng, Q., I. Chaubey, R. Cibin, B. Engel, K.P. Sudheer and J. Volenec. 2017. Simulating establishment periods of switchgrass and miscanthus in the Soil and Water Assessment Tool (SWAT). Transactions of the ASABE. 60(5): 1621-1632. DOI: 10.13031/trans.12227 .

1473. Feng, Q., I. Chaubey, R. Cibin, B. Engel, K.P. Sudheer, J. Volenec and N. Omani. 2018. Perennial biomass production from marginal land in the Upper Mississippi River Basin. Land Degradation & Development. 29(6): 1748-1755. DOI: 10.1002/ldr.2971 .

1474. Feng, W., Z. Jinyan, W. Zhan and Z. Qian. 2014. Streamflow variation due to glacier melting and climate change in upstream Heihe River Basin, Northwest China. Physics and Chemistry of the Earth. 79-82: 11-19. DOI: 10.1016/j.pce.2014.08.002 .

1475. Feng, X.Q., G.X. Zhang and Y.J. Xu. 2013. Simulation of hydrological processes in the Zhalong wetland within a river basin, Northeast China. Hydrology and Earth System Sciences. 17: 2797-2807. DOI: 10.5194/hess-17-2797-2013 .

1476. Fentaw, F., D. Hailu, A. Nigussie and A.M. Melesse. 2018. Climate change impact on the hydrology of Tekeze Basin, Ethiopia: Projection of rainfall-runoff for future water resources planning. Water Science and Engineering. DOI: 10.1007/s41101-018-0057-3 .

1477. Fereidoon, M. and M. Koch. 2018. SWAT-MODSIM-PSO optimization of multi-crop planning in the Karkheh River Basin, Iran, under the impacts of climate change. Science of the Total Environment. 630: 502-516. DOI: 10.1016/j.scitotenv.2018.02.234 .

1478. Fereidoon, M., M. Koch and L. Brocca. 2019. Predicting rainfall and runoff through satellite soil moisture data and SWAT modelling for a poorly gauged basin in Iran. Water. 11(3): 594. DOI: 10.3390/w11030594 .

1479. Ferijal, T., S. Mechram, D.S. Jayanti and P. Satriyo. 2015. Keliling Reservoir Catchment Area Modeling Using SWAT Model. AGRITECH. 35(1): 121-127. DOI: 10.22146/agritech.13037 .

1480. Fernandes, M.R., F.C. Aguiar, M.J. Martins, R. Rivaes and M.T. Ferreira. 2020. Long-term human-generated alterations of Tagus River: Effects of hydrological regulation and land-use changes in distinct river zones. Catena. 188: 104466. DOI: 10.1016/j.catena.2020.104466 .

1481. Fernandez, M.A., P. Huang, B. McCarl and V. Mehta. 2016. Value of decadal climate variability information for agriculture in the Missouri River basin. Climatic Change. 139(3-4): 517-533. DOI: 10.1007/s10584-016-1807-x .

1482. Fernandez-Palomino, C.A., F.F. Hattermann, V. Krysanova, A. Lobanova, F. Vega-Jácome, W. Lavado, W. Santini, C. Aybar and A. Bronstert. 2021. A novel high-resolution gridded precipitation dataset for Peruvian and Ecuadorian watersheds – development and hydrological evaluation. Journal of Hydrometeorology. DOI: 10.1175/JHM-D-20-0285.1 .

1483. Fernandez-Palomino, C.A., F.F. Hattermann, V. Krysanova, F. Vega-Jácome and A. Bronstert. 2021. Towards a more consistent eco-hydrological modelling through multi-objective calibration: A case study in the Andean Vilcanota River Basin, Peru. Hydrological Sciences Journal. 66(1): 59-74. DOI: 10.1080/02626667.2020.1846740 .

1484. Fernandez-Palomino, C.A., F.F. Hattermann, V. Krysanova, A. Lobanova, F. Vega-Jácome, W. Lavado, W. Santini, C. Aybar and A. Bronstert. 2022. A novel high-resolution gridded precipitation dataset for Peruvian and Ecuadorian watersheds: Development and hydrological evaluation. Journal of Hydrometeorology. 23(3): 309-336. DOI: 10.1175/JHM-D-20-0285.1 .

1485. Ferrant, S., F. Oehler, P. Durand, L. Ruiz, J. Salmon-Monvoila, E. Justes, P. Dugast, A. Probst, J.-L. Probst and J.-M. Sanchez-Perez. 2011. Understanding nitrogen transfer dynamics in a small agricultural catchment: Comparision of a distributed (TNT2) and a semi distributed (SWAT) modeling approaches. Journal of Hydrology. 406(1-2): 1-15. DOI: 10.1016/j.jhydrol.2011.05.026 .

1486. Ferrant, S., Y. Caballero, J. Perrin, S. Gascoin, B. Dewandel, S. Aulong, F. Dazin, S. Ahmed and J. Marechal. 2014. Projected impacts of climate change on farmers’ extraction of groundwater from crystalline aquifers in South India. Scientific Reports. 4(3679): 1-10. DOI: 10.1038/srep03697 .

1487. Ferreira, A. do N., A. de Alemida, S. Koide, R.T. Minoti and M.B.B. de Siqueira. 2021. Evaluation of evapotranspiration in Brazilian Cerrado Biome simulated with the SWAT Model. Water. 13(15): 2037. DOI: 10.3390/w13152037 .

1488. Ferreira, J.G., C. Saurel, J.D. Lencart e Silva, J.P. Nunes and F. Vazquez. 2014. Modelling of interactions between inshore and offshore aquaculture. Aquaculture. 426-427: 154-164. DOI: 10.1016/j.aquaculture.2014.01.030 .

1489. Ferreira, R,G., R.L. Silva Dias, J. de S. Castro, V.J. dos Santos, Maria Lúcia Calijuri and D.D. da Silva. 2021. Performance of hydrological models in fluvial flow simulation. Ecological Informatics. 66: 101453. DOI: 10.1016/j.ecoinf.2021.101453 .

1490. Ferreira, R.S. and R.E.S. Uagoda. 2017. Analysis of hydrological balance in Gama watershed, Distrito Federal/ Brazil, using SWAT model. Revista Brasileira de Geografia Física. 10(3): 888-893. DOI: 10.5935/1984-2295.20170057 .

1491. Feyereisen, G.W., T.C. Strickland, D.D. Bosch and D.G Sullivan. 2007. Evaluation of SWAT manual calibration and input parameter sensitivity in the Little River Watershed. Transactions of the ASABE. 50(3): 843-855. DOI: 10.13031/2013.23149 .

1492. Ficklin, D. L., Y. Luo, M. Zhang and S. E. Gatzke. 2014. The use of soil taxonomy as a soil type identifier for the Shasta Lake watershed using SWAT. Transactions of the ASABE. 57(3): 717-728. DOI: 10.13031/trans.57.9557 .

1493. Ficklin, D., I. Stewart and E. Maurer. 2013. Effects of climate change on stream temperature, dissolved oxygen, and sediment concentration in the Sierra Nevada in California. Water Resources Research. 49(5): 2765–2782. DOI: 10.1002/wrcr.20248 .

1494. Ficklin, D.L. and B.L. Barnhart. 2014. SWAT hydrologic model parameter uncertainty and its implications for hydroclimatic projections in snowmelt-dependent watersheds. Journal of Hydrology. 519: 2081–2090. DOI: 10.1016/j.jhydrol.2014.09.082 .

1495. Ficklin, D.L. and M. Zhang. 2013. A comparison of the curve number and green-ampt models in an agricultural watershed. Transactions of the ASABE. 56(1): 61-69. DOI: 10.13031/2013.42590 .

1496. Ficklin, D.L., I.T. Stewart and E.P. Maurer. 2012. Projections of 21st century Sierra Nevada local hydrologic flow components using an ensemble of general circulation models. Journal of the American Water Resources Association. 48(6): 1-21. DOI: 10.1111/j.1752-1688.2012.00675.x .

1497. Ficklin, D.L., I.T. Stewart and E.P. Maurer. 2013. Climate change impacts on streamflow and subbasin- scale hydrology in the Upper Colorado River Basin. PLoS ONE. 8(8) (e71297): 1-17. DOI: 10.1371/journal.pone.0071297 .

1498. Ficklin, D.L., I.T. Stewart and E.P. Maurer. 2013. Effects of projected climate change on the hydrology in the Mono Lake Basin, California. Climatic Change. 116(1): 1-21. DOI: 10.1007/s10584-012-0566-6 .

1499. Ficklin, D.L., S.L. Letsinger, I.T. Stewart and E.P. Maurer. 2015. Assessing differences in snowmelt-dependent hydrologic projections using CMIP3 and CMIP5 climate forcing data for the western United States. Hydrology Research. 47(2). DOI: 10.2166/nh.2015.101 .

1500. Ficklin, D.L., Y. Luo and M. Zhang. 2013. Climate change sensitivity assessment of streamflow and agricultural pollutant transport in California’s Central Valley using Latin hypercube sampling. Hydrological Processes. 27(18): 2666-2675. DOI: 10.1002/hyp.9386 .

1501. Ficklin, D.L., Y. Luo and M. Zhang. 2013. Watershed modelling of hydrology and water quality in the Sacramento River watershed, California. Hydrological Processes. 27(2): 236–250. DOI: 10.1002/hyp.9222 .

1502. Ficklin, D.L., Y. Luo, E. Lunedeling and M. Zhang. 2009. Climate change sensitivity assessment of a highly agricultural watershed using SWAT. Journal of Hydrology. 374(1-2): 16-29. DOI: 10.1016/j.jhydrol.2009.05.016 .

1503. Ficklin, D.L., Y. Luo, I.T. Stewart and E.P. Maurer. 2012. Development and application of a hydroclimatological stream temperature model within the Soil and Water Assessment Tool. Water Resources Research. 48(1): W01511. DOI: 10.1029/2011WR011256 .

1504. Filbin, R.J., L. Zhu, L. Dechano-Cook and L. Meng. 2019. Implications of dam removal: Modeling streamflow in Lansing, Michigan using the Soil and Water Assessment Tool. International Journal of Geospatial and Environmental Research. 6(1): 1-14. URL: https://dc.uwm.edu/ijger/vol6/iss1/1?utm_source=dc.uwm.edu%2Fijger%2Fvol6%2Fiss1%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages.

1505. Fink, M., P. Krause, S. Kralisch, U. Bende-Michl and W.A. Flügel. 2007. Development and application of the modelling system J2000-S for the EU-water framework directive. Advances in Geosciences. 11: 123-130. DOI: 10.5194/adgeo-11-123-2007 .

1506. Firdaus, G., O. Haridjaja and D.S.D. Tarigan. 2016. Hydrological response analysis for the application of soil conservation techniques in sub-watershed Lengkong using SWAT model. Jurnal Ilmu Tanah Dan Lingkungan. 16(1): 16-23. URL: http://journal.ipb.ac.id/index.php/jtanah/article/view/11481.

1507. Fiseha, B., M. Setegn, S. G. Melesse, E. Volpi and A. Fiori. 2013. Hydrological analysis of the Upper Tiber River Basin, central Italy: A watershed modelling approach. Hydrological Processes. 27(16): 2339–2351. DOI: 10.1002/hyp.9234 .

1508. Fiseha, B.M., S.G. Setegn, A.M. Melesse, E. Volpi and A. Fiori. 2014. Impact of climate change on the hydrology of Upper Tiber River Basin using bias corrected regional climate model. Water Resources Management. 28(5): 1327–1343. DOI: 10.1007/s11269-014-0546-x .

1509. Fisher, J.R.B., E.A. Acosta, P.J. Dennedy-Frank, T. Kroeger and T.M. Boucher. 2018. Impact of satellite imagery spatial resolution on land use classification accuracy and modeled water quality. Remote Sensing in Ecology and Conservation. 4(2): 137-149. DOI: 10.1002/rse2.61 .

1510. FitzHugh, T.W. and D.S. Mackay. 2000. Impacts of input parameter spatial aggregation on an agricultural nonpoint source pollution model. Journal of Hydrology. 236(1-2): 35-53. DOI: 10.1016/S0022-1694(00)00276-6 .

1511. FitzHugh, T.W. and D.S. Mackay. 2001. Impact of subwatershed partitioning on modeled source-and transport-limited sediment yields in an agricultural nonpoint source pollution model. Journal of Soil and Water Conservation. 56(2): 137-143. URL: http://www.jswconline.org/content/56/2/137.short.

1512. Flachsbarth, I., B. Willaarts, H. Xie, G. Pitois, N. D. Mueller, C. Ringler and A. Garrido. 2015. The role of Latin America's land and water resources for global food security: environmental trade-offs of future food production pathways. PLoS ONE. 10(1). DOI: 10.1371/journal.pone.0116733 .

1513. Flajsig, G.C., B. Karleuša, I. Vučković and M. Glavan. 2017. Analysis of the eutrophication factors in the Sutla River Basin. Acta Hydrologica Slovaca. 18(2): 290-300. URL: http://147.213.100.3/ah_articles/2017_18_2_Flajsig_290.pdf.

1514. Flynn, K.F. and M.W. Van Liew. 2011. Evaluation of SWAT for sediment prediction in a mountainous snowmelt-dominated catchment. Transactions of the ASABE. 54(1): 113-122. DOI: 10.13031/2013.36265 .

1515. Fohrer, N., A. Dietrich, O. Kolychalow and U. Ulrich. 2014. Assessment of the environmental fate of the herbicides Flufenacet and Metazachlor with the SWAT model. Journal of Environmental Quality. 43(1): 67-74. DOI: 10.2134/jeq2011.0382 .

1516. Fohrer, N., D. Möller and N. Steiner. 2002. An interdisciplinary modelling approach to evaluate the effects of land use change. Physics and Chemistry of the Earth. 27(9-10): 655-662. DOI: 10.1016/S1474-7065(02)00050-5 .

1517. Fohrer, N., K. Eckhardt, S. Haverkamp and H.-G. Frede. 1999. Effects of land use change on the water balance of a rural watershed in a peripheral region. Zeitschrift für Kulturtechnik und Landentwicklung. 40(5-6): 202-206. URL: https://www.tib.eu/en/search/id/olc%3A1561022225/Effects-of-Land-Use-Changes-on-the-Water-Balance/.

1518. Fohrer, N., S. Haverkamp and H.-G. Frede. 2005. Assessment of the effects of land use patterns on hydrologic landscape functions: development of sustainable land use concepts for low mountain range areas. Hydrological Processes. 19(3): 659-672. DOI: 10.1002/hyp.5623 .

1519. Fontaine, T.A., J.F. Klassen, T.S. Cruickshank and R.H. Hotchkiss. 2001. Hydrological response to climate change in the Black Hills of South Dakota, USA. Hydrological Sciences Journal. 46(1): 27-40. DOI: 10.1080/02626660109492798 .

1520. Fontaine, T.A., T.S. Cruickshank, J.G. Arnold and R.H. Hotchkiss. 2002. Development of a snowfall-snowmelt routine for mountainous terrain for the soil water assessment tool (SWAT). Journal of Hydrology. 262(1-4): 209-223. DOI: 10.1016/S0022-1694(02)00029-X .

1521. Foroughi, M., J.M. Mallard, D.R. Nelson, L.A. Sutter and D. Markewitz. 2021. The impacts of historical land-use on phosphorus movement in the Calhoun Critical Zone Observatory in the southeastern US Piedmont. Biogeochemistry. 154(1): 17-35. DOI: 10.1007/s10533-021-00794-8 .

1522. Forsberg, A., D.E. Radcliffe, C.H. Bolster, A. Mittelstet, D.E. Storm and D. Osmond. 2017. Evaluation of the TBET Model for potential improvement of Southern P Indices. Journal of Environmental Quality. 46(6): 1341-1348. DOI: 10.2134/jeq2016.06.0210 .

1523. Foteh, R., V. Garg, B.R. Nikam, M.Y. Khadatare, S.P. Aggarwal and A.S. Kumar. 2018. Reservoir sedimentation assessment through remote sensing and hydrological modelling. Journal of the Indian Society of Remote Sensing. 46(11): 1893-1905. DOI: 10.1007/s12524-018-0843-6 .

1524. Fousiya and S. Varughese. 2020. Modelling streamflow using SWAT model: A case study of Thuthapuzha River Basin, Kerala. International Journal of Farm Sciences. 10(2): 86-95. DOI: 10.5958/2250-0499.2020.00040.3 .

1525. Foy, C., M. Arabi, H. Yen, J. Gironas and R.T. Bailey. 2015. Multisite assessment of hydrologic processes in snow-dominated mountainous river basins in Colorado using a watershed model. Journal of Hydrologic Engineering. 20(10). DOI: 10.1061/(ASCE)HE.1943-5584.0001130 .

1526. Francesconi, W., R. Srinivasan, E. Elena Pérez-Miñana, S.P. Willcock and M. Quintero. 2016. Using the Soil and Water Assessment Tool (SWAT) to model ecosystem services: A systematic review. Journal of Hydrology. 535: 625-636. DOI: 10.1016/j.jhydrol.2016.01.034 .

1527. Francos, A., F.J. Elorza, F. Bouraoui, G. Bidoglio and L. Galbiati. 2003. Sensitivity analysis of distributed environmental simulation models: understanding the model behaviour in hydrological studies at the catchment scale. Reliability Engineering & System Safety. 79(2): 205-218. DOI: 10.1016/S0951-8320(02)00231-4 .

1528. Francos, A., G. Bidoglio, L. Galbiati, F. Bouraoui, F.J. Elorza, S. Rekolainen, K. Manni and K. Granlund. 2001. Hydrological and water quality modelling in a medium-sized coastal basin. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere. 26(1): 47-52. DOI: 10.1016/S1464-1909(01)85013-9 .

1529. Franczyk, J. and H. Chang. 2009. The effects of climate change and urbanization on the runoff of the Rock Creek basin in the Portland metropolitan area, Oregon, USA. Hydrological Processes. 23(6): 805-815. DOI: 10.1002/hyp.7176 .

1530. Frede, H.-G. 2001. Hydrologic response to land use changes on the catchment scale. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere. 26(7-8): 577-582. DOI: 10.1016/S1464-1909(01)00052-1 .

1531. Frede, H.-G., M. Bach, N. Fohrer and L. Breuer. 2002. Interdisciplinary modeling and the significance of soil functions. Journal of Plant Nutrition and Soil Science. 165 (4): 460-467. DOI: 10.1002/1522-2624(200208)165:4<460::AID-JPLN460>3.0.CO;2-B .

1532. Frederiksen, R.R., and E. Molina-Navarro. 2021. The importance of subsurface drainage on model performance and water balance in an agricultural catchment using SWAT and SWAT-MODFLOW. Agricultural Water Management. 255: 107058. DOI: 10.1016/j.agwat.2021.107058 .

1533. Freund, E.R., K.C. Abbaspour and A. Lehmann. 2017. Water resources of the Black Sea catchment under future climate and landuse change projections. Water. 9(8): 598. DOI: 10.3390/w9080598 .

1534. Frey, S.K., E. Topp, T. Edge, C. Fall, V. Gannon, C. Jokinen, R. Marti, N. Neumann, N. Ruecker, G. Wilkes and D.R. Lapen. 2013. Using SWAT, Bacteroidales microbial source tracking markers, and fecal indicator bacteria to predict waterborne pathogen occurrence in an agricultural watershed. Water Research. 47(16): 6326–6337. DOI: 10.1016/j.watres.2013.08.010 .

1535. Fricklin, D.L., Y. Luo, E. Luedeling, S.E. Gatzke and M. Zhang. 2010. Sensitivity of agricultural runoff loads to rising levels of CO2 and climate change in the San Joaquin Valley of California. Environmental Pollution. 158: 223-234. DOI: 10.1016/j.envpol.2009.07.016 .

1536. Frizzle, C., R.A. Fournier, M. Trudel and J.E. Luther. 2021. Using the Soil and Water Assessment Tool to develop a LiDAR-based index of the erosion regulation ecosystem service. Journal of Hydrology. 595: 126009. DOI: 10.1016/j.jhydrol.2021.126009 .

1537. Fu C., A.L. James and H. Yao. 2014. SWAT-CS: Revision and testing of SWAT for Canadian Shield catchments. Journal of Hydrology. 511: 719-735. DOI: 10.1016/j.jhydrol.2014.02.023 .

1538. Fu, B., W.S. Merritt, B.F.W. Croke, T. Weber and A.J. Jakeman. 2019. A review of catchment-scale water quality and erosion models and a synthesis of future prospects. Environmental Modelling & Software. 114: 75-97. DOI: 10.1016/j.envsoft.2018.12.008 .

1539. Fu, C., A.L. James and Y. Yao. 2015. Investigations of uncertainty in SWAT hydrologic simulations: A case study of a Canadian Shield catchment. Hydrological Processes. 29(18): 4000-4017. DOI: 10.1002/hyp.10477 .

1540. Fu, C., X. Lee, T.J. Griffis, J.M. Baker and P.A. Turner. 2018. A modeling study of direct and indirect N2O emissions from a representative catchment in the U.S. Corn Belt. Water Resources Research. 54(5): 3632-3653. DOI: 10.1029/2017WR022108 .

1541. Fu, Q., L. Yang, H. Li, T. Li, D. Liu, Y. Ji, M. Li and Y. Zhang. 2019. Study on the optimization of dry land irrigation schedule in the downstream Songhua River Basin based on the SWAT Model. Water. 11(6): 1147. DOI: 10.3390/w11061147 .

1542. Fu, Q., R. Shi, T. Li, Y. Sun, D. Liu, S. Cui and R. Hou. 2019. Effects of land‐use change and climate variability on streamflow in the Woken River Basin in northeast China. River Research and Applications. 35(2): 121-132. DOI: 10.1002/rra.3397 .

1543. Fu, Y., W. Zang, F. Dong, M. Fu and J. Zhang. 2016. Yield calculation of agricultural non-point source pollutants in Huntai River Basin based on SWAT model. Transactions of the Chinese Society of Agricultural Engineering. 32(8): 1-8. URL: http://www.tcsae.org/nygcxben/article/abstract/20160801?st=article_issue.

1544. Fu, Z., Y. Xie, Y. Zhang, X. Jiang, H. Guo and S. Wang. 2022. Water resource availability assessment through hydrological simulation under climate change in the Huangshui Watershed of the Qinghai–Tibet Plateau. Frontiers in Earth Science. 9: 755119. DOI: 10.3389/feart.2021.755119 .

1545. Fujita, T., M.V.B. de Morais, V.C.D. Santos, A.P. Rudke, M.M. de Eiras, A.C.F. Xaiver, S.A.A. Rafee, E.B. Santos, L.D. Martins, C.B. Uvo, R.A.F. de Souza, E.D. de Freitas and J.A. Martins. 2022. Simulating discharge in a non-dammed river of southeastern South America using SWAT model. Water. 14(3): 488. DOI: 10.3390/w14030488 .

1546. Fuka, D.R., A.S. Collick, P.J.A. Kleinman, D. Auerbach, D. Harmel and Z.M. Easton. 2016. Improving the spatial representation of soil properties and hydrology using topographically derived initialization processes in the SWAT model. Hydrological Processes. 30(24): 4633–4643. DOI: 10.1002/hyp.10899 .

1547. Fuka, D.R., M.T. Walter, C. MacAlister, A.T. Degaetano, T.S. Steenhuis and Z.M. Easton. 2014. Using the climate forecast system reanalysis as weather input data for watershed models. Hydrological Processes. 28(22): 5613–562. DOI: 10.1002/hyp.10073 .

1548. Fuka, D.R., M.T. Walter, C. MacAlister, T.S. Steenhuis and Z.M. Easton. 2014. SWATModel: A multi-operating system, multi-platform SWAT Model package in R. Journal of the American Water Resources Association. 50(5): 1349-1353. DOI: 10.1111/jawr.12170 .

1549. Fuka, D.R., Z.M. Easton, E.S. Brooks, J. Boll, T.S. Steenhuis and M.T, Walter. 2012. A simple process-based snowmelt routine to model spatially distributed snow depth and snowmelt in the SWAT model. Journal of the American Water Resources Association. 48(6): 1-11. DOI: 10.1111/j.1752-1688.2012.00680.x .

1550. Fukunaga, D.C., R.A. Cecilio, S.S. Zanetti, L.T. Oliveira and M.A.C. Caiado. 2015. Application of the SWAT hydrologic model to a tropical watershed at Brazil. Catena. 125: 206-213. DOI: 10.1016/j.catena.2014.10.032 .

1551. Furl, C., H. Sharif and J. Jeong. 2015. Analysis and simulation of large erosion events at central Texas unit source watersheds. Journal of Hydrology. 527: 494–504. DOI: 10.1016/j.jhydrol.2015.05.014 .

1552. Gabiri, G., B. Diekkrüger, K. Näschen, C. Leemhuis, R. van der Linden, J.G.M. Majaliwa and J.A. Obando. 2020. Impact of climate and land use/land cover change on the water resources of a tropical inland alley catchment in Uganda, East Africa. Climate. 8(7): 83. DOI: 10.3390/cli8070083 .

1553. Gabiri, G., C. Leemhuis, B. Diekkrüger, K. Näschen, S. Steinbach and F. Thonfeld. 2019. Modelling the impact of land use management on water resources in a tropical inland valley catchment of central Uganda, East Africa. Science of the Total Environment. 653: 1052-1066. DOI: 10.1016/j.scitotenv.2018.10.430 .

1554. Gaborit, E., G. Pelletier, P.A. Vanrolleghem and F. Anctila. 2010. Simulation du débit de la rivière Saint-Charles, première source d’eau potable de la ville de Québec. Canadian Journal of Civil Engineering. 37(2): 311-321. URL: https://www.nrcresearchpress.com/doi/abs/10.1139/L09-139#.XofdNnJ7nIU.

1555. Gabriel, M., C. Knightes, E. Cooter and R. Dennis. 2014. The impacts of different meteorology data sets on nitrogen fate and transport in the SWAT watershed model. Environmental Modeling & Assessment. 19(4): 301-314. DOI: 10.1007/s10666-014-9400-z .

1556. Gabriel, M., C. Knightes, E. Cooter and R. Dennis. 2016. Evaluating relative sensitivity of SWAT-simulated nitrogen discharge to projected climate and land cover changes for two watersheds in North Carolina, USA. Hydrological Processes. 30(9): 1403-1418. DOI: 10.1002/hyp.10707 .

1557. Gabriel, M., C. Knightes, E. Cooter and R. Dennis. 2018. Modeling the combined effects of changing land cover, climate, and atmospheric deposition on nitrogen transport in the Neuse River Basin. Journal of Hydrology: Regional Studies. 18: 68-79. DOI: 10.1016/j.ejrh.2018.05.004 .

1558. Gabriel, M., C. Knightes, R. Dennis and E. Cooter. 2014. Potential impact of Clean Air Act regulations on nitrogen fate and transport in the Neuse River Basin: A modeling investigation using CMAQ and SWAT. Environmental Modeling & Assessment. 19(6): 451-465. DOI: 10.1007/s10666-014-9410-x .

1559. Gadissa, T., M. Nyadawa, F. Behulu and B. Mutua. 2018. The effect of climate change on loss of lake volume: Case of sedimentation in Central Rift Valley Basin, Ethiopia. Hydrology. 5(4): 67. DOI: 10.3390/hydrology5040067 .

1560. Galata, A.W. 2022. Modeling the hydrological characteristics of Hangar Watershed, Ethiopia. Water Supply. 22(4): 3896. DOI: 10.2166/ws.2022.018 .

1561. Galata, A.W., K.T. Tullu and A C. Guder. 2021. Evaluating watershed hydrological responses to climate changes at Hangar Watershed, Ethiopia. Journal of Water and Climate Change. 12(6): 2271-2287. DOI: 10.2166/wcc.2021.229 .

1562. Galata, A.W., T.A. Demissei and M.K. Leta. 2020. Watershed hydrological responses to changes in land use and land cover at Hangar Watershed, Ethiopia. Iranian Journal of Energy & Environment. 11(1): 1-7. DOI: 10.5829/ijee.2020.11.01.01 .

1563. Galavi, H., R. Kamal, M. Mirzaei and M. Ebrahimian. 2019. Assessing the contribution of different uncertainty sources in streamflow projections. Theoretical and Applied Climatology. 137: 1289–1303. DOI: 10.1007/s00704-018-2669-0 .

1564. Galbiati, L., F. Bouraoui, F.J. Elorza and G. Bidoglio. 2006. Modeling diffuse pollution loading into a Mediterranean lagoon: Development and application of an integrated surface-subsurface model tool. Ecological Modelling. 193(1-2): 4-18. DOI: 10.1016/j.ecolmodel.2005.07.036 .

1565. Galharte, C.A., J.M. Villela and S. Crestana. 2014. Sediment yield estimation due to changes in land use and cover. Revista Brasileira de Engenharia Agricola e Ambiental. 18(2): 194-201. DOI: 10.1590/S1415-43662014000200010 .

1566. Gali, R.K., K. R. Douglas-Mankin, X. Li and T. Xu. 2012. Assessing NEXRAD P3 data effects on stream-flow simulation using SWAT model in an agricultural watershed. Journal of Hydrologic Engineering. 17(11): 1-22. DOI: 10.1061/(ASCE)HE.1943-5584.0000618 .

1567. Gali, R.K., S.A. Cryer, N.N. Poletika and P.K. Dande. 2016. Modeling pesticide runoff from small watersheds through field-scale management practices: Minnesota watershed case study with chlorpyrifos. Air, Soil and Water Research. 9: 113-122. DOI: 10.4137/ASWR.S32777 .

1568. Gallay, I., B. Olah, Z. Gallayová and T. Lepeška. 2021. Monetary valuation of flood protection ecosystem service based on hydrological modelling and avoided damage costs. An example from the Čierny Hron River Basin, Slovakia. Water. 13(2): 198. DOI: 10.3390/w13020198 .

1569. Galleguillos, M., F. Gimeno, C. Puelma, M. Zambrano-Bigiarini, A. Lara and M. Rojas. 2021. Disentangling the effect of future land use strategies and climate change on streamflow in a Mediterranean catchment dominated by tree plantations. Journal of Hydrology. 595: 126047. DOI: 10.1016/j.jhydrol.2021.126047 .

1570. Galvan, L., M. Olfas, R.F. de Villaran, J.M. Domingo Santos, J.M. Nieto, A.M. Sarmiento and C.R. Canovas. 2009. Application of the SWAT model to an AMD-affected river (Meca River, SW Spain). Estimation of tranported pollutant load. Journal of Hydrology. 377(3-4): 445-454. DOI: 10.1016/j.jhydrol.2009.09.002 .

1571. Galvan, L., M. Olfas, T. Izquierdo, J.C. Ceron and R.F. de Villaran. 2014. Rainfall estimation in SWAT: An alternative method to simulate orographic precipitation. Journal of Hydrology. 509: 257–265. DOI: 10.1016/j.jhydrol.2013.11.044 .

1572. Galván, L., M. Olías, C.R. Cánovas, A.M. Sarmiento and J.M. Nieto. 2016. Hydrological modeling of a watershed affected by acid mine drainage (Odiel River, SW Spain). Assessment of the pollutant contributing areas. Journal of Hydrology. 540: 196-206. DOI: 10.1016/j.jhydrol.2016.06.005 .

1573. Galván, L., M. Olías, J.C. Cerónb and R. Fernández de Villarán. 2021. Inputs and fate of contaminants in a reservoir with circumneutral water affected by acid mine drainage. Science of the Total Environment. 762: 143614. DOI: 10.1016/j.scitotenv.2020.143614 .

1574. Galván, L., M. Olías, J.M. Nieto, J.C. Cerón and A.M. Sarmiento. 2007. Determination of dissolved contaminant load transported by Meca River (Huelva, Spain). Geogaceta. 43: 63-66. URL: http://www.sociedadgeologica.es/publicaciones/geogaceta/2008_43.html.

1575. Galván, L., M. Olías, R. Fernández de Villarán and J.M. Domingo-Santos. 2007. Application of SWAT hydrological model to the Meca River Watershed (Huelva, Spain). Geogaceta. 42: 63-66. URL: http://www.sociedadgeologica.es/publicaciones/geogaceta/2007_42.html.

1576. Gamvroudis, C., N.P. Nikolaidis, O. Tzoraki, V. Papadoulakis and N. Karalemas. 2015. Water and sediment transport modeling of a large temporary river basin in Greece. Science of the Total Environment. 508: 354-356. DOI: 10.1016/j.scitotenv.2014.12.005 .

1577. Gamvroudis, C., Z. Dokou, N.P. Nikolaidis and G.P. Karatzas. 2017. Impacts of surface and groundwater variability response to future climate change scenarios in a large Mediterranean watershed. Environmental Earth Sciences. 76: 385. DOI: 10.1007/s12665-017-6721-7 .

1578. Gan, R. and Q. Zuo. 2015. Assessing the digital filter method for base flow estimation in glacier melt dominated basins. Hydrological Processes. 30(9): 1367-1375. DOI: 10.1002/hyp.10724 .

1579. Gan, R., C. Chen, J. Tao and Y. Shi. 2021. Hydrological process simulation of sluice‑controlled rivers in the plains area of China based on an improved SWAT model. Water Resources Management. 35: 1817–1835. DOI: 10.1007/s11269-021-02814-6 .

1580. Gan, R., M. Xu and Q. Zuo. 2022. Baseflow separation and spatiotemporal variation characteristics in the Yiluo River Basin. Resources Science. 44(9): 1824-1834. DOI: 10.18402/resci.2022.09.07 .

1581. Gan, Rong, Y. Luo, Q. Zuo and L. Sun. 2015. Effects of projected climate change on the glacier and runoff generation in the Naryn River Basin, Central Asia. Journal of Hydrology. 523: 240–251. DOI: 10.1016/j.jhydrol.2015.01.057 .

1582. Gangsheng, W., M.E. Barber, S. Chen and J.Q. Wu. 2014. SWAT modeling with uncertainty and cluster analyses of tillage impacts on hydrological processes. Stochastic Environmental Research and Risk Assessment. 28: 225-238. DOI: 10.1007/s00477-013-0743-9 .

1583. Gao F., G. Feng, M. Han, P. Dash, J. Jenkins and C. Liu. 2019. Assessment of surface water resources in the Big Sunflower River Watershed using coupled SWAT–MODFLOW model. Water. 11(3): 528. DOI: 10.3390/w11030528 .

1584. Gao Y. and D. Long. 2008. Intercomparison of remote sensing-based models for estimation of evapotranspiration and accuracy assessment based on SWAT. Hydrological Processes. 22(25): 4850-4869. DOI: 10.1002/hyp.7104 .

1585. Gao, C., B. Su, V. Krysanova , Q. Zha, C. Chen, G. Luo, X. Zeng, J. Huang, M. Xiong, L. Zhang and T. Jiang. 2020. A 439-year simulated daily discharge dataset (1861–2299) for the upper Yangtze River, China. Earth System Science Data. 12(1): 382-402. DOI: 10.5194/essd-12-387-2020 .

1586. Gao, F., B. He, S. Xue and Y. Li. 2020. Impact of landscape pattern change on runoff processes in catchment area of the Ulungur River Basin. Water Supply. 20(3): 1046-1058. DOI: 10.2166/ws.2020.027 .

1587. Gao, F., G. Feng, Y. Ouyang, J. Jenkins and C. Liu. 2019. Simulating potential weekly stream and pond water available for irrigation in the Big Sunflower River Watershed of Mississippi Delta. Water. 11(6): 1271. DOI: 10.3390/w11061271 .

1588. Gao, J., A.Y. Sheshukov, H. Yen and M.J. White. 2017. Impacts of alternative climate information on hydrologic processes with SWAT: A comparison of NCDC, PRISM and NEXRAD datasets. Catena. 156: 353-369. DOI: 10.1016/j.catena.2017.04.010 .

1589. Gao, J., A.Y. Sheshukov, H. Yen, J.H. Kastens and D.L. Peterson. 2017. Impacts of incorporating dominant crop rotation patterns as primary land use change on hydrologic model performance. Agriculture Ecosystems and Environment. 247: 33-42. DOI: 10.1016/j.agee.2017.06.019 .

1590. Gao, J., A.Y. Sheshukov, H. Yen, K.R. Douglas-Mankin, M.J. White and J.G. Arnold. 2019. Uncertainty of hydrologic processes caused by bias-corrected CMIP5 climate change projections with alternative historical data sources. Journal of Hydrology. 568: 551-561. DOI: 10.1016/j.jhydrol.2018.10.041 .

1591. Gao, J., K. Bieger, M.J. White and J.G. Arnold. 2020. Development and accuracy assessment of a 12-digit hydrologic unit code based real-time climate database for hydrologic models in the US. Journal of Hydrology. 586: 124817. DOI: 10.1016/j.jhydrol.2020.124817 .

1592. Gao, J., P. Xie, L. Zhuo, K. Shang, X. Ji and P. Wu. 2021. Water footprints of irrigated crop production and meteorological driving factors at multiple temporal scales. Agricultural Water Management. 255: 107014. DOI: 10.1016/j.agwat.2021.107014 .

1593. Gao, J., Y. Jiang and Y. Anker. 2021. Contribution analysis on spatial tradeoff/synergy of karst soil conservation and water retention for various geomorphological types: Geographical detector application. Ecological Indicators. 125: 107470. DOI: 10.1016/j.ecolind.2021.107470 .

1594. Gao, L. and D. Li. 2014. A review of hydrological/water-quality models. Frontiers of Agricultural Science and Engineering. 1(4): 267-276. URL: https://journal.hep.com.cn/fase/EN/10.15302/J-FASE-2014041.

1595. Gao, Q. and M. Yu. 2024. Forest cover and locality regulate response of watershed discharge to rainfall variability in Caribbean Region. Forests. 15(1): 154. DOI: 10.3390/f15010154 .

1596. Gao, X., C. Yan, Y. Wang, X. Zhao, Y. Zhao, M. Sun and S. Peng. 2020. Attribution analysis of climatic and multiple anthropogenic causes of runoff change in the Loess Plateau—A case-study of the Jing River Basin. Land Degradation & Development. 31(13): 1622-1640. DOI: 10.1002/ldr.3557 .

1597. Gao, X., Q. Zhu, Z. Yang and H. Wang. 2018. Evaluation and hydrological application of CMADS against TRMM 3B42V7, PERSIANN-CDR, NCEP-CFSR, and guage-based datasets in Xiang River Basin of China. Water. 10(9): 1225. DOI: 10.3390/w10091225 .

1598. Gao, X., W. Ouyang, C. Lin, K. Wang, F. Hao, X. Hao and Z. Lian. 2021. Considering atmospheric N2O dynamic in SWAT model avoids the overestimation of N2O emissions in river networks. Water Research. 174: 115624. DOI: 10.1016/j.watres.2020.115624 .

1599. Gao, X., W. Ouyang, Z. Hao, X. Xie, Z. Lian, X. Hao and X. Wang. 2019. SWAT-N2O coupler: An integration tool for soil N2O emission modeling. Environmental Modelling & Software. 115: 86-97. DOI: 10.1016/j.envsoft.2019.02.008 .

1600. Gao, X., W. Ouyang, Z. Hao, Y. Shi, P. Wei and F. Hao. 2017. Farmland–atmosphere feedbacks amplify decreases in diffuse nitrogen pollution in a freeze-thaw agricultural area under climate warming conditions. Science of the Total Environment. 579: 484–494. DOI: 10.1016/j.scitotenv.2016.11.070 .

1601. Gao, X., X. Chen, T.W. Biggs and H. Yao. 2018. Separating wet and dry years to improve calibration of SWAT in Barrett Watershed, southern California. Water. 10(3): 274. DOI: 10.3390/w10030274 .

1602. Gao, Y., B. Zhu, P. Zhou, Y. Zhi and J. Tang. 2008. Study on the application AnnAGNPS and SWAT to non-point resource pollution research: A case of Yanting Agro-Ecological Experiment Station, Chinese Academy of Sciences. Journal of Shanghai Jiaotong University-Agricultural Science. 26(6): 567-572. URL: http://shjtdxnxb.cnjournals.com/ch/reader/view_abstract.aspx?file_no=200806133&flag=1.

1603. Gao, Y.-Y., W. Zhao, Y.-Qi. Huang, V. Kumar, X. Zhang and G.-F. Hao. 2024. In silico environmental risk assessment improves efficiency for pesticide safety management. Science of the Total Environment. 908: 167878. DOI: 10.1016/j.scitotenv.2023.167878 .

1604. Garbrecht, J.D., J.M. Schneider and M.W. Van Liew. 2006. Monthly runoff predictions based on rainfall forecasts in a small Oklahoma watershed. Journal of the American Water Resources Association. 42(5): 1285-1295. DOI: 10.1111/j.1752-1688.2006.tb05301.x .

1605. Garcia, D.J., B.M. Lovett and F. You. 2019. Considering agricultural wastes and ecosystem services in Food-Energy-Water-Waste Nexus system design. Journal of Cleaner Production. 228: 941-955. DOI: 10.1016/j.jclepro.2019.04.314 .

1606. Garcia, G.J., H.G. Gamero, L.B.R. Garcia, C.A. Vettorazzi, R. Kroenert, M. Volk, A. Lauch and B. Meyer. 2006. Impact of land use on soil erosion and on the water balance and water quality in the Corumbatai Watershed. Holos Environment. 6(2): 118-136. URL: http://www.periodicos.rc.biblioteca.unesp.br/index.php/holos/article/view/571.

1607. Garcia, X. 2023. Using the Soil and Water Assessment Tool (SWAT) to quantify the economic value of ecosystem services. River. 2(2): 173-185. DOI: 10.1002/rvr2.47 .

1608. Garcia, X., L. Estrada, J. Saló and V. Acuña. 2024. Blueing green water from forests as strategy to cope with climate change in water scarce regions: The case of the Catalan River Basin District. Journal of Environmental Management. 353: 120249. DOI: 10.1016/j.jenvman.2024.120249 .

1609. Garcia-Quijano, J.F., G. Deckmyn, E. Moons, S. Proost, R. Ceulemans and B. Muys. 2005. An integrated decision support framework for the prediction and evaluation of efficiency, environmental impact and total social cost of domestic and international forestry projects for greenhouse gas mitigation: Description and case studies. Forest Ecology and Management. 207: 245-262. DOI: 10.1016/j.foreco.2004.10.030 .

1610. Garee, K., X. Chen, A. Bao, Y. Wang and F. Meng. 2017. Hydrological modeling of the Upper Indus Basin: A case study from a high-altitude glacierized catchment Hunza. Water. 9(1): 17. DOI: 10.3390/w9010017 .

1611. Garg, K.K. and S.P. Wani. 2013. Opportunities to build groundwater resilience in the semi-arid tropics. Groundwater. 51(5): 679–691. DOI: 10.1111/j.1745-6584.2012.01007.x .

1612. Garg, K.K., K.H. Anantha, A. Venkataradha, S. Dixit, R. Singh and R. Ragab. 2021. Impact of rainwater harvesting on hydrological processes in a fragile watershed of south Asia. Groundwater. 59(6): 839-855. DOI: 10.1111/gwat.13099 .

1613. Garg, K.K., L. Bharati, A. Gaur, B. George, S. Acharya, K. Jella and B. Narasimhan. 2012. Spatial mapping of agricultural water productivity using the SWAT model in Upper Bhima Catchment, India. Irrigation and Drainage. 61(1): 60–79. DOI: 10.1002/ird.618 .

1614. Garg, K.K., L. Karlberg, J. Barron, S.P. Wani and J. Rockstrom. 2012. Assessing impacts of agricultural water interventions in the Kothapally Watershed, southern India. Hydrological Processes. 26(3): 387-404. DOI: 10.1002/hyp.8138 .

1615. Garg, K.K., L. Karlberg, S.P. Wani and G. Berndes. 2011. Jatropha production on wastelands in India: Opportunities and trade-offs for soil and water management at the watershed scale. Biofuels, Bioproducts and Biorefining. 5: 410-430. DOI: 10.1002/bbb.312 .

1616. Garg, K.K., S.P. Wani, J. Barron, L. Karberg and J. Rockstrom. 2013. Up-scaling potential impacts on water flows from agricultural water interventions: Opportunities and trade-offs in the Osman Sagar Catchment, Musi Sub-basin, India. Hydrological Processes. 27(26): 3905–3921. DOI: 10.1002/hyp.9516 .

1617. Garizi, A.Z. and A. Talebi. 2016. Identification of critical sediment source areas across the Gharesou watershed, northeastern Iran, using hydrological modeling. Environmental Resources Research. 4(1): 1-25. URL: http://ijerr.gau.ac.ir/article_3150.html.

1618. Gashaw, T., A.W. Worqlul, Y.T. Dile, M. Sahle, A.A. Adem, A. Bantider, Z. Teixiera, T. Alamirew, D.T. Meshesha and G. Bayable. 2022. Evaluating InVEST model for simulating annual and seasonal water yield in data‐scarce regions of the Abbay (Upper Blue Nile) Basin: Implications for water resource planners and managers. Sustainable Water Resources Management. 8(5): 170. DOI: 10.1007/s40899-022-00757-3 .

1619. Gashaw, T., T. Tulu, M. Argaw and A.W. Worqlul. 2018. Modeling the hydrological impacts of land use/land cover changes in the Andassa watershed, Blue Nile Basin, Ethiopia. Science of the Total Environment. 619-620: 1394-1408. DOI: 10.1016/j.scitotenv.2017.11.191 .

1620. Gashaw, T., Y.T. Dile, A.W. Worglul, A. Bantider, G. Zeleke, W. Bewket and T. Alamirebw. 2021. Evaluating the effectiveness of best management practices on soil erosion reduction using the SWAT model: for the case of Gumara Watershed, Abbay (Upper Blue Nile) Basin. Environmental Management. 68(2): 240-261. DOI: 10.1007/s00267-021-01492-9 .

1621. Gassman, P.W. and R.S. Kanwar. 2009. Message from the Guest Editor and Chief Editor on this Special Issue. International Agricultural Engineering Journal. 18(1-2). URL: http://www.iaej.cn/EN/volumn/volumn_1136.shtml.

1622. Gassman, P.W. and R.S. Kanwar. 2009. Note about ongoing Special Issue. International Agricultural Engineering Journal. 19(2). URL: http://www.iaej.cn/EN/volumn/volumn_1139.shtml.

1623. Gassman, P.W. and R.S. Kanwar. 2009. Special Issue Editorial. International Agricultural Engineering Journal. 18(3-4). URL: http://www.iaej.cn/EN/volumn/volumn_1137.shtml.

1624. Gassman, P.W. and Y. Wang. 2015. IJABE SWAT Special Issue: Innovative modeling solutions for water resource problems. International Journal of Agricultural and Biological Engineering. 8(3): 1-8. DOI: 10.3965/j.ijabe.20150803.1763 .

1625. Gassman, P.W., A.M. Valcu-Lisman, C.L. Kling, S.K. Mickelson, Y. Panagopoulos, R. Cibin, I. Chaubey, C.F. Wolter and K.E. Schilling. 2017. Assessment of bioenergy cropping scenarios for the Boone River Watershed in north central Iowa, United States. Journal of the American Water Resources Association. 53(6): 1336-1359. DOI: 10.1111/1752-1688.12593 .

1626. Gassman, P.W., A.M. Sadeghi and R. Srinivasan. 2014. Applications of the SWAT Model Special Section: Overview and Insights. Journal of Environmental Quality. 43(1): 1-8. DOI: 10.2134/jeq2013.11.0466 .

1627. Gassman, P.W., E. Osei, A. Saleh and L.M. Hauck. 2002. Application of an environmental and economic modeling system for watershed assessments. Journal of the American Water Resources Association. 38(2): 423-438. DOI: 10.1111/j.1752-1688.2002.tb04327.x .

1628. Gassman, P.W., E. Osei, A. Saleh, J. Rodecap, S. Norvell and J. Williams. 2006. Alternative practices for sediment and nutrient loss control on livestock farms in northeast Iowa. Agriculture Ecosystems and Environment. 117(2-3): 135-144. DOI: 10.1016/j.agee.2006.03.030 .

1629. Gassman, P.W., J. Jeong, J. Boulange, B. Narasimhan, T. Kato, H. Somura, H. Watanabe, S. Eguchi, Y. Cui, A. Sakaguchi, L.H. Tu, R.Jiang, M.-K. Kim, J.G. Arnold and W. Ouyang. 2022. Simulation of rice paddy systems in SWAT: A review of previous applications and proposed SWAT+ rice paddy module. International Journal of Agricultural and Biological Engineering. 15(1): 1-24. DOI: 10.25165/j.ijabe.20221501.7147 .

1630. Gassman, P.W., J.R. Williams, X. Wang, A. Saleh, E. Osei, L.M. Hauck, R.C. Izaurralde and J.D. Flowers. 2010. The Agricultural Policy/Enviromental EXtender (APEX) model: An emerging tool for landscape and watershed environmental analyses. Transactions of the ASABE. 53(3): 711-740. DOI: 10.13031/2013.30078 .

1631. Gassman, P.W., M.R. Reyes, C.H. Green and J.G. Arnold. 2007. The Soil and Water Assessment Tool: Historical development, applications, and future research directions. Transactions of the ASABE. 50(4): 1211-1250. DOI: 10.13031/2013.23637 .

1632. Gathagu, J.N., J.K. Sang and C.W. Maina. 2017. Modelling the impacts of structural conservation measures on sediment and water yield in Thika-Chania catchment, Kenya. International Soil and Water Conservation Research. DOI: 10.1016/j.iswcr.2017.12.007 .

1633. Gathagu, J.N., K.A. Mourad and J. Sang. 2018. Effectiveness of contour farming and filter strips on ecosystem services. Water. 10(10): 1312. DOI: 10.3390/w10101312 .

1634. Gaur, S., A. Bandyopadhyay and R. Singh. 2021. Modelling potential impact of climate change and uncertainty on streamflow projections: A case study. Journal of Water and Climate Change. 12(2): 384-400. DOI: 10.2166/wcc.2020.254 .

1635. Gautam, K. and G. Corzo. 2023. Evaluating the impact of ponds on flood and drought mitigation in the Bagmati River Basin, Nepal. Hydrology Research. 54(10): 1163–1180. DOI: 10.2166/nh.2023.050 .

1636. Gautam, S., C. Costello, C. Baffaut, A. Thompson and E.J. Sadler. 2021. Projection of future drought and extreme events occurrence in Goodwater Creek Experimental Watershed, Midwestern US. Hydrological Sciences Journal. 66(6): 1045-1058. DOI: 10.1080/02626667.2021.1906878 .

1637. Gautam, S., V. Dahai and R. Bhattarai. 2019. Impacts of DEM source, resolution and area threshold values on SWAT generated stream network and streamflow in two distinct Nepalese catchments. Environmental Processes. 6: 597-617. DOI: 10.1007/s40710-019-00379-6 .

1638. Gayley, A. 2013. A SWAT- based evapotranspirative water conservation analysis performed on irrigated croplands to determine potential regional water savings. Journal of Irrigation and Drainage Engineering. 139(6): 456–462. DOI: 10.1061/(ASCE)IR.1943-4774.0000562 .

1639. Gebiaw, T.A., Z.T. Engidasew, Y. Bofu, I.D. Rutherfurd and J. Jeong. 2017. Streamflow and sediment yield prediction for watershed prioritization in the Upper Blue Nile River Basin, Ethiopia. Water. 9(10): 782. DOI: 10.3390/w9100782 .

1640. Gebre, S.L., D. Getahun, F. Fufa, O.H. Diriba, A. Nigussie and E. Alemayehu. 2022. Hydrological responses of land use land cover change on the Hangar Catchment, Blue Nile Basin. Ethiopian Journal of Applied Science and Technology. 13(1): 33-44. URL: https://journals.ju.edu.et/index.php/ejast/article/ view/3853.

1641. Gebrechorkos, S.H., C. Bernhofer and S. Hülsmann. 2020. Climate change impact assessment on the hydrology of a large river basin in Ethiopia using a local-scale climate modelling approach. Science of the Total Environment. 742: 140504. DOI: 10.1016/j.scitotenv.2020.140504 .

1642. Gebremariam, S.Y., J.F. Martin, C. DeMarchi, N.S. Bosch, R. Confessor and S.A. Ludsin. 2014. A comprehensive approach to evaluating watershed models for predicting river flow regimes critical to downstream ecosystem services. Environmental Modelling & Software. 61: 121-134. DOI: 10.1016/j.envsoft.2014.07.004 .

1643. Gebremicael, T.G., Y.A. Mohamed, G.D. Betrie, P. van der Zaag and E. Teferi. 2013. Trend analysis of runoff and sediment fluxes in the Upper Blue Nile Basin: A combined analysis of statistical tests, physically-based models and landuse maps. Journal of Hydrology. 482: 57–68. DOI: 10.1016/j.jhydrol.2012.12.023 .

1644. Gemechu, T.M. 2022. Impacts of climate change on water balance components of Guder Catchment, Upper Abbay Basin, Ethiopia: SWAT model. Sustainable Water Resources Management. 8(5): 144. DOI: 10.1007/s40899-022-00733-x .

1645. Gemechu, T.M., H. Zhao, S. Bao, C. Yangzong, Y. Liu, F. Li and H. Li. 2021. Estimation of hydrological components under current and future climate scenarios in Guder Catchment, Upper Abbay Basin, Ethiopia, using the SWAT. Sustainability. 13(17): 9689. DOI: 10.3390/su13179689 .

1646. Gemitzi, A. and V. Lakshmi. 2017. Evaluating renewable groundwater stress with GRACE data in Greece. Groundwater. 56(3): 501-514. DOI: 10.1111/gwat.12591 .

1647. Gemitzi, A., H. Ajami and H.-H. Richnow. 2017. Developing empirical monthly groundwater recharge equations based on modeling and remote sensing data – Modeling future groundwater recharge to predict potential climate change impacts. Journal of Hydrology. 546: 1-13. DOI: 10.1016/j.jhydrol.2017.01.005 .

1648. Geng, R. and A.N. Sharpley. 2019. A novel spatial optimization model for achieve the trad-offs placement of best management practices for agricultural non-point source pollution control at multi-spatial scales. Journal of Cleaner Production. 234: 1023-1032. DOI: 10.1016/j.jclepro.2019.06.277 .

1649. Geng, X., C. Zhang, F. Zhang, Z. Chen, Z. Nie and M. Liu. 2021. Hydrological modeling of karst watershed containing subterranean river using a modified SWAT model: A case study of the Daotian River Basin, southwest China. Water. 13(24): 3552. DOI: 10.3390/w13243552 .

1650. Gessesse, A.A., A.M. Melesse, F.F. Abera and A.Z. Abiy. 2019. Modeling hydrological responses to land use dynamics, Choke, Ethiopia. Water Conservation Science and Engineering. 4: 201-212. DOI: 10.1007/s41101-019-00076-3 .

1651. Gessesse, B., W. Bewket and A. Bräuning. 2015. Model-based characterization and monitoring of runoff and soil erosion in response to land use/land cover changes in the Modjo watershed, Ethiopia. Land Degradation & Development. 26(7): 711-724. DOI: 10.1002/ldr.2276 .

1652. Getachew, B. and B.R. Manjunatha. 2022. Impacts of land-use change on the hydrology of Lake Tana Basin, Upper Blue Nile River Basin, Ethiopia. Global Challenges. 6(8): 220004144. DOI: 10.1002/gch2.202200041 .

1653. Getachew, B. and B.R. Manjunatha. 2022. Potential climate change impact assessment on the hydrology of the Lake Tana Basin, Upper Blue Nile River Basin, Ethiopia. Physics and Chemistry of the Earth. 127: 103162. DOI: 10.1016/j.pce.2022.103162 .

1654. Getachew, B., B.R. Manjunatha and H.G. Bhat. 2021. Modeling projected impacts of climate and land use/land cover changes on hydrological responses in the Lake Tana Basin, Upper Blue Nile River Basin, Ethiopia. Journal of Hydrology. 595: 125974. DOI: 10.1016/j.jhydrol.2021.125974 .

1655. Getahun, E. and L. Keefer. 2016. Integrated modeling system for evaluating water quality benefits of agricultural watershed management practices: Case study in the Midwest. Sustainability of Water Quality and Ecology. 8: 14-29. DOI: 10.1016/j.swaqe.2016.06.002 .

1656. Getaun, E. and L. Keefer. 2022. Assessing the effectiveness of winter cover crops for controlling agricultural nutrient losses. Journal of the American Water Resources Association. : 1-13. DOI: 10.1111/1752-1688.13058 .

1657. Gevaert, V., A. Van Griensven, K. Holvoet, P. Seuntjens and P.A. Vanrolleghem. 2008. SWAT developments and recommendations for modelling agricultural pesticide mitigation measures in river basins. Hydrological Sciences Journal. 53(5 ): 1075-1089. DOI: 10.1623/hysj.53.5.1075 .

1658. Geying, L., Y. Ge and G. Feng. 2006. Preliminary study on assessment of nutrient transport in the Taihu Basin based on SWAT modeling. Science in China Series D: Earth Sciences. 49(Suppl. I): 135-145. DOI: 10.1007/s11430-006-8113-9 .

1659. Geza, M. and J.E. McCray. 2008. Effects of soil data resolution on SWAT model stream flow and water quality predictions. Journal of Environmental Management. 88(3): 393-406. DOI: 10.1016/j.jenvman.2007.03.016 .

1660. Geza, M., B.J. Barfield, R.L. Huhnke, A. Stoecker, D.E. Storm and E.W. Stevens. 2009. Comparison of Targeted Replacement and Vegetative Filter Strips for Sediment Control and Cost Effectiveness. Journal of Water Resources Planning and Management. 135(5): 406-409. DOI: 10.1061/(ASCE)0733-9496(2009)135:5(406) .

1661. Ghafari, H. and M. Gorji. 2021. Evaluation of soil erosion effects on rainfed wheat (Triticum aestivum) yield using SWAT model. Water and Soil Management and Modeling. 1(3): 53-66. DOI: 10.22098/mmws.2021.9267.1029 .

1662. Ghaffari, G. 2018. Erosion intensity zoning by using SWAT model in Gheshlagh Dam Basin. Journal of Geography and Development. 16(50): 55-74. DOI: 10.22111/gdij.2018.3553 .

1663. Ghaffari, G., S. Keesstra, J. Ghodousi and H. Ahmadi. 2009. SWAT-simulated hydrological impact of land-use change in the Zanjanrood Basin, Northwest Iran. Hydrological Processes. 24(7): 892-903. DOI: 10.1002/hyp.7530 .

1664. Ghaith, M. and Z. Li. 2020. Propagation of parameter uncertainty in SWAT: A probabilistic forecasting method based on polynomial chaos expansion and machine learning. Journal of Hydrology. 586: 124854. DOI: 10.1016/j.jhydrol.2020.124854 .

1665. Ghaith, M., Z. Li and B.W. Baetz. 2021. Uncertainty analysis for hydrological models with interdependent parameters: An improved polynomial chaos expansion approach. Water Resources Research. 57(8): e2020WR029149. DOI: 10.1029/2020WR029149 .

1666. Gharib, A., E.G.R. Davies, G.G. Goss and M. Faramarzi. 2017. Assessment of the combined effects of threshold selection and parameter estimation of Generalized Pareto Distribution with applications to flood frequency analysis. Water. 9(9): 692. DOI: 10.3390/w9090692 .

1667. Gharibdousti, S.R., G. Kharel and A. Stoecker. 2019. Modeling the impacts of agricultural best management practices on runoff, sediment, and crop yield in an agriculture-pasture intensive watershed. PeerJ. : e7093. DOI: 10.7717/peerj.7093 .

1668. Gharibdousti, S.R., G. Kharel, R.B. Miller, E. Linde and A. Stoecker. 2019. Projected climate could increase water yield and cotton yield but decrease winter wheat and sorghum yield in an agricultural watershed in Oklahoma. Water. 11: 105. DOI: 10.3390/w11010105 .

1669. Ghashghaie, M., A. Bagheri and S. Morid. 2013. Rainfall-runoff modeling in a watershed scale using an object oriented approach based on the concepts of system dynamics. Water Resources Management. 27(15): 5119-5141. DOI: 10.1007/s11269-013-0457-2 .

1670. Ghazal, K.A., O.T. Leta, A.I. El-Kadi and H. Dulai. 2020. Impact of coastal wetland restoration plan on the water balance components of Heeia Watershed, Hawaii. Hydrology. 7(4): 86. DOI: 10.3390/hydrology7040086 .

1671. Ghebremichael, L., W. Chen, A. Jacobson, C. Roy, D.B. Perkins and R. Brain. 2022. Coupling field‐scale and watershed models for regulatory modeling of pesticide aquatic exposures in streams. Integrated Environmental Assessment and Management. 18(6): 1678-1693. DOI: 10.1002/ieam.4596 .

1672. Ghebremichael, L.T., T.L. Veith, J.M. Hamlett and W.J. Gburek. 2008. Precision feeding and forage management effects on phosphorus loss modeled at a watershed scale. Journal of Soil and Water Conservation. 63(5): 280-291. DOI: 10.2489/jswc.63.5.280 .

1673. Ghebremichael, L.T., T.L. Veith and M.C. Watzin. 2010. Determination of critical source areas for phosphorus loss: Lake Champlain Basin, Vermont. Transactions of the ASABE. 53(5): 1595-1604. DOI: 10.13031/2013.34898 .

1674. Ghebremichael, L.T., T.L. Veith and J.M. Hamlett. 2013. Integrated watershed- and farm-scale modeling framework for targeting critical source areas while maintaining farm economic viability. Journal of Environmental Management. 114: 381–394. DOI: 10.1016/j.jenvman.2012.10.034 .

1675. Ghezelsofloo, A.A., M. Hajibigloo, M. Eftekhari, S. Mahmoodizadeh, M. Akbari and S.A. Eslaminezhad. 2022. Simulation of runoff from Atrak River Basin Iran using SWAT model (a case study). Soil & Environment. 41(1): 33-45. URL: http://www.se.org.pk/Papers.aspx?issueid=86.

1676. Ghimire, S. and J. Johnston. 2013. Impacts of domestic and agricultural rainwater harvesting systems on watershed hydrology: A case study in the Albemarle-Pamlico River Basins (USA). Ecohydrology & Hydrobiology. 13(2): 159–171. DOI: 10.1016/j.ecohyd.2013.03.007 .

1677. Ghimire, U., A. Agarwal, N.K. Shrestha, P. Daggupati, G. Srinivasan and H.H Than. 2020. Applicability of lumped hydrological models in a data-constrained river basin of Asia. Journal of Hydrologic Engineering. 25 (8): 05020018. DOI: 10.1061/(ASCE)HE.1943-5584.0001950 .

1678. Ghimire, U., N.K. Shrestha, A. Biswas, C. Wagner-Riddle, W. Yang, S. Prashar, R. Rudra and P. Daggupati. 2020. A Review of Ongoing Advancements in Soil and Water Assessment Tool (SWAT) for Nitrous Oxide (N2O) Modeling. Atmosphere. 11(5): 450. DOI: 10.3390/atmos11050450 .

1679. Ghobadi, Y., B. Pradhan, G.A. Sayyad, K. Kabiri and Y. Falamarzi. 2015. Simulation of hydrological processes and effects of engineering projects on the Karkheh River Basin and its wetland using SWAT2009. Quaternary International. 374: 144-153. DOI: 10.1016/j.quaint.2015.02.034 .

1680. Gholami, A., M. Habibnejad Roshan, K. Shahedi, M. Vafakhah and K. Solaymani. 2016. Hydrological stream flow modeling in the Talar catchment (central section of the Alborz Mountains, north of Iran): Parameterization and uncertainty analysis. Journal of Water and Land Development. 30(7-9): 57-69. DOI: 10.1515/jwld-2016-0022 .

1681. Gholami, A., M.H. Roshan, K. Shahedi, M. Vafakhah and K. Solaymani. 2018. Future impacts of climate change on actual evapotranspiration and soil water in the Talar Watershed in Mazandran Province. Physical Geography Research Quarterly. 50(3): 511-529. URL: https://jphgr.ut.ac.ir/article_69791.html?lang=en.

1682. Gholami, F., A. Nemati, Y. Li and J. Zhang. 2022. Calculation of runoff computation cost and sensitivity analysis of topological attributes. Remote Sensing Applications: Society and Environment. 26: 100714. DOI: 10.1016/j.rsase.2022.100714 .

1683. Gholami, F., Z. Sedighifar, P. Ghaforpur, Y. Li and J. Zhan. 2023. Spatial–temporal analysis of various land use classifications and their long-term alteration's impact on hydrological components: Using remote sensing, SAGA-GIS, and ARCSWAT model. Environmental Science Water Research & Technology. 9(4): 1161-1181. DOI: 10.1039/d2ew00138a .

1684. Ghonchepour, D., A. Sadoddin, A. Bahremand, B. Croke, A. Jakeman and A. Salmanmahiny. 2021. A methodological framework for the hydrological model selection process in water resource management projects. Natural Resource Modeling. 34(3): e12326. DOI: 10.1111/nrm.12326 .

1685. Ghoraba, S.M. 2015. Hydrological modeling of the Simly Dam watershed (Pakistan) using GIS and SWAT model. Alexandria Engineering Journal. 54(3): 583-594. DOI: 10.1016/j.aej.2015.05.018 .

1686. Ghumaid, A. 2022. Study the change in hydrological conditions for the Azraq Basin using incremental climate change scenarios: A Soil and Water Assessment Model and geospatial techniques. Dirasat, Human and Social Sciences. 49(3): 69-95. DOI: 10.35516/hum.v49i3.1336 .

1687. Giacomoni, M.H. and E.Z. Berglund. 2015. Complex adaptive modeling framework for evaluating adaptive demand management for urban water resources sustainability. Journal of Water Resources Planning and Management. 141(11). DOI: 10.1061/(ASCE)WR.1943-5452.0000543 .

1688. Giacomoni, M.H., L. Kanta and E.M. Zechman. 2013. Complex adaptive systems approach to simulate the sustainability of water resources and urbanization. Journal of Water Resources Planning and Management. 139(5): 554-564. DOI: 10.1061/(ASCE)WR.1943-5452.0000302 .

1689. Giacomoni, M.H., R. Gomez and E.Z. Berglund. 2014. Hydrologic impact assessment of land cover change and stormwater management using the hydrologic footprint residence. Journal of the American Water Resources Association. 50(5): 1242-1256. DOI: 10.1111/jawr.12187 .

1690. Giang, P.Q., K. Toshiki, M. Sakata, S. Kunikane and T.Q. Vinh. 2014. Modelling climate change impacts on the seasonality of water resources in the Upper Ca River Watershed in Southeast Asia. The Scientific World Journal. : 279135. DOI: 10.1155/2014/279135 .

1691. Giang, P.Q., K. Toshiki, M. Sakata and S. Kunikane. 2014. Modelling the seasonal response of sediment yield to climate change in the Laos-Vietnam transnational Upper Ca River Watershed. EnvironmentAsia. 7(2): 152-162.

1692. Giang, P.Q., L.T. Giang and K. Toshiki. 2017. Spatial and temporal responses of soil erosion to climate change impacts in a transnational watershed in Southeast Asia. Climate. 5(1): 22. DOI: 10.3390/cli5010022 .

1693. Gies, L., D.B. Agusdinata and V. Merwade. 2014. Drought adaptation policy development and assessment in East Africa using hydrologic and system dynamics modeling. Natural Hazards. 74: 789-813. DOI: 10.1007/s11069-014-1216-2 .

1694. Giese, E., A. Rockler A. Shirmohammadi and M.A. Pavao-Zuckerman. 2019. Assessing watershed-scale stormwater green infrastructure response to climate change in Clarksburg, Maryland. Journal of Water Resources Planning and Management. 145(10): 05019015. DOI: 10.1061/(ASCE)WR.1943-5452.0001099 .

1695. Gikas, G.D., T. Yiannakopoulou and V.A. Tsihrintzis. 2006. Modeling of non-point source pollution in a Mediterranean drainage basin. Environmental Modeling & Assessment. 11(3): 219-233. DOI: 10.1007/s10666-005-9017-3 .

1696. Gikas, G.D., T. Yiannakopoulou and V.A. Tsihrintzis. 2009. Hydrodynamic and nutrient modeling in a Mediterranean coastal lagoon. Journal of Environmental Science and Health, Part A - Toxic/Hazardous Substances and Environmental Engineering. 44(13): 1400-1423. DOI: 10.1080/10934520903217336 .

1697. Gildow, M., N. Aloysius, S. Gebremariam and J. Martin. 2016. Fertilizer placement and application timing as strategies to reduce phosphorus loading to Lake Erie. Journal of Great Lakes Research. 42(6): 1281-1288. DOI: 10.1016/j.jglr.2016.07.002 .

1698. Giles, N.A., M. Babbar-Sebens, R. Srinivasan, D.L. Ficklin and B. Barnhart. 2019. Optimization of linear stream temperature model parameters in the Soil and Water Assessment Tool for the continental United States. Ecological Engineering. 127: 125-134. DOI: 10.1016/j.ecoleng.2018.11.012 .

1699. Giri S., N.N. Arbab and R.G. Lathrop. 2019. Assessing the potential impacts of climate and land use change on water fluxes and sediment transport in a loosely coupled system. Journal of Hydrology. 577: 123955. DOI: 10.1016/j.jhydrol.2019.123955 .

1700. Giri, S. and A.P. Nejadhashemi. 2014. Application of analytical hierarchy process for effective selection of agricultural best management practices. Journal of Environmental Management. 132: 165-177. DOI: 10.1016/j.jenvman.2013.10.021 .

1701. Giri, S., A.P. Nejadhashemi and S.A. Woznicki. 2012. Evaluation of targeting methods for implementation of best management practices in the Saginaw River Watershed. Journal of Environmental Management. 103: 24-40. DOI: 10.1016/j.jenvman.2012.02.033 .

1702. Giri, S., A.P. Nejadhashemi and S.A. Woznicki. 2016. Regulators’ and stakeholders’ perspectives in a framework for bioenergy development. Land Use Policy. 59: 143-153. DOI: 10.1016/j.landusepol.2016.08.028 .

1703. Giri, S., A.P. Nejadhashemi, S. Woznickia and Z. Zhang. 2014. Analysis of best management practice effectiveness and spatiotemporal variability based on different targeting strategies. Hydrological Processes. 28(3): 431–445. DOI: 10.1002/hyp.9577 .

1704. Giri, S., A.P. Nejadhashemi, Z. Zhang and S.A. Woznicki. 2015. Integrating statistical and hydrological models to identify implementation sites for agricultural conservation practices. Environmental Modelling & Software. 72: 327-340. DOI: 10.1016/j.envsoft.2015.01.018 .

1705. Giri, S., N.N. Arbab and R.G. Lathrop. 2018. Water security assessment of current and future scenarios through an integrated modeling framework in the Neshanic River Watershed. Journal of Hydrology. 563: 1025-1041. DOI: 10.1016/j.jhydrol.2018.05.046 .

1706. Giri, S., R.G. Lathrop and C.C. Obropta. 2020. Climate change vulnerability assessment and adaptation strategies through T best management practices. Journal of Hydrology. 580: 124311. DOI: 10.1016/j.jhydrol.2019.124311 .

1707. Giri, S., Z. Qiu, T. Prato and B. Luo. 2016. An integrated approach for targeting critical source areas to control nonpoint source pollution in watersheds. Water Resources Management. 30(14): 5087–5100. DOI: 10.1007/s11269-016-1470-z .

1708. Gitau, M.W. and I. Chaubey. 2010. Regionalization of SWAT model parameters for use in ungauged watersheds. Water. 2(4): 849-871. DOI: 10.3390/w2040849 .

1709. Gitau, M.W., L.-C. Chiang, M. Sayeed and I. Chaubey. 2011. Watershed modeling using large-scale ditributed computing in Condor and the Soil and Water Assessment Tool model. Simulation: Transactions of The Society for Modeling and Simulation International. 88(3): 1-16. DOI: 10.1177/0037549711402524 .

1710. Gitau, M.W., T.L. Veith and W.J. Gburek. 2004. Farm-level optimization of BMP placement for cost-effective pollution reduction. Transactions of the ASAE. 47(6): 1923-1931. DOI: 10.13031/2013.17805 .

1711. Gitau, M.W., T.L. Veith, W.J. Gburek and A.R. Jarrett. 2006. Watershed level best management practice selecton and placement in the Town Brook Watershed, New York. Journal of the American Water Resources Association. 42(6): 1565-1581. DOI: 10.1111/j.1752-1688.2006.tb06021.x .

1712. Gitau, M.W., W.J. Gburek and P.L. Bishop. 2008. Use of the SWAT model to quantify water quality effects of agicultural BMPs at the farm-scale level. Transactions of the ASABE. 51(6): 1925-1936. URL: http://lshs.tamu.edu/docs/lshs/end-notes/use%20of%20the%20swat%20model%20to%20quantify%20water%20-1773351426/use%20of%20the%20swat%20model%20to%20quantify%20water%20quality%20effects%20of%20agricultural%20bmps%20at%20the%20farm-scale%20level.pdf.

1713. Githui, F., B. Selle and T. Thayalakumaran. 2012. Recharge estimation using remotely sensed evapotranspiration in an irrigated catchment in southeast Australia. Hydrological Processes. 26: 1379-1389. DOI: 10.1002/hyp.8274 .

1714. Githui, F., F. Mutua and W. Bauwens. 2009. Estimating the impacts of land-cover change on runoff using the soil and water assessment tool (SWAT): Case study of Nzoia catchment, Kenya. Hydrological Sciences Journal. 54(5): 899-908. DOI: 10.1623/hysj.54.5.899 .

1715. Githui, F., T. Thayalakumaran and B. Selle. 2016. Estimating irrigation inputs for distributed hydrological modelling: A case study from an irrigated catchment in southeast Australia. Hydrological Processes. 30(12): 1824-1835. DOI: 10.1002/hyp.10757 .

1716. Githui, F., W. Gitan, F. Mutua and W. Bauwens. 2009. Climate change impact on SWAT simulated streamflow in western Kenya. International Journal of Climatology. 29(12): 1823-1834. DOI: 10.1002/joc.1828 .

1717. Giudice, D.D., R.L. Muenich, M.M. Kalcic, N.S. Bosch, D. Scavia and A.M. Michalak. 2018. On the practical usefulness of least squares for assessing uncertainty in hydrologic and water quality predictions. Environmental Modelling & Software. 105: 286-295. DOI: 10.1016/j.envsoft.2018.03.009 .

1718. Giuliani, G. and D. Gorgan. 2013. EnviroGRIDS special issue on "Building a Regional Observation System in the Black Sea Catchment". International Journal of Advanced Computer Science and Applications. EnviroGRIDS special Issue: 4-8. URL: http://thesai.org/Publications/ViewIssue?volume=3&issue=3&code=SpecialIssue.

1719. Giuliani, G., K. Rahman, N. Ray and A. Lehmann. 2013. OWS4SWAT: Publishing and Sharing SWAT Outputs with OGC standards. International Journal of Advanced Computer Science and Applications. EnviroGRIDS Special Issue: 90-98. DOI: 10.14569/SpecialIssue.2013.030311 .

1720. Giuliani, G., N. Ray and A. Lehman. 2011. Grid-enabled spatial data infrastructure for environmental sciences: Challenges and opportunities. Future Generation Computer Systems. 27(3): 292-303. DOI: 10.1016/j.future.2010.09.011 .

1721. Gizaw, D. and M. Kebede. 2019. Spatial and temporal distribution of sediment yield-case study Nashe, Blue Nile basin, Ethiopia. Journal of Water Sustainability. 9(2): 23-34. DOI: 10.11912/jws.2019.9.2.23-34 .

1722. Gkiatas, G., I. Kasapidis, P. Koutalakis, V. Iakovoglou, A. Savvopoulou, I. Germantzidis and G.N. Zaimes. 2021. Enhancing urban and sub-urban riparian areas through ecosystem services and ecotourism activities. Water Supply. 21(6): 2974-2988. DOI: 10.2166/ws.2021.114 .

1723. Glavan, M., A. Ceglar and M. Pintar. 2015. Assessing the impacts of climate change on water quantity and quality modelling in small Slovenian Mediterranean catchment – lesson for policy and decision makers. Hydrological Processes. 29(14): 3124-3144. DOI: 10.1002/hyp.10429 .

1724. Glavan, M., M. Pintar and J. Urbanc. 2015. Spatial variation of crop rotations and their impacts on provisioning ecosystem services on the River Drava alluvial plain. Sustainability of Water Quality and Ecology. 5: 31-48. DOI: 10.1016/j.swaqe.2015.01.004 .

1725. Glavan, M., M. Pintar and M. Volk. 2013. Land use change in a 200-year period and its effect on blue and green water flow in two Slovenian Mediterranean catchments - lessons for the future. Hydrological Processes. 27(26): 3964–3980. DOI: 10.1002/hyp.9540 .

1726. Glavan, M., P.O. Zorčič and M. Pintar. 2019. A tool for the selection and implementation of eco-remediation mitigation measures. Ecological Engineering. 130: 53-66. DOI: 10.1016/j.ecoleng.2019.01.022 .

1727. Glavan, M., S. White and I.P. Holman. 2010. Evaluation of river water quality simulations at a daily time step - experience with SWAT in the Axe Catchment, UK. Clean - Soil, Air, Water. 39 (1): 43–54. DOI: 10.1002/clen.200900298 .

1728. Glavan, M., S.M. White and I.P. Holman. 2012. Water quality targets and maintenance of valued landscape character - Experience in the Axe Catchment, UK. Journal of Environmental Management. 103: 142-153. DOI: 10.1016/j.jenvman.2012.03.009 .

1729. Glavan, M., V. Milicic and M. Pintar. 2013. Finding options to improve catchment water quality—Lessons learned from historical land use situations in a Mediterranean catchment in Slovenia. Ecological Modelling. 261-262: 58-73. DOI: 10.1016/j.ecolmodel.2013.04.004 .

1730. Godin, P. J.S. Russell, J.D. MacDonald, G. Putz and E.E. Prepas. 2008. Development of opinion-based generic reforestation regimes and their application in vegetation management and water modelling in the upper and lower foothills of Alberta. Journal of Environmental Engineering and Science. 7(S1): S23-S33. URL: http://www.nrcresearchpress.com/doi/abs/10.1139/s09-001#.UlHvfxAlKTI.

1731. Golden, H.E., C.R. Lane, D.M. Amatya, K.W. Bandilla, H.R. Kiperwas, C.D. Knightes and H. Ssegane. 2014. Hydrologic connectivity between geographically isolated wetlands and surface water systems: A review of select modeling methods. Environmental Modelling & Software. 53: 190-206. DOI: 10.1016/j.envsoft.2013.12.004 .

1732. Golden, H.E., H.A. Sander, C.R. Lane, C. Zhao, K. Price, E. D'Amico and J.R. Christensen. 2016. Relative effects of geographically isolated wetlands on streamflow: A watershed-scale analysis. Ecohydrology. 9(1): 21-38. DOI: 10.1002/eco.1608 .

1733. Goldstein, J. C., A. Tarhule, and D. Brauer. 2014. Simulating the hydrologic response of a semiarid watershed to switchgrass cultivation. Hydrology Research. 44(1): 99-114. DOI: 10.2166/nh.2013.163 .

1734. Goldstein, J.C. and A. Tarhule. 2015. Evaluating the impacts of climate change and switchgrass production on a semiarid basin. Hydrological Processes. 29(5): 724–738. DOI: 10.1002/hyp.10159 .

1735. Gollamudi, A, C.A. Madramootoo and P. Enright. 2007. Water quality modeling of two agricultural fields in southern quebec using SWAT. Transactions of the ASABE. 50(6): 1973-1980. DOI: 10.13031/2013.24100 .

1736. Golmohammadi, G., R. Rudra, S. Prasher, A. Madani, M. Youssef, P. Goel and K. Mohammadi. 2017. Impact of tile drainage on water budget and spatial distribution of sediment generating areas in an agricultural watershed. Agricultural Water Management. 189: 124-134. DOI: 10.1016/j.agwat.2017.02.001 .

1737. Golmohammadi, G., R. Rudra, S. Prasher, A. Madani, K. Mohammadi, P. Goel and P. Daggupatti. 2017. Water budget in a tile drained watershed under future climate change using SWATDRAIN model. Climate. 5(2): 39. DOI: 10.3390/cli5020039 .

1738. Golmohammadi, G., R. Rudra, T. Dickinson, P. Goel and M. Veliz. 2017. Predicting the temporal variation of flow contributing areas using SWAT. Journal of Hydrology. 547: 375-386. DOI: 10.1016/j.jhydrol.2017.02.008 .

1739. Golmohammadi, G., S. Prasher, A. Madani and R. Rudra. 2014. Evaluating three hydrological distributed watershed models: MIKE-SHE, APEX, SWAT. Hydrology. 1(1): 20-39. DOI: 10.3390/hydrology1010020 .

1740. Golmohammadi, G., S.O. Prasher, A. Madani, R.P. Rudra and M.A. Youssef. 2016. SWATDRAIN, a new model to simulate the hydrology of agricultural Lands, model development and evaluation. Biosystems Engineering. 141: 31-47. DOI: 10.1016/j.biosystemseng.2015.11.003 .

1741. Golzari, S., H.Z. Abyaneh, N.M. Dinan, M. Delavar and P.G. Wagner. 2022. Modeling the effects of human influences on water quality and quantity in the Zarrineh River Basin, Iran. Journal of Hydro-environment Research. 40: 51-63. DOI: 10.1016/j.jher.2021.11.001 .

1742. Gombault, C., C.A. Madramootoo, A.R. Michaud, I. Beaudin, M.F. Sottile, M. Chikhaoui and F.F. Ngwa. 2015. Impacts of climate change on nutrient losses from the Pike River watershed of southern Québec. Canadian Journal of Soil Science. 95(4): 337-358. DOI: 10.4141/cjss-2014-012 .

1743. Gombault, C., M.F. Sottile, F.F. Ngwa, C.A. Madramootoo, A.R. Michaud, I. Beaudin and M. Chikhaoui. 2015. Modelling climate change impacts on the hydrology of an agricultural watershed in southern Québec. Canadian Water Resources Journal. 40(1): 71-86. DOI: 10.1080/07011784.2014.985509 .

1744. Gomes, L.C., F.J.J.A. Bianchi, I.M. Cardoso, R.P.O. Schulte, R.B.A. Fernandes and E.I. Fernandes-Filho. 2021. Disentangling the historic and future impacts of land use changes and climate variability on the hydrology of a mountain region in Brazil. Journal of Hydrology. 594: 125650. DOI: 10.1016/j.jhydrol.2020.125650 .

1745. Gómez, J.A., A. Ben-Gal, J.J. Alarcón, G. De Lannoy, S. de Roos, T. Dostál, E. Fereres, D.S. Intrigliolo, J. Krása, A. Klik, G. Liebhard, R. Nolz, A. Peeters, E. Plaas, J.N. Quinton, R. Miao, P. Strauss, W. Xu, Z. Zhang, F. Zhong, D. Zumr and I.C. Dodd. 2020. SHui, an EU-Chinese cooperative project to optimize soil and water management in agricultural areas in the XXI century. International Soil and Water Conservation Research. 8: 1-14. DOI: 10.1016/j.iswcr.2020.01.001 .

1746. Gomiz-Pascual, J.J., M. Bolado-Penagos, C.J. Gonzalez, A. Vazquez, C. Buonocore, J. Romero-Cozar, M.L. Perez-Cayeiro, A. Izquierdo, O. Alvarez, R. Mañanesa and M. Bruno. 2021. The fate of Guadalquivir River discharges in the coastal strip of the Gulf of Cádiz. A study based on the linking of watershed catchment and hydrodynamic models. Science of the Total Environment. 795: 148740. DOI: 10.1016/j.scitotenv.2021.148740 .

1747. Gonfa, B.G., S.D. Hatiye and M.M. Finssa. 2021. Land suitability and surface water resources potential for irrigation in Becho Plain, Upper Awash Basin, Ethiopia. Irrigation and Drainage. 70(4): 936-957. DOI: 10.1002/ird.2575 .

1748. Gong, S., J. Bian, Y. Wang, Z. Jia and H. Wan. 2019. Evaluating and predicting the effects of land use changes on water quality using SWAT and CA–Markov Models. Water Resources Management. 33: 4923–4938. DOI: 10.1007/s11269-019-02427-0 .

1749. Gong, Y., Z. Shen, Q. Hong, R. Liu and Q. Liao. 2011. Parameter uncertainty analysis in watershed total phosphorus modeling using the GLUE methodology. Agriculture Ecosystems and Environment. 142(3-4): 246-255. DOI: 10.1016/j.agee.2011.05.015 .

1750. Gong, Y., Z. Shen, R. Liu, Q. Hong and X. Wu. 2012. A comparison of single- and multi-gauge based calibrations for hydrological modeling of the Upper Daning River watershed in China's Three Gorges Reservoir Region. Hydrology Research. 43(6): 1-11. DOI: 10.2166/nh.2012.021 .

1751. Gong, Y., Z. Shen, R. Liu, X. Wang and T. Chen. 2010. Effect of watershed subdivision on SWAT modeling with consideration of parameter uncertainty. Journal of Hydrologic Engineering. 15(12): 1070-1074. DOI: 10.1061/(ASCE)HE.1943-5584.0000283 .

1752. González-Celada, G., N. Ríos, L. Benegas-Negri and F. Argotty-Benavides. 2021. Impact of the climate change and the land use/land cover change in the hydrological and water erosion response in the Quiscab River Subbasin. Tecnología y Ciencias del Agua. 12(6): 363-421. DOI: 10.24850/j-tyca-2021-06-09 .

1753. González-Ramírez, J. and A. Parés-Sierra. 2019. Streamflow modeling of five major rivers that flow into the Gulf of Mexico using SWAT. Atmósfera. 32(4): 261-272. DOI: 10.20937/ATM.2019.32.04.01 .

1754. Goodall, J.L., K.D. Saint, M.B. Ercan, L.J. Briley, S. Murphy, H. You, C. DeLuca and R.B. Rood. 2013. Coupling climate and hydrological models: Interoperability through Web Services. Environmental Modelling & Software. 46: 250–259. DOI: 10.1016/j.envsoft.2013.03.019 .

1755. Goodrich, D.C., P. Heilman, M. Anderson, C. Baffaut, J. Bonta, D. Bosch, R. Bryant, M. Cosh, D. Endale, T.L., Veith, S.C. Havens, A. Hedrick, P.J. Kleinman, E. J. Langendoen, G. McCarty, T. Moorman, D. Marks, F. Pierson, J.R. Rigby, H. Schomberg, P. Starks, J. Steiner, T. Strickland and T. Tsegaye. 2021. The USDA‐ARS experimental watershed network: Evolution, lessons learned, societal benefits, and moving forward. Water Resources Research. 57(2): e2019WR026473. DOI: 10.1029/2019WR026473 .

1756. Gordon, B.A., C. Lenhart and J. Nieber. 2021. Modeling the applicability of edge-of-field treatment wetlands to reduce nitrate loads in the Elm Creek Watershed in southern Minnesota, United States. Journal of Soil and Water Conservation. 77(5): 446-456. DOI: 10.2489/jswc.2021.02155 .

1757. Gordon, B.L., V.A. Kowal, A. Khadka, R. Chaplin-Kramer, R. Roath and B.P. Bryant. 2019. Existing accessible modeling tools offer limited support to evaluation of impact investment in rangeland ecosystem services. Frontiers in Sustainable Food Systems. 3: 77. DOI: 10.3389/fsufs.2019.00077 .

1758. Gorelick, D.E., L. Lin, H.B. Zeff, Y. Kim, J.M. Vose, J.W. Coulston, D.N. Wear, L.E. Band, P.M. Reed and G.W. Characklis. 2020. Accounting for adaptive water supply management when quantifying climate and land cover change vulnerability. Water Resources Research. 56(1): e2019WR025614. DOI: 10.1029/2019WR025614 .

1759. Gorelick, D.E., L.M. Baskaran and H.I. Jager. 2019. Visualizing feedstock siting in biomass production: Tradeoffs between economic and water quality objectives. Land Use Policy. 88: 104201. DOI: 10.1016/j.landusepol.2019.104201 .

1760. Gorgan, D., G. Giuliani, N. Ray, A. Lehmann, P. Cau, K. Abbaspour, K. Charvat and A. Jonoski. 2013. Black Sea catchment observation system as a portal for GEOSS community. International Journal of Advanced Computer Science and Applications. EnviroGRIDS special Issue: 9-18. URL: http://thesai.org/Publications/ViewIssue?volume=3&issue=3&code=SpecialIssue.

1761. Gorgan, D., V. Bacu, D. Mihon, D. Rodila, K. Abbaspour and E. Rouholahnejad. 2012. Grid based calibration of SWAT hydrological models. Natural Hazards and Earth System Sciences. 12: 2411-2433. DOI: 10.5194/nhess-12-2411-2012 .

1762. Gorgij1, K., A. Dehvari and M.R.D. Ghaleno. 2020. Uncertainty analysis of hydrological parameters of Sarbaz Watershed using SWAT model and SUFI-2 algorithm. Journal of Hydrosciences and Environment. 4(7): 43-56. URL: https://jhe.usb.ac.ir/article_6221.html.

1763. Gosain, A.K. and S. Rao. 2004. GIS-based technologies for watershed management. Current Science. 87(7): 948-953. URL: https://www.currentscience.ac.in/php/toc.php?vol=087&issue=07.

1764. Gosain, A.K., S. Rao and D. Basuray. 2006. Climate change impact assessment on hydrology of Indian river basins. Current Science. 90(3): 346-353. URL: https://www.currentscience.ac.in/php/toc.php?vol=090&issue=03.

1765. Gosain, A.K., S. Rao, R. Srinivasan and N.G. Reddy. 2005. Return-flow assessment for irrigation command in the Palleru river basin using SWAT model. Hydrological Processes. 19(3): 673-682. DOI: 10.1002/hyp.5622 .

1766. Gosling, S.N., J. Zaherpour, N.J. Mount, F.F. Hattermann, R. Dankers, B. Arheimer, L. Breuer, J. Ding, I. Haddeland, R. Kumar, D. Kundu, J. Liu, A. van Griensven, T.L.E. Veldkamp, T. Vetter, X. Wang and X. Zhang. 2017. A comparison of changes in river runoff from multiple global and catchment-scale hydrological models under global warming scenarios of 1 °C, 2 °C and 3 °C. Climatic Change. 141(3): 577-595. DOI: 10.1007/s10584-016-1773-3 .

1767. Gosling, S.N., R.G. Taylor, N.W. Arnell and M.C. Todd. 2011. A comparative analysis of projected impacts of climate change on river runoff from global and catchment-scale hydrological models. Hydrology and Earth System Sciences. 15(1): 279-294. DOI: 10.5194/hessd-7-7191-2010 .

1768. Goswami, S.B. and S.C. Kar. 2018. Simulation of water cycle components in the Narmada River Basin by forcing SWAT model with CFSR data. Meteorology Hydrology and Water Management: Research and Operational Applications. 6(1): 1-12. DOI: 10.26491/mhwm/76250 .

1769. Goswami, S.B., P.K. Bal and A.K. Mitra. 2018. Use of rainfall forecast from a high-resolution global NWP model in a hydrological stream flow model over Narmada river basin during monsoon. Modeling Earth Systems and Environment. DOI: 10.1007/s40808-018-0436-y .

1770. Goudarzi, F.M., A. Sarraf and H. Ahmadi. 2019. The effects of climate change on crop yields using RCP scenarios with SWAT agro-hydrological model in Maharlu Basin (Fars Province – Iran). International Journal of Water. 13(4): 348-359. DOI: 10.1504/IJW.2019.106048 .

1771. Goudarzi, F.M., A. Sarraf and H. Ahmadi. 2020. Prediction of runoff within Maharlu Basin for future 60 years using RCP scenarios. Arabian Journal of Geosciences. 13(14): 605. DOI: 10.1007/s12517-020-05634-x .

1772. Goudarzi, F.M., A. Sarraf and H. Ahmadi. 2021. Calibration of SWAT and three data-driven models for monthly stream flow simulation in Maharlu Lake Basin. Water Supply. 21(8): 4219-4238. DOI: 10.2166/ws.2021.175 .

1773. Govender, M. and C.S. Everson. 2005. Modelling streamflow from two small South African experimental catchments using the SWAT model. Hydrological Processes. 19(3): 683-692. DOI: 10.1002/hyp.5621 .

1774. Goyal, M.K. and R.Y. Surampalli. 2018. Impact of climate change on water resources in India. Journal of Environmental Engineering. 144(7): 04018054. DOI: 10.1061/(ASCE)EE.1943-7870.0001394 .

1775. Goyal, M.K. and V. Singh. 2014. Discussion of “SWAT-based evapotranspirative water conservation analysis performed on irrigated croplands to determine potential regional water savings” by Andrew Gayley. Journal of Irrigation and Drainage Engineering. 139(6): 456-462. DOI: 10.1061/(ASCE)IR.1943-4774.0000684 .

1776. Goyal, M.K., C.A. Madramootoo and J.F. Richards. 2015. Simulation of the streamflow for the Rio Nuevo Watershed of Jamaica for use in agriculture water scarcity planning. Journal of Irrigation and Drainage Engineering. 141(3). DOI: 10.1061/(ASCE)IR.1943-4774.0000802 .

1777. Goyal, M.K., V. Singh and A.H. Meena. 2015. Geospatial and hydrological modeling to assess hydropower potential zones and site location over rainfall dependent Inland catchment. Water Resources Management. 29(8): 2875-2894. DOI: 10.1007/s11269-015-0975-1 .

1778. Goyal, M.K.,V.K. Panchariya, A. Sharma and V. Singh. 2018. Comparative assessment of SWAT model performance in two distinct catchments under various DEM scenarios of varying resolution, sources and resampling methods. Water Resources Management. 32(2): 805–825. DOI: 10.1007/s11269-017-1840-1 .

1779. Grady, C.A., A.P. Reimer, J. Frankenberger and L.S. Prokopy. 2013. Locating existing best management practices within a watershed: The value of multiple methods. Journal of the American Water Resources Association. 44(4): 883-895. DOI: 10.1111/jawr.12041 .

1780. Graiprab, P., K. Pongput, N. Tangtham and P.W. Gassman. 2010. Hydrologic evaluation and effect of climate change on the At Samat watershed, Northeastern Region, Thailand. International Agricultural Engineering Journal. 19(2): 12-22. URL: https://www.researchgate.net/publication/228668853_Hydrologic_evaluation_and_effect_of_climate_change_on_the_At_Samat_watershed_Northeastern_Region_Thailand.

1781. Gramig, B.M., C.J. Reeling, R. Cibin and I. Chaubey. 2013. Environmental and economic tradeoffs in a watershed when using corn stover for bioenergy. Environmental Science & Technology. 47(4): 1784–1791. DOI: 10.1021/es303459h .

1782. Green, C.H. and A. van Griensven. 2008. Autocalibration in hydrologic modeling: Using SWAT2005 in small-scale watersheds. Environmental Modelling & Software. 23(4): 422-434. DOI: 10.1016/j.envsoft.2007.06.002 .

1783. Green, C.H., J.G. Arnold, J.R. Williams, R. Haney and R.D. Harmel. 2007. Soil and Water Assessment Tool hydrologic and water quality evaluation of poultry litter application to small-scale subwatersheds in Texas. Transactions of the ASABE. 50(4): 1199-1209. DOI: 10.13031/2013.23634 .

1784. Green, C.H., M.D. Tomer, M. Di Luzio and J.G. Arnold. 2006. Hydrologic evaluation of the soil and water assessment tool for a large tile-drained watershed in Iowa. Transactions of the ASABE. 49(2): 413-422. DOI: 10.13031/2013.20415 .

1785. Green, M.B. and D. Wang. 2008. Watershed flow paths and stream water nitrogen-to-phosphorus ratios under simulated precipitation regimes. Water Resources Research. 44: 1-13. DOI: 10.1029/2007WR006139 .

1786. Gregar, J., J Petrů and J. Novotná. 2018. Evaluation of the SWAT model as an integrated management tool in the Švihov drinking water supply catchment. Soil and Water Research. DOI: 10.17221/46/2018-SWR .

1787. Grek, E. and S. Zhuravlev. 2021. Simulation of rainfall-induced floods in small catchments (the Polomet’ River, north-west Russia) using rain gauge and radar data. Hydrology. 7(4): 92. DOI: 10.3390/hydrology7040092 .

1788. Grey, O.P., D.F. St. G. Webber, S.G. Setegn and A.M. Melesse. 2014. Application of the Soil and Water Assessment Tool (SWAT Model) on a small tropical island (Great River Watershed, Jamaica) as a tool in integrated watershed and coastal zone management. International Journal of Tropical Biology and Conservation. 62(Suppl. 3): 293-305. URL: http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CCAQFjAA&url=http%3A%2F%2Frevistas.ucr.ac.cr%2Findex.php%2Frbt%2Farticle%2FviewFile%2F15924%2F15277&ei=dexHVLjTDMakyASZvoKoBA&usg=AFQjCNHPcmnZFDFxzzoWbxiIaruef5Qu5w&sig2=0sCKA2mX35tyBYa6rjMNFA.

1789. Grizzetti, B., F. Bouraoui and G. De Marsily. 2005. Modelling nitrogen pressure in river basins: A comparison between a statistical approach and the physically-based SWAT model. Physics and Chemistry of the Earth. 30(8-10): 508-517. DOI: 10.1016/j.pce.2005.07.005 .

1790. Grizzetti, B., F. Bouraoui, K. Granlund, S. Rekolainen and G. Bidoglio. 2003. Modelling diffuse emission and retention of nutrients in the Vantaanjoki Watershed (Finland) using the SWAT model. Ecological Modelling. 169(1): 25-38. DOI: 10.1016/S0304-3800(03)00198-4 .

1791. Grunwald, S. and C. Qi. 2006. GIS-based water quality modeling in the Sandusky Watershed, Ohio, USA. Journal of the American Water Resources Association. 42(4): 957-973. DOI: 10.1111/j.1752-1688.2006.tb04507.x .

1792. Grusson, Y., F. Anctil, S. Sauvage and J.M. Sánchez Pérez. 2017. Assessing the climatic and temporal transposability of the SWAT Model across a large contrasted watershed. Journal of Hydrologic Engineering. 22(6): Article ID: 04017004. DOI: 10.1061/(ASCE)HE.1943-5584.0001491 .

1793. Grusson, Y., F. Anctil, S. Sauvage and J.M Sánchez Pérez. 2017. Testing the SWAT model with gridded weather data of different spatial resolutions. Water. 9(1): 59. DOI: 10.3390/w9010054 .

1794. Grusson, Y., I. Wesström, W. Svedberg and A. Joel. 2021. Influence of climate change on water partitioning in agricultural watersheds: Examples from Sweden. Agricultural Water Management. 249: 106766. DOI: 10.1016/j.agwat.2021.106766 .

1795. Grusson, Y., X. Sun, S. Gascoin, S. Sauvage, S. Raghavan, F. Anctil and J.-M. Sáchez-Pérez. 2015. Assessing the capability of the SWAT model to simulate snow, snow melt and streamflow dynamics over an alpine watershed. Journal of Hydrology. 531(Part 3): 574–588. DOI: 10.1016/j.jhydrol.2015.10.070 .

1796. Gu, P., Y. Wu, G. Liu, C. Xia, G. Wang, J. Xia, K. Chen, X. Huang and D. Li. 2022. Application of meteorological element combination-driven SWAT model based on meteorological datasets in alpine basin. Water Supply. 22(3): 3307-3324. DOI: 10.2166/ws.2021.397 .

1797. Gu, R.R., M.K. Sahu and M.K. Jha. 2015. Simulating the impacts of bio-fuel crop production on nonpoint source pollution in the Upper Mississippi River Basin. Ecological Engineering. 74: 223-229. DOI: 10.1016/j.ecoleng.2014.10.010 .

1798. Gu, X., G. Yang, X. He, L. Zhao, X. Li, P. Li, B. Liu, Y. Gao, L. Xue and A. Long. 2020. Hydrological process simulation in Manas River basin using CMADS. Open Geoscience. 12: 946-957. DOI: 10.1515/geo-2020-0127 .

1799. Guan, T., B. Xue, Y. A, X. Lai, X. Li, H. Zhang, Q. Wang and Q. Fang. 2022. Contribution of nonpoint source pollution from baseflow of a typical agriculture-intensive basin in northern China. Environmental Research. 212(Part D): 113589. DOI: 10.1016/j.envres.2022.113589 .

1800. Guatam, S., C. Costello, C. Baffaut, A. Thomspon, B.M. Svoma, Q.A. Phung and E.J. Sadler. 2018. Assessing long-term hydrological impact of climate change using an ensemble approach and comparison with global gridded model-A case study on Goodwater Creek experimental watershed. Water. 10: 564. DOI: 10.3390/w10050564 .

1801. Guber, A.K., D.M. Williams, A.C.D. Quinn, S.B. Tamrakar, W.F. Porter and J.B. Rose. 2016. Model of pathogen transmission between livestock and white-tailed deer in fragmented agricultural and forest landscapes. Environmental Modelling & Software. 80: 185-200. DOI: 10.1016/j.envsoft.2016.02.024 .

1802. Guder, A.C., T.A. Demissie and D.T. Ahmed. 2023. Evaluation of hydrological impacts of land use/land cover changes of Holota Watershed, Upper Awash Sub‑basin, Ethiopia. Journal of Sedimentary Environments. 8(1): 39-55. DOI: 10.1007/s43217-022-00118-2 .

1803. Guevara-Ochoa, C., A. Medina and L. Vives. 2020. Spatio-temporal effect of climate change on water balance and interactions between groundwater and surface water in plains. Science of the Total Environment. 722: 137886. DOI: 10.1016/j.scitotenv.2020.137886 .

1804. Guevara-Ochoa, C., A. Medina, L. Vives, E. Zimmermann and R.T. Bailey. 2020. Spatio-temporal patterns of the interaction between groundwater and surface water in plains. Hydrological Processes. 34(6): 1371–1392. DOI: 10.1002/hyp.13615 .

1805. Guevara-Ochoa, C., A. Medina, L. Vives and M. Barrios. 2024. Impact of rainfed agriculture on spatio‐temporal patterns of the interaction between groundwater and surface water in sub-humid plains. Science of the Total Environment. 912: 169247. DOI: 10.1016/j.scitotenv.2023.169247 .

1806. Gui, G.O. and D. Rosbjerg. 2009. Modelling of hydrologic processes and potential response to climate change through the use of a multisite SWAT. Water and Environment Journal. 24(1): 21-31. DOI: 10.1111/j.1747-6593.2008.00146.x .

1807. Guiamel, I.A. and H.S. Lee. 2020. Potential hydropower estimation for the Mindanao River Basin in the Philippines based on watershed modelling using the soil and water assessment tool. Energy Reports. 6: 1010-1028. DOI: 10.1016/j.egyr.2020.04.025 .

1808. Guiamel, I.A. and H.S. Lee. 2020. Watershed modelling of the Mindanao River Basin in the Philippines using SWAT for water resource management. Civil Engineering Journal. 6(4): 626-648. DOI: 10.28991/cej-2020-03091496 .

1809. Guigoz, Y., P. Lacroix, E. Rouholahnejad, N. Ray and G. Giuliani. 2016. SCOPED-W: SCalable online platform for extracting environmental data and water-related model outputs. Transactions in GIS. 21(4): 748-763. DOI: 10.1111/tgis.12227 .

1810. Guigoz, Y., P. Lacroix, E. Rouholahnejad, N. Ray and G. Giuliani. 2017. Scalable online platform for extracting environmental data and water-related model outputs. Transactions in GIS. 21: 748-763. DOI: 10.1111/tgis.12227 .

1811. Guilhen, J., M. Parrens, S. Sauvage, W. Santini, F. Mercier, A.A. Bitar, C. Fabre, J.-M. Martinez and J.-M. Sànchez-Pérez. 2022. Estimation of the Madeira floodplain dynamics from 2008 to 2018. Frontiers in Water. 4: 952810. DOI: 10.3389/frwa.2022.952810 .

1812. Gulakhmadov, A., X. Chen, M. Gulakhmadov, Z. Kobuliev, N. Gulahmadov, J. Peng, Z. Li and T. Liu. 2021. Evaluation of the CRU TS3.1, APHRODITE_V1101, and CFSR datasets in assessing water balance components in the Upper Vakhsh River Basin in Central Asia. Atmosphere. 12(10): 1334. DOI: 10.3390/atmos12101334 .

1813. Gulakhmadov, A., X. Chen, N. Gulahmadov, T. Liu, M.N. Anjum and M. Rizwan. 2020. Simulation of the potential impacts of projected climate change on streamflow in the Vakhsh River Basin in Central Asia under CMIP5 RCP scenarios. Water. 12(5): 1426. DOI: 10.3390/w12051426 .

1814. Gulbin, S., A.P. Kirilenko, G. Kharel and X. Zhang. 2019. Wetland loss impact on long term flood risks in a closed watershed. Environmental Science and Policy. 94: 112-122. DOI: 10.1016/j.envsci.2018.12.032 .

1815. Gull, S. and S.R. Shah. 2020. Watershed models for assessment of hydrological behavior of the catchments: A comparative study. Water Practice and Technology. 15(2): 261-281. DOI: 10.2166/wpt.2020.030 .

1816. Gull, S. and S.R. Shah. 2021. Modelling streamflow and sediment yield using Soil and Water Assessment Tool: A case study of Lidder Watershed in Kashmir Himalayas, India. Water Practice and Technology. 16(4): 1370-1385. DOI: 10.2166/wpt.2021.082 .

1817. Gull, S. and S.R. Shah. 2022. Modelling hydrological processes from Sindh Watershed of Kashmir Valley using Soil and Water Assessment Tool. International Journal of Water. 15(2): 101-116. DOI: 10.1504/IJW.2022.132288 .

1818. Gunathilake, M.B., M.N.M. Zamri, T.P. Alagiyawanna, J.T. Samarasinghe, P.K. Baddewela, M.S. Babel, M.K. Jha and P.S. Rathnayake. 2021. Hydrologic utility of satellite-based and gauge-based gridded precipitation products in the Huai Bang Sai Watershed of northeastern Thailand. Hydrology. 8(4): 165. DOI: 10.3390/hydrology8040165 .

1819. Guncati, M.C., F.A. Kandemir, M. Najar, A. Kuzucu, M. Uyar, F. Barbaros, H. Boyacioglu, G.O. Gul and A. Gul. 2022. Attribution of changes in the water balance of a basin to land-use changes through combined modelling of basin hydrology and land-use dynamics. Journal of Water and Climate Change. 13(11): 4087–4104. DOI: 10.2166/wcc.2022.304 .

1820. Gungor, K., N. Karakaya, F. Evrendilek, S. Akgul, O. Baskan, H. Cebel, H.J. Farhoud, O. Turkecan, S. Yasar and O. Gumus. 2016. Spatiotemporal modeling of watershed nutrient transport dynamics: Implications for eutrophication abatement. Ecological Informatics. 34: 52–69. DOI: 10.1016/j.ecoinf.2016.04.012 .

1821. Gungor, O. and S. Goncu. 2013. Application of the Soil and Water Assessment Tool (SWAT) model on the Lower Porsuk Stream watershed. Hydrological Processes. 27(3): 453–466. DOI: 10.1002/hyp.9228 .

1822. Gunn, K.M., A.R. Buda, H.E. Preisendanz, R. Cibin, C.D. Kennedy and T.L. Veith. 2021. Integrating daily CO2 concentrations in SWAT-VSA to examine climate change impacts on hydrology in a karst watershed. Transactions of the ASABE. 64(4): 1303-1318. DOI: 10.13031/trans.13711 .

1823. Guo, D., H. Wang, X. Zhang and G. Liu. 2019. Evaluation and analysis of grid precipitation fusion products in Jinsha River Basin based on China meteorological assimilation datasets for the SWAT Model. Water. 11: 253. DOI: 10.3390/w11020253 .

1824. Guo, G., W. Ding, W. Xu, X. Zhu, X. Wang and W. Tang. 2022. Assessment of an alternative climate product for hydrological modeling: A case study of the Danjiang River Basin, China. Water. 14(7): 1105. DOI: 10.3390/w14071105 .

1825. Guo, H., Q. Hu and T. Jiang. 2008. Annual and seasonal streamflow responses to climate and land-cover Changes in the Poyang Lake Basin, China. Journal of Hydrology. 355(1-4): 106-122. DOI: 10.1016/j.jhydrol.2008.03.020 .

1826. Guo, J. and X. Su. 2019. Parameter sensitivity analysis of SWAT model for streamflow simulation with multisource precipitation datasets. Hydrology Research. 50(3): 861-877. DOI: 10.2166/nh.2019.083 .

1827. Guo, S., Z. Zhu and L. Lyu. 2018. Effects of climate change and human activities on soil erosion in the Xihe River Basin, China. Water. 10(8): 1085. DOI: 10.3390/w10081085 .

1828. Guo, T., B.A. Engel, G. Shao, J.G. Arnold, R. Srinivasan and J.R. Kiniry. 2019. Development and improvement of the simulation of woody bioenergy crops in the Soil and Water Assessment Tool (SWAT). Environmental Modelling & Software. 122: 104295. DOI: 10.1016/j.envsoft.2018.08.030 .

1829. Guo, T., M. Gitau, V. Merwade, J. Arnold, R. Srinivasan, M. Hirschi and B. Engel. 2018. Comparison of performance of tile drainage routines in SWAT 2009 and 2012 in an extensively tile-drained watershed in the Midwest. Hydrology and Earth System Sciences. 22: 89-110. DOI: 10.5194/hess-22-89-2018 .

1830. Guo, T., R. Cibin, I. Chaubey, M. Gitau, J.G. Arnold, R. Srinivasan, J.R. Kiniry and B.A. Engel. 2018. Evaluation of bioenergy crop growth and the impacts of bioenergy crops on streamflow, tile drain flow and nutrient losses in an extensively tile-drained watershed using SWAT. Science of the Total Environment. 613-614: 724-735. DOI: 10.1016/j.scitotenv.2017.09.148 .

1831. Guo, T., Y. Liu, G. Shao, B.A. Engel, A. Sharma, L.A. Marshall, D.C. Flanagan, R. Cibin, C.W. Wallace, K. Zhao, D. Ren, J.V. Mercado and M.A. Aboelnour. 2022. Improving probabilistic monthly water quantity and quality predictions using a simplified residual-based modeling approach. Environmental Modelling & Software. 156: 105499. DOI: 10.1016/j.envsoft.2022.105499 .

1832. Guo, Y., C. Peng, Q. Zhu, M. Wang, H. Wang, S. Peng and H. He. 2019. Modelling the impacts of climate and land use changes on soil water erosion: Model applications, limitations and future challenges. Journal of Environmental Sciences. 250: 109403. DOI: 10.1016/j.jenvman.2019.109403 .

1833. Guo, Y., G. Fang, X. Wen, X. Lei, Y. Yuan and X. Fu. 2018. Hydrological responses and adaptive potential of cascaded reservoirs under climate change in Yuan River Basin. Hydrology Research. 50(1): 358-378. DOI: 10.2166/nh.2018.165 .

1834. Guo, Y., G. Fang, Y.P Xu, X. Tian and J. Xie. 2021. Responses of hydropower generation and sustainability to changes in reservoir policy, climate and land use under uncertainty: A case study of Xinanjiang Reservoir in China. Journal of Cleaner Production. 281: 124609. DOI: 10.1016/j.jclepro.2020.124609 .

1835. Guo, Y., G. Fang, Y.-P. Xu, X. Tian and J. Xie. 2020. Identifying how future climate and land use/cover changes impact streamflow in Xinanjiang Basin, East China. Science of the Total Environment. 710: 136275. DOI: 10.1016/j.scitotenv.2019.136275 .

1836. Guo, Y., X. Wang, C. Melching and Z. Nan. 2022. Identification method and application of critical load contribution areas based on river retention effect. Journal of Environmental Management. 305(1): 114314. DOI: 10.1016/j.jenvman.2021.114314 .

1837. Guo, Y., X. Wang, L. Zhou, C. Melching and Z. Li. 2020. Identification of critical source areas of nitrogen load in the Miyun Reservoir Watershed under different hydrological conditions. Sustainability. 12(3): 964. DOI: 10.3390/su12030964 .

1838. Guo, Y., X. Yu, Y.-P. Xu, G. Wang, J. Xie and H. Gu. 2022. A comparative assessment of CMIP5 and CMIP6 in hydrological responses of the Yellow River Basin, China. Hydrology Research. 53(6): 867-891. DOI: 10.2166/nh.2022.001 .

1839. Gupta, C., A.V. Kullkarni and A.K. Taloor. 2021. Streamflow modeling and contribution of snow and glacier melt runoff in glacierized Upper Indus Basin. Environmental Monitoring and Assessment. 193(11): 761. DOI: 10.1007/s10661-021-09537-6 .

1840. Gupta, S., M.K. Goyal and A.K. Sarma. 2021. Assessment of hydroclimatological changes in eastern Himalayan river catchment of northeast India. Journal of Hydrologic Engineering. 26(10): 05021027. DOI: 10.1061/(ASCE)HE.1943-5584.0002124 .

1841. Gurara, M.A., N.B. Jilo and A.D. Tolche. 2021. Modelling climate change impact on the streamflow in the Upper Wabe Bridge Watershed in Wabe Shebele River Basin, Ethiopia. International Journal of River Basin Management. DOI: 10.1080/15715124.2021.1935978 .

1842. Gurjar, S.K., S. Shrivastava, S. Suryavanshi and V. Tare. 2022. Assessment of the natural flow regime and its variability in a tributary of Ganga River: Impact of land use and land cover change. Environmental Development. 44: 100756. DOI: 10.1016/j.envdev.2022.100756 .

1843. Gurung, P. and L. Bharati. 2012. Downstream impacts of the Melamchi Inter-Basin Water Transfer Plan (MIWTP) under current and future climate change projections. Hydro Nepal: Journal of Water, Energy and Environment. April 2012: 23-29. URL: http://www.nepjol.info/index.php/HN/article/view/7199.

1844. Gurung, P., L. Bharati and S. Karki. 2015. Impact of climate change and watershed interventions on water balance and crop yield in West Seti River sub-basin of Nepal. Journal of Hill Agriculture. 6(2): 219-227. DOI: 10.5958/2230-7338.2015.00051.8 .

1845. Gurung, P., S. Dhungana, A.K. Kyaw and L. Bharati. 2022. Hydrologic characterization of the Upper Ayeyarwaddy River Basin and the impact of climate change. Journal of Water and Climate Change. 13(7): 2577. DOI: 10.2166/wcc.2022.407 .

1846. Guse, B, M. Pfannerstill, A. Gafurov, N. Fohrer and H. Gupta. 2016. Demasking the integrated information of discharge: Advancing sensitivity analysis to consider different hydrological components and their rates of change. Water Resources Research. 52(11): 8724-8743. DOI: 10.1002/2016WR018894 .

1847. Guse, B., A. Bronstert, M. Rode, B. Tetzlaff and F. Wendland. 2007. Application of two phosphorus models with different complexities in a mesoscale river catchment. Advances in Geosciences. 11: 77-84. DOI: 10.5194/adgeo-11-77-2007 .

1848. Guse, B., D.E. Reusser and N. Fohrer. 2014. How to improve the representation of hydrological processes in SWAT for a lowland catchment - temporal analysis of parameter sensitivity and model performance. Hydrological Processes. 28(4): 2651–2670. DOI: 10.1002/hyp.9777 .

1849. Guse, B., J. Kail, J. Radinger, M. Schröder, J. Kiesel, D. Hering, C. Wolter and N. Fohrer. 2015. Eco-hydrologic model cascades: Simulating land use and climate change impacts on hydrology, hydraulics and habitats for fish and macroinvertebrates. Science of the Total Environment. 533: 542-556. DOI: 10.1016/j.scitotenv.2015.05.078 .

1850. Guse, B., J. Kiesel, M. Pfannerstill and N. Fohrer. 2020. Assessing parameter identifiability for multiple performance criteria to constrain model parameters. Hydrological Sciences Journal. 65(7): 1158-1172. DOI: 10.1080/02626667.2020.1734204 .

1851. Guse, B., M. Pfannerstill and N. Fohrer. 2015. Dynamic modelling of land use change impacts on nitrate loads in rivers. Environmental Processes. 2(4): 575-592. DOI: 10.1007/s40710-015-0099-x .

1852. Guse, B., M. Pfannerstill, A. Gafurov, J. Kiesel, C. Lehr and N. Fohrer. 2017. Identifying the connective strength between model parameters and performance criteria. Hydrology and Earth System Sciences. 21(11): 5663-5679. DOI: 10.5194/hess-21-5663-2017 .

1853. Guse, B., M. Pfannerstill, J. Kiesel, M. Strauch, M. Volk and N. Fohrer. 2019. Analysing spatio-temporal process and parameter dynamics in models to characterise contrasting catchments. Journal of Hydrology. 570: 863-874. DOI: 10.1016/j.jhydrol.2018.12.050 .

1854. Guse, B., M. Pfannerstill, M. Strauch, D.E. Reusser, S. Ladtke, M. Volk, H. Gupta and N. Fohrer. 2016. On characterizing the temporal dominance patterns of model parameters and processes. Hydrological Processes. 30(13): 2255–2270. DOI: 10.1002/hyp.10764 .

1855. Gustio, I., D.P. Jingga, E.R. Syofyan and C. Muharis. 2020. Analysis of land erosion in the Batang Agam Watershed using the SWAT model. Jurnal Ilmiah Poli Rekayasa. 16(1): 11-26. URL: http://jpr-pnp.com/index.php/jpr/article/view/189.

1856. Guswa, A.J., B. Hall, C. Cheng and J.R. Thompson. 2020. Co-designed land-use scenarios and their implications for storm runoff and streamflow in New England. Environmental Management. 66: 785-800. DOI: 10.1007/s00267-020-01342-0 .

1857. Gutierrez M.A.M. and M. Diaz-Granados Ortiz. 2007. Valoracion de impactos y evaluacion economica en rehabilitacion de cuencas, caso cuenca rio Tona. Avances en Recursos Hidraulicos. 15: 3. URL: https://revistas.unal.edu.co/index.php/arh/article/view/9321.

1858. Guug, S.S., S. Abdul-Ganiyu and R.A. Kasei. 2020. Application of SWAT hydrological model for assessing water availability at the Sherigu catchment of Ghana and Southern Burkina Faso. HydroResearch. 3: 124-133. DOI: 10.1016/j.hydres.2020.10.002 .

1859. Guzha, A.C., M.C. Rufino, S. Okoth, S. Jacobs and R.L.B. Nóbrega. 2018. Impacts of land use and land cover change on surface runoff, discharge and low flows: Evidence from East Africa. Journal of Hydrology: Regional Studies. 15: 49-67. DOI: 10.1016/j.ejrh.2017.11.005 .

1860. Guzinski, R., S. Kass, S. Huber, P. Bauer-Gottwein, I.H. Jensen, V. Naeimi, M. Doubkova, A. Walli and C. Tottrup. 2014. Enabling the use of earth observation data for integrated water resource management in Africa with the water observation and information system. Remote Sensing. 6(8): 7819-7839. DOI: 10.3390/rs6087819 .

1861. Guzman, J.A., A. Shirmohammadi, A.M. Sadeghi, X. Wang, M.L. Chu, M.K. Jha, P.B. Parajuli, R.D. Harmel, Y.P. Khare and J.E. Hernandez. 2015. Uncertainty considerations in calibration and validation of hydrologic and water quality models. Transactions of the ASABE. 58(6): 1745-1762. DOI: 10.13031/trans.58.10710 .

1862. Guzman, J.A., D.N. Moriasi, M.L. Chu, P.J. Starks, J.L. Steiner and P.H. Gowda. 2013. A tool for mapping and spatio-temporal analysis of hydrological data. Environmental Modelling & Software. 48: 163-170. DOI: 10.1016/j.envsoft.2013.06.014 .

1863. Guzman, J.A., D.N. Moriasi, P.H. Gowda, J.L. Steiner, P.J. Starks, J.G. Arnold and R. Srinivasan. 2015. A model integration framework for linking SWAT and MODFLOW. Environmental Modelling & Software. 73: 103-116. DOI: 10.1016/j.envsoft.2015.08.011 .

1864. Gyamfi, C., J.M. Ndambuki and R.W. Salim. 2016. Hydrological responses to land use/cover changes in the Olifants Basin, South Africa. Water. 8(12): 588. DOI: 10.3390/w8120588 .

1865. Gyamfi, C., J.M. Ndambuki and R. W. Salim. 2016. Simulation of sediment yield in a Semi-Arid River basin under changing land use: An integrated approach of hydrologic modelling and principal component analysis. Sustainability. 8(11): 1133. DOI: 10.3390/su8111133 .

1866. Gyawali, B., S. Shrestha, A. Bhatta, B. Pokhrel, R. Cristan, G. Antonious, S. Banerjee and K.P. Paudel. 2022. Assessing the effect of land-use and land-cover changes on discharge and sediment yield in a rural coal-mine dominated watershed in Kentucky, USA. Water. 14(4): 516. DOI: 10.3390/w14040516 .

1867. Ha, D.T.T., M. Ghafouri-Azar and D.-H. Bae. 2019. Long-term variation of runoff coefficient during dry and wet seasons due to climate change. Water. 11: 2411. DOI: 10.3390/w11112411 .

1868. Ha, L.T., W.G.M. Bastiaanssen, A. van Griensven, A.I.J.M. van Dijk and G.B. Senay. 2018. Calibration of spatially distributed hydrological processes and model parameters in SWAT using remote sensing data and an auto-calibration procedure: A case study in a Vietnamese River Basin. Water. 10(2): 212. DOI: 10.3390/w10020212 .

1869. Ha, M. and M. Wu. 2015. Simulating and evaluating best management practices for integrated landscape management scenarios in biofuel feedstock production. Biofuels, Bioproducts and Biorefining. 9(6): 709-721. DOI: 10.1002/bbb.1579 .

1870. Ha, M. and M. Wu. 2017. Land management strategies for improving water quality in biomass production under changing climate. Environmental Research Letters. 12(3): 034015. DOI: 10.1088/1748-9326/aa5f32 .

1871. Ha, M. and M. Wu. 2021. Environmental and cost benefits of multi-purpose buffers in an agricultural watershed for biomass production. Biofuels, Bioproducts and Biorefining. 16(1): 228-243. DOI: 10.3390/su132112067 .

1872. Ha, M., M. Wu, M.D. Tomer, P.W. Gassman, T.M. Isenhart, J.G. Arnold, M.J. White, E.S. Parish, K.S. Comer and B. Belden. 2020. Biomass production with conservation practices for two Iowa watersheds. Journal of the American Water Resources Association. 56(6): 1030-1044. DOI: 10.1111/1752-1688.12880 .

1873. Ha, M., Z. Zhang and M. Wu. 2018. Biomass production in the Lower Mississippi River Basin: Mitigating associated nutrient and sediment discharge to the Gulf of Mexico. Science of the Total Environment. 635: 1585-1599. DOI: 10.1016/j.scitotenv.2018.03.184 .

1874. Haas, H., F. Dosdogru, L Kalin and H Yen. 2021. Soft data in hydrological modeling: Prediction of ecologically relevant flows with alternate land use/land cover data. Water. 13(21): 2947. DOI: 10.3390/w13212947 .

1875. Haas, H., L. Kalin and P. Srivastava. 2022. Improved forest dynamics leads to better hydrological predictions in watershed modeling. Science of the Total Environment. 821: 153180. DOI: 10.1016/j.scitotenv.2022.153180 .

1876. Haas, H., N.G.F. Reaver, R. Karki, L. Kalin, P. Srivastava, D.A. Kaplan and C. Gonzalez-Benecke. 2022. Improving the representation of forests in hydrological models. Science of the Total Environment. 812: 151425. DOI: 10.2166/wcc.2021.238 .

1877. Haas, M.B., B. Guse and N. Fohrer. 2017. Assessing the impacts of best management practices on nitrate pollution in an agricultural dominated lowland catchment considering environmental protection versus economic development. Journal of Environmental Management. 196: 347-364. DOI: 10.1016/j.jenvman.2017.02.060 .

1878. Haas, M.B., B. Guse, M. Pfannerstill and N. Fohrer. 2015. Detection of dominant nitrate processes in ecohydrological modelling with temporal parameter sensitivity analysis. Ecological Modelling. 314: 62-72. DOI: 10.1016/j.ecolmodel.2015.07.009 .

1879. Haas, M.B., B. Guse, M. Pfannerstill and N. Fohrer. 2016. A joined multi-metric calibration of river discharge and nitrate loads with different performance measures. Journal of Hydrology. 536: 534–545. DOI: 10.1016/j.jhydrol.2016.03.001 .

1880. Habeck, A. V. Krysanova and F. Hattermann. 2005. Integrated analysis of water quality in a mesoscale lowland basin. Advances in Geosciences. 5: 13-17. DOI: 10.5194/adgeo-5-13-2005 .

1881. Haberlandt, U. 2010. From hydrological modelling to decision support. Advances in Geosciences. 27: 11-19. DOI: 10.5194/adgeo-27-11-2010 .

1882. Haberlandt, U., V. Krysanova and A. Bardossy. 2002. Assessment of nitrogen leaching from arable land in large river basins Part II: Regionalisation using fuzzy rule based modelling. Ecological Modelling. 150(3): 277-294. DOI: 10.1016/S0304-3800(01)00526-9 .

1883. Habibi, A. and H. Masoumi. 2021. The action of tectonic and lithological parameters in the water balance of the Roodak Basin. Journal of Hydrogeomorphology. 7(25): 101-118. URL: https://hyd.tabrizu.ac.ir/article_12658.html?lang=en.

1884. Habibiandehkordi, R., D.K. Reid, P.K. Goel and A. Biswas. 2020. Phosphorus loss assessment tools: A review of underlying concepts and applicability in cold climates. Environmental Science and Pollution Research. 27: 3794–3802. DOI: 10.1007/s11356-019-06800-9 .

1885. Hadadin, N., Z. Al‐Majali and T. Eljufout. 2022. Effects of climate change on water resources: A case study of the Wadi Al‐Arab Catchment area in Jordan. Environmental Earth Sciences. 81(21): 501. DOI: 10.1007/s12665-022-10625-0 .

1886. Hadadin, N.A. and S.R. Al-Adwan. 2020. Estimation of the sediment yield using hydrological assessment tool model: A case of Wadi Al-Arab Dam at the northern part of Jordan. Arabian Journal of Geosciences. 13(10): 380. DOI: 10.1007/s12517-020-05418-3 .

1887. Haddad, O.B., M. Jahandideh-Tehrani and M.A. Mariño. 2013. Discussion of “Assessments of impacts of climate change and human activities on runoff with SWAT for the Huifa River Basin, Northeast China” by Aijing Zhang; Chi Zhang; Guobin Fu; Bende Wang; Zhenxin Bao; and Hongxing Zheng. Water Resources Management. 27(7): 2071-2073. DOI: 10.1007/s11269-013-0273-8 .

1888. Haggard, B.E., P.A. Moore, Jr. and P.B. Delaune. 2005. Phosphorus flux from bottom sediments in Lake Eucha, Oklahoma. Journal of Environmental Quality. 34(2): 724-728. DOI: 10.2134/jeq2005.0724 .

1889. Haghnegahdar, A. and S. Razavi. 2017. Insights into sensitivity analysis of Earth and environmental systems models: On the impact of parameter perturbation scale. Environmental Modelling & Software. 95: 115-131. DOI: 10.1016/j.envsoft.2017.03.031 .

1890. Haguma, D. and R. Leconte. 2018. Long-term planning of water systems in the context of climate non-stationarity with deterministic and stochastic optimization. Water Resources Management. 32(5): 1725-1739. DOI: 10.1007/s11269-017-1900-6 .

1891. Haguma, D., R. Leconte and S. Krau. 2017. Hydropower plant adaptation strategies for climate change impacts on hydrological regime. Canadian Journal of Civil Engineering. 44(11): 962-970. DOI: 10.1139/cjce-2017-0141 .

1892. Haguma, D., R. Leconte, P. Côté, S. Krau and F. Brissette. 2014. Optimal hydropower generation under climate change conditions for a northern water resources system. Water Resources Management. 28(13): 4631-4644. DOI: 10.1007/s11269-014-0763-3 .

1893. Haider, H., M. Zaman, S. Liu, M. Saifullah, M. Usman, J.N. Chauhdary, M.N. Anjum and M. Waseem. 2020. Appraisal of climate change and its impact on water resources of Pakistan: A case study of Mangla Watershed. Atmosphere. 11(10): 1071. DOI: 10.3390/atmos11101071 .

1894. HajiGhasemi, S., M.Z. Niri and A.N. Jilani. 2021. Investigating of climate change effects on the surface runoff with SWAT model (case study: Mazlaghan River). Iranian Journal of Irrigation and Drainage . 15(1): 121-137. URL: https://idj.iaid.ir/article_126747.html?lang=en.

1895. Hajigholizadeh, M., A.M. Melesse and H.R. Fuentes. 2018. Erosion and sediment transport modelling in shallow waters: A review on approaches, models and applications. International Journal of Environmental Research and Public Health. 15: 518. DOI: 10.3390/ijerph15030518 .

1896. Hajihoseini, H., M. Hajihoseini, A. Najafi, S. Morid and M. Delavar. 2015. Assessment of changes in hydro-meteorological variables upstream of Helmand Basin during the last century using CRU data and SWAT model. Iran-Water Resources Research. 10(3): 38-52. URL: http://en.journals.sid.ir/ViewPaper.aspx?ID=455590.

1897. Hajihosseini, H., M. Hajihosseini, S. Morid, M. Delavar and M.J. Booij. 2016. Hydrological assessment of the 1973 treaty on the transboundary Helmand River, using the SWAT model and a global climate database. Water Resources Management. 30(13): 4681–4694. DOI: 10.1007/s11269-016-1447-y .

1898. Hajihosseini, M., H. Hajihosseini, S. Morid, M. Delavar and M.J. Booij. 2020. Impacts of land use changes and climate variability on transboundary Hirmand River using SWAT. Journal of Water and Climate Change. 11(4): 1695-1711. DOI: 10.2166/wcc.2019.100 .

1899. Halecki, W. and D. Bedla. 2022. The rainfall-runoff model for the Carpathian Flysch Catchment using the SWAT+ hydrological software. Acta Scientiarum Polonorum: Formatio . 21(1): 85-93. DOI: 10.15576/ASP.FC/2022.21.1.85 .

1900. Halecki, W. and S. Łyszczarz. 2021. Examination of susceptibility to the deficiency of soil water in a forested agricultural area. Earth. 2(3): 532-543. DOI: 10.3390/earth2030031 .

1901. Halecki, W., E. Kruk and M. Ryczek. 2018. Loss of topsoil and soil erosion by water in agricultural areas: A multicriteria approach for various land use scenarios in the western Carpathians using a SWAT model. Land Use Policy. 73: 363-372. DOI: 10.1016/j.landusepol.2018.01.041 .

1902. Halecki, W., S. Łyszczarz, J. Lasota, E. Błońska and S. Chattopadhyay. 2023. Quantifying the soil water storage capacity of Flysh Catchments surrounded by mixed forests in Outer Carpathians. Environmental Processes. 10(2): 28. DOI: 10.1007/s40710-023-00641-y .

1903. Haleem, K., A.U. Khan, S. Ahmad, M. Khan, F.A. Khan, W. Khan and J. Khan. 2022. Hydrological impacts of climate and land-use change on flow regime variations in Upper Indus Basin. Journal of Water and Climate Change. 13(2): 758-770. DOI: 10.2166/wcc.2021.238 .

1904. Halefom, A., A. Teshome and E. Sisay. 2020. Potential implications of land use/land cover change and climate variability on ungauged watershed hydrology. International Journal of Hydrology Science and Technology. 10(2): 167-190. DOI: 10.1504/IJHST.2020.106484 .

1905. Halefom, A., E. Sisay, D. Khare, L. Singh and T. Worku. 2017. Hydrological modeling of urban catchment using semi-distributed model. Modeling Earth Systems and Environment. 3(2): 683-692. DOI: 10.1007/s40808-017-0327-7 .

1906. Halik, G., V.S. Putra and P.U.A. Wiyono. 2022. Assessment of climate change impact on drought disaster in Sampean Baru Watershed, East Java, Indonesia based on IPCC‑AR5. Natural Hazards. 112(2): 1705-1726. DOI: 10.1007/s11069-022-05245-7 .

1907. Hall, K.R., M.E. Herbert, S.P. Sowa, S. Mysorekar, S.A. Woznicki, P.A. Nejadhashemi and L. Wang. 2017. Reducing current and future risks: Using climate change scenarios to test an agricultural conservation framework. Journal of Great Lakes Research. 43(1): 59-68. DOI: 10.1016/j.jglr.2016.11.005 .

1908. Hallouin, T., M. Bruen, M. Christie, C. Bullock and M.K. Quinn. 2018. Challenges in using hydrology and water quality models for assessing freshwater ecosystem services: A review. Geosciences. 8(2): 45. DOI: 10.3390/geosciences8020045 .

1909. Hallouz, F., M. Meddi, G. Mahé, S. Alirahmani and A. Keddar. 2018. Modeling of discharge and sediment transport through the SWAT model in the basin of Harraza (Northwest of Algeria). Water Science. 32(1): 79-88. DOI: 10.1016/j.wsj.2017.12.004 .

1910. Hamaamin, Y.A., A.P. Nejadhashemi, Z. Zhang, S. Giri and S.A. Woznicki. 2016. Bayesian regression and Neuro-Fuzzy methods reliability assessment for estimating streamflow. Water. 8(7): 287. DOI: 10.3390/w8070287 .

1911. Hamaamin, Y.A., A.P. Nejadhashemi, Z. Zhang, S. Giri, U. Adhikari and M.R. Herman. 2019. Evaluation of neuro-fuzzy and Bayesian techniques in estimating suspended sediment loads. Sustainable Water Resources Management. 5(2): 639-654. DOI: 10.1007/s40899-018-0225-9 .

1912. Hamada, Y., H. Ssegane and M.C. Negri. 2015. Mapping intra-field yield variation using high resolution satellite imagery to integrate bioenergy and environmental stewardship in an agricultural watershed. Remote Sensing. 7(8): 9753-9768. DOI: 10.3390/rs70809753 .

1913. Hamel, P. and B.P. Bryant. 2017. Uncertainty assessment in ecosystem services analyses: Seven challenges and practical responses. Ecosystem Services. 24: 1-15. DOI: 10.1016/j.ecoser.2016.12.008 .

1914. Hamid, A.T., M. Sharif and B. Narsimlu. 2017. Assessment of climate change impacts on streamflows in Satluj river basin, India using SWAT model. International Journal of Hydrology Science and Technology. 7(2): 134-157. DOI: 10.1504/IJHST.2017.084140 .

1915. Hammouri, N., J. Adamowski, M. Freiwan and S. Prasher. 2017. Climate change impacts on surface water resources in arid and semi-arid regions: A case study in northern Jordan. Acta Geodaetica et Geophysica. 32(1): 141-156. DOI: 10.1007/s40328-016-0163-7 .

1916. Han, C.-W., S.-G. Xu, J.-W. Liu and J.-J. Lian. 2010. Nonpoint-source nitrogen and phosphorus behavior and modeling in cold climate: a review. Water Science and Technology. 62(10): 2277-2285. URL: http://ukpmc.ac.uk/abstract/MED/21076213/reload=0;jsessionid=zWqOOp9rFk6UGmGd0Dw2.22.

1917. Han, D., J. Lee, W. Jang and S. Kim. 2020. Groundwater evaluation in the Bokha Watershed of the Namhan River using SWAT-MODFLOW. Journal of Korea Water Resources Association. 53(11): 995-997. DOI: 10.3741/JKWRA.2020.53.11.985 .

1918. Han, D., J. Lee, W. Kim, S. Baek and S. Kim. 2021. Hydrologic evaluation of SWAT considered forest type using MODIS LAI data: A case of Yongdam Dam Watershed. Journal of Korea Water Resources Association. 54(11): 875-889. DOI: 10.3741/JKWRA.2021.54.11.875 .

1919. Han, E., V. Merwade and G.C. Heathman. 2012. Implementation of surface soil moisture data assimilation with watershed scale distibuted hydrological model. Journal of Hydrology. 416-417: 98-117. DOI: 10.1016/j.jhydrol.2011.11.039 .

1920. Han, F. and Y. Zheng. 2016. Multiple-response Bayesian calibration of watershed water quality models with significant input and model structure errors. Advances in Water Resources. 88: 109-123. DOI: 10.1016/j.advwatres.2015.12.007 .

1921. Han, F. and Y. Zheng. 2018. Joint analysis of input and parametric uncertainties in watershed water quality modeling: A formal Bayesian approach. Advances in Water Resources. 116: 77-94. DOI: 10.1016/j.advwatres.2018.04.006 .

1922. Han, J., D. Lee, S. Lee, S.-W. Chung, S.J. Kim, M. Park, K.J. Lim and J. Kim. 2019. Evaluation of the effect of channel geometry on streamflow and water quality modeling and modification of channel geometry module in SWAT: A case study of the Andong Dam Watershed. Water. 11(4): 718. DOI: 10.3390/w11040718 .

1923. Han, J., Z. Xin, F. Han, B. Xu, L. Wang, C. Zhang and Y. Zheng. 2021. Source contribution analysis of nutrient pollution in a P-rich watershed: Implications for integrated water quality management. Environmental Pollution. 279: 116885. DOI: 10.1016/j.envpol.2021.116885 .

1924. Han, J.H., Y. Park, D. Kum, Y. Jung, G.C. Jung, K.-S. Kim and K.J. Lim. 2015. Modification of sediment trapping efficiency equation of VFS in SWAT considering the characteristics of the agricultural land in Korea. Journal of Korean Society on Water Environment. 31(5): 482-490. DOI: 10.15681/KSWE.2015.31.5.482 .

1925. Han, X., Z. Wei, B. Zhang, C. Han and J. Song. 2018. Effects of crop planting structure adjustment on water use efficiency in the irrigation area of Hei River Basin. Water. 10(10): 1305. DOI: 10.3390/w10101305 .

1926. Han, Y., F. Xia, H. Huang, W. Mu and D. Jia. 2022. Impact of the Grain for Green Project on water resources and ecological water stress in the Yanhe River Basin. PLoS ONE. 17(6): e0259611. DOI: 10.1371/journal.pone.0259611 .

1927. Han, Y., J. Niu, Z. Xin, W. Zhang, T. Zhang, X. Wang and Y. Zhang. 2016. Optimization of land use pattern reduces surface runoff and sediment loss in a Hilly-Gully watershed at the Loess Plateau, China. Forest Systems. 25(1): e054. DOI: 10.5424/fs/2016251-08016 .

1928. Han, Y., X. Du, B. Farjad, G. Goss, A. Gupta and M. Faramarzi. 2022. A numerical modeling framework for simulating the key in-stream fate processes of PAH decay in Muskeg River Watershed, Alberta, Canada. Science of the Total Environment. 848: 157246. DOI: 10.1016/j.scitotenv.2022.157246 .

1929. Han, Y., Z. Liu, Y. Chen, Y. Li, H. Liu, L. Song and Y. Chen. 2023. Assessing non-point source pollution in an apple-dominant basin and associated best fertilizer management based on SWAT modeling. International Soil and Water Conservation Research. 11(2): 353-364. DOI: 10.1016/j.iswcr.2022.10.002 .

1930. Hanief, A. and A.E. Laursen. 2017. SWAT modeling of hydrology, sediment and nutrients from the Grand River, Ontario. Water Quality Research Journal. 52(4): 243-257. DOI: 10.2166/wqrj.2017.014 .

1931. Hanief, A. and A.E. Laursen. 2019. Meeting updated phosphorus reduction goals by applying best management practices in the Grand River Watershed, southern Ontario. Ecological Engineering. 130: 169-175. DOI: 10.1016/j.ecoleng.2019.02.007 .

1932. Hanief, A. and A.E. Laursen. 2019. Modeling the natural drainage network of the Grand River in southern Ontario: Agriculture may increase total channel length of low-order streams. Geosciences. 9(1): 46. DOI: 10.3390/geosciences9010046 .

1933. Hann, H., A. Nauditt, M. Zambrano-Bigiarini, J. Thurner, I. McNamara and L. Ribbe. 2021. Combining satellite-based rainfall data with rainfall-runoff modelling to simulate low flows in a southern Andean catchment. Journal of Natural Resources and Development. 11: 1-19. DOI: 10.18716/ojs/jnrd/2021.11.02 .

1934. Hanna, K., M. Paul, M. Negahban-Azar and A. Shirmohammadi. 2021. Developing a decision support system for economic analysis of irrigation applications in temperate zones. Water. 13(15): 2044. DOI: 10.3390/w13152044 .

1935. Hanratty, M.P. and H.G. Stefan. 1998. Simulating climate change effects in a Minnesota agricultural watershed. Journal of Environmental Quality. 27: 1524-1532. DOI: 10.2134/jeq1998.00472425002700060032x .

1936. Hansen, A.T., T. Campbell, S.J. Cho, J.A. Czuba, B.J. Dalzell, C.L. Dolph, P.L. Hawthorne, S. Rabotyagov, Z. Lang, K. Kumarasamy, P. Belmont, J.C. Finlay, E. Foufoula-Georgiou, K.B. Gran, C.L. Kling and P. Wilcock. 2021. Integrated assessment modeling reveals near-channel management as cost-effective to improve water quality in agricultural watersheds. Proceedings of the National Academy of Sciences. 118(28): e2024912118. DOI: 10.1073/pnas.2024912118 .

1937. Hanson, L., S. Habicht, P. Daggupati, R. Srinivasan and P. Faeth. 2017. Modeling changes to streamflow, sediment, and nutrient loading from land use changes due to potential natural gas development. Journal of the American Water Resources Association. 53(6): 1293-1312. DOI: 10.1111/1752-1688.12588 .

1938. Hanson, R., J.H. Rowan and M. Green. 2022. An assessment of 2 watershed models to meet watershed planning needs. Lake and Reservoir Management. 38(1): 16-27. DOI: 10.1080/10402381.2021.2007181 .

1939. Hao, F., X. Zhang, X. Wang and O. Wei. 2012. Assessing the relationship between landscape patterns and nonpoint-source pollution in the Danjiangkou Reservoir Basin in China. Journal of the American Water Resources Association. 48: 1-16. DOI: 10.1111/j.1752-1688.2012.00677.x .

1940. Hao, F.H., X.S. Zhang and Z.F. Yang. 2004. A distributed non-point source pollution model: Calibration and validation in the Yellow River Basin. Journal of Environmental Sciences. 16(4): 646-650. URL: http://www.jesc.ac.cn/jesc_en/ch/reader/view_abstract.aspx?file_no=20040425&flag=1.

1941. Hao, L., G. Sun, Y. Liu and H. Qian. 2015. Integrated modeling of water supply and demand under management options and climate change scenarios in Chifeng city, China. Journal of the American Water Resources Association. 51(3): 655-671. DOI: 10.1111/1752-1688.12311 .

1942. Hao, W.G., H.P. Li, H. Liu, L.X. Wang, R. Jiao, H.L. Liu, Y.F. Song and L.P. Cui. 2020. Research on the runoff of arid desert grasslands under changing environments in China. Applied Ecology and Environmental Research. 18(2): 3131-3145. DOI: 10.15666/aeer/1802_31313145 .

1943. Hao, X., W. Ouyang, K. Zhang, X. Wan, X. Cui and W. Zhu. 2022. Enhanced release, export, and transport of diffuse nutrients from litter in forested watersheds with climate warming. Science of the Total Environment. 837: 155897. DOI: 10.1016/j.scitotenv.2022.155897 .

1944. Hao, X., Y. Cao, L. Zhang, Y. Zhang and J. Liu. 2015. Fluoroquinolones in the Wenyu River catchment, China: Occurrence simulation and risk assessment. Environmental Toxicology and Chemistry. 34(12): 2764-2770. DOI: 10.1002/etc.3158 .

1945. Hao, Y., J. Ma, J. Chen, D. Wang, Y. Wang and H. Xu. 2018. Assessment of changes in water balance components under 1.5 ◦C and 2.0 ◦C global warming in transitional climate basin by multi-RCPs and multi-GCMs approach. Water. 10(12): 1863. DOI: 10.3390/w10121863 .

1946. Hao, Z., Y. Zhang, C. Yang and J. Li. 2013. The effects of topography and snowmelt on the hydrologic simulation in the head region of the Yellow River. Physical Geography Research Quarterly. 24(3).

1947. Haque, M.M., O. Seidou, A. Mohammadian, A.G. Djibo, S. Liersch, S. Fournet, S. Karam, E.D.P. Perera and M. Kleynhans. 2019. Improving the accuracy of hydrodynamic simulations in data scarce environments using bayesian model averaging: A case study of the Inner Niger Delta, Mali, West Africa. Water. 11(9): 1-24. DOI: 10.3390/w11091766 .

1948. Hargreaves, J. and B. Hobbs. 2009. Optimal selection of priority development areas considering tradeoffs between hydrology and development configuration. Environmental Modeling & Assessment. 14(3): 289-302. DOI: 10.1007/s10666-007-9130-6 .

1949. Harifa, A.C., M. Sholichin and T.B. Prayogo. 2017. Analisa pengaruh perubahan penutupan lahan terhadap debit sungai sub das metro dengan menggunakan program ARCSWAT. Jurnal Teknik Pengairan. 8(1): 1-14. URL: http://jurnalpengairan.ub.ac.id/index.php/jtp/article/view/291.

1950. Harifidy, R.Z., I. Hiroshi, S. Kazuyoshi, M.Jun, R.Z.M. Hariveloc and C.A. Fernández-Palomino. 2024. Multi-gauge calibration comparison for simulating streamflow across the major river basins in Madagascar: SWAT + Toolbox, R-SWAT, and SWAT + Editor hard calibration. Hydrology Research. DOI: 10.2166/nh.2024.188 .

1951. Hariri, H., S.A. Hosseini and A. Khosrojerdi. 2022. Evaluating gabion performance in sediment yield reduction of basin under current and future conditions (case study: Dehbar Basin). Arabian Journal of Geosciences. 15(5): 402. DOI: 10.1007/s12517-022-09694-z .

1952. Harka, A.E., N.T. Roba and A.K. Kassa. 2020. Modelling rainfall runoff for identification of suitable water harvesting sites in Dawe River Watershed, Wabe Shebelle River Basin, Ethiopia. Journal of Water and Land Development. 47(10-12): 186-195. DOI: 10.24425/jwld.2020.135313 .

1953. Harmel, R. D., C.W. Richardson and K.W. King. 2000. Hydrologic response of a small watershed model to generated precipitation. Transactions of the ASAE. 43(6): 1483-1488. DOI: 10.13031/2013.3047 .

1954. Harmel, R.D. and P.K. Smith. 2007. Consideration of measurement uncertainty in the evaluation of goodness-of-fit in hydrologic and water quality modeling. Journal of Hydrology. 337(3-4): 326-336. DOI: 10.1016/j.jhydrol.2007.01.043 .

1955. Harmel, R.D., C. Baffaut and K.R. Douglas-Mankin. 2018. Review and development of ASABE engineering practice 621: "Guidelines for calibrating, validating, and evaluating hydrologic and water quality models". Transactions of the ASABE. 61(4): 1393-1401. DOI: 10.13031/trans.12806 .

1956. Harmel, R.D., C.G. Rossi, T. Dybala, J. Arnold, K. Potter, J. Wolfe and D. Hoffman. 2008. Conservation Effects Assessment Project research in the Leon River and Riesel watersheds. Journal of Soil and Water Conservation. 63(6): 453-460. DOI: 10.2489/jswc.63.6.453 .

1957. Harmel, R.D., D.K. Smith and K.W. Migliaccio. 2010. Modifying goodness-of-fit indicators to incorporate both measurement and model uncertainty in model calibration and validation. Transactions of the ASABE. 53(1): 55-63. URL: ftp://bellnetweb.brc.tamus.edu/pub/outgoing/bkomar/windows/DUET-H_WQ/TransModel+Meas2010.pdf.

1958. Harms, J.Z., J.J. Malard-Adam, J.F. Adamowski, A. Sharma and A. Nkwasa. 2023. Dynamically coupling system dynamics and SWAT+ models using Tinamït: Application of modular tools for coupled human–water system models. Hydrology and Earth System Sciences. 27(8): 1683–1693. DOI: 10.5194/hess-27-1683-2023 .

1959. Haro-Monteagudo, D., L. Palazón and S. Beguería. 2020. Long-term sustainability of large water resource systems under climate change: A cascade modeling approach. Journal of Hydrology. 582: 124546. DOI: 10.1016/j.jhydrol.2020.124546 .

1960. Harris, H.J., R.B. Wenger, P.E. Sager and J. Val Klump. 2018. The Green Bay saga: Environmental change, scientific investigation, and watershed management. Journal of Great Lakes Research. 44: 829-836. DOI: 10.1016/j.jglr.2018.08.001 .

1961. Harrison, R.L., J. van Tol and M.L. Toucher. 2022. Using hydropedological characteristics to improve modelling accuracy in Afromontane catchments. Journal of Hydrology: Regional Studies. 39: 100986. DOI: 10.1016/j.ejrh.2021.100986 .

1962. Hartanto, I.M., C. Almeida, T.K. Alexandridis, M. Weynants. G. Timoteo, P. Chambel-Leitão and A.M.S. Araujo. 2015. Merging earth observation data, weather predictions, in-situ measurements, and hydrological models, for water information services. Environmental Engineering and Management Journal. 14(9): 2031-2042. URL: http://omicron.ch.tuiasi.ro/EEMJ/issues/vol14/vol14no9.htm.

1963. Hartwich, J., M. Schmidt, J. Bölscher, C. Reinhardt-Imjela, D. Murach and A. Schulte. 2016. Erratum to: Hydrological modelling of changes in the water balance due to the impact of woody biomass production in the North German Plain. Environmental Earth Sciences. 75. DOI: 10.1007/s12665-016-5912-y .

1964. Hartwich, J., M. Schmidt, J. Bölscher, C. Reinhardt-Imjela, D. Murach and A. Schulte. 2016. Hydrologic modelling of changes in the water balance due to the impact of woody biomass production in the North German Plain. Environmental Earth Sciences. 75: 1071. DOI: 10.1007/s12665-016-5870-4 .

1965. Hasan, M.A. and S.M. Pradhanang. 2017. Estimation of flow regime for a spatially varied Himalayan watershed using improved multi‑site calibration of the Soil and Water Assessment Tool (SWAT) model. Environmental Earth Sciences. 76: 787. DOI: 10.1007/s12665-017-7134-3 .

1966. Hasan, M.M. and G. Wyseure. 2018. Impact of climate change on hydropower generation in Rio Jubones Basin, Ecuador. Water Science and Engineering. 11(2): 157-166. DOI: 10.1016/j.wse.2018.07.002 .

1967. Hasan, Z.A., N. Hamidon, M.S. Yusof and A.A. Ghani. 2012. Flow and sediment yield simulations for Bukit Merah Reservoir catchment, Malaysia: A case study. Water Science and Technology. 66(10): 2170-2176. DOI: 10.2166/wst.2012.432 .

1968. Hashem, A.A., B.A. Engel, G.W. Marek, J.E. Moorhead, D.C. Flanagan, M. Rashad, S. Radwan, V.F. Bralts and P.H. Gowda. 2020. Evaluation of SWAT soil water estimation accuracy using data from Indiana, Colorado, and Texas. Transactions of the ASABE. 63(6): 1827-1843. DOI: 10.13031/trans.13910 .

1969. Hashemi, F., J.E. Olesen, T. Dalgaard and C.D. Børgesen. 2016. Review of scenario analyses to reduce agricultural nitrogen and phosphorus loading to the aquatic environment. Science of the Total Environment. 573: 608-626. DOI: 10.1016/j.scitotenv.2016.08.141 .

1970. Hassan, N.A., J.M. Gathenya and J.M. Raude. 2021. Estimating groundwork recharge rates and identifying groundwater recharge zones in Kakia and Esamburbur sub-catchment Narok, Kenya. Journal of Sustainable Research in Engineering. 7(1): 31-45. URL: https://jsre.jkuat.ac.ke/index.php/jsre/article/view/128.

1971. Hassanzadeh, Y. and A.A. Afshar. 2019. Using the MIROC-ESM Model to Investigate the hydro-climatic conditions of the small-scale watershed under the impact of climate change. Journal of Civil and Environmental Engineering. 49.1(94): 47-59. URL: https://ceej.tabrizu.ac.ir/article_8956.html?lang=en.

1972. Hassanzadeh, Y., A.A. Afshar, M., Pourreza-Bilondi, H. Memarian and A.A. Besalatpour. 2019. Toward a combined Bayesian frameworks to quantify parameter uncertainty in a large mountainous catchment with high spatial variability. Environmental Monitoring and Assessment. 191: 23. DOI: 10.1007/s10661-018-7145-x .

1973. Hassen, S.M., B. Gebremariam and D.Y. Tenagashaw. 2022. Sediment yield modeling and evaluation of best management practices using the SWAT model of the Daketa Watershed, Ethiopia. Water Conservation Science and Engineering. 7(3): 283–292. DOI: 10.1007/s41101-022-00142-3 .

1974. Hatterman, F., V. Kyrsanova, F. Wechsung and M. Wattenbach. 2004. Integrating groundwater dynamics in regional hydrological modelling. Environmental Modelling & Software. 19(11): 1039-1051. DOI: 10.1016/j.envsoft.2003.11.007 .

1975. Hatterman, F.F, V. Kyrsanova, A. Habeck and A. Bronstert. 2006. Integrating wetlands and riparian zones in river basin modelling. Ecological Modelling. 199(4): 379-392. DOI: 10.1016/j.ecolmodel.2005.06.012 .

1976. Hatterman, F.F., M. Wattenbach, V. Krysanova and F. Wechsburg. 2005. Runoff simulations on the macroscale with the ecohydrological model SWIM in the Elbe Catchment—validation and uncertainty analysis. Hydrological Processes. 19(3): 693-714. DOI: 10.1002/hyp.5625 .

1977. Hattermann, F.F., H. Gömann, T. Conradt, M. Kaltofen, P. Kreins and F. Wechsung. 2007. Impacts of global change on water-related sectors and society in a trans-boundary central European river basin – Part 1: Project framework and impacts on agriculture. Advances in Geosciences. 11: 85-92. DOI: 10.5194/adgeo-11-85-2007 .

1978. Hattermann, F.F., V. Krysanova and C. Hesse. 2008. Modelling wetland processes in regional applications. Hydrological Sciences Journal. 53(5): 1001-1012. DOI: 10.1623/hysj.53.5.1001 .

1979. Hattermann, F.F., V. Krysanova, S N. Gosling, R. Dankers, P. Daggupati, C. Donnelly, M. Flörke, S. Huang, Y. Motovilov, S. Buda, T. Yang, C. Müller, G. Leng, Q. Tang, F.T. Portmann, S. Hagemann, D. Gerten, Y. Wada, Y. Masaki, T. Alemayehu, Y. Satoh and L. Samaniego. 2017. Cross‐scale intercomparison of climate change impacts simulated by regional and global hydrological models in eleven large river basins. Climatic Change. 141(3): 561-576. DOI: 10.1007/s10584-016-1829-4 .

1980. Havel, A., A. Tasdighi and M. Arabi. 2018. Assessing the hydrologic response to wildfires in mountainous regions. Hydrology and Earth System Sciences. 22: 2527-2550. DOI: 10.5194/hess-22-2527-2018 .

1981. Haverkamp, S., N. Fohrer and H.-G. Frede. 2005. Assessment of the effect of land use patterns on hydrologic landscape functions: A comprehensive GIS-based tool to minimize model uncertainty resulting from spatial aggregation. Hydrological Processes. 19(3): 715-727. DOI: 10.1002/hyp.5626 .

1982. Haverkamp, S., R. Srinivasan, H.-G. Frede and C. Santhi. 2002. Subwatershed spatial analysis tool: Discretization of a distributed hydrologic model by statistical criteria. Journal of the American Water Resources Association. 38(6): 1723-1733. DOI: 10.1111/j.1752-1688.2002.tb04377.x .

1983. Havrylenko, S.B., J.M. Bodoque, R. Srinivasan, G.V. Zucarelli and P. Mercuri. 2015. Assessment of the soil water content in the Pampas region using SWAT. Catena. 137: 298-309. DOI: 10.1016/j.catena.2015.10.001 .

1984. Hawkins, R.H., F.D. Theurer and M. Rezaeianzadeh. 2019. Understanding the basis of the curve number method for watershed models and TMDLs. Journal of Hydrologic Engineering. 24(7): 06019003. DOI: 10.1061/(ASCE)HE.1943-5584.0001755 .

1985. Hayek, S., M. Hammad and D. Al-Kamouh. 2022. Assessment the unconfined aquifer resources under climate change impacts: Case study of Akkar Plain. Tishreen University Journal for Research and Scientific Studies. 21(36): 305-320. URL: https://journal.tishreen.edu.sy/index.php/engscnc/article/view/13330.

1986. He, H., J. Zhou, and W. Zhang. 2008. Modelling the impacts of environmental changes on hydrological regimes in the Hei River Watershed, China. Global and Planetary Change. 61(3-4): 175-193. DOI: 10.1016/j.gloplacha.2007.08.012 .

1987. He, H., Q. Zhang, J. Zhou, J. Fei and X. Xie. 2009. Coupling climate change with hydrological dynamic in Qinling Mountains, China. Climatic Change. 94(3-4): 409-427. DOI: 10.1007/s10584-008-9527-5 .

1988. He, J., X. Wu, Y. Zhang, B. Zheng, D. Meng, H. Zhou, L. Lu, W. Deng, Z. Shao and Y. Qin. 2020. Management of water quality targets based on river-lake water quality response relationships for lake basins – A case study of Dianchi Lake. Environmental Research. 186: 109479. DOI: 10.1016/j.envres.2020.109479 .

1989. He, J., Y.-R. Wan, H.-T. Chen and W.-C. Wang. 2021. Study on the impact of land-use change on runoff variation trend in Luojiang River Basin, China. Water. 13(22): 3283. DOI: 10.3390/w13223282 .

1990. He, Q. and F. Molkenthin. 2021. Improving the integrated hydrological simulation on a data-scarce catchment with multi-objective calibration. Journal of Hydroinformatics. 23(2): 267-283. DOI: 10.2166/hydro.2021.132 .

1991. He, Q., F. Wendland and F. Molkenthin. 2019. The analysis of nitrogen load and simulation uncertainty using SWAT in a catchment with paddy field in China. Water Science and Technology. 80(4): 806-816. DOI: 10.2166/wst.2019.326 .

1992. He, R., X. Yang, P.W. Gassman, G. Wang and C. Yu. 2019. Spatiotemporal characterization of nutrient pollution source compositions in the Xiaohong River Basin, China. Ecological Indicators. 107: 105676. DOI: 10.1016/j.ecolind.2019.105676 .

1993. He, Y., Q. Wang, Y. Xu, Z. Li, J. Yuan, M. Lu and Z. Lin. 2022. Climate change increased the compound extreme precipitation-flood events in a representative watershed of the Yangtze River Delta, China. Stochastic Environmental Research and Risk Assessment. 36(11): 3803-3818. DOI: 10.1007/s00477-022-02229-8 .

1994. Heathman, G.C., D.C. Flanagan, M. Larose and B.W. Zuercher. 2008. Application of the Soil and Water Assessment Tool and annualized agricultural non-point source models in the St. Joseph River Watershed. Journal of Soil and Water Conservation. 63(6): 552-568. DOI: 10.2489/jswc.63.6.552 .

1995. Heathman, G.C., M. Larose and J.C. Ascough II. 2008. Soil and Water Assessment Tool evaluation of soil and land use geographic information system data sets on simulated stream flow. Journal of Soil and Water Conservation. 64(1): 17-32. DOI: 10.2489/jswc.64.1.17 .

1996. Heberling, M.T., C.T. Nietch, H.W. Thurston, M. Elovitz, K.H. Birkenhauer, S. Panguluri, B. Ramakrishnan, E. Heiser and T. Neyer. 2015. Comparing drinking water treatment costs to source water protection costs using time series analysis. Water Resources Research. 51(11): 8741-8756. DOI: 10.1002/2014WR016422 .

1997. Heidari, A., A. Mayer and D. Watkins Jr. 2019. Hydrologic impacts and trade-offs associated with forest-based bioenergy development practices in a snow-dominated watershed, Wisconsin, USA. Journal of Hydrology. 574: 421-429. DOI: 10.1016/j.jhydrol.2019.04.067 .

1998. Heidari, A., D. Watkins Jr., A. Mayer, T. Propato, S. Verón and D. de Abelleyra. 2021. Spatially variable hydrologic impact and biomass production tradeoffs associated with Eucalyptus (E. grandis) cultivation for biofuel production in Entre Rios, Argentina. Global Change Biology Bioenergy. 13(5): 823-837. DOI: 10.1111/gcbb.12815 .

1999. Heidari, A., Mayer, A., Watkins Jr. D. and M.M. Castillo. 2020. Hydrologic impacts and trade-offs associated with developing oil palm for bioenergy in Tabasco, Mexico. Journal of Hydrology: Regional Studies. 31: 100722. DOI: 10.1016/j.ejrh.2020.100722 .

2000. Heidari, H., M. Arabi, M. Ghanbari and T. Warziniack. 2020. A probabilistic approach for characterization of sub-annual socioeconomic drought intensity-duration-frequency (IDF) relationships in a changing environment. Water. 12(6): 1522. DOI: 10.3390/w12061522 .

2001. Heidari, H., M. Arabi, T. Warziniack and S. Sharvelle. 2021. Effects of urban development patterns on municipal water shortage. Frontiers in Water. 3: 694917. DOI: 10.3389/frwa.2021.694817 .

2002. Heistermann, M., T., Francke, C. Georgi and A. Bronstert. 2014. Increasing life expectancy of water resources literature. Water Resources Research. 50: 5019-5028. DOI: 10.1002/2014WR015674 .

2003. Hejzlar, J., S. Anthony, B. Arheimer, H. Behrendt, F. Bouraoui, B. Grizzetti, P. Groenendijk, M.H.J.L. Jeuken, H. Johnsson, A. Lo Porto, B. Kronvang Y. Panagopoulos, C. Siderius, M Silgram, M. Venohr and J. Zaloudik. 2009. Nitrogen and phosphorus retention in surface waters: An inter-comparison of predictions by catchment models of different complexity. Journal of Environmental Monitoring. 11(3): 584-593. DOI: 10.1039/b901207a .

2004. Hendricks, N.P., S. Sinnathamby, K. Douglas-Mankin, A. Smith, D.A. Sumner and D.H. Earnhart. 2014. The environmental effects of crop price increases: Nitrogen losses in the U.S. Corn Belt. Journal of Environmental Economics and Management. 68: 507-526. DOI: 10.1016/j.jeem.2014.09.002 .

2005. Heo, J., J. Yu, J.R. Giardino and H. Cho. 2015. Impacts of climate and land-cover changes on water resources in a humid subtropical watershed: A case study from east Texas, USA. Water and Environment Journal. 29(1): 51-60. DOI: 10.1111/wej.12096 .

2006. Heo, J., J. Yu, J.R. Giardino and H. Cho. 2015. Water resources response to climate and land-cover changes in a semi-arid watershed, New Mexico, USA. Terrestrial, Atmospheric and Oceanic Sciences. 26(4): 463-474. DOI: 10.3319/TAO.2015.03.24.01(Hy) .

2007. Heo, S.-G., D.-S. Ryu, J.-Y. Kim, K.-S. Kim, J.-H. Ahn, Y.-S. Park, J.-G. Kim, J.-H. Park, K.-J. Lim and J.-D. Choi. 2006. Effects on SWAT estimation of subwatershed delineation using SWAT. KCID Journal. 13(2): 50-62.

2008. Heo, S.-G., K.-S. Kim, J.-H. Ahn, J.-S. Yoon, K.-J. Lim, J.-D. Choi, Y.-C. Shin and C.-W. Lyou. 2006. Evaluation of water quality impacts of forest fragmentation at Doam-Dam Watershed using GIS-based modeling system. Journal of the Korean Association of Geographic Information Studies. 9(4): 81-94. URL: http://www.koreascience.or.kr/article/ArticleFullRecord.jsp?cn=GRJBBB_2006_v9n4_81.

2009. Heo, S.-G., K.-S. Kim, M. Sagong, J.-H. Ahn and K.J. Lim. 2005. Evaluation of SWAT applicability to simulate soil erosion at highland agricultural lands. Journal of Korean Society of Rural Planning. 11(4): 67-74. URL: http://www.koreascience.or.kr/article/ArticleFullRecord.jsp?cn=NCGHBW_2005_v11n4s29_67.

2010. Her, Y. and I. Chaubey. 2015. Impact of the numbers of observations and calibration parameters on equifinality, model performance, and output and parameter uncertainty. Hydrological Processes. 29(19): 4220-4237. DOI: 10.1002/hyp.10487 .

2011. Her, Y. and J. Jeong. 2018. SWAT+ versus SWAT2012: Comparison of sub-daily urban runoff simulation. Transactions of the ASABE. 61(4): 1287-1295. DOI: 10.13031/trans.12600 .

2012. Her, Y., I. Chaubey, J. Frankenberger and D. Smith. 2016. Effect of conservation practices implemented by USDA programs at field and watershed scales. Journal of Soil and Water Conservation. 71(3): 249-266. DOI: 10.2489/jswc.71.3.249 .

2013. Her, Y., I. Chaubey, J. Frankenberger and J. Jeong. 2017. Implications of spatial and temporal variations in effects of conservation practices on water management strategies. Agricultural Water Management. 180(Part B): 252–266. DOI: 10.1016/j.agwat.2016.07.004 .

2014. Her, Y., J. Frankenberger, I. Chaubey and R. Srinivasan. 2015. Threshold effects in HRU definition of the Soil and Water Assessment Tool. Transactions of the ASABE. 58(2): 367-378. DOI: 10.13031/trans.58.10805 .

2015. Her, Y., J. Jeong, J. Arnold, L. Gosselink, R. Glick and F. Jaber. 2017. A new framework for modeling decentralized low impact developments using Soil and Water Assessment Tool. Environmental Modelling & Software. 96: 305-322. DOI: 10.1016/j.envsoft.2017.06.005 .

2016. Her, Y., J. Jeong, K. Bieger, H. Rathjens, J. Arnold and R. Srinivasan. 2017. Implications of conceptual channel representation on SWAT streamflow and sediment modeling. Journal of the American Water Resources Association. 53(4): 725–747. DOI: 10.1111/1752-1688.12533 .

2017. Her, Y., R. Cibin and I. Chaubey. 2015. Application of parallel computing methods for improving efficiency of optimization in hydrologic and water quality modeling. Applied Engineering in Agriculture. 31(3): 455-468. DOI: 10.13031/aea.31.10905 .

2018. Her0l, Nurhamidah and Andriani. 2022. Analasis pengaruh perubahan tata guna lahan terhadap aliran permukaan dan laju sedimentasi menggunakan ArcSWAT. Journal of Civil Engineering and Vocational Education. 9(1): 15-26. DOI: 10.24036/cived.v9i1.115798 .

2019. Herman, M.R., A.P. Nejadhashemi, M. Abouali, J.S. Hernandez-Suarez, F. Daneshvar, Z. Zhang, M.C. Anderson, A.M. Sadeghi, C.R. Hain and A. Sharifi. 2018. Evaluating the role of evapotranspiration remote sensing data in improving hydrological modeling predictability. Journal of Hydrology. 556: 39-49. DOI: 10.1016/j.jhydrol.2017.11.009 .

2020. Herman, M.R., A.P. Nejadhashemi, F. Daneshvar, D.M. Ross, S.A. Woznicki, Z. Zhang and A. Esfahanian. 2015. Optimization of conservation practice implementation strategies in the context of stream health. Ecological Engineering. 84: 1-12. DOI: 10.1016/j.ecoleng.2015.07.011 .

2021. Herman, M.R., A.P. Nejadhashemi, F. Daneshvar, M. Abouali, D.M. Ross, S.A. Woznicki and Z. Zhang. 2016. Optimization of bioenergy crop selection and placement based on a stream health indicator using an evolutionary algorithm. Journal of Environmental Management. 181: 413-424. DOI: 10.1016/j.jenvman.2016.07.005 .

2022. Herman, M.R., J.S. Hernandez-Suarez, A.P. Nejadhashemi, I. Kropp and A.M. Sadeghi. 2020. Evaluation of multi- and many-objective optimization techniques to improve the performance of a hydrologic model using evapotranspiration remote-sensing data. Journal of Hydraulic Engineering. 25(4): 04020006. DOI: 10.1061/(ASCE)HE.1943-5584.0001896 .

2023. Herman, M.R., P. Nejadhashemi, J.S. Hernandez-Suarez and A.M. Sadeghi. 2020. Analyzing the variability of remote sensing and hydrologic model evapotranspiration products in a watershed in Michigan. Journal of the American Water Resources Association. 56(4): 738-755. DOI: 10.1111/1752-1688.12849 .

2024. Hernandes, T.A.D., F.V. Scarpare and J.E.A. Seabra. 2018. Assessment of impacts on basin stream flow derived from medium-term sugarcane expansion scenarios in Brazil. Agriculture Ecosystems and Environment. 259: 11-18. DOI: 10.1016/j.agee.2018.02.026 .

2025. Hernandes, T.A.D., F.V. Scarpare and J.E.A. Seabra. 2018. Assessment of the recent land use change dynamics related to sugarcane expansion and the associated effects on water resources availability. Journal of Cleaner Production. 197(Part 1): 1328-1341. DOI: 10.1016/j.jclepro.2018.06.297 .

2026. Hernandez A.J., S.P. Healey, H. Huang and R.D. Ramsey. 2018. Improved prediction of stream flow based on updating land cover maps with remotely sensed forest change detection. Forests. 9(6): 317. DOI: 10.3390/f9060317 .

2027. Hernandez, M., S.C. Miller, D.C. Goodrich, B.F. Goff, W.G. Kepner, C.M. Edmond and K.B. Jones. 2000. Modeling runoff response to land cover and rainfall spatial variability in semi-arid watersheds. Environmental Monitoring and Assessment. 64: 285-298. DOI: 10.1023/A:1006445811859 .

2028. Hernandez-Suarez, J.S., A.P. Nejadhashemi, I.M. Kropp, M. Abouali, Z. Zhang and K. Deb. 2018. Evaluation of the impacts of hydrologic model calibration methods on predictability of ecologically-relevant hydrologic indices. Journal of Hydrology. 564: 758-772. DOI: 10.1016/j.jhydrol.2018.07.056 .

2029. Hernandez-Suarez, J.S., A.P. Nejadhashemi and K. Deb. 2021. A novel multi-objective model calibration method for ecohydrological applications. Environmental Modelling & Software. 144: 105161. DOI: 10.1016/j.envsoft.2021.105161 .

2030. Hernandez-Suarez, J.S., S.A. Woznicki and A.P. Nejadhashemi. 2020. Multi-site watershed model calibration for evaluating best management practice effectiveness in reducing fecal pollution. Human and Ecological Risk Assessment: An International Journal. 26(10): 2690-2715. DOI: 10.1080/10807039.2019.1680526 .

2031. Hersi, N.A.M., D.M.M. Mulungu and J. Nobert. 2023. Groundwater recharge estimation under changing climate and land use scenarios in a data-scarce Bahi (Manyoni) catchment in Internal Drainage Basin (IDB), Tanzania using Soil and Water Assessment Tool (SWAT). Groundwater for Sustainable Development. 22: 100957. DOI: 10.1016/j.gsd.2023.100957 .

2032. Hesse, C. and V. Krysanova. 2016. Modeling climate and management change impacts on water quality and in-stream processes in the Elbe River Basin. Water. 8(2): 40. DOI: 10.3390/w8020040 .

2033. Hesse, C., V. Krysanova and A. Voss. 2012. Impementing in-stream nutrient processes in large-scale landscape modeling for the impact assessment on water quality. Environmental Modeling & Assessment. 17(6): 589-611. DOI: 10.1007/s10666-012-9320-8 .

2034. Hesse, C., V. Krysanova, A. Stefanova, M. Bielecka and D.A. Domnin. 2015. Assessment of climate change impacts on water quantity and quality of the multi-river Vistula Lagoon Catchment. Hydrological Sciences Journal. 60(5): 890-911. DOI: 10.1080/02626667.2014.967247 .

2035. Hesse, C., V. Krysanova, J. Pazolt and F.F. Hattermann. 2008. Eco-hydrological modelling in a highly regulated lowland catchment to find measures for improving water quality. Ecological Modelling. 218(1-2): 135-148. DOI: 10.1016/j.ecolmodel.2008.06.035 .

2036. Hesse, C., V. Krysanova, T. Vetter and J. Reinhardt. 2013. Comparison of several approaches representing terrestrial and in-stream nutrient retention and decomposition in watershed modelling. Ecological Modelling. 269: 78-85. DOI: 10.1016/j.ecolmodel.2013.08.017 .

2037. Heuvelmans, G., B. Muys and J. Feyen. 2004. Analysis of the spatial variation in the parameters of the SWAT model with application in Flanders, Northern Belgium. Hydrology and Earth System Sciences. 8(5): 931-939. DOI: 10.5194/hess-8-931-2004 .

2038. Heuvelmans, G., B. Muys and J. Feyen. 2004. Evaluation of hydrological model parameter transferability for simulating the impact of land use on catchment hydrology. Physics and Chemistry of the Earth. 29(11-12): 739-747. DOI: 10.1016/j.pce.2004.05.002 .

2039. Heuvelmans, G., B. Muys and J. Feyen. 2006. Regionalisation of the parameters of a hydrological model: Comparison of linear regression models with artificial neural nets. Journal of Hydrology. 319(1-4): 245-265. DOI: 10.1016/j.jhydrol.2005.07.030 .

2040. Heuvelmans, G., J. F. Garcio-Qujano, B. Muys, J. Feyen and P. Coppin. 2005. Modelling the water balance with SWAT as part of the land use impact evaluation in a life cycle study of CO2 emission reduction scenarios. Hydrological Processes. 19(3): 729-748. DOI: 10.1002/hyp.5620 .

2041. Hidayat, L. and B. Sulistyo. 2019. The simulation of land use change on soil erosion and sediment transported using SWAT hidrological models in the upsteam of Mrica Reservoir catchment areas. TERRA: Journal of Land Restoration. 2(1): 9-17. URL: https://ejournal.unib.ac.id/index.php/terrajournal/article/view/9793.

2042. Hidayat, L., P. Sudira, S. Susanto and R. Jayadi. 2016. Validation of the SWAT Hydrological Model on the catchment area of Mrica Reservoir. AGRITECH. 36(4): 467-474. DOI: 10.22146/agritech.16772 .

2043. Hille, S., D. Graeber, B. Kronvang, G.H. Rubaek, G.H., N. Onnen, E. Molino-Navarro, A. Baattrup-Pedersen, G.J. Heckrath and M.I. Stutter. 2019. Management options to reduce phosphorus leaching from vegetated buffer strips. Journal of Environmental Quality. 48(2): 322-329. DOI: 10.2134/jeq2018.01.0042 .

2044. Himanshu, S.K., A. Pandey and P. Shrestha. 2017. Application of SWAT in an Indian river basin for modeling runoff, sediment and water balance. Environmental Earth Sciences. 76: 3. DOI: 10.1007/s12665-016-6316-8 .

2045. Himanshu, S.K., A. Pandey and A. Patil. 2018. Hydrologic Evaluation of the TMPA-3B42V7 precipitation data set over an agricultural watershed using the SWAT Model. Journal of Hydrologic Engineering. 23(4): 0501803. DOI: 10.1061/(ASCE)HE.1943-5584.0001629 .

2046. Himanshu, S.K., A. Pandey, M.J. Madolli, S.S. Palmate, A. Kumar, N. Patidar and B. Yadav. 2023. An ensemble hydrologic modeling system for runoff and evapotranspiration evaluation over an agricultural watershed. Journal of the Indian Society of Remote Sensing. 51(1): 177-196. DOI: 10.1007/s12524-022-01634-4 .

2047. Himanshu, S.K., A. Paney, B. Yadav and A. Gupta. 2019. Evaluation of best management practices for sediment and nutrient loss control using SWAT model. Soil & Tillage Research. 192: 42-58. DOI: 10.1016/j.still.2019.04.016 .

2048. Hirt, C.C., T.L. Veith, A.S. Collick, S.E. Yetter and R. P. Brooks. 2020. Headwater stream condition and nutrient runoff: Relating SWAT to empirical ecological measures in an agricultural watershed in Pennsylvania. Journal of Environmental Quality. 49(3): 557-568. DOI: 10.1002/jeq2.20032 .

2049. Hively, W.D., S. Lee, A.M. Sadeghi, G.W. McCarty, B.T. Lamb, A. Soroka, J. Keppler, I.-Y. Yeo and G.E. Moglen. 2020. Estimating the effect of winter cover crops on nitrogen leaching using cost-share enrollment data, satellite remote sensing, and Soil and Water Assessment Tool (SWAT) modeling. Journal of Soil and Water Conservation. 75(3): 362-375. DOI: 10.2489/jswc.75.3.362 .

2050. Ho, Y.S. 2018. Comments on "Mapping the scientific research on non-point source pollution: A bibliometric analysis" by Yang et al. (2017). Environmental Science and Pollution Research. 25: 30737-30738. DOI: 10.1007/s11356-017-0381-8 .

2051. Hoan, N.X, D.N. Khoi and P.T.T. Nhi. 2020. Uncertainty assessment of streamflow projection under the impact of climate change in the Lower Mekong Basin: a case study of the Srepok River Basin, Vietnam. Water and Environment Journal. 34(1): 131-142. DOI: 10.1111/wej.12447 .

2052. Hoang, B.H., H.N Hien, N.T.N. Dinh, N.A. Thao, P.T.T. Ha, J. Kandasamy and T.V. Nguyen. 2019. Integration of SWAT and QUAL2K for water quality modeling in a data scarce basin of Cau River Basin in Vietnam. Ecohydrology & Hydrobiology. 19(2): 210-223. DOI: 10.1016/j.ecohyd.2019.03.005 .

2053. Hoang, L., E.M. Schneiderman, K.E.B. Moore, R. Mukundan, E.M. Owens and T.S. Steenhuis. 2017. Predicting saturation-excess runoff distribution with a lumped hillslope model: SWAT-HS. Hydrological Processes. 31(12): 2226–2243. DOI: 10.1002/hyp.11179 .

2054. Hoang, L., A. van Griensven and A. Mynett. 2017. Enhancing the SWAT model for simulating denitrification in riparian zones at the river basin scale. Environmental Modelling & Software. 93: 163-179. DOI: 10.1016/j.envsoft.2017.03.017 .

2055. Hoang, L., A. van Griensven, P. van der Keur, J.C. Refsgaard, L. Troldborg, B. Nilsson and A. Mynett. 2014. Comparison and evaluation of model structures for the simulation of pollution fluxes in a tile-drained river basin. Journal of Environmental Quality. 43(1): 86-99. DOI: 10.2134/jeq2011.0398 .

2056. Hoang, L., R. Mukundan, K.E.B. Moore, E.M. Owens and T.S. Steenhuis. 2018. The effect of input data resolution and complexity on the uncertainty of hydrological predictions in a humid vegetated watershed. Hydrology and Earth System Sciences. 22(11): 5947–5965. DOI: 10.5194/hess-22-5947-2018 .

2057. Hoang, L., R. Mukundan, K.E.B. Moore, E.M. Owens and T.S. Steenhuis. 2019. Phosphorus reduction in the New York City water supply system: A water quality success story confirmed with data and modeling. Ecological Engineering. 135: 75-88. DOI: 10.1016/j.ecoleng.2019.04.029 .

2058. Hoghooghi, N., D.D. Bosch and B.P. Bledsoe. 2021. Assessing hydrologic and water quality effects of land use conversion to Brassica carinata as a winter biofuel crop in the southeastern coastal plain of Georgia, USA using the SWAT model. Global Change Biology Bioenergy. 13(3): 473-492. DOI: 10.1111/gcbb.12792 .

2059. Hoghooghi, N., D.E. Radcliffe, M.Y. Habteselassie and J. Jeong. 2017. Modeling the effects of onsite wastewater treatment systems on nitrate loads using SWAT in an urban watershed of Metropolitan Atlanta. Journal of Environmental Quality. 46(3): 632-640. DOI: 10.2134/jeq2016.08.0322 .

2060. Holder, A.J., R. Rowe, N.P. McNamara, I.S. Donnison and J.P. McCalmont. 2019. Soil & Water Assessment Tool (SWAT) simulated hydrological impacts of land use change from temperate grassland to energy crops: A case study in western UK. Global Change Biology Bioenergy. 11(11): 1298-1317. DOI: 10.1111/gcbb.12628 .

2061. Hollander, H.M., T. Blume, H. Bormann, W. Buytaert, G.B. Chirico, J.-E. Exbrayat, D. Gustafsson, H. Hotzel, P. Kraft, C. Stamm, S. Stoll, G. Bloschl and H. Fluhler. 2009. Comparative predictions of discharge from an artificial catchment (Chicken Creek) using sparse data. Hydrology and Earth System Sciences. 13(11): 2069-2094. URL: http://edoc.gfz-potsdam.de/gfz/get/14291/0/06ba6f0d8028563e614d6d52d2ca453b/14291.pdf.

2062. Hollaway, M.J., K.J. Beven, C.McW.H. Benskin, A.L. Collins, R. Evans, P.D. Falloon, K.J. Forber, K.M. Hiscock, R. Kahana, C.J.A. Macleod, M.C. Ockenden, M.L. Villamizar, C. Wearing, P.J.A. Wither, J.G. Zhou, N.J. Barber and P.M. Haygarth. 2018. The challenges of modelling phosphorus in a headwater catchment: Applying a ‘limits of acceptability’ uncertainty framework to a water quality model. Journal of Hydrology. 558: 607-624. DOI: 10.1016/j.jhydrol.2018.01.063 .

2063. Holvoet, K., A. van Griensven, P. Seuntjens and P.A. Vanrolleghem. 2005. Sensitivity analysis for hydrology and pesticide supply towards the river in SWAT. Physics and Chemistry of the Earth. 30(8-10): 518-526. DOI: 10.1016/j.pce.2005.07.006 .

2064. Holvoet, K., A. van Griensven, V. Gevaert, P. Seuntjens and P.A. Vanrolleghem. 2008. Modifications to the SWAT code for modelling direct pesticide losses. Environmental Modelling & Software. 23(1): 72-81. DOI: 10.1016/j.envsoft.2007.05.002 .

2065. Holvoet, K., P. Seuntjens and P.A. Vanrolleghem. 2007. Monitoring and modeling pesticide fate in surface waters at the catchment scale. Ecological Modelling. 209(1): 53-64. DOI: 10.1016/j.ecolmodel.2007.07.030 .

2066. Holvoet, K., V. Gevaert, A. van Griensven, P. Seuntjens and P.A. Vanrolleghem. 2007. Modelling the effectiveness of agricultural measures to reduce the amount of pesticides entering surface waters. Water Resources Management. 21(12): 2027-2035. DOI: 10.1007/s11269-007-9199-3 .

2067. Homdee, T., K. Pongput and S. Kanae. 2011. Impacts of land cover changes on hydrologic responses: A case study of Chi River Basin, Thailand. Journal of Japan Society of Civil Engineers, Ser. B1 (Hydraulic Engineering). 55: S31-S36. URL: https://www.jstage.jst.go.jp/article/jscejhe/67/4/67_4_I_31/_article.

2068. Hong, E.-M., D. Shelton, Y.A. Pachepsky, W.-H. Nam, C. Coppock and R. Muirhead. 2017. Modeling the interannual variability of microbial quality metrics of irrigation water in a Pennsylvania stream. Journal of Environmental Management. 187: 253-264. DOI: 10.1016/j.jenvman.2016.11.054 .

2069. Hong, W. and B.R. Johnson. 2019. Climate change will both exacerbate and attenuate urbanization impacts on streamflow regimes in southern Willamette Valley, Oregon. River Research and Applications. 35(7): 818-832. DOI: 10.1002/rra.3454 .

2070. Hong, W.Y., M.J. Park, J.Y. Park, G.A. Park and S.J. Kim. 2010. The spatial and temporal correlation analysis between MODIS NDVI and SWAT predicted soil moisture during forest NDVI increasing and decreasing periods. KSCE Journal of Civil Engineering. 14(6): 931-939. DOI: 10.1007/s12205-010-0851-8 .

2071. Hoque, Y.M., C. Raj, M.M. Hantush, I. Chaubey and R.S. Govindaraju. 2014. How do land-use and climate change affect watershed health? A scenario-based analysis. Water Quality, Exposure, and Health. 6(1-2): 19-33. DOI: 10.1007/s12403-013-0102-6 .

2072. Hoque, Y.M., M.M. Hantush and R.S. Govindaraju. 2014. On the scaling behavior of reliability-resilience-vulnerability indices in agricultural watersheds. Ecological Indicators. 40: 136-146. DOI: 10.1016/j.ecolind.2014.01.017 .

2073. Hoque, Y.M., S. Tripathi, M.M. Hantush and R.S. Govindaraju. 2012. Watershed reliability, resilience and vulnerability analysis under uncertainty using water quality data. Journal of Environmental Management. 109: 101-112. DOI: 10.1016/j.jenvman.2012.05.010 .

2074. Hoque, Y.M., S. Tripathi, M.M. Hantush and R.S. Govindaraju. 2016. Aggregate measures of watershed health from reconstructed water quality data with uncertainty. Journal of Environmental Quality. 45(2): 709-719. DOI: 10.2134/jeq2015.10.0508 .

2075. Horan, R., R. Gowri, P.S. Wable, H. Baron, V.D.J. Keller, K.K. Garg, P.P. Mujumdar, H. Houghton-Carr and G. Rees. 2021. A comparative assessment of hydrological models in the Upper Cauvery catchment. Water. 13(2): 151. DOI: 10.3390/w13020151 .

2076. Hordofa, A.T., O.T. Leta, T. Alamirew and A.D. Chukalla. 2023. Climate change impacts on blue and green water of Meki River Sub-Basin. Water Resources Management. DOI: 10.1007/s11269-023-03490-4 .

2077. Hörmann, G., A. Horn and N. Fohrer. 2005. The evaluation of land-use options in mesoscale catchments: Prospects and limitations of eco-hydrological models. Ecological Modelling. 187(1): 3-14. DOI: 10.1016/j.ecolmodel.2005.01.022 .

2078. Hormann, G., N. Koplin, Q. Cai and N. Fohrer. 2009. Using a simple model as a tool to parameterise the SWAT model of the Xiangxi River in China. Quaternary International. 208(1-2): 116-120. DOI: 10.1016/j.quaint.2008.11.007 .

2079. Horn, A.L., F.J. Rueda, G. Hörmann and N. Fohrer. 2004. Implementing river water quality modelling issues in mesoscale watershed models for water policy demands—an overview on current concepts, deficits, and future tasks. Physics and Chemistry of the Earth. 29(11-12): 725-737. DOI: 10.1016/j.pce.2004.05.001 .

2080. Horn, A.L., G. Hörmann and N. Fohrer. 2005. Application of a virtual watershed in academic education. Advances in Geosciences. 5: 137-141. DOI: 10.5194/adgeo-5-137-2005 .

2081. Hossard L. and P. Chopin. 2019. Modelling agricultural changes and impacts at landscape scale: A bibliometric review. Environmental Modelling & Software. 122: 104513. DOI: 10.1016/j.envsoft.2019.104513 .

2082. Hosseini, M., A.M. Ghafouri, M.S.M. Amin, M.R. Tabatabaei, M. Goodarzi and A.A. Kolahchi. 2012. Effects of land use changes on water balance in Taleghan Catchment, Iran. Journal of Agricultural Science and Technology. 14: 1159-1172. URL: http://jast.modares.ac.ir/?_action=articleInfo&article=4884&vol=982.

2083. Hosseini, M., M. Ghafouri, M. Tabatabaei , N. Ebrahimi and A.Z. Garizi. 2016. Estimation of hydrologic budget for Gharasou watershed, Iran. ECOPERSIA. 4(3): 1455-1469. URL: http://ecopersia.modares.ac.ir/article_15526.html.

2084. Hosseini, M., M. Ghafouri, M.R. Tabatabaei, M. Goodarzi and Z. Mokarian. 2016. Estimating hydrologic budgets for six Persian Gulf watersheds, Iran. Applied Water Science. 7(6): 3323-3332. DOI: 10.1007/s13201-016-0478-0 .

2085. Hosseini, P. and R.T. Bailey. 2022. Investigating the controlling factors on salinity in soil, groundwater, and river water in a semi-arid agricultural watershed using SWAT-Salt. Science of the Total Environment. 810: 152293. DOI: 10.1016/j.scitotenv.2021.152293 .

2086. Hosseini, S.H. and M.R. Khaleghi. 2020. Application of SWAT model and SWAT‑CUP software in simulation and analysis of sediment uncertainty in arid and semi‑arid watersheds (case study: the Zoshk–Abardeh watershed). Modeling Earth Systems and Environment. 6(4): 2003-2013. DOI: 10.1007/s40808-020-00846-2 .

2087. Hotchkiss, R.H., S.F. Jorgensen, M.C. Stone and T.A. Fontaine. 2000. Regulated river modeling for climate change impact assessment: The Missouri River. Journal of the American Water Resources Association. 36(2): 375-386. DOI: 10.1111/j.1752-1688.2000.tb04275.x .

2088. Hou, J., M. Dou, Y. Zhang, J. Wang and G. Li. 2021. An evaluation model for landslide and debris flow prediction using multiple hydrometeorological variables. Environmental Earth Sciences. 80(16): 515. DOI: 10.1007/s12665-021-09840-y .

2089. Hou, W. and J. Gao. 2019. Simulating runoff generation and its spatial correlation with environmental factors in Sancha River Basin: The southern source of the Wujiang River. Journal of Geographical Sciences. 29: 432-448. DOI: 10.1007/s11442-019-1608-z .

2090. Hou, X., Z. Xu, C. Tang and S. Zhang. 2021. Spatial distributions of nitrogen and phosphorus losses in a basin and responses to best management practices — Jialing River Basin case study. Agricultural Water Management. 255: 107048. DOI: 10.1016/j.agwat.2021.107048 .

2091. Hou, Z.-W., C.-Z. Qin, A.-X. Zhu, P. Liang, Y.-J. Wang and Y.-Q. Zhu. 2019. From manual to intelligent: A review of input data preparation methods for geographic modeling. ISPRS International Journal of Geo-Information. 8(9): 376. DOI: 10.3390/ijgi8090376 .

2092. Houngue, N.R., A.D. Almoradie, S. Thiam, K. Komi, J.G. Adounkpe, K. Begedou and M. Evers. 2023. Climate and land-use change impacts on flood hazards in the Mono River Catchment of Benin and Togo. Sustainability. 15(7): 5862. DOI: 10.3390/su15075862 .

2093. Hounnou, L. 2022. Economic impact of climate change on the implementation fo best management practices in the Fort Cobb Watershed. Journal of the American Water Resources Association. 58(6): 1307-1325. DOI: 10.1111/1752-1688.12999 .

2094. Houser, J.B., L.M. Hauck and A. Saleh. 2015. Modifying and validating the SWAT model to determine landuse effects on watershed water quality: Using a dual level of model performance based on subbasin size. International Journal of Environmental Research. 9(3): 885-896. URL: https://ijer.ut.ac.ir/article_975.html.

2095. Housh, M., M.A. Yaeger, X. Cai, G. McIsaac, M. Khanna, M. Sivapalan, Y. Ouyang, I. Al-Qadi and A. Jain. 2015. Managing multiple mandates: A system of systems model to analyze strategies for producing cellulosic ethanol and reducing riverine nitrate loads in the Upper Mississippi River Basin. Environmental Science & Technology. 49(19): 11932–11940. DOI: 10.1021/acs.est.5b02712 .

2096. Houteta, D.K., K. Atchonouglo, J.G. Adounkpe, B. Diwediga, Y. Lombo, K.E. Kpemoua and K. Agboka. 2022. Changes in land use/ cover and water balance components during 1964–2010 period in the Mono river basin, Togo-Benin. Geography, Environment, Sustainability. 4(15): 171-180. DOI: 10.24057/2071-9388-2021-098 .

2097. Hovenga, P.A., D. Wang, S.C. Medeiros, S.C. Hagen and K. Alizad. 2016. The response of runoff and sediment loading in the Apalachicola River, Florida to climate and land use land cover change. Earth's Future. 4(5): 124–142. DOI: 10.1002/2015EF000348 .

2098. Howard, G., W. Zhang, A. Valcu-Lismanand P.W. Gassman. 2024. Evaluating the tradeoff between cost effectiveness and participation in agricultural conservation programs. American Journal of Agricultural Economics. 106(2): 712-738. DOI: 10.1111/ajae.12397 .

2099. Hoyos, N., A. Correa-Metrio, S.M. Jepsen, B. Wemple, S. Valencia, M. Marsik, R. Doria, J. Escobar, J.C. Restrepo and M.I. Velez. 2019. Modeling streamflow response to persistent drought in a coastal tropical mountainous watershed, Sierra Nevada De Santa Marta, Colombia. Water. 11(1): 94. DOI: 10.3390/w11010094 .

2100. Hu, D., S. Ma, F. Guo, G. Lu and J. Liu. 2015. Describing data formats of geographical models. Environmental Earth Sciences. 74(10): 7101-7115. DOI: 10.1007/s12665-015-4737-4 .

2101. Hu, D., Y. Li, L. Li and Z. Cong. 2020. Reduction scenarios of non-point source pollution in Xianyang-Xi'an section of Weihe River Basin based on SWAT. Journal of Northwest A&F University (Natural Science Edition). 48(10): 127-136, 145. DOI: 10.13207/j.cnki.jnwafu.2020.10.015 .

2102. Hu, J., J. Ma, C. Nie, L. Xue, Y. Zhang, F. Ni, Y. Deng, J. Liu, D. Zhou, L. Li and Z. Wang. 2020. Attribution analysis of runoff change in Min-Tuo River basin based on SWAT model simulations, China. Scientific Reports. 10: 2900. DOI: 10.1038/s41598-020-59659-z .

2103. Hu, J., Y. Wu, L. Wang, P. Sun, F. Zhao, Z. Jin, Y. Wang, L. Qiu and Y. Lian. 2021. Impacts of land-use conversions on the water cycle in a typical watershed in the southern Chinese Loess Plateau. Journal of Hydrology. 593: 125741. DOI: 10.1016/j.jhydrol.2020.125741 .

2104. Hu, J., Y. Wu, P. Sun, F. Zhao, K. Sun, T. Li, B. Sivakumar, L. Qiu, Y. Sun and Z. Jin. 2022. Predicting long-term hydrological change caused by climate shifting in the 21st century in the headwater area of the Yellow River Basin. Stochastic Environmental Research and Risk Assessment. 36(6): 1651–1668. DOI: 10.1007/s00477-021-02099-6 .

2105. Hu, J., Y. Wu, W. Zhao, F. Wang, G. Zhang, L. Qiu, J. Hui and X.Yin. 2022. Assessment and projection of ground freezing-thawing responses to climate change in the Upper Heihe River Basin, northwest China. Journal of Hydrology: Regional Studies. 42: 101137. DOI: 10.1016/j.ejrh.2022.101137 .

2106. Hu, P., T. Cai, F. Sui, L. Duan, X. Man and X. Cui. 2021. Response of runoff to extreme land use change in the permafrost region of northeastern China. Forests. 12(8): 1021. DOI: 10.3390/f12081021 .

2107. Hu, S., D. Yang, J. Wu, Y. Gao, H. Qiu, M. Cao, J. Song and H. Wan. 2017. Spatiotemporal Variation Characteristics of Baseflow in the Bahe River Basin Based on Digital Filter Method and SWAT Model. Scientia Geographica Sinica. 37(3): 455- 463. URL: http://geoscien.neigae.ac.cn/article/2017/1000-0690/1000-0690-37-3-455.shtml.

2108. Hu, T.A., S.T. Cheng, H.F. Jia, H.X. Zhang, B. Tan and J. Zhao. 2003. Non-point sources of a small watershed in Upper Yuan River: Experimental design and primary data analysis. Journal of Agro-Environment Science. 22(4): 442-445. URL: http://caod.oriprobe.com/articles/17443361/Non_Point_Sources_of_a_Small_Watershed_in_Upper_Yuan_River__Experiment.htm.

2109. Hu, X., G.F. McIsaac, M.B. David and C.A.L. Louwers. 2007. Modeling riverine nitrate export from an east-central Illinois watershed using SWAT. Journal of Environmental Quality. 36(4): 996-1005. DOI: 10.2134/jeq2006.0228 .

2110. Hu, Y., J.P. Moiwo, Y. Yang, S. Han and Y. Yang. 2010. Agricultural water-saving and sustainable groundwater management in Shijiazhuang Irrigatiion District, North China Plain. Journal of Hydrology. 393(3-4, 8): 219-232. DOI: 10.1016/j.jhydrol.2010.08.017 .

2111. Hu, Y., M. Chen, J. Pu, S. Chen, Y. Li and H. Zhang. 2024. Review Enhancing Phosphorus Source Apportionment in Watersheds through Species-Specific Analysis. Water Research. : 121262. DOI: 10.1016/j.watres.2024.121262 .

2112. Hu, Y., Y. Dong, Y. Guo, H. Dang, J. Dong and G. Wei. 2014. Simulated runoff processes in the Huanjiang drainage basin. Resources Science. 36(10): 2038-2045. URL: http://www.resci.cn/ch/reader/view_abstract.aspx?file_no=20141006&flag=1.

2113. Hu, Y., Z. Xing, F. Zhang, Q. Tian, N. Badreldin and J. Zhao. 2022. Analysis and estimation of nonpoint source pollution under different land use in Anjiagou Watershed, Gansu, China. Environmental Science and Pollution Research. 29(51): 77428-77447. DOI: 10.1007/s11356-022-20687-z .

2114. Hua, L., W. LI, L. Zhai, H. Yen, Q. Lei, H. Liu, T. Ren, Y. Xia, F. Zhang and X. Fan. 2019. An innovative approach to identifying agricultural pollution sources and loads by using nutrient export coefficients in watershed modeling. Journal of Hydrology. 571: 322-331. DOI: 10.1016/j.jhydrol.2019.01.043 .

2115. Huang, F. and B. Li. 2010. Assessing grain crop water productivity of China using a hydro-model-coupled-statistics approach Part I: Method development and validation. Agricultural Water Management. 97(7): 1077-1092. DOI: 10.1016/j.agwat.2010.02.016 .

2116. Huang, F. and B.G. Li. 2010. Assessing grain crop water productivity of China using a hydro-model-coupled-statistics approach. Part II: Application in breadbasket basins of China. Agricultural Water Management. 97(9): 1259-1268. DOI: 10.1016/j.agwat.2010.02.017 .

2117. Huang, F., Z. Liu, B.G. Ridoutt, J. Huang and B. Li. 2015. China’s water for food under growing water scarcity. Food Security. 7(5): 933-949. DOI: 10.1007/s12571-015-0494-1 .

2118. Huang, H., W. Ouyang, B. Guo, Y. Shi and F. Hao. 2014. Vertical and horizontal distribution of soil parameters in intensive agricultural zone and effect on diffuse nitrogen pollution. Soil & Tillage Research. 144: 32-40. DOI: 10.1016/j.still.2014.07.006 .

2119. Huang, H., W. Ouyang, H. Wu, H. Liu and C. Andrea. 2017. Long-term diffuse phosphorus pollution dynamics under the combined influence of land use and soil property variations. Science of the Total Environment. 579: 1894–1903. DOI: 10.1016/j.scitotenv.2016.11.198 .

2120. Huang, J., B.G. Ridoutt, H. Zhang, C. Xu and F. Chen. 2014. Water footprint of cereals and vegetables for the Beijing market. Journal of Industrial Ecology. 18(1): 40-48. DOI: 10.1111/jiec.12037 .

2121. Huang, J., P. Zhou, Z. Zhou and Y. Huang. 2013. Assessing the influence of land use and land cover datasets with different points in time and levels of detail on watershed modeling in the North River watershed, China. International Journal of Environmental Research and Public Health. 10: 144-157. DOI: 10.3390/ijerph10010144 .

2122. Huang, J.J., X. Lin, J. Wang and H. Wang. 2015. The precipitation driven correlation based mapping method (PCM) for identifying the critical source areas of non-point source pollution. Journal of Hydrology. 524: 100–110. DOI: 10.1016/j.jhydrol.2015.02.011 .

2123. Huang, L. and J. Peng. 2022. Research on technical countermeasures of smart agriculture development based on digital ecological environment. Fresenius Environmental Bulletin. 31(12): 11244-11251. URL: https://www.prt-parlar.de/download_list/?c=FEB_2022.

2124. Huang, Q. and W. Zhang. 2004. Improvement and application of GIS-based distributed SWAT hydrological modeling on high altitude, cold, semi-arid catchment of Heihe river basin, China. Journal of Nanjing Forestry University (Natural Sciences Edition). 28(2): 22-26. URL: https://caod.oriprobe.com/articles/7189842/Improvement_and_Application_of_GIS_based_distribut.htm.

2125. Huang, S., C. Hesse, V. Drysanova and F. Hattermann. 2009. From meso- to macro-scale dynamic water quality modelling for the assessment of land use change scenarios. Ecological Modelling. 220(19): 2543-2558. DOI: 10.1016/j.ecolmodel.2009.06.043 .

2126. Huang, S., H. Shah, B.S. Naz, N.K. Shrestha, V. Mishra, P. Daggupati, U. Ghimire and T. Vetter. 2020. Impacts of hydrological model calibration on projected hydrological changes under climate change—a multi-model assessment in three large river basins. Climatic Change. 163(3): 1143–1164. DOI: 10.1007/s10584-020-02872-6 .

2127. Huang, S., M. Wortmann, D. Duethmann, C. Menz, F. Shi, C. Zhao, B. Su and V. Krysanova. 2018. Adaptation strategies of agriculture and water management to climate change in the Upper Tarim River basin, NW China. Agricultural Water Management. 203: 207-224. DOI: 10.1016/j.agwat.2018.03.004 .

2128. Huang, S., R. Kumar, M. Flörke, T. Yang, Y. Hundecha, P. Kraft, C. Gao, A. Gelfan, S. Liersch, A. Lobanova, M. Strauch, F. van Ogtrop, J. Reinhardt, U. Haberlandt and V. Krysanova. 2017. Erratum to: Evaluation of an ensemble of regional hydrological models in 12 large-scale river basins worldwide. Climatic Change. 141(3): 399-400. DOI: 10.1007/s10584-016-1895-7 .

2129. Huang, S., R. Kumar, M. Flörke, T. Yang, Y. Hundecha, P. Kraft, C. Gao, A. Gelfan, S. Liersch, A. Lobanova, M. Strauch, F. van Ogtrop, J. Reinhardt, U. Haberlandt and V. Krysanova. 2017. Evaluation of an ensemble of regional hydrological models in 12 large-scale river basins worldwide. Climatic Change. 141(3): 381-397. DOI: 10.1007/s10584-016-1841-8 .

2130. Huang, S., V. Krysanova and F.F. Hattermann. 2014. Does bias correction increase reliability of flood projections under climate change? A case study of large rivers in Germany. International Journal of Climatology. 34(14): 3780-3800. DOI: 10.1002/joc.3945 .

2131. Huang, S., V. Krysanova and F. Hattermann. 2015. Projections of climate change impacts on floods and droughts in Germany using an ensemble of climate change scenarios. Regional Environmental Change. 15(3): 461-473. DOI: 10.1007/s10113-014-0606-z .

2132. Huang, S., V. Krysanova, H. Osterle and F.F. Hattermann. 2010. Simulation of spatiotemporal dynamics of water fluxes in Germany under climate change. Hydrological Processes. 24(23): 3289-3306. DOI: 10.1002/hyp.7753 .

2133. Huang, S., W. Zang, M. Xu, X. Li, X. Xie, Z. Li and J. Zhu. 2015. Study on runoff simulation of the upstream of Minjiang River under future climate change scenarios. Natural Hazards. 75(Supplement 2): 5139-5145. DOI: 10.1007/s11069-014-1090-y .

2134. Huang, T.C.C. and K.F.A. Lo. 2015. Effects of land use change on sediment and water yields in Yang Ming Shan National Park, Taiwan. Environments. 2(1): 32-42. DOI: 10.3390/environments2010032 .

2135. Huang, X.D., L. Wang, P.P. Han and W.C. Wang. 2018. Spatial and temporal patterns in nonstationary flood frequency across a forest watershed: Linkage with rainfall and land use types. Forests. 9: 339. DOI: 10.3390/f9060339 .

2136. Huang, X.-D., Z.-H. Shi, N.-F. Fang and X. Li. 2016. Influences of land use change on baseflow in mountainous watersheds. Forests. 7(1): 16. DOI: 10.3390/f7010016 .

2137. Huang, Y. and I.G. Ukpong. 2019. Issues of water resource management in China: Implications on agriculture and food security in the Guangxi Province of south China. Journal of Asian Rural Studies. 3(1): 70-84. DOI: 10.20956/jars.v3i1.1714 .

2138. Huang, Y., J. Huang, A. Ervinia, S. Duan and S.S. Kaushal. 2018. Land use and climate variability amplifies watershed nitrogen exports in coastal China. Ocean & Coastal Management. DOI: 10.1016/j.ocecoaman.2018.02.024 .

2139. Huang, Z., B. Xue and Y. Pang. 2009. Simulation on stream flow and nutrient loadings in Gucheng Lake, Low Yangtze River Basin, based on SWAT model. Quaternary International. 208(1-2): 109-115. DOI: 10.1016/j.quaint.2008.12.018 .

2140. Hui, J., Y. Wu, F. Zhao, X. Lei, P. Sun, S.K. Singh, W. Liao, L. Qiu and J. Li. 2020. Parameter optimization for uncertainty reduction and simulation improvement of hydrological modeling. Remote Sensing. 12(24): 4069. DOI: 10.3390/rs12244069 .

2141. Hui, Y., Z. Zhu, J.F. Atkinson and A.M. Saharia. 2021. Impacts of phosphorus loading temporal pattern on benthic algae growth in Lake Ontario. Journal of Hydrology. 598: 126449. DOI: 10.1016/j.jhydrol.2021.126449 .

2142. Huisman, J.A., L. Breuer and H.-G. Frede. 2004. Sensitivity of simulated hydrological fluxes towards changes in soil properties in response to land use change. Physics and Chemistry of the Earth. 29(11-12): 749-758. DOI: 10.1016/j.pce.2004.05.012 .

2143. Huisman, J.A., L. Breuer, H. Bormann, A. Bronstert, B.F.W. Croke, H-G. Frede, T. Graff, L. Hubrechts, A.J. Jakeman, G. Kite, J. Lanini, G. Leavesley, D.P. Lettenmaier, G. Lindstrom, J. Seibert, M. Sivapalan, N.R. Viney and P. Willems. 2008. Assessing the impact of land use change on hydrology by ensemble modelling (LUCHEM) III: Scenario analysis. Advances in Water Resources. 32(2): 159-170. DOI: 10.1016/j.advwatres.2008.06.009 .

2144. Huiyu, J., W. Chen, Z. Zhao, J. Wang and W. Ma. 2022. New framework for dynamic water environmental capacity estimation integrating the hydro-environmental model and load-duration curve method - A case study in data-scarce Luanhe River Basin. International Journal of Environmental Research and Public Health. 19(14): 8389. DOI: 10.3390/ijerph19148389 .

2145. Hulsmann, L., T. Geyer, C. Schweitzer, J. Priess and D. Karthe. 2015. The effect of subarctic conditions on water resources: initial results and limitations of the SWAT model applied to the Kharaa River Basin in Northern Mongolia. Environmental Earth Sciences. 73(2): 581-592. DOI: 10.1007/s12665-014-3173-1 .

2146. Hung, P., T. V. Le, P. L. Vo, H. C. Duong and M. Rahman. 2022. Vulnerability assessment of water resources using GIS, remote sensing and SWAT model – a case study: The upper part of Dong Nai River Basin, Vietnam. International Journal of River Basin Management. 20(4): 517-532. DOI: 10.1080/15715124.2021.1901729 .

2147. Hunink, J.E., I.A. Niadas, P. Antonaropoulos, P. Droogers and J. de Vente. 2013. Targeting of intervention areas to reduce reservoir sedimentation in the Tana catchment (Kenya) using SWAT. Hydrological Sciences Journal. 58(3): 600-614. DOI: 10.1080/02626667.2013.774090 .

2148. Hunink, J.E., P. Droogers, S. Kauffman, B.M. Mwaniki and J. Bouma. 2012. Quantitative simulation tools to analyze up- and downstream interactions of soil and water conservation measures: Supporting policy making in the Green Water Credits program of Kenya. Journal of Environmental Management. 111: 187-194. DOI: 10.1016/j.jenvman.2012.07.022 .

2149. Hunt, N.D., J.D. Hill and M. Liebman. 2019. Cropping system diversity effects on nutrient discharge, soil erosion, and agronomic performance. Environmental Science & Technology. 53(3): 1344−1352. DOI: 10.1021/acs.est.8b02193 .

2150. Hunt, W.F., N. Kannan, J. Jeong and P.W. Gassman. 2009. Stormwater best management practices: review of current practices and potential incorporation in SWAT. International Agricultural Engineering Journal. 18(1-2): 73-89. URL: https://www.researchgate.net/publication/282709331_Stormwater_best_management_practices_Review_of_current_practices_and_potential_incorporation_in_SWAT/link/56f6cf3308ae95e8b6d2bbd9/download.

2151. Huo, A. and H. Li. 2013. Assessment of climate change impact on the stream-flow in a typical debris flow watershed of Jianzhuangcuan catchment in Shaanxi Province, China. Environmental Earth Sciences. 69(6): 1931-1938. DOI: 10.1007/s12665-012-2025-0 .

2152. Huo, A., L. Yang, P. Luo, Y. Cheng, J. Peng and D. Nover. 2021. Influence of landfill and land use scenario on runoff, evapotranspiration, and sediment yield over the Chinese Loess Plateau. Ecological Indicators. 121: 107208. DOI: 10.1016/j.ecolind.2020.107208 .

2153. Huo, A., X. Wang, Y. Liang, C. Jiang and X. Zheng. 2020. Integrated numerical model for irrigated area water resources management. Journal of Water and Climate Change. 11(4): 980-991. DOI: 10.2166/wcc.2019.042 .

2154. Huo, A., Z. Huang, Y. Cheng and M.W. Van Liew. 2020. Comparison of two different approaches for sensitivity analysis in Heihe River Basin (China). Water Supply. 20(1): 319-327. DOI: 10.2166/ws.2019.159 .

2155. Huo, A.-D., J. Dang, J.-X. Song, X.H. Chen and H.-R. Mao. 2016. Simulation modeling for water governance in basins based on surface water and groundwater. Agricultural Water Management. 174: 22-29. DOI: 10.1016/j.agwat.2016.02.027 .

2156. Huo, J., X. Qu, D. Zhu, Z. Yuan and Y. Tang. 2021. Impacts of climate change on blue and green water resources in the middle and Upper Yarlung Zangbo River, China. Atmosphere. 12(10): 1280. DOI: 10.3390/atmos12101280 .

2157. Huo, J., X. Qu, D. Zhu, Z. Yuan and Z. Zeng. 2021. Runoff monitoring in the Lhasa River Basin using passive microwave data. International Journal of Applied Earth Observations and Geoinformation . 103: 102486. DOI: 10.1016/j.jag.2021.102486 .

2158. Huong, H.L. and N.T. Son. 2020. Response of streamflow and soil erosion to climate change and human activities in Nam Rom River basin, northwest of Vietnam. Environment and Natural Resources Research. 18(4): 411-423. DOI: 10.32526/ennrj.18.4.2020.39 .

2159. Hupy, J.P. and C.O. Wilson. 2021. Modeling streamflow and sediment loads with a photogrammetrically derived UAS digital terrain model: Empirical evaluation from a fluvial aggregate excavation operation. Drones. 5(1): 20. DOI: 10.3390/drones5010020 .

2160. Hussain, F., G. Nabi, R-S. Wu, B. Hussain and T. Abbas. 2019. Parameter evaluation for soil erosion estimation on small watersheds using SWAT model. International Journal of Agricultural and Biological Engineering. 12(1): 96-108. DOI: 10.25165/j.ijabe.20191201.3769 .

2161. Hussainzada, W. and H.S. Lee. 2021. Hydrological modelling for water resource management in a semi-arid mountainous region using the Soil and Water Assessment tool: A case study in northern Afghanistan. Hydrology. 8(1): 6. DOI: 10.3390/hydrology8010016 .

2162. Hussainzada, W. and H.S. Lee. 2021. Hydrological modelling for water resource management in a semi-arid mountainous region using the Soil and Water Assessment Tool: A case study in northern Afghanistan. Hydrology. 8(1): 16. DOI: 10.3390/hydrology8010016 .

2163. Hussainzada, W. and H.S. Lee. 2022. Effect of an improved agricultural irrigation scheme with a hydraulic structure for crop cultivation in arid northern Afghanistan using the Soil and Water Assessment Tool (SWAT). Scientific Reports. 12: 5186. DOI: 10.1038/s41598-022-09318-2 .

2164. Hussen, B., A. Mekonnen and S.M. Pingale. 2018. Integrated water resources management under climate change scenarios in the Sub-basin of Abaya-Chamo, Ethiopia. Modeling Earth Systems and Environment. DOI: 10.1007/s40808-018-0438-9 .

2165. Hutchins, M.G., C. Dilks, H.N. Davies and A. Deflandre. 2008. Issues of diffuse pollution model complexity arising from performance benchmarking. Hydrology and Earth System Sciences. 11(1): 647-662. DOI: 10.5194/hess-11-647-2007 .

2166. Hutley, N., M. Boselalu, A. Wenger, A. Grinham, B. Gibbes and S. Albert. 2020. Evaluating the effect of data-richness and model complexity in the prediction of coastal sediment loading in Solomon Islands. Environmental Research Letters. 15(12): 124044. DOI: 10.1088/1748-9326/abc8ba .

2167. Huyen, N.T., L.H. Tu, V.N.Q. Tram, D.N. Minh, N.D. Liem and N.K. Loi. 2017. Assessing the impacts of climate change on water resources in the Srepok Watershed, Central Highland of Vietnam. Journal of Water and Climate Change. 8(3): 524-534. DOI: 10.2166/wcc.2017.135 .

2168. Hwang, C.S., C.U. Choi and J.S. Choi. 2014. Impact of IPCC RCP scenarios on streamflow and sediment in the Hoeya River Basin. Journal of the Korean Society for Geospatial Information System. 22(3): 11-19. DOI: 10.7319/kogsis.2014.22.3.011 .

2169. Hwang, S., S.-M. Jun, J.-H. Song, K. Kim, H. Kim and M.-S. Kang. 2021. Application of the SWAT-EFDC linkage model for assessing water quality management in an Estuarine reservoir separated by levees. Applied Sciences. 11(9): 3911. DOI: 10.3390/app11093911 .

2170. Hwang, T.H., B.S. Kim, H.S. Kim and B.H. Seoh. 2006. The estimation of soil moisture index by SWAT model and drought monitoring. Journal of the Korean Society of Civil Engineers. 26(4B): 345-354. URL: http://www.koreascience.or.kr/article/ArticleFullRecord.jsp?cn=TMHHC2_2006_v26n4B_345.

2171. Hyandye, C.B., A. Worqul, L.W. Martz and A.N.N. Muzuka. 2018. The impact of future climate and land use/cover change on water resources in the Ndembera watershed and their mitigation and adaptation strategies. Environmental Systems Research. 7: 7. DOI: 10.1186/s40068-018-0110-4 .

2172. Iavorivska, L., T.L. Veith, R. Cibin, H.E. Preisendanz and A.D. Steinman. 2021. Mitigating lake eutrophication through stakeholder-driven hydrologic modeling of agricultural conservation practices: A case study of Lake Macatawa, Michigan. Journal of Great Lakes Research. 47(6): 1710-1725. DOI: 10.1016/j.jglr.2021.10.001 .

2173. Ibrahim, U.A., S. Dan'azumi, H.H. Bdliya, Z. Bunu and M.J. Chrioma. 2022. Comparison of WEAP and SWAT models for streamfow prediction in the Hadejia‑Nguru Wetlands, Nigeria. Modeling Earth Systems and Environment. 8(4): 4497-5010. DOI: 10.1007/s40808-022-01435-1 .

2174. Ide, J.H. Somura, T. Nakamura, Y. Mori, I. Takeda and K. Nishida. 2014. Hydrological effects on relationships between &15N of river nitrate and land use in a rural river basin, western Japan. River Research and Applications. 31(5): 639-649. DOI: 10.1002/rra.2756 .

2175. Idrees, M., S. Ahmad, M.W. Khan, Z.H. Dahri, K. Ahmad, M. Azmat and I.A. Rana. 2022. Estimation of water balance for anticipated land use in the potohar plateau of the Indus Basin using SWAT. Remote Sensing. 14(21): 5421. DOI: 10.3390/rs14215421 .

2176. Iensen, I.R.R., G.B. Schultz and I. dos Santos. 2015. Simulation of green and blue water impacts caused by climate changes in the Apucaraninha River watershed, southern Brazil. Revista Brasileira de Geografia Física. 8(1): 179-186. URL: http://www.revista.ufpe.br/rbgfe/index.php/revista/article/viewArticle/1089.

2177. Igarashi, K., K. Koichiro, N. Tanaka and N. Aranyabhaga. 2019. Prediction of the impact of climate change and land use change on flood discharge in the Song Khwae District, Nan Province, Thailand. Journal of Climate Change. 5(1): 1-8. DOI: 10.3233/JCC190001 .

2178. Igder, O.M., H. Alizadeh, B. Mojaradi and M. Bayat. 2022. Multivariate assimilation of satellite-based leaf area index and ground-based river streamflow for hydrological modelling of irrigated watersheds using SWAT+. Journal of Hydrology. 610: 128012. DOI: 10.1016/j.jhydrol.2022.128012 .

2179. Ignatius, A.R., and J.W. Jones. 2018. High resolution water body mapping for SWAT evaporative modelling in the Upper Oconee Watershed of Georgia, USA. Hydrological Processes. 32(1): 51-65. DOI: 10.1002/hyp.11398 .

2180. Iiames, J.S., E. Cooter, D. Schwede and J. Williams. 2018. A comparison of simulated and field-derived Leaf Area Index (LAI) and canopy height values from four forest complexes in the southeastern USA. Forests. 9(1): 26. DOI: 10.3390/f9010026 .

2181. Iizumi, T., G. Sakurai and M. Yokozawa. 2013. An ensemble approach to the representation of subgrid-scale heterogeneity of crop phenology and yield in coarse-resolution large-area crop models. Journal of Agricultural Meteorology. 69(4): 243-254. DOI: 10.2480/agrmet.69.4.2 .

2182. Ikenberry, C.D., M.L. Soupir, W.G. Crumpton, M.J. Helmers, J.G. Arnold and P.W. Gassman. 2017. Simulation of daily flow pathways, tile-drain nitrate concentrations, and soil-nitrogen dynamics using SWAT. Journal of the American Water Resources Association. 53(6): 1251-1532. DOI: 10.1111/1752-1688.12569 .

2183. Ikenberry, C.D., W.G. Crumpton, J.G. Arnold, M.L. Soupir and P.W. Gassman. 2017. Evaluation of existing and modified wetland equations in the SWAT model. Journal of the American Water Resources Association. DOI: 10.1111/1752-1688.12570 .

2184. Ikhar, P.R., D.G. Regulwar and R.U. Kamodkar. 2018. Optimal reservoir operation using soil and water assessment tool and genetic algorithm. Journal of Hydraulic Engineering. 24(2): 249-257. DOI: 10.1080/09715010.2017.1417754 .

2185. Ikhwali1, M,F,, N.S. Ersa, A. Khairi, W. Prayog and Wesli. 2022. Development of Soil & Water Assessment Tool application in Krueng Aceh Watershed review. Teras Jurnal . 12(1): 191-204. DOI: 10.29103/tj.v12i1.703 .

2186. Ikhwalia, M.F., M.I. Raub, S. Nura, T. Ferijalc, W. Prayogod and S.F.D. Saputra. 2022. Application of Soil and Water Assessment Tool in Indonesia – a review and challenges. Desalination and Water Treatment. 277: 105–119. URL: https://www.deswater.com/vol.php?vol=277&oth=277|0|November%20%20|2022.

2187. Ilampooranan, I., J.L. Schnoor and N.B. Basu. 2021. Crops as sensors: Using crop yield data to increase the robustness of hydrologic and biogeochemical models. Journal of Hydrology. 592: 125599. DOI: 10.1016/j.jhydrol.2020.125599 .

2188. Ilampooranan, I., K.J. Van Meter and N.B. Basu. 2019. A race against time: Modeling time lags in watershed response. Water Resources Research. 55(5): 3941-3959. DOI: 10.1029/2018WR023815 .

2189. Im, S., K.M. Brannan, S. Mostaghimi and S.M. Kim. 2007. Comparison of HSPF and SWAT models performance for runoff and sediment yield prediction. Journal of Environmental Science and Health, Part A - Toxic/Hazardous Substances and Environmental Engineering. 42(11): 1561-1570. DOI: 10.1080/10934520701513456 .

2190. Im, S.-J., K.M. Brannan, S. Mostaghimi and J.P. Cho. 2003. Predicting runoff and sediment yield on a forest dominated watershed using HSPF and SWAT models. Journal of Korean Society of Rural Planning. 9(4): 59-64. URL: http://www.koreascience.or.kr/article/JAKO200315836137976.page.

2191. Imani, S., M. Delavar and M.H. Niksokban. 2019. Identification of nutrients critical source areas with SWAT model under limited data condition. Water Resources. 46(1): 128-137. DOI: 10.1134/S0097807819010147 .

2192. Imani, S., M.H. Niksokhan, S. Jamshidi and K.C. Abbaspour. 2017. Discharge permit market and farm management nexus: An approach for eutrophication control in small basins with low-income farmers. Environmental Modeling & Assessment. 189: 346. DOI: 10.1007/s10661-017-6066-4 .

2193. Imfeld, G., S. Payraudeau, J. Tournebize, S. Sauvage, F. Macary, C. Chaumont, A. Probst, J.-M. Sánchez-Pérez, A. Bahi, B. Chaumet, T. Gilevska, H. Alexandre and J.-L. Probst. 2021. The role of ponds in pesticide dissipation at the agricultural catchment scale: A critical review. Water. 13(9): 1202. DOI: 10.3390/w13091202 .

2194. Immerzeel, W. W. and P. Droogers. 2008. Calibration of a distributed hydrological model based on satellite evapotranspiration. Journal of Hydrology. 349(3-4): 411-424. DOI: 10.1016/j.jhydrol.2007.11.017 .

2195. Immerzeel, W., J. Stoorvogel and J. Antle. 2008. Can payments for ecosystem services secure the water tower of Tibet? Agricultural Systems. 96(1-3): 52-63. DOI: 10.1016/j.agsy.2007.05.005 .

2196. Immerzeel, W.W., A. Gaur and S.J. Zwart. 2008. Integrating remote sensing and process-based hydrological model to evaluate water use and productivity in a south Indian catchment. Agricultural Water Management. 95(1): 11-24. DOI: 10.1016/j.agwat.2007.08.006 .

2197. Inamdar, S. and A. Naumov. 2006. Assessment of sediment yields for a mixed-landuse Great Lakes watershed: Lessons from field measurements and modeling. Journal of Great Lakes Research. 32(3): 471-488. DOI: 10.3394/0380-1330(2006)32%5B471:AOSYFA%5D2.0.CO;2 .

2198. Insan, S. and K. Kuntiyawichai. 2022. Assessment of agricultural water sufficiency under climate and land use changes in the Lam Takong River Basin. Water. 44(18): 2794. DOI: 10.3390/w14182794 .

2199. Ioannou, K., L. Kosmatopoulos, G.N. Zaimes and G. Tsantopoulos. 2018. Geoinformatics as a tool for the application of energy policy. International Journal of Sustainable Agricultural Management and Informatics. 4(1): 4-22. DOI: 10.1504/IJSAMI.2018.092402 .

2200. Iqbal, M.S. and N. Hofstra. 2019. Modeling Escherichia coli fate and transport in the Kabul River Basin using SWAT. Human and Ecological Risk Assessment: An International Journal. 25(5): 1279-1297. DOI: 10.1080/10807039.2018.1487276 .

2201. Iqbal, M.S., M. Islam, M. Hassan, H. Bilal, I.A. Shah and T Ourania. 2022. Modeling the fecal contamination (fecal coliform bacteria) in transboundary waters using the scenario matrix approach: A case study of Sutlej River, Pakistan. Environmental Science and Pollution Research. 29(52): 79555-79566. DOI: 10.1007/s11356-022-21294-8 .

2202. Iqbal, M.S., M.M.M. Islam and N. Hofstra. 2019. The impact of socio-economic development and climate change on E. coli loads and concentrations in Kabul River, Pakistan. Science of the Total Environment. 650: 1935-1943. DOI: 10.1016/j.scitotenv.2018.09.347 .

2203. Iqbal, M.S., Z.H. Dahri, E.P. Querner, A. Khan and N. Hofstra. 2018. Impact of climate change on flood frequency and intensity in the Kabul River Basin. Geosciences. 8(4): 114. DOI: 10.3390/geosciences8040114 .

2204. Iradukunda, P., E.M. Mwanaumo and J. Kabika. 2024. Modelling the future climate impacts on hydraulic infrastructure development in tropical (peri-)urban region: Case of Kigali, Rwanda. Heliyon. DOI: 10.1016/j.heliyon.2024.e27126 .

2205. Iranmanesh, R., N. Jalalkamali and O. Tayari. 2021. Water resources availability under different climate change scenarios in south east Iran. Journal of Water and Climate Change. 12(8): 3976. DOI: 10.2166/wcc.2021.373 .

2206. Iresh, A.D.S., A.G.N.S. Marasinghe, A.M.T.S.H. Wedanda, G.P. Wickramasekara, M.D.J.P. Wickramasooriya and M.T.C. Premathilake. 2021. Development of a hydrological model for Kala Oya Basin using SWAT model. Journal of the Institution of Engineers, Sri Lanka . 54(1): 57-65. DOI: 10.4038/engineer.v54i1.7435 .

2207. Irvem, A.I. and A. El-Sadek. 2018. Evaluation of streamflow simulation by SWAT model for the Seyhan River Basin. Çukurova Journal of Agricultural and Food Sciences. 33(2): 99-110. URL: https://dergipark.org.tr/tr/pub/cutarim/issue/42081/468472.

2208. Isazadeh, M., A.F. Fard and S. Darband. 2023. Study of the development of greenhouse estates and its impact on groundwater levels of Ajichay Basin Aquifers using SWAT model. Hydrogeology. 7(2): 15-29. URL: https://hydro.tabrizu.ac.ir/article_13880_en.html.

2209. Isik, S., H. Haas, L. Kalin, M.M. Hantush and C. Nietch. 2023. Nutrient removal potential of headwater wetlands in coastal plains of Alabama, USA. Water. 15(15): 2687. DOI: 10.3390/w15152687 .

2210. Islam, A.K.M.S., S. Paul, K. Mohammed, M. Billah, Md. G.R. Fahad, Md. A. Hasan, G.M.T. Islam and S.K. Bala. 2018. Hydrological response to climate change of the Brahmaputra basin using CMIP5 general circulation model ensemble. Journal of Water and Climate Change. 9(3): 434-448. DOI: 10.2166/wcc.2017.076 .

2211. Ismail, M., E. Ahmed, G. Peng, R. Xu, M. Sultan, F.U. Khan and M. Aleem. 2022. Evaluating the impact of climate change on the stream flow in Soan River Basin (Pakistan). Water. 14(22): 3695. DOI: 10.3390/w14223695 .

2212. Iudicello, J.J. and D.A. Chin. 2013. A multi-model, multiple watershed examination of in-stream bacteria modeling. International Journal of Environmental Research and Public Health. 139(5): 1-33. DOI: 10.1061/(ASCE)EE.1943-7870.0000670 .

2213. Ivanoski, D., S. Trajkovic and M. Gocic. 2019. Estimation of sedimentation rate of Tikvesh Reservoir in Republic of Macedonia using SWAT. Arabian Journal of Geosciences. 12(14): 438. DOI: 10.1007/s12517-019-4583-x .

2214. Izady, A., K. Davary, A. Alizadeh, A.N. Ziaei, S. Akhavan, A. Alipoor, A. Joodavi and M.L. Brusseau. 2015. Groundwater conceptualization and modeling using distributed SWAT-based recharge for the semi-arid agricultural Neishaboor Plain, Iran. Hydrogeology Journal. 23(1): 47-68. DOI: 10.1007/s10040-014-1219-9 .

2215. J.A.M. Rodrigues, M.R. Viola, L.A. Alvarenga, C.R. de Mello, S.C. Chou, V.A. de Oliveira, V. Uddameri and M.A.V. Morais. 2020. Climate change impacts under representative concentration pathway scenarios on streamflow and droughts of basins in the Brazilian Cerrado Biome. International Journal of Climatology. 40(5): 2511-2526. DOI: 10.1002/joc.6347 .

2216. Jabbar, F.K. and K. Grote. 2020. Evaluation of the predictive reliability of a new watershed health assessment method using the SWAT model. Environmental Monitoring and Assessment. 192: 224. DOI: 10.1007/s10661-020-8182-9 .

2217. Jaberzadeh, M., A. Saremi, H.G. Kharazi and H. Babazadeh. 2022. SWAT and IHACRES models for the simulation of rainfall‐runoff of Dez Watershed. Climate Dynamics. DOI: 10.1007/s00382-022-06215-2 .

2218. Jadhao, V. G. and M. P. Tripathi. 2009. Evaluation of the SWAT model for predicting the daily surface runoff and sediment yield from a small watershed. International Journal of Agricultural Engineering. 2(1): 39-45.

2219. Jadhao, V.G., A.K. Jadhao and M.P. Tripathi. 2009. Estimation of monthly surface runoff and sediment yield from a small watershed by using simulation technique. International Journal of Agricultural Engineering. 2(2): 278-281. URL: https://www.researchgate.net/publication/324745210_Estimation_of_monthly_surface_runoff_and_sediment_yield_from_a_small_watershed_by_using_simulation_technique.

2220. Jadhao, V.G., D.T. Bornare and M.P. Tripathi. 2009. Identification and prioritization of critical sub-watersheds using SWAT Model. International Journal of Agricultural Engineering. 2(1): 113-123. URL: https://www.researchgate.net/publication/324536056_Identification_and_prioritization_of_critical_sub-watersheds_using_SWAT_model.

2221. Jaeger, K.L., J.D. Olden and N.A. Pelland. 2014. Climate change poised to threaten hydrologic connectivity and endemic fishes in dryland streams. Proceedings of the National Academy of Sciences. 111(38): 13894-13899. DOI: 10.1073/pnas.1320890111 .

2222. Jafari, T., A.S. Kiem, S. Javadi, T. Nakamura and K. Nishida. 2021. Fully integrated numerical simulation of surface water-groundwater interactions using SWAT-MODFLOW with an improved calibration tool. Journal of Hydrology: Regional Studies. 35: 100822. DOI: 10.1016/j.ejrh.2021.100822 .

2223. Jafari, T., A.S. Kiema, S. Javadi, T. Nakamura and K. Nishida. 2021. Using insights from water isotopes to improve simulation of surface water-groundwater interactions. Science of the Total Environment. 798: 149253. DOI: 10.1016/j.scitotenv.2021.149253 .

2224. Jager, H.I., L.M. Baskaran, P.E. Schweizer, A.F. Turhollow, C.C. Brandt and R. Srinivasan. 2014. Forecasting changes in water quality in rivers associated with growing biofuels in the Arkansas-White-Red River drainage, USA. Global Change Biology. 7(4): 774-784. DOI: 10.1111/gcbb.12169 .

2225. Jahanshahi, A., M. Golshan and A. Afzali. 2017. Simulation of the catchments hydrological processes in arid, semi-arid and semi-humid areas. Desert. 22(1): 1-10. URL: https://jdesert.ut.ac.ir/article_62295_7a6ba1d82ffc3e5e06be4ab036724acf.pdf.

2226. Jähnig, S.C., M. Kuemmerlen, J. Kiesel, S. Domisch, Q. Cai, B. Schmalz and N. Fohrer. 2012. Modelling of riverine ecosystems by integrating models: Conceptual approach, a case study and research agenda. Journal of Biogeography. 39: 2253-2263. DOI: 10.1111/jbi.12009 .

2227. Jaimes-Correa, J.C., F. Muñoz-Arriola and S. Bartelt-Hunt. 2022. Modeling water quantity and quality nonlinearities for watershed adaptability to hydroclimate extremes in agricultural landscapes. Hydrology. 9(5): 80. DOI: 10.3390/hydrology9050080 .

2228. Jain, S., S. Ale, C.L. Munster, R.J. Ansley and J.R. Kiniry. 2015. Simulating the hydrologic impact of Arundo donax invasion on the headwaters of the Nueces River in Texas. Hydrology. 2: 134-147. DOI: 10.3390/hydrology2030134 .

2229. Jain, S.K., S. Shukla and M.L. Kansal. 2021. Stream flow simulation and water balance of snow and glacier fed mountainous basin using SWAT model. IWRA journal . 10(2): 36-43. URL: https://www.indianjournals.com/ijor.aspx?target=ijor:iwra&volume=10&issue=2&article=005.

2230. Jain, V.K., R.P. Pandey and M.K. Jain. 2015. Spatio-temporal assessment of vulnerability to drought. Natural Hazards. 76(1): 443-469. DOI: 10.1007/s11069-014-1502-z .

2231. Jaiswal, R.K., A.K. Lohani and H.L. Tiwari. 2020. Development of framework for assessment of impact of climate change in a command of water resource project. Journal of Earth System Science. 129(1): 58. DOI: 10.1007/s12040-019-1328-x .

2232. Jaiswal, R.K., R.N. Yadav, A.K. Lohani, H.L. Tiwari and S. Yadav. 2020. Water balance modeling of Tandula (India) Reservoir Catchment using SWAT. Arabian Journal of Geosciences. 13: 148. DOI: 10.1007/s12517-020-5092-7 .

2233. Jaiswal, R.K., S. Ali and B. Bharti. 2020. Comparative evaluation of conceptual and physical rainfall–runoff models. Applied Water Science. 10(1): 48. DOI: 10.1007/s13201-019-1122-6 .

2234. Jajarmizadeh, M., E.K. Lafdani, S. Harun and A. Ahmadi. 2014. Application of SVM and SWAT models for monthly streamflow prediction, a case study in south of Iran. KSCE Journal of Civil Engineering. 19(1): 345-357. DOI: 10.1007/s12205-014-0060-y .

2235. Jajarmizadeh, M., M.S. Lariyah, M. Mirzai, S. Alaghmand, H. Sobri and R.M. Mohammad. 2016. Prediction of surface flow by forcing of Climate Forecast System Reanalysis data. Water Resources Management. 30(8): 2627-2640. DOI: 10.1007/s11269-016-1303-0 .

2236. Jajarmizadeh, M., M.S. Lariyah, H. Sobri and M. Salarpour. 2017. Optimal calibration and uncertainty analysis of SWAT for an arid climate. Air, Soil and Water Research. 10: 1-14. DOI: 10.1177/1178622117731792 .

2237. Jajarmizadeh, M., S. bin Harun, S. Shahid, S. Akib and M. Salarpour. 2014. Impact of direct soil moisture and revised soil moisture index methods on hydrologic predictions in an arid climate. Advances in Meteorology. : 156172. DOI: 10.1155/2014/156172 .

2238. Jajarmizadeh, M., S. Harun, R. Abdulah and M. Salarpour. 2016. An evaluation of blue water prediction in southern part of Iran using SWAT. Environmental Engineering and Management Journal. 15(1): 175-188. URL: http://omicron.ch.tuiasi.ro/EEMJ/issues/vol15/vol15no1.htm.

2239. Jakada, H. and Z. Chen. 2020. An approach to runoff modelling in small karst watersheds using the SWAT model. Arabian Journal of Geosciences. 13: 318. DOI: 10.1007/s12517-020-05291-0 .

2240. Jakrawatana, N., P. Ngammuangtueng and S.H. Gheewala. 2017. Linking substance flow analysis and Soil and Water Assessment Tool for nutrient management. Journal of Cleaner Production. 142(Part 3): 1158–1168. DOI: 10.1016/j.jclepro.2016.07.185 .

2241. Jalali, J., A. Ahmadi and K. Abbaspour. 2021. Runoff responses to human activities and climate change in an arid watershed of central Iran. Hydrological Sciences Journal. 66(16): 2280-2297. DOI: 10.1080/02626667.2021.1985724 .

2242. Jalel, A., B. Sihem, L.C. Zohra and C. Christophe. 2018. Valuing scarce observation of rainfall variability with flexible semi-distributed hydrological modelling – Mountainous Mediterranean context. Science of the Total Environment. 643: 346-356. DOI: 10.1016/j.scitotenv.2018.06.086 .

2243. Jalgaonkar, B.R. 2020. Hydrological modelling of river basin in agriculture area by using soil and water assessment tool. Journal of Soil and Water Conservation (India). 20(2): 233-236. DOI: 10.5958/2455-7145.2021.00030.8 .

2244. Jalowska, A.M. and Y. Yuan. 2019. Evaluation of SWAT impoundment modeling methods in water and sediment simulations. Journal of the American Water Resources Association. 55(1): 209-227. DOI: 10.1111/1752-1688.12715 .

2245. Jamieson, R., R. Gordon, D. Joy and H. Lee. 2004. Assessing microbial pollution of rural surface waters: A review of current watershed scale modeling approaches. Agricultural Water Management. 70: 1-17. DOI: 10.1016/j.agwat.2004.05.006 .

2246. Jamrussri, S. and Y. Toda. 2017. Simulating past severe flood events to evaluate the effectiveness of nonstructural flood countermeasures in the Upper Chao Phraya River Basin, Thailand. Journal of Hydrology: Regional Studies. 10: 82-84. DOI: 10.1016/j.ejrh.2017.02.001 .

2247. Jamshidi, M., M. Tajrishy and M. Maghrebi. 2010. Modeling of point and non-point source polllution of nitrate with SWAT in the Jajrood River Watershed, Iran. International Agricultural Engineering Journal. 19(2): 23-31. URL: https://www.researchgate.net/publication/228666522_Modeling_of_point_and_non-point_source_pollution_of_nitrate_with_SWAT_in_the_Jajrood_river_watershed_Iran.

2248. Jamshidi, R. and D. Dragovich. 2023. Water balance uncertainty of a hydrologic model to lengthy drought and storm events in managed forest catchments, eastern Australia. Land. 12(1): 3. DOI: 10.3390/land12010003 .

2249. Jamshidi, S. and A. Naderi. 2023. A quantitative approach on environment-food nexus: Integrated modeling and indices for cumulative impact assessment of farm management practices. PeerJ. 11: e14816. DOI: 10.7717/peerj.14816 .

2250. Jamshidi, S., S. Imani and M. Delavar. 2020. Impact assessment of best management practices (BMPs) on the water footprint of agricultural productions. International Journal of Environmental Research. 14(6): 641-652. DOI: 10.1007/s41742-020-00285-y .

2251. Jamshidi, S., S. Imani and M. Delavar. 2023. An approach to quantifying the grey water footprint of agricultural productions in basins with impaired environment. Journal of Hydrology. 606: 127458. DOI: 10.1016/j.jhydrol.2022.127458 .

2252. Jang, J.H., K.W. Jung and C.G. Yoon. 2012. Modification of SWAT model for simulation of organic matter in Korean watersheds. Water Science and Technology. 66(11): 2355-2362. DOI: 10.2166/wst.2012.465 .

2253. Jang, S.S., S.R. Ahn and S.J. Kim. 2017. Evaluation of executable best management practices in Haean Highland Agricultural Catchment of South Korea using SWAT. Agricultural Water Management. 180(Part B): 224-234. DOI: 10.1016/j.agwat.2016.06.008 .

2254. Jang, T., G. Vellidis, J.B. Hyman, E. Brooks, L.A. Kurkalova, J. Boll and J. Cho. 2013. Model for prioritizing best management practice implementation: Sediment load reduction. Environmental Management. 51(1): 209-224. DOI: 10.1007/s00267-012-9977-4 .

2255. Jang, W.J., Y.G. Lee and S.J. Kim. 2018. Evaluation of multi-objective PSO algorithm for SWAT auto-calibration. Journal of Korea Water Resources Association. 51(9): 803-812. DOI: 10.3741/JKWRA.2018.51.9.803 .

2256. Jang, W.S., B. Engel and C.M. Yeum. 2020. Integrated environmental modeling for efficient aquifer vulnerability assessment using machine learning. Environmental Modelling & Software. 129: 104602. DOI: 10.1016/j.envsoft.2019.104602 .

2257. Jang, W.S., B. Engel and J. Ryu. 2018. Efficient flow calibration method for accurate estimation of baseflow using a watershed scale hydrological model (SWAT). Ecological Engineering. 125: 50-67. DOI: 10.1016/j.ecoleng.2018.10.007 .

2258. Jang, W.S., Y. Park, J. Kim, N. Kim, J. Choi, Y.S. Ok, J.E. Yang and K.J. Lim. 2010. Development of the SWAT DWDM for accurate estimation of soil erosion from an agricultural field. Journal of the Korean Society of Agricultural Engineers. 52(1): 79-88. URL: https://engineering.purdue.edu/~park397/home/pdf/2010_5.pdf.

2259. Jang, Y., J. Park and D. Seo. 2018. Estimations of flow rate and pollutant loading changes of the Yo-Cheon basin under AR5 climate change scenarios using SWAT. Journal of Korean Society of Water and Wastewater. 32(3): 221-233. DOI: 10.11001/jksww.2018.32.3.221 .

2260. Janjić, J. and L. Tadić. 2023. Fields of application of SWAT hydrological model—A review. Earth. 4(2): 331-344. DOI: 10.3390/earth4020018 .

2261. Janney P. and J. Jenkins. 2019. A systems approach to modeling watershed ecohydrology and pesticide transport. Journal of Environmental Quality. DOI: 10.2134/jeq2018.09.0334 .

2262. Janney, P. and J. Jenkins. 2022. Passive sampling and ecohydrologic modeling to investigate pesticide surface water loading in the Zollner Creek Watershed, Oregon, USA. Science of the Total Environment. 819: 152955. DOI: 10.1016/j.scitotenv.2022.152955 .

2263. Janta, R., L. Khwanchum, P. Ditthakit, N. Al-Ansari and N.T.T. Linh. 2022. Water yield alteration in Thailand's Pak Phanang Basin due to impacts of climate and land-use changes. Sustainability. 14(15): 9106. DOI: 10.3390/su14159106 .

2264. Javadi, P., H. Asadim A. Besalatpour and M. Vazifedoust. 2022. Prediction of spatial and temporal variability of soil moisture in Marghab Watershed using SWAT. Iranian Journal of Soil and Water Research. 53(10): 2365-2382. DOI: 10.22059/ijswr.2022.348271.669353 .

2265. Javaheri, A. and M. Babbar-Sebens. 2014. On comparison of peak flow reductions, flood inundation maps, and velocity maps in evaluating effects of restored wetlands on channel flooding. Ecological Engineering. 73: 132-145. DOI: 10.1016/j.ecoleng.2014.09.021 .

2266. Javanmard S., H. Ghodousi and B. Hesari. 2019. Determination of the surface water balance parameters in Ag Chai Basin using SWAT model and uncertainty analysis with SUFI-2 algorithm. Journal of Irrigation and Water Engineering. 9(34): 27-36. URL: http://www.waterjournal.ir/article_87264.html?lang=en.

2267. Jayakody, J., P.B. Parajuli, G.F. Sassenrath and Y. Ouyang. 2014. Relationships between water table and model simulated ET. Groundwater. 52(2): 303–310. URL: http://onlinelibrary.wiley.com/doi/10.1111/gwat.12053/abstract.

2268. Jayakody, P., P. Parajuli and J. Brooks. 2014. Evaluating spatial and temporal variability of fecal coliform bacteria loads at the Pelahatchie Watershed in Mississippi. Human and Ecological Risk Assessment: An International Journal. 20(4): 1023-1041. DOI: 10.1080/10807039.2013.784155 .

2269. Jayakody, P., P.B. Parajuli and J.P. Brooks. 2014. Assessing climate variablility impact on thermotolerant coliform bacteria in surface water. Human and Ecological Risk Assessment: An International Journal. 21(3): 691-706. DOI: 10.1080/10807039.2014.909188 .

2270. Jayakody, P., P.B. Parajuli and T.P. Cathcart. 2014. Impacts of climate variability on water quality with best management practices in sub-tropical climate of USA. Hydrological Processes. 28(23): 5776-5790. DOI: 10.1002/hyp.10088 .

2271. Jayakrishnan, R., R. Srinivasan, C. Santhi and J.G. Arnold. 2005. Advances in the application of the SWAT model for water resources management. Hydrological Processes. 19(3): 749-762. DOI: 10.1002/hyp.5624 .

2272. Jayanthi, S.L.S.V. and V.R. Keesara. 2019. Climate change impact on water resources of medium irrigation tank. ISH Journal of Hydraulic Engineering. DOI: 10.1080/09715010.2019.1649605 .

2273. Jayanthi, S.L.S.V., V.R. Keesara and V. Sridhar. 2022. Prediction of future lake water availability using SWAT and support vector regression (SVR). Sustainability. 14(12): 6974. DOI: 10.3390/su14126974 .

2274. Jayaprathiga, M., R. Cibin and K.P. Sudheer. 2022. Reliability of hydrology and water quality simulations using global scale datasets. Journal of the American Water Resources Association. 58(3): 453–470. DOI: 10.1111/1752-1688.13006 .

2275. Jeet, P., D.K. Singh and A. Sarangi. 2019. Development of a composite hydrologic index for semi-arid region of India. Groundwater. 57(5): 749-755. DOI: 10.1111/gwat.12867 .

2276. Jeet, P., D.K. Singh, A. Sarangi, S.S. Mali and A.K. Singh. 2021. Delineation of potential water harvesting site for agriculture water planning in Betwa Basin of India using geospatial and analytical hierarchical process technique. Geocarto International. DOI: 10.1080/10106049.2021.2000647 .

2277. Jefrizon, M. Fauzi and Nurdin. 2021. Pengaruh perubahan Tutupan Lahan Terhadap Ailiran Permukaan Pada Sub DAS Kampar Kanan. Jurnal Rab Contruction Research . 6(1): 22-38. DOI: 10.36341/racic.v6i1.1540 .

2278. Jeon, D.J., M. Ligaray, M. Kim, G. Kim, G. Lee, Y.A. Pachepsky, D.-H. Cha and K.H. Cho. 2019. Evaluating the influence of climate change on the fate and transport of fecal coliform bacteria using the modified SWAT model. Science of the Total Environment. 658: 753-762. DOI: 10.1016/j.scitotenv.2018.12.213 .

2279. Jeon, D.J., S.J. Ki, Y. Cha, Y. Park and J.H. Kim. 2018. New methodology of evaluation of best management practices performances for an agricultural watershed according to the climate change scenarios: A hybrid use of deterministic and decision support models. Ecological Engineering. 119: 73-82. DOI: 10.1016/j.ecoleng.2018.05.006 .

2280. Jeon, D.J., Y.A. Pachepsky, B. Kim and J.H. Kim. 2019. New methodology to develop high-resolution rainfall data using weather radar for watershed-scale water quality model. Desalination and Water Treatment. 138: 248-256. DOI: 10.5004/dwt.2019.23344 .

2281. Jeong, C., K. Joo, W. Lee, H. Shin and J.-H. Heo. 2014. Estimation of optimal grid size for radar reflectivity using a SWAT model. Journal of Hydro-environment Research. 8(1): 20-31. DOI: 10.1016/j.jher.2013.05.005 .

2282. Jeong, H. and J. Adamowski. 2016. A system dynamics based socio-hydrological model for agricultural wastewater reuse at the watershed scale. Agricultural Water Management. 171: 89-107. DOI: 10.1016/j.agwat.2016.03.019 .

2283. Jeong, H., H. Kim, T. Jang and S. Park. 2016. Assessing the effects of indirect wastewater reuse on paddy irrigation in the Osan River Watershed in Korea using the SWAT model. Agricultural Water Management. 163: 393-402. DOI: 10.1016/j.agwat.2015.08.018 .

2284. Jeong, H.G., S.J. Kim and R. Ha. 2013. Assessment of climate change impact on storage behavior of Chungju and the regulation dams using SWAT model. Journal of the Korean Water Resources Association. 46(12): 1235-1247. DOI: 10.3741/JKWRA.2013.46.12.1235 .

2285. Jeong, J., C. Santhi, J.G. Arnold, R. Srinivasan, S. Pradhan and K. Flynn. 2011. Development of algorithms for modeling onsite wastewater systems within SWAT. Transactions of the ASABE. 54(5): 1693-1704. DOI: 10.13031/2013.39849 .

2286. Jeong, J., J. Yang, S. Han, Y.-S. Seo and Y. Hong. 2020. Assessment of coupled hydrologic and biogeochemical Hg cycles in a temperate forestry watershed using SWAT-Hg. Environmental Modelling & Software. 126: 104644. DOI: 10.1016/j.envsoft.2020.104644 .

2287. Jeong, J., K. Wagner, J.J. Flores, T. Cawthon, Y. Her, J. Osorio and H. Yen. 2018. Linking watershed modeling and bacterial source tracking to better assess E. coli sources. Science of the Total Environment. 648: 164-175. DOI: 10.1016/j.scitotenv.2018.08.097 .

2288. Jeong, J., N. Kannan and J.G. Arnold. 2014. Effects of urbanization and climate change on stream health in the north central Texas, USA. Journal of Environmental Quality. 43(1): 100-109. DOI: 10.2134/jeq2011.0345 .

2289. Jeong, J., N. Kannan, J. Arnold, R. Glick, L. Gosselink and R. Srinivasan. 2010. Development and integration of sub-hourly rainfall–runoff modeling capability within a watershed model. Water Resources Management. 24(15): 4505-4527. DOI: 10.1007/s11269-010-9670-4 .

2290. Jeong, J., N. Kannan, J.G. Arnold, R. Glick, L. Gosselink, R. Srinivasan and R.D. Harmel. 2011. Development of sub-daily erosion and sediment transport algorithms for SWAT. Transactions of the ASABE. 54(5): 1685-1691. DOI: 10.13031/2013.39841 .

2291. Jeong, J., N. Kannan, J.G. Arnold, R. Glick, L. Gosselink, R. Srinivasan and M.E. Barrett. 2013. Modeling sedimentation-filtration basins for urban watersheds in SWAT. Journal of Environmental Engineering. 139(6): 838-848. DOI: 10.1061/(ASCE)EE.1943-7870.0000691 .

2292. Jeong, S.M., H.D. Seo, H.S. Kim and K.H. Han. 2008. Sensitivity assessment on Daecheong Dam Basin streamflows according to the change of climate components. Journal of the Korean Water Resources Association. 41(11): 1095-1106. DOI: 10.3741/JKWRA.2008.41.11.1095 .

2293. Jepsen, S.M., T.C. Harmon and B. Guan. 2021. Analyzing the suitability of remotely sensed ET for calibrating a watershed model of a Mediterranean montane forest. Remote Sensing. 13(7): 1258. DOI: 10.3390/rs13071258 .

2294. Jepsen, S.M., T.C. Harmon, D.L. Ficklin, N.P. Molotch and B. Guan. 2018. Evapotranspiration sensitivity to air temperature across a snow-influenced watershed: Space-for-time substitution versus integrated watershed modeling. Journal of Hydrology. 556: 645-659. DOI: 10.1016/j.jhydrol.2017.11.042 .

2295. Jepsen, S.M., T.C. Harmon, S. Sadro, B. Reid and S. Chandra. 2019. Water residence time (age) and flow path exert synchronous effects on annual characteristics of dissolved organic carbon in terrestrial runoff. Science of the Total Environment. 656: 1223-1237. DOI: 10.1016/j.scitotenv.2018.11.392 .

2296. Jeyrani, F., S. Morid and R. Srinivasan. 2021. Assessing basin blue–green available water components under different management and climate scenarios using SWAT. Agricultural Water Management. 256: 107074. DOI: 10.1016/j.agwat.2021.107074 .

2297. Jha, M. and P. Gassman. 2014. Changes in hydrology and streamflow as predicted by a modelling experiment forced with climate models. Hydrological Processes. 28(5): 2772–2781. DOI: 10.1002/hyp.9836 .

2298. Jha, M., B.A. Babcock, P.W. Gassman and C.L. Kling. 2009. Economic and environmental impacts of alternative energy crops. International Agricultural Engineering Journal. 18(03-04): 15-23. URL: https://www.researchgate.net/publication/298016857_Economic_and_environmental_impacts_of_alternative_energy_crops.

2299. Jha, M., J.G. Arnold, P.W. Gassman, F. Giorgi and R.R. Gu. 2006. Climate change sensitivity assessment on Upper Mississippi River Basin streamflows using SWAT. Journal of the American Water Resources Association. 42(4): 997-1016. DOI: 10.1111/j.1752-1688.2006.tb04510.x .

2300. Jha, M., K.E. Schilling, P.W. Gassman and C.F. Wolter. 2010. Targeting land-use change for nitrate-nitrogen load reductions in an agricultural watershed. Journal of Soil and Water Conservation. 65(6): 342-352. DOI: 10.2489/jswc.65.6.342 .

2301. Jha, M., P.W. Gassman and J.G. Arnold. 2007. Water quality modeling for the Raccoon River Watershed using SWAT. Transactions of the ASABE. 50(2): 479-493. DOI: 10.13031/2013.22660 .

2302. Jha, M., P.W. Gassman, S. Secchi, R. Gu and J. Arnold. 2004. Effect of watershed subdivision on SWAT flow, sediment, and nutrient predictions. Journal of the American Water Resources Association. 40(3): 811-825. DOI: 10.1111/j.1752-1688.2004.tb04460.x .

2303. Jha, M., S. Rabotyagov and P.W. Gassman. 2009. Optimal placement of conservation practices using genetic algorithm with SWAT. International Agricultural Engineering Journal. 18(1-2): 41-50. URL: https://elibrary.asabe.org/abstract.asp?aid=24288.

2304. Jha, M., Z. Pan, E.S. Takle and R. Gu. 2004. Impacts of climate change on streamflow in the Upper Mississippi River Basin: A regional climate model perspective. Journal of Geophysical Research. 109: D09105. DOI: 10.1029/2003JD003686 .

2305. Jha, M.K. 2011. Evaluating hydrologic response of an agricultural watershed for watershed analysis. Water. 3(2): 604-617. DOI: 10.3390/w3020604 .

2306. Jha, M.K. 2020. Impacts of landscape changes on water resources. Water. 12(8): 2244. DOI: 10.3390/w12082244 .

2307. Jha, M.K. and S. Afreen. 2020. Flooding urban landscapes: Analysis using combined hydrodynamic and hydrologic modeling approaches. Water. 12(7): 1996. DOI: 10.3390/w12071986 .

2308. Jha, M.K., C.F. Wolter, K.E. Schilling and P.W. Gassman. 2010. Assessment of total maximum daily load implementation strategies for nitrate impairment of the Raccoon River, Iowa. Journal of Environmental Quality. 39(4): 1317-1327. DOI: 10.2134/jeq2009.0392 .

2309. Jha, M.K., P.W. Gassman and Y. Panagopoulos. 2015. Regional changes in nitrate loadings in the Upper Mississippi River Basin under predicted mid-century climate. Regional Environmental Change. 15(3): 449-460. DOI: 10.1007/s10113-013-0539-y .

2310. Ji, G., Z. Lai, H. Xia, H. Liu and Z. Wang. 2021. Future runoff variation and flood disaster prediction of the Yellow River Basin based on CA-Markov and SWAT. Land. 10(4): 421. DOI: 10.3390/land10040421 .

2311. Ji, H., G. Fang, J. Yang and Y. Chen. 2019. Multi-objective calibration of a distributed hydrological model in a highly glacierized watershed in Central Asia. Water. 11(3): 554. DOI: 10.3390/w11030554 .

2312. Ji, H., Y. Chen, G. Fang, Z. Li, W. Duan and Q. Zhang. 2021. Adaptability of machine learning methods and hydrological models to discharge simulations in datasparse glaciated watersheds. Journal of Arid Land. 13(6): 549–567. DOI: 10.1007/s40333-021-0066-5 .

2313. Ji, L. and K. Duan. 2019. What is the main driving force of hydrological cycle variations in the semiarid and semi-humid Weihe River Basin, China? Science of the Total Environment. 684: 254-264. DOI: 10.1016/j.scitotenv.2019.05.333 .

2314. Ji, S., S. Ren, Y. Li, J. Fang, D. Zhao and J. Liu. 2021. The response of net primary productivity to climate change and its impact on hydrology in a water-limited agricultural basin. Environmental Science and Pollution Research. DOI: 10.1007/s11356-021-16458-x .

2315. Ji, U., T.-G. Kim, E.-J. Lee, K.-S. Ryoo, M.-H. Hwang and E.K. Jang. 2014. Analysis of sediment discharge by long-term runoff in Nakdong River watershed using SWAT model. Journal of Environmental Science International. 23(4): 723-735. DOI: 10.5322/JESI.2014.4.723 .

2316. Jia, H. X. Li, J. Wen and C. Yaling. 2022. Runoff change simulation and future trend projection in the source area of the Yellow River. Resources Science. 44(6): 1292-1304. DOI: 10.18402/resci.2022.06.15 .

2317. Jiang D. and K. Wang. 2019. The role of satellite-based remote sensing in improving simulated streamflow: A review. Water. 11(8): 1615. DOI: 10.3390/w11081615 .

2318. Jiang, D., C. Ao, R.T. Bailey, W. Zeng and J. Huang. 2022. Simulation of water and salt transport in the Kaidu River Irrigation District using the modified SWAT-Salt. Agricultural Water Management. 272: 107845. DOI: 10.1016/j.agwat.2022.107845 .

2319. Jiang, F., H.E. Preisendanz, T.L. Veith, R. Cibin and P.J. Drohan. 2021. Riparian buffer effectiveness as a function of buffer design and input loads. Journal of Environmental Quality. 49: 1599-1611. DOI: 10.1002/jeq2.20149 .

2320. Jiang, F., P.J. Drohan, R. Cibin, H.E. Preisendanz, C.M. White and T.L. Veith. 2020. Reallocating crop rotation patterns improves water quality and maintains crop yield. Agricultural Systems. 187: 103015. DOI: 10.1016/j.agsy.2020.103015 .

2321. Jiang, J. and P. Du. 2019. Improvement and application of SWAT model watershed delineation method in plain irrigation districts. Journal of Tsinghua University (Science and Technology) . 55(10): 866-872. URL: http://jst.tsinghuajournals.com/CN/10.16511/j.cnki.qhdxxb.2019.22.033.

2322. Jiang, J., J. Li, Z. Wang, X. Wu, C. Lai and X. Chen. 2022. Effects of different cropping systems on ammonia nitrogen load in a typical agricultural watershed of south China. Journal of Contaminant Hydrology. 246: 103963. DOI: 10.1016/j.jconhyd.2022.103963 .

2323. Jiang, J., L. Lyu, Y. Han and C. Sun. 2021. Effect of climate variability on green and blue water resources in a temperate monsoon watershed, northeastern China. Sustainability. 13(4): 2193. DOI: 10.3390/su13042193 .

2324. Jiang, J., S. Li, J. Hu and J. Huang. 2014. A modeling approach to evaluating the impacts of policy-induced land management practices on non-point source pollution: A case study of the Liuxi River Watershed, China. Agricultural Water Management. 131: 1-16. DOI: 10.1016/j.agwat.2013.09.005 .

2325. Jiang, L., J. Zhu, W. Chen, Y. Hu, J. Yao, S. Yu, G. Jia, X. He and A. Wang. 2021. Identification of suitable hydrologic response unit thresholds for soil and water assessment tool streamflow modelling. Chinese Geographical Science. 31(4): 696-710. DOI: 10.1007/s11769-021-1218-4 .

2326. Jiang, M., S. Xie and S. Wang. 2020. Water use conflict and coordination between agricultural and wetlands—A case study of Yanqi basin. Water. 12(11): 3225. DOI: 10.3390/w12113225 .

2327. Jiang, P., K. Son, M.K. Mudunuru and X. Chen. 2022. Using mutual information for global sensitivity analysis on watershed modeling. Water Resources Research. 58(10): e2022WR032932. DOI: 10.1029/2022WR032932 .

2328. Jiang, Q., Z. Qi, F. Tang, L. Xue and M. Bukovsky. 2020. Modeling climate change impact on streamflow as affected by snowmelt in Nicolet River Watershed, Quebec. Computers and Electronics in Agriculture. 178: 105756. DOI: 10.1016/j.compag.2020.105756 .

2329. Jiang, R., C. Wang, R. Hatano, K. Kuramochi, A. Hayakawa and K.P. Woli. 2015. Factors controlling the long-term temporal and spatial patterns of nitrate-nitrogen export in a dairy farming watershed. Environmental Monitoring and Assessment. 187: 1-16. DOI: 10.1007/s10661-015-4394-9 .

2330. Jiang, R., C. Y. Wang, R. Hatano, A. Hayakawa, K.P. Woli and K. Kuramochi. 2014. Simulation of stream nitrate-nitrogen export using the Soil and Water Assessment Tool model in a dairy farming watershed with an external water source. Journal of Soil and Water Conservation. 69(1): 75-85. DOI: 10.2489/jswc.69.1.75 .

2331. Jiang, R., T.-T. Wang, J. Shao, S . Guo, W. Zhu, Y.-J. Yu, S.-L. Chen and R. Hatano. 2017. Modeling the biomass of energy crops: Descriptions, strengths and prospective. Journal of Integrative Agriculture. 16: 60345-7. DOI: 10.1016/S2095-3119(16)61592-7 .

2332. Jiang, R., Y. Li, Q. Wang, K. Kuramochi, A. Hayakawa, K.P. Woli and R. Hatano. 2011. Modeling the water balance processes for understanding the components of river discharge in a non-conservative watershed. Transactions of the ASABE. 54(6): 2171-2180. URL: http://eprints.lib.hokudai.ac.jp/dspace/handle/2115/48391.

2333. Jiang, y., J. Gao, L. Yang, S. Wu and E. Dai. 2021. The interactive effects of elevation, precipitation and lithology on karst rainfall and runoff erosivity. Catena. 207: 105588. DOI: 10.1016/j.catena.2021.105588 .

2334. Jiang, Z., Y. Ding, C. Zheng and W. Chen. 2011. An improved, downscaled, fine model for simulation of daily weather states. Advances in Atmospheric Sciences. 28(6): 1357-1366. DOI: 10.1007/s00376-011-0086-8 .

2335. Jiao, F., B.Q. Qin and W.Y. Huang. 2003. Management of water environment in small watershed with Hufu Town of Yixing City as example. China Environmental Science. 23(2): 220-224. URL: http://en.cnki.com.cn/Article_en/CJFDTotal-ZGHJ200302026.htm.

2336. Jiao, L., R. Liu, L. Wang, L. Li and L. Cao. 2021. Evaluating spatiotemporal variations in the impact of inter‑basin water transfer projects in water‑receiving basin. Water Resources Management. 35(15): 5409-5429. DOI: 10.3390/su132112067 .

2337. Jiao, Y., J. Liu, C. Li, W. Wang, F. Yu and Y. Wang. 2020. Quantitative attribution of runoff attenuation to climate change and human activity in typical mountainous areas: An enlightenment to water resource sustainable utilization and management in north China. Sustainability. 12(24): 10395. DOI: 10.3390/su122410395 .

2338. Jie, X., X. Yu, X. Gaodi and J. Yuan. 2019. Ecosystem service flow insights into horizontal ecological compensation standards for water resource: A case study in Dongjiang Lake Basin, China. Chinese Geographical Science. 29 (2): 214-230. DOI: 10.1007/s11769-019-1025-3 .

2339. Jie, Z., L. Guang-yong, H. Zhen-zhong and M. Guo-Xia. 2010. Hydrological cycle simulation of an irrigation district based on SWAT model. Mathematical and Computer Modelling. 51(11-12): 1312-1318. DOI: 10.1016/j.mcm.2009.10.036 .

2340. Jilo, N.B., B. Gebremariam, A.E. Harka, G.W. Woldemariam and F. Behulu. 2019. Evaluation of the impacts of climate change on sediment yield from the Logiya Watershed, Lower Awash Basin, Ethiopia. Hydrology. 6(3): 81. DOI: 10.3390/hydrology6030081 .

2341. Jilo, N.B., M.A. Gurara, A.D. Tolche and A.E. Harka. 2022. Impacts of management scenarios and sediment yield simulation in upper and middle Awash River Basin, Ethiopia. Ecohydrology & Hydrobiology. 22(2): 269-282. DOI: 10.1016/j.ecohyd.2021.11.003 .

2342. Jiménez-Navarro, I.C., J.P. Mesman, D. Pierson, D. Trolle, A. Nielsen and J. Senent-Aparicio. 2023. Application of an integrated catchment-lake model approach for simulating effects of climate change on lake inputs and biogeochemistry. Science of Soil and Water Conservation. 885: 163946. DOI: 10.1016/j.scitotenv.2023.163946 .

2343. Jiménez-Navarro, I.C., P. Jimeno-Sáez, A. López-Ballesteros, J. Pérez-Sánchez and J. Senent-Aparicio. 2021. Impact of climate change on the hydrology of the forested watershed that drains into Lake Erken in Sweden: An analysis using SWAT+ and CMIP6 scenarios. Forests. 12(12): 1803. DOI: 10.3390/f12121803 .

2344. Jimeno-Sáez, P., J. Senent-Aparicio, J. Pérez-Sánchez and D. Pulido-Velazquez. 2018. A comparison of SWAT and ANN Models for daily runoff simulation in different climatic zones of peninsular Spain. Water. 10(2): 192. DOI: 10.3390/w10020192 .

2345. Jimeno-Sáeza, P., R. Martínez-España, J. Casalí, J. Pérez-Sánchez, J. Senent-Aparicio. 2022. A comparison of performance of SWAT and machine learning models for predicting sediment load in a forested basin, northern Spain. Catena. 212: 105953. DOI: 10.1016/j.catena.2021.105953 .

2346. Jin, H., Q. Zhu, X. Zhao and Y. Zhang. 2016. Simulation and prediction of climate variability and assessment of the response of water resources in a typical watershed in China. Water. 8(11): 490. DOI: 10.3390/w8110490 .

2347. Jin, H., X. Chen, R. Zhong, Y. Pan, T. Zhao, Z. Liu and X. Tu. 2022. Corrected GCM data through CMFD data to analysis future runof changes in the source region of the Yangtze River, China. Environmental Earth Sciences. 81(23): 527. DOI: 10.1007/s12665-022-10655-8 .

2348. Jin, X. and V. Sridhar. 2011. Impacts of climate change on hydrology and water resources in the Boise and Spokane River basins. Journal of the American Water Resources Association. 48(2): 197-220. DOI: 10.1111/j.1752-1688.2011.00605.x .

2349. Jin, X. and Y. Jin. 2020. Calibration of a distributed hydrological model in a data-scarce basin based on GLEAM datasets. Water. 12: 897. DOI: 10.3390/w12030897 .

2350. Jin, X., C. He, L. Zhang and B. Zhang. 2018. A modified groundwater module in SWAT for improved streamflow simulation in a large, arid endorheic River watershed in northwest China. Chinese Geographical Science. 28(1): 47-60. DOI: 10.1007/s11769-018-0931-0 .

2351. Jin, X., L. Zhang, J. Gu, C. Zhao, J. Tian and C. He. 2015. Modeling the impacts of spatial heterogeneity in soil hydraulic properties on hydrological process in the upper reach of the Heihe River in the Qilian Mountains, northwest China. Hydrological Processes. 29(15): 3318–3327. DOI: 10.1002/hyp.10437 .

2352. Jin, X., Y. Jin and X. Mao. 2019. Land use/cover change effects on river basin hydrological processes based on a modified Soil and Water Assessment Tool: A case study of the Heihe River Basin in northwest China’s arid region. Sustainability. 11(4): 1072. DOI: 10.3390/su11041072 .

2353. Jin, X., Y. Jin, D. Fu and X. Mao. 2022. Modifying the SWAT model to simulate eco-hydrological processes in an arid grassland dominated watershed. Frontiers in Environmental Science. 10: 939321. DOI: 10.3389/fenvs.2022.939321 .

2354. Jin, X., Y. Jin, D. Yuan and X. Mao. 2019. Effects of land-use data resolution on hydrologic modelling, a case study in the upper reach of the Heihe River, northwest China. Ecological Modelling. 404: 61-68. DOI: 10.1016/j.ecolmodel.2019.02.011 .

2355. Jin, X., Y. Jin, J. Zhai, D. Fu and X. Mao. 2022. Identification and predication of crop waterlogging risk areas under the impact of climate change. Water. 14(12): 1956. DOI: 10.3390/w14121956 .

2356. Jin, X., Y. Jin, X. Mao, D. Fu, J. Zhai and L. Zheng. 2023. Impact of increasing vegetation coverage on gaining and losing streams in an arid endorheic river watershed. Hydrological Processes. 37(12): e15062. DOI: 10.1002/hyp.15062 .

2357. Jin, Z., Q. Zhuang, Z. Tan, J.S. Dukes, D. Zheng and J.M. Melillo. 2016. Do maize models capture the impacts of heat and drought stresses on yield? Using algorithm ensembles to identify successful approaches. Global Change Biology. 22(9): 3112–3126. DOI: 10.1111/gcb.13376 .

2358. Jisu, K., K. Minseok and C. Youngchan. 2021. Assessment of relationship between sediment-discharge based on rainfall characteristic using SWAT model. Journal of Soil and Groundwater Environment. 26(6): 118-129. DOI: 10.7857/JSGE.2021.26.6.118 .

2359. Jisun, C., P. Soyoung, Y. Yeon, Y. Hong-Joo, C. Chuluong and K. Jinsoo. 2013. Impacts of climate change under IPCC RCP scenarios on streamflow and water quality in the Youngsan Basin, South Korea. Disaster Advances. 6(12): 134-141. URL: https://www.researchgate.net/profile/Jinsoo_Kim10/publication/272794368_Impacts_of_climate_change_under_IPCC_RCP_scenarios_on_streamflow_and_water_quality_in_the_Youngsan_Basin_South_Korea/links/56145dee08ae4ce3cc63b579.pdf.

2360. Jodar-Abellan, A., J. Valdes-Abellan, C. Pla and F. Gomariz-Castillo. 2019. Impact of land use changes on flash flood prediction using a sub-daily SWAT model in five Mediterranean ungauged watersheds (SE Spain). Science of the Total Environment. 657: 1578-1591. DOI: 10.1016/j.scitotenv.2018.12.034 .

2361. Joh, H.-K., J.-W. Lee, M.-J. Park, H.-J. Shin, J.-E. Yi, G.-S. Kim, R. Srinivasan and S.-J. Kim. 2011. Assessing climate change impact on hydrological components of a small forest watershed through SWAT calibration of evapotranspiration and soil moisture. Transactions of the ASABE. 54(5): 1773-1781. URL: http://cat.inist.fr/?aModele=afficheN&cpsidt=24771145.

2362. Johnson, K.A., B.J. Dalzell, M. Donahue, J. Gourevitch, D.L. Johnson, G.S. Karlovits, B. Keeler and J.T. Smith. 2016. Conservation Reserve Program (CRP) lands provide ecosystem service benefits that exceed land rental payment costs. Ecosystem Services. 18: 175-185. DOI: 10.1016/j.ecoser.2016.03.004 .

2363. Johnson, M.-V.V., J.D. MacDonald, J.R. Kiniry and J. Arnold. 2009. ALMANAC: A potential tool for simulating agroforestry yields and improving SWAT simulations of agroforestry watersheds. International Agricultural Engineering Journal. 18(1-2): 51-58. URL: https://www.researchgate.net/publication/228626733_ALMANAC_A_potential_tool_for_simulating_agroforestry_yields_and_improving_SWAT_simulations_of_agroforestry_watersheds/link/53fe11590cf21edafd141b55/download.

2364. Johnson, T., J. Butcher, D. Deb, M. Faizullabhoy, P. Hummel, J. Kittle, S. McGinnis, L.O. Mearns, D. Nover, A. Parker, S. Sarkar, R. Srinivasan, P. Tuppad, M. Warren, C. Weaver and J. Witt. 2015. Modelling streamflow and water quality sensitivity to climate change and urban development in 20 U.S. watersheds. Journal of the American Water Resources Association. 51(5): 1321-1341. DOI: 10.1111/1752-1688.12308 .

2365. Johnson, T.E., J.B. Butcher, A. Parker and C.P. Weaver. 2012. Investigating the sensitivity of U.S. streamflow and water quality to climate change: U.S. EPA Global Change Research Program’s 20 watersheds project. Journal of Water Resources Planning and Management. 138(5): 453-464. DOI: 10.1061/(ASCE)WR.1943-5452.0000175 .

2366. Johnston, J.M., D.J. McGarvey, M. C. Barber, G. Laniak, J. Babendreier, R. Parmar, K. Wolfe, S.R. Kraemer, M. Cyterski, C. Knightes, B. Rashleigh, L. Suarez and R. Ambrose. 2011. An integrated modeling framework for performing environmental assessments: Application to ecosystem services in the Albemarle-Pamlico Basins (NC and VA, USA). Ecological Modelling. 222(14): 2471-2484. DOI: 10.1016/j.ecolmodel.2011.03.036 .

2367. Jones, C., M. Sultan, E. Yan, A. Milewski, M. Hussein, A. Al-Dousari, S. Al-Kaisy and R. Becker. 2008. Hydrologic impacts of engineering projects on the Tigris-Euphrates System and its marshlands. Journal of Hydrology. 353(1-2): 59-75. DOI: 10.1016/j.jhydrol.2008.01.029 .

2368. Jones, C.N., A. Ameli, B.P. Neff, G.R. Evenson, D.L. McLaughlin, H.E. Golden and C.R. Lane. 2019. Modeling connectivity of non-floodplain wetlands: Insights, approaches, and recommendations. Journal of the American Water Resources Association. 55(3): 559-577. DOI: 10.1111/1752-1688.12735 .

2369. Joo, J., A. Zhang, X. Li and C. Zheng. 2017. Hydrological responses to climate shifts for a minimally disturbed mountainous watershed in northwest China. Hydrological Sciences Journal. 62(9): 1440–1455. DOI: 10.1080/02626667.2017.1316851 .

2370. Jordan, G., S. Goenster-Jordan, G.-J. Lamparter, B. Ulziisuren, N. Soninkishig, E. Schlecht and A. Buerkert. 2018. Water use in agro-pastoral livelihood systems within the Bulgan River watershed of the Altay Mountains, Western Mongolia. Agriculture Ecosystems and Environment. 251: 180-193. DOI: 10.1016/j.agee.2017.09.008 .

2371. Jordan, S., J. Quinn, M. Zaniolo, M. Giuliani and A. Castelletti. 2022. Advancing reservoir operations modelling in SWAT to reduce socio-ecological tradeoffs. Environmental Modelling & Software. 157: 105527. DOI: 10.1016/j.envsoft.2022.105527 .

2372. Jordan, Y.C., A. Ghulam and S. Hartling. 2014. Traits of surface water pollution under climate and land use changes: A remote sensing and hydrological modeling approach. Earth Science Reviews. 128: 181–195. DOI: 10.1016/j.earscirev.2013.11.005 .

2373. Joseph, J.F. and J.H.A. Guillaume. 2013. Using a parallelized MCMC algorithm in R to identify appropriate likelihood functions for SWAT. Environmental Modelling & Software. 46: 292–298. DOI: 10.1016/j.envsoft.2013.03.012 .

2374. Joseph, J.F., H.O. Sarif, J.G. Arnold and D.D. Bosch. 2013. The impact of asynchronicity on event-flow estimation in basin-scale hydrologic model calibration. Journal of the American Water Resources Association. 49(2): 300–318. DOI: 10.1111/jawr.12011 .

2375. Joseph, N., P.P. Preetha and B. Narasimhan. 2021. Assessment of environmental flow requirements using a coupled surface water-groundwater model and a flow health tool: A case study of Son River in the Ganga Basin. Ecological Indicators. 121: 107110. DOI: 10.1016/j.ecolind.2020.107110 .

2376. Joshi, B.R. and S.M. Yadav. 2021. Effect on sediment delivery ratio by changes in land use land cover and construction of hydraulic structures at sub basin scale. Journal of Applied Water Engineering and Research. 10(1): 52-63. DOI: 10.1080/23249676.2021.1932617 .

2377. Joshi, B.R. and S.M. Yadav. 2022. Effect on sediment yield due to change in land use land cover and construction of hydraulic structures. International Journal of Hydrology Science and Technology. 14(3): 316-340. DOI: 10.1504/IJHST.2022.125677 .

2378. Jothiprakash, V., C. Praveenkumar and M. Manasa. 2017. Daily runoff estimation in Musi river basin, India, from gridded rainfall using SWAT model. European Water. 57: 63-69. URL: http://www.ewra.net/ew/pdf/EW_2017_57_09.pdf.

2379. Jou, M.H.H., D.N. Khojasteh and A.A. Besalatpour. 2019. Land use planning based on Soil and Water Assessment Tool model in a mountainous watershed to reduce runoff and sediment load. Canadian Journal of Soil Science. 99(3): 305-320. DOI: 10.1139/cjss-2018-0109 .

2380. Joumar, N., S. Nabih, A. Chatzipavlis, A. Velegrakis, T. Hasiotis, O. Tzoraki, J.E.S. El Messari and L. Benaabidate. 2023. A qualitative assessment of river plumes coupling SWAT model simulatons and a beach optical monitoring system. Hydrology. 10(2): 38. DOI: 10.3390/hydrology10020038 .

2381. Jujnovsky, J., A. Ramo, Á. Caro-Borrero, M. Mazari-Hiriart, M. Maass and L. Almeida-Leñero. 2017. Water assessment in a peri-urban watershed in Mexico City: A focus on an ecosystem services approach. Ecosystem Services. 24: 91-100. DOI: 10.1016/j.ecoser.2017.02.005 .

2382. Jujnovsky, J., T.M. Gonzalez-Martinez, E.A. Cantoral-Uriza and L. Almeida-Lenero. 2012. Assessment of water supply as an ecosystem service in a rural-urban watershed in southwestern Mexico City. Environmental Management. 49(3): 690-702. DOI: 10.1007/s00267-011-9804-3 .

2383. Julich, S., L. Breuer and H.-G. Frede. 2012. Integrating heterogeneous landscape characteristics into watershed scale modelling. Advances in Geosciences. 31: 31-38. DOI: 10.5194/adgeo-31-31-2012 .

2384. Julich, S., M.-A. Moorcroft, K.H. Feger and J.J.van Tol. 2022. The impact of overgrazing on water fluxes in a semi-arid watershed – The suitability of watershed scale modeling in a data scarce area. Journal of Hydrology: Regional Studies. 43: 101178. DOI: 10.1016/j.ejrh.2022.101178 .

2385. Junaidi, E. 2013. The role of agroforestry implementation to water yield in Cisadane watershed. Jurnal Penelitian Agroforestry. 1(1): 41-53. URL: http://www.forda-mof.org/index.php/content/jurnal/87#detail-114.

2386. Junaidi, E. 2014. Water yield of forest land use contributing in river stream. Jurnal Hutan Tropis. 2(1): 1-8. URL: https://ppjp.ulm.ac.id/journal/index.php/jht/article/view/1612.

2387. Junaidi, E. 2022. Effect of plantation forest development on water system, a simulation study in Upper Citanduy Watershed. Jurnal Penelitian Pengelolaan Daerah Aliran Sungai. 6(1): 87-110. DOI: 10.20886/jppdas.2022.6.1.87-110 .

2388. Junaidi, E. and dan Y. Indrajaya. 2018. Hydrological responses of agroforestry system application which is not based on land suitability, a case study in Cimuntur Watershed. Jurnal Penelitian Kehutanan Wallacea. 7(1): 69-81. DOI: 10.18330/jwallacea.2018.vol7iss1pp69-81 .

2389. Jung, C., S. Ahn, Z. Sheng, E.K. Ayana, R. Srinivasan and D. Yeganantham. 2022. Evaluate river water salinity in a semi-arid agricultural watershed by coupling ensemble machine learning technique with SWAT Model. Journal of the American Water Resources Association. 58(6): 1175–1188. DOI: 10.1111/1752-1688.12958 .

2390. Jung, C.G. and S.J. Kim. 2018. Assessment of the water cycle impact by the Budyko curve on watershed hydrology using SWAT and CO2 concentrations derived from Terra MODIS GPP. Ecological Engineering. 118: 179-190. DOI: 10.1016/j.ecoleng.2018.05.005 .

2391. Jung, C.G., D.R. Lee and J.W. Moon. 2016. Comparison of the Penman Monteith and regional calibration of Hargreaves equation for actual evapotranspiration using SWAT-stimulated results in Seolma-Cheon watershed. Hydrological Sciences Journal. 61(4): 793-800. DOI: 10.1080/02626667.2014.943231 .

2392. Jung, C.G., J.W. Moon, C.H. Jang and D.R. Lee. 2013. Assessment of climate change impacts on hydrology and snowmelt by applying RCP scenarios using SWAT Model for Hanriver Watersheds. Journal of the Korean Society of Agricultural Engineers. 55(5): 37-48. DOI: 10.5389/KSAE.2013.55.5.037 .

2393. Jung, C.-G., J.-Y. Park, S.-J. Kim and G.-A. Park. 2014. The SRI (system of rice intensification) water management evaluation by SWAPP (SWAT–APEX Program) modeling in an agricultural watershed of South Korea. Paddy and Water Environment. 12(1): 251-261. DOI: 10.1007/s10333-013-0367-1 .

2394. Jung, C.G., S.R. Ahn, S.J. Kim, H.J. Yang, H.J. Lee and G.A. Park. 2013. HSPF and SWAT modelling for identifying runoff reduction effect of nonpoint source pollution by rice straw mulching on upland crops. Journal of the Korean Society of Agricultural Engineers. 55(2): 47-57. DOI: 10.5389/KSAE.2013.55.2.047 .

2395. Jung, C.M., M.-J. Shin and Y.-O. Kim. 2015. A comparison study of runoff projections for Yongdam dam watershed using SWAT. Journal of Korea Water Resources Association. 48(6): 439-449. DOI: 10.3741/JKWRA.2015.48.6.439 .

2396. Jung, I.W., B.J. Lee, T.H. Jun and D.H. Bae. 2008. Hydrological model response to climate change impact assessments on water resources. Journal of the Korean Water Resources Association. 41(9): 907-917. DOI: 10.3741/JKWRA.2008.41.9.907 .

2397. Jung, I.W., D.H. Bae and B.J. Lee. 2013. Possible change in Korean streamflow seasonality based on multi-model climate projections. Hydrological Processes. 27(7): 1033–1045. DOI: 10.1002/hyp.9215 .

2398. Jung, W.Y., S.K. Yang and J.H. Lee. 2013. Characteristics of runoff on urban watershed in Jeju Island, Korea. Journal of Environmental Science International. 22(5): 555-562. DOI: 10.5322/JESI.2013.22.5.555 .

2399. Jung, Y., J. Moon, S.O. Lee and Y.S. Park. 2014. Assessment of the effects of urbanization on the watershed streamflow. Journal of the Korean Society of Agricultural Engineers. 56(1): 51-59. DOI: 10.5389/KSAE.2014.56.1.051 .

2400. Jung, Y., K. J. Lim and H. Kim. 2014. Estimation of baseflow considering recession characteristics of hydrograph. Journal of Wetlands Research. 16(2): 161-171. URL: http://ocean.kisti.re.kr/IS_mvpopo212L.do?method=elist&poid=kws1&kojic=HKSJBV&sVnc=v16n2.

2401. Júnior, R.F. and A. Montenegro. 2019. Impact of land use change on the water balance in a representative watershed in the semiarid of the state of Pernambuco using the SWAT model. Engenharia Agricola. 39(1): 110-117. DOI: 10.1590/1809-4430-Eng.Agric.v39n1p110-117/2019 .

2402. Junqueira, C. de A.R. and R.S. da Silva. 2008. Evaluation method applicable to hydrographic basins in the urban environment: Analysis of the AMORIN & CORDERO, PESMU and SWAT methods. Revista de estudos ambientals. 10(2): 6-23. URL: http://proxy.furb.br/ojs/index.php/rea/article/view/1214.

2403. Junqueira, R., M.R. Viola, J.d.S. Amorim, S.C. Wongchuig, C.R.d. Mello, M. Vieira-Filho and G. Coelho. 2022. Hydrological retrospective and historical drought analysis in a Brazilian savanna basin. Water. 14(14): 2178. DOI: 10.3390/w14142178 .

2404. Junqueira, R., M.R. Viola, J.S. Amorim, C. Camargos and C.R. de Mello. 2022. Hydrological modeling using remote sensing precipitation data in a Brazilian savanna basin. Journal of South American Earth Sciences. 115: 9. DOI: 10.1016/j.jsames.2022.103773 .

2405. Juvino, E.S., R. Angelini, C.W. Costa, D. de A. Bressiani and K.P.V. da Cunha. 2022. Impacts of land use and land cover on sediment production in a tropical peri-urban water source area. Revista Sociedade & Natureza. 34: e64640. DOI: 10.14393/SN-v34-2022-64640 .

2406. Kaandorp, V.P., E. Molina-Navarro, H.E. Andersen, J.P. Bloomfield, M.J.M. Kuijper and P.G.B. de Louw. 2018. A conceptual model for the analysis of multi-stressors in linked groundwater–surface water systems. Science of the Total Environment. 627: 880-895. DOI: 10.1016/j.scitotenv.2018.01.259 .

2407. Kaffas, K., V. Hrissanthou and S. Sevastas. 2018. Modeling hydromorphological processes in a mountainous basin using a composite mathematical model and ArcSWAT. Catena. 162: 108-129. DOI: 10.1016/j.catena.2017.11.017 .

2408. Kaim, A., B. Bartkowski, N. Lienhoop, C. Schröter-Schlaack, M. Volk and M. Strauch. 2021. Combining biophysical optimization with economic preference analysis for agricultural land-use allocation. Ecology and Society. 26(1): 9. DOI: 10.5751/ES-12116-260109 .

2409. Kaini, P., K. Artita and J.W. Nicklow. 2012. Optimizing structural best management practices using SWAT and genetic algorithm to improve water quality goals. Water Resources Management. 26(7): 1827-1845. DOI: 10.1007/s11269-012-9989-0 .

2410. Kakarndee, I. and E. Kositsakulchai. 2019. Estimation of streamflow with incomplete soil dataset in Krasioa Basin using soil-landscape evaluation approach and SWAT model. Applied Environmental Research. 41(3): 1-13. DOI: 10.35762/AER.2019.41.3.1 .

2411. Kakouei, K., J. Kiesel, S. Domisch, K.S. Irving, S.C. Jähnig and J. Kail. 2018. Projected effects of climate-change-induced flow alterations on stream macroinvertebrate abundances. Ecology and Evolution. 8(6): 3393–3409. DOI: 10.1002/ece3.3907 .

2412. Kalcic, M.K., C. Kirchhoff, N. Bosch, R.L. Muenich, M. Murray, J.G. Gardner and D. Scavia. 2016. Engaging stakeholders to define feasible and desirable agricultural conservation in western Lake Erie watersheds. Environmental Science & Technology. 50(15): 8135-8145. DOI: 10.1021/acs.est.6b01420 .

2413. Kalcic, M.M., I. Chaubey and J. Frankenberger. 2015. Defining Soil and Water Assessment Tool (SWAT) hydrologic response units (HRUs) by field boundaries. International Journal of Agricultural and Biological Engineering. 8(1): 42-49. DOI: 10.3965/j.ijabe.20150803.951 .

2414. Kalcic, M.M., J. Frankenberger, I. Chaubey, L. Prokopy and L. Bowling. 2015. Adaptive targeting: Engaging farmers to improve targeting and adoption of agricultural conservation practices. Journal of the American Water Resources Association. 51(4): 973-991. DOI: 10.1111/1752-1688.12336 .

2415. Kalcic, M.M., J. Frankenberger and I. Chaubey. 2015. Spatial optimization of six conservation practices using SWAT in tile-drained agricultural watersheds. Journal of the American Water Resources Association. 51(4): 956–972. DOI: 10.1111/1752-1688.12338 .

2416. Kalcic, M.M., R.L. Muenich, S. Basile, A.L. Steiner, C. Kirchhoff and D. Scavia. 2019. Climate change and nutrient loading in the Western Lake Erie Basin: Warming can counteract a wetter future. Environmental Science & Technology. 53(13): 7543-7550. DOI: 10.1021/acs.est.9b01274 .

2417. Kalin, L. and M.H. Hantush. 2006. Hydrologic modeling of an eastern Pennsylvania watershed with NEXRAD and rain gauge data. Journal of Hydrologic Engineering. 11(6): 555-569. DOI: 10.1061/(ASCE)1084-0699(2006)11:6(555) .

2418. Kalinowska, D., P. Wielgat, T. Kolerski and P. Zima. 2020. Model of nutrient and pesticide outflow with surface water to Puck Bay (Southern Baltic Sea). Water. 12(3): 809. DOI: 10.3390/w12030809 .

2419. Kalogeropoulos, K. and C. Chalkias. 2013. Modelling the impacts of climate change on surface runoff in small Mediterranean catchments: Empirical evidence from Greece. Water and Environment Journal. 27(4): 505–513. DOI: 10.1111/j.1747-6593.2012.00369.x .

2420. Kalogeropoulos, K., N. Stathopoulos, A. Psarogiannis, E. Pissias, P. Louka, G.P. Petropoulos and C. Chalkias. 2020. An integrated GIS-Hydro modeling methodology for surface runoff exploitation via small-scale reservoirs. Water. 12(11): 3182. DOI: 10.3390/w12113182 .

2421. Kalpakis, V., N. Kokkos, V. Pisinaras and G. Sylaios. 2019. An integrated coastal zone observatory at municipal level: The case of Kavala Municipality, NE Greece. Journal of Coastal Conservation. 23(1): 149–162. DOI: 10.1007/s11852-018-0646-5 .

2422. Kalyanam, R., L. Zhao, C. Song, L. Biehl, D. Kearney, I.L. Kim, J. Shin, N. Villoria and V. Merwade. 2019. MyGeoHub—A sustainable and evolving geospatial science gateway. Future Generation Computer Systems. 94: 820-832. DOI: 10.1016/j.future.2018.02.005 .

2423. Kamali, A. and M.H. Niksokhan. 2017. Multi-objective optimization for sustainable groundwater management by developing of coupled quantity-quality simulation-optimization model. Journal of Hydroinformatics. 19(6): ID: jh2017007. DOI: 10.2166/hydro.2017.007 .

2424. Kamali, B., D.H. Kouchi, H. Yang and K.C. Abbaspour. 2017. Multilevel drought hazard assessment under climate change scenarios in semi-arid regions—A case study of the Karkheh River Basin in Iran. Water. 9(4): 241. DOI: 10.3390/w9040241 .

2425. Kamali, B., K.C. Abbaspour and H. Yang. 2017. Assessing the uncertainty of multiple input datasets in the prediction of water resource components. Water. 9(9): 709. DOI: 10.3390/w9090709 .

2426. Kamamia, A.W., H.M. Mwangi, K.H. Feger and S. Julich. 2019. Assessing the impact of a multimetric calibration procedure on modelling performance in a headwater catchment in Mau Forest, Kenya. Journal of Hydrology: Regional Studies. 21: 80-91. DOI: 10.1016/j.ejrh.2018.12.005 .

2427. Kamamia, A.W., M. Strauch, H.M. Mwangi, K.-H. Feger, J. Sang and S. Julich. 2022. Modelling crop production, river low flow, and sediment load trade-offs under agroforestry land-use scenarios in Nyangores Catchment, Kenya. Frontiers in Forests and Global Change. 5: 1046371. DOI: 10.3389/ffgc.2022.1046371 .

2428. Kamble, A.K., M.P. Tripathi, S.N. Pawar and B.P. Sawant. 2005. Estimation of surface runoff from micro watershed using Soil and Water Assessment Tool (SWAT) model. Indian Journal of Dryland Agricultural Research and Development. 20(1): 46-56.

2429. Kamble, A.M., M.P. Tripathi and P.K. Shrivastava. 2003. Estimation of sediment yield from a micro watershed using SWAT model. Indian Journal of Soil Conservation. 31(1): 1-9. URL: https://www.researchgate.net/publication/292692868_Estimation_of_sediment_yield_from_a_micro_watershed_using_SWAT_model.

2430. Kan, D. and P. Duan. 2021. Resource-based agricultural non-point source pollution control using biological agents. Water Supply. 21(5): 2035-2046. DOI: 10.2166/ws.2020.291 .

2431. Kang, B., Y. Hun Ku and Y. Do Kim. 2015. A case study for ANN-based rainfall–runoff model considering antecedent soil moisture conditions in Imha Dam Watershed, Korea. Environmental Earth Sciences. 74(2): 1261-1272. DOI: 10.1007/s12665-015-4117-0 .

2432. Kang, B., Y.D. Kim, J.M. Lee and S.J. Kim. 2015. Hydro-environmental runoff projection under GCM Scenario downscaled by artificial neural network in the Namgang Dam watershed, Korea. KSCE Journal of Civil Engineering. 19(2): 434-445. DOI: 10.1007/s12205-015-0580-0 .

2433. Kang, H. 2014. Eco-river restoration and river management in response to climate change. Journal of the Korean Society of Civil Engineers. 34(1): 155-165. DOI: 10.12652/Ksce.2014.34.1.0155 .

2434. Kang, H. and V. Sridhar. 2017. Combined statistical and spatially distributed hydrological model for evaluating future drought indices in Virginia. Journal of Hydrology: Regional Studies. 12: 253-272. DOI: 10.1016/j.ejrh.2017.06.003 .

2435. Kang, H. and V. Sridhar. 2017. Description of future drought indices in Virginia. Data in Brief. 14: 278-290. DOI: 10.1016/j.dib.2017.07.042 .

2436. Kang, H. and V. Sridhar. 2018. Assessment of future drought conditions in the Chesapeake Bay Watershed. Journal of the American Water Resources Association. 54(1): 160-183. DOI: 10.1111/1752-1688.12600 .

2437. Kang, H. and V. Sridhar. 2018. Improved drought prediction using near real-time climate forecasts and simulated hydrologic conditions. Sustainability. 10(6): 1799. DOI: 10.3390/su10061799 .

2438. Kang, H. and V. Sridhar. 2020. A near-term drought assessment using hydrological and climate forecasting in the Mekong River Basin. International Journal of Climatology. 41(Suppl1): E2497-E2516. DOI: 10.1002/joc.6860 .

2439. Kang, H., J. Moon, Y. Shin, J. Ryu, D.H. Kum, C. Jang, J. Choi, D.S. Kong and K.J. Lim. 2016. Modification of SWAT auto-calibration for accurate flow estimation at all flow regimes. Paddy and Water Environment. 14: 499-508. DOI: 10.1007/s10333-015-0519-6 .

2440. Kang, H., V. Sridhar and S.A. Ali. 2022. Climate change impacts on conventional and flash droughts in the Mekong River Basin. Science of the Total Environment. 838: 155845. DOI: 10.1016/j.scitotenv.2022.155845 .

2441. Kang, H., V. Sridhar, M. Mainuddin and L.D. Trung. 2021. Future rice farming threatened by drought in the Lower Mekong Basin. Scientific Reports. 11: 9383. DOI: 10.1038/s41598-021-88405-2 .

2442. Kang, J.Y., J.M. Kim, Y.D. Kim and B.S. Kang. 2013. Effect of climate change on water quality in Seonakdong River Experimental Catchment. Journal of Korean Society of Water and Wastewater. 27(2): 197-206. DOI: 10.11001/jksww.2013.27.2.197 .

2443. Kang, J.Y., Y.D. Kim and B.S. Kang. 2013. Effect of change in hydrological environment by climate change on river water quality in Nam River Watershed. Journal of the Korean Water Resources Association. 46(8): 873-884. DOI: 10.3741/JKWRA.2013.46.8.873 .

2444. Kang, K. and J.H. Lee. 2014. Hydrologic modelling of the effect of snowmelt and temperature on a mountainous watershed. Journal of Earth System Science. 123(4): 705-713. DOI: 10.1007/s12040-014-0423-2 .

2445. Kang, M.-S., P. Srivastava, J.-H. Song, J. Park, Y. Her, S.M. Kim and I. Song. 2016. Development of a component-based modeling framework for agricultural water-resource management. Water. 8(8): 351. DOI: 10.3390/w8080351 .

2446. Kang, M.S., S.K. Yang, W.Y. Jung and D.S. Kim. 2013. Characteristics of runoff on southern area of Jeju Island, Korea. Journal of Environmental Science International. 22(5): 591-597. DOI: 10.5322/JESI.2013.22.5.591 .

2447. Kang, M.S., S.W. Park, J.J. Lee and K.H. Yoo. 2006. Applying SWAT for TMDL programs to a small watershed containing rice paddy fields. Agricultural Water Management. 79(1): 72-92. DOI: 10.1016/j.agwat.2005.02.015 .

2448. Kang, X., J. Qi, S. Li and F-R. Meng. 2022. A watershed-scale assessment of climate change impacts on crop yields in Atlantic Canada. Agricultural Water Management. 269: 107680. DOI: 10.1016/j.agwat.2022.107680 .

2449. Kang, Y., J. Gao, H. Shao and Y. Zhang. 2020. Quantitative analysis of hydrological responses to climate variability and land-use change in the hilly-gully region of the Loess Plateau, China. Water. 12(1): 82. DOI: 10.3390/w12010082 .

2450. Kang, Y., J. Gao, H. Shao, Y. Zhang, J. Li and Z. Gao. 2021. Evaluating the flow and sediment effects of gully land consolidation on the Loess Plateau, China. Journal of Hydrology. 600: 126535. DOI: 10.1016/j.jhydrol.2021.126535 .

2451. Kangrang, A., H. Prasanchum and R. Hormwichian. 2018. Development of future rule curves for multipurpose reservoir operation using conditional genetic and tabu search algorithms. Advances in Civil Engineering. : 6474870. DOI: 10.1155/2018/6474870 .

2452. Kangrang, A., H. Prasanchum and R. Hormwichian. 2019. Active future rule curves for multi-purpose reservoir operation on the impact of climate and land use changes. Journal of Hydro-environment Research. 34: 1-13. DOI: 10.1016/j.jher.2019.03.001 .

2453. Kangrang, A., H. Prasanchum, K. Sriworamas, S.M. Ashrafi, R. Hormwichian, R. Techarungruengsakul and R. Ngamsert. 2024. Application of optimization techniques for searching optimal reservoir rule curves: A review. Water. 15(9): 1669. DOI: 10.3390/w15091669 .

2454. Kanishka, G. and T.I. Eldho. 2020. Streamflow estimation in ungauged basins using watershed classification and regionalization techniques. Journal of Earth System Science. 129(1): 186. DOI: 10.1007/s12040-020-01451-8 .

2455. Kankam-Yeboah, K., E. Obuobie, B. Amisigo and Y. Opoku-Ankomah. 2013. Impact of climate change on streamflow in selected river basins in Ghana. Hydrological Sciences Journal. 58(4): 773-788. DOI: 10.1080/02626667.2013.782101 .

2456. Kannan, K., C. Santhi, M.J. White, S. Mehan, J.G. Arnold and P.W. Gassman. 2019. Some challenges in hydrologic model calibration for large-scale studies: A case study of SWAT model application to Mississippi-Atchafalaya River Basin. Hydrology. 6(1): 17. DOI: 10.3390/hydrology6010017 .

2457. Kannan, N., C. Santhi and J.G. Arnold. 2008. Development of an automated procedure for estimation of the spatial variation of runoff in large river basins. Journal of Hydrology. 359(1-2): 1-15. DOI: 10.1016/j.jhydrol.2008.06.001 .

2458. Kannan, N., C. Santhi, J.R. Williams and J.G. Arnold. 2008. Development of a continuous soil moisture accounting procedure for curve number methodology and its behavior with different evapotranspiration methods. Hydrological Processes. 22(13): 2114-2121. DOI: 10.1002/hyp.6811 .

2459. Kannan, N., E. Osei, Y. Cao and A. Saleh. 2017. Estimating sediment and nutrient delivery ratios in the Big Sunflower Watershed using a multiple linear regression model. Journal of Soil and Water Conservation. 72(5): 438-451. DOI: 10.2489/jswc.72.5.438 .

2460. Kannan, N., J. Jeong and R. Srinivasan. 2011. Hydrologic modeling of a canal-irrigated agricultural watershed with irrigation best management practices: Case study. Journal of Hydrologic Engineering. 16(9): 746-757. DOI: 10.1061/(ASCE)HE.1943-5584.0000364 .

2461. Kannan, N., J. Jeong, J. Arnold, L. Gosselink, R. Glick and R. Srinivasan. 2014. Hydrologic modeling of retention irrigation sysem. Journal of Hydrologic Engineering. 19(5): 1036-1041. DOI: 10.1061/(ASCE)HE.1943-5584.0000867 .

2462. Kannan, N., S.B. Roy, J.S. Rath, C.S. Munill and R.A. Goldstein. 2019. Estimating crop consumption of irrigation water for the conterminous U.S. Transactions of the ASABE. 62(4): 985-1002. DOI: 10.13031/trans.13102 .

2463. Kannan, N., S.M. White and M.J. Whelan. 2007. Predicting diffuse-source transfers of surfactants to surface waters using SWAT. Chemosphere. 66(7): 1336-1345. DOI: 10.1016/j.chemosphere.2006.07.005 .

2464. Kannan, N., S.M. White, F. Worrall and M.J. Whelan. 2006. Pesticide modeling for a small catchment using SWAT-2000. Journal of Environmental Science and Health, Part B - Pesticides, Food Contaminants, and Agricultural Wastes. 41(7): 1049-1070. DOI: 10.1080/03601230600850804 .

2465. Kannan, N., S.M. White, F. Worrall and M.J. Whelan. 2007. Hydrological modelling of a small catchment using SWAT-2000—Ensuring correct flow partitioning for contaminant modelling. Journal of Hydrology. 334(1-2): 64-72. DOI: 10.1016/j.jhydrol.2006.09.030 .

2466. Kannan, N., S.M. White, F. Worrall and M.J. Whelan. 2007. Sensitivity analysis and identification of the best evapotranspiration and runoff options for hydrological modeling in SWAT-2000. Journal of Hydrology. 332(3-4): 456-466. DOI: 10.1016/j.jhydrol.2006.08.001 .

2467. Kansara, P. and V. Lakshmi. 2021. Application of Soil Water Assessment Tool (SWAT) model in analyzing nitrogen transport inside the Narmada River Basin. Frontiers in Water. : 765957. DOI: 10.3389/frwa.2021.765957 .

2468. Kanter, D.R., M. Musumba, S.L.R. Wood, C. Palm, J. Antle, P. Balvanera, V.H. Dale, P. Havlik, K.L. Kline, R.J. Scholes, P. Thornton, P. Tittonell and S. Andelman. 2016. Evaluating agricultural trade-offs in the age of sustainable development. Agricultural Systems. 163: 73-88. DOI: 10.1016/j.agsy.2016.09.010 .

2469. Karakoyun, E. and N. Kaya. 2022. Hydrological simulation and prediction of soil erosion using the SWAT model in a mountainous watershed: A case study of Murat River Basin, Turkey. Journal of Hydroinformatics. 24(6): 1175. DOI: 10.2166/hydro.2022.056 .

2470. Karami, F. and M.B. Khatibi. 2019. The modeling of soil erosion and prioritizing sediment production in Sattarkhan Dam Basin using MUSLE and SWAT models. Journal of Hydrogeomorphology. 5(18): 115-137. URL: https://hyd.tabrizu.ac.ir/article_8976_en.html.

2471. Karamouz, M., J. Teymoori and M.A. Olyaei. 2021. A spatial non-stationary based site selection of artificial groundwater recharge: A case study for semi-arid regions. Water Resources Management. 35(3): 963-978. DOI: 10.1007/s11269-020-02762-7 .

2472. Karamouz, M., M. Taheriyoun, A. Baghvand, H. Tavakolifar and F. Emami. 2010. Optimization of watershed control strategies for reservoir eutrophication management. Journal of Irrigation and Drainage Engineering. 136(12): 847-877. DOI: 10.1061/(ASCE)IR.1943-4774.0000261 .

2473. Karamouz, M., M. Taheriyoun, M. Seyedabadi and S. Nazif. 2015. Uncertainty based analysis of the impact of watershed phosphorus load on reservoir phosphorus concentration. Journal of Hydrology. 521: 533-542. DOI: 10.1016/j.jhydrol.2014.12.028 .

2474. Karcher, S.C., J.M. VanBriesen and C.T. Nietch. 2013. Alternative land-use method for spatially informed watershed management decision-making using SWAT. Journal of Environmental Engineering. 139(12): 1413–1423. DOI: 10.1061/(ASCE)EE.1943-7870.0000770 .

2475. Karim, S., N.H. Pandjaitan and A. Sapei. 2014. Sediment control structures analysis using Soil and Water Assessment Tool model in Upper Citanduy Sub-Watershed, West Java. Jurnal Teknik Hidraulik. 5(2): 125-138. URL: http://jurnalth.pusair-pu.go.id/index.php/JTH/article/view/305.

2476. Karki, R., P. Srivastava and T.L. Veith. 2020. Application of the Soil and Water Assessment Tool (SWAT) at field scale: Categorizing methods and review of applications. Transactions of the ASABE. 63(2): 513-522. DOI: 10.13031/trans.13545 .

2477. Karki, R., P. Srivastava, D.D. Bosch, L. Kalin, J. Lamba and T.C. Strickland. 2020. Multi-variable sensitivity analysis, calibration, and validation of a field-scale SWAT model: Building stakeholder trust in hydrologic and water quality modeling. Transactions of the ASABE. 63(2): 523-539. DOI: 10.13031/trans.13576 .

2478. Karki, R., P. Srivastava, L. Kalin, S. Mitra and S. Singh. 2021. Assessment of impact in groundwater levels and stream-aquifer interaction due to increased groundwater withdrawal in the Lower Apalachicola-Chattahoochee-Flint (ACF) River Basin using MODFLOW. Journal of Hydrology: Regional Studies. 34: 100802. DOI: 10.1016/j.ejrh.2021.100802 .

2479. Karlen, D.L. 2008. A new paradigm for natural resouces research: The Conservation Effects Assessment Project. Journal of Soil and Water Conservation. 63(6): 220A. DOI: 10.2489/jswc.63.6.220A .

2480. Karlsson, I.B., T.O. Sonnenborg, J.C. Refsgaard, D. Trolle, C.D. Borgesen, J.E. Olesen, E. Jeppesen and K.H. Jensen. 2016. Combined effects of climate models, hydrological model structures and land use scenarios on hydrological impacts of climate change. Journal of Hydrology. 535: 301–317. DOI: 10.1016/j.jhydrol.2016.01.069 .

2481. Kartiwa, N.D.B. 2013. Landuse change analysis in relation to hydrological characteristic of Krueng Aceh Watershed. Jurnal Tanah Dan Iklim. 31: 81-98. URL: http://124.81.86.163/ojs/index.php/jti/article/view/223/120.

2482. Kassaye, S.M., T. Tadesse, G. Tegegne and A.T. Hordofa. 2024. Quantifying the climate change impacts on the magnitude and timing of hydrological extremes in the Baro River Basin, Ethiopia. Environmental Systems Research. 13: 2. DOI: 10.1186/s40068-023-00328-1 .

2483. Kassem, A.A., A.M. Raheem, K.M. Khidir and M. Alkattan. 2019. Predicting of daily Khazir Basin flow using SWAT and hybrid SWAT-ANN models. Ain Shams Engineering Journal. 11: 435-443. DOI: 10.1016/j.asej.2019.10.011 .

2484. Kast, J.B., A.M. Apostel, M.M. Kalcic, R.L. Muenich, A. Dagnew, C.M. Long, G. Evenson and J.F. Martin. 2021. Source contribution to phosphorus loads from the Maumee River Watershed to Lake Erie. Journal of Environmental Management. 279: 111803. DOI: 10.1016/j.jenvman.2020.111803 .

2485. Kast, J.B., M. Kalcic, R. Wilson, D. Jackson-Smith, N. Breyfogle and J. Martin. 2021. Evaluating the efficacy of targeting options for conservation practice adoption on watershed-scale phosphorus reductions. Water Research. 201: 117375. DOI: 10.1016/j.watres.2021.117375 .

2486. Kateb, Z., H. Bouchelkia, A. Benmansour and F. Belarbi. 2019. Hydrological modeling using the SWAT model based on two types of data from the watershed of Beni Haroun Dam, Algeria. Journal of Water and Land Development. 43(10-12): 76-89. DOI: 10.2478/jwld-2019-0065 .

2487. Kateb, Z., H. Bouchelkia, A. Benmansour and B. Fadila. 2020. Sediment transport modeling by the SWAT model using two scenarios in the watershed of Beni Haroun Dam in Algeria. Arabian Journal of Geosciences. 13: 653. DOI: 10.1007/s12517-020-05623-0 .

2488. Kato, E. and Y. Yamagata. 2014. BECCS capability of dedicated bioenergy crops under a future land-use scenario targeting net negative carbon emissions. Earth's Future. 2(9): 421-439. DOI: 10.1002/2014EF000249 .

2489. Kato, T. H. Somura, H. Kuroda and H. Nakasone. 2011. Simulation of nutrients from an agricultural watershed in Japan using the SWAT model. International Agricultural Engineering Journal. 20(3): 40-49. URL: https://www.researchgate.net/publication/288120364_Simulation_of_nutrients_from_an_agricultural_watershed_in_Japan_using_the_SWAT_model.

2490. Kauffeldt, A., F. Wetterhall, F. Pappenberger, P. Salamon and J. Thielen. 2016. Technical review of large-scale hydrological models for implementation in operational flood forecasting schemes on continental level. Environmental Modelling & Software. 75: 68-76. DOI: 10.1016/j.envsoft.2015.09.009 .

2491. Kauffman, S., P. Droogers, J. Hunink, B. Mwaniki, F. Muchena, P. Gicheru, P. Bindraban, D. Onduru, R. Cleveringa and J. Bouma. 2014. Green Water Credits – exploring its potential to enhance ecosystem services by reducing soil erosion in the Upper Tana Basin, Kenya. International Journal of Biodiversity Science, Ecosystem Services & Management. 10(2): 133-143. DOI: 10.1080/21513732.2014.890670 .

2492. Kaur, R., O. Singh, R. Srinivasan, S.N. Das and K. Mishra. 2004. Comparison of a subjective and a physical approach for identification of priority areas for soil and water management in a watershed – a case study of Nagwan watershed in Hazaribagh District of Jharkhand, India. Environmental Modeling & Assessment. 9(2): 115-127. DOI: 10.1023/B:ENMO.0000032094.92482.6f .

2493. Kaur, R., R. Srivastava, R. Betne, K. Mishra and D. Dutta. 2004. Integration of linear programming and a watershed-scale hydrologic model for proposing an optimized land-use plan and assessing its impact on soil conservation—A case study of the Nagwan watershed in the Hazaribagh district of Jharkhand, India. International Journal of Geographical Information Science. 18(1): 73-98. DOI: 10.1080/13658810310001620915 .

2494. Kaura M., M.E. Arias, J.A. Benjamin, C. Oeurng and T.A. Cochrane. 2019. Benefits of forest conservation on riverine sediment and hydropower in the Tonle Sap Basin, Cambodia. Ecosystem Services. 39: 101003. DOI: 10.1016/j.ecoser.2019.101003 .

2495. Kaushal, R.K., A. Sarkar, K. Mishra, R. Sinha, S. Nepal and V. Jain. 2020. Spatio-temporal variability in stream power distribution in the Upper Kosi River basin, Central Himalaya: Controls and geomorphic implications. Geomorphology. 350: 106888. DOI: 10.1016/j.geomorph.2019.106888 .

2496. Kautza, A., S. Mazeika and P. Sullivan. 2012. Using a process-based catchment-scale model for enhancing field-based stream assessments and predicting stream fish assemblages. Aquatic Conservation: Marine and Freshwater Ecosystems. 22(4): 511–525. DOI: 10.1002/aqc.2252 .

2497. Kavand, H., S. Ziaee and M.M. Najafabadi. 2020. Assessing the consequences of internalization of the side effects of water pollution on the quantitative and qualitative management of Zayandehroud Basin. Journal of Agricultural Economics and Development. 34(4): 341-356. DOI: 10.22067/jead2.vi0.86889 .

2498. Kavian, A. and M. Mohammadi. 2019. Effects of digital elevation models (DEM) spatial resolution on hydrological simulation. Journal of Watershed Management Research . 10(19): 36-45. DOI: 10.29252/jwmr.10.19.36 .

2499. Kavian, A., M. Golshan and Z. Abdollahi. 2017. Flow discharge simulation based on land use change predictions. Environmental Earth Sciences. 76: 588. DOI: 10.1007/s12665-017-6906-0 .

2500. Kavian, A., M. Bahrami and H. Rouhani. 2017. Comparison of potential evapotranspiration estimation methods in stream flow modeling using SWAT in Taleghan Watershed. Desert Ecosystem Engineering Journal. 6(15): 115-125. DOI: 10.22052/6.15.115 .

2501. Kavian, A., M. Mohammadi, L. Gholam and J. Rodrigo-Comino. 2018. Assessment of the spatiotemporal effects of land use changes on runoff and nitrate loads in the Talar River. Water. 10: 445. DOI: 10.3390/w10040445 .

2502. Kaya, S. and A. Kutukcu. 2017. Investigation of morphometric and hydrological characteristics of a water basin using numerical models. Fresenius Environmental Bulletin. 26(1): 360-368. URL: http://www.prt-parlar.de/download_feb_2017/.

2503. Kaykhosravi, S., U.T. Khan and A. Jadidi. 2018. A comprehensive review of low impact development models for research, conceptual, preliminary and detailed design applications. Water. 10(11): 1541. DOI: 10.3390/w10111541 .

2504. KC, M., N.R. Dhakal, I. Aryal and S. Marahatta. 2023. Application of SWAT hydrological model to simulate flow of Seti-Gandaki Basin. Jalawaayu. 3(1): 43–62. DOI: 10.3126/jalawaayu.v3i1.52060 .

2505. Ke, K.-Y. 2014. Application of an integrated surface water-groundwater model to multi-aquifers modeling in Choushui River alluvial fan, Taiwan. Hydrological Processes. 28(3): 1409-1421. DOI: 10.1002/hyp.9678 .

2506. Kebede, A.B. 2019. Influence of soil type in stream flow and runoff modeled for the Upper Didessa Catchment southwest Ethiopia using SWAT model. Journal of Sedimentary Environments. 4(4): 444-457. DOI: 10.12957/jse.2019.47322 .

2507. Keeler, B.L., B.J. Dalzell, J.D. Gourevitch, P.L Hawthorne, K.A. Johnson and R.R. Noe. 2019. Putting people on the map improves the prioritization of ecosystem services. Frontiers in Ecology and the Environment. 17(3): 151–156. DOI: 10.1002/fee.2004 .

2508. Keerthi, S. and S.A. Miller. 2017. Regional differences in impacts to water quality from the bioenergy mandate. Biomass & Bioenergy. 106: 115-126. DOI: 10.1016/j.biombioe.2017.08.002 .

2509. Kehew, A.E., A. Milewski and F. Soliman. 2010. Reconstructing an extreme flood from boulder transport and rainfall-runoff modelling. Global and Planetary Change. 70(1-4): 64-75. DOI: 10.1016/j.gloplacha.2009.11.008 .

2510. Keitzer, S.C., S.A. Ludsin, S.P. Sowa, G. Annis, J.G. Arnold, P. Daggupati, A.M. Froehlich, M.E. Herbert, M.-V.V. Johnson, A.M. Sasson, H. Yen, M.J. White and C.A. Rewa. 2016. Thinking outside of the lake: Can controls on nutrient inputs into Lake Erie benefit stream conservation in its watershed? Journal of Great Lakes Research. 42(6): 1322-1331. DOI: 10.1016/j.jglr.2016.05.012 .

2511. Kelkar, U., K.K. Narula, V.P. Sharma and U. Chandna. 2008. Vulnerability and adaptation to climate variability and water stress in Uttarakhand State, India. Global Environmental Change. 18(4): 564-574. DOI: 10.1016/j.gloenvcha.2008.09.003 .

2512. Keller, A.A., K. Garner, N. Rao, E. Knipping and J. Thomas. 2023. Hydrological models for climate-based assessments at the watershed scale: A critical review of existing hydrologic and water quality models. Science of the Total Environment. 867: 161209. DOI: 10.1016/j.scitotenv.2022.161209 .

2513. Kelly, K.E., K. Belcher and M. Khakbazan. 2018. Economic targeting of agricultural beneficial management practices to address phosphorus runoff in Manitoba. Canadian Journal of Agricultural Economics. 66: 143-166. DOI: 10.1111/cjag.12143 .

2514. Kemanian, A.R., S. Julich, V.S. Manoranjan and J.R. Arnold. 2011. Integrating soil carbon cycling with that of nitrogen and phosphorus in the watershed model SWAT: Theory and model testing. Ecological Modelling. 222(12): 1913-1921. DOI: 10.1016/j.ecolmodel.2011.03.017 .

2515. Keplinger, K. 2003. The economics of Total Maximum Daily Loads. Natural Resources Journal. 43(4): 1057-1091. URL: https://digitalrepository.unm.edu/nrj/vol43/iss4/6/.

2516. Keplinger, K.O., J. Abraham, L.M. Hauck and A. Saleh. 2005. Economic and environmental assessment of proactive phosphorus control measures for broiler operations. Environmental Practice. 7(2): 74-86. DOI: 10.1017/S1466046605050118 .

2517. Keraga, A.S., Z. Kiflie and A.N. Engida. 2019. Evaluation of SWAT performance in modeling nutrients of Awash River Basin, Ethiopia. Modeling Earth Systems and Environment. 5: 275-289. DOI: 10.1007/s40808-018-0533-y .

2518. Kerr, J.M., J.V. DePinto, D. McGrath, S.P. Sowa and S.M. Swinton. 2016. Sustainable management of Great Lakes watersheds dominated by agricultural land use. Journal of Great Lakes Research. 42(6): 1252-1259. DOI: 10.1016/j.jglr.2016.10.001 .

2519. Keshta, N., A. Elshorbagy and S. Carey. 2009. A generic system dynamics model for simulating and evalutating the hydrological performance of reconstructed watersheds. Hydrology and Earth System Sciences. 13: 865-881. URL: http://www.hydrol-earth-syst-sci.net/13/865/2009/hess-13-865-2009.html.

2520. Ketterings, Q.M., S. Cela, A.S. Collick, S.J. Crittenden and K.J. Czymmek. 2017. Restructuring the P Index to better address P Management in New York. Journal of Environmental Quality. 46(6): 1372-1379. DOI: 10.2134/jeq2016.05.0185 .

2521. Kha, D.D. and T.N. Anh. 2021. Development of a hydrological distributed model water resources assessment in the Mekong River Basin. VNU Journal of Science: Earth and Environmental Sciences. 37(3): 11-20. URL: https://js.vnu.edu.vn/EES/article/view/4591.

2522. Khadka, D., M.S. Babel and A.G. Kamalamma. 2023. Assessing the impact of climate and land-use changes on the hydrologic cycle using the SWAT model in the Mun River Basin in northeast Thailand. Water. 15(20): 36. DOI: 10.3390/w15203672 .

2523. Khaing, Z.M., K.M.W. Soe, M.M. Thu and E. Norgbey. 2022. Comparative study of semi-distributed and 2D-distributed hydrological models for streamflow prediction in a data scarce mountainous watershed. Modeling Earth Systems and Environment. 8(3): 2933-2949. DOI: 10.1007/s40808-021-01271-9 .

2524. Khalid, C. 2018. Hydrological modeling of the Mikkés watershed (Morocco) using ARCSWAT model. Sustainable Water Resources Management. 4(1): 105–115. DOI: 10.1007/s40899-017-0145-0 .

2525. Khalil, M.M., T. Tokunaga, E. Heggy and A.Z. Abotalib. 2021. Groundwater mixing in shallow aquifers stressed by land cover/land use changes under hyper-arid conditions. Journal of Hydrology. 598: 126245. DOI: 10.1016/j.jhydrol.2021.126245 .

2526. Khalili, P., B. Masud, B. Qian, S. Mezbahuddin, M. Dyck and M. Faramarzi. 2021. Non-stationary response of rain-fed spring wheat yield to future climate change in northern latitudes. Science of the Total Environment. 772: 145474. DOI: 10.1016/j.scitotenv.2021.145474 .

2527. Khalilian, S. and N. Shahvari. 2019. A SWAT evaluation of the effects of climate change on renewable water resources in Salt Lake Sub-Basin, Iran. AgriEngineering. 1(1): 44-57. DOI: 10.3390/agriengineering1010004 .

2528. Khalilian, S., M.S. Tabrizi, H. Babazadeh and A. Saremi. 2021. Assessing the impact of climate change on the inflow on Zayandehrood Dam. Journal of Water and Soil Science. 24(4): 255-271. DOI: 10.47176/jwss.24.4.7492 .

2529. Khalkho,⃰ K., M.P. Tripathi and L. Kumar. 2020. Identification of critical sub-watersheds in Hamp watershed of Upper Mahanadi Basin using Arc-SWAT. Indian Journal of Soil Conservation. 48(1): 86-96. URL: https://iaswc.com/ijsc-2020.html.

2530. Khan, A.J. and M. Koch. 2018. Correction and informed regionalization of precipitation data in a high mountainous region (Upper Indus Basin) and its effect on SWAT-modelled discharge. Water. 10(11): 1557. DOI: 10.3390/w10111557 .

2531. Khan, A.J. and M. Koch. 2021. Generation of a long-term daily gridded precipitation dataset for the Upper Indus Basin (UIB) through temporal Reconstruction, Correction & Informed Regionalization-“ReCIR”. International Soil and Water Conservation Research. 9(3): 445-460. DOI: 10.1016/j.iswcr.2021.01.005 .

2532. Khan, A.J., M. Koch and A.A. Tahir. 2020. Impacts of climate change on the water availability, seasonality and extremes in the Upper Indus Basin (UIB). Sustainability. 12(4): 1283. DOI: 10.3390/su12041283 .

2533. Khan, J.N., S. R. Ali, A. Jillani and I. Ashraf. 2020. Application of RS/GIS in conservation studies for surface and groundwater harvesting in cold arid regions of northwestern Himalayas. Applied Engineering in Agriculture. 36(1): 105-114. DOI: 10.13031/aea.13526 .

2534. Khan, M.M., M.J.M. Cheema, M. Arshad and T. Khaliq. 2020. Evaluation of climate change adaption practices in the agriculture sector using satellite imagery in Pakistan. Pakistan Journal of Agricultural Sciences. 57(5): 1317-1326. URL: https://pakjas.com.pk/#/TableOfContents.

2535. Khan, S., F. Khan and Y. Guan. 2022. Assessment of gridded precipitation products in the hydrological modeling of a flood-prone mesoscale basin. Hydrology Research. 53(1): 85-106. DOI: 10.2166/nh.2021.073 .

2536. Khan, W., A. Khan, A.U. Khan, M. Khan, F.A. Khan and Y.I. Badrashi. 2020. Evaluation of hydrological modeling using climatic station and gridded precipitation dataset. MAUSAM. 71(4): 717-728. URL: https://mausamjournal.imd.gov.in/index.php/MAUSAM/article/view/63.

2537. Khanal, S., R. Lal, G. Kharel and J. Fulton. 2018. Identification and classification of critical soil and water conservation areas in the Muskingum River Basin in Ohio. Journal of Soil and Water Conservation. 73(2): 213-226. DOI: 10.2489/jswc.73.2.213 .

2538. Kharel, G. and A. Kirilenko. 2015. Considering climate change in the estimation of long-term flood risks of Devils Lake in North Dakota. Journal of the American Water Resources Association. 51(5): 1221-1234. DOI: 10.1111/1752-1688.12300 .

2539. Kharel, G. and A. Kirilenko. 2018. Comparing CMIP-3 and CMIP-5 climate projections on flooding estimation of Devils Lake of North Dakota, USA. PeerJ. 6: e4711. DOI: 10.7717/peerj.4711 .

2540. Kharel, G., H. Zheng and A. Kirilenko. 2016. Can land-use change mitigate long-term flood risks in the Prairie Pothole Region? The case of Devils Lake, North Dakota, USA. Regional Environmental Change. 16(8): 2443–2456. DOI: 10.1007/s10113-016-0970-y .

2541. Kharel, G., Y. Zhong, R.E. Will, T. Zhang and C.B. Zou. 2022. Potential hydrological impacts of planting switchgrass on marginal rangelands in south central Great Plains. Water. 14(19): 3087. DOI: 10.3390/w14193087 .

2542. Khatiri, K.N., B. Nematollahi, S. Hafeziyeh, M.H. Niksokhan, M.R. Nikoo and G. Al-Rawas. 2023. Groundwater management and allocation models: A review. Water. 15(2): 253. DOI: 10.3390/w15020253 .

2543. Khatun, S., M. Sahana, S.K. Jain and N. Jain. 2018. Simulation of surface runoff using semi distributed hydrological model for a part of Satluj Basin: Parameterization and global sensitivity analysis using SWAT CUP. Modeling Earth Systems and Environment. 4(3): 1111-1124. DOI: 10.1007/s40808-018-0474-5 .

2544. Khayyun, T.S., I.A. Alwan and A.M. Hayder. 2019. Hydrological model for Hemren Dam Reservoir Catchment area at the Middle River Diyala reach in Iraq using ArcSWAT model. Applied Water Science. 9(5): 133. DOI: 10.1007/s13201-019-1010-0 .

2545. Khayyun, T.S., I.A. Alwan and A.M. Hayder. 2020. Hydrological model for Derbendi-Khan Dam Reservoir Watershed using SWAT model. Engineering and Technology Journal. 38(6): 986-989. DOI: 10.30684/etj.v38i6A.890 .

2546. KhazaiPoul, A., A. Moridi and J. Yazdi. 2019. Multi-objective optimization for interactive reservoir-irrigation planning considering environmental issues by using parallel processes technique. Water Resources Management. 33: 5137–5151. DOI: 10.1007/s11269-019-02420-7 .

2547. Kheereemangkla, Y., R.P. Shrestha, S. Shrestha and D. Jourdain. 2016. Modeling hydrologic responses to land management scenarios for the Chi River Sub-basin Part II, Northeast Thailand. Environmental Earth Sciences. 75: 793. DOI: 10.1007/s12665-016-5512-x .

2548. Khelifa, W.B., S. Strohmeier, S. Benabdallah and H. Habaieb. 2021. Evaluation of bench terracing model parameters transferability for runoff and sediment yield on catchment modelling. Journal of African Earth Sciences. 178: 104177. DOI: 10.1016/j.jafrearsci.2021.104177 .

2549. Khelifa, W.B., S. Strohmeier, S. Benabdallah and H. Habaieb. 2021. Modelling the impact of soil and water conservation structures at various scales in Tunisian semi‐arid region. Arabian Journal of Geosciences. 14(24): 2804. DOI: 10.1007/s12517-021-09086-9 .

2550. Khelifa, W.B., T. Hermassi, S. Strohmeier, C. Zucca, F. Ziadat, M. Boufaroua and H. Habaieb. 2017. Parameterization of the effect of bench terraces on runoff and sediment yield by SWAT modelling in a small semi-arid watershed in northern Tunisia. Land Degradation & Development. 28(5): 1568–1578. DOI: 10.1002/ldr.2685 .

2551. Khoi, D.N and T. Suetsugi. 2014. The responses of hydrological processes and sediment yield to land-use and climate change in the Be River Catchment, Vietnam. Hydrological Processes. 28(3): 640–652. DOI: 10.1002/hyp.9620 .

2552. Khôi, D.N. 2013. Evaluating the impacts of climate change on streamflow in Srepok Watershed. Vietnam Journal of Earth Sciences. 35(3): 281-288. URL: http://vjs.ac.vn/index.php/jse/article/view/3701.

2553. Khoi, D.N. and L.V. Thang. 2017. Climate change impacts on streamflow and non-point source pollutant loads in the 3S Rivers of the Mekong Basin. Water and Environment Journal. 31(3): 401-409. DOI: 10.1111/wej.12256 .

2554. Khoi, D.N. and T. Suetsugi. 2012. Hydrologic response to climate change: A case study for the Be River Catchment, Vietnam. Journal of Water and Climate Change. 3(3): 207-229. DOI: 10.2166/wcc.2012.035 .

2555. Khoi, D.N. and T. Suetsugi. 2012. Uncertainty in climate change impacts on streamflow in Be River Catchment, Vietnam. Water and Environment Journal. 26(4): 530–539. DOI: 10.1111/j.1747-6593.2012.00314.x .

2556. Khoi, D.N. and T. Suetsugi. 2013. Assessment of climate change impacts on hydrology and sediment yield in the Be River Catchment, Vietnam. Journal of Japan Society of Civil Engineers, Ser. B1 (Hydraulic Engineering). 69(4): I-31 - I-36. URL: https://www.jstage.jst.go.jp/article/jscejhe/69/4/69_6/_article.

2557. Khoi, D.N. and T. Suetsugi. 2014. Impact of climate and land-use changes on the hydrological processes and sediment yield – A case study for the Be River Catchment, Vietnam. Hydrological Sciences Journal. 59 (5): 1–14. DOI: 10.1080/02626667.2013.819433 .

2558. Khoi, D.N. and V.T. Thom. 2015. Parameter uncertainty analysis for simulating streamflow in a river catchment of Vietnam. Global Ecology and Conservation. 4: 538-548. DOI: 10.1016/j.gecco.2015.10.007 .

2559. Khoi, D.N., P.T. Loi and T.T. San. 2021. Impact of future land-use/cover change on streamflow and sediment load in the Be River Basin, Vietnam. Water. 13(9): 1244. DOI: 10.3390/w13091244 .

2560. Khoi, D.N., P.T. Loi, N.T.T. Trang, N.D. Vuong, S.B. Fang and P.T.T. Nhi. 2022. The effects of climate variability and land-use change on streamflow and nutrient loadings in the Sesan, Sekong, and Srepok (3S) River Basin of the Lower Mekong Basin. Environmental Science and Pollution Research. 29(5): 7117-7126. DOI: 10.1007/s11356-021-16235-w .

2561. Khoi, D.N., T.T. Sam, N.T.T. Chi, D.Q. Linh and P.T.T. Nhi. 2022. Impact of future climate change on river discharge and groundwater recharge: A case study of Ho Chi Minh City, Vietnam. Journal of Water and Climate Change. 13(3): 1313-1325. DOI: 10.2166/wcc.2022.379 .

2562. Khoi, D.N., V.T. Nguyen, T.T. Sam and P.T.T. Nhi. 2019. Evaluation on effects of climate and land-use changes on streamflow and water quality in the La Buong River Basin, southern Vietnam. Sustainability. 11(24): 7221. DOI: 10.3390/SU11247221 .

2563. Khoi, D.N., V.T. Nguyen, T.T. Sam, N.T.H. Mai, N.D. Vuong and H.V. Cuong. 2021. Assessment of climate change impact on water availability in the Upper Dong Nai River Basin, Vietnam. Journal of Water and Climate Change. 12(8): 3851. DOI: 10.2166/wcc.2021.255 .

2564. Khoi, N.D., V.T. Nguyen, T.T. Sam, N.K. Phung and N.T. Bay. 2020. Responses of river discharge and sediment load to climate change in the transboundary Mekong River Basin. Water and Environment Journal. 34(S1): 367-380. DOI: 10.1111/wej.12534 .

2565. Khol, D.K. 2021. Impact of climate change on hydro-meteorological drought over the Be River Basin, Vietnam. Journal of Water and Climate Change. 12(7): 3159-3169. DOI: 10.2166/wcc.2021.137 .

2566. Khwairakpam, E., B. Dhawan, K. Sivakumar and J.A. Johnson. 2023. Habitat suitability modeling of a conservation-significant fish species of the Kosi River, Uttarakhand, India. River Research and Applications. 39(2): 189-199. DOI: 10.1002/rra.4079 .

2567. Khwairakpam, E., R. Khosa, A. Gosain, A. Nema, S. Mathur and B. Yadav. 2018. Modeling simulation of river discharge of Loktak Lake Catchment in northeast India. Journal of Hydrologic Engineering. : 05018014. DOI: 10.1061/(ASCE)HE.1943-5584.0001674 .

2568. Khwairakpam, E., R. Khosa, A. Gosain and A. Nema. 2019. Monitoring and modelling water quality of Loktak Lake Catchment. SN Applied Sciences. 1: 481. DOI: 10.1007/s42452-019-0517-1 .

2569. Ki, S.J., D.J. Jeon and J.H. Kim. 2016. Influence of spatial resolution of radar images on the parameterization and performance of SWAT model. Desalination and Water Treatment. 57(57): 27548-27556. DOI: 10.1080/19443994.2016.1184496 .

2570. Ki, S.J., T. Sugimura and A.S. Kim. 2014. OpenMP-accelerated SWAT simulation using Intel C and FORTRAN compilers: Development and benchmark. Computers & Geosciences. 75: 66–72. DOI: 10.1016/j.cageo.2014.10.017 .

2571. Kiani, F., B. Behtarinejad, A. Najafinejad and R. Kaboli. 2018. Simulations of nitrogen and phosphorus losses in loess landforms of northern Iran. Eurasian Journal of Soil Science. 51(2): 176-182. DOI: 10.1134/S1064229318020035 .

2572. Kibet, K.B., J. Takeuchi and M. Fujihara. 2018. Applicability of SWAT model for streamflow stimulation in a highly managed agricultural watershed. Journal of Rainwater Catchment Systems. 23(2): 19-27. DOI: 10.7132/jrcsa.23_2_19 .

2573. Kibii, J.K., E.C. Kipkorir and J.R. Kosgei. 2021. Application of Soil and Water Assessment Tool (SWAT) to evaluate the impact of land use and climate variability on the Kaptagat Catchment River discharge. Sustainability. 13(4): 1802. DOI: 10.3390/su13041802 .

2574. Kidane, M., T. Tolessa, A. Bezie, N. Kessete and M. Endrias. 2019. Evaluating the impacts of climate and land use/land cover (LU/ LC) dynamics on the hydrological responses of the Upper Blue Nile in the central highlands of Ethiopia. Spatial Information Research. 27 (2): 151-167. DOI: 10.1007/s41324-018-0222-y .

2575. Kiesel, J., A. Gericke, H. Rathjens, A. Wetzig, K. Kakouei, S.C. Jähnig and Nicola Fohrer. 2019. Climate change impacts on ecologically relevant hydrological indicators in three catchments in three European ecoregions. Ecological Engineering. 127: 404-416. DOI: 10.1016/j.ecoleng.2018.12.019 .

2576. Kiesel, J., B. Schmalz, G.L. Brown and N. Fohrer. 2013. Application of a hydrological-hydraulic modelling cascade in lowlands for investigating water and sediment fluxes in catchment, channel and reach. Journal of Hydrology and Hydromechanics. 61(4): 334-336. DOI: 10.2478/johh-2013-0042 .

2577. Kiesel, J., N. Fohrer, B. Schmalz and M. J. White. 2010. Incorporating landscape depressions and tile drainages of a northern German lowland catchment into a semi-distributed model. Hydrological Processes. 24(11): 1472–1486. DOI: 10.1002/hyp.7607 .

2578. Kijowska-Strugała, M. and W. Bochenek. 2023. Land use changes impact on selected chemical denudation element and components of water cycle in small mountain catchment using SWAT model. Geomorphology. 435. DOI: 10.1016/j.geomorph.2023.108747 .

2579. Kikuchi, S., H. Okazawa, S. Maskey, S.A.M. Cuevas, M. Oba, S. Nakamura and S. Hayashi. 2022. Estimation of long-term river discharge in forested watershed in snowy region by SWAT. International Journal of Environmental and Rural Development. 13(2): 105-112. URL: https://www.iserd.net/?page_id=1928.

2580. Kim J.S. and C.U. Choi. 2013. Impact of changes in climate and land use/land cover change under climate change scenario on streamflow in the basin. Journal of the Korean Society for Geospatial Information System. 21(2): 107-116. DOI: 10.7319/kogsis.2013.21.2.107 .

2581. Kim K.-T. and Y.-S. Choi. 2006. Development of interface system to couple the SWAT Model and HyGIS. Journal of the Korean Association of Geographic Information Studies. 9(3): 136-145. URL: http://www.koreascience.or.kr/article/ArticleFullRecord.jsp?cn=GRJBBB_2006_v9n3_136.

2582. Kim N.-W., A.-H. Shin and C.-G. Kim. 2009. Comparison of SWAT-K and HSPF for hydrological components modeling in the Chungju Dam Watershed. Journal of Environmental Sciences. 18(6): 609-619.

2583. Kim T.J. 2015. Generation of daily naturalized flow at ungaged control points. Journal of Water Supply: Research and Technology - AQUA. 64(3): 354-364. DOI: 10.2166/aqua.2015.096 .

2584. Kim, B.-K., S.-D. Kim, E.-T. Lee and H.-S. Kim. 2007. Methodology for estimating ranges of SWAT model parameters: Application to Imha Lake inflow and suspended sediments. Journal of the Korean Society of Civil Engineers. 27(6B): 661-668. URL: http://www.koreascience.or.kr/article/ArticleFullRecord.jsp?cn=TMHHC2_2007_v27n6B_661.

2585. Kim, C. and C.-S. Kim. 2021. Comparison of the performance of a hydrologic model and a deep learning technique for rainfall- runoff analysis. Tropical Cyclone Research and Review. 10(4): 215-222. DOI: 10.1016/j.tcrr.2021.12.001 .

2586. Kim, C.G., J. Park and J. Cho. 2018. Future climate change impact assessment of Chungju Dam inflow considering selection of GCMs and downscaling technique. Journal of Climate Change Research. 9(1): 47-58. DOI: 10.15531/KSCCR.2018.9.1.47 .

2587. Kim, C.G., S.W. Park and N.W. Kim. 2011. Analyzing hydrological transport characteristics of nonpoint source pollutants using SWAT. Applied Engineering in Agriculture. 27(6): 905-915. DOI: 10.13031/2013.40630 .

2588. Kim, D.-E., E.G. Chung and K. Kim. 2022. Impact assessment of on‐site swine wastewater treatment facilities on spatiotemporal variations of nitrogen loading in an intensive livestock farming watershed. Environmental Science and Pollution Research. 29(26): 39994–40011. DOI: 10.1007/s11356-022-18968-8 .

2589. Kim, D.-G., J.-U. Jeong, J.-H. Park and C.-G. Park. 2007. Long-term runoff simulation in consideration of snow pack and snow melt. Journal of Korean Society of Water and Wastewater. 21(3): 265-272. URL: http://www.koreascience.or.kr/article/ArticleFullRecord.jsp?cn=SHSDB3_2007_v21n3_265.

2590. Kim, D.-H. and S.-M. Kim. 2016. Evaluation of SWAT model applicability for runoff estimation in Nam River Dam Watershed. Journal of the Korean Society of Agricultural Engineers. 58(4): 9-19. DOI: 10.5389/KSAE.2016.58.4.009 .

2591. Kim, D.-H., S. Hwang, T. Jang and H. So. 2018. Assessing climate change impacts on hydrology and water quality using SWAT model in the Mankyung Watershed. Journal of the Korean Society of Agricultural Engineers. 60(6): 83-96. DOI: 10.5389/KSAE.2018.60.6.083 .

2592. Kim, D.-H., T. Jang and S. Hwang. 2020. Evaluating impacts of climate change on hydrology and total nitrogen loads using coupled APEX‑paddy and SWAT models. Paddy and Water Environment. 18(3): 515-529. DOI: 10.1007/s10333-020-00798-4 .

2593. Kim, D.-H., T. Jang, S. Hwang and J. Cho. 2019. Assessing hydrologic impacts of climate change in the Mankyung Watershed with different GCM spatial downscaling methods. Journal of the Korean Society of Agricultural Engineers. 61(6): 81-92. DOI: 10.5389/KSAE.2019.61.6.081 .

2594. Kim, D.R., J. W. Lee, C.G. Jung and S.J. Kim. 2018. Calibration of water quality parameters in SWAT considering continuous drought periods 2014~2015. Journal of the Korean Society of Agricultural Engineers. 60(1): 11-20. DOI: 10.5389/KSAE.2018.60.1.011 .

2595. Kim, D.-S., A. Kumar, R. Parab and M. Palmer. 2004. Simulation of atrazine discharge in the Auglaize Watershed using satellite-generated images. Bulletin of Environmental Contamination and Toxicology. 73(2): 319-325. DOI: 10.1007/s00128-004-0430-0 .

2596. Kim, D.-W., E.G. Chung, K. Kim and Y. Kim. 2022. Impact of riverbed topography on hydrology in small watersheds using Soil and Water Assessment Tool. Environmental Modelling & Software. 152: 105383. DOI: 10.1016/j.envsoft.2022.105383 .

2597. Kim, G.S., C.-H. Lim, S.J. Kim, J. Lee, Y. Son and W.-K. Lee. 2017. Effect of national-scale afforestation on forest water supply and soil loss in South Korea, 1971–2010. Sustainability. 9: 1017. DOI: 10.3390/su9061017 .

2598. Kim, G.-S., S.-g. Lee, J. Lee, E. Park, C. Song, M. Hong, Y.-J. Ko and W.-K. Lee. 2022. Effects of forest and agriculture land covers on organic carbon flux mediated through precipitation. Water. 14(4): 623. DOI: 10.3390/w14040623 .

2599. Kim, H. and P.B. Parajuli. 2012. Economic analysis using SWAT-simulated potential switchgrass and miscanthus yields in the Yazoo River Basin. Transactions of the ASABE. 55(6): 2123-2134. DOI: 10.13031/2013.42504 .

2600. Kim, H. and P.B. Parajuli. 2014. Impacts of reservoir outflow estimation methods in SWAT Model calibration. Transactions of the ASABE. 57(4): 1029-1042. DOI: 10.13031/trans.57.10156 .

2601. Kim, H., P.B. Parajuli and S.D. Filip. 2013. Assessing impacts of bioenergy crops and climate change on hydrometeorology in the Yazoo River Basin, Mississippi. Agricultural and Forest Meteorology. 169: 61-73. DOI: 10.1016/j.agrformet.2012.10.007 .

2602. Kim, H.J., K. cho, Y. Kim, H. Park, J.W. Lee, S.J. Kim and Y. Chae. 2020. Spatial assessment of water-use vulnerability under future climate and socioeconomic scenarios within a river basin. Journal of Water Resources Planning and Management. 146(7): 05020011. DOI: 10.1061/(ASCE)WR.1943-5452.0001235 .

2603. Kim, H.W., M.H. Li, J.H. Kim and F. Jaber. 2016. Examining the impact of suburbanization on surface runoff using the SWAT. International Journal of Environmental Research. 10(3): 379-390. URL: https://ijer.ut.ac.ir/article_58757.html.

2604. Kim, I., S. Arnhold, S. Ahn, Q.B. Le, S.J. Kim, S.J. Park and T. Koellner. 2019. Land use change and ecosystem services in mountainous watersheds: Predicting the consequences of environmental policies with cellular automata and hydrological modeling. Environmental Modelling & Software. 122: 103982. DOI: 10.1016/j.envsoft.2017.06.018 .

2605. Kim, J. and S. Park. 2015. Potential effects of urban growth under urban containment policy on streamflow in the Gyungan River Watershed, Korea. Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography. 33(3): 163-172. DOI: 10.7848/ksgpc.2015.33.3.163 .

2606. Kim, J. and Y. Kim. 2021. Statistical interpolation method for water quality data to improve water quality calibration and validation in watershed models. Ecohydrology & Hydrobiology. 21: 67-78. DOI: 10.1016/j.ecohyd.2020.08.002 .

2607. Kim, J., J. Choi, C. Choi and S. Park. 2013. Impacts of changes in climate and land use/land cover under IPCC RCP scenarios on streamflow in the Hoeya River Basin, Korea. Science of the Total Environment. 452-453: 181-195. DOI: 10.1016/j.scitotenv.2013.02.005 .

2608. Kim, J., J. Lee, J. Park, S. Kim and S. Kim. 2021. Improvement of downstream flow by modifying SWAT reservoir operation considering irrigation water and environmental flow from agricultural reservoirs in South Korea. Water. 13(18): 2543. DOI: 10.3390/w13182543 .

2609. Kim, J., J. Noh, K. Son and I. Kim. 2012. Impacts of GIS data quality on determination of runoff and suspended sediments in the Imha Watershed in Korea. Geosciences Journal. 16(2): 181-192. DOI: 10.1007/s12303-012-0013-8 .

2610. Kim, J., K. Son, J. Noh, C.-L. Jang and I.H. Ko. 2006. Multi-variable and multi-site calibration and validation of SWAT for the Gap River Catchment. Journal of Korea Water Resources Association. 39(10): 867-880. DOI: 10.3741/JKWRA.2006.39.10.867 .

2611. Kim, J., S. Ale, U.P. Kreuter, W.R. Teague, S.J. DelGrosso and S.L. Dowhower. 2023. Evaluating the impacts of alternative grazing management practices on soil carbon sequestration and soil health indicators. Agriculture Ecosystems and Environment. 342: 108234. DOI: 10.1016/j.agee.2022.108234 .

2612. Kim, J., S. Ale, W.R. Teague and T. Wang. 2022. Evaluating hydrological components and streamflow characteristics under conventional and adaptive multi-paddock grazing management. River Research and Applications. 38(4): 776-787. DOI: 10.1002/rra.3948 .

2613. Kim, J.-B., J. de D. Habimana, S.-H. Kim and D.-H. Bae. 2021. Assessment of climate change impacts on the hydroclimatic response in Burundi based on CMIP6 ESMs. Sustainability. 13(21): 12037. DOI: 10.3390/su132112037 .

2614. Kim, J.-G., Y. Park, D. Yoo, N.-W. Kim, B.A. Engel, S. Kim, K.-S. Kim and K.J. Lim. 2009. Development of a SWAT patch for better estimation of sediment yield in steep sloping watersheds. Journal of the American Water Resources Association. 45(4): 963-972. DOI: 10.1111/j.1752-1688.2009.00339.x .

2615. Kim, J.H., J.H. Sung, E.-S. Chung, S.U. Kim, M. Son and M.S. Shiru. 2021. Comparison of projection in meteorological and hydrological droughts in the Cheongmicheon watershed for RCP4.5 and SSP2-4.5. Sustainability. 13(4): 2066. DOI: 10.3390/su13042066 .

2616. Kim, J.H., J.H. Sung, S. Shahid and E.S. Chung. 2022. Future hydrological drought analysis considering agricultural water withdrawal under SSP scenarios. Water Resources Management. 36(9): 2913–2930. DOI: 10.1007/s11269-022-03116-1 .

2617. Kim, J.-H., J.-S. Lee, W.-I. Kim, G.-B. Jung, K.-H. Han, J.-S. Ryu, S.-C. Kim, S.-G. Yun, J.-T. Lee and S.-K. Kwun. 2007. Estimation of nonpoint source pollutant loads for rural watershed by AvSWAT. Korean Journal of Soil Science Fertility. 40(1): 12-17. URL: http://ocean.kisti.re.kr/downfile/volume/ksssf/TBRHBL/2007/v40n1/TBRHBL_2007_v40n1_12.pdf.

2618. Kim, J.-W. and Y.A. Pachepsky. 2010. Reconstructing missing daily precipitation data using regression trees and artificial neural networks for SWAT streamflow simulation. Journal of Hydrology. 394(3-4): 305-314. DOI: 10.1016/j.jhydrol.2010.09.005 .

2619. Kim, J.-W., Y.A. Pachepsky, D.R. Shelton and C. Coppock. 2010. Effect of streambed bacteria release on E. coli concentrations: Monitoring and modeling with the modified SWAT. Ecological Modelling. 221(12): 1592-1604. DOI: 10.1016/j.ecolmodel.2010.03.005 .

2620. Kim, K.U., J.H. Song, J. Ahn, J. Park, S.M. Jun, I. Song and M.S. Kang. 2014. Evaluation of the Tank Model optimized parameter for watershed modeling. Journal of the Korean Society of Agricultural Engineers. 56(4): 9-19. DOI: 10.5389/KSAE.2014.56.4.009 .

2621. Kim, M., L. Boithias, K.H. Cho, N. Silvera, C. Thammahacksa, K. Latsachack, E. Rochelle-Newall, O. Sengtaheuanghoung, A. Pierret, Y.A. Pachepsky and O. Ribolzi. 2017. Hydrological modeling of fecal indicator bacteria in a tropical mountain catchment. Water Research. 119: 102-113. DOI: 10.1016/j.watres.2017.04.038 .

2622. Kim, M., L. Boithias, K.H. Cho, O. Sengtaheuanghoung and O. Ribolzi. 2018. Modeling the impact of land use change on basin-scale transfer of fecal indicator bacteria: SWAT model performance. Journal of Environmental Quality. DOI: 10.2134/jeq2017.11.0456 .

2623. Kim, M., S. Baek, M. Ligaray, J. Pyo, M. Park and K.H. Cho. 2015. Comparative studies of different imputation methods for recovering streamflow observation. Water. 7(12): 6847-6860. DOI: 10.3390/w7126663 .

2624. Kim, N. W., A.H. Shin and J. Lee. 2010. Effects of streamflow routing schemes on water quality with SWAT. Transactions of the ASABE. 53(5): 1457-1468. DOI: 10.13031/2013.34912 .

2625. Kim, N.W. and A.H. Shin. 2011. Modification of the channel BOD simulation scheme in SWAT for Korean TMDL application. Transactions of the ASABE. 54(5): 1739-1747. DOI: 10.13031/2013.39839 .

2626. Kim, N.W. and E.L. Jeong. 2013. Assessment of actual evapotranspiration in the Hancheon Watershed, Jeju Island. Journal of Environmental Science International. 22(5): 533-542. DOI: 10.5322/JESI.2013.22.5.533 .

2627. Kim, N.-W. and I.-M. Chung. 2019. Analysis on the hydrologic behavior of heavy snowfall in east coast region. Journal of the Korean Society of Civil Engineers. 39(2): 257-262. DOI: 10.12652/Ksce.2019.39.2.0257 .

2628. Kim, N.W. and J. Lee. 2008. Temporally weighted average curve number method for daily runoff simulation. Hydrological Processes. 22(25): 4936-4948. DOI: 10.1002/hyp.7116 .

2629. Kim, N.W. and J. Lee. 2009. Enhancement of the channel routing module in SWAT. Hydrological Processes. 24(1): 96-107. DOI: 10.1002/hyp.7474 .

2630. Kim, N.W. and J. Lee. 2014. Assessment of complementary relationship evapotranspiration models for the Bokahcheon Upper-Middle Watershed. Journal of Korea Water Resources Association. 47(6): 457-559. DOI: 10.3741/JKWRA.2014.47.6.547 .

2631. Kim, N.W. and J.E. Lee. 2009. Assessment of probability flood according to the flow regulation by multi-purpose dams in Han-River Basin. Journal of the Korean Water Resources Association. 42(2): 161-169. DOI: 10.3741/JKWRA.2009.42.2.161 .

2632. Kim, N.-W., H. Na and I.-M. Chung. 2014. Delay time estimation of recharge in the Hancheon Watershed, Jeju Island. Journal of Environmental Science International. 23(4): 605-613. DOI: 10.5322/JESI.2014.4.605 .

2633. Kim, N.W., H. Na and I.-M. Chung. 2013. Simulation of groundwater variation characteristics of Hancheon Watershed in Jeju Island using integrated hydrologic modeling. Journal of Environmental Science International. 22(5): 515-522. DOI: 10.5322/JESI.2013.22.5.515 .

2634. Kim, N.W., I.-M. Chung and H. Na. 2013. A method of simulating ephemeral stream runoff characteristics in Cheonmi-Cheon Watershed, Jeju Island. Journal of Environmental Science International. 22(5): 523-531. DOI: 10.5322/JESI.2013.22.5.523 .

2635. Kim, N.W., I.M. Chung, Y.S. Won and J.G. Arnold. 2008. Development and application of the integrated SWAT-MODFLOW model. Journal of Hydrology. 356(1-2): 1-16. DOI: 10.1016/j.jhydrol.2008.02.024 .

2636. Kim, N.W., J. Lee and J.E. Lee. 2013. Estimation of natural streamflow for the Bokhacheon Middle-Upper Watershed. Journal of the Korean Water Resources Association. 46(12): 1169-1180. DOI: 10.3741/JKWRA.2013.46.12.1169 .

2637. Kim, N.W., J. Lee, M. Chung and M.H. Lee. 2013. Combined effects of groundwater abstraction and irrigation reservoir on streamflow. Journal of the Korean Water Resources Association. 46(7): 719-733. DOI: 10.3741/JKWRA.2013.46.7.719 .

2638. Kim, N.-W., J.-E. Lee and B.J. Lee. 2007. Characteristics of flow duration curve according to the operation of multi-purpose dams in the Han-River Basin. Journal of the Korean Society of Civil Engineers. 27(1B): 53-63. URL: http://www.koreascience.or.kr/article/ArticleFullRecord.jsp?cn=TMHHC2_2007_v27n1B_53.

2639. Kim, N.W., J.E. Lee and J.T. Kim. 2012. Assessment of flow regulation effects by dams in the Han River, Korea on the downstream flow regimes using SWAT. Journal of Water Resources Planning and Management. 138(1): 24-35. DOI: 10.1061/(ASCE)WR.1943-5452.0000148 .

2640. Kim, N.W., J.W. Lee, J. Lee and J.E. Lee. 2010. SWAT application to estimate design runoff curve number for South Korean conditions. Hydrological Processes. 24(15): 2156-2170. DOI: 10.1002/hyp.7638 .

2641. Kim, N.W., J.W. Lee, J. Lee and J.E. Lee. 2014. Estimation of runoff curve number for Chungju Dam Watershed using SWAT. Journal of the Korean Water Resources Association. 41(12): 1231-1244. DOI: 10.3741/JKWRA.2008.41.12.1231 .

2642. Kim, N.W., Y.S. Won, J. Lee, J.E. Lee and J. Jeong. 2011. Hydrological impacts of urban imperviousness in White Rock Creek Watershed. Transactions of the ASABE. 54(5): 1759-1771. DOI: 10.13031/2013.39848 .

2643. Kim, R.J., D.P. Loucks and J.R. Stedinger. 2012. Artificial neural network models of watershed nutrient loading. Water Resources Management. 26(10): 2781-2797. DOI: 10.1007/s11269-012-0045-x .

2644. Kim, S., C. Jung, J. Lee, J. Kim and S. Kim. 2020. Assessment of future climate change impact on agricultural water supply capacity in Geum River Basin using SWAT and MODSIM-DSS. Journal of the Korean Society of Hazard Mitigation . 20(6): 55-66. DOI: 10.9798/KOSHAM.2020.20.6.55 .

2645. Kim, S., H. Noh, J. Jung, H. Jun and H.S. Kim. 2016. Assessment of the impacts of global climate change and regional water projects on streamflow characteristics in the Geum River Basin in Korea. Water. 8(3): 91. DOI: 10.3390/w8030091 .

2646. Kim, S., P. Parhi, H. Jun and J. Lee. 2018. Evaluation of drought severity with a bayesian network analysis of multiple drought indices. Journal of Water Resources Planning and Management. 144(1): 05017016. DOI: 10.1061/(ASCE)WR.1943-5452.0000804 .

2647. Kim, S., Y. Kim, N. Kang and H.S. Kim. 2015. Application of the entropy method to select calibration sites for hydrological modeling. Water. 7(12): 6719-6735. DOI: 10.3390/w7126652 .

2648. Kim, S.B., H.J. Shin, M. Park and S.J. Kim. 2014. Assessment of future climate change impacts on snowmelt and stream water quality for a mountainous high-elevation watershed using SWAT. Paddy and Water Environment. 13(4): 557-569. DOI: 10.1007/s10333-014-0471-x .

2649. Kim, S.H. and E.-S. Chung. 2017. Peak drought severity time analysis of Cheongmicheon Watershed using meteorological and hydrological drought index. European Water. 60: 241-246. URL: http://www.ewra.net/ew/pdf/EW_2017_60_33.pdf.

2650. Kim, T., J. Yoo, H.-i. Cho, J. Han, D.J. Lee, Y. Jung, J.E. Yang and K.J. Lim. 2016. Limitation analysis on estimation of SS pollutant load using Korean Ministry of Environment’s 8-day interval flow and water quality data. Journal of Korean Society on Water Environment. 32(2): 149-162. DOI: 10.15681/KSWE.2016.32.2.149 .

2651. Kim, T.J. 2020. Assessment of watershed characteristics with limited water quantity and quality data. Environmental Monitoring and Assessment. 192(8): 486. DOI: 10.1007/s10661-020-08419-7 .

2652. Kim, W., J. Lee, J. Kim and S. Kim. 2019. Assessment of water supply stability for drought-vulnerable Boryeong Multipurpose Dam in South Korea using future dry climate change scenarios. Water. 11(11): 2403. DOI: 10.3390/w11112403 .

2653. Kim, W.J., C.G. Jung, J.U. Kim and S.J. Kim. 2018. Water shortage assessment by applying future climate change for Boryeong Dam using SWAT. Journal of Korea Water Resources Association. 51(12): 1195-1205. DOI: 10.3741/JKWRA.2018.51.12.1195 .

2654. Kim, Y., L.E. Band and D.L. Ficklin. 2017. Projected hydrological changes in the North Carolina Piedmont using bias-corrected North American Regional Climate Change Assessment Program (NARCCAP) data. Journal of Hydrology: Regional Studies. 12: 273-288. DOI: 10.1016/j.ejrh.2017.06.005 .

2655. Kim, Y., L.E. Band and C. Song. 2014. The influence of forest regrowth on the stream discharge in the North Carolina Piedmont watersheds. Journal of the American Water Resources Association. 50(1): 57–73. DOI: 10.1111/jawr.12115 .

2656. Kim, Y., S. Byeon, J. Park, S. Woo and S. Kim. 2021. Evaluation of applicability of linkage modeling using PHABSIM and SWAT. Journal of Korea Water Resources Association. 54(10): 819-833. DOI: 10.3741/JKWRA.2021.54.10.819 .

2657. Kim, Y.D., J.M. Kim and B. Kang. 2017. Projection of runoff and sediment yield under coordinated climate change and urbanization scenarios in Doam Dam Watershed, Korea. Journal of Water and Climate Change. 8(2): 235-253. DOI: 10.2166/wcc.2016.068 .

2658. Kim, Y.-J. and J.-S. Yoon. 2022. Prediction of shoreline change for the calculation of the integrated littoral sediment budget. Water. 14(2): 232. DOI: 10.3390/w14020232 .

2659. Kim, Y.W., J.W. Lee and S.J. Kim. 2018. Analysis of extreme cases of climate change impact on watershed hydrology and flow duration in Geum River Basin using SWAT and STARDEX. Journal of Korea Water Resources Association. 51(10): 905-916. DOI: 10.3741/JKWRA.2018.51.10.905 .

2660. Kim, Y.W., J.W. Lee, S.Y. Woo and S.J. Kim. 2020. Inter-basin water transfer modeling from Seomjin River to Yeongsan River using SWAT. Journal of Korea Water Resources Association. 53(1): 57-70. DOI: 10.3741/JKWRA.2020.53.1.57 .

2661. Kimaru, A.N., J.M. Gathenya and C.K. Cheruiyot. 2019. The temporal variability of rainfall and streamflow into Lake Nakuru, Kenya, assessed using SWAT and hydrometeorological indices. Hydrology. 6(4): 88. DOI: 10.3390/hydrology6040088 .

2662. King, K., M. Burgess, E.T. Schultz and J. Knighton. 2023. Forecasting hydrologic controls on juvenile anadromous fish out-migration with process-based modeling and machine learning. Journal of Environmental Management. 144: 118420. DOI: 10.1016/j.jenvman.2023.118420 .

2663. King, K.W. and J.C. Balogh. 2001. Water quality impacts associated with converting farmland and forests to turfgrass. Transactions of the ASAE. 44(3): 569-576. DOI: 10.13031/2013.6117 .

2664. King, K.W., J.G. Arnold and R.L. Bingner. 1999. Comparison of Green-Ampt and curve number methods on Goodwin Creek Watershed using SWAT. Transactions of the ASAE. 42(4): 919-926. DOI: 10.13031/2013.13272 .

2665. Kingston, D.G. and R.G. Taylor. 2010. Sources of unceratinty in climate change impacts on river discharge and groundwater in a headwater catchment of the Upper Nile Basin, Uganda. Hydrology and Earth System Sciences. 23(6): 1297-1308. DOI: 10.5194/hess-14-1297-2010 .

2666. Kiniry, J.R., G. McCauley, Y. Xie and J.G. Arnold. 2001. Rice parameters describing crop performance of four U.S. cultivars. Agronomy Journal. 93(6): 1354-1361. DOI: 10.2134/agronj2001.1354 .

2667. Kiniry, J.R., J.D. Macdonald, A.R. Kemanian, B. Watson, G. Putz and E.E. Prepas. 2008. Plant growth simulation for landscape-scale hydrological modelling. Hydrological Sciences Journal. 53(5): 1030-1042. DOI: 10.1623/hysj.53.5.1030 .

2668. Kiniry, J.R., J.R. Williams, P.W. Gassman and P. Debaeke. 1992. A general, process-oriented model for two competing plant species. Transactions of the ASAE. 35(3): 801-810. DOI: 10.13031/2013.28665 .

2669. Kiniry, J.R., M.-V.V. Johnson, S.B. Bruckerhoff, J.U. Kalser, R.L. Cordsiemon and R.D. Harmel. 2011. Clash of the titans: Comparing productivity via radiation use efficiency for two grass giants of the biofuel field. Bioenergy Research. 5(1): 41-48. DOI: 10.1007/s12155-011-9116-8 .

2670. Kiprotich, P., X. Wei, Z. Zhang, T. Ngigi, F. Qiu and L. Wang. 2021. Assessing the impact of land use and climate change on surface runoff response using gridded observations and SWAT+. Hydrology. 8(1): 48. DOI: 10.3390/hydrology8010048 .

2671. Kiran, J., P.K. Rao and B. Narasimhan. 2018. Assessment of anticipated climate change impact of water resources in Krishna Basin. Journal of Rural Development. 37(2).: 285-298. DOI: 10.25175/jrd/2018/v37/i2/129681 .

2672. Kirby, J.T. and S.R. Durrans. 2007. PnET-II3SL/SWAT: Modeling the combined effects of forests and agriculture on water availability. Journal of Hydrologic Engineering. 12(3): 319-326. DOI: 10.1061/(ASCE)1084-0699(2007)12:3(319) .

2673. Kirsch, K., A. Kirsch and J.G. Arnold. 2002. Predicting sediment and phosphorus loads in the Rock River Basin using SWAT. Transactions of the ASAE. 45(6): 1757-1769. URL: http://solimserver.geography.wisc.edu/axing/teaching/geog577/lectures/Kirsch_etal_SWAT_SedimentAndPhosphorus2002.pdf.

2674. Kishawi, Y., A.R. Mittelstet, T.E. Gilmore, D. Twidwell, T. Roy and N. Shrestha. 2023. Impact of Eastern Redcedar encroachment on water resources in the Nebraska Sandhills. Science of the Total Environment. 858: 159696. DOI: 10.1016/j.scitotenv.2022.159696 .

2675. Kleinman, P.J.A., A.N. Sharpley, A.R. Buda, Z.M. Easton, J.A. Lory, D.L. Osmond, D.E. Radcliffe, N.O. Nelson, T.L. Veith and D.G. Doody. 2017. The promise, practice, and state of planning tools to assess site vulnerability to runoff phosphorus loss. Journal of Environmental Quality. 46(6): 1243-1249. DOI: 10.2134/jeq2017.10.0395 .

2676. Kliment, Z., J. Kadlec and J. Langhammer. 2008. Evaluation of suspended load changes using AnnAGNPS and SWAT semi-empirical erosion models. Catena. 73: 286-299. DOI: 10.1016/j.catena.2007.11.005 .

2677. Kling, C.L. 2011. Economic incentives to improve water quality in agricultural landscapes: Some new variations on old ideas. American Journal of Agricultural Economics. 93(2): 297-309. DOI: 10.1093/ajae/aaq190 .

2678. Kling, C.L., I. Chaubey, R. Cibin, P.W. Gassman and Y. Panagopoulos. 2017. Policy implications from multi-scale watershed models of biofuel crop adoption across the Corn Belt. Journal of the American Water Resources Association. 53(6): 1313-1322. DOI: 10.1111/1752-1688.12592 .

2679. Kling, C.L., R.W. Arritt, G. Calhoun and D.A. Keiser. 2017. Integrated assessment models of the food, energy, and water nexus: A review and an outline of research needs. Annual Review of Resource Economics. 9(2017): 143-163. DOI: 10.1146/annurev-resource-100516-033533 .

2680. Kling, C.L., Y. Panagopoulos, S.S. Rabotyagov, A.M. Valcu, P.W. Gassman, T. Campbell, M.J. White, J.G. Arnold, R. Srinivasan, M.K. Jha, J.J. Richardson, L.M. Moskal, R.E. Turner and N.N. Rabalais. 2014. LUMINATE: Linking agricultural land use, local water quality and Gulf of Mexico hypoxia. European Review of Agricultural Economics. 41(3): 431–459. DOI: 10.1093/erae/jbu009 .

2681. Kmoch, A., D.M. Moges, M. Sepehrar, B. Narasimhan and E. Uuemaa. 2022. The effect of spatial input data quality on the performance of the SWAT model. Water. 14(13): 1988. DOI: 10.3390/w14131988 .

2682. Knighton, J., J. Conneely and M.T. Walter. 2019. Possible increases in flood frequency due to the loss of Eastern Hemlock in the northeastern United States: Observational insights and predicted impacts. Water Resources Research. 55(7): 5342-5359. DOI: 10.1029/2018WR024395 .

2683. Knisel, W.G. and K.R. Douglas-Mankin. 2012. CREAMS/GLEAMS: Model use, calibration, and validation. Transactions of the ASABE. 55(4): 1291-1302. DOI: 10.13031/2013.42241 .

2684. Knouft, J.H., A. Botero-Acosta, C.-L. Wu, B. Charry, M.L. Chu, A.I. Dell, D.M. Hall and S.J. Herrington. 2021. Forested riparian buffers as climate adaptation tools for management of riverine flow and thermal regimes: A case study in the Meramec River Basin. Sustainability. 13(4): 1877. DOI: 10.3390/su13041877 .

2685. Koch, S., A. Bauwe and B. Lennartz. 2013. Application of the SWAT model for a tile-drained lowland catchment in north-eastern Germany on subbasin scale. Water Resources Management. 27(3): 791-805. DOI: 10.1007/s11269-012-0215-x .

2686. Kolluru, V., S. Kolluru and P. Konkathi. 2020. Evaluation and integration of reanalysis rainfall products under contrasting climatic conditions in India. Atmospheric Research. 246: 105121. DOI: 10.1016/j.atmosres.2020.105121 .

2687. Koltsida, E., N. Mamassis and A. Kallioras. 2023. Hydrological modeling using the Soil and Water Assessment Tool in urban and peri-urban environments: The case of Kifisos experimental subbasin (Athens, Greece). Hydrology and Earth System Sciences. 27(4): 917-931. DOI: 10.5194/hess-27-917-2023 .

2688. Koltsida, K. and A. Kallioras. 2022. Multi-variable SWAT model calibration using satellite-based evapotranspiration data and streamflow. Hydrology. 9(7): 112. DOI: 10.3390/hydrology9070112 .

2689. Kondo, T., N. Sakai, T. Yazawa and Y. Shimizu. 2021. Verifying the applicability of SWAT to simulate fecal contamination for watershed management of Selangor River, Malaysia. Science of the Total Environment. 774: 145075. DOI: 10.1016/j.scitotenv.2021.145075 .

2690. Koo, H., M. Chen, A.J. Jakeman and F. Zhang. 2020. A global sensitivity analysis approach for identifying critical sources of uncertainty in non-identifiable, spatially distributed environmental models: A holistic analysis applied to SWAT for input datasets and model parameters. Environmental Modelling & Software. 127: 104676. DOI: 10.1016/j.envsoft.2020.104676 .

2691. Koo, H., T. Iwanaga, B.F.W. Croke, A.J. Jakeman, J. Yang, H.-H. Wang, X. Sun, G. Lü, X. Li, T. Yue, W. Yuan, X. Liu and M. Chen. 2020. Position paper: Sensitivity analysis of spatially distributed environmental models- a pragmatic framework for the exploration of uncertainty sources. Environmental Modelling & Software. 134: 104857. DOI: 10.1016/j.envsoft.2020.104857 .

2692. Korman, L.B., S.T. Goldsmith, E.J. Wagner and L.J. Rodrigues. 2020. Spatially distributed simulations of dry and wet season sediment yields: A case study in the Lower Rio Loco Watershed, Puerto Rico. Journal of South American Earth Sciences. 103: 102717. DOI: 10.1016/j.jsames.2020.102717 .

2693. Koshuma, A.E., Y.E. Debebe, D.K. Dasho and T.K. Lohani. 2021. Application of different modelling methods to arbitrate various hydrological attributes using CMORPH and TRMM satellite data in Upper Omo-Gibe Basin of Ethiopia. Mathematical Problems in Engineering. : 4143958. DOI: 10.1155/2021/4143958 .

2694. Kositsakulchai, E., Y. Phankamolsil and S. Yodjaroen. 2021. Future runoff projections based on land change using integrated Markov-Cellular Automata model and Soil Water Assessment Tool in Lam Pachi Basin, Thailand. Agriculture and Natural Resources. 55(5): 806-815. DOI: 10.34044/j.anres.2021.55.5.11 .

2695. Koua, T. J. J., J. P. Joura, K. J. Kouame, K. A. Anoh, D. Balin and S. N. Lane. 2014. Potential climate change impacts on water resources in the Buyo Lake Basin (Southwest of Ivory Coast). International Journal of Innovation and Applied Studies. 8(3): 1094-1111. URL: http://www.ijias.issr-journals.org/abstract.php?article=IJIAS-14-218-03.

2696. Koua, T., K. Anoh, S. Eblin, K. Kouassi, K. Kouame and J. Jourda. 2019. Rainfall and runoff study in climate change context in the Buyo Lake Watershed (southwest Côte d'Ivoire). Larhyss Journal. : 229-258. URL: http://larhyss.net/ojs/index.php/larhyss/article/view/680.

2697. Koua, T.J.-J., J. Jeong, T.A. Alemayehu, Y. Dhanesh and R. Srinivasan. 2023. Spatial distribution of nutrient loads based on mineral fertilizers applied to crops: Case study of the Lobo Basin in Côte d’Ivoire (West Africa). Applied Sciences. 13(16): 9437. DOI: 10.3390/app13169437 .

2698. Koua, T.J.-J., J.P. Jourda, K.J. Kouame, K.A. Anoh, W.K.C. N'Dri, G. Lazar and S. Lane. 2014. Effectiveness of Soil and Water Assessment Tool model to simulate water flow in a large agricultural complex watershed: Case of Buyo Lake Basin, west of Cote d'Ivoire. Environmental Engineering and Management Journal. 13(7): 1735-1742. URL: http://www.eemj.icpm.tuiasi.ro/issues/vol13/vol13no7.htm.

2699. Kouadio, C.A., K.L. Kouassi, A. Diedhiou, S. Obahoundje, E. Amoussou, B. Kamagate, J.-e. Paturel, T.J.H. Coulibaly, H.S.J.P. Coulibaly, R.S. Didi and I. Savane. 2022. Assessing the hydropower potential using hydrological models and geospatial tools in the White Bandama Watershed (Côte d'Ivoire, West Africa). Frontiers in Water. 4: 844934. DOI: 10.3389/frwa.2022.844934 .

2700. Koubodana, H.D., J.G. Adounkpe, K. Atchonouglo, K. Djaman, I. Larbi, Y. Lombo and K.E. Kpemoua. 2023. Modelling of streamflow before and after dam construction in the Mono River Basin in Togo-Benin, West Africa. International Journal of River Basin Management. 21(2): 265-281. DOI: 10.1080/15715124.2021.1969943 .

2701. Kouchakzadeh, M.H. and F.N. Saleh. 2014. Evaluation of the efficiency of using surface water simulation results to improve the accuracy of groundwater simulation. Modares Civil Engineering Journal. 14(3): 129-138. URL: https://mcej.modares.ac.ir/browse.php?a_id=865&sid=16&slc_lang=en.

2702. Kouchi, D.H., K. Esmaili, A. Faridhosseini, S.H. Sanaeinejad, D. Khalili and K.C. Abbaspour. 2017. Sensitivity of calibrated parameters and water resource estimates on different objective functions and optimization algorithms. Water. 9(6): 384. DOI: 10.3390/w9060384 .

2703. Kour, R., N. Patel and A.P. Krishna. 2016. Climate and hydrological models to assess the impact of climate change on hydrological regime: A review. Arabian Journal of Geosciences. 9(9): 544. DOI: 10.1007/s12517-016-2561-0 .

2704. Koutalakis, P., A. Vlachopoulou, D. Emmanouloudis and G.N. Zaimes. 2017. Simulation of torrent discharge using SWAT and evaluation by field survey in Thasos Island. Journal of Engineering Science and Technology Review. 10(3): 7-10. DOI: 10.25103/jestr.103.02 .

2705. Koutalakis, P., G.N. Zaimes, K. Ioannou and V. Iakovoglou. 2017. Application of the SWAT model on torrents of the Menoikio, Greece. Fresenius Environmental Bulletin. 26(2): 1210-1215. URL: http://www.prt-parlar.de/download_feb_2017/.

2706. Kovacs, A. 2006. Comparative study of two watershed scale models to calculate diffuse phosphorus pollution. Water Science and Technology. 53(2): 281-288. DOI: 10.2166/wst.2006.062 .

2707. Koycegiz, C. and M. Buyukyildiz. 2019. Calibration of SWAT and two data-driven models for a data-scarce mountainous headwater in semi-arid Konya closed basin. Water. 11(1): 147. DOI: 10.3390/w11010147 .

2708. Koycegiz, C., M. Buyukyildiz and S.Y. Kumcu. 2021. Spatio-temporal analysis of sediment yield with a physically based model for a data-scarce headwater in Konya Closed Basin, Turkey. Water Supply. 21(4): 1752-1763. DOI: 10.2166/ws.2021.016 .

2709. Kozlov, D.V. and A.A. Ghebrehiwot. 2021. Intercomparison of process-based physical and mathematical models in data-scarce semi-arid region of Eritrea. Water Sector of Russia: Problems, Technologies, Management. 1: 86-112. DOI: 10.35567/1999-4508-2021-1-6 .

2710. Kraemer, F.B., C.I. Chagas, G. Vazquez-Amabile, M. Paz and J.A. Moewrron. 2014. Estimation of fecal coliforms contamination scenarios in a microbasin of the Rolling Pampa of Argentina by using a predictive model. Revista de la Facultad de Ciencias Agrarias. 46(2): 83-96. URL: http://revista.fca.uncu.edu.ar/index.php?option=com_content&view=article&id=272:estimacion-de-escenarios-de-contaminacion-por-coliformes-fecales-en-una-microcuenca-de-la-pampa-ondulada-de-argentina-mediante-el-empleo-de-un-modelo-predictivo&catid=18:2014-11-26-12-50-23&Itemid=24.

2711. Krause, K.P., C.L. Wu, M.L. Chu and J.H. Knouft. 2019. Fish assemblage–environment relationships suggest differential trophic responses to heavy metal contamination. Freshwater Biology. 64: 632-642. DOI: 10.1111/fwb.13248 .

2712. Krause, K.P., H. Chien, D.L. Ficklin, D.M. Hall, G.A. Schuster, T.M. Swannack, C.A. Taylor and J.H. Knouft. 2019. Streamflow regimes and geologic conditions are more important than water temperature when projecting future crayfish distributions. Climatic Change. 154: 107-123. DOI: 10.1007/s10584-019-02435-4 .

2713. Kreig, J.A.F., H. Ssegane, I. Chaubey, M.C. Negri and H.I. Jager. 2019. Designing bioenergy landscapes to protect water quality. Biomass & Bioenergy. 128: 105327. DOI: 10.1016/j.biombioe.2019.105327 .

2714. Krishnan, N., C. Raj, I. Chaubey and K.P. Sudheer. 2018. Parameter estimation of SWAT and quantification of consequent confidence bands of model simulations. Environmental Earth Sciences. 77: 470. DOI: 10.1007/s12665-018-7619-8 .

2715. Kristanto, Y., S D. Tarigan, T. June and E.D. Wahjunie. 2021. Evaluation of different runoff curve number (CN) approaches on water regulation services assessment in intermittent micro catchment dominated by oil palm plantation. Agromet. 35(2): 73-88. DOI: 10.29244/j.agromet.35.2.73-88 .

2716. Kristofery, L., K. Murtilaksono and D.P.T. Baskoro. 2019. Simulation of land use change against on hidrological characteristics of the Ciliman Watershed. Journal of Soil Science and Environment. 21(2): 66-71. DOI: 10.29244/jitl.21.2.66-71 .

2717. Kroeger, T., C. Klemz, T. Boucher, J.R.B. Fisher, E. Acosta, A.T. Cavassani, P.J. Dennedy-Frank, L. Garbossa, E. Blainski, R.C. Santos, S. Giberti, P. Petry, D. Shemie and K. Dacol. 2019. Returns on investment in watershed conservation: Application of a best practices analytical framework to the Rio Camboriú Water Producer Program, Santa Catarina, Brazil. Science of the Total Environment. 657: 1368-1381. DOI: 10.1016/j.scitotenv.2018.12.116 .

2718. Krogh, P.E., O.B. Andersen, C.I.B. Michailovsky, P. Bauer-Gottwein, D.D. Rowlands, S.B. Luthcke and D.S. Chinn. 2010. Evaluating terrestrial water storage variations from regionally constained GRACE mascon data and hydrological models over Southern Africa - preliminary results. International Journal of Remote Sensing. 31(14): 3899-3912. DOI: 10.1080/01431161.2010.483483 .

2719. Kronvang, B., H. Behrendt, H.E. Andersen, B. Arheimer, A. Barr, S.A. Borgvang, F. Bouraoui, K. Granlund, B. Grizzetti, P. Groenendijk, E. Schwaiger, J. Hejzlar, L. Hoffmann, H. Johnsson, Y. Panagopoulos, A. Lo Porto, H. Reisser, O. Schoumans, S. Anthony, M. Silgram, M. Venohr and S.E. Larsen. 2009. Ensemble modelling of nutrient loads and nutrient load partitioning in 17 European catchments. Journal of Environmental Monitoring. 11(3): 572-583. DOI: 10.1039/b900101h .

2720. Kronvang, B., S.A. Borgvang and L.J. Barkved. 2009. Towards European harmonised procedures for quantification of nutrient losses from diffuse sources-the EUROHARP project. Journal of Environmental Monitoring. 11(3): 503-505. DOI: 10.1039/b902869m .

2721. Krpec, P. 2018. Discharge prediction by SWAT model in case of Olešná Water Reservoir. Water Management Technical and Economical Information Journal. 60(4): 17-22. URL: https://www.vtei.cz/en/archiv/.

2722. Krpec, P., M. Horáček and B. Šarapatka. 2020. A comparison of the use of local legacy soil data and global datasets for hydrological modelling a small-scale watersheds: Implications for nitrate loading estimation. Geoderma. 377. DOI: 10.1016/j.geoderma.2020.114575 .

2723. Krysanova V. and M. White. 2015. Advances in water resources assessment with SWAT—an overview. Hydrological Sciences Journal. 60(5): 771-783. DOI: 10.1080/02626667.2015.1029482 .

2724. Krysanova, B., F. Wechsung, A. Becker, W. Poschenrieder and J. Grafe. 1999. Mesoscale ecohydrological modelling to analyse regional effects of climate change. Environmental Modeling & Assessment. 4(4): 259-271. DOI: 10.1023/A:1019020518977 .

2725. Krysanova, V. and A. Becker. 2000. Integrated modelling of hydrological processes and nutrient dynamics at the river basin scale. Hydrobiologia. 410: 131-138. DOI: 10.1023/A:1003728419934 .

2726. Krysanova, V. and F.F. Hattermann. 2017. Intercomparison of climate change impacts in 12 large river basins: Overview of methods and summary of results. Climatic Change. 141(3): 363-379. DOI: 10.1007/s10584-017-1919-y .

2727. Krysanova, V. and J.G. Arnold. 2008. Advances in ecohydrological modelling with SWAT-A review. Hydrological Sciences Journal. 53(5): 939-947. DOI: 10.1623/hysj.53.5.939 .

2728. Krysanova, V. and R. Srinivasan. 2015. Assessment of climate and land use change impacts with SWAT. Regional Environmental Change. 15(3): 431-434. DOI: 10.1007/s10113-014-0742-5 .

2729. Krysanova, V. and U. Haberlandt. 2002. Assessment of nitrogen leaching from arable land in large river basins Part I: Simulation experiments using a process-based model. Ecological Modelling. 150(3): 255-275. DOI: 10.1016/S0304-3800(01)00525-7 .

2730. Krysanova, V., D.-I.Müller-Wohlfeil and A. Becker. 1998. Development and test of a spatially distributed hydrological/water quality model for mesoscale watersheds. Ecological Modelling. 106(2-3): 261-289. DOI: 10.1016/S0304-3800(97)00204-4 .

2731. Krysanova, V., F. Hatterman and F. Wechsung. 2005. Development of the ecohydrological model SWIM for regional impact studies and vulnerability assessment. Hydrological Processes. 19(3): 763-783. DOI: 10.1002/hyp.5619 .

2732. Krysanova, V., F. Hatterman and F. Wechsung. 2007. Implications of complexity and uncertainty for integrated modelling and impact assessment in river basins. Environmental Modelling & Software. 22(5): 701-709. DOI: 10.1016/j.envsoft.2005.12.029 .

2733. Krysanova, V., F. Hattermann and A. Habeck. 2005. Expected changes in water resources availability and water quality with respect to climate change in the Elbe River Basin (Germany). Hydrology Research. 36(4-5): 321-333. DOI: 10.2166/nh.2005.0025 .

2734. Krysanova, V., F. Hattermann, S. Huang, C. Hesse, T. Vetter, S. Liersch, H. Koch and Z.W. Kundzewicz. 2015. Modelling climate and land use change impacts with SWIM: Lessons learnt from multiple applications. Hydrological Sciences Journal. 60(4): 606-635. DOI: 10.1080/02626667.2014.925560 .

2735. Kuemmerlen, M., B. Schmalz, B. Guse, Q. Cai, N. Fohrer and S.C. Jahnig. 2014. Integrating catchment properties in small scale species distribution models of stream macroinvertebrates. Ecological Modelling. 277: 77-86. DOI: 10.1016/j.ecolmodel.2014.01.020 .

2736. Kuemmerlen, M., B. Schmalz, Q. Cai, P. Haase, N. Fohrer and S.C. Jahnig. 2015. An attack on two fronts: Predicting how changes in land use and climate affect the distribution of stream macroinvertebrates. Freshwater Biology. 60(7): 1443–1458. DOI: 10.1111/fwb.12580 .

2737. Kuemmerlen, M., S. Domisch, B. Schmalz, Q. Cai, N. Fohrer and S.C. Jähnig. 2012. Integrated modelling of aquatic ecosystems in China: Distribution of benthic macroinvertebrates at catchment scale. Hydrologie und Wasserbewirtschaftung. 56(4): 185-192. DOI: 10.5675/HyWa_2012,4_3 .

2738. Kuemmerlen, M., S. Stoll, A. Sundermann and P. Haase. 2016. Long-term monitoring data meet freshwater species distribution models: Lessons from an LTER-site. Ecological Indicators. 65: 122-132. DOI: 10.1016/j.ecolind.2015.08.008 .

2739. Kuhnle, R.A., R.L. Bingner, G.R. Foster and E.H. Grissinger. 1996. Effect of land use changes on sediment transport in Goodwin Creek. Water Resources Research. 32(10): 3189-3196. DOI: 10.1029/96WR02104 .

2740. Kujawa, H., M. Kalcic, J. Martin, N. Aloysius, A. Apostel, J. Kast, A. Murumkar, G. Evenson, R. Becker, C. Boles, R. Confesor, A. Dagnew, T. Guo, R.L. Muenich, T. Redder, D. Scavia and Y.-C. Wang. 2020. The hydrologic model as a source of nutrient loading uncertainty in a future climate. Science of the Total Environment. 724: 138004. DOI: 10.1016/j.scitotenv.2020.138004 .

2741. Kujawa, H., M. Kalcic, J. Martin, A. Apostel, J. Kast, A. Murumkar, G. Evenson, N. Aloysius, R. Becker, C. Boles, R. Confesor, A. Dagnew, T. Guo, R.L. Muenich, T. Redder, Y.-C. Wang and D. Scavia. 2022. Using a multi-institutional ensemble of watershed models to assess agricultural conservation effectiveness in a future climate. Journal of the American Water Resources Association. 58(6): 1326-1341. DOI: 10.1111/1752-1688.13023 .

2742. Kulkarni, S., T. Anurag, M. Hussain, S.V.S.N.D.L Prasanna and V. Hari. 2022. Comparison of multi-objective and single objective calibration for SWAT model: A case study on Musi River Basin, India. ISH Journal of Hydraulic Engineering. DOI: 10.1080/09715010.2022.2120369 .

2743. Kum, D., Y. Park, Y.H. Jung, M.H. Shin, J. Ryu, J.H. Park, J.E. Yang and K.J. Lim. 2015. Analysis of rainfall-runoff characteristics on bias correction method of climate change scenarios. Journal of Korean Society on Water Environment. 31(3): 241-252. DOI: 10.15681/KSWE.2015.31.3.241 .

2744. Kumar, A. and M. P. Sharma. 2016. A modeling approach to assess the greenhouse gas risk in Koteshwar hydropower reservoir, India. Human and Ecological Risk Assessment: An International Journal. 22(8): 1651-1664. DOI: 10.1080/10807039.2016.1209077 .

2745. Kumar, A., A. Singh and K. Gaurav. 2023. Assessing the synergic efect of land use and climate change on the Upper Betwa River Catchment in central India under present, past, and future climate scenarios. Environment, Development, and Sustainability. 25: 5163-5184. DOI: 10.1007/s10668-022-02260-3 .

2746. Kumar, A., R.P. Singh, S.K. Dubey and K. Gaurav. 2022. Streamflow of the Betwa River under the combined effect of LU-LC and climate change. Agriculture. 12(12): 2005. DOI: 10.3390/agriculture12122005 .

2747. Kumar, A., V.K. Vema, C. Kurian, J. Thomas and K.P. Sudheer. 2021. A decision support system for the identification of critical zones in a watershed to implement land management practices. Stochastic Environmental Research and Risk Assessment. 35(8): 1649-1664. DOI: 10.1007/s00477-021-01983-5 .

2748. Kumar, B., V. Lakshmi and K.C. Patra. 2017. Evaluating the uncertainties in the SWAT Model outputs due to DEM grid size and resampling techniques in a large Himilayan River Basin. Journal of Hydrologic Engineering. 22(9): 04017039. DOI: 10.1061/(ASCE)HE.1943-5584.0001569 .

2749. Kumar, E., D. Saraswat and G. Singh. 2020. Comparative analysis of bioenergy crop impacts on water quality using static and dynamic land use change modeling approach. Water. 12(2): 410. DOI: 10.3390/w12020410 .

2750. Kumar, M., D.M. Denis, A. Kundu, N. Joshi and S. Suryavanshi. 2022. Understanding land use/land cover and climate change impacts on hydrological components of Usri Watershed, India. Applied Water Science. 12(3): 39. DOI: 10.1007/s13201-021-01547-6 .

2751. Kumar, N., A. Khamzina, P. Knöfel, J.P.A. Lamers and B. Tischbein. 2021. Afforestation of degraded croplands as a water-saving option in irrigated region of the Aral Sea Basin. Water. 13(10): 1433. DOI: 10.3390/w13101433 .

2752. Kumar, N., B. Tischbein, J. Kusche, M.K. Beg and J.J. Bogardi. 2017. Impact of land-use change on the water resources of the Upper Kharun Catchment, Chhattisgarh, India. Regional Environmental Change. 17(8): 2373–2385. DOI: 10.1007/s10113-017-1165-x .

2753. Kumar, N., S.K. Singh, P.K. Srivastava and B. Narsimlu. 2017. SWAT model calibration and uncertainty analysis for streamflow prediction of the Tons River Basin, India, using Sequential Uncertainty Fitting (SUFI-2) algorithm. Modeling Earth Systems and Environment. 3(1): 30. DOI: 10.1007/s40808-017-0306-z .

2754. Kumar, N., S.K. Singh, V.G. Singh and B. Dzwairo. 2018. Investigation of impacts of land use/land cover change on water availability of Tons River Basin, Madhya Pradesh, India. Modeling Earth Systems and Environment. 4: 295-310. DOI: 10.1007/s40808-018-0425-1 .

2755. Kumar, P., S.E. Debele, J. Sahani, N. Rawat, B. Marti-Cardona, S.M. Alfieri, B. Basub, A.S. Basu, P. Bowyer, N. Charizopoulos, G. Gallotti, J. Jaakko, L.S. Leo, M. Loupis, M. Menenti, S.B. Mickovski, S.-J. Mun, A. Gonzalez-Ollauri, J. Pfeiffer, F. Pilla, J. Pröll, M. Rutzinger, M.A. Santo, S. Sannigrahi, C. Spyrou, H. Tuomenvirta and T. Zieher. 2021. Nature-based solutions efficiency evaluation against natural hazards: Modelling methods, advantages and limitations. Science of the Total Environment. 784: 147058. DOI: 10.1016/j.scitotenv.2021.147058 .

2756. Kumar, S. and A. Mishra. 2015. Critical erosion area identification based on hydrological response unit level for effective sedimentation control in a river basin. Water Resources Management. 29(6): 1749-1765. DOI: 10.1007/s11269-014-0909-3 .

2757. Kumar, S. and V. Merwade. 2009. Impact of watershed subdivision and soil data resolution on SWAT model calibration and parameter uncertainty. Journal of the American Water Resources Association. 45(5): 1179-1196. DOI: 10.1111/j.1752-1688.2009.00353.x .

2758. Kumar, S., A. Mishra and N.S. Raghuwanshi. 2015. Identification of critical erosion watersheds for control management in data scace condition using the SWAT Model. Journal of Hydrologic Engineering. 20(6): C4014008. DOI: 10.1061/(ASCE)HE.1943-5584.0001093 .

2759. Kumar, S., A. Mishra and U.K. Singh. 2023. Assessment of land cover changes and climate variability effects on catchment hydrology using a physically distributed model. Sustainability. 15(13): 10304. DOI: 10.3390/su151310304 .

2760. Kumar, S., A. Singh and D.P. Shrestha. 2016. Modelling spatially distributed surface runoff generation using SWAT-VSA: A case study in a watershed of the north-west Himalayan landscape. Modeling Earth Systems and Environment. 2: 202. DOI: 10.1007/s40808-016-0249-9 .

2761. Kumar, S., N.S. Raghuwanshi and A. Mishra. 2015. Identification and management of critical erosion watersheds for improving reservoir life using hydrological modeling. Sustainable Water Resources Management. 1(1): 57-70. DOI: 10.1007/s40899-015-0005-8 .

2762. Kumarasamy, K. and P. Belmont. 2018. Calibration parameter selection and watershed hydrology model evaluation in time and frequency domains. Water. 10(6): 710. DOI: 10.3390/w10060710 .

2763. Kundu, D., F.F. van Ogtrop and R.W. Vervoort. 2016. Identifying model consistency through stepwise calibration to capture streamflow variability. Environmental Modelling & Software. 84: 1-17. DOI: 10.1016/j.envsoft.2016.06.013 .

2764. Kundu, D., R.W. Vervoort and F.F. van Ogtrop. 2017. The value of remotely sensed surface soil moisture for model calibration using SWAT. Hydrological Processes. 31(15): 2764–2780. DOI: 10.1002/hyp.11219 .

2765. Kundu, S., D. Khare and A. Mondal. 2017. Individual and combined impacts of future climate and land use changes on the water balance. Ecological Engineering. 105: 42-57. DOI: 10.1016/j.ecoleng.2017.04.061 .

2766. Kundu, S., D. Khare and A. Mondal. 2017. Past, present and future land use changes and their impact on water balance. Journal of Environmental Management. 197: 585-596. DOI: 10.1016/j.jenvman.2017.04.018 .

2767. Künne, A., M. Fink, H. Kipka, P. Krause and W.-A. Flügel. 2012. Regionalization of meso-scale physically based nitrogen modeling outputs to the macro-scale by the use of regression trees. Advances in Geosciences. 31: 15-21. DOI: 10.5194/adgeo-31-15-2012 .

2768. Kuntiyawichai, K., B. Schultz, S. Uhlenbrook, F.X. Suryadi and A. Van Griensven. 2011. Comparison of flood management options for the Yang River Basin, Thailand. Irrigation and Drainage. 60(4): 526-543. DOI: 10.1002/ird.596 .

2769. Kurki-Fox, J.J., B.A. Doll, D.E. Line, M.E. Baldwin, T.M. Klondike and A.A. Fox. 2022. The flood reduction and water quality impacts of watershed-scale natural infrastructure implementation in North Carolina, USA. Ecological Engineering. 181: 106696. DOI: 10.1016/j.ecoleng.2022.106696 .

2770. Kushwaha, A. and M. Jain. 2013. Hydrological simulation in a forest dominated watershed in Himalayan Region using SWAT model. Water Resources Management. 27(8): 3005-3023. DOI: 10.1007/s11269-013-0329-9 .

2771. Kusi, K.K., A. Khattabi and N. Mhammdi. 2023. Evaluating the impacts of land use and climate changes on water ecosystem services in the Souss Watershed, Morocco. Arabian Journal of Geosciences. 16: 126. DOI: 10.1007/s12517-023-11206-6 .

2772. Kusre, B.C., D.C. Baruah, P.K. Bordoloi and S.C. Patra. 2010. Assessment of hydropower potential using GIS and hydrological modeling technique in Kopili River Basin in Assam (India). Applied Energy. 87(1): 298-309. DOI: 10.1016/j.apenergy.2009.07.019 .

2773. Kuti, I.A. and T.A. Ewemoje. 2021. Modelling of sediment yield using the Soil and Water Assessment Tool (SWAT) model: A case study of the Chanchaga Watersheds, Nigeria. Scientific African. 13: e00936. DOI: 10.1016/j.sciaf.2021.e00936 .

2774. Kwarteng, E.A., C. Gyamfi, F.O.K. Anyemedu, K.A. Adjei and G.K. Anornu. 2021. Coupling SWAT and bathymetric data in modelling reservoir catchment hydrology. Spatial Information Research. 29(1): 55-69. DOI: 10.1007/s41324-020-00337-7 .

2775. La Jeunesse, I., C. Cirelli, H. Sellami, D. Aubin, R. Deidda and N. Baghdadi. 2015. Is the governance of the Thau Coastal Lagoon ready to face climate change impacts? Ocean & Coastal Management. 118 (Part B): 234-246. DOI: 10.1016/j.ocecoaman.2015.05.014 .

2776. Lai, G., J. Luo, Q. Li, L. Qiu, R. Pan, X. Zeng and F. Yi. 2020. Modification and validation of the SWAT model based on multi-plant growth mode, a case study of the Meijiang River Basin, China. Journal of Hydrology. 585: 124778. DOI: 10.1016/j.jhydrol.2020.124778 .

2777. Lai, Z., S. Li, Y. Deng, G. Lv and S. Ullah. 2018. Development of a polder module in the SWAT model: SWATpld for simulating polder areas in south‐eastern China. Hydrological Processes. 32(8): 1050-1062. DOI: 10.1002/hyp.11477 .

2778. Lakshmanan, A., V. Geethalakshmi, D. Rajalakshmi, K. Bhuvaneswari, R. Srinivasan, G. Sridhar, N.U. Sehkhar and H. Annamalai. 2011. Climate change adaptation strategies in the Bhavani Basin using the SWAT model. Applied Engineering in Agriculture. 27(6): 887-893. DOI: 10.13031/2013.40623 .

2779. Lakshmi, G. and K.P. Sudheer. 2021. Parameterization in hydrological models through clustering of the simulation time period and multi-objective optimization based calibration. Environmental Modeling & Assessment. 138: 104981. DOI: 10.1016/j.envsoft.2021.104981 .

2780. Lam, Q.D., B. Schmalz and N. Fohrer. 2009. Ecohydrological modelling of water discharge and nitrate loads in a mesoscale lowland catchment, Germany. Advances in Geosciences. 21: 49-55. DOI: 10.5194/adgeo-21-49-2009 .

2781. Lam, Q.D., B. Schmalz and N. Fohrer. 2010. Modelling point and diffuse source pollution of nitrate in a rural lowland catchment using the SWAT model. Agricultural Water Management. 97(2): 317-325. DOI: 10.1016/j.agwat.2009.10.004 .

2782. Lam, Q.D., B. Schmalz and N. Fohrer. 2011. The impact of agricultural best management practices on water quality in a north German lowland catchment. Environmental Monitoring and Assessment. 183(1-4): 351-379. DOI: 10.1007/s10661-011-1926-9 .

2783. Lam, Q.D., B. Schmalz and N. Fohrer. 2012. Assessing the spatial and temporal variations of water quality in lowland areas, northern Germany. Journal of Hydrology. 438–439: 137–147. DOI: 10.1016/j.jhydrol.2012.03.011 .

2784. Lamane, H., R. Moussadek, B. Baghdad, L. Mouhir, H. Briak, M. Laghlimi and A. Zouahri. 2022. Soil water erosion assessment in Morocco through modeling and fingerprinting applications: A review. Heliyon. 8(8): e10209. DOI: 10.1016/j.heliyon.2022.e10209 .

2785. Lamba, J., A.M. Thompson, K.G. Karthikeyan, J.C. Panuska and L.W. Good. 2016. Effect of best management practice implementation on sediment and phosphorus load reductions at subwatershed and watershed scale using SWAT model. International Journal of Sediment Research. 31(4): 386-394. DOI: 10.1016/j.ijsrc.2016.06.004 .

2786. Lamichhane, S. and N.M. Shakya. 2019. Integrated assessment of climate change and land use change impacts on hydrology in the Kathmandu Valley watershed, Central Nepal. Water. 11(10): 2059. DOI: 10.3390/w11102059 .

2787. Lamparter, G., R.L.B. Nobrega, K. Kovacs, R.S. Amorim and G. Gerold. 2018. Modelling hydrological impacts of agricultural expansion in two macro-catchments in Southern Amazonia, Brazil. Regional Environmental Change. 18(1): 91-103. DOI: 10.1007/s10113-016-1015-2 .

2788. Lang, Z., S.S. Rabotyagov, S.J. Cho, T. Campell and C.L. Kling. 2020. Good seeds bear good fruit: Using benefit-to-cost ratios in multiobjective spatial optimization under epistasis. Land Economics. 96(4): 531-551. URL: https://muse.jhu.edu/article/775585.

2789. Langhotlz, M., B.H. Davison, H.I. Jager, l. Eaton, L.M. Baskaran, M. Davis and C.C. Brandt. 2021. Increased nitrogen use efficiency in crop production can provide economic and environmental benefits. Science of the Total Environment. 758: 143602. DOI: 10.1016/j.scitotenv.2020.143602 .

2790. Lant, C.L., S.E. Kraft, J. Beaulieu, D. Bennett, T. Loftus, and J. Nicklow. 2005. Using GIS-based ecological-economic modeling to evaluate policies affecting agricultural watersheds. Ecological Economics. 55(4): 467-484. DOI: 10.1016/j.ecolecon.2004.12.006 .

2791. Larbi, I., C. Nyamekye, S.-Q. Dotse, D.K. Danso, T. Annor, E. Bessah, A.M. Limantol, T. Attah-Darkwa, D. Kwawuvi and M. Yomo. 2022. Rainfall and temperature projections and the implications on streamflow and evapotranspiration in the near future at the Tano River Basin of Ghana. Scientific African. 15: e01071. DOI: 10.1016/j.sciaf.2021.e01071 .

2792. Larbi, I., E. Obuobie, A. Verhoef, S. Julich, K.-H. Feger, A.Y. Bossa and D. Macdonald. 2020. Water balance components estimation under scenarios of land cover change in the Vea Catchment, West Africa. Hydrological Processes. 65(13): 2196-2209. DOI: 10.1080/02626667.2020.1802467 .

2793. Larbi, I., F.C.C. Hountondji, S.-Q. Dotse, D. Mama, C. Nyamekye, O.E. Adeyeri, H.D. Koubodana, P.R.E. Odoom and Y.M. Asare. 2021. Local climate change projections and impact on the surface hydrology in the Vea Catchment, West Africa. Hydrology Research. 52(6): 1200-1215. DOI: 10.2166/nh.2021.096 .

2794. Larose, M., G.C. Heathman, D. Norton and D. Smith. 2011. Impacts of conservation buffers and grasslands on total phosphorus loads using hydrological modeling and remote sensing techniques. Catena. 86(2): 121-129. DOI: 10.1016/j.catena.2011.03.005 .

2795. Larose, M., G.C. Heathman, L.D. Norton and B. Engel. 2007. Hydrologic and atrazine simulation of the Cedar Creek Watershed using the SWAT model. Journal of Environmental Quality. 36(2): 521-531. DOI: 10.2134/jeq2006.0154 .

2796. Laurent, F. and D. Ruelland. 2011. Assessing impacts of alternative land use and agricultural practices on nitrate pollution at the catchment scale. Journal of Hydrology. 409(1-2): 440-450. DOI: 10.1016/j.jhydrol.2011.08.041 .

2797. Lautenbach, S., M. Volk, M. Strauch, G. Whittaker and R. Seppelt. 2013. Optimization-based trade-off analysis of biodiesel crop production for managing an agricultural catchment. Environmental Modelling & Software. 48: 98-112. DOI: http://dx.doi.org/10.1016/j.envsoft.2013.06.00610.1016/j.envsoft.2013.06.006 .

2798. Lazzari Franco, A.C. and N.B. Bonuma. 2017. Multi-variable SWAT model calibration with remotely sensed evapotranspiration and observed flow. Revista Brasileira de Recursos Hidricos. 22: e35. DOI: 10.1590/2318-0331.011716090 .

2799. Le Roux, J.J. 2017. Sediment yield potential in South Africa's only large river network without a dam: Implications for water resource management. Land Degradation & Development. 29(3): 765-775. DOI: 10.1002/ldr.2753 .

2800. Le Roux, J.J. and P.D. Sumner. 2013. Water erosion risk assessment in South Africa: A proposed methodological framework. Geografiska Annaler: Series A, Physical Geography. 95(4): 323–336. DOI: 10.1111/geoa.12018 .

2801. Le Roux, J.J., P.D. Sumner, S.A. Lorentz and T. Germishuyse. 2013. Connectivity aspects in sediment migration modelling using the Soil and Water Assessment Tool. Geosciences. 3(1): 1-12. URL: http://article.sapub.org/10.5923.j.geo.20130301.01.html.

2802. Le, A.M. and N.G. Pricope. 2017. Increasing the accuracy of runoff and streamflow simulation in the Nzoia Basin, Western Kenya, through the incorporation of satellite-derived CHIRPS data. Water. 9(2): 114. DOI: 10.3390/w9020114 .

2803. Le, M.-H., B.Q. Nguyen, H.T. Pham, A. Patil, H.X. Do, R.A.A.J. Ramsankaran, J.D. Bolten and V. Lakshmi. 2022. Assimilation of SMAP products for improving streamflow simulations over tropical climate region - Is spatial information more important than temporal information? Remote Sensing. 14(7): 1607. DOI: 10.3390/rs14071607 .

2804. Le, M.H., V. Lakshmi, J. Bolten and D. Du Bui. 2020. Adequacy of satellite-derived precipitation estimate for hydrological modeling in Vietnam basins. Journal of Hydrology. 586: 124820. DOI: 10.1016/j.jhydrol.2020.124820 .

2805. Le, T.B. and H.O. Sharif. 2015. Modeling the projected changes of river flow in central Vietnam under different climate change scenarios. Water. 7(7): 3579-3598. DOI: 10.3390/w7073579 .

2806. Le, T.B., F.H. Al-Juaidi and H. Sharif. 2014. Hydrologic simulations driven by satellite rainfall to study the hydroelectric development impacts on river flow. Water. 6(12): 3631-3651. DOI: 10.3390/w6123631 .

2807. Lechuga-Crespo, J.L., S. Sauvage, E. Ruiz-Romera, C. George and J.M. Sanchez-Parez. 2021. SWATLitho: A hydrogeochemical model to estimate daily geochemical loads at the catchment scale. Environmental Modelling & Software. 135: 104893. DOI: 10.1016/j.envsoft.2020.104893 .

2808. Lee, B.J., W.I. Jung and D.H. Bae. 2009. Parameter regionalization of semi-distributed runoff model using multivariate statistical analysis. Journal of the Korean Water Resources Association. 42(2): 149-160. DOI: 10.3741/JKWRA.2009.42.2.149 .

2809. Lee, D., G. Lee, S. Kim and S. Jung. 2020. Future runoff analysis in the Mekong River Basin under a climate change scenario using deep learning. Water. 12(6): 1556. DOI: 10.3390/w12061556 .

2810. Lee, D., J. Lee, J. Kim, K.J. Lim, B.A. Engel, J.E. Yang and Y. Jung. 2019. Effects of slope magnitude and length on SWAT baseflow estimation. Journal of Irrigation and Drainage Engineering. 145(1): 04018037. DOI: 10.1061/(ASCE)IR.1943-4774.0001363 .

2811. Lee, D., J.H. Han, M.J. Park, B.A. Engel, J. Kim, K.J. Lim and W.S. Jang. 2019. Development of advanced web-based SWAT LUC system considering yearly land use changes and recession curve characteristics. Ecological Engineering. 128: 39-47. DOI: 10.1016/j.ecoleng.2019.01.001 .

2812. Lee, D.E, W.S. Yu and G.H. Lee. 2018. Large scale rainfall-runoff analysis using SWAT model: Case study: Mekong River Basin. Journal of the Korean Society of Agricultural Engineers. 60(1): 47-57. DOI: 10.5389/KSAE.2018.60.1.047 .

2813. Lee, D.G. and T.J. Kim. 2016. Development of load duration curve for nitrate in surface waters at ungauged control points: A case study on Carters and Burton Creeks, Texas. Fresenius Environmental Bulletin. 25(8): 3030-3037. URL: http://www.prt-parlar.de/download_feb_2016/.

2814. Lee, G., H.W. Lee, Y.S. Lee, J.H. Choi, J.E. Yang, K.J. Lim and J. Kim. 2019. The effect of reduced flow on downstream water systems due to the Kumgangsan Dam under dry conditions. Water. 11: 4. DOI: 10.3390/w11040739 .

2815. Lee, G., S. Jung and D. Lee. 2018. Comparison of physics-based and data-driven models for streamflow simulation of the Mekong river. Journal of Korea Water Resources Association. 51(6): 503-514. DOI: 10.3741/JKWRA.2018.51.6.503 .

2816. Lee, G., Y. Shin and Y. Jung. 2014. Development of web-based RECESS model for estimating baseflow using SWAT. Sustainability. 6(4): 2357-2378. DOI: 10.3390/su6042357 .

2817. Lee, H. and K. Kang. 2015. Interpolation of missing precipitation data using kernel estimations for hydrologic modeling. Advances in Meteorology. : 935868. DOI: 10.1155/2015/935868 .

2818. Lee, H.-G., J. Han, D. Lee, K.-J. Lim and J. Kim. 2019. Derivation of channel and floodplain width regression reflecting Korean channel shapes in SWAT model. Journal of the Korean Society of Agricultural Engineers. 61(4): 33-42. DOI: 10.5389/KSAE.2019.61.4.033 .

2819. Lee, H.-J., D.-W. Kim and E.G. Chung. 2021. Strong links between load and manure and a comprehensive risk assessment of veterinary antibiotics with low KOW in intensive livestock farming watersheds. Chemosphere. 279: 130902. DOI: 10.1016/j.chemosphere.2021.130902 .

2820. Lee, J., C. Jun, S. Kim and S. Kim. 2019. Assessment of climate change impact on future groundwater-level behavior using SWAT groundwater-consumption function in Geum River Basin of South Korea. Water. 11(5): 949. DOI: 10.3390/w11050949 .

2821. Lee, J., C. Jung, D. Kim, S. Maeng, H. Jeong, Y. Jo and S. Kim. 2022. A study on estimating the quick return flow from irrigation canal of agricultural water using watershed model. Journal of Korea Water Resources Association. 55(5): 321-331. DOI: 10.3741/JKWRA.2022.55.5.321 .

2822. Lee, J., C.-H. Lim, G.S. Kim, A. Markandya, S. Chowdhury, S.J. Kim, W.-K. Lee and Y. Son. 2018. Economic viability of the national-scale forestation program: The case of success in the Republic of Korea. Ecosystem Services. 29: 40-46. DOI: 10.1016/j.ecoser.2017.11.001 .

2823. Lee, J., J. Chung, S. Woo, Y. Lee, C. Jung, D. Park and S. Kim. 2021. Evaluation of land-use changes impact on watershed health using probabilistic approaches. Water. 13(17): 2348. DOI: 10.3390/w13172348 .

2824. Lee, J., J. Kim, W.S. Jang, K.J. Lim and B.A. Engel. 2018. Assessment of baseflow estimates considering recession characteristics in SWAT. Water. 10(4): 371. DOI: 10.3390/w10040371 .

2825. Lee, J., N.W. Kim and I.-M. Chung. 2013. Assessment of streamflow depletion due to groundwater pumping from a well. Journal of the Korean Water Resources Association. 46(11): 1079-1088. DOI: 10.3741/JKWRA.2013.46.11.1079 .

2826. Lee, J., N.W. Kim and J.E. Lee. 2014. Estimation of actual avapotranspiration and storage change for the Bokahcheon Upper-Middle watershed. Journal of the Korean Water Resources Association. 47(7): 615-628. DOI: 10.3741/JKWRA.2014.47.7.615 .

2827. Lee, J., N.W. Kim and J.E. Lee. 2016. Modification of surface flow analysis algorithm in SWAT. Journal of the Korean Society of Civil Engineers. 36(3): 417-426. DOI: 10.12652/Ksce.2016.36.3.0417 .

2828. Lee, J., S.-Y. Woo, Y.-W. Kim, S.-J. Kim, J. Pyo and K.W. Cho. 2022. Dynamic calibration of phytoplankton blooms using the modified SWAT model. Journal of Cleaner Production. 343: 131005. DOI: 10.1016/j.jclepro.2022.131005 .

2829. Lee, J., Y. Lee, S. Woo, W. Kim and S. Kim. 2020. Evaluation of water quality interaction by dam and weir operation using swat in the Nakdong River Basin of South Korea. Sustainability. 12(17): 6845. DOI: 10.3390/su12176845 .

2830. Lee, J.E., J.-H. Heo, J. Lee and N.W. Kim. 2017. Assessment of flood frequency alteration by dam construction via SWAT simulation. Water. 9(4): 264. DOI: 10.3390/w9040264 .

2831. Lee, J.-H., S.-Y. Park, J.-S. Kim, C. Sur and J. Chen. 2018. Extreme drought hotspot analysis for adaptation to a changing climate: Assessment of applicability to the five major river basins of the Korean Peninsula. International Journal of Climatology. DOI: 10.1002/joc.5532 .

2832. Lee, J.M., Y.D. Kim, B.S. Kang and H.S. Yi. 2012. Impact of climate change on runoff in Namgang Dam watershed. Journal of the Korean Water Resources Association. 45(6): 517-529. DOI: 10.3741/JKWRA.2012.45.6.517 .

2833. Lee, J.M., Y.S. Park, D. Kum, Y. Jung, B. Kim, S.J. Hwang, H.B. Kim, C. Kim and K.J. Lim. 2014. Assessing the effect of watershed slopes on recharge/baseflow and soil erosion. Paddy and Water Environment. 12(Supp 1): 5169-5193. DOI: 10.1007/s10333-014-0448-9 .

2834. Lee, J.W., C.G. Jung, D.R. Kim and S.J. Kim. 2018. Assessment of future climate change impact on groundwater level behavior in Geum River Basin using SWAT. Journal of Korea Water Resources Association. 51(3): 247-261. DOI: 10.3741/JKWRA.2018.51.3.247 .

2835. Lee, J.-W., J.-Y. Park, C.-G. Jung and S.-J. Kim. 2019. Evaluation of land use change impact on hydrology and water quality health in Geum River Basin. Journal of the Korean Association of Geographic Information Studies . 22(2): 82-96. DOI: 10.11108/kagis.2019.22.2.082 .

2836. Lee, K. S., E-S. Chung and Y-O. Kim. 2008. Integrated watershed management for mitigating streamflow depletion in an urbanized watershed in Korea. Physics and Chemistry of the Earth. 33(5): 382-394. DOI: 10.1016/j.pce.2008.02.033 .

2837. Lee, K., S. Khanal and B.R. Bakshi. 2021. Techno-ecologically synergistic food–energy–water systems can meet human and ecosystem needs. Energy & Environmental Science. 14(7): 3700-3716. DOI: 10.1039/d1ee00843a .

2838. Lee, K.S. and E. Chung. 2007. Hydrological effects of climate change, groundwater withdrawal, and land use in a small Korean watershed. Hydrological Processes. 21(22): 3046-3056. DOI: 10.1002/hyp.6513 .

2839. Lee, K.S., E.-S. Chung and M.-J. Shin. 2006. Effects of changes of climate, groundwater withdrawal, and landuse on total flow during dry period. Journal of Korea Water Resources Association. 39(11): 923-934. URL: http://www.koreascience.or.kr/article/ArticleFullRecord.jsp?cn=SJOHCI_2006_v39n11s172_923.

2840. Lee, K.S., E.-S. Cung, M.-J. Shin and Y.-O. Kim. 2006. Sustainable water resources planning to prevent streamflow depletion in an urban watershed: 2. Application. Journal of Korea Water Resources Association. 39(11): 947-960. DOI: 10.3741/JKWRA.2006.39.11.947 .

2841. Lee, K.S., E.-S. Cung, Y.-O. Kim and T.-G. Cho. 2006. Sustainable water resources planning to prevent streamflow depletion in an urban watershed: 1. Methodology. Journal of Korea Water Resources Association. 39(11): 935-946. DOI: 10.3741/JKWRA.2006.39.11.935 .

2842. Lee, L.Y., T. Ancev and W. Vervoort. 2007. Environmental and economic impacts of water scarcity and market reform on the Mooki Catchment. The Environmentalist. 27(1): 39-49. DOI: 10.1007/s10669-007-9011-1 .

2843. Lee, L.Y., T. Ancev and W. Vervoort. 2012. Evaluation of environmental policies targeting irrigated agriculture: The case of the Mooki catchment, Australia. Agricultural Water Management. 109: 107-116. DOI: 10.1016/j.agwat.2012.02.011 .

2844. Lee, M., G. Park, M. Park, J. Park J. Lee and S. Kim. 2010. Evaluation of non-point source pollution reduction by applying best management practices using a SWAT model and QuickBird high resolution satellite imagery. Journal of Environmental Sciences. 22(6): 826-833. DOI: 10.1016/S1001-0742(09)60184-4 .

2845. Lee, M.-H. and D.-H. Bae. 2018. Uncertainty assessment of future projections on water resources according to climate downscaling and hydrological models. Journal of Hydroinformatics. 20(3): 597-607. DOI: 10.2166/hydro.2018.132 .

2846. Lee, M.H., D.H. Bae and E.S. Im. 2019. Effect of the horizontal resolution of climate simulations on the hydrological representation of extreme low and high flows. Water. 33(13): 4653–4666. DOI: 10.1007/s11269-019-02359-9 .

2847. Lee, M.J., J. Ahn, Y.D. Kim and B. Kang. 2021. Effect of climate change on long-term river geometric variation in Andong Dam Watershed, Korea. Journal of Water and Climate Change. 12(3): 741-758. DOI: 10.2166/wcc.2020.148 .

2848. Lee, S. and S.U. Kim. 2016. Quantification of hydrological responses due to climate change and human activities over various time scales in South Korea. Water. 9(1): 34. DOI: 10.3390/w9010034 .

2849. Lee, S., A.M. Sadeghi, G.W. McCarty, C. Baffaut, S. Lohani, L.F. Duriancik, A. Thompson, I.-Y. Yeo and C. Wallace. 2018. Assessing the suitability of the Soil Vulnerability Index (SVI) on identifying croplands vulnerable to nitrogen loss using the SWAT model. Catena. 167: 1-12. DOI: 10.1016/j.catena.2018.04.021 .

2850. Lee, S., A.M. Sadeghi, I.-Y. Yeo, G.W. McCarty and W.D. Hively. 2017. Assessing the impacts of future climate conditions on the effectiveness of winter cover crops in reducing nitrate loads into the Chesapeake Bay watersheds using the SWAT Model. Transactions of the ASABE. 60(6): 1939-1955. DOI: 10.13031/trans.12390 .

2851. Lee, S., C.W. Wallace, A.M. Sadeghi, G.W. McCarty, H. Zhong and I.-Y. Yeo. 2018. Impacts of Global Circulation Model (GCM) bias and WXGEN on modeling hydrologic variables. Water. 10(6): 764. DOI: 10.3390/w10060764 .

2852. Lee, S., G. Lee, D. Yang, Y. Choi, K.J. Lim and W.S. Jang. 2019. Occurrence and behavior analysis of soil erosion by applying coefficient and exponent of MUSLE runoff factor depending on land use. Journal of Wetlands Research. 21(s-1): 98-106. DOI: 10.17663/JWR.2019.21.s-1.98 .

2853. Lee, S., G.W. McCarty, G.E. Moglen, X. Li and C.W. Wallace. 2020. Assessing the effectiveness of riparian buffers for reducing organic nitrogen loads in the Coastal Plain of the Chesapeake Bay Watershed using a watershed model. Journal of Hydrology. 505: 124779. DOI: 10.1016/j.jhydrol.2020.124779 .

2854. Lee, S., G.W. McCarty, M.W. Lang and X. Li. 2020. Overview of the USDA Mid-Atlantic regional wetland conservation effects assessment project. Journal of Soil and Water Conservation. 75(6): 684-694. DOI: 10.2489/jswc.2020.00097 .

2855. Lee, S., H. Yen, I.-Y. Yeo, G.E. Moglen, M.C. Rabenhorst and G.W. McCarty. 2020. Use of multiple modules and Bayesian Model Averaging to assess structural uncertainty of catchment-scale wetland modeling in a coastal plain landscape. Journal of Hydrology. 582: 124544. DOI: 10.1016/j.jhydrol.2020.124544 .

2856. Lee, S., I.-Y. Yeo, A.M. Sadeghi, G.W. McCarty, W.D. Hively and M.W. Lang. 2016. Impacts of watershed characteristics and crop rotations on winter cover crop nitrate-nitrogen uptake capacity within agricultural watersheds in the Chesapeake Bay region. PLoS ONE. 11(6): e0157637. DOI: 10.1371/journal.pone.0157637 .

2857. Lee, S., I.-Y. Yeo, M.W. Lang, A.M. Sadeghi, G.W. McCarty, G.E. Moglen and G.R. Evenson. 2018. Assessing the cumulative impacts of geographically isolated wetlands on watershed hydrology using the SWAT model coupled with improved wetland modules. Journal of Environmental Management. 223: 37-48. DOI: 10.1016/j.jenvman.2018.06.006 .

2858. Lee, S., I.-Y. Yeo, M.W. Lang, G.W. McCarty, A.M. Sadeghi, A. Sharifi, H. Jin and Y. Liu. 2019. Improving the catchment scale wetland modeling using remotely sensed data. Environmental Modelling & Software. 122: 104069. DOI: 10.1016/j.envsoft.2017.11.001 .

2859. Lee, S., I-Y. Yeo, A.M. Sadeghi, G.W. McCarty, W.D. Hively, M.W. Lang and A. Sharifi. 2018. Comparative analyses of hydrological responses of two adjacent watersheds to climate variability and change using the SWAT model. Hydrology and Earth System Sciences. 22: 698-708. DOI: 10.5194/hess-22-689-2018 .

2860. Lee, S., J. Qi, G.W. McCarty, I.-Y. Yeo, X. Zhang, G.E. Moglen and L. Du. 2021. Uncertainty assessment of multi-parameter, multi-GCM, and multi-RCP simulations for streamflow and non-floodplain wetland (NFW) water storage. Journal of Hydrology. 600: 126564. DOI: 10.1016/j.jhydrol.2021.126564 .

2861. Lee, S., J. Qi, G.W. McCarty, M. Anderson, Y. Yang, X. Zhang, G.E. Moglen, D. Kwak, H. Kim, V. Lakshmi and S. Kim. 2022. Combined use of crop yield statistics and remotely sensed products for enhanced simulations of evapotranspiration within an agricultural watershed. Agricultural Water Management. 264: 107503. DOI: 10.1016/j.agwat.2022.107503 .

2862. Lee, S., J. Qi, H. Kim, G.W. McCarty, G.E. Moglen, M. Anderson, X. Zhang and L. Du. 2021. Utility of remotely sensed evapotranspiration products to assess an improved model structure. Sustainability. 13(4): 2375. DOI: 10.3390/su13042375 .

2863. Lee, S., K.J. Lim, J. Kim, M. Shin and Y.S. Park. 2024. Modification and application of SWAT model to simulate a submerged rice paddy field. Paddy and Water Environment. 22: 17–30. DOI: 10.1007/s10333-023-00946-6 .

2864. Lee, S., Y.S. Park, J. Kim and K.J. Lim. 2023. Enhanced hydrological simulations in paddy-dominated watersheds using the hourly SWAT-MODFLOW-PADDY modeling approach. Sustainability. 15(11): 91. DOI: 10.3390/su15119106 .

2865. Lee, T. 2011. The impacts on flow by hydrological model with NEXRAD data: A case study on a small watershed in Texas, USA. Journal of the Korean Geographical Society. 46(2): 168-180. URL: http://www.dbpia.co.kr/Journal/ArticleList/VOIS00079785.

2866. Lee, T. 2017. Analyzing the effectiveness of a best management practice on sediment yields using a spatially distributed model. Journal of the Korean Geographical Society. 52(1): 15-24. URL: http://ocean.kisti.re.kr/IS_mvpopo001P.do?method=multMain&poid=kgs&kojic=DHJRB7&free=.

2867. Lee, T., M.E. Rister, B Narashimhan, R. Srinivasan, D. Andrew and M.R. Ernst. 2010. Evaluation and spatially distributed analyses of proposed cost-effective BMPs for reducing phosphorous level in Cedar Creek Reservoir, Texas. Transactions of the ASABE. 53(5): 1619-1627. DOI: 10.13031/2013.34902 .

2868. Lee, T., R. Srinivasan, J. Moon and N. Omani. 2011. Estimation of fresh water inflow to bays from gaged and ungaged watersheds. Applied Engineering in Agriculture. 27(6): 917-923. DOI: 10.13031/2013.40631 .

2869. Lee, T., X. Wang, M. White, P. Tuppad, R. Srinivasan, B. Narasimhan and D. Andrews. 2015. Modeling water-quality loads to the reservoirs of the upper Trinity River Basin, Texas, USA. Water. 7(10): 5689-5704. DOI: 10.3390/w7105689 .

2870. Legge, J.T., P.J. Doran, M.E. Herbert, J. Asher, G. O’Neil, S. Mysorekar, S. Sowa and K.R. Hall. 2013. From model outputs to conservation action: Prioritizing locations for implementing agricultural best management practices in a Midwestern watershed. Journal of Soil and Water Conservation. 68(1): 22-33. DOI: 10.2489/jswc.68.1.22 .

2871. Leh, M.D.K., A.N. Sharpley, G. Singh and M.D. Matlock. 2018. Assessing the impact of the MRBI program in a data limited Arkansas watershed using the SWAT model. Agricultural Water Management. 202: 202-219. DOI: 10.1016/j.agwat.2018.02.012 .

2872. Lehmann, A., G. Giuliani, E. Mancosu, K.C. Abbaspour, S. Sozen, D. Gorgan, A. Beel and N. Ray. 2015. Filling the gap between Earth observation and policy making in the Black Sea catchment with enviroGRIDS. Environmental Science and Policy. 46: 1-12. DOI: 10.1016/j.envsci.2014.02.005 .

2873. Lehmann, A., P. Timoner, M. Fasel, M. Lacayo, S.A. Vaghefi and K.C. Abbaspour. 2019. SWATCH21: A project for linking eco-hydrologic processes and services to aquatic biodiversity at river and catchment levels. Ecohydrology & Hydrobiology. 19(2): 182-197. DOI: 10.1016/j.ecohyd.2019.01.003 .

2874. Lehmann, A., Y. Guigoz, N.Ray, E. Mancosu, K.C. Abbaspour, E.R. Freund, K. Allenbach, A. De Bono, M. Fasel, A. Gago-Silva, R. Bär, P. Lacroix and G. Giuliani. 2017. A web platform for landuse, climate, demography, hydrology and beach erosion in the Black Sea catchment. Scientific Data. 4: 170087. DOI: 10.1038/sdata.2017.87 .

2875. Lei, C., P.D. Wagner and N. Fohrer. 2022. Influences of land use changes on the dynamics of water quantity and quality in the German Lowland Catchment of the Stör. Hydrology and Earth System Sciences. 26(9): 2561-2582. DOI: 10.2166/ws.2022.405 .

2876. Lei, F., C. Huang, H. Shen and X. Li. 2014. Improving the estimation of hydrological states in the SWAT model via the ensemble Kalman smoother: Synthetic experiments for the Heihe River Basin in northwest China. Advances in Water Resources. 67: 32-45. DOI: 10.1016/j.advwatres.2014.02.008 .

2877. Lei, K., Y. Wu, F. Li, J. Yang, M. Xiang, Y. Li and Y. Li. 2021. Relating land use/cover and landscape pattern to the water quality under the simulation of SWAT in a reservoir basin, Southeast China. Sustainability. 13(9): 11067. DOI: 10.3390/su131911067 .

2878. Lelis, T.A., M.L. Calijuri, A. da Fonseca Santiago, D.C. de Lima and E. de Oliveira Roche. 2012. Sensitivity analysis and calibration of SWAT model applied to a watershead in southeastern Brazil. Revista Brasileira de Ciência do Solo. 36(2): 623-634. URL: http://www.scielo.br/scielo.php?pid=S0100-06832012000200031&script=sci_abstract.

2879. Lemann, T., G. Zeleke, C. Amsler, L. Giovanoli, H. Suter and V. Roth. 2016. Modelling the effect of soil and water conservation on discharge and sediment yield in the Upper Blue Nile Basin, Ethiopia. Applied Geography. 73: 89-101. DOI: 10.1016/j.apgeog.2016.06.008 .

2880. Lemann, T., V. Roth and G. Zeleke. 2016. Impact of precipitation and temperature changes on hydrological responses of small-scale catchments in the Ethiopian Highlands. Hydrological Sciences Journal. 62(2): 270-282. DOI: 10.1080/02626667.2016.1217415 .

2881. Lemann, T., V. Roth, G. Zeleke, A. Subhatu, T. Kassawmar and H. Hurni. 2018. Spatial and temporal variability in hydrological responses of the Upper Blue Nile basin, Ethiopia. Water. 11: 21. DOI: 10.3390/w11010021 .

2882. Lemberg, B., J.W. Mjelde, J.R. Conner, R.C. Griffin, W.D. Rosenthal and J.W. Stuth. 2002. An interdisciplinary approach to valuing water from brush control. Journal of the American Water Resources Association. 38(2): 409-422. DOI: 10.1111/j.1752-1688.2002.tb04326.x .

2883. Lemma, H., A. Frankl, A. van Griensven, J. Poesen, E. Adgo and J. Nyssen. 2019. Identifying erosion hotspots in Lake Tana Basin from a multisite Soil and Water Assessment Tool validation: Opportunity for land managers. Land Degradation & Development. 30(12): 1449-1467. DOI: 10.1002/ldr.3332 .

2884. Lemonds, P.J. and J.E. McCray. 2007. Modeling hydrology in a small Rocky Mountain watershed serving large urban populations. Journal of the American Water Resources Association. 43(4): 875-887. DOI: 10.1111/j.1752-1688.2007.00069.x .

2885. Lencha, S.M., M.D. Ulsido and J. Tränckner. 2022. Estimating point and nonpoint source pollutant flux by integrating various models, a case study of the Lake Hawassa Watershed in Ethiopia's Rift Valley Basin. Water. 14(10): 1569. DOI: 10.3390/w14101569 .

2886. Leng, M., Y. Yu, S. Wang and Z. Zhang. 2020. Simulating the hydrological processes of a meso-scale watershed on the Loess Plateau, China. Water. 12(3): 878. DOI: 10.3390/w12030878 .

2887. Lenhart, T., A. Van Rompaey, A. Steegen, N. Fohrer, H.-G. Frede and G. Govers. 2005. Considering spatial distribution and deposition of sediment in lumped and semi-distributed models. Hydrological Processes. 19(3): 785-794. DOI: 10.1002/hyp.5616 .

2888. Lenhart, T., K. Eckhardt, N. Fohrer and H.-G. Frede. 2002. Comparison of two different approaches of sensitivity analysis. Physics and Chemistry of the Earth. 27(9-10): 645-654. DOI: 10.1016/S1474-7065(02)00049-9 .

2889. Lenhart, T., N. Fohrer and H.-G. Frede. 2003. Effects of land use changes on the nutrient balance in mesoscale catchments. Physics and Chemistry of the Earth. 28(33-36): 1301-1309. DOI: 10.1016/j.pce.2003.09.006 .

2890. León Ochoa, R.F., D.M.P. Maurtua and E.A.C. Velarde. 2019. Modeling water availability on the Piura River Basin - Perú, assessing the impacts of climate change. Journal of High Andean Research . 21(3): 182-183. DOI: 10.18271/ria.2019.476 .

2891. Leon, A.S., A. Kanashiro, R. Valverde and V. Sridhar. 2014. Dynamic framework for intelligent control of river flooding: Case study. Journal of Water Resources Planning and Management. 140(2): 258-268. DOI: 10.1061/(ASCE)WR.1943-5452.0000260 .

2892. Leonard, R.A., W.G. Knisel and D.A. Still. 1987. GLEAMS: Groundwater Loading Effects of Agricultural Management Systems. Transactions of the ASAE. 30: 1403-1418. DOI: 10.13031/2013.30578 .

2893. Leone, M., F. Gentile, A. Lo Porto, G.F. Ricci, C. Schürz, M. Strauch, M. Volk and A.M. De Girolamo. 2024. Setting an environmental flow regime under climate change in a data-limited Mediterranean basin with temporary river. Journal of Hydrology: Regional Studies. 52: 101698. DOI: 10.1016/j.ejrh.2024.101698 .

2894. Leone, M., F. Gentile, A.Lo Porto, G.F. Ricci and A.M.D. Girolamo. 2023. Setting an ecological flow regime in a Mediterranean basin with limited data availability: The Locone River case study (S-E Italy). Ecohydrology & Hydrobiology. 23(3): 346-360. DOI: 10.1016/j.ecohyd.2023.03.005 .

2895. Lepcha, P.T. P.K. Pandey and V. Pandey. 2022. Quantifying the significance of basin parameters and hydro-climatic factors to water and sediment yields across spatio-temporal scales in mountainous river basin , Sikkim. Journal of Water and Climate Change. 13(8): 3189-3216. DOI: 10.2166/wcc.2022.210 .

2896. Lerch, R.N., E.I. Sadler, N.R. Kitchen, K.A. Sudduth, R.I. Kremer, D.B. Myers, C. Baffaut, S.H. Anderson and C.H. Lin. 2008. Overview of the Mark Twain Lake/Salt River Basin Conservation Effects Assessment Project. Journal of Soil and Water Conservation. 63(6): 345-359. DOI: 10.2489/jswc.63.6.345 .

2897. Lescot, J., P. Bordenave, K. Petit and O. Leccia. 2013. A spatially-distributed cost-effectiveness analysis framework for controlling water pollution. Environmental Modelling & Software. 41: 107-122. DOI: 10.1016/j.envsoft.2012.10.008 .

2898. Leskovar, K., P. Mrakužić and H. Meaški. 2021. Evaluation of remotely sensed precipitation product in a hydrological model of the Bednja Watershed. Gradevinar. 73(04): 335-348. DOI: 10.14256/JCE.3055.2020 .

2899. Lessa, L.G.F., A.F. da Silva, C.R.L. Zimback and R.E. Machado. 2012. Spatial analysis of water content of the Pardo River Basin. Brazilian Journal of Irrigation and Drainage. 17(3): 376-386. URL: http://200.145.140.50/index.php/irriga/article/view/634/298.

2900. Lessa, L.G.F., C.r.L. Zimback, S.L. de Lima and R.E. Machado. 2014. Determination of soil loss in River Pardo Watershed - Botucatu / SP using the hydrological SWAT model. Revista Energia NA Agricultura. 28(3): 170-178. URL: http://energia.fca.unesp.br/index.php/energia/article/view/672.

2901. Leta, M.K., D.G. Ebsa and M.S. Regasa. 2022. Parameter uncertainty analysis for streamflow simulation using SWAT model in Nashe Watershed, Blue Nile River Basin, Ethiopia. Applied and Environmental Soil Science. : 1826942. DOI: 10.1155/2022/1826942 .

2902. Leta, M.K., T.A. Demissie and M. Wasseem. 2021. Analysis of hydrological characteristics of Blue Nile Basin, Nashe Watershed. Applied Sciences. 11(24): 11791. DOI: 10.3390/app112411791 .

2903. Leta, M.K., T.A. Demissie and J. Tränckner. 2021. Hydrological response of watershed to historical and future land use land cover change dynamics of Nashe Watershed, Ethiopia. Water. 13(17): 2372. DOI: 10.3390/w13172372 .

2904. Leta, M.K., T.A. Demissie and J. Tränckner. 2022. Optimal operation of Nashe Hydropower Reservoir under land use land cover change in Blue Nile River Basin. Water. 14(10): 1606. DOI: 10.3390/w14101606 .

2905. Leta, O.T, A.I. El-Kadi, H. Dulai and K.A. Ghazal. 2018. Assessment of SWAT model performance in simulating daily streamflow under rainfall data scarcity in Pacific Island watersheds. Water. 10(11): 1533. DOI: 10.3390/w10111533 .

2906. Leta, O.T. and W. Bauwens. 2018. Assessment of the impact of climate change on daily extreme peak and low flows of Zenne basin in Belgium. Hydrology. 5(3): 38. DOI: 10.3390/hydrology5030038 .

2907. Leta, O.T., A. van Griensven and W. Bauwens. 2017. Effect of single and multisite calibration techniques on the parameter estimation, performance, and output of a SWAT model of a spatially heterogeneous catchment. Journal of Hydrologic Engineering. 22(3): 05016036. DOI: 10.1061/(ASCE)HE.1943-5584.0001471 .

2908. Leta, O.T., A.I. El-Kadi and H. Dulai. 2017. Implications of climate change on water budgets and reservoir water harvesting on Nuuanu area watersheds, Oahu, Hawaii. Journal of Water Resources Planning and Management. 143(11): 05017013. DOI: 10.1061/(ASCE)WR.1943-5452.0000839 .

2909. Leta, O.T., A.I. El-Kadi and H. Dulai. 2018. Impact of climate change on daily streamflow and its extreme values in Pacific island watersheds. Sustainability. 10(6): 2057. DOI: 10.3390/su10062057 .

2910. Leta, O.T., A.I. El-Kadi, H. Dulai and K.A. Ghazal. 2016. Assessment of climate change impacts on water balance components of Heeia Watershed in Hawaii. Journal of Hydrology: Regional Studies. 8: 182-197. DOI: 10.1016/j.ejrh.2016.09.006 .

2911. Leta, O.T., J. Nossent, C. Velez, N.K. Shrestha, A. van Griensven and W. Bauwens. 2015. Assessment of the different sources of uncertainty in a SWAT model of the River Senne (Belgium). Environmental Modelling & Software. 68: 129-146. DOI: 10.1016/j.envsoft.2015.02.010 .

2912. Levesque, E., F. Anctil, A.V. Griensven and N. Beauchamp. 2008. Evaluation of streamflow simulation by SWAT model for two small watersheds under snowmelt and rainfall. Hydrological Sciences Journal. 53(5): 961-976. DOI: 10.1623/hysj.53.5.961 .

2913. Levesque, E., L. Lamontagne, A. Van Griensven, P.A. Vanrolleghem and F. Anctil. 2008. Methodologie pour l'adaptation de donnees physiographiques canadiennes au modele de qualite de l'eau SWAT "soil water assessment tool". Journal of Environmental Engineering and Science. 7(5): 453-466. DOI: 10.1139/S08-026 .

2914. Levick, L., S. Hammer, R. Lyon, J. Murray, A. Birtwistle, P. Guertin, D. Goodrich, B. Bledsoe and M. Laituri. 2018. An ecohydrological stream type classification of intermittent and ephemeral streams in the southwestern United States. Journal of Arid Environments. 155: 16-35. DOI: 10.1016/j.jaridenv.2018.01.006 .

2915. Li F., G. Zhang, H. Li and W. Lu. 2019. Land use change impacts on hydrology in the Nenjiang River Basin, northeast China. Forests. 10(6): 476. DOI: 10.3390/f10060476 .

2916. Li, A.-L., C. Haitao, L. Yuanyuan, L. Qiu and W. Wenchuan. 2020. Simulation of nitrogen pollution in the Shanxi Reservoir Watershed based on SWAT model. Nature Environment and Pollution Technology. 19(3): 1265-1272. DOI: 10.46488/NEPT.2020.v19i03.042 .

2917. Li, B., G.W. Marek, T.H. Marek, D.O. Porter, S. Ale, J.E. Moorhead, D.K. Brauer, R. Srinivasan and Y. Chen. 2023. Impacts of ongoing land-use change on watershed hydrology and crop production using an improved SWAT model. Land. 12(3): 591. DOI: 10.3390/land12030591 .

2918. Li, B., H. Su, F. Chen, H. Li, R. Zhang, J. Tian, S. Chen, Y. Yang and Y. Rong. 2014. Separation of the impact of climate change and human activity on streamflow in the upper and middle reaches of the Taoer River, northeastern China. Theoretical and Applied Climatology. 118: 271-283. DOI: 10.1007/s00704-013-1032-8 .

2919. Li, B., X. Shi, L. Lian, Y. Chen, Z. Chen and X. Sun. 2020. Quantifying the effects of climate variability, direct and indirect land use change, and human activities on runoff. Journal of Hydrology. 584: 124684. DOI: 10.1016/j.jhydrol.2020.124684 .

2920. Li, B.-G., S. Tao and J. Cao. 2002. Water environment models and their modelbase management. Physical Geography Research Quarterly. 13(1): 14-20. URL: http://skxjz.nhri.cn/en/article/id/1454.

2921. Li, B.-q., W.-h. Xioa, Y.-c Wang, M.-z Yang and Y. Huang. 2018. Impact of land use/cover change on the relationship between precipitation and runoff in typical area. Journal of Water and Climate Change. DOI: 10.2166/wcc.2018.055 .

2922. Li, C. and H. Fang. 2021. Assessment of climate change impacts on the streamflow for the Mun River in the Mekong Basin, Southeast Asia: Using SWAT model. Catena. 201: 105199. DOI: 10.1016/j.catena.2021.105199 .

2923. Li, C., J. Qi, S. Wang, L. Yang, W. Yang, S. Zou, G. Zhu and W. Li. 2014. A holistic system approach to understanding underground water dynamics in the Loess Tableland: A case study of the Dongzhi Loess Tableland in Northwest China. Water Resources Management. 28(10): 2937-2951. DOI: 10.1007/s11269-014-0647-6 .

2924. Li, C., J. Qi, Z. Feng R. Yin, S. Zou and F. Zhang. 2010. Parameters optimization based on the combination of localization and auto-calibration of SWAT model in a small watershed in Chinese Loess Plateau. Frontiers of Earth Science in China. 4(3): 296-310. DOI: 10.1007/s11707-010-0114-5 .

2925. Li, C., L. He, D. Liu and Z. Feng. 2024. A scientometric review for uncertainties in integrated simulation–optimization modeling system. Water. 16(2): 285. DOI: 10.3390/w16020285 .

2926. Li, C., X. Zhang, Y. Xu, X. Wang, F-H. Hao and J-S. Yu. 2021. The impacts of human activities on ecological security in the ecological barrier zone in Beijing-Tianjin-Hebei Region. China Environmental Science. 41(7): 3324-3332. URL: http://www.zghjkx.com.cn/EN/abstract/abstract17661.shtml.

2927. Li, C., Y. Zhang, G. Kharel and C.B. Zou. 2018. Impact of climate variability and landscape patterns on water budget and nutrient loads in peri-urban watershed: A coupled analysis using process-based hydrological model and landscape indices. Environmental Management. 61: 954–967. DOI: 10.1007/s00267-018-1019-4 .

2928. Li, C., Z. Wang, Y. Lu and M. Song. 2021. Regional water cycle response to land use/cover change for a typical agricultural area, North China Plain. Hydrology Research. 52(4): 944-957. DOI: 10.2166/nh.2021.119 .

2929. Li, D., G. Christakos, X. Ding and J. Wu. 2018. Adequacy of TRMM satellite rainfall data in driving the SWAT modeling of Tiaoxi Catchment (Taihu Lake Basin, China). Journal of Hydrology. 556: 1139-1152. DOI: 10.1016/j.jhydrol.2017.01.006 .

2930. Li, D., L. Zhu, W. Xu and C. Ye. 2022. Quantifying the impact of climate change and human activities on runoff at a tropical watershed in South China. Frontiers in Environmental Science. 10: 1023188. DOI: 10.3389/fenvs.2022.1023188 .

2931. Li, D., S. Bu, S. Chen, Q. Li and Y. Li. 2022. Assessment of the impact of short-term land use/land cover changes on water resources in the Yanghe Reservoir Basin, China. Water Supply. 22(1): 833-848. DOI: 10.2166/ws.2021.235 .

2932. Li, D., S. Qu, P. Shi, X. Chen, F. Xue, J. Gou and W. Zhang. 2018. Development and integration of sub-daily flood modelling capability within the SWAT model and a comparison with XAJ model. Water. 10(9): 1263. DOI: 10.3390/w10091263 .

2933. Li, D., Y. Tian, C. Liu and F. Hao. 2004. Impact of land-cover and climate changes on runoff of the source regions of the Yellow River. Journal of Geographical Sciences. 14(3): 330-338. DOI: 10.1007/BF02837414 .

2934. Li, E., B. Wang and X. Fu. 2019. Closure and validation of a SWAT model for daily scale sediment simulations. Journal of Tsinghua University (Science and Technology) . 59(12): 975-980. URL: http://jst.tsinghuajournals.com/EN/10.16511/j.cnki.qhdxxb.2019.26.025.

2935. Li, E., X. Mu, G. Zhao, P. Gao and W. Sun. 2017. Effects of check dams on runoff and sediment load in a semi-arid river basin of the Yellow River. Stochastic Environmental Research and Risk Assessment. 31(7): 1791-1803. DOI: 10.1007/s00477-016-1333-4 .

2936. Li, F., G. Zhang and Y.J. Xu. 2016. Assessing climate change impacts on water resources in the Songhua River Basin. Water. 8(10): 420. DOI: 10.3390/w8100420 .

2937. Li, F., S. Song, W. Cai, J. Li and Q. Liu. 2013. Review of Process‐based models of nitrate fate and their developments and limitations in terrestrial ecosystems. South to North Water Transfers and Water Science & Technology. 11(2): 86-93. URL: http://caod.oriprobe.com/articles/32076578/Review_of_Process%E2%80%90based_Models_of_Nitrate_Fate_and_Their_Developments_.htm.

2938. Li, H., C. Yu, B. Qin, Y. Li, J. Jin, L. Luo, Z. Wu, K. Shi and G. Zhu. 2022. Modeling the effects of climate change and land use/land cover change on sediment yield in a large reservoir basin in the East Asian Monsoonal Region. Water. 14(15): 2346. DOI: 10.3390/w14152346 .

2939. Li, H., X. Zhou, K. Huang, G. Hao and J. Li. 2022. Research on optimal control of non-point source pollution: A case study from the Danjiang River Basin in China. Environmental Science and Pollution Research. 29: 15582–15602. DOI: 10.1007/s11356-021-16740-y .

2940. Li, J. and Z.X. Zhou. 2014. Coupled analysis on landscape pattern and hydrological processes in Yanhe Watershed of China. Science of the Total Environment. 505: 927-938. DOI: 10.1016/j.scitotenv.2014.10.068 .

2941. Li, J., G. Li, S. Zhou and F. Chen. 2016. Quantifying the effects of land surface change on annual runoff considering precipitation variability by SWAT. Water Resources Management. 30(3): 1071–1084. DOI: 10.1007/s11269-015-1211-8 .

2942. Li, J., Y. Guo, Y. Wang, S. Lu and X. Chen. 2018. Drought propagation patterns under naturalized condition using daily hydrometeorological data. Advances in Meteorology. : 2469156. DOI: 10.1155/2018/2469156 .

2943. Li, K., D. Yue, J. Guo, F. Jian, J. Zeng, M. Zou and E. Segarra. 2019. Geohazards mitigation strategies simulation and evaluation based on surface runoff depth: A case study in Bailong River Basin. Catena. 173: 1-8. DOI: 10.1016/j.catena.2018.09.035 .

2944. Li, K., Y. Wang, X. Li, Z. Yuan and J. Xu. 2021. Simulation effect evaluation of single-outlet and multi-outlet calibration of Soil and Water Assessment Tool model driven by Climate Forecast System Reanalysis data and ground-based meteorological station data – A case study in a Yellow River source. Water Supply. 21(3): 1061-1071. DOI: 10.2166/ws.2020.312 .

2945. Li, L., D. Jiang, X. Hou and J. Li. 2013. Simulated runoff responses to land use in the middle and upstream reaches of Taoerhe River Basin, northeast China, in wet, average and dry years. Hydrological Processes. 27(24): 3484–3494. DOI: 10.1002/hyp.9481 .

2946. Li, L., L. Zhang, J. Xia, C.J. Gippel, R. Wang and S. Zeng. 2015. Implications of modelled climate and land cover changes on runoff in the middle route of the south to north water transfer project in China. Water Resources Research. 29(8): 2563-2579. DOI: 10.1007/s11269-015-0957-3 .

2947. Li, L., M. Gou, N. Wang, W. Ma, W. Xiao, C. Liu and L. La. 2021. Landscape configuration mediates hydrology and nonpoint source pollution under climate change and agricultural expansion. Ecological Indicators. 129: 107959. DOI: 10.1016/j.ecolind.2021.107959 .

2948. Li, L., Y. Liu, K. Wang and D. Zhang. 2021. Simulation of pollution load at basin scale based on LSTM-BP spatiotemporal combination model. Water. 13(4): 516. DOI: 10.3390/w13040516 .

2949. Li, M., Z. Di and Q. Duan. 2021. Effect of sensitivity analysis on parameter optimization: Case study based on streamflow simulations using the SWAT model in China. Journal of Hydrology. 603(Part B): 126896. DOI: 10.1016/j.jhydrol.2021.126896 .

2950. Li, P., N. Omani, I. Chaubey and X. Wei. 2017. Evaluation of drought implications on ecosystem services: Freshwater provisioning and food provisioning in the Upper Mississippi River Basin. International Journal of Environmental Research and Public Health. 14(5): 496. DOI: 10.3390/ijerph14050496 .

2951. Li, P., R.L Muenich, I. Chaubey and X. Wei. 2019. Evaluating agricultural BMP effectiveness in improving freshwater provisioning under changing climate. Water Resources Management. DOI: 10.1007/s11269-018-2098-y .

2952. Li, P., X. Mu, J. Holden, Y. Wu, B. Irvine, F. Wang, P. Gao, G. Zhao and W. Sun. 2017. Comparison of soil erosion models used to study the Chinese Loess Plateau. Earth Science Reviews. 170: 17-30. DOI: 10.1016/j.earscirev.2017.05.005 .

2953. Li, Q., J. Huang, J. Zhang and J. Gao. 2023. A raster-based estimation of watershed phosphorus load and its impacts on surrounding rivers based on process-based modelling. Journal of Environmental Management. 339: 117846. DOI: 10.1016/j.jenvman.2023.117846 .

2954. Li, Q., J. Qi, Z. Xing, S. Li, Y. Jiang, S. Danielescu, H. Zhu, X. Wei and F.-R. Meng. 2014. An approach for assessing impact of land use and biophysical conditions across landscape on recharge rate and nitrogen loading of groundwater. Agriculture Ecosystems and Environment. 196: 114-124. DOI: 10.1016/j.agee.2014.06.028 .

2955. Li, Q., T. Cai, M. Yu, G. Lu, W. Xie and X. Bai. 2013. Investigation into the impacts of land-use change on runoff generation characteristics in the Upper Huaihe River Basin, China. Journal of Hydrologic Engineering. 18(11): 1464–1470. DOI: 10.1061/(ASCE)HE.1943-5584.0000489 .

2956. Li, Q., X. Chen, Y. Luo, Z. Lu and Y. Wang. 2014. A new parallel framework of distributed SWAT calibration. Journal of Arid Land. 7(1): 122-131. DOI: 10.1007/s40333-014-0041-5 .

2957. Li, Q.Y., X.X. Yu and Z.B. Xin. 2013. Modeling the effects of climate change and human activities on the hydrological processes in a semi-arid watershed of Loess Plateau. Journal of Hydrologic Engineering. 18(4): 1-48. DOI: 10.1061/(ASCE)HE.1943-5584.0000629 .

2958. Li, R., A. Zhu, L. Chen, J. Liu, X. Song and Y. Lin. 2014. Effects of soil parameters in SCS-CN runoff model. Journal of Natural Resources. 28(10): 1778-1787. DOI: 10.11849/zrzyxb.2013.10.012 .

2959. Li, R., A.-X. Zhu, B. Li, T. Pei and C. Qin. 2011. Response of simulated stream flow to soil data spatial detail across different routing areas. Progress in Geography. 30(1): 80-85.

2960. Li, R., A.-X. Zhu, X. Song, B. Li, T. Pei and C. Qin. 2012. Effects of spatial aggregation on soil spatial information on watershed hydrological modelling. Hydrological Processes. 26(9): 1390-1404. DOI: 10.1002/hyp.8277 .

2961. Li, R., H.Q. Huang, Z. Wang and R. Zhao. 2022. Quantitative assessment of the impacts of climate and human activities on streamflow of the Lancang-Mekong River over the recent decades. Frontiers in Earth Science. 10: 1024037. DOI: 10.3389/feart.2022.1024037 .

2962. Li, R., X. Rui, A.X. Zhu, J. Liu, L.E. Band and X. Song. 2015. Increasing detail of distributed runoff modeling using fuzzy logic in curve number. Environmental Earth Sciences. 73(7): 3197-3205. DOI: 10.1007/s12665-014-3620-z .

2963. Li, S., G. Yang and H. Wang. 2019. The runoff evolution and the differences analysis of the causes of runoff change in different regions: A case of the Weihe River Basin, northern China. Sustainability. 11(19): 5295.

2964. Li, S., H. Wei, Y. Liu, W. Ma, Y. Peng and C. Li. 2017. Runoff prediction for Ningxia Qingshui River Basin under scenarios of climate and land use changes. Acta Ecologica Sinica. 37(4): 1252-1260. DOI: 10.5846/stxb201606291299 .

2965. Li, S., J. Li, D. Hao and Y. Li. 2021. Evaluation of best management practices for non-point source pollution based on the SWAT model in the Hanjiang River Basin, China. Water Supply. 21(8): 4563-4580. DOI: 10.2166/ws.2021.196 .

2966. Li, S., J. Li, J. Xi and G. Hao. 2021. Optimal control of nonpoint source pollution in the Bahe River Basin, northwest China, based on the SWAT model. Environmental Science and Pollution Research. 28: 55330-55343. DOI: 10.1007/s11356-021-14869-4 .

2967. Li, S., K. Wallington, S. Niroula and X. Cai. 2022. A modified response matrix method to approximate SWAT for computationally intense applications. Environmental Modelling & Software. 148: 105269. DOI: 10.1016/j.envsoft.2021.105269 .

2968. Li, S., W. Liang, W. Zhang and Q. Liu. 2016. Response of soil moisture to hydro-meteorological variables under different precipitation gradients in the Yellow River Basin. Water Resources Management. 30(6): 1867–1884. DOI: 10.1007/s11269-016-1244-7 .

2969. Li, S., X. Cai, S.A. Emaminejad, A. Juneja, S. Niroula, S. Oh, K. Wallington, R.D. Cusick, B.M. Gramig, S. John, G.F. McIssac and V. Singh. 2021. Developing an integrated technology-environment-economics model to simulate food-energy-water systems in Corn Belt watersheds. Environmental Modelling & Software. 143: 105083. DOI: 10.1016/j.envsoft.2021.105083 .

2970. Li, S., Y. Chen, Z. Li and F. Yang. 2016. Study of coal mining disturbance to simulated monthly runoff values of Kuye River. Yellow River. 38(4): 13-17,21. URL: http://www.rmhh.com.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=7718.

2971. Li, S., Y. Chen, Z. Li and K. Zhang. 2016. Applying a statistical method to streamflow reduction caused by underground mining for coal in the Kuye River basin. Science China Technological Sciences. 59(12): 1911-1920. DOI: 10.1007/s11431-016-0393-4 .

2972. Li, S., Y. Liu, Y. Her, J. Chen, T. Guo and G. Shao. 2021. Improvement of simulating sub-daily hydrological impacts of rainwater harvesting for landscape irrigation with rain barrels/cisterns in the SWAT model. Science of the Total Environment. 798: 149336. DOI: 10.1016/j.scitotenv.2021.149336 .

2973. Li, S., Y. Zhuang, L. Zhang, Y. Du and H. Liu. 2014. Worldwide performance and trends in nonpoint source pollution modeling research from 1994 to 2013: A review based on bibliometrics. Journal of Soil and Water Conservation. 69(4): 121A-126A. DOI: 10.2489/jswc.69.4.121A .

2974. Li, S., Z. Lai, Q. Wang, Z. Wang, C. Li and X. Song. 2013. Distributed simulation for hydrological process in plain river network region using SWAT model. Transactions of the Chinese Society of Agricultural Engineering. 29(6): 106-112. URL: https://dl.sciencesocieties.org/publications/tcsae/abstracts/2013/6/2013.6.014.

2975. Li, T. and G. Kim. 2019. Impacts of climate change scenarios on non-point source pollution in the Saemangeum Watershed, South Korea. Water. 11(10): 1982. DOI: 10.3390/w11101982 .

2976. Li, T. and Y. Gao. 2015. Runoff and sediment yield variations in response to precipitation changes: A case study of Xichuan Watershed in the Loess Plateau, China. Water. 7: 5638-5656. DOI: 10.3390/w7105638 .

2977. Li, T., S. Guo, D. An and M. Nametso. 2019. Study on water and salt balance of plateau salt marsh wetland based on time-space watershed analysis. Ecological Engineering. 138: 160-170. DOI: 10.1016/j.ecoleng.2019.07.027 .

2978. Li, W., L Zhai, Q. Lei, W.M. Wollheim, J. Liu, H. Liu, W. Hu, T. Ren, H. Wang and S. Liu. 2018. Influences of agricultural land use composition and distribution on nitrogen export from a subtropical watershed in China. Science of the Total Environment. 642: 21-32. DOI: 10.1016/j.scitotenv.2018.06.048 .

2979. Li, W., W. Wang, Y. Wu, Q. Quan, S. Zhao and W. Zhang. 2022. Impact of human activities on hydrological drought evolution in the Xilin River Basin. Atmosphere. 13(12): 2079. DOI: 10.3390/atmos13122079 .

2980. Li, W., X. Chen, Y. He and L. Zhang. 2018. Modification of reservoir module in SWAT model and its application of runoff simulation in highly regulated basin. Tropical Geography. 38(2): 226-235. URL: http://www.rddl.com.cn/EN/Y2018/V38/I2/226.

2981. Li, W., X. Cheng, Y. Zheng, C. Lai, D.J. Sample, D. Zhu and Z. Wang. 2021. Response of non-point source pollution to landscape pattern: Case study in mountain-rural region, China. Environmental Science and Pollution Research. 28(13): 16602-16615. DOI: 10.1007/s11356-020-12196-8 .

2982. Li, W.-c., L., L.-m. Zhao, H.-b. Liu, Q.-l. Lei, L. Zhang, S. Liu, T.-z. Ren, W.-l. Hu and B. Fu. 2017. Contrasting spatial distribution of the emission and export of phosphorus loss from a typical watershed in Yunnan Plateau Lakes Area. China Environmental Science. 37(2): 711-719. URL: http://www.zghjkx.com.cn/EN/abstract/abstract15011.shtml.

2983. Li, X. M.H. Nour, D.W. Smith, E.E. Prepas, G. Putz and B.M. Watson. 2008. Incorporating water quantity and quality modelling into forest management. The Forestry Chronicle. 84(3): 338-348. URL: http://pubs.cif-ifc.org/doi/pdf/10.5558/tfc84338-3.

2984. Li, X., H. Jia, Y. Chen and J. Wen. 2022. Runoff simulation and projection in the source area of the Yellow River using the SWAT model and SSPs scenarios. Frontiers in Environmental Science. 16(3): 711-733. DOI: 10.3389/fenvs.2022.1012838 .

2985. Li, X., Q. Gao, T. Lei and X. Yang. 2011. Appication of an integrative hydro-ecological model to study water resources management in the upper and middle parts of the Yellow River Basin. Frontiers of Earth Science . 5(1): 45-55. DOI: 10.1007/s11707-011-0150-9 .

2986. Li, X., R.B. Ambrose and R. Araujo. 2004. Modeling mineral nitrogen export from a forest terrestrial ecosystem to streams. Transactions of the ASABE. 47(3): 727-739. DOI: 10.13031/2013.16105 .

2987. Li, X., W. Xu, M. Ren, Y. Jiang and G. Fu. 2022. Hybrid CNN-LSTM models for river flow prediction. Water Supply. 22(5): 4902. DOI: 10.2166/ws.2022.170 .

2988. Li, X., X. Yang, Q. Gao, Y. Li and S. Dong. 2009. Integrative assessment of hydrological, ecological, and economic systems for water resources management at river basin scale. Frontiers of Earth Science in China. 3(2): 198-207. DOI: 10.1007/s11707-009-0029-1 .

2989. Li, X., Y. Chen, X. Deng, Y. Zhang and L. Chen. 2021. Evaluation and hydrological utility of the GPM IMERG precipitation products over the Xinfengjiang River Reservoir Basin, China. Remote Sensing. 13(5): 866. DOI: 10.3390/rs13050866 .

2990. Li, X., Y. Zhang, N. Ma, C. Li and J. Luan. 2021. Contrasting effects of climate and LULC change on blue water resources at varying temporal and spatial scales. Science of the Total Environment. 786: 147488. DOI: 10.1016/j.scitotenv.2021.147488 .

2991. Li, Y. and M.A. Urban. 2016. Water resource variability and climate change. Water. 8(8): 348. DOI: 10.3390/w8080348 .

2992. Li, Y. and T. DeLiberty. 2020. Assessment of urban streamflow in historical wet and dry years using SWAT across northwestern Delaware. Environmental Processes. 7(2): 597-614. DOI: 10.1007/s40710-020-00428-5 .

2993. Li, Y. and T. DeLiberty. 2021. Evaluating hourlySWAT streamflow simulations for urbanized and forest watersheds across northwestern Delaware, US. Stochastic Environmental Research and Risk Assessment. 35(6): 1145-1159. DOI: 10.1007/s00477-020-01904-y .

2994. Li, Y., B.-M. Chen, Z.-G. Wang and S.-L. Peng. 2011. Effects of temperature change on water discharge, and sediment and nutrient loading in the Lower Pearl River Basin based on SWAT modelling. Hydrological Sciences Journal. 56(1): 68-83. DOI: 10.1080/02626667.2010.538396 .

2995. Li, Y., H. Wang, Y. Deng, D. Liang, Y. Li and Z. Shen. 2022. How climate change and land-use evolution relates to the non-point source pollution in a typical watershed of China. Science of the Total Environment. 839: 156375. DOI: 10.1016/j.scitotenv.2022.156375 .

2996. Li, Y., J. Chang, L. Lu, Y. Wang, A. Guo, F. Ma and J. Fan. 2019. Spatiotemporal impacts of land use land cover changes on hydrology from the mechanism perspective using SWAT model with time-varying parameters. Hydrology Research. 50(1): 244-261. DOI: 10.2166/nh.2018.006 .

2997. Li, Y., J. Chang, Y. Wang, W. Jin and A. Guo. 2016. Spatiotemporal Impacts of climate, land cover change and direct human activities on runoff variations in the Wei River Basin, China. Water. 8(6): 220. DOI: 10.3390/w8060220 .

2998. Li, Y., J. Pan, J. Xu and Y. Su. 2013. Relative impact of climate and land use changes on water resource in Songhuaba Watershed. Journal of Nanjing Agricultural University. 35(1): 80-86. URL: http://nauxb.njau.edu.cn/en/oa/DArticle.aspx?type=view&id=201201014.

2999. Li, Y., J.R. Thompson and H. Li. 2016. Impacts of spatial climatic representation on hydrological model calibration and prediction uncertainty: A mountainous catchment of Three Gorges Reservoir Region, China. Water. 8(3): 73. DOI: 10.3390/w8030073 .

3000. Li, Y., L. Luo, J. Chang, Y. Wang, A. Guo, J. Fan and Q. Liu. 2020. Hydrological drought evolution with a nonlinear joint index in regions with significant changes in underlying surface. Journal of Hydrology. 585: 124794. DOI: 10.1016/j.jhydrol.2020.124794 .

3001. Li, Y., S.-L Huang and J. Domagalski. 2018. Temporal and spatial distributions of water and sediment yield in the Luanhe River Basin, China. Journal of Coastal Research. S1(84): 149-162. DOI: 10.2112/SI84-021.1 .

3002. Li, Y., Y. Wang, J. Zheng and M. Yang. 2019. Investigating spatial and temporal variation of hydrological processes in western China driven by CMADS. Water. 11(3): 435. DOI: 10.3390/w11030435 .

3003. Li, Y.-P., Z.-Q. Su, T.-B. Yang and X.-C. Bao. 2013. Simulation of hydrological response to changes in land use in Pi River Valley based on SWAT. Journal of Ecology and Rural Environment. 29(5): 662-665. URL: http://www.ere.ac.cn:81/Jweb_nchj/EN/abstract/abstract10630.shtml.

3004. Li, Z. and J. Jin. 2017. Evaluating climate change impacts on streamflow variability based on a multisite multivariate GCM downscaling method in the Jing River of China. Hydrology and Earth System Sciences. 21(11): 5531-5546. DOI: 10.5194/hess-21-5531-2017 .

3005. Li, Z., L. Wang and F. Ma. 2018. Response of water resource to future climate scenarios in Songhua River Harbin Section, China. Fresenius Environmental Bulletin. 27(10): 6867-6875. URL: https://www.prt-parlar.de/download_feb_2018/.

3006. Li, Z., P. Liu, C. Deng, S. Guo, P. He and C. Wang. 2016. Evaluation of estimation of distribution algorithm to calibrate computationally intensive hydrologic model. Journal of Hydrologic Engineering. 21(6): 04016012. DOI: 10.1061/(ASCE)HE.1943-5584.0001350 .

3007. Li, Z., P. Liu, M. Feng, X. Cui, P. He, C. Wang and J. Zhang. 2020. Evaluating the effect of transpiration in hydrologic model simulation through parameter calibration. Journal of Hydrologic Engineering. 25(5): 04020007. DOI: 10.1061/(ASCE)HE.1943-5584.0001895 .

3008. Li, Z., X. Deng, F. Wu and S.S. Hasan. 2015. Scenario analysis for water resources in response to land use change in the middle and upper reaches of the Heihe River Basin. Sustainability. 7(3): 3086-3108. DOI: 10.3390/su7033086 .

3009. Li, Z., Z. Lü, J. Li and X. Shi. 2017. Links between the spatial structure of weather generator and hydrological modeling. Theoretical and Applied Climatology. 128(1–2): 103–111. DOI: 10.1007/s00704-015-1691-8 .

3010. Li, Z., Z. Xu and Z. Li. 2011. Performance of WASMOD and SWAT on hydrological simulation in Yingluoxia Watershed in northwest of China. Hydrological Processes. 25(13): 2001-2008. DOI: 10.1002/hyp.7944 .

3011. Li, Z., Z. Xu, Q. Shao and J. Yang. 2009. Parameter extimation and uncertainty analysis of SWAT model in upper reaches of the Heihe River Basin. Hydrological Processes. 23(19): 2744-2753. DOI: 10.1002/hyp.7371 .

3012. Li., J.-m., Shanrenqianjie, Y. Yang, X.-j. Qi, Y.-h. Ha, Y.-x. Wang, Y. He, Y.-j. Li and S.-j. Lu. 2022. Effects of climate change on soil moisture in the source region of the Yangtze River. Journal of Yunnan University: Natural Sciences Edition. 44(4): 775-784. DOI: 10.7540/j.ynu.20210485 .

3013. Lian, J., K. Wu, Y. Li, Z. Wei, P. Zhuo, Q. Yan and X. Luo. 2019. Impacts of large-scale rare earth mining on surface runoff, groundwater, and evapotranspiration: A case study using SWAT for the Taojiang River Basin in southern China. Mine Water and the Environment. 38: 268-280. DOI: 10.1007/s10230-018-00587-w .

3014. Lian, Z., W. Ouyang, H. Liu, D. Zhang and L. Liu. 2021. Ammonia volatilization modeling optimization for rice watersheds under climatic differences. Science of the Total Environment. 767: 144710. DOI: 10.1016/j.scitotenv.2020.144710 .

3015. Liang K., J. Qi, E.Y. Liu, Y. Jiang, S. Li and F.R. Meng. 2019. Estimated potential impacts of soil and water conservation terraces on potato yields under different climate conditions. Journal of Soil and Water Conservation. 74(3): 225-234. DOI: 10.2489/jswc.74.3.225 .

3016. Liang, G.-F. and S.-Y. Ding. 2012. The impacts of climate and landuse changes on the runoff effects: Case in the upper reaches of the Yihe River, the Yiluo River Basin. Scientia Geographica Sinica. 32(5): 635-640. URL: http://geoscien.neigae.ac.cn/EN/volumn/volumn_1461.shtml.

3017. Liang, J., Q. Liu, H. Zhang, X. Li, Z. Qian, M. Lei, X. Li, Y. Peng, S. Li and G. Zeng. 2020. Interactive effects of climate variability and human activities on blue and green water scarcity in rapidly developing watershed. Journal of Cleaner Production. 265: 121839. DOI: 10.1016/j.jclepro.2020.121834 .

3018. Liang, J., W. Tang, Z. Zhu, S. Li, K. Wang, X. Gao, X. Li, N. Tang, L. Lu and X. Li. 2023. Spatiotemporal variability and controlling factors of indirect N2O emission in a typical complex watershed. Water Research. 229: 119515. DOI: 10.1016/j.watres.2022.119515 .

3019. Liang, K., J. Qi, X. Zhang and J. Deng. 2022. Replicating measured site-scale soil organic carbon dynamics in the U.S. Corn Belt using the SWAT-C model. Environmental Modelling & Software. 158: 105553. DOI: 10.1016/j.envsoft.2022.105553 .

3020. Liang, K., Y. Jiang, J. Qi, K. Fuller, J. Nyiraneza and F.-R. Meng. 2020. Characterizing the impacts of land use on nitrate load and water yield in an agricultural watershed in Atlantic Canada. Science of the Total Environment. 729: 138793. DOI: 10.1016/j.scitotenv.2020.138793 .

3021. Liang, L.-I., D.-X. Wang and F. Wang. 2007. Discussion on SWAT model and its application. Journal of China Institute of Water Resources and Hydropower Research. 5(2): 125-131. URL: http://journal.iwhr.com/ch/reader/view_abstract.aspx?file_no=200702008.

3022. Liang, M., Z. Chen, Q. Lin, Z. Chen, Q. Zhang, X. Ou, Y. Xie and S. Peng. 2020. Assessing the transport of rare earth elements in runoff in a small watershed developed on a coarse-grained granite area in southern China. Environmental Earth Sciences. 79(13): 339.

3023. Liang, X., Z. Wang, Y. Zhang, C. Zhu, L. Lin and L. Xu. 2016. No-tillage effects on N and P exports across a rice-planted watershed. Environmental Science and Pollution Research. 23(9): 8598–8609. DOI: 10.1007/s11356-016-6112-8 .

3024. Liang, Y., Y. Cai, L. Sun, X. Wang, C. Li and Q. Liu. 2021. Sensitivity and uncertainty analysis for streamflow prediction based on multiple optimization algorithms in Yalong River Basin of southwestern China. Journal of Hydrology. 601: 126598. DOI: 10.1016/j.jhydrol.2021.126598 .

3025. Liang, Z., T. Tang, B. Li, T. Liu, J. Wang and Y. Hu. 2018. Long-term streamflow forecasting using SWAT through the integration of the random forests precipitation generator: Case study of Danjiangkou Reservoir. Hydrology Research. 49(2): 1513-1527. DOI: 10.2166/nh.2017.085 .

3026. Liang, Z., X. Su and K. Feng. 2021. Drought propagation and construction of a comprehensive drought index based on the Soil and Water Assessment Tool (SWAT) and empirical Kendall distribution function (KC0): A case study for the Jinta River Basin in northwestern China. Natural Hazards and Earth System Sciences. 21(4): 1323-1335. DOI: 10.5194/nhess-21-1323-2021 .

3027. Libera, D.A. and A. Sankarasubramanian. 2018. Multivariate bias corrections of mechanistic water quality model predictions. Journal of Hydrology. 564: 529-541. DOI: 10.1016/j.jhydrol.2018.07.043 .

3028. Licciardello, F., A. Toscano, G.L. Cirelli, S. Consoli and S. Barbagallo. 2017. Evaluation of sediment deposition in a Mediterranean reservoir: Comparison of long term bathymetric measurement and SWAT estimations. Land Degradation & Development. 28(2): 566–578. DOI: 10.1002/ldr.2557 .

3029. Licciardello, F., C. G. Rossi, R. Srinivasan, S. M. Zimbone and S. Barbagallo. 2011. Hydrologic evaluation of a Mediterranean watershed using the SWAT model with multiple PET estimation methods. Transactions of the ASABE. 54(5): 1615-1625. URL: http://ssl.tamu.edu/media/49873/feliciana-etpaper.pdf.

3030. Liebman, M., H.T.X. Nguyen, M.M. Woods, N.D. Hunt and J.D. Hill. 2021. Weed seedbank diversity and sustainability indicators for simple and more diverse cropping systems. Weed Research. 61: 164-177. DOI: 10.1111/wre.12466 .

3031. Liechti, T. C., J. P. Matos, J. L. Boillat, M. M. Portela and A. J. Schleiss. 2014. Hydraulic-hydrologic model for water resources management of the Zambezi Basin. Journal of Applied Water Engineering and Research. 2(2): 105-117. DOI: 10.1080/23249676.2014.958581 .

3032. Liechti, T.C., J.P. Matos, J.L. Boillat and A.J. Schleiss. 2014. Influence of hydropower development on flow regime in the Zambezi River Basin for different scenarios for environmental flows. Water Resources Management. 29(3): 731-747. DOI: 10.1007/s11269-014-0838-1 .

3033. Liersch, S., H. Koch and F.F. Hattermann. 2017. Management scenarios of the Grand Ethiopian Renaissance Dam and their impacts under recent and future climates. Water. 9(10): 728. DOI: 10.3390/w9100728 .

3034. Liersch, S., J. Cools, B. Kone, H. Koch, M. Diallo, J. Reinhardt, S. Fournet, V. Aich and F.F. Hattermann. 2013. Vulnerability of rice production in the Inner Niger Delta to water resources management under climate variability and change. Environmental Science and Policy. 34: 18–33. DOI: 10.1016/j.envsci.2012.10.014 .

3035. Ligaray, M., H. Kim, S. Sthiannopkao, S. Lee, K.H. Cho and J.H. Kim. 2015. Assessment on hydrologic response by climate change in the Chao Phraya River Basin, Thailand. Water. 7(12): 6892-6909. DOI: 10.3390/w7126665 .

3036. Ligaray, M., M. Kim, S.S. Baek, J.-S. Ra, J.A. Chun, Y. Park, L. Boithias, O. Ribolzi, K. Chon and K.H. Cho. 2017. Modeling the fate and transport of Malathion in the Pagsanjan-Lumban Basin, Philippines. Water. 9(7): 451. DOI: 10.3390/w9070451 .

3037. Ligaray, M., S.S. Baek, H.-O. Kwon, S.-D. Choi and K.H. Cho. 2016. Watershed-scale modeling on the fate and transport of polycyclicaromatic hydrocarbons (PAHs). Journal of Hazardous Materials. 320: 442-457. DOI: 10.1016/j.jhazmat.2016.08.063 .

3038. Lima, J. Da S., D.D. Nunes and T.E. Checchia. 2021. Application of the SWAT model as a tool for hydrosedimentological analyzes in the Hutrographic Basin of Rio Mutum Paraná – Rondônia. Geosul. 36(78): 434-453. DOI: 10.5007/2177-5230.2021.e66199 .

3039. Lima, J.E.F.W., S.M.G.L. Montenegro, A.A.de.A. Montenegro and S. Koide. 2014. Comparative hydrology: Relationships among physical characteristics, hydrological behavior, and results of the SWAT model in different regions of Brazil. Revista Brasileira de Geografia Física. 7(6): 1187-1195. URL: http://www.revista.ufpe.br/rbgfe/index.php/revista/article/view/1228.

3040. Limaye, A.S., T.M. Boyington, J.F. Cruise, A. Bulus and E. Brown. 2001. Macroscale hydrologic modeling for regional climate assessment studies in the southeastern United States. Journal of the American Water Resources Association. 37(3): 709-722. DOI: 10.1111/j.1752-1688.2001.tb05505.x .

3041. Lin, B., D. Zhang, X. Chen and H. Yao. 2021. Threshold of watershed partition in SWAT based on separating hillslope and channel sediment simulations. Ecological Indicators. 121: 107111. DOI: 10.1016/j.ecolind.2020.107111 .

3042. Lin, B., X. Chen and H. Yao. 2020. Threshold of sub-watersheds for SWAT to simulate hillslope sediment generation and its spatial variations. Ecological Indicators. 111: 106040. DOI: 10.1016/j.ecolind.2019.106040 .

3043. Lin, B., X. Chen, H. Yao, Y. Chen, M. Liu, L. Gao and A. James. 2015. Analyses of landuse change impacts on catchment runoff using different time indicators based on SWAT model. Ecological Indicators. 58: 55-63. DOI: 10.1016/j.ecolind.2015.05.031 .

3044. Lin, B., X. Chen, Y. Chen and M. Lui. 2014. Simulations and analysis on the effects of landscape pattern change on flood and low flow based on SWAT model. Acta Ecologica Sinica. 34(7): 1772-1780. URL: http://www.ecologica.cn/stxb/ch/reader/view_abstract.aspx?file_no=stxb201304220769&flag=1.

3045. Lin, B., Y. Wang, H. Wang and W. Xiao. 2021. Quantifying the impacts of coal mining and soil-water conservation on runoff in a typical watershed on the Loess Plateau, China. Water. 13(22): 3229. DOI: 10.3390/w13223229 .

3046. Lin, B.-Q., Y. Chen and X.-W. Chen. 2013. A study on regional difference of hydrological parameters of SWAT model. Journal of Natural Resources. 28(1): 1-12. DOI: 10.11849/zrzyxb.2013.11.015 .

3047. Lin, C., J. Xiong, R. Ma and C. Zhu. 2021. Identifying the critical watershed regions creating lake nutrient enrichment (SLRs) based on a watershed-lake integrated perspective – A case study of Chaohu Lake Basin, China. Ecological Indicators. 121: 107037. DOI: 10.1016/j.ecolind.2020.107037 .

3048. Lin, C.C., K.Y. Liou, M. Lee and P.T. Chiueh. 2019. Impacts of urban water consumption under climate change: An adaptation measure of rainwater harvesting system. Journal of Hydrology. 572: 160-168. DOI: 10.1016/j.jhydrol.2019.02.032 .

3049. Lin, F., X. Chen and H. Yao. 2017. Evaluating the use of Nash-Sutcliffe efficiency coefficient in goodness-of-fit measures for daily runoff simulation with SWAT. Journal of Hydrologic Engineering. 22(11): 05017023. DOI: 10.1061/(ASCE)HE.1943-5584.0001580 .

3050. Lin, F., X. Chen, H. Yao and F. Lin. 2022. SWAT model-based quantification of the impact of land-use change on forest-regulated water flow. Catena. 211: 105975. DOI: 10.1016/j.catena.2021.105975 .

3051. Lin, G.-Z., S.‑Y. Hsu, C.‑C. Ho, C.‑F. Chen, J.‑C. Huang and T.‑Y. Lee. 2022. Application of Soil and Water Assessment Tool (SWAT) to evaluate the fates of nitrogenous fertilizer in subtropical mountainous watershed tea farms. Environmental Monitoring and Assessment. 194(3): 213. DOI: 10.1007/s10661-022-09858-0 .

3052. Lin, H., K.-Y. Ke, Y.-C. Tan, S.-C. Wu, G. Hsu, P.-C. Chen and S.-T. Fang. 2013. Estimating pumping rates and identifying potential recharge zones for groundwater management in multi-aquifers system. Water Resources Management. 27(9): 3293-3306. DOI: 10.1007/s11269-013-0347-7 .

3053. Lin, Q. and D. Zhang. 2021. A scalable distributed parallel simulation tool for the SWAT model. Environmental Modelling & Software. 144: 105133. DOI: 10.1016/j.envsoft.2021.105133 .

3054. Lin, S., C. Jing, N.A. Coles, V. Chaplot, N.J. Moore and J. Wu. 2013. Evaluating DEM source and resolution uncertainties in the Soil and Water Assessment Tool. Stochastic Environmental Research and Risk Assessment. 27(1): 209-221. DOI: 10.1007/s00477-012-0577-x .

3055. Lin, X., S. Zhang, X. Hou and Z. Xu. 2022. Impact of land use change on watershed soil erosion under different development scenarios. Environmental Engineering Science. 39(4): 379-392. DOI: 10.1089/ees.2021.0123 .

3056. Lin, Z. and D.E. Radcliffe. 2006. Automatic calibration and predictive uncertainty analysis of a semidistributed watershed model. Vadose Zone Journal. 5(1): 248-260. DOI: 10.2136/vzj2005.0025 .

3057. Lin, Z., D.E. Radcliffe, L.M. Risse, J.J. Romeis and C.R. Jackson. 2007. Modeling phosphorus in the Lake Allatoona Watershed using SWAT: II. Effect of land use change. Journal of Environmental Quality. 38(1): 121-129. DOI: 10.2134/jeq2007.0111 .

3058. Lin, Z., D.E. Radcliffe, M.B. Beck and L.M. Risse. 2007. Modeling phosphorus in the Upper Etowah River Basin: Identifying sources under uncertainty. Water Science and Technology. 56(6): 29-37. URL: http://mulch.cropsoil.uga.edu/soilphysics/media/Lin%20et%20al%20WST%202007.pdf.

3059. Lin, Z., M.J. Anar and H. Zheng. 2015. Hydrologic and water-quality impacts of agricultural land use changes incurred from bioenergy policies. Journal of Hydrology. 525: 429-440. DOI: 10.1016/j.jhydrol.2015.04.001 .

3060. Lingling, Z., L. Changming, S. Leszek, W. Xiaoxiao and L. Jiafu. 2019. A review of underlying surface parameterization methods in hydrologic models. Journal of Geographical Sciences. 29(6): 1039-1060. DOI: 10.1007/s11442-019-1643-9 .

3061. Linh, V.T., V.N.Q. Tram, H.M. Dung, D.N.D. Phuong, N.D. Liem, L.D. Nguyen, C. Yin, A. Kortun and N.K. Loi. 2021. Meteorological and hydrological drought assessment for Dong Nai River Basin, Vietnam under climate change. Mobile Networks and Applications. 26(4): 1788-1800. DOI: 10.1007/s11036-021-01757-x .

3062. Linjing, Q., Z. Fenli and Y. Runsheng. 2012. Effects of DEM resolution and watershed subdivision on hydrological simulation in the Xingzihe Watershed. Acta Ecologica Sinica. 32(12): 3759-3763.

3063. Lins, F.A.C., A.A. de A. Montenegro, C.W.I. de A. Farias, A.M.S. das Chagas, R. de Q. Miranda and J.D. Galvincio. 2021. Analysis of the temporal dynamics of actual evaporation in a semiarid river basin using hydrological modeling and remote sensing. Irriga. 26(3): 543-564. DOI: 10.15809/irriga.2021v26n3p543-564 .

3064. Lisenbee, W.A., J.M. Hathaway, M.J. Burns and T.D. Fletcher. 2021. Modeling bioretention stormwater systems: Current models and future research needs. Environmental Modelling & Software. 144: 105146. DOI: 10.1016/j.envsoft.2021.105146 .

3065. Liu, B., S. Cai, H. Wang, C. Cui and X. Cao. 2021. Hydrodynamics and water quality of the Hongze Lake in response to human activities. Environmental Science and Pollution Research. 28(34): 46215-46232. DOI: 10.1007/s11356-021-12960-4 .

3066. Liu, D. and J.N. Gao. 2020. Distributed watershed hydrological simulation method based on SWAT model. Journal of Coastal Research. 104(S1): 738-741. DOI: 10.2112/JCR-SI104-128.1 .

3067. Liu, D., C. Song, C. Fang, Z. Xin, J. Xi and Y. Lu. 2021. A recommended nitrogen application strategy for high crop yield and low environmental pollution at a basin scale. Science of the Total Environment. 792: 148464. DOI: 10.1016/j.scitotenv.2021.148464 .

3068. Liu, D., C. Zheng, Q. Qiu, J. Tang and Y. Xu. 2020. Global pattern of studies on phosphorus at watershed scale. Environmental Science and Pollution Research. 27: 14872–14882. DOI: 10.1007/s11356-020-07771-y .

3069. Liu, D., Q. Zhao, D. Fu, S. Guo, P. Liu and Y. Zeng. 2020. Comparison of spatial interpolation methods for the estimation of precipitation patterns at different time scales to improve the accuracy of discharge simulations. Hydrology Research. 51(4): 583-601. DOI: 10.2166/nh.2020.146 .

3070. Liu, G., B. Schmalz, Q. Zhang, S. Qi, L. Zhang and S. Liu. 2022. Assessing effects of land use cover changes on hydrological processes and sediment yield in the Xunwu River Watershed, Jiangxi Province, China. Frontiers in Earth Science. 16(3): 819-833. DOI: 10.1007/s11707-021-0959-9 .

3071. Liu, G., F.W. Schwartz, K.H. Tseng and C.K. Shum. 2015. Discharge and water-depth estimates for ungauged rivers: Combining hydrologic, hydraulic, and inverse modeling with stage and water-area measurements from satellites. Water Resources Research. 51(8): 6017-6035. DOI: 10.1002/2015WR016971 .

3072. Liu, G., L. Chen, G. Wei and Z. Shen. 2019. New framework for optimizing best management practices at multiple scales. Journal of Hydrology. 578: 124133. DOI: 10.1016/j.jhydrol.2019.124133 .

3073. Liu, G., Z. He, Z. Luan and S. Qi. 2018. Intercomparison of a lumped model and a distributed model for streamflow simulation in the Naoli River Watershed, northeast China. Water. 10(8): 1009. DOI: 10.3390/w10081004 .

3074. Liu, G.H., Z.Q. Luan, B.X. Yan, Y.D. Guo and Z.X. Wang. 2015. Response of hydrological processes to land use change and climate variability in the Upper Naoli River Watershed, Northeast China. Water Resources. 42(4): 438-447. DOI: 10.1134/S0097807815040077 .

3075. Liu, H. and S. Mizzi. 2020. Evaluating climate changes and land use changes on water resources using hybrid Soil and Water Assessment Tool-DEEP optimized by metaheuristics. Concurrency and Computation: Practice and Experience. 32(24): e5954. DOI: 10.1002/cpe.5945 .

3076. Liu, H., S. Gopalakrishnan, D. Browning and G. Sivandran. 2019. Valuing water quality change using a coupled economic-hydrological model. Ecological Economics. 161: 32-40. DOI: 10.1016/j.ecolecon.2019.03.006 .

3077. Liu, H., W. Zhang, E. Irwin, J. Kast, N. Aloysius, J. Martin and M. Kalcic. 2020. Best management practices and nutrient reduction: An integrated economic-hydrologic model of the Western Lake Erie Basin. Land Economics. 96(4): 510-530. DOI: 10.3368/wple.96.4.510 .

3078. Liu, J., A. Long, X. Deng, Z. Yin, M. Deng, Q. An, X. Gu, S. Li and G. Liu. 2022. The impact of climate change on hydrological processes of the glacierized watershed and projections. Remote Sensing. 14(6): 1314. DOI: 10.3390/rs14061314 .

3079. Liu, J., C. Zhang, L. Kou and Q. Zhou. 2017. Effects of climate and land use changes on water resources in the Taoer River. Advances in Meteorology. Article ID: 1031854: 1031659. DOI: 10.1155/2017/1031854 .

3080. Liu, J., D. Shanguan, S. Liu, and Y. Ding. 2018. Evaluation and hydrological simulation of CMADS and CFSR reanalysis datasets in the Qinghai-Tibet Plateau. Water. 10(4): 513. DOI: 10.3390/w10040513 .

3081. Liu, J., D. Yuan, L. Zhang, X. Zou and X. Song. 2016. Comparison of three statistical downscaling methods and ensemble downscaling method based on Bayesian model averaging in Upper Hanjiang River Basin, China. Advances in Meteorology. : 7463963. DOI: 10.1155/2016/7463963 .

3082. Liu, J., T.L. Veith, A.S. Collick, P.J.A. Kleinman, D.B. Beegle and R.B. Bryant. 2017. Seasonal manure application timing and storage effects on field and watershed level phosphorus losses. Journal of Environmental Quality. 46(6): 1403-1412. DOI: 10.2134/jeq2017.04.0150 .

3083. Liu, J., Y. Zhang, L. Yang and Y. Li. 2022. Hydrological modeling in the Chaohu Lake Basin of China - driven by open-access gridded meteorological and remote sensing precipitation products. Water. 14(9): 1406. DOI: 10.3390/w14091406 .

3084. Liu, L. and Z.X. Xu. 2017. Hydrological implications of climate change on river basin water cycle: Case studies of the Yangtze River and Yellow River basins, China. Applied Ecology and Environmental Research. 15(4): 683-704. DOI: 10.15666/aeer/1504_683704 .

3085. Liu, L., J. Ma, Y. Luo, C. He and T. Liu. 2017. Hydrologic simulation of a winter wheat–summer maize cropping system in an irrigation district of the Lower Yellow River Basin, China. Water. 9(1): 7. DOI: 10.3390/w9010007 .

3086. Liu, L., W. Ouyang, H. Liu, J. Zhu, X. Fan, F. Zhang, Y Ma, J. Chen, F. Hao and Z. Lian. 2021. Drainage optimization of paddy field watershed for diffuse phosphorus pollution control and sustainable agricultural development. Agriculture Ecosystems and Environment. 308: 207238. DOI: 10.1016/j.agee.2020.107238 .

3087. Liu, L., W. Ouyang, W. Zhang, X. Gao, M. He and C. Lin. 2022. Future warming-induced phosphorus loss mitigated by land conversion and degradation. Soil & Tillage Research. 224: 105526. DOI: 10.1016/j.still.2022.105526 .

3088. Liu, L., Y. Cui and Y. Luo. 2013. Integrated modeling of conjunctive water use in a canal-well irrigation district in the Lower Yellow River Basin, China. Journal of Irrigation and Drainage Engineering. 139(9): 775–784. DOI: 10.1061/(ASCE)IR.1943-4774.0000620 .

3089. Liu, L., Y. Luo, C. He, J. Lai and X. Li. 2010. Roles of the combined irrigation, drainage, and storage of the canal network in improving water reuse in the irrigatiion districts along the Lower Yellow River, China. Journal of Hydrology. 391(1-2): 157-174. DOI: 10.1016/j.jhydrol.2010.07.015 .

3090. Liu, L., Z. Liu, X. Ren, T. Fischer and Y. Xu. 2011. Hydrological impacts of climate change in the Yellow River Basin for the 21st century using hydrological model and statistical downscaling model. Quaternary International. 244: 211-220. DOI: 10.1016/j.quaint.2010.12.001 .

3091. Liu, M. and J. Lu. 2015. Predicting the impact of management practices on river water quality using SWAT in an agricultural watershed. Desalination and Water Treatment. 54(9): 2396-2409. DOI: 10.1080/19443994.2014.902332 .

3092. Liu, M. C. Li, Y. Hu, F. Sun, Y. Xu and T. Chen. 2014. Combining CLUE-S and SWAT models to forecast land use change and non-point source pollution impact at a watershed scale in Liaoning Province, China. Chinese Geographical Science. 24(5): 540-550. DOI: 10.1007/s11769-014-0661-x .

3093. Liu, M., D. Wang, X. Chen, Y. Chen, L. Gao and H. Deng. 2022. Impacts of climate variability and land use on the blue and green water resources in a subtropical basin of China. Scientific Reports. 12: 20993. DOI: 10.1038/s41598-022-21880-3 .

3094. Liu, M., X. Chen, H. Yao and Y. Chen. 2015. A coupled modeling approach to evaluate nitrogen retention within the Shanmei Reservoir Watershed, China. Estuarine, Coastal and Shelf Science. 166 (Part B): 189-198. DOI: 10.1016/j.ecss.2015.06.008 .

3095. Liu, M., X. Chen, Y. Chen, L. Gao and H. Deng. 2019. Nitrogen retention effects under reservoir regulation at multiple time scales in a subtropical river basin. Water. 11(8): 1685. DOI: 10.3390/w11081685 .

3096. Liu, M.B., X.-W. Chen, Y. Chen, L. Gao and H.-J. Deng. 2021. Spatial and temporal variations in nitrogen retention effects in a subtropical mountainous basin in southeast China. Journal of Mountain Science. 18(10): 2672-2687. DOI: 10.1007/s11629-020-6254-5 .

3097. Liu, Q., J. Niu, B. Sivakumar, R. Ding and S. Li. 2021. Accessing future crop yield and crop water productivity over the Heihe River Basin in northwest China under a changing climate. Geoscience Letters. 8: 2. DOI: 10.1186/s40562-020-00172-6 .

3098. Liu, Q., J. Niu, J.D. Wood and S. Kang. 2022. Spatial optimization of cropping pattern in the upper-middle reaches of the Heihe River Basin, Northwest China. Agricultural Water Management. 264: 107479. DOI: 10.1016/j.agwat.2022.107479 .

3099. Liu, R., F. Xu, P. Zhang, W. Yu and C. Men. 2016. Identifying non-point source critical source areas based on multi-factors at a basin scale with SWAT. Journal of Hydrology. 533: 379-388. DOI: 10.1016/j.jhydrol.2015.12.024 .

3100. Liu, R., P. Zhang, X. Wang, J. Wang, W. Yu and Z. Shen. 2014. Cost-effectiveness and cost-benefit analysis of BMPs in controlling agricultural nonpoint source pollution in China based on the SWAT model. Environmental Monitoring and Assessment. 186(12): 9011-9022. DOI: 10.1007/s10661-014-4061-6 .

3101. Liu, R., P. Zhang, X. Wang, Y. Chen and Z. Shen. 2013. Assessment of effects of best management practices on agricultural non-point source pollution in Xiangxi River Watershed. Agricultural Water Management. 117: 9-18. DOI: 10.1016/j.agwat.2012.10.018 .

3102. Liu, R., Q. Wang, F. Xu, C. Men and L. Guo. 2017. Impacts of manure application on SWAT model outputs in the Xiangxi River Watershed. Journal of Hydrology. 555: 479-488. DOI: 10.1016/j.jhydrol.2017.10.044 .

3103. Liu, S., Y. Yao, X. Kuang and C. Zheng. 2021. A preliminary investigation on the climate-discharge relationship in the upper region of the Yarlung Zangbo River Basin. Journal of Hydrology. 603: 127066. DOI: 10.1016/j.jhydrol.2021.127066 .

3104. Liu, T., L. Liu, Y. Luo and J. Lai. 2015. Simulation of groundwater evaporation and groundwater depth using SWAT in the irrigation district with shallow water table. Environmental Earth Sciences. 74(1): 315-324. DOI: 10.1007/s12665-015-4034-2 .

3105. Liu, T., N.H. Merrill, A.J. Gold, D.Q. Kelloff and E. Uchida. 2013. Modeling the production of multiple ecosystem services from agricultural and forest landscapes in Rhode Island. Agricultural and Resource Economics Review. 42(1): 251-274. URL: http://ageconsearch.umn.edu/handle/148410.

3106. Liu, T., Y. Chen, B. Li, Y. Hu and H. Qui. 2019. Long-term streamflow forecasting for the Cascade Reservoir System of Han River using SWAT with CFS output. Hydrology Research. 50(2): 655. DOI: 10.2166/nh.2018.114 .

3107. Liu, T., Z. Liang, Y. Chen, X. Lei and B. Li. 2018. Long-duration PMP and PMF estimation with SWAT model for the sparsely gauged Upper Nujiang River Basin. Natural Hazards. 90: 735-755. DOI: 10.1007/s11069-017-3068-z .

3108. Liu, W., A. Zhang, L. Wang, G. Fu, D. Chen, C. Liu and T. Cai. 2015. Projecting streamflow in the Tangwang River Basin (China) using a rainfall generator and two hydrological models. Climate Research. 62: 79-97. DOI: 10.3354/cr01261 .

3109. Liu, W., R.T. Bailey, H.E. Andersen, E. Jeppesen, S. Park, H. Thodsen, A. Nielsen, E. Molina-Navarro and Dennis Trolle. 2020. Assessing the impacts of groundwater abstractions on flow regime and stream biota: Combining SWAT-MODFLOW with flow-biota empirical models. Science of the Total Environment. 706: 135702. DOI: 10.1016/j.scitotenv.2019.135702 .

3110. Liu, W., R.T. Bailey, H.E. Andersen, E. Jeppesen, A. Nielsen, K. Peng, E. Molina-Navarro, S. Park, H. Thodsen and D. Trolle. 2020. Quantifying the effects of climate change on hydrological regime and stream biota in a groundwater-dominated catchment: A modelling approach combining SWAT-MODFLOW with flow-biota empirical models. Science of the Total Environment. 745: 140933. DOI: 10.1016/j.scitotenv.2020.140933 .

3111. Liu, W., S. Park, R.T. Bailey, E. Molina‑Navarro, H.E. Andersen, H. Thodsen, A. Nielsen, E. Jeppesen, J.S. Jensen and J.B. Jensen and D. Trolle. 2020. Quantifying the streamflow response to groundwater abstractions for irrigation or drinking water at catchment scale using SWAT and SWAT–MODFLOW. Environmental Sciences Europe. 32: 113. DOI: 10.1186/s12302-020-00395-6 .

3112. Liu, W., T. Cai, G. Fu, A. Zhang, C. Liu and H. Yu. 2013. The streamflow trend in Tangwang River Basin in northeast China and its difference response to climate and land use change in sub-basins. Environmental Earth Sciences. 69(1): 51-62. DOI: 10.1007/s12665-012-1933-3 .

3113. Liu, W., W. An, E. Jeppesen, J. Ma, M. Yang and D. Trolle. 2019. Modelling the fate and transport of Cryptosporidium, a zoonotic and waterborne pathogen, in the Daning River Watershed of the Three Gorges Reservoir Region, China. Journal of Environmental Management. 232: 462-474. DOI: 10.1016/j.jenvman.2018.10.064 .

3114. Liu, X., M. Yang, X. Meng, F. Wen and G. Sun. 2019. Assessing the impact of reservoir parameters on runoff in the Yalong River Basin using the SWAT Model. Water. 11(4): 643. DOI: 10.3390/w11040643 .

3115. Liu, X., Q. Chen and Z. Zeng. 2014. Study on nitrogen load reduction efficiency of agricultural conservation management in a small agricultural watershed. Water Science and Technology. 69(8): 1689–1696. DOI: 10.2166/wst.2014.076 .

3116. Liu, X., S. Wang, H. Xue and V.P. Singh. 2015. Simulating crop evapotranspiration response under different planting scenarios by modified SWAT model in an irrigation district, northwest China. PLoS ONE. 10(10): e0139839. DOI: 10.1371/journal.pone.0139839 .

3117. Liu, X., T. Tan, Y. Bai and L.C. Chou. 2022. Restoration performance of regional soil and water resources in China based on index of coupling and improved assessment tool. Alexandria Engineering Journal. 61(7): 5677-5686. DOI: 10.1016/j.aej.2021.10.063 .

3118. Liu, Y., C. Li, Q. Sun, L. Zhang, Y. Gao and W. Xie. 2019. Quantification and valuation of water supply ecosystem service in Xiamen City, China. Research of Environmental Sciences . 32(12): 2008-2014. URL: http://www.hjkxyj.org.cn/en/article/doi/10.13198/j.issn.1001-6929.2019.02.14.

3119. Liu, Y., F. Dong and J. Niu. 2022. A process-guided hybrid Bayesian belief network to bridge watershed modeling and BMP planning. Journal of Hydrology. 614(Part B): 128620. DOI: 10.1016/j.jhydrol.2022.128620 .

3120. Liu, Y., G. Cui and H. Li. 2020. Optimization and application of snow melting modules in SWAT model for the alpine regions of northern China. Water. 12(3): 636. DOI: 10.3390/w12030636 .

3121. Liu, Y., G. Wu, X. Fan, G. Gan, W. Wang and Y. Liu. 2022. Hydrological impacts of land use/cover changes in the Lake Victoria Basin. Ecological Indicators. 145: 109580. DOI: 10.1016/j.ecolind.2022.109580 .

3122. Liu, Y., H. Li, G. Cui and Y. Cao. 2020. Water quality attribution and simulation of non-point source pollution load flux in the Hulan River Basin. Scientific Reports. 10: 3012. DOI: 10.1038/s41598-020-59980-7 .

3123. Liu, Y., R. Wang, T. Guo, B.A. Engel, D.C. Flanagan, J.G. Lee, S. Li, B.C. Pijanowski, P.D. Collingsworth and C.W. Wallace. 2019. Evaluating efficiencies and cost-effectiveness of best management practices in improving agricultural water quality using integrated SWAT and cost evaluation tool. Journal of Hydrology. 577: 123965. DOI: 10.1016/j.jhydrol.2019.123965 .

3124. Liu, Y., S. Li, C.W. Wallace, I. Chaubey, D.C. Flanagan, L.O. Theller and B.A. Engel. 2017. Comparison of computer models for estimating hydrology and water quality in an agricultural watershed. Water Resources Management. 31(11): 3641-3665. DOI: 10.1007/s11269-017-1691-9 .

3125. Liu, Y., T. Guo, R. Wang, B.A. Engel, D.C. Flanagan, S. Li, B.C. Pijanowski, P.D. Collingsworth, J.G. Lee and C.W. Wallace. 2019. A SWAT-based optimization tool for obtaining cost-effective strategies for agricultural conservation practice implementation at watershed scales. Science of the Total Environment. 691: 685-696. DOI: 10.1016/j.scitotenv.2019.07.175 .

3126. Liu, Y., W. Wang and Y. Liu. 2018. ESA CCI soil moisture assimilation in SWAT for improved hydrological simulation in Upper Huai River Basin. Advances in Meteorology. : 7301314. DOI: 10.1155/2018/7301314 .

3127. Liu, Y., W. Wang and Y.Hu. 2017. Investigating the impact of surface soil moisture assimilation on state and parameter estimation in SWAT model based on the ensemble Kalman Filter in Upper Huai River Basin. Journal of Hydrology and Hydromechanics. 65(2): 123-133. DOI: 10.1515/johh-2017-0011 .

3128. Liu, Y., W. Wang, Y. Hu and W. Cui. 2016. Improving the distributed hydrological model performance in Upper Huai River Basin: Using streamflow observations to update the basin states via the Ensemble Kalman Filter. Advances in Meteorology. 2016: 4921616. DOI: 10.1155/2016/4921616 .

3129. Liu, Y., W. Yang and X. Wang. 2007. Gis-based integration of SWAT and REMM for estimating water quality benefits of riparian buffers in agricultural watersheds. Transactions of the ASABE. 50(5): 1549-1563. DOI: 10.13031/2013.23952 .

3130. Liu, Y., W. Yang and X. Wang. 2008. Development of a SWAT extension module to simulate riparian wetland hydrologic processes at a watershed scale. Hydrological Processes. 22(16): 2901-2915. DOI: 10.1002/hyp.6874 .

3131. Liu, Y., W. Yang, H. Shao, Z. Yu and J. Lindsay. 2018. Development of an integrated modelling system for evaluating water quantity and quality effects of individual wetlands in an agricultural watershed. Water. 10(6): 774. DOI: 10.3390/w10060774 .

3132. Liu, Y., W. Yang, L. Leon, I. Wong, C. McCrimmon, A. Dove and P. Fong. 2016. Hydrologic modeling and evaluation of best management practice scenarios for the Grand River Watershed in southern Ontario. Journal of Great Lakes Research. 42(6): 1289-1301. DOI: 10.1016/j.jglr.2016.02.008 .

3133. Liu, Y., W. Yang, Z. Yu, I. Lung and B. Gharabaghi. 2015. Estimating sediment yield from upland and channel erosion at a watershed scale using SWAT. Water Resources Management. 29(5): 1399-1412. DOI: 10.1007/s11269-014-0729-5 .

3134. Liu, Y., Y. Xu, Y. Zhao and Y. Long. 2022. Using SWAT model to assess the impacts of land use and climate changes on flood in the Upper Weihe River, China. Water. 14(13): 2098. DOI: 10.3390/w14132098 .

3135. Liu, Y., Y. Zheng, W. Li and T. Zhou. 2022. Evaluating the performance of satellite-based precipitation products using gauge measurement and hydrological modeling: A case study in a dry basin of northwest China. Journal of Hydrometeorology. 23(4): 541-559. DOI: 10.1175/JHM-D-21-0152.1 .

3136. Liu, Y.R., Y.P. Li and J. Sun. 2020. A two-stage fuzzy-stochastic factorial analysis method for characterizing effects of uncertainties in hydrological modelling. Hydrological Sciences Journal. 65(12): 2057-2071. DOI: 10.1080/02626667.2020.1790566 .

3137. Liu, Z., J. Yin and H.E. Dahlke. 2020. Enhancing soil and water assessment tool snow prediction reliability with remote-sensing-based snow water equivalent reconstruction product for upland watersheds in a multi-objective calibration process. Water. 12(11): 3190. DOI: 10.3390/w12113190 .

3138. Liu, Z., J.D. Herman, G. Huang, T. Kadir and H.E. Dahlke. 2021. Identifying climate change impacts on surface water supply in the southern Central Valley, California. Science of the Total Environment. 759: 143429. DOI: 10.1016/j.scitotenv.2020.143429 .

3139. Liu, Z., M. Yang, G. Wan and L. Cheng. 2021. Applicability of new satellites precipitation products in source region of Yellow River: Using SWAT model as an example. Plateau Meteorology. 40(2): 403-410. URL: http://www.gyqx.ac.cn/EN/10.7522/j.issn.1000-0534.2020.00024.

3140. Liyantono, Fajardo and T. Kato. 2017. Impact of land use change to dependable flow in Kuncir River, Nganjuk District, East Java. Jurnal Keteknikan Pertanian. 5(1): 1-6. DOI: 10.19028/jtep.05.1.1-6 .

3141. Llanos-Paez, O., L. Estrada, E. Pastén-Zapata, L. Boithias, D. Jorda-Capdevilla, S. Sabater and V. Acuña. 2023. Spatial and temporal patterns of flow intermittency in a Mediterranean basin using the SWAT+ model. Hydrological Sciences Journal. 68(2): 276-289. DOI: 10.1080/02626667.2022.2155523 .

3142. Logsdon, R.A. and I. Chaubey. 2013. A quantitative approach to evaluating ecosystem services. Ecological Modelling. 257: 57-65. DOI: 10.1016/j.ecolmodel.2013.02.009 .

3143. Lohani, S., C. Baffaut, A.L. Thompson, N. Aryal, R.L. Bingner, D.L. Bjorneberg, D.D. Bosch, R.B. Bryant, A. Buda, S.M. Dabney, A.R. Davis, L.F. Duriancik, D.E. James, K.W. King, P.J.A. Kleinman, M. Locke, G.W. McCarty, L.A. Pease, M.L. Reba, D.R Smith, M.D. Tomer, T.L. Veith, M.R. Williams and L.M.W. Yasarer. 2020. Performance of the Soil Vulnerability Index with respect to slope, digital elevation model resolution, and hydrologic soil group. Journal of Soil and Water Conservation. 75(1): 12-27. DOI: 10.2489/jswc.75.1.12 .

3144. Lohani, S., C. Baffaut, A.L. Thompson and E.J. Sadler. 2020. Soil Vulnerability Index assessment as a tool to explain annual constituent loads in a nested watershed. Journal of Soil and Water Conservation. 75(1): 42-52. DOI: 10.2489/jswc.75.1.42 .

3145. Lợi, N.K., N.D. Liêm, P.C. Thiện, L.V. Phận, L.H. Tú, H.T. Thủy, N.V. Trai, T.L.N. Quỳnh, L.T. Phúc, N.T. Huyền, N.T.T. Ấu, N.T. Hồng and R. Srinivasan. 2013. Development of an online supporting system flood warning for Vu Gia Watershed, Quang Nam Province, Vietnam: Conceptual framework and proposed research techniques. VNU Journal of Science: Earth and Environmental Sciences. 29(1): 38-44. URL: http://js.vnu.edu.vn/index.php/EES/article/view/1563.

3146. Loiselle, D., X. Du, D.S. Alessi, K.D. Bladon and M. Faramarzi. 2020. Projecting impacts of wildfire and climate change on streamflow, sediment, and organic carbon yields in a forested watershed. Journal of Hydrology. 590: 125403. DOI: 10.1016/j.jhydrol.2020.125403 .

3147. Lokgariwar, C., R. Chopra, V. Smakhtin, L. Bharati and J. O'Keeffe. 2014. Including cultural water requirements in environmental flow assessment: An example from the Upper Ganga River, India. Water International. 39(1): 81–96. DOI: 10.1080/02508060.2013.863684 .

3148. Londhe, D.S. and Y.B. Katpatal. 2020. Comparative assessment of evapotranspiration in Bhima sub-basin using spatial analysis for normal and ENSO years. Journal of Agrometeorology. 22(2): 179-185. URL: https://www.agrimetassociation.org/journal-view/comparative-assessment-of-evapotranspiration-in-bhima-sub-basin-using-spatial-analysis-for-normal-and-enso-years.

3149. Long, S., J. Gao, H. Shao, Y. Kang, Z. Gao, Z. Guo, X. Zhang and L. Wang. 2022. Evaluation of the impact of the Gully Land Consolidation Project on runoff under extreme rainfall. Land Degradation & Development. 33(15): 2663-2676. DOI: 10.1002/ldr.4284 .

3150. Lopes, C.L., F.L. Alves and J.M. Dias. 2017. Flood risk assessment in a coastal lagoon under present and future scenarios: Ria de Aveiro case study. Natural Hazards. 89(3): 1307–1325. DOI: 10.1007/s11069-017-3025-x .

3151. Lopes, T.R., C.A. Zolin, R. Mingoti, L.G. Vendrusculo, F.T. de Almeida, A.P. de Souza, R.F. de Oliveira, J. Paulino and E.M. Uliana. 2021. Hydrological regime, water availability and land use/land cover change impact on the water balance in a large agriculture basin in the Southern Brazilian Amazon. Journal of South American Earth Sciences. 108: 103224. DOI: 10.1016/j.jsames.2021.103224 .

3152. Lopes, T.R., M.V. Folegatti, S.N. Duarte, C.A. Zolin, L.S.F. Junior, L.B. Moura, R.K. Oliveira and O.N.A. Santos. 2020. Hydrological modeling for the Piracicaba River Basin to support water management and ecosystem services. Journal of South American Earth Sciences. 103: 102752. DOI: 10.1016/j.jsames.2020.102752 .

3153. López-Ballesteros, A., A. Nielsen, G. Castellanos-Osorio, D. Trolle and J. Senent-Aparicio. 2023. DSOLMap, a novel high-resolution global digital soil property map for the SWAT+ model: Development and hydrological evaluation. Catena. 231: 107339. DOI: 10.1016/j.catena.2023.107339 .

3154. López-Ballesteros, A., J. Senent-Aparicio, R. Srinivasan and J. Pérez-Sánchez. 2019. Assessing the impact of best management practices in a highly anthropogenic and ungauged watershed using the SWAT model: A case study in the El Beal Watershed (southeast Spain). Agronomy Journal. 9(10): 576. DOI: 10.3390/agronomy9100576 .

3155. López-Ballesteros, A., J. Senent-Aparicio, C. Martínez and J. Pérez-Sánchez. 2020. Assessment of future hydrologic alteration due to climate change in the Aracthos River Basin (NW Greece). Science of the Total Environment. 733: 139299. DOI: 10.1016/j.scitotenv.2020.139299 .

3156. López-Lambraño, A.A., L. Martínez-Acosta, E. Gámez-Balmaceda, J.P. Medrano-Barboza, J.F.R. López and A. López-Ramos. 2020. Supply and demand analysis of water resources. Case study: Irrigation water demand in a semi-arid zone in Mexico. Agriculture. 10(8): 333. DOI: 10.3390/agriculture10080333 .

3157. López-Ramírez , S.M., A. Mayer, L. Sáenz, L.E. Muñoz-Villers, F. Holwerda, N. Looker, C. Schürz, Z.C. Berry, R. Manson, H. Asbjornsen, R. Kolka, D. Geissert and C. Lezama. 2021. A comprehensive calibration and validation of SWAT-T using local datasets, evapotranspiration and streamflow in a tropical montane cloud forest area with permeable substrate in central Veracruz, Mexico. Journal of Hydrology. 603(Part A): 126781. DOI: 10.1016/j.jhydrol.2021.126781 .

3158. Lorz, C., M. Volk and G. Schmidt. 2007. Considering spatial distribution and functionality of forests in a modeling framework for river basin management. Forest Ecology and Management. 248(1-2): 17-25. DOI: 10.1016/j.foreco.2007.02.032 .

3159. Lotz, T., C. Opp and X. He. 2018. Factors of runoff generation in the Dongting Lake Basin based on a SWAT model and implications of recent land cover change. Quaternary International. 475: 54-62. DOI: 10.1016/j.quaint.2017.03.057 .

3160. Lotz, T., Z. Sun and B. Xue. 2023. Evaluation of soil‐vegetation interaction effects on water fluxes revealed by the proxy of model parameter combinations. Environmental Monitoring and Assessment. 195: 283. DOI: 10.1007/s10661-022-10901-3 .

3161. Lou, K. 2021. Response of hydrological systems to the intensity of ecological engineering. Journal of Environmental Management. 296: 113173. DOI: 10.1016/j.jenvman.2021.113173 .

3162. Lou, W., L. Wu, H. Chen, Z. Ji and Y. Sun. 2012. Assessment of rice yield loss due to torrential rain: A case study of Yuhang County, Zhejiang Province, China. Natural Hazards. 60(2): 311-320. DOI: 10.1007/s11069-011-0013-4 .

3163. Loukika, K.N., V.R. Keesara, E.S. Buri and V. Sridhar. 2022. Predicting the effects of land use land cover and climate change on Munneru River Basin using CA-Markov and Soil and Water Assessment Tool. Sustainability. 14(9): 5000. DOI: 10.3390/su14095000 .

3164. Louzada, V.M. and C.B. de Melo Ribeiro. 2019. Impacts of land-use change on southeast Amazonia basin streamflow. Ambiente & Água. 14(2): e2303. DOI: 10.4136/ambi-agua.2303 .

3165. Love, B. and A.P. Nejadhashemi. 2011. Environmental impact analysis of biofuel crops expansion in the Saginaw River Watershed. Journal of Biobased Materials and Bioenergy. 5(1): 3--54. DOI: 10.1166/jbmb.2011.1119 .

3166. Love, B.J. and A. P. Nejadhashemi. 2011. Water quality impact assessment of large-scale biofuel crops expansion in agricultural regions of Michigan. Biomass & Bioenergy. 35(5): 2200-2216. DOI: 10.1016/j.biombioe.2011.02.041 .

3167. Love, B.J., M.D. Einheuser and A.P. Nejadhashemi. 2011. Effects on aquatic and human health due to large scale bioenergy crop expansion. Science of the Total Environment. 409(17): 3215-3229. DOI: 10.1016/j.scitotenv.2011.05.007 .

3168. Lu, C.M. and L.C. Chiang. 2019. Assessment of sediment transport functions with the modified SWAT-Twn model for a Taiwanese small mountainous watershed. Water. 11(9): 1749. DOI: 10.3390/w11091749 .

3169. Lu, J., D. Gong, Y. Shen, M. Liu and D. Chen. 2013. An inversed Bayesian modeling approach for estimating nitrogen export coefficients and uncertainty assessment in an agricultural watershed in eastern China. Agricultural Water Management. 116: 79-88. DOI: 10.1016/j.agwat.2012.10.015 .

3170. Lu, J., X. Cui, X. Chen, S. Sauvage and J.-M. Sanchez-Perez. 2017. Evaluation of hydrological response to extreme climate variability using SWAT model: Application to the Fuhe Basin of Poyang Lake Watershed, China. Hydrology Research. 48(6): 1703-1744. DOI: 10.2166/nh.2016.115 .

3171. Lu, J.Z., L. Zhang, X.L. Cui, P. Zhang, X.L. Chen, S. Sauvage and J.M. Sanchez-Perez. 2019. Assessing the climate forecast system reanalysis weather data driven hydrological model for the Yangtze River Basin in China. Applied Ecology and Environmental Research. 17(2): 3615-3632. DOI: 10.15666/aeer/1702_36153632 .

3172. Lu, L.-T., Q.-Z. Peng, Y.-Y. Guo, Y.-H. Luo and Y. Jiang. 2014. Runoff simulation of Dongjiang River Basin based on the Soil and Water Assessment Tool. Journal of Natural Resources. 29(10): 1746-1757. DOI: 10.11849/zrzyxb.2014.10.010 .

3173. Lu, S., B. Kronvang, J. Audet, D. Trolle, H.E. Andersen, H. Thodsen and A. van Griensven. 2014. Modelling sediment and total phosphorus export from a lowland catchment: Comparing sediment routing methods. Hydrological Processes. 29(2): 280-294. DOI: 10.1002/hyp.10149 .

3174. Lu, S., H.E. Andersen, H. Thodsen, G.H. Rubæk and D. Trolle. 2016. Extended SWAT model for dissolved reactive phosphorus transport in tile-drained fields and catchments. Agricultural Water Management. 175: 78–90. DOI: 10.1016/j.agwat.2015.12.008 .

3175. Lu, S., N. Kayastha, H. Thodsen, A. van Griensven and H.E. Andersen. 2014. Multi-objective calibration for comparing channel sediment routing models in SWAT. Journal of Environmental Quality. 43(1): 110-120. DOI: 10.2134/jeq2011.0364 .

3176. Lu, X. and T. Jiang. 2009. Larger asian rivers: Climate change, river flow and sediment flux. Quaternary International. 208(1-2): 1-168. DOI: 10.1016/j.quaint.2009.06.012 .

3177. Lu, Z., S. Zou, H. Xiao, C. Zheng, Z. Yin and W. Wang. 2015. Comprehensive hydrologic calibration of SWAT and water balance analysis in mountainous watersheds in northwest China. Physics and Chemistry of the Earth. 79-82: 76-85. DOI: 10.1016/j.pce.2014.11.003 .

3178. Lu, Z., S. Zou, Z. Qin, Y. Yang, H. Xiao, Y. Wei, K. Zhang and J. Xie. 2015. Hydrologic responses to land use change in the loess plateau: Case study in the Upper Fenhe River Watershed. Advances in Meteorology. : 676030. DOI: 10.1155/2015/676030 .

3179. Lu, Z., S. Zou, Z. Yin, A. Long and B. Xu. 2012. A new suitable method for SWAT model calibration and its application in data-scarce basins. Journal of Lanzhou University (Natural Sciences). 48(1): 1-7.

3180. Lu, Z., Z. Liu, W. Liu, X. Chen and L. Zhang. 2020. Assessment of CFSR and CMADS weather data for capturing extreme hydrologic events in the Fuhe River Basin of the Poyang Lake. Journal of the American Water Resources Association. 56(5): 917-934. DOI: 10.1111/1752-1688.12866 .

3181. Luan, J., P. Miao, X. Tian, X. Li, N. Ma, Z. Xu, H. Wang and Y. Zhang. 2022. Separating the impact of check dams on runoff from climate and vegetation changes. Journal of Hydrology. 614(Part B): 128565. DOI: 10.1016/j.jhydrol.2022.128565 .

3182. Luan, J., Y. Zhang, N. Ma, J. Tian, X. Li and D. Liu. 2021. Evaluating the uncertainty of eight approaches for separating the impacts of climate change and human activities on streamflow. Journal of Hydrology. 601: 126605. DOI: 10.1016/j.jhydrol.2021.126605 .

3183. Luan, K.-B., Y.-L Yin, P.-T. Wu, S.-K. Sun, Y.-B. Wang, X.-R. Gao and J. Liu. 2018. An improved method for calculating the regional crop water footprint based on a hydrological process analysis. Hydrology and Earth System Sciences. 22(10): 5111-5123. DOI: 10.1007/s10333-018-0647-x .

3184. Luan, X., P. Wu, S. Sun, Y. Wang and X. Gao. 2018. Quantitative study of the crop production water footprint using the SWAT model. Ecological Indicators. 89: 1-10. DOI: 10.1016/j.ecolind.2018.01.046 .

3185. Luan, X.-B., P.-T. Wu, S.-K. Sun, X.-L. Li, Y.-B. Wang and X.-R. Gao. 2018. Impact of land use change on hydrologic processes in a large plain irrigation district. Water Resources Management. 32(9): 3203-3217. DOI: 10.1007/s11269-018-1986-5 .

3186. Lucas-Borja, M.E., B.G. Carrà, J.P. Nunes, L. Bernard-Jannin, D.A. Zema and S.M. Zimbone. 2020. Impacts of land-use and climate changes on surface runoff in a tropical forest watershed (Brazil). Hydrological Sciences Journal. 65(11): 1956-1973. DOI: 10.1080/02626667.2020.1787417 .

3187. Ludicello, J.J. and D.A. Chin. 2015. In-stream bacteria modeling as a function of the hydrologic state of a watershed. Journal of Environmental Engineering and Science. 141(4). DOI: 10.1061/(ASCE)EE.1943-7870.0000879 .

3188. Lüke, A. and J. Hack. 2018. Comparing the applicability of commonly used hydrological ecosystem services models for integrated decision-support. Sustainability. 10(2): 346. DOI: 10.3390/su10020346 .

3189. Luo ,K., F. Tao, J.P. Moiwo and D. Xiao. 2016. Attribution of hydrological change in Heihe River Basin to climate and land use change in the past three decades. Scientific Reports. 6: 33704. DOI: 10.1038/srep33704 .

3190. Luo, K. and Y. Li. 2021. Assessing rainwater harvesting potential in a humid and semi-humid region based on a hydrological model. Journal of Hydrology: Regional Studies. 37: 100912. DOI: 10.1016/j.ejrh.2021.100912 .

3191. Luo, K., F. Tao, X. Deng and J.P. Moiwo. 2017. Changes in potential evapotranspiration and surface runoff in 1981 - 2010 and the driving factors in Upper Heihe River Basin in Northwest China. Hydrological Processes. 31(1): 90–103. DOI: 10.1002/hyp.10974 .

3192. Luo, L., Q. Zhou, H.S. He, L. Duan, G. Zhang and H. Xie. 2020. Relative importance of land use and climate change on hydrology in agricultural watershed of southern China. Sustainability. 12(16): 6423. DOI: 10.3390/su12166423 .

3193. Luo, M., F. Meng, T. Liu, Y. Duan, A. Frankl, A. Kurban and P. De Maeyer. 2017. Multi-model ensemble approaches to assessment of effects of local climate change on water resources of the Hotan River Basin in Xinjiang, China. Water. 9(8): 584. DOI: 10.3390/w9080584 .

3194. Luo, M., T. Liu, F. Meng, Y. Duan, Y. Huang, A. Frankl and P. De Maeyer. 2017. Proportional coefficient method applied to TRMM rainfall data: Case study of hydrological simulations of the Hotan River Basin (China). Journal of Water and Climate Change. 8(4): 627-640. DOI: 10.2166/wcc.2017.080 .

3195. Luo, M., T. Liu, F. Meng, Y. Duan, A. Bao, W. Xing, X. Feng, P.D. Maeyer and A. Frankl. 2019. Identifying climate change impacts on water resources in Xinjiang, China. Science of the Total Environment. 676: 613-626. DOI: 10.1016/j.scitotenv.2019.04.297 .

3196. Luo, P., K. Takara, B. He, W. Cao, Y. Yamashiki and D. Nover. 2011. Calibration and uncertainty analysis of SWAT Model in a Japanese River Catchment. Journal of Japan Society of Civil Engineers, Ser. B1 (Hydraulic Engineering). 67(4): I-61-I66. URL: https://www.jstage.jst.go.jp/article/jscejhe/67/4/67_4_I_61/_article.

3197. Luo, P., M. Zhou, H. Deng, J. Lyu, W. Cao, K. Takara, D. Nover and S.G. Schladow. 2018. Impact of forest maintenance on water shortages: Hydrologic modeling and effects of climate change. Science of the Total Environment. 615: 1355-1363. DOI: 10.1016/j.scitotenv.2017.09.044 .

3198. Luo, Q., Y. Li, K. Wang and J. Wu. 2013. Application of the SWAT model to the Xiangjiang River Watershed in subtropical central China. Water Science and Technology. 67(9): 2110-2116. DOI: 10.2166/wst.2013.100 .

3199. Luo, X., W. Wu, D. He, Y. Li and X. Ji. 2019. Hydrological simulation using TRMM and CHIRPS precipitation estimates in the Lower Lancang-Mekong River Basin. Chinese Geographical Science. 29(1): 13-25. DOI: 10.1007/s11769-019-1014-6 .

3200. Luo, X., X. Fan, X. Ji and Y. Li. 2020. Evaluation of corrected APHRODITE estimates for hydrological simulation in the Yarlung Tsangpo–Brahmaputra River Basin. International Journal of Climatology. 40: 4158-4170. DOI: 10.1002/joc.6449 .

3201. Luo, Y. and M. Sophocleous. 2011. Two-way coupling of unsaturated-saturated flow by integrating the SWAT and MODFLOW models with application in an irrigation district in arid region of West China. Journal of Arid Land. 3(3): 164−173. URL: http://jal.xjegi.com/EN/10.3724/SP.J.1227.2011.00164.

3202. Luo, Y. and M. Zhang. 2009. Mangement-oriented sensitivity analysis for pesticide transport in watershed-scale water quallity modeling using SWAT. Environmental Pollution. 157(12): 3370-3378. DOI: 10.1016/j.envpol.2009.06.024 .

3203. Luo, Y. and M. Zhang. 2009. Multimedia transport and risk assessment of organophosphate pesticides and a case study in the northern San Joaquin Valley of California. Chemosphere. 75(7): 969-978. DOI: 10.1016/j.chemosphere.2009.01.005 .

3204. Luo, Y., J. Arnold, S. Y. Liu, X. Y. Wang and X. Chen. 2013. Inclusion of glacier processes for distributed hydrological modeling at basin scale with application to a watershed in Tianshan Mountains, northwest China. Journal of Hydrology. 477: 72-85. DOI: 10.1016/j.jhydrol.2012.11.005 .

3205. Luo, Y., C.S. He, M. Sophocleous, Z.F. Yin, H.R. Ren and O.Y. Zhu. 2008. Assessment of crop growth and soil water modules in SWAT2000 using extensive field experiment data in an irrigation district of the Yellow River Basin. Journal of Hydrology. 352: 139-156. DOI: 10.1016/j.jhydrol.2008.01.003 .

3206. Luo, Y., D. Ficklin, X. Liu and M. Zhang. 2013. Assessment of climate change impacts on hydrology and water quality with a watershed modeling approach. Science of the Total Environment. 450-451: 72-82. DOI: 10.1016/j.scitotenv.2013.02.004 .

3207. Luo, Y., J. Arnold, P. Allen and X. Chen. 2012. Baseflow simulation using SWAT model in an inland river basin in Tianshan Mountains, Northwest China. Hydrology and Earth System Sciences. 16: 1259-1267. DOI: 10.5194/hess-16-1259-2012 .

3208. Luo, Y., X. Wang, S. Piao, L. Sun, P. Ciais, Y. Zhang, C. Ma, R. Gan and C. He. 2018. Contrasting streamflow regimes induced by melting glaciers across the Tien Shan - Pamir - North Karakoram. Scientific Reports. 8: 16470. DOI: 10.1038/s41598-018-34829-2 .

3209. Luo, Y., X. Zhang, X. Liu, D. Ficklin and M. Zhang. 2008. Dynamic modeling of organophosphate pesticide load in surface water in the northern San Joaquin Valley Watershed of California. Environmental Pollution. 156(3): 1171-1181. DOI: 10.1016/j.envpol.2008.04.005 .

3210. Luo, Y.X., B.L. Su, Q. Zhang and W. Yang. 2013. Identifying and modeling confined hydrological processes in plain polders. Resources Science. 35(3): 594-600.

3211. Luo, Z. and Q. Shao. 2022. A modified hydrologic model for examining the capability of global gridded PET products in improving hydrological simulation accuracy of surface runoff, streamflow and baseflow. Journal of Hydrology. 610: 127960. DOI: 10.1016/j.jhydrol.2022.127960 .

3212. Luz, M.P., L.C. Beevers, A.J.S. Cuthbertson, G.M. Medero, V.S. Dias and D.T.F. Nascimento. 2016. The mitigation potential of buffer strips for reservoir sediment yields: The Itumbiara Hydroelectric Power Plant in Brazil. Water. 8: 489. DOI: 10.3390/w8110489 .

3213. Lv, A., S. Qi and G. Wang. 2022. Multi-model driven by diverse precipitation datasets increases confidence in identifying dominant factors for runoff change in a subbasin of the Qaidam Basin of China. Science of the Total Environment. 802: 149831. DOI: 10.1016/j.scitotenv.2021.149831 .

3214. Lv, M., T. Hu, L. Dan and M. Lv. 2014. Daily streamflow simulation in a small-scale farmland catchment using modified SWAT model. Transactions of the ASABE. 57(1): 31-41. DOI: 10.13031/trans.57.10134 .

3215. Lv, M., Z. Hao, Z. Lin, Z. Ma, M. Lv and J. Wang. 2016. Reservoir operation with feedback in a coupled land surface and hydrologic model: A case study of the Huai River Basin, China. Journal of the American Water Resources Association. 52(1): 168-183. DOI: 10.1111/1752-1688.12375 .

3216. Lv, Z., T. Qin, Y. Wang, J. Mu, S. Liu and H. Nie. 2020. Effects of recent and potential land use and climate changes on runoff and sediment load in the Upper Yellow River Basin, China. Polish Journal of Environmental studies. 29(6): 4225-4240. DOI: 10.15244/pjoes/119478 .

3217. Lweendo, M.K., B. Lu, M. Wang, H. Zhang and W. Xu. 2017. Characterization of droughts in humid subtropical region, Upper Kafue River Basin (Southern Africa). Water. 9(4): 242. DOI: 10.3390/w9040242 .

3218. Ly, K., G. Metternicht and L. Marshall. 2019. Transboundary river catchment areas of developing countries: Potential and limitations of watershed models for the simulation of sediment and nutrient loads. A review. Journal of Hydrology: Regional Studies. 24: 100605. DOI: 10.1016/j.ejrh.2019.100605 .

3219. Lyu, L., X. Wang, C. Sun, T. Ren and D. Zheng. 2019. Quantifying the effect of land use change and climate variability on green water resources in the Xihe River Basin, Northeast China. Sustainability. 11(2): 338. DOI: 10.3390/su11020338 .

3220. M. Sedighkia and A. Abdoli. 2022. Balancing environmental impacts and economic benefts of agriculture under the climate change through an integrated optimization system. International Journal of Energy and Environmental Engineering. 13(3): 1053-1066. DOI: 10.1007/s40095-022-00482-9 .

3221. M’Barek, S.A., A. Rochdi, Y. Bouslihim and A. Miftah. 2021. Multi-site calibration and validation of SWAT model for hydrologic modeling and soil erosion estimation: A case study in El Grou Watershed, Morocco. Ecological Engineering & Environmental Technology. 22(6): 52-59. DOI: 10.12912/27197050/141593 .

3222. Ma, D., B. Qian, H. Gu, Z. Sun and Y.-P. Xu. 2021. Assessing climate change impacts on streamflow and sediment load in the upstream of the Mekong River Basin. International Journal of Climatology. 41(5): 3391-3410. DOI: 10.1002/joc.7025 .

3223. Ma, D., Y.P. Xu, H. Gu, Q. Zhu, Z. Sun and W. Xuan. 2019. Role of satellite and reanalysis precipitation products in streamflow and sediment modeling over a typical alpine and gorge region in southwest China. Science of the Total Environment. 685: 934-950. DOI: 10.1016/j.scitotenv.2019.06.183 .

3224. Ma, D., Y.-P. Xu, W. Xuan, H. Gu, Z. Sun and Z. Bai. 2020. Do model parameters change under changing climate and land use in the upstream of the Lancang River Basin, China? Hydrological Sciences Journal. 65(11): 1894-1908. DOI: 10.1080/02626667.2020.1782915 .

3225. Ma, J., B. Cui, L. Liu, X. Hao, F. Liang, Z. Jiang and J. Yang. 2022. Dynamic characteristics of drought conditions during the growth of winter wheat based on an improved SWAT model. Water. 14(4): 566. DOI: 10.3390/w14040566 .

3226. Ma, K., X. Huang, C. Liang, H. Zhao, X. Zhou and X. Wei. 2020. Effect of land use/cover changes on runoff in the Min River Watershed. River Research and Applications. 36(5): 749-759. DOI: 10.1002/rra.3608 .

3227. Ma, T., Z. Duan, R. Li and X. Song. 2019. Enhancing SWAT with remotely sensed LAI for improved modelling of ecohydrological process in subtropics. Journal of Hydrology. 570: 802-815. DOI: 10.1016/j.jhydrol.2019.01.024 .

3228. Ma, X., C. Zhao and J. Zhu. 2021. Aggravated risk of soil erosion with global warming – A global meta-analysis. Catena. 200: 105129. DOI: 10.1016/j.catena.2020.105129 .

3229. Ma, X., J. Xu and M. van Noordwijk. 2010. Sensitivity of streamflow from a Himalayan catchment to plausible changes in land cover and climate. Hydrological Processes. 24(11): 1379-1390. DOI: 10.1002/hyp.7602 .

3230. Ma, X., J. Xu, Y. Luo, S.P. Aggarwal and J. Li. 2008. Response of hydrological processes to land-cover and climate changes in Kejie Watershed, south-west China. Hydrological Processes. 23(8): 1179-1191. DOI: 10.1002/hyp.7233 .

3231. Ma, X., T.-Z. Yan, H.-T. Cao and S.-B. Chen. 2014. Bibliometric analysis on literatures of non-point source pollution at a watershed scale. Journal of Library and Information Sciences in Agriculture. 26(6): 55-61. URL: http://caod.oriprobe.com/articles/41930614/Bibliometric_analysis_on_literatures_of_Non_Point_Source_Pollution_at_.htm.

3232. Ma, X., X.X. Lu, M. van Noordwijk, J.T. Li and J.C. Xu. 2014. Attribution of climate change, vegetation restoration, and engineering measures to the reduction of suspended sediment in the Kejie Catchment, southwest China. Hydrology and Earth System Sciences. 18: 1979-1994. DOI: 10.5194/hess-18-1979-2014 .

3233. Mabhaudhi, T., T.L. Dirwai, C. Taguta, A. Sikka and J. Lautze. 2023. Mapping Decision Support Tools (DSTs) on agricultural water productivity: A global systematic scoping review. Agricultural Water Management. 290: 108590. DOI: 10.1016/j.agwat.2023.108590 .

3234. MacDonald, J.D., J.R. Kiniry, G. Putz and E.E. Prepas. 2008. A multi-species, process based vegetation simulation module to simulate successional forest regrowth after forest disturbance in daily time step hydrological transport models. Journal of Environmental Engineering and Science. 7(S1): S127-S143. DOI: 10.1139/S08-008 .

3235. Machado, R.E. and C.A. Vettorazzi. 2003. Sediment yield simulation for the watershed Ribeirão dos Marins, State of São Paulo, Brazil. Revista Brasileira de Ciência do Solo. 27(4): 735-741. DOI: 10.1590/S0100-06832003000400018 .

3236. Machado, R.E., C.A. Vettorazzi and D.E. Cruciani. 2003. Streamflow simulation for a small watershed using geoprocessing and modeling techniques. Revista Brasileira de Recursos Hidricos. 8(1): 147-155. DOI: 10.21168/rbrh.v8n1.p147-155 .

3237. Machado, R.E., C.A. Vettorazzi and A.C. Xavier. 2014. Alternative scenario simulation of land use in a watershed through geoprocessing and modeling techniques. Revista Brasileira de Ciência do Solo. 27: 727-733. DOI: 10.1590/S0100-06832003000400017 .

3238. Madhusudana, R.C. and A. Bardhan. 2020. Uncertainties and nonstationarity in streamflow projections under climate change scenarios and the ensuing adaptation strategies in Subarnarekha River Basin, India. Global Nest Journal. 22(3): 320-335. DOI: 10.30955/gnj.003328 .

3239. Magalhães, A.G., A.A. de Assunção Montenegro, C.W.L. de Andrade, S.M.G.L. Montenegro and R.V. de Paiva Fontes Júnior. 2018. Hydrological modeling of an experimental basin in the semiarid region of the Brazilian State of Pernambuco. Ambiente & Água. 13(6): e2204. DOI: 10.4136/ambi-agua.2204 .

3240. Maghsood, F.F., H. Moradi, A.Z.M. Bavani, M. Panahi, R. Berndtsson and H. Hashemi. 2019. Climate change impact on flood frequency and source area in northern Iran under CMIP5 scenarios. Water. 11(2): 273. DOI: 10.3390/w11020273 .

3241. Magombeyi, M.S. and A.E. Taigbenu. 2011. An integrated modelling framework to aid smallholder farming system management in the Olifants River Basin, South Africa. Physics and Chemistry of the Earth. 36(14-15): 1012-1024. DOI: 10.1016/j.pce.2011.07.079 .

3242. Magombeyi, M.S. and A.E. Taigbenu. 2014. Sensitivity and uncertainty propagation in coupled models for assessing smallholder farmer food security in the Olifants River Basin, South Africa. Environmental Modelling & Software. 60: 228-240. DOI: 10.1016/j.envsoft.2014.05.021 .

3243. Magris, R.A., M. Marta-Almeida, J.A.F. Monteiro and N.C. Ban. 2019. A modelling approach to assess the impact of land mining on marine biodiversity: Assessment in coastal catchments experiencing catastrophic events (SW Brazil). Science of the Total Environment. 659: 828-840. DOI: 10.1016/j.scitotenv.2018.12.238 .

3244. Mahaarcha, V. and N. Tangham. 2013. Reevaluating FMOLP decision variable coefficients using the SWAT results for the optimization of sustainable agricultural land use in small watershed. Modern Applied Science. 7(7): 59-76. DOI: 10.5539/mas.v7n7p59 .

3245. Maharjan, G.R., A.-K. Prescher, C. Nendel, F. Ewert, C.M. Mboh, T. Gaiser and S.J. Seidel. 2018. Approaches to model the impact of tillage implements on soil physical and nutrient properties in different agro-ecosystem models. Soil & Tillage Research. 180: 210-221. DOI: 10.1016/j.still.2018.03.009 .

3246. Maharjan, G.R., M. Ruidisch, C.L. Shope, K. Choi, B. Huwe, S.J. Kim, J. Tenhunen and S. Arnhold. 2016. Assessing the effectiveness of split fertilization and cover crop cultivation in order to conserve soil and water resources and improve crop productivity. Agricultural Water Management. 163: 305-318. DOI: 10.1016/j.agwat.2015.10.005 .

3247. Maharjan, G.R., Y.S. Park, N.W. Kim, D.S. Shin, J.W. Choi, G.W. Hyun, J.-H. Jeon, Y.S. Ok and K.J. Lim. 2013. Evaluation of SWAT sub-daily runoff estimation at small agricultural watershed in Korea. Frontiers of Environmental Science & Engineering. 7(1): 109-119. DOI: 10.1007/s11783-012-0418-7 .

3248. Maharjan, M., A. Aryal, R. Talchabhadel and B.R. Thapa. 2021. Impact of climate change on the streamflow modulated by changes in precipitation and temperature in the north latitude watershed of Nepal. Hydrology. 8(3): 1117. DOI: 10.3390/hydrology8030117 .

3249. Maheswaran, R., R. Khosa, A.K. Gosain, S. Lahari, S.K. Sinha, B.R. Chahar and C.T. Dhanya. 2016. Regional scale groundwater modelling study for Ganga River Basin. Journal of Hydrology. 541, Part B: 727–741. DOI: 10.1016/j.jhydrol.2016.07.029 .

3250. Mahmoodi, N., D.P. Wagner., J. Kiesel and N. Fohrer. 2021. Modeling the impact of climate change on streamflow and major hydrological components of an Iranian wadi system. Journal of Water and Climate Change. 12(5): 1598-1613. DOI: 10.2166/wcc.2020.098 .

3251. Mahmoodi, N., J. Kiesel, D.P. Wagner and N. Fohrer. 2020. Integrating water use systems and soil and water conservation measures into a hydrological model of an Iranian wadi system. Journal of Arid Land. 12(4): 545-560. DOI: 10.1007/s40333-020-0125-3 .

3252. Mahmoodi, N., J. Kiesel, P.D. Wagner and N. Fohrer. 2021. Spatially distributed impacts of climate change and groundwater demand on the water resources in a wadi system. Hydrology and Earth System Sciences. 25(9): 5065–5081. DOI: 10.5194/hess-25-5065-2021 .

3253. Mahmoodi, N., P.D. Wagner, C. Lei, B. Narasimhan and N. Fohrer. 2024. Enhancing hydrologic modelling through the representation of traditional rainwater harvesting systems: A case study of water tanks in South India. Hydrological Processes. 38(2): e15088. DOI: 10.1002/hyp.15088 .

3254. Mahmoud, M.I. and M.N. Kasim. 2019. Sediment yield problems in Khassa Chai Watershed using hydrologic models. Cihan University-Erbil Scientific Journal. 3(1): 34-41. DOI: 10.24086/cuesj.v3n1y2019.pp34-41 .

3255. Mahmoudi, P., M.Z. Niri and A.N. Jilani. 2021. Surface runoff simulation based on SWATCUP sensitivity analysis method (case study: Ghareh-Chay River ). Nivar. 45(112): 44-55. URL: https://nivar.irimo.ir/article_129710.html?lang=en.

3256. Mahmudi, P., B. Motamedvaziri, M. Hosseini, H. Ahmadi and A. Amini. 2021. Study of climate change effects on hydrological processes in Siminehroud and Zarrinehroud watersheds northwest of Iran. Earth Science Informatics. 14(2): 965-974. DOI: 10.1007/s12145-021-00598-2 .

3257. Mahoney, D.T., J.F. Fox and N. Al Aamery. 2018. Watershed erosion modeling using the probability of sediment connectivity in a gently rolling system. Journal of Hydrology. 561: 862-883. DOI: 10.1016/j.jhydrol.2018.04.034 .

3258. Mahoney, D.T., N. Al Aamery, J.F. Fox, B. Riddle, W. Ford and Y.T. Wang. 2019. Equilibrium sediment exchange in the earth's critical zone: Evidence from sediment fingerprinting with stable isotopes and watershed modeling. Journal of Soils and Sediment. 19(9): 3332-3356. DOI: 10.1007/s11368-018-2208-8 .

3259. Mahzari, S., F. Kiani, M. Azimi and F. Khormali. 2016. Using SWAT model to determine runoff, sediment yield and nitrate loss in Gorganrood Watershed, Iran. ECOPERSIA. 4(2): 1361-1379. URL: https://ecopersia.modares.ac.ir/article-24-7489-en.html.

3260. Maier, N. and J. Dietrich. 2016. Using SWAT for strategic planning of basin scale irrigation control policies: A case study from a humid region in northern Germany. Water Resources Management. 30(9): 3285–3298. DOI: 10.1007/s11269-016-1348-0 .

3261. Majeske, N., X. Zhang, M. Sabaj, L. Gong, C. Zhu and A. Azad. 2022. Inductive predictions of hydrologic events using a long short-term memory network and the Soil and Water Assessment Tool. Environmental Modelling & Software. 152: 105400. DOI: 10.1016/j.envsoft.2022.105400 .

3262. Makarewicz, J.C., T.W. Lewis, M. Winslow, E. Rea, L. Dressel, D. Pettenski, B.J. Snyder, P. Richards and J. Zollweg. 2015. Utilizing intensive monitoring and simulations for identifying sources of phosphorus and sediment and for directing, siting, and assessing BMPs: The Genesee River example. Journal of Great Lakes Research. 41(3): 743-759. DOI: 10.1016/j.jglr.2015.06.004 .

3263. Makhtoumi, Y., S. Li, V. Ibeanusi and G. Chen. 2020. Evaluating Water Balance Variables under Land Use and Climate Projections in the Upper Choctawhatchee River Watershed, in Southeast US. Water. 12(8): 2205. DOI: 10.3390/w12082205 .

3264. Makumbura, R.K., M.B. Gunathilake, J.T. Samarasinghe, R. Confesor, N. Muttil and U. Rathnayake. 2022. Comparison of calibration approaches of the Soil and Water Assessment Tool (SWAT) model in a tropical watershed. Hydrology. 9(10): 183. DOI: 10.3390/hydrology9100183 .

3265. Makwana, J.J., M.K. Tiwari and N.K. Pampaniya. 2019. Impact assessment of land use and cover changes on water resources using RS and GIS Techniques in watershed area. Journal of Soil and Water Conservation (India). 18(1): 11-21. DOI: 10.5958/2455-7145.2019.00002.X .

3266. Malagò, A., D. Efstathiou, F. Bouraoui, N.P. Nikolaidis, M. Franchini, G. Bidoglio and M. Kritsotakis. 2016. Regional scale hydrologic modeling of a karst-dominant geomorphology: The case study of the Island of Crete. Journal of Hydrology. 540: 64–81. DOI: 10.1016/j.jhydrol.2016.05.061 .

3267. Malagò, A., F. Bouraoui and A. De Roo. 2018. Diagnosis and treatment of the SWAT hydrological response using the Budyko Framework. Sustainability. 10(5): 1373. DOI: 10.3390/su10051373 .

3268. Malagó, A., F. Bouraoui, M. Pastori and E. Gelati. 2019. Modelling nitrate reduction strategies from diffuse sources in the Po River Basin. Water. 11(5): 1030. DOI: 10.3390/w11051030 .

3269. Malagó, A., F. Bouraoui, O. Vigiak, B. Grizzetti and M. Pastori. 2017. Modelling water and nutrient fluxes in the Danube River Basin with SWAT. Science of the Total Environment. 603-604: 196-218. DOI: 10.1016/j.scitotenv.2017.05.242 .

3270. Malagò, A., L. Pagliero, F. Bouraoui and M. Franchini. 2015. Comparing calibrated parameter sets of the SWAT model for the Scandinavian and Iberian Peninsulas. Hydrological Sciences Journal. 60(5): 949-967. DOI: 10.1080/02626667.2014.978332 .

3271. Malagò, A., O. Vigiak, F. Bouraoui, L. Pagliero and M. Franchini. 2018. The hillslope length impact on SWAT streamflow prediction in large basins. Journal of Environmental Informatics. DOI: 10.3808/jei.201700384 .

3272. Malede, D.A., T. Alamirew and T.G. Andualem. 2023. Integrated and individual impacts of land use land cover and climate changes on hydrological flows over Birr River Watershed, Abbay Basin, Ethiopia. Water. 15(1): 166. DOI: 10.3390/w15010166 .

3273. Maleki Tirabadi, M.S., M.E. Banihabib and T.O. Randhir. 2021. SWAT-S: A SWAT-salinity module for watershed-scale modeling of natural salinity. Environmental Modelling & Software. 135: 104906. DOI: 10.1016/j.envsoft.2020.104906 .

3274. Maleki Tirabadi, M.S., M.E. Banihabib and T.O. Randhir. 2022. An integrated framework for simultaneously modeling primary and secondary salinity at a watershed scale. Journal of Hydrology. 612: 128171. DOI: 10.1016/j.jhydrol.2022.128171 .

3275. Maleki Tirabadi, M.S., M.E. Banihabib and T.O. Randhir. 2022. SWAT-SF: A flexible SWAT-based model for watershed-scale water and soil salinity modeling. Journal of Contaminant Hydrology. 244: 103893. DOI: 10.1016/j.jconhyd.2021.103893 .

3276. Malhotra, K., J. Lamba, P. Srivastava and S. Shepherd. 2018. Fingerprinting suspended sediment sources in an urbanized watershed. Water. 10(11): 1573. DOI: 10.3390/w10111573 .

3277. Maliehe, M. and D.M.M. Mulungu. 2017. Assessment of water availability for competing uses using SWAT and WEAP in South Phuthiatsana Catchment, Lesotho. Physics and Chemistry of the Earth, Parts A/B/C. 100: 305-316. DOI: 10.1016/j.pce.2017.02.014 .

3278. Malik, M.A., A.Q. Dar and M.K. Jain. 2022. Modelling streamflow using the SWAT model and multi‑site calibration utilizing SUFI‑2 of SWAT‑CUP model for high altitude catchments, NW Himalaya’s. Modeling Earth Systems and Environment. 8(1): 1203-1213. DOI: 10.1007/s40808-021-01145-0 .

3279. Malik, M.A., A.Q. Dar and M.K. Jain. 2022. Modelling the infuence of changing climate on the hydrology of high elevation catchments in NW Himalaya’s. Modeling Earth Systems and Environment. 8(4): 4487-4496. DOI: 10.1007/s40808-022-01407-5 .

3280. Malik, W., M.-T. Jiménez-Aguirre and F. Dechmi. 2020. Coupled DSSAT-SWAT models to reduce off-site N pollution in Mediterranean irrigated watershed. Science of the Total Environment. 745: 141000. DOI: 10.1016/j.scitotenv.2020.141000 .

3281. Malone, R.W., G. Yagow, C. Baffaut, M.W. Gitau, Z. Qi, D.M. Amatya, P.B. Parajuli, J.V. Bonta and T.R. Green. 2015. Parameterization guidelines and considerations for hydrologic models. Transactions of the ASABE. 58(6): 1681-1703. DOI: 10.13031/trans.58.10709 .

3282. Malone, R.W., S. Herbstritt, L.Ma, T.L. Richard, R. Cibin, P.W. Gassman, H.H. Zhang, D.L. Karlena, J.L. Hatfield, J.F. Obrycki, M.J. Helmers, D.B. Jaynes, T.C. Kaspar, T.B. Parkin and Q.X. Fang. 2019. Corn stover harvest N and energy budgets in central Iowa. Science of the Total Environment. 663: 776–792. DOI: 10.1016/j.scitotenv.2019.01.328 .

3283. Malutta, S., M. Koviyama and L. Fuerst. 2013. Analysis of water quality of principal rivers in the Rio Negrinho City (SC). Ambiência. 9(1): 173-186. DOI: 10.5777/ambiencia.2013.01.11 .

3284. Mami, A., D. Yebdri, S. Sauvage, M. Raimonet and J. Miguel. 2021. Spatio-temporal trends of hydrological components: The case of the Tafna Basin (northwestern Algeria). Journal of Water and Climate Change. 12(7): 2948-2976. DOI: 10.2166/wcc.2021.242 .

3285. Mami, A., M. Raimonet, D. Yebdri, S. Sauvage, A. Zettam and J.M.S. Perez. 2021. Future climatic and hydrologic changes estimated by bias-adjusted regional climate model outputs of the Cordex-Africa project: case of the Tafna basin (North-Western Africa). International Journal of Global Warming. 23(1): 58-90. DOI: 10.1504/IJGW.2021.112489 .

3286. Mandal, U., D.R. Sena, A. Dhar, S.N. Panda, P.P. Adhikary and P. K. Mishra. 2021. Assessment of climate change and its impact on hydrological regimes and biomass yield of a tropical river basin. Ecological Indicators. 126: 107646. DOI: 10.1016/j.ecolind.2021.107646 .

3287. Mandal, U., S. Sahoo, S.B. Munusamy, A. Dhar, S.N. Panda, A. Kar and P.K. Mishra. 2016. Delineation of groundwater potential zones of coastal groundwater basin using multi-criteria decision making technique. Water Resources Management. 30(12): 4293–4310. DOI: 10.1007/s11269-016-1421-8 .

3288. Mangi, H.O., S.M. Onywere, E.C. Kitur, M.C.S. Lalika and N.A. Chilagane. 2022. Hydrological response to land use and land cover change on the slopes of Kilimanjaro and Meru Mountains. Ecohydrology & Hydrobiology. 22(4): 609-626. DOI: 10.1016/j.ecohyd.2022.08.002 .

3289. Mango, L.M., A.M. Melesse, M.E. McClain, D. Gann and S.G. Setegn. 2011. Land use and climate change impacts on the hydrology of the Upper Mara River Basin, Kenya: Results of a modeling study to support better resouce management. Hydrology and Earth System Sciences. 15(7): 2245-2358. DOI: 10.5194/hess-15-2245-2011 .

3290. Mangsamong, W. and H. Kodah. 2018. The study of parameter sensitivity of SWAT model for runoff and groundwater: A case study of Phetchaburi Basin. Princess of Naradhiwas University Journal. 10(2): 80-92. URL: https://li01.tci-thaijo.org/index.php/pnujr/article/ view/111624.

3291. Mangsamong, W. and I. Hayiyusoh. 2020. Application of Soil and Water Assessment Tool model to estimate stream flow due to a change in land use in Bangnara Basin. Princess of Naradhiwas University Journal. 12(3): 229-244. URL: https://li01.tci-thaijo.org/index.php/pnujr/article/view/219782.

3292. Manguerra, H.B. and B.A. Engel. 1998. Hydrologic parameterization of watersheds for runoff prediction using SWAT. Journal of the American Water Resources Association. 34(5): 1149-1162. DOI: 10.1111/j.1752-1688.1998.tb04161.x .

3293. Manhi, H.K., Q.Y. Salman and Al-Kubaisi. 2021. Estimation of annual runoff of Galal Badra Transboundary Watershed using Arc SWAT model, Wasit, eastern of Iraq. Iraqi Geological Journal . 54(1D): 69-81. DOI: 10.46717/igj.54.1D.6Ms-2021-04-26 .

3294. Mani, S.T., V. Kolluru, M. Amai and T.D. Acharya. 2022. Enhanced streamflow simulations using nudging based optimization coupled with data-driven and hydrological models. Journal of Hydrology: Regional Studies. 43: 101190. DOI: 10.1016/j.ejrh.2022.101190 .

3295. Manivasagam V.S. and R. Nagarajan. 2017. Assessing the supplementary irrigation for improving crop productivity in water stress region using spatial hydrological model. Geocarto International. 32(1): 1-17. DOI: 10.1080/10106049.2015.1120355 .

3296. Mannschatz, T., T. Wolf and S. Hülsmann. 2016. Nexus Tools Platform: Web-based comparison of modelling tools for analysis of water-soil-waste nexus. Environmental Modelling & Software. 76: 137–153. DOI: 10.1016/j.envsoft.2015.10.031 .

3297. Mansouri, B. and R. Pirmoradian. 2019. Evaluation and comparison of lumped and semi-distributed rainfall-runoff models. Journal of Water and Sustainable Development . 5(2): 81-90. DOI: 10.22067/jwsd.v5i2.66081 .

3298. Mapes, K.L. and N.G. Pricope. 2020. Evaluating SWAT model performance for runoff, percolation, and sediment loss estimation in low-gradient watersheds of the Atlantic Coastal Plain. Hydrology. 7(2): 21. DOI: 10.3390/hydrology7020021 .

3299. Mapfumo, E., D.S. Chanasyk and W.D. Willms. 2004. Simulating daily soil water under foothills fescue grazing with the soil and water assessment tool model (Alberta, Canada). Hydrological Processes. 18(15): 2787-2800. DOI: 10.1002/hyp.1493 .

3300. Marahatta, S., D. Aryal, L.P. Devkota, U. Bhattarai and D. Shrestha. 2021. Application of SWAT in hydrological simulation of complex mountainous river basin (Part II: Climate change impact assessment). Water. 13(11): 1548. DOI: 10.3390/w13111548 .

3301. Marahatta, S., L.P. Devkota and D. Aryal. 2021. Application of SWAT in hydrological simulation of complex mountainous river basin (Part I: Model development). Water. 13(11): 1546. DOI: 10.3390/w13111546 .

3302. Marak, J.D.K., A.K. Sarma and R.K. Bhattacharjya. 2020. Assessing the impacts of interbasin water transfer reservoir on streamflow. Journal of Hydrologic Engineering. 25(10): 05020034. DOI: 10.1061/(ASCE)HE.1943-5584.0001984 .

3303. Maranda, B. and F. Anctil. 2015. SWAT performance as influenced by potential evapotransportation formulations in a Canadian watershed. Transactions of the ASABE. 58(6): 1585-1600. DOI: 10.13031/trans.58.11290 .

3304. Mararakanye, N., J.J. Le Roux and A.C. Franke. 2022. Long-term water quality assessments under changing land use in a large semi-arid catchment in South Africa. Science of the Total Environment. 818: 151670. DOI: 10.1016/j.scitotenv.2021.151670 .

3305. Marchioro, E., N.F. Fernandes, J.R. de Macedo, S.B. Bhering, A.O. Gonçalves and R.B. Prado. 2014. Modelagem da produção de sedimentos usando cenário ambiental alternativo no noroeste do Rio de Janeiro - Brasil. Geografias. 18(1): 54-70. URL: https://periodicos.ufmg.br/index.php/geografias/article/view/13374.

3306. Marcinkowski, P. and D. Mirosław-Świątek. 2020. Modelling of climate change impact on flow conditions in the lowland anastomosing river. PeerJ. 8: e9275. DOI: 10.7717/peerj.9275 .

3307. Marcinkowski, P. and M. Piniewski. 2018. Effect of climate change on sowing and harvest dates of spring barley and maize in Poland. International Agrophysics. 32(2): 265-271. DOI: 10.1515/intag-2017-0015 .

3308. Marcinkowski, P., I. Kardel, E. Placzkowska, M. Gielczewski, P. Osuch, T. Okruszko, N. Venegas-Cordero, S. Ignar and M. Piniewski. 2023. High-resolution simulated water balance and streamflow data set for 1951–2020 for the territory of Poland. Geoscience Data Journal. 10(2): 195-207. DOI: 10.1002/gdj3.152 .

3309. Marcinkowski, P., M. Piniewski, I. Kardel, M. Gielczewski and T. Okruszko. 2013. Modelling of discharge, nitrate and phosphate loads from the Reda Catchment to the Puck Lagoon using SWAT. Annals of Warsaw University of Life Sciences - SGGW Land Reclamation. 45(2): 125-141. URL: http://www.degruyter.com/view/j/sggw.2013.45.issue-2/sggw-2013-0011/sggw-2013-0011.xml?format=INT.

3310. Marcinkowski, P., M. Piniewski, I. Kardel, R. Srinivasan and T. Okruszko. 2016. Challenges in modelling of water quantity and quality in two contrasting meso-scale catchments in Poland. Journal of Water and Land Development. 31(10-12): 97-111. DOI: 10.1515/jwld-2016-0040 .

3311. Marcinkowski, P., M. Piniewski, I. Kardel, M. Szcześniak, R. Benestad, R. Srinivasan, S. Ignar and T. Okruszko. 2017. Effect of climate change on hydrology, sediment and nutrient losses in two lowland catchments in Poland. Water. 9(3): 156. DOI: 10.3390/w9030156 .

3312. Maréchal, J.-C., A. Selles, B. Dewandel, A. Boisson, J. Perrin and S. Ahmed. 2018. An observatory of groundwater in crystalline rock aquifers exposed to a changing environment: Hyderabad, India. Vadose Zone Journal. DOI: 10.2136/vzj2018.04.0076 .

3313. Marek, G.W., P.H. Gowda, T.H. Marek, D.O. Porter, R.L. Baumhardt and D.K. Brauer. 2017. Modeling long‑term water use of irrigated cropping rotations in the Texas High Plains using SWAT. Irrigation Science. 35(2): 111–123. DOI: 10.1007/s00271-016-0524-6 .

3314. Marek, G.W., P.H. Gowda, S.R. Evett, R.L. Baumhardt, D.K. Brauer, T.A. Howell, T.H. Marek and R. Srinivasan. 2016. Calibration and validation of the SWAT model for predicting daily ET over irrigated crops in the Texas High Plains using lysimetric data. Transactions of the ASABE. 59(2): 611-622. DOI: 10.13031/trans.59.10926 .

3315. Marek, G.W., P.H. Gowda, S.R. Evett, R.L. Baumhardt, D.K. Brauer, T.A. Howell, T.H. Marek and R. Srinivasan. 2016. Estimating Evapotransportation for dryland cropping systems in the semiarid Texas high plains using SWAT. Journal of the American Water Resources Association. 52(2): 298-314. DOI: 10.1111/1752-1688.12383 .

3316. Marek, G.W., R.L. Baumhardt, D.K. Brauer, P.H. Gowda, S.A. Mauget and J.E. Moorhead. 2018. Evaluation of the Oceanic Niño Index as a decision support tool for winter wheat cropping systems in the Texas High Plains using SWAT. Computers and Electronics in Agriculture. 151: 331-337. DOI: 10.1016/j.compag.2018.06.030 .

3317. Marek, G.W., Y. Chen, T.H. Marek, K.R Heflin, S.A. O’Shaughnessy, P.H. Gowda and D.K. Brauer. 2020. Assessing planting date effects on seasonal water use of full-and short-season maize using SWAT in the southern Ogallala Aquifer Region. Irrigation Science. 38(1): 77-87. DOI: 10.1007/s00271-019-00653-3 .

3318. Marhaento, H., J.B. Martijn and A.Y. Hoekstra. 2018. Hydrological response to future land-use change and climate change in a tropical catchment. Hydrological Sciences Journal. 63(9): 1368-1385. DOI: 10.1080/02626667.2018.1511054 .

3319. Marhaento, H., M.J. Booij, N. Rahardjo and N. Ahmed. 2021. Impacts of forestation on the annual and seasonal water balance of a tropical catchment under climate change. Forest Ecosystems. 8: 64. DOI: 10.1186/s40663-021-00345-5 .

3320. Marhaento, H., M.J. Booij, T.H.M. Rientjes and A.Y. Hoekstra. 2017. Attribution of changes in the water balance of a tropical catchment to land use change using the SWAT model. Hydrological Processes. 31(11): 2029–2040. DOI: 10.1002/hyp.11167 .

3321. Marhaento, H., M.J. Booij, T.H.M. Rientjes and A.Y. Hoekstra. 2019. Sensitivity of streamflow characteristics to different spatial land-use configurations in tropical catchment. Journal of Water Resources Planning and Management. 145(12): 04019054. DOI: 10.1061/(ASCE)WR.1943-5452.0001122 .

3322. Marin, M., I. Clinciu, N.C. Tudose, C. Ungurean, A. Adorjani, A.L. Mihalache, A.A. Davidescu, L. Dinca and H. Cacovean. 2020. Assessing the vulnerability of water resources in the context of climate changes in a small forested watershed using SWAT: A review. Environmental Research. 184: 109330. DOI: 10.1016/j.envres.2020.109330 .

3323. Marin, M., I. Clinciu, N.C. Tudose, C. Ungurean, A.L. Mihalache, N.E. Martoiu and O.N. Tudose. 2022. Assessment of seasonal surface runoff under climate and land use change scenarios for a small forested watershed: Upper Tarlung Watershed (Romania). Water. 14(18): 2860. DOI: 10.3390/w14182860 .

3324. Maringanti, C., Chaubey, I. and J. Popp. 2009. Development of a multiobjective optimization tool for the selection and placement of best management practices for nonpoint source pollution control. Water Resources Research. 45: 1-15. DOI: 10.1029/2008WR007094 .

3325. Maringanti, C., I. Chaubey, M. Arabi and B. Engel. 2011. Application of a multi-objective optimization method to provide least cost alternatives for NPS pollution control. Environmental Management. 48(3): 448-461. DOI: 10.1007/s00267-011-9696-2 .

3326. Marinov, D., L. Galbiati, G. Giordani, P. Viaroli, A. Norro, S. Bencivelli and J.-M. Zaldívar. 2007. An integrated modeling approach for the management of clam farming in coastal lagoons. Aquaculture. 269(1-4): 306-320. DOI: 10.1016/j.aquaculture.2007.04.071 .

3327. Markhi, A., N. Laftouhi, Y. Grusson and A. Soulaimani. 2019. Assessment of potential soil erosion and sediment yield in the semi‐arid N′fis Basin (High Atlas, Morocco) using the SWAT model. Acta Geophysica. 67(1): 263-272. DOI: 10.1007/s11600-019-00251-z .

3328. Markovic, D. and M. Koch. 2015. Stream response to precipitation variability: A spectral view based on analysis and modelling of hydrological cycle components. Hydrological Processes. 29(7): 1806-1816. DOI: 10.1002/hyp.10293 .

3329. Marras, P.A., D.C.A. Lima, P.M.M. Soares, R.M. Cardoso, D. Medas, E. Dore and G.D. Giudici. 2021. Future precipitation in a Mediterranean island and streamflow changes for a small basin using EURO-CORDEX regional climate simulations and the SWAT model. Journal of Hydrology. 603(Part B): 127025. DOI: 10.1016/j.jhydrol.2021.127025 .

3330. Marshall, E. and T. Randhir. 2008. Effect of climate change on watershed system: A regional analysis. Climatic Change. 89(3-4): 263-280. DOI: 10.1007/s10584-007-9389-2 .

3331. Marshall, E. and T.O. Randhir. 2008. Spatial modeling of land cover change and watershed reponse using Markovian cellular automata and simulation. Water Resources Research. 44: 1-11. DOI: 10.1029/2006WR005514 .

3332. Marsudi, S., U. Andawayanti and I. Nashrullah. 2018. Analisa erosi dan sedimentasi menggunakan aplikasi model AVSWAT 2000 di das bagek kembar kabupaten lombok barat provinsi nusa tenggara barat. Jurnal Mahasiswa Jurusan Teknik Pengairan. 1(2). URL: http://pengairan.studentjournal.ub.ac.id/index.php/jmtp/article/view/126.

3333. Marsudi, S., U. Andawayanti and F.B. Rachmanto. 2018. Aplikasi Model AVSWAT 2000 untuk pendugaan erosi dan sedimentasi di das sermo plta genyem Kabupaten Jayapura Provinsi Papua. Jurnal Mahasiswa Jurusan Teknik Pengairan. 2(1): 60. URL: http://pengairan.studentjournal.ub.ac.id/index.php/jmtp/article/view/242.

3334. Martin, E., S. Gascoin, Y. Grusson, C. Murgue, M. Bardeau, F. Anctil, S. Ferrant, R. Lardy, P. Le Moigne, D. Leenhardt, V. Rivalland, J.M. Sánchez Pérez, S. Sauvage and O. Therond. 2016. On the use of hydrological models and satellite data to study the water budget of river basins affected by human activities: Examples from the Garonne Basin of France. Surveys in Geophysics. 37(2): 223-247. DOI: 10.1007/s10712-016-9366-2 .

3335. Martin, J.F., M.M. Kalcic, N. Aloysius, A.M. Apostel, M.R. Brooker, G. Evenson, J.B. Kast, H. Kujawa, A. Murumkar, R. Becker, C. Boles, R. Confesor, A. Dagnew, T. Guo, C.M. Long, R.L. Muenich, D. Scavia, T. Redder, D.M. Robertson and Y.-C. Wang. 2021. Evaluating management options to reduce Lake Erie algal blooms using an ensemble of watershed models. Journal of Environmental Management. 280: 111720. DOI: 10.1016/j.jenvman.2020.111710 .

3336. Martin, P.H., E.J. LeBoeuf, J.P. Dobbins, E.B. Daneil and M.D. Abkowitz. 2005. Interfacing GIS with water resource models: A state-of-the-art review. Journal of the American Water Resources Association. 41(6): 1471-1487. DOI: 10.1111/j.1752-1688.2005.tb03813.x .

3337. Martinez-Casanovas, J.A., M.C. Ramos and G. Benites. 2016. Soil and Water Assessment Tool soil loss simulation at the sub-basin scale in the Alt Penedès–Anoia Vineyard Region (Ne Spain) in the 2000s. Land Degradation & Development. 27(2): 160–170. DOI: 10.1002/ldr.2240 .

3338. Martinez-Casasnovas, J.A., M.Guevara Bonilla and M.C. Ramos. 2012. Multi-temporal analysis of sediment yield caused by hydric erosion in a basin of the anoia penedes vineyard region (NE Spain). Cuadernos de Investigacion Geografica. 38(1): 95-114. URL: http://dialnet.unirioja.es/servlet/articulo?codigo=4002899.

3339. Martinez-Martinez, E., A.P. Nejadhashemi, S.A. Woznicki and B.J. Love. 2014. Modeling the hydrological significance of wetland restoration scenarios. Journal of Environmental Management. 133: 121-134. DOI: 10.1016/j.jenvman.2013.11.046 .

3340. Martinez-Martinez, E., A.P. Nejadhashemi, S.A. Woznicki, U. Adhikari and S. Giri. 2015. Assessing the significance of wetland restoration scenarios on sediment mitigation plan. Ecological Engineering. 77: 103-113. DOI: 10.1016/j.ecoleng.2014.11.031 .

3341. Martinez-Retureta, R., M. Aguayo, A. Stehr, S. Sauvage, C. Echeverria and J.M. Sánchez-Pérez. 2020. Effect of land use/cover change on the hydrological response of a southern center basin of Chile. Journal of Applied Water Engineering and Research. 12(1): 302. DOI: 10.3390/w12010302 .

3342. Martínez-Retureta, R., M. Aguayo, N.J. Abreu, A. Stehr, I. Duran-Llacer, L. Rodríguez-López, S. Sauvage and J.-M. Sánchez-Pérez. 2021. Estimation of the climate change impact on the hydrological balance in basins of south-central Chile. Water. 13(6): 794. DOI: 10.3390/w13060794 .

3343. Martínez-Salvador, A. and C. Conesa-García. 2020. Suitability of the SWAT model for simulating water discharge and sediment load in a karst watershed of the semiarid Mediterranean basin. Water Resources Management. 34(7): 785–802. DOI: 10.1007/s11269-019-02477-4 .

3344. Martínez-Salvador, A., A. Millares, J.P.C. Eekhout and C. Conesa-García. 2021. Assessment of streamflow from EURO-CORDEX regional climate simulations in semi-arid catchments using the SWAT model. Sustainability. 13(13): 7120. DOI: 10.3390/su13137120 .

3345. Martinkova, M., C. Hesse, V. Krysanova, T. Vetter and M. Hanel. 2011. Potential impact of climate change on nitrate load from the Jizera Catchment (Czech Republic). Physics and Chemistry of the Earth. 36(13): 673-687. DOI: 10.1016/j.pce.2011.08.013 .

3346. Martínková, M., T. Hejduk, P. Fučík, J. Vymaza and M. Hanel. 2018. Assessment of runoff nitrogen load reduction measures for agricultural catchments. Open Geoscience. 10: 403-412. DOI: 10.1515/geo-2018-0032 .

3347. Martins, L.L., W.A. Martins, J.F.L de Moraes, M.J.P. Júnior and I.C. De Maria. 2020. Hydrological calibration of the SWAT model in a watershed characterized by the expansion of sugarcane cultivation. Revista Brasileira de Geografia Física. 13(2): 576-594. URL: https://periodicos.ufpe.br/revistas/rbgfe/article/view/243477.

3348. Martins, W.A., L.L. Martins, I.C. De Maria, J.F.L. de Moraes and M.J.P. Junior. 2021. Reduction of sediment yield by riparian vegetation recovery at distinct levels of soil erosion in a tropical watershed. Ciência e Agrotecnologia. 45: e028220. DOI: 10.1590/1413-7054202145028220 .

3349. Maru, H., A. Haileslassie, T. Zeleke and E. Teferi. 2023. Analysis of the impacts of land use land cover change on streamflow and surface water availability in Awash Basin, Ethiopia. Geomatics, Natural Hazards and Risk. 14(1): 1-25. DOI: 10.1080/19475705.2022.2163193 .

3350. Masih, I., S. Maskey and S. Uhlenbrook. 2012. Supporting well-informed decision and policy making through hydrological data analysis and modelling: The case of the Karkheh Basin, Iran. Water International. 37(4): 427-441. DOI: 10.1080/02508060.2012.706956 .

3351. Masih, I., S. Maskey, S. Uhlenbrook and V. Smakhtin. 2011. Assessing the impact of areal precipitation input on streamflow simulations using the SWAT model. Journal of the American Water Resources Association. 47(1): 179-195. DOI: 10.1111/j.1752-1688.2010.00502.x .

3352. Masih, I., S. Maskey, S. Uhlenbrook and V. Smakhtin. 2011. Impact of upstream changes in rain-fed agriculture on downstream flow in a semi-arid basin. Agricultural Water Management. 100(1): 36-45. DOI: 10.1016/j.agwat.2011.08.013 .

3353. Maski, D., K.R. Mankin, K.A. Janssen, P. Tuppad and G.M. Pierzynski. 2008. Modeling runoff and sediment yields from combined in-field crop practices using the Soil and Water Assessment Tool. Journal of Soil and Water Conservation. 63(4): 193-203. DOI: 10.2489/jswc.63.4.193 .

3354. Massetti, L., C. Grassi, S. Orlandini and M. Napoli. 2020. Modelling hydrological processes in agricultural areas with complex topography. Agronomy. 10(5): 750. DOI: 10.3390/agronomy10050750 .

3355. Masud, M.B., J. Ferdous and M. Faramarzi. 2018. Projected changes in hydrological variables in the agricultural region of Alberta, Canada. Water. 10(12): 1810. DOI: 10.3390/w10121810 .

3356. Masud, M.B., T. McAllister, M.R.C. Cordeiro and M. Faramarzi. 2018. Modeling future water footprint of barley production in Alberta, Canada: Implications for water use and yields to 2064. Science of the Total Environment. 616-617: 208-222. DOI: 10.1016/j.scitotenv.2017.11.004 .

3357. Masud, M.B., Y. Wada, G. Goss and M. Faramarzi. 2019. Global implications of regional grain production through virtual water trade. Science of the Total Environment. 659: 807-820. DOI: 10.1016/j.scitotenv.2018.12.392 .

3358. Mateus, M., C. Almeida, D. Brito and R. Neves. 2014. From eutrophic to mesotrophic: Modelling watershed management scenarios to change the trophic status of a reservoir. International Journal of Environmental Research and Public Health. 11(3): 3015-3031. DOI: 10.3390/ijerph110303015 .

3359. Matomela, N., T. Li, P. Zhang, H.O. Ikhumhen and N.D.R. Lopes. 2023. Role of landscape and land-use transformation on nonpoint source pollution and runoff distribution in the Dongsheng Basin, China. Sustainability. 15(10): 8325. DOI: 10.3390/su15108325 .

3360. Maurer, E.P., D.L. Ficklin and W. Wang. 2016. Technical note: The impact of spatial scale in bias correction of climate model output for hydrologic impact studies. Hydrology and Earth System Sciences. 20(2): 685-696. DOI: 10.5194/hess-20-685-2016 .

3361. Mauri, E.N.E., M.R. Viola, L.D. Norton, P.R. Owens, C.R. de Mello, L.C. Pinto and N. Curi. 2020. Hydrosedimentological modeling in a headwater basin in Southeast Brazil. Revista Brasileira de Ciência do Solo. 44: e0200047. DOI: 10.36783/18069657rbcs20200047 .

3362. Mausbach, M.J. and A.R. Dedrick. 2004. The length we go: Measuring environmental benefits of conservation practices. Journal of Soil and Water Conservation. 59(5): 96A-103A. URL: http://www.jswconline.org/content/59/5/96A.short.

3363. Mawasha, T.S. and W. Britz. 2020. Simulating change in surface runoff depth due to LULC change using soil and water assessment tool for flash floods prediction. South African Journal of Geomatics. 9(2): 282-301. URL: http://sajg.org.za/index.php/sajg/article/view/819.

3364. Maydana, G., M. Romagnoli, M. Cunha and M. Portapila. 2020. Integrated valuation of alternative land use scenarios in the agricultural ecosystem of a watershed with limited available data, in the Pampas Region of Argentina. Science of the Total Environment. 714: 136430. DOI: 10.1016/j.scitotenv.2019.136430 .

3365. McCallum, I., C. Montzka, B. Bayat, S. Kollet, A. Kolotii, N. Kussul, M. Lavreniuk, A. Lehmann, J. Maso, P. Mazzetti, A. Mosnier, E. Perracchione, M. Putth, M. Santoro, I. Serral, L. Shumilo, D. Spengler and S. Fritz. 2020. Developing food, water and energy nexus workflows. International Journal of Digital Earth. 13(2): 299-308. DOI: 10.1080/17538947.2019.1626921 .

3366. McCarty, J.A., B.E. Haggard, M.D. Matlock, N. Pai and D. Saraswat. 2016. Post-model validation of a deterministic watershed model using monoitoring data. Transactions of the ASABE. 59(2): 497-508. DOI: 10.13031/trans.59.11202 .

3367. McDaniel, R.L., C. Munster and J. T. Cothren. 2017. Crop and location specific agricultural dought quantification: Part II. Case study. Transactions of the ASABE. 60(3): 729-739. DOI: 10.13031/trans.11650 .

3368. McDaniel, R.L., C. Munster and J. Nielsen-Gammon. 2017. Crop and location specific agricultural drought quantification: Part III. Forecasting water stress and yield trends. Transactions of the ASABE. 60(3): 741-752. DOI: 10.13031/trans.11651 .

3369. McDaniel, R.L., C. Munster and J. T. Cothren. 2017. Crop location specific agricultural drought quantification: Part I. Method development. Transactions of the ASABE. 60(3): 721-728. DOI: 10.13031/trans.11649 .

3370. McDonald, S., I.N. Mohammed, J.D. Bolten, S. Pulla, C. Meechaiya, A. Markert, E.J. Nelson, R. Srinivasan and V. Lakshmi. 2019. Web-based decision support system tools: The Soil and Water Assessment Tool Online visualization and analyses (SWATOnline) and NASA earth observation data downloading and reformatting tool (NASAaccess). Environmental Modelling & Software. 120: 104499. DOI: 10.1016/j.envsoft.2019.104499 .

3371. McEachern, P. 2008. Cumulative effects management and the role of predictive models in the new policy for regulating land disturbance in Alberta. Journal of Environmental Engineering and Science. 7(S1): S13-S21. DOI: 10.1139/S09-002 .

3372. McGinn, A.J., P.D. Wagner, H. Htike, K.K. Kyu and N. Fohrer. 2021. Twenty years of change: Land and water resources in the Chindwin Catchment, Myanmar between 1999 and 2019. Science of the Total Environment. 798: 148766. DOI: 10.1016/j.scitotenv.2021.148766 .

3373. McGuirk, A.F., A. Gage, C. Boles, B. Lord, D. Schlea, S. Olimb, T. Redder and W.M. Larson. 2017. Quantifying the environmental benefits of conserving grassland. Journal of Management and Sustainability. 7(2): 65-77. DOI: 10.5539/jms.v7n2p65 .

3374. Mcinerney, D., M. Thyer, D. Kavetski, F. Githui, T. Thayalakumaran, M. Liu and G. Kuczera. 2018. The importance of spatiotemporal variability in irrigation inputs for hydrological modeling of irrigated catchments. Water Resources Research. 54(9): 6792-6821. DOI: 10.1029/2017WR022049 .

3375. McMaster, G.S., D.A. Edmunds, R. Marquez, S. Haley, G. Buchleiter, P. Byrne, T.R. Green, R. Erskine, N. Lighthart, H. Kipka, F. Fox, L. Wagner, J. Tatarko, M. Moragues and J. Ascough II. 2019. Winter wheat phenology simulations improve when adding responses to water stress. Agronomy Journal. 111(5): 2350–2360. DOI: 10.2134/agronj2018.09.0615 .

3376. McMaster, G.S., J.C. Ascough, D.A. Edmunds, L.E. Wagner, F.A. Fox, K.C. DeJonge and N.C. Hansen. 2014. Simulating unstressed crop development and growth using the unified plant growth model (UPGM). Environmental Modeling & Assessment. 19: 407-424. DOI: 10.1007/s10666-014-9402-x .

3377. Me, W., D.P. Hamilton, C.G. McBride, J.M. Abell and B.J. Hicks. 2018. Modelling hydrology and water quality in a mixed land use catchment and eutrophic lake: Effects of nutrient load reductions and climate change. Environmental Modelling & Software. 109: 114-133. DOI: 10.1016/j.envsoft.2018.08.001 .

3378. Me, W., J.M. Abell and D.P. Hamilton. 2015. Effects of hydrologic conditions on SWAT model performance and parameter sensitivity for a small, mixed land use catchment in New Zealand. Hydrology and Earth System Sciences. 19: 4127-4147. DOI: 10.5194/hess-19-4127-2015 .

3379. Meaurio, M., A. Zabaleta, J. Uriarte, R. Srinivasan and I. Antigüedad. 2015. Evaluation of SWAT models performance to simulate streamflow spatial origin. The case of a small forested watershed. Journal of Hydrology. 525: 326–334. DOI: 10.1016/j.jhydrol.2015.03.050 .

3380. Meaurio, M., A. Zabaleta, L. Boithias, A.M. Epelde, S. Sauvage, J.M. Sánchez-Pérez, R. Srinivasan and I. Antigüedad. 2017. Assessing the hydrological response from an ensemble of CMIP5 climate projections in the transition zone of the Atlantic region (Bay of Biscay). Journal of Hydrology. 548: 46-62. DOI: 10.1016/j.jhydrol.2017.02.029 .

3381. Meaurio, M., A. Zabaleta, R. Srinivasan, S. Sauvage, S.-M. Sánchez-Pérez, J.L. Lechuga-Crespo and I. Antiguedad. 2021. Long-term and event-scale sub-daily streamflow and sediment simulation in a small forested catchment. Hydrological Sciences Journal. 66(5): 862-873. DOI: 10.1080/02626667.2021.1883620 .

3382. Mechal, A., S. Birk, G. Winkler, T. Wagner and A. Mogessie. 2016. Characterizing regional groundwater flow in the Ethiopian Rift: A multimodel approach applied to Gidabo River Basin. Austrian Journal of Earth Sciences. 109(1). DOI: 10.17738/ajes.2016.0005 .

3383. Mechal, A., T. Takele, M. Meten, G. Deyassa and Y. Degu. 2022. A modeling approach for evaluating the impacts of land use/land cover change for Ziway Lake Watershed hydrology in the Ethiopian Rift. Modeling Earth Systems and Environment. 8(4): 4793-4813. DOI: 10.1007/s40808-022-01472-w .

3384. Mechal, A., T. Wagner and S. Birk. 2015. Recharge variability and sensitivity to climate: The example of Gidabo River Basin, Main Ethiopian Rift. Journal of Hydrology: Regional Studies. 4(Part B): 644-660. DOI: 10.1016/j.ejrh.2015.09.001 .

3385. Mehan, S., N. Kannan, R.P. Neupane, R. McDaniel and S. Kumar. 2016. Climate change impacts on the hydrological processes of a small agricultural watershed. Climate. 4(4): 56. DOI: 10.3390/cli4040056 .

3386. Mehan, S., R. Aggarwal, M.W. Gitau, D.C. Flanagan and C.W. Wallace. 2019. Assessment of hydrology and nutrient losses in a changing climate in a subsurface-drained watershed. Science of the Total Environment. 688: 1236-1251. DOI: 10.1016/j.scitotenv.2019.06.314 .

3387. Mehdi, B., B. Lehner, C. Gombault, A. Michaud, I. Beaudin, M.-F. Sottile and A. Blondlot. 2015. Simulated impacts of climate change and agricultural land use change on surface water quality with and without adaptation management strategies. Agriculture Ecosystems and Environment. 213: 47-60. DOI: 10.1016/j.agee.2015.07.019 .

3388. Mehdi, B., C. Schürz, B. Grath and K. Schulz. 2021. Storm event impacts on in-stream nitrate concentration and discharge dynamics: A comparison of high resolution in-situ measured data with model simulations. Science of the Total Environment. 755: 143406. DOI: 10.1016/j.scitotenv.2020.143406 .

3389. Mehdi, B., K. Schulz, R. Ludwig, F. Ferber and B. Lehner. 2018. Evaluating the importance of non-unique behavioural parameter sets on surface water quality variables under climate change conditions in a mesoscale agricultural watershed. Water Resources Management. 32: 619-639. DOI: 10.1007/s11269-017-1830-3 .

3390. Mehdi, B., R. Ludwig and B. Lehner. 2015. Evaluating the impacts of climate change and crop land use change on streamflow, nitrates and phosphorus: A modeling study in Bavaria. Journal of Hydrology: Regional Studies. 4: 60-90. DOI: 10.1016/j.ejrh.2015.04.009 .

3391. Mehdi, B., R. Ludwig and B. Lehner. 2016. Simulated future changes of extreme nutrient loads in a mesoscale agricultural watershed in Bavaria. Die Bodenkultur: Journal of Land Management, Food and Environment. 67(2): 77-90. DOI: 10.1515/boku-2016-0008 .

3392. Mehrparvar, M., K. Asghari and M. H. Golmohammadi. 2018. Reducing rainfall-runoff simulation error using coupled hydrological SWAT model and data assimilation technique. Iran-Water Resources Research. 14(5): 85-102. URL: http://www.iwrr.ir/article_65744.html?lang=en.

3393. Mehta, V.M., K. Mendoza, N.J. Rosenburg and R. Srinivasan. 2021. High‐resolution simulations of decadal climate variability impacts on spring and winter wheat yields in the Missouri River Basin with the Soil and Water Assessment Tool (SWAT). Climatic Change. 168(3-4): 32. DOI: 10.1007/s10584-021-03247-1 .

3394. Mehta, V.M., K. Mendoza, P. Daggupati, R. Srinivasan, N.J. Rosenberg and D. Deb. 2016. High-resolution simulations of decadal climate variability impacts on water yield in the Missouri River Basin with the Soil and Water Assessment Tool (SWAT). Journal of Hydrometeorology. 17(9): 2455–2476. DOI: 10.1175/JHM-D-15-0039.1 .

3395. Mehta, V.M., N.J. Rosenberg and K. Mendoza. 2011. Simulated impacts of three decadal climate variability phenomena on water yields in the Missouri River Basin. Journal of the American Water Resources Association. 47(1): 126–135. DOI: 10.1111/j.1752-1688.2010.00496.x .

3396. Mei, H. and L. Haodon. 2021. Applicability of CMADS precipitation data in reservoir control basin of temperate East Asian monsoon climate region: A case study of Chaobai River and Dongyang River Basin. Journal of Jiln University (Earth Science Edition). 51(3): 833-842. URL: http://html.rhhz.net/JLDXXBDQKXB/html/1623060154888-2049215989.htm.

3397. Mei, X., P.K. Smith, J. Li and B. Li. 2022. Hydrological evaluation of gridded climate datasets in a Texas urban watershed using Soil and Water Assessment Tool and artificial neural network. Frontiers in Environmental Science. 10: 905774. DOI: 10.3389/fenvs.2022.905774 .

3398. Meki, M.N., J.R. Kiniry, A.H. Youkhana, S.E. Crow, R.M. Ogoshi, M.H. Nakahata, R. Tirado-Corbalá, R.G. Anderson, J. Osorio and J. Jeong. 2015. Two-year growth cycle sugarcane crop parameter attributes and their application in modeling. Agronomy Journal. 107(4): 1310-1320. DOI: 10.2134/agronj14.0588 .

3399. Mekonnen, B.A., A. Nazemi, K.A. Mazurek, A. Elshorbagy and G. Putz. 2015. Hybrid modelling approach to prairie hydrology: Fusing data-driven and process-based hydrological models. Hydrological Sciences Journal. 60(9): 1473-1489. DOI: 10.1080/02626667.2014.935778 .

3400. Mekonnen, B.A., K.A. Mazurek and G. Putz. 2016. Incorporating landscape depression heterogeneity into the Soil and Water Assessment Tool (SWAT) using a probability distribution. Hydrological Processes. 30(13): 2373–2389. DOI: 10.1002/hyp.10800 .

3401. Mekonnen, B.A., K.A. Mazurek and G. Putz. 2016. Sediment export modeling in cold-climate prairie watersheds. Journal of Hydrologic Engineering. 21(5): 05016005. DOI: 10.1061/(ASCE)HE.1943-5584.0001336 .

3402. Mekonnen, D.F., Z. Duan, T. Rientjes and M. Disse. 2018. Analysis of combined and isolated effects of land-use and land-cover changes and climate change on the Upper Blue Nile River Basin's streamflow. Hydrology and Earth System Sciences. 22(12): 6187-6207. DOI: 10.5194/hess-22-6187-2018 .

3403. Mekonnen, M.A., A. Worman, B. Dargahi and A. Gebeyehu. 2009. Hydrological modelling of Ethiopian catchments using limited data. Hydrological Processes. 23(23): 3401-3408. DOI: 10.1002/hyp.7470 .

3404. Melaku, N.D. and J.Wang. 2019. A modified SWAT module for estimating groundwater table at Lethbridge and Barons, Alberta, Canada. Journal of Hydrology. 575: 420-431. DOI: 10.1016/j.jhydrol.2019.05.052 .

3405. Melaku, N.D., C.S. Renschler, H. Holzmann, S. Strohmeier, W. Bayu, C. Zucca, F. Ziadat and A. Klik. 2017. Prediction of soil and water conservation structure impacts on runoff and erosion processes using SWAT model in the northern Ethiopian Highlands. Journal of Soils and Sediment. 18(4): 1743-1755. DOI: 10.1007/s11368-017-1901-3 .

3406. Melaku, N.D., J. Wang and T.W. Meshesha. 2020. Improving hydrologic model to predict the effect of snowpack and soil temperature on carbon dioxide emission in the cold region peatlands. Journal of Hydrology. 587: 124939. DOI: 10.1016/j.jhydrol.2020.124939 .

3407. Melaku, N.D., N.K. Shrestha, J. Wang and R.E. Thorman. 2020. Predicting nitrous oxide emissions after the application of solid manure to grassland in the United Kingdom. Journal of Environmental Quality. 49: 1-13. DOI: 10.1002/jeq2.20002 .

3408. Melaku, N.G., J. Wang and T.W. Meshesha. 2022. Modeling the Dynamics of carbon dioxide emission and ecosystem exchange using a modified SWAT hydrologic model in cold wetlands. Water. 14(9): 1458. DOI: 10.3390/w14091458 .

3409. Memarian, H., S.K. Balasundram, K.C. Abbaspour, J.B. Talib, C.T.B. Sung and A.M. Sood. 2014. SWAT-based hydrological modelling of tropical land use scenarios. Hydrological Sciences Journal. 59(10): 1808-1829. DOI: 10.1080/02626667.2014.892598 .

3410. Mendas, A., M. Errih and F. Bouchenak. 2010. Hydrologic model combined with a GIS for estimating hydrologic balance at watershed scale: Application to the Macta Watershed (north-western Algeria). Journal of Water Supply: Research and Technology - AQUA. 57(5): 361-368. DOI: 10.2166/aqua.2008.039 .

3411. Mendoza, I.C., W.L. Baez, M.A.L. Hernandez and L.F.G. Villar. 2015. Conservation areas of subbasins which tribute to Grijalva Hydroelectric System, México. Revista de Ingenieria Hidraulica Y Ambiental. 36(1): 73-87. URL: http://riha.cujae.edu.cu/index.php/riha/article/view/248.

3412. Mendoza, J.A.C., T.A.C. Alcazar and S.A.Z. Medina. 2021. Calibration and uncertainty analysis for modelling runoff in the Tambo River Basin, Peru, using sequential uncertainty fitting Ver-2 (SUFI-2) algorithm. Air, Soil and Water Research. 14: 1-13. DOI: 10.1177/1178622120988707 .

3413. Meng, F., C. Sa, T. Liu, M. Luo, J. Liu and L. Tian. 2020. Improved model parameter transferability method for hydrological simulation with SWAT in ungauged mountainous catchments. Sustainability. 12(9): 3551. DOI: 10.3390/su12093551 .

3414. Meng, F., T. Liu, H. Wang, M. Luo, Y. Duan and A. Bao. 2018. An alternative approach to overcome the limitation of HRUs in analyzing hydrological processes based on land use/cover change. Water. 10(4): 434. DOI: 10.3390/w10040434 .

3415. Meng, F., T. Liu, Y. Huang, M. Luo, A. Bao and D. Hou. 2016. Quantitative detection and attribution of runoff variations in the Aksu River Basin. Water. 8(8): 338. DOI: 10.3390/w8080338 .

3416. Meng, H, A.M. Sexton, M.C. Maddox, A. Sood, C.W. Brown, R.R. Ferraro and R. Murtugudde. 2010. Modeling Rappahannock River Basin using SWAT - pilot for Chesapeake Bay Watershed. Applied Engineering in Agriculture. 26(5): 795-805. URL: http://ddr.nal.usda.gov/handle/10113/48510.

3417. Meng, L., L. Zhou, S. He, C. Lu, G. Wu, W. Ye and P. Ji. 2018. A heavy metal module coupled with the SWAT model and its preliminary application in a mine-impacted watershed in China. Science of the Total Environment. 613-614: 1207-1219. DOI: 10.1016/j.scitotenv.2017.09.179 .

3418. Meng, L.-C., H.-L. Yan, H.-Y. Li, H.-M. Liu, Y.-K. Fu and R.-X. Liu. 2014. The runoff simulation of SWAT model in Yaoxiang small watershed. Journal of Shandong Agricultural University (Natural Science Edition). 45(3): 423-428. DOI: 10.3969/j.issn.1000-2324.2014.03.020 .

3419. Meng, X. and H. Wang. 2017. Significance of the China meteorological assimilation driving datasets for the SWAT Model (CMADS) of east Asia. Water. 9(10): 765. DOI: 10.3390/w9100765 .

3420. Meng, X., H. Wang and J. Chen. 2019. Profound impacts of the China Meteorological Assimilation Driving Datasets for the SWAT Model (CMADS). Water. 11(4): 832. DOI: 10.3390/w11040832 .

3421. Meng, X., H. Wang, C. Shi, Y. Wu and X. Ji. 2018. Establishment and evaluation of the China Meteorological Assimilation Driving Datasets for the SWAT model (CMADS). Water. 10: 1555. DOI: 10.3390/w10111555 .

3422. Meng, X., H. Wang, X. Lei, S. Cai, H. Wu, X. Ji and J. Wang. 2017. Hydrological modeling in the Manas River Basin using soil and Water Assessment Tool driven by CMADS. Tehnički vjesnik. 24(2): 525-534. DOI: 10.17559/TV-20170108133334 .

3423. Meng, X., X. Ji, Z. Liu, J. Xiao, X. Chen and F. Wang. 2014. Research on improvement and application of snowmelt module in SWAT. Journal of Natural Resources. 29(3): 528-539. DOI: 10.11849/zrzyxb.2014.03.016 .

3424. Meng, X., X. Zhang, M. Yang, H. Wang, J. Chen, Z. Pan and Y. Wu. 2019. Application and evaluation of the China Meteorological Assimilation Driving Datasets for the SWAT model (CMADS) in poorly gauged regions in western China. Water. 11(10): 2171. DOI: 10.3390/w11102171 .

3425. Mengistu, A.G., L.D. van Rensburg and Y.E. Woyessa. 2019. Techniques for calibration and validation of SWAT model in data scarce arid and semi-arid catchments in South Africa. Journal of Hydrology. 25: 100621. DOI: 10.1016/j.ejrh.2019.100621 .

3426. Mengistu, A.G., T.A. Woldesenbet and Y.T. Dile. 2022. Evaluation of observed and satellite-based climate products for hydrological simulation in data-scarce Baro -Akob River Basin, Ethiopia. Ecohydrology & Hydrobiology. 22(2): 234-245. DOI: 10.1016/j.watres.2021.117685 .

3427. Mengistu, A.G., T.A. Woldesenbet, Y.T. Dile, H.K. Bayabil and G.W. Tefera. 2023. Modeling impacts of projected land use and climate changes on the water balance in the Baro Basin, Ethiopia. Heliyon. 9(3): e13965. DOI: 10.1016/j.heliyon.2023.e13965 .

3428. Mengistu, A.G., W.A. Tesfuhuney, Y.E. Woyessa and L.D. van Rensburg. 2020. Analysis of the spatio-temporal variability of precipitation and drought intensity in an arid catchment in South Africa. Water. 8: 70. DOI: 10.3390/cli8060070 .

3429. Mengistu, A.G., Y.E. Woyessa, L.D. van Rensburg and W.A. Tesfuhuney. 2021. Analysis of the spatio-temporal variability of soil water dynamics in an arid catchment in South Africa. Geoderma Regional. 25: e00395. DOI: 10.1016/j.geodrs.2021.e00395 .

3430. Mengistu, D., W. Bewket, A. Dosio and H.J. Panitz. 2020. Climate change impacts on water resources in the Upper Blue Nile (Abay) River Basin, Ethiopia. Journal of Hydrology. 592: 125614. DOI: 10.1016/j.jhydrol.2020.125614 .

3431. Mengistu, D.T. and A. Sorteberg. 2012. Sensitivity of SWAT simulated streamflow to climatic changes within the Eastern Nile River basin. Hydrology and Earth System Sciences. 16: 391-407. DOI: 10.5194/hess-16-391-2012 .

3432. Mengistu, T.D., I.-M. Chung, M.-G. Kim, S.W. Chang and J.E. Lee. 2022. Impacts and implications of land use land cover dynamics on groundwater recharge and surface runoff in East African watershed. Water. 14(13): 2073-4441. DOI: 10.3390/w14132068 .

3433. Menking, K.M., K.H. Syed, R.Y. Anderson, N.G. Shafike and J.G. Arnold. 2003. Model estimates of runoff in the closed, semiarid Estancia Basin, central New Mexico, USA. Hydrological Sciences Journal. 48(6): 953-970. DOI: 10.1623/hysj.48.6.953.51424 .

3434. Menking, K.M., R.Y, Anderson, N.G. Shafike, K.H. Syed and B.D. Allen. 2004. Wetter or colder during the last glacial maximum? Revisiting the pluvial lake question in southwestern North America. Quaternary Research. 62(3): 280-288. DOI: 10.1016/j.yqres.2004.07.005 .

3435. Menna, B.Y. and T.K. Ayalew. 2021. Modeling future flood frequency under CMIP5 scenarios in Hare Watershed, Southern Rift Valley of Ethiopia. Arabian Journal of Geosciences. 14(20): 2143. DOI: 10.1007/s12517-021-08479-0 .

3436. Mensah, J.K., E.A. Ofosu, S.M. Yidana, K. Akpoti and A.T. Kabo-bah. 2022. Integrated modeling of hydrological processes and groundwater recharge based on land use land cover, and climate changes: A systematic review. Environmental Advances. 8: 100224. DOI: 10.1016/j.envadv.2022.100224 .

3437. Mentecelos-Zamora, Y., T. Cavazos, T. Kretzschmar, E.R. Vivoni, E.R., G. Corzo and E. Molina-Navarro. 2018. Hydrological modeling of climate change impacts in a tropical river basin: A case study of the Cauto River, Cuba. Water. 10(9): 1135. DOI: 10.3390/w10091135 .

3438. Menzies Pluer, E.G., J.O. Knighton, J.A. Archibald and M.T. Walter. 2019. Comparing watershed scale P losses from manure spreading in temperate climates across mechanistic soil P models. Journal of Hydrologic Engineering. 24(5): 04019009. DOI: 10.1061/(ASCE)HE.1943-5584.0001774 .

3439. Mer, F., W. Baethgen and R.W. Vervoort. 2020. Building trust in SWAT model scenarios through a multi-institutional approach in Uruguay. Socio-Environmental Systems Modelling. 2(2): 17892. DOI: 10.18174/sesmo.2020a17892 .

3440. Mera, M., S.H.B. Yusmardi and Junaidi. 2023. Prediction of streamflow of the Anai-Weir Catchment using both the SWAT and Mock models. Journal of Applied Agricultural Science and Technology. 7(2): 64–72. URL: http://www.jaast.org/index.php/jaast/article/view/96.

3441. Mera-Parra, C., F. Oñate-Valdivieso, P. Massa-Sánchez and P. Ochoa-Cueva. 2021. Establishment of the baseline for the IWRM in the Ecuadorian Andean Basins: Land use change, water recharge, meteorological forecast and hydrological modeling. Land. 10(5): 513. DOI: 10.3390/land10050513 .

3442. Merina, R.N., M.C. Sashikkumar, A. Danesh and N. Rizvana. 2019. Modelling technique for sediment evaluation at reservoir (South India). Water Resources. 46(4): 553-562. DOI: 10.1134/S0097807819040158 .

3443. Merriman K.R., A.M. Russell, C.M. Rachol, P. Daggupati, R. Srinivasan, B.A. Hayhurst and T.D. Stuntebeck. 2018. Calibration of a field-scale Soil and Water Assessment Tool (SWAT) Model with field placement of best management practices in Alger Creek, Michigan. Sustainability. 10(3): 851. DOI: 10.3390/su10030851 .

3444. Merriman, K.R., P. Daggupati, R. Srinivasan, C. Toussant, A.M. Russell and B. Hayhurst. 2018. Assessing the impact of site-specific BMPs using a spatially explicit, field-scale SWAT model with edge-of-field and tile hydrology and water-quality data in the Eagle Creek Watershed, Ohio. Water. 10(10): 1299. DOI: 10.3390/w10101299 .

3445. Merriman, K.R., P. Daggupati, R. Srinivasan and B. Hayhurst. 2019. Assessment of site-specific agricultural best management practices in the Upper East River Watershed, Wisconsin, using a field-scale SWAT model. Journal of Great Lakes Research. 45(3): 619-641. DOI: 10.1016/j.jglr.2019.02.004 .

3446. Merwade, V., C. Baffaut, K. Bieger, L. Boithias and H. Rathjens. 2017. Featured Series conclusion: SWAT applications for emerging hydrologic and water quality challenges. Journal of the American Water Resources Association. 53(6): 1390-1392. DOI: 10.1111/1752-1688.12601 .

3447. Merwade, V., C. Baffaut, K. Bieger, L. Boithias and H. Rathjens. 2017. Featured series introduction: SWAT applications for emerging hydrologic and water quality challenges. Journal of the American Water Resources Association. 53(1): 67–68. DOI: 10.1111/1752-1688.12486 .

3448. Meshesha, T.W., J. Wang and N.D. Melaku. 2020. A modified hydrological model for assessing effect of pH on fate and transport of Escherichia coli in the Athabasca River Basin. Journal of Hydrology. 582: 124513. DOI: 10.1016/j.jhydrol.2019.124513 .

3449. Meshesha, T.W., J. Wang and N.D. Melaku. 2020. Modelling spatiotemporal patterns of water quality and its impacts on aquatic ecosystem in the cold climate region of Alberta, Canada. Journal of Hydrology. 587: 124952. DOI: 10.1016/j.jhydrol.2020.124952 .

3450. Meshesha, T.W., J. Wang, N.D. Melaku and C.N. McClain. 2021. Modelling groundwater quality of the Athabasca River Basin in the subarctic region using a modified SWAT model. Scientific Reports. 11: 13574. DOI: 10.1038/s41598-021-92920-7 .

3451. Meshesha, T.W., J. Wang, N.D. Melaku and C.N. McClai. 2022. Publisher correction: Modelling groundwater quality of the Athabasca River Basin in the subarctic region using a modified SWAT model. Scientific Reports. 12(1): 5303. DOI: 10.1038/s41598-022-06145-3 .

3452. Mesmarian, Z., T. Omidinia, M. Malekmohammadi and I. Chakraei. 2022. Spatial and temporal variation of the water yield in the highly managed Zayandeh Rud Basin using SWAT model. Journal of Hydrosciences and Environment. 6(12): 20-23. URL: https://jhe.usb.ac.ir/?_action=article&au=129260&_au=Mesmarian,%20Zahra.

3453. Meyer, B.C., J.-M. Lescot and R. Laplana. 2008. Comparison of two spatial optimization techniques: A framework to solve multiobjective land use distribution problems. Environmental Management. 43(2): 261-281. DOI: 10.1007/s00267-008-9225-0 .

3454. Meysami, R. and M.H. Niksokhan. 2020. Evaluating robustness of waste load allocation under climate change using multi-objective decision making. Journal of Hydrology. 588: 125091. DOI: 10.1016/j.jhydrol.2020.125091 .

3455. Mfwango, L.H., T. Ayenew and H.F. Mahoo. 2022. Impacts of climate and land use/cover changes on streamflow at Kibungo sub-catchment, Tanzania. Heliyon. 8(11): e11285. DOI: 10.1016/j.heliyon.2022.e11285 .

3456. Mianabadi, H., S. Alioghli and S. Morid. 2021. Quantitative evaluation of ‘No-harm’ rule in international transboundary water law in the Helmand River Basin. Journal of Hydrology. 599: 126368. DOI: 10.1016/j.jhydrol.2021.126368 .

3457. Miao, Y., R. Liu, Q. Wang, L. Jiao, Y. Wang, L. Li and L. Cao. 2021. Study of uncertainty of satellite and reanalysis precipitation products and their impact on hydrological simulation. Environmental Science and Pollution Research. 28(43): 60935-60953. DOI: 10.1007/s11356-021-14847-w .

3458. Miatkowski, Z. and K. Smarzyńska. 2017. Surface water resources of small agricultural watershed in the Kujawy region, central Poland. Journal of Water and Land Development. 33(4-6): 131-140. DOI: 10.1515/jwld-2017-0028 .

3459. Michailovsky, C.I. and P. Bauer-Gottwein. 2014. Operational reservoir inflow forecasting with radar altimetry: The Zambezi case study. Hydrology and Earth System Sciences. 18: 997-1007. URL: http://www.hydrol-earth-syst-sci.net/18/997/2014/hess-18-997-2014.html.

3460. Michalak, A.M., E.J. Anderson, D. Beletsky, S. Boland, N.S. Bosch, T.B. Bridgeman, J.D. Chaffin, K. Cho, R. Confesor, I. Daloglu, J.V. DePinto, M.A. Evans, G.L. Fahnenstiel, L. He, J. Ho, L. Jenkins, T.H. Johengen, K. Kuo, E. LaPorte, X. Liu, M.R. McWilliams, M.R. Moore, D.J. Posselt, R.P. Richards, D. Scavia, A.L. Steiner, E. Verhamme, D.M. Wright and M.A. Zagorski. 2013. Record-setting algal bloom in Lake Erie caused by agricultural and meteorological trends consistent with expected future conditions. Proceedings of the National Academy of Sciences. 110(16): 6448-6452. DOI: 10.1073/pnas.1216006110 .

3461. Michaud, A.R., I. Beaudin, J. Deslandes, F. Bonn and C.A. Madramootoo. 2007. SWAT-predicted influence of different landscape and cropping system alterations on phosphorus mobility within the Pike River watershed of south-western Quebec. Canadian Journal of Soil Science. 87: 329-344. DOI: 10.4141/S06-046 .

3462. Migliaccio K. W. and P. Srivastava. 2007. Hydrologic components of watershed-scale models. Transactions of the ASABE. 50(5): 1695-1703. DOI: 10.13031/2013.23955 .

3463. Migliaccio K.W. and I. Chaubey. 2016. Comment on Cao W, Bowden BW, Davie T, Fenemor A. 2006. ‘Multi-variable and multi-site calibration and validation of SWAT in a large mountainous catchment with high spatial variability.’ Hydrological Processes 20(5): 1057–1073. Hydrological Processes. 21: 3226-3228. DOI: 10.1002/hyp.6491 .

3464. Migliaccio, K. W. and I. Chaubey. 2008. Spatial distributions and stochastic parameter influences on SWAT flow and sediment predictions. Journal of Hydrologic Engineering. 13(4): 258-269. DOI: 10.1061/(ASCE)1084-0699(2008)13:4(258) .

3465. Migliaccio, K.W., I. Chaubey and B.E. Haggard. 2007. Evaluation of landscape and instream modeling to predict watershed nutrient yields. Environmental Modelling & Software. 22(7): 987-999. DOI: 10.1016/j.envsoft.2006.06.010 .

3466. Mihon, D., V. Bâcu, T. Ştefănuţ and D. Gorgan. 2013. Human-computer interaction techniques in grid based hydrological model execution – gSWAT application. Romanian Journal of Human - Computer Interaction. 4: 103-106. URL: http://rochi.utcluj.ro/rrioc/en/rochi2011.html#Human-Computer_Interaction_Techniques_in_Grid_Based_Hydrological_Model_Execution_gSWAT_Application.

3467. Mikosch, N., R. Becker, L. Schelter, M. Berger, M. Usman and M. Finkbeiner. 2020. High resolution water scarcity analysis for cotton cultivation areas in Punjab, Pakistan. Ecological Indicators. 109: 105852. DOI: 10.1016/j.ecolind.2019.105852 .

3468. Milewski, A., M. Sultan, A. Al-Dousari and E. Yan. 2013. Geologic and hydrologic settings for development of freshwater lenses in arid lands. Hydrological Processes. 28(7): 3185–3194. DOI: 10.1002/hyp.9823 .

3469. Milewski, A., W.M. Seyoum, R. Elkadiri and M. Durham. 2020. Multi-scale hydrologic sensitivity to climatic and anthropogenic changes in northern Morocco. Geosciences. 10(1): 13. DOI: 10.3390/geosciences10010013 .

3470. Miller, S. N., W.G. Kepner, M.H. Mehaffey, M. Hernandez, R.C. Miller, D.C. Goodrich, K.K Devonald, D.T. Heggem and W.P. Miller. 2002. Integrating landscape assessment and hydrologic modeling for land cover change analysis. Journal of the American Water Resources Association. 38(4): 915-929. DOI: 10.1111/j.1752-1688.2002.tb05534.x .

3471. Miller, S.N., D.J. Semmens, D.C. Goodrich, M. Hernandez, R.C. Miller, W.G. Kepner and D.P. Guertin. 2007. The Automated Geospatial Watershed Assessment Tool. Environmental Modelling & Software. 22(3): 365-377. DOI: 10.1016/j.envsoft.2005.12.004 .

3472. Millican, J.S., J.A. Back and A.M.S. McFarland. 2008. Nutrient bioassays of growth parameters for algae in the North Bosque River of central Texas. Journal of the American Water Resources Association. 44(5): 1219-1230. DOI: 10.1111/j.1752-1688.2008.00219.x .

3473. Milzow, C., P.E. Krogh and P. Bauer-Gottwein. 2011. Combininig satellite radar altimetry, SAR surface soil moisture and GRACE total storage changes for hydrological model calibration in a large poorly gauged catchment. Hydrology and Earth System Sciences. 15: 1729-1743. DOI: 10.5194/hess-15-1729-2011 .

3474. MingXing, L., M. ZhuGuo and D. JiWen. 2010. Regional soil moisture simulation for Shaanxi Province using SWAT model validation and trend analysis. Science China Earth Sciences. 53(4): 515-590. DOI: 10.1007/s11430-010-0031-1 .

3475. Miralha, L., R.L. Muenich, D. Scavia, K. Wells, A.L. Steiner, M. Kalcic, A. Apostel, S. Basile and C.J. Kirchhoff. 2021. Bias correction of climate model outputs influences watershed model nutrient load predictions. Science of the Total Environment. 759: 143039. DOI: 10.1016/j.scitotenv.2020.143039 .

3476. Mirhosseini, G. and P. Srivastava. 2016. Effect of irrigation and climate variability on water quality of coastal watersheds: Case study in Alabama. Journal of Irrigation and Drainage Engineering. 142(2). DOI: 10.1061/(ASCE)IR.1943-4774.0000976 .

3477. Mirosław-Świątek, D., P. Marcinkowski, K. Kochanek and M.J. Wassen. 2020. The impact of climate change on flow conditions and wetland ecosystems in the Lower Biebrza River (Poland). PeerJ. 8: e9778. DOI: 10.7717/peerj.9778 .

3478. Misaghi, F., M. Nasrabadi and M. Nouri. 2020. Application of SWAT model to simulate nitrate and phosphate leaching from agricultural lands to the rivers. Advances in Environmental Technology. 6(1): 1-17. DOI: 10.22104/aet.2020.4298.1214 .

3479. Mishra, A. and S. Kar. 2012. Modelling hydrologic processes and NPS pollution in a small watershed in subhumid subtropics using SWAT. Journal of Hydrologic Engineering. 17(3): 445–454. DOI: 10.1061/(ASCE)HE.1943-5584.0000458 .

3480. Mishra, A., J. Froebrich and P.W. Gassman. 2007. Evaluation of the SWAT model for assessing sediment control structures in a small watershed in India. Transactions of the ASABE. 50(2): 469-478. DOI: 10.13031/2013.22637 .

3481. Mishra, A., S. Kar and V.P. Singh. 2007. Prioritizing structural management by quantifying the effect of land use and land cover on watershed runoff and sediment yield. Water Resources Management. 21(11): 1899-1913. DOI: 10.1007/s11269-006-9136-x .

3482. Mishra, H., D.M. Denis, S. Suryavanshi, M. Kumar, S.K. Srivastava, A.F. Denis and R. Kumar. 2017. Hydrological simulation of a small ungauged agricultural Watershed Semrakalwana of northern India. Applied Water Science. 7(6): 2803–2815. DOI: 10.1007/s13201-017-0531-7 .

3483. Mishra, K., R. Sinha, V. Jain, S. Nepal and K. Uddin. 2019. Towards the assessment of sediment connectivity in a large Himalayan river basin. Science of the Total Environment. 661: 251-265. DOI: 10.1016/j.scitotenv.2019.01.118 .

3484. Mishra, S.K., M.C. Negri, J. Kozak, J.F. Cacho, J. Quinn, S. Secchi and H. Ssegane. 2019. Valuation of ecosystem services in alternative bioenergy landscape scenarios. Global Change Biology Bioenergy. 11: 798-762. DOI: 10.1111/gcbb.12602 .

3485. Mishra, V. and R. Lilhare. 2016. Hydrologic sensitivity of Indian sub-continental river basins to climate change. Global and Planetary Change. 139: 78-96. DOI: 10.1016/j.gloplacha.2016.01.003 .

3486. Mishra, V., H. Shah, M.R.R. López, A. Lobanova and V. Krysanova. 2020. Does comprehensive evaluation of hydrological models influence projected changes of mean and high flows in the Godavari River Basin? Climatic Change. 163(3): 1187-1205. DOI: 10.1007/s10584-020-02847-7 .

3487. Mishra, Y., T. Nakamura, M.S. Babel, S. Ninsawat and S. Ochi. 2018. Impact of climate change of water resources of the Bheri River Basin, Nepal. Water. 10(2): 220. DOI: 10.3390/w10020220 .

3488. Mitchell, N., K. Kumarasamy, S.J. Cho, P. Belmont, B. Dalzell and K. Gran. 2018. Reducing high flows and sediment loading through increased water storage in an agricultural watershed of the Upper Midwest, USA. Water. 10: 1053. DOI: 10.3390/w10081053 .

3489. Mitra, B.K., D. Sharma, X. Zhou and R. Dasgupta. 2021. Assessment of the impacts of spatial water resource variability on energy planning in the Ganges River Basin under climate change scenarios. Sustainability. 13(13): 7273. DOI: 10.3390/su13137273 .

3490. Mitra, S. and A. Mishra. 2014. Hydrologic response to climatic change in the Baitarni River Basin. Journal of Indian Water Resources Society. 34(1): 24-33. URL: https://www.researchgate.net/publication/313821519_HYDROLOGIC_RESPONSE_TO_CLIMATIC_CHANGE_IN_THE_BAITARNI_RIVER_BASIN.

3491. Mitra, S.S., A. Kumar, A. Santra, D. Mitra and S. Routh. 2021. Hydrological modeling of catchment specific runoff-response to variable land-use/climatic conditions and trend-based hypothetical scenario generation: A study on a large river basin in eastern India. Journal of the Indian Society of Remote Sensing. 49(8): 1895-1914. DOI: 10.1007/s12524-021-01348-z .

3492. Mitra, S.S., A. Kumar, A. Santra and S. Routh. 2023. Investigating impact of CORDEX-based predicted climatic and LCM-based LULC scenarios on hydrologic response of a semi-gauged Indian catchment. Environmental Modeling & Assessment. 195(4): 450. DOI: 10.1007/s10661-022-10840-z .

3493. Mittal, N., A. Mishra, R. Singh, A.G. Bhave and M. van der Valk. 2014. Flow regime alteration due to anthropogenic and climatic changes in the Kangsabati River, India. Ecohydrology & Hydrobiology. 14(3): 182-191. DOI: 10.1016/j.ecohyd.2014.06.002 .

3494. Mittal, N., A.G. Bhave, A. Mishra and R. Singh. 2016. Impact of human intervention and climate change on natural flow regime. Water Resources Management. 30(2): 685-699. DOI: 10.1007/s11269-015-1185-6 .

3495. Mittelstet, A.R., D.E. Storm, G.A. Fox and P.M. Allen. 2017. Modeling streambank erosion on composite streambanks on a watershed scale. Transactions of the ASABE. 60(3): 753-767. DOI: 10.13031/trans.11666 .

3496. Mittelstet, A.R., D.E. Storm and A.L. Stoecker. 2015. Using SWAT and an empirical relationship to simulate crop yields and salinity levels in the North Fork River Basin. International Journal of Agricultural and Biological Engineering. 8(1): 57-63. DOI: 10.3965/j.ijabe.20150803.950 .

3497. Mittelstet, A.R., D.E. Storm and M.J. White. 2016. Using SWAT to enhance watershed-based plans to meet numeric water quality standards. Sustainability of Water Quality and Ecology. 7: 5–21. DOI: /10.1016/j.swaqe.2016.01.002 .

3498. Mittelstet, A.R., D.E. Storm and G.A. Fox. 2017. Testing of the modified streambank erosion and instream phosphorus routines for the SWAT Model. Journal of the American Water Resources Association. 53(1): 101-114. DOI: 10.1111/1752-1688.12485 .

3499. Mittelstet, A.R., D.M. Heeren, G.A. Fox, D.E. Storm and M.J. White. 2011. Comparison of subsurface and surface runoff phosphorus transport rates in alluvial floodplains. Agriculture Ecosystems and Environment. 141(3-4): 417-425. DOI: 10.1016/j.agee.2011.04.006 .

3500. Mo, C., X. Chen, X. Lei, Y. Wang, Y. Ruan, S. Lai and Z. Xing. 2022. Evaluation of hydrological simulation in a karst basin with different calibration methods and rainfall inputs. Atmosphere. 13(5): 844. DOI: 10.3390/atmos13050844 .

3501. Mo, G., Y. Huang, Q. Yang, D. Wang and C. Mo. 2021. Runoff sensitivity to climate and land-use changes: A case study in the Longtan Basin, southwestern China. Journal of Water and Climate Change. 12(4): 1059-1070. DOI: 10.2166/wcc.2020.196 .

3502. Mo, G. Y. Zhang, Y. Huang, C. Mo and Q. Yang. 2020. Evaluation and hydrological impact of land-use changes in the Longtan basin. Journal of Earth System Science. 129: 190. DOI: 10.1007/s12040-020-01458-1 .

3503. Moazenzadeh, R. and A. Izady. 2022. A hybrid calibration method for improving hydrological systems using ground-based and remotely-sensed observations. Journal of Hydrology. 615: 128688. DOI: 10.1016/j.jhydrol.2022.128688 .

3504. Moch, A., H. Pawitan, K. Murtilaksono and I.N.S. Jaya. 2011. Hydrological response due to deforestation in Barito Hulu Watershed, Central Kalimantan. Jurnal Manajemen Hutan Tropika. 17(3): 119-126. URL: http://jagb.journal.ipb.ac.id/index.php/jmht/article/view/3985.

3505. Moges, M.A., P. Schmitter, S.A. Tilahun, S. Langan, D.C. Dagnew, A.T. Akale and T.S. Steenhuis. 2017. Suitability of watershed models to predict distributed hydrologic response in the Awramba Watershed in Lake Tana Basin. Land Degradation & Development. 28(4): 1386–1397. DOI: 10.1002/ldr.2608 .

3506. Moghadam, N.T., K.C. Abbaspour, B. Malekmohammadi, M. Schirmer and A.R. Yavari. 2021. Spatiotemporal modelling of water balance components in response to climate and land use changes in a heterogeneous mountainous catchment. Water Resources Management. 35(3): 793–810. DOI: 10.1007/s11269-020-02735-w .

3507. Moghaddam, M.N.R., M.A. Hejazi and A. Behbody. 2018. Estimation of runoff catchment in East Azerbaijan Province: Comparative application of calibration methods and uncertainty analysis of SWAT model. Journal of Geography and Environmental Hazards. 8(3): 59-75. DOI: 10.22067/geo.v8i3.81998 .

3508. Mohammed, H. 2022. Estimating surface water inflow into Lake Lego, a closed basin in northeastern Ethiopia. East African Journal of Sciences. 16(2): 101-114. DOI: 10.20372/eajs.v16i2.1947 .

3509. Mohammed, H., A. Longva and R. Seidu. 2019. Impact of climate forecasts on the microbial quality of a drinking water source in Norway using hydrodynamic modeling. Water. 11(3): 527. DOI: 10.3390/w11030527 .

3510. Mohammed, H., A.K. Tveten and R. Seidu. 2019. Modelling the impact of climate change on flow and E. coli concentration in the catchment of an ungauged drinking water source in Norway. Journal of Hydrology. 573: 676-687. DOI: 10.1016/j.jhydrol.2019.04.021 .

3511. Mohammed, I.N., J. Bolten, R. Srinivasan and V. Lakshmi. 2018. Improved hydrological decision support system for the Lower Mekong River Basin using satellite-based earth observations. Remote Sensing. 10(6): 885. DOI: 10.3390/rs10060885 .

3512. Mohammed, I.N., J.D. Bolten, N.J. Souter, K. Shaad, and D. Vollmer. 2022. Diagnosing challenges and setting priorities for sustainable water resource management under climate change. Scientific Reports. 12: 796. DOI: 10.1038/s41598-022-04766-2 .

3513. Mohammed, I.N., J.D. Bolten, R. Srinivasan and V. Lakshmi. 2018. Satellite observations and modeling to understand the Lower Mekong River Basin streamflow variability. Journal of Hydrology. 564: 559-573. DOI: 10.1016/j.jhydrol.2018.07.030 .

3514. Mohammed, K., A.K.M.S Islam, G.M.T. Islam, L. Alfieri, S.K. Bala and M.J.U. Khan. 2017. Impact of high-end climate change on floods and low flows of the Brahmaputra River. Journal of Hydrologic Engineering. 22(10): 04017041. DOI: 10.1061/(ASCE)HE.1943-5584.0001567 .

3515. Mohammed, K., A.S. Islam, G.M.T. Islam, L. Alfieri, S.K. Bala and M.J.U. Khan. 2017. Extreme flows and water availability of the Brahmaputra River under 1.5 and 2 °C global warming scenarios. Climatic Change. 145(1-2): 159-175. DOI: 10.1007/s10584-017-2073-2 .

3516. Mohammed, K., A.S. Islam, G.M.T. Islam, L. Alfieri, M.J.U. Khan, S.K. Bala and M.K. Das. 2018. Future floods in Bangladesh under 1.5°C, 2°C, and 4°C global warming scenarios. Journal of Hydrologic Engineering. 23(12): 04018050. DOI: 10.1061/(ASCE)HE.1943-5584.0001705 .

3517. Mohamoud, Y. and H. Zhang. 2019. Applications of linked and nonlinked complex models for TMDL development: Approaches and challenges. Journal of Hydraulic Engineering. 24(1): 04018055. DOI: 10.1061/(ASCE)HE.1943-5584.0001721 .

3518. Mohan, S. and K. Sangeeta. 2005. Recharge estimation using filtration models. ISH Journal of Hydraulic Engineering. 11(3): 1-10. DOI: 10.1080/09715010.2005.10514796 .

3519. Mohd, M.S.F., M.M.R. Mispan, L. Juneng, F.T. Tangang, N.F.A. Rahman, K. Khalid, M.Z.A. Rasid and S.H. Haron. 2015. Assessment of impacts of climate change on streamflow trend in Upper Kuantan Watershed. ARPN Journal of Engineering and Applied Sciences. 10(15): 6634-6642. URL: http://www.arpnjournals.com/jeas/volume_15_2015.htm.

3520. Mohor, G.S. and E.M. Mendiondo. 2017. Economic indicators of hydrologic drought insurance under water demand and climate change scenarios in a Brazilian context. Ecological Economics. 140: 66-78. DOI: 10.1016/j.ecolecon.2017.04.014 .

3521. Mohseni, B., K. Shahedi, M. Habibnejhad-Roshan and A. Darzi-Naftchali. 2022. Improving groundwater sustainability through conservation strategies in a critical-prohibited coastal plain. Physics and Chemistry of the Earth. 127: 103176. DOI: 10.1016/j.pce.2022.103176 .

3522. Mohseni, U., P.G. Agnihotri, C.B. Pande and B. Durin. 2023. Understanding the climate change and land use impact on streamflow in the present and future under CMIP6 climate scenarios for the Parvara Mula Basin, India. Water. 15(9): 1753. DOI: 10.3390/w15091753 .

3523. Mohsenifard, M., J. Abedi‑Koupai and A. Shokri. 2023. Groundwater sustainability under land‑use and land‑cover changes. Environmental Earth Sciences. 82(6): 147. DOI: 10.1007/s12665-023-10824-3 .

3524. Molina-Navarro, E., A. Nielsen and D. Trolle. 2018. A QGIS plugin to tailor SWAT watershed delineations to lake and reservoir waterbodies. Environmental Modelling & Software. 108: 67-71. DOI: 10.1016/j.envsoft.2018.07.003 .

3525. Molina-Navarro, E., D. Trolle, S. Martinez-Perez, A. Sastre-Merlin and E. Jeppesen. 2014. Hydrological and water quality impact assessment of a Mediterranean limno-reservoir under climate change and land use management scenarios. Journal of Hydrology. 590: 354–366. DOI: 10.1016/j.jhydrol.2013.11.053 .

3526. Molina-Navarro, E., H.E. Andersen, A. Nielsen, H. Thodsen and D. Trolle. 2017. The impact of the objective function in multi-site and multi-variable calibration of the SWAT model. Environmental Modelling & Software. 93: 255-267. DOI: 10.1016/j.envsoft.2017.03.018 .

3527. Molina-Navarro, E., H.E. Andersen, A. Nielsen, H. Thodsen and D. Trolle. 2018. Quantifying the combined effects of land use and climate changes on stream flow and nutrient loads: A modelling approach in the Odense Fjord Catchment (Denmark). Science of the Total Environment. 621: 253-264. DOI: 10.1016/j.scitotenv.2017.11.251 .

3528. Molina-Navarro, E., M. Hallack-Alegria, Silvia Martínez-Pérez, J. Ramírez-Hernández, A. Mungaray-Moctezuma and A. Sastre-Merlín. 2016. Hydrological modeling and climate change impacts in an agricultural semiarid region. Case study: Guadalupe River Basin, Mexico. Agricultural Water Management. 175: 29–42. DOI: 10.1016/j.agwat.2015.10.029 .

3529. Molina-Navarro, E., R. T. Bailey, H.E. Andersen, H. Thodsen, A. Nielsen, S. Park, J.S. Jensen, J.B. Jensen and D. Trolle. 2019. Comparison of abstraction scenarios simulated by SWAT and SWAT-MODFLOW. Hydrological Sciences Journal. 64(4): 434-454. DOI: 10.1080/02626667.2019.1590583 .

3530. Molina-Navarro, E., S. Martinez-Perez, A. Sastre-Merlin and R. Bienes-Allas. 2014. Catchment erosion and sediment delivery in a Limno-Reservoir Basin using a simple methodology. Water Resources Management. 28(8): 2129-2143. DOI: 10.1007/s11269-014-0601-7 .

3531. Molina-Navarro, E., S. Martinez-Perez, A. Sastre-Merlin and R. Bienes-Allas. 2014. Hydrologic modeling in a small Mediterranean basin as a tool to assess the feasibility of a limno-reservoir. Journal of Environmental Quality. 43(1): 121-131. DOI: 10.2134/jeq2011.0360 .

3532. Möller, D., N. Fohrer and N. Steiner. 2002. Quantifizierung regionaler Multifunktionalität land- und forstwirtschaftlicher Nutzungssysteme (Quantification of landscape multifunctionality in agriculture and forestry). Berichte Über Landwirtschaft. 80(3): 393-418. URL: https://www.researchgate.net/publication/290021412_Quantification_of_landscape_multifunctionality_in_agriculture_and_forestry.

3533. Momiyama, S., M. Sagehash and M. Akiba. 2020. Assessment of the climate change risks for inflow into Sagami Dam Reservoir using a hydrological model. Journal of Water and Climate Change. 11(2): 367-379. DOI: 10.2166/wcc.2018.256 .

3534. Mondal, A., M.-H. Le and V. Lakshmi. 2022. Land use, climate, and water change in the Vietnamese Mekong Delta (VMD) using earth observation and hydrological modeling. Journal of Hydrology: Regional Studies. 42: 101132. DOI: 10.1016/j.ejrh.2022.101132 .

3535. Mondal, P., P. Srivastava, L. Kalin and S.N. Panda. 2011. Ecologically sustainable surface water withdrawal for cropland irrigation through incorporation of climate variability. Journal of Soil and Water Conservation. 66(4): 221-232. DOI: 10.2489/jswc.66.4.221 .

3536. Montagna, T., R. Vieira, V. Kaufmann, A. Pinheiro and G.P. Michel. 2021. Simulation of the use of porous pavement and infiltration trench in public spaces supporting mobility. Sustainability in Debate. 12(1): 150-169. DOI: 10.18472/SustDeb.v12n1.2021.30006 .

3537. Monteiro, J.A.E., M. Strauch, R. Srinivasan, K. Abbaspour and B. Gücker. 2016. Accuracy of grid precipitation data for Brazil: Application in river discharge modelling of the Tocantins Catchment. Hydrological Processes. 30(9): 1419-1430. DOI: 10.1002/hyp.10708 .

3538. Monteiro, J.A.F., B. Kamali, R. Srinivasan, K. Abbaspour and B. Gücker. 2016. Modelling the effect of riparian vegetation restoration on sediment transport in a human-impacted Brazilian catchment. Ecohydrology. 9(7): 1289–1303. DOI: 10.1002/eco.1726 .

3539. Mooduto, W., S.R. Ayuba, R. Jaya, Tisen, A. Symsurijal and M. Nursaputra. 2022. Drought index determination using the Batylayar Watershed hydrology model. Journal La Lifesci. 3(2): 054-064. DOI: 10.37899/journallalifesci.v3i2.595 .

3540. Moon, J., R. Srinivasan and J.H. Jacobs. 2004. Stream flow estimation using spatially distributed rainfall in the Trinity River Basin, Texas. Transactions of the ASAE. 47(5): 1445-1451. DOI: 10.13031/2013.17624 .

3541. Moon, J., Y. Jung, T. Lee, T-C. Kim, P. Rho, Y.C. Shin, J. Ryu and K.J. Lim. 2013. Determining the effective width of riparian buffers in Korean watersheds using the SWAT model. Environmental Engineering and Management Journal. 12(11): 2249-2260. URL: http://www.ecozone.ro/reviste.php?revista=21&volum=55&numar=145&RID=26223.

3542. Moon, J.-P. and T.-C. Kim. 2006. Evaluation of SWAT2000 model application for estimating delivered nutrients load for the Gap Stream Watershed. Journal of the Korean Society of Agricultural Engineers. 48(6): 84-100. URL: http://koreascience.or.kr/article/ArticleFullRecord.jsp?cn=NGHHCI_2006_v48n6_89&ordernum=.

3543. Moon, J.-Y., J. Apland, S. Folle and D. Mulla. 2016. A watershed level economic analysis of cellulosic biofuel feedstock production with consideration of water quality. Sustainable Agricultural Research. 5(3): 56-75. DOI: 10.5539/sar.v5n3p56 .

3544. Moon, S. and B. Kang. 2016. Terrestrial sediment yield projection under the bias-corrected nonstationary scenarios with hydrologic extremes. Water. 8(10): 433. DOI: 10.3390/w8100433 .

3545. Moosavi, V. and M. Hayatzadeh. 2022. Groundwater recharge modeling using semi-distributed SWAT Model, case study: Marvast Plain. Journal of Watershed Engineering and Management. 14(3): 282-298. DOI: 10.22092/ijwmse.2021.128733.1747 .

3546. Moradi, A., A. Nakafinejad, M. Ownagh, C.B. Komaki and M.F. Mansouri. 2018. Landuse changes detection and evaluation of their effects on simulated discharge and sediment yield using SWAT model (case study: Galikesh Watershed, Golestan Province). Journal of Range and Watershed Management. 71(2): 489-504. URL: https://jrwm.ut.ac.ir/article_68000.html?lang=en.

3547. Morais, M., A. Pedro, J. Rosado, A. Serafim, H. Silva, M. do C. Sobral, D. Brito and R. Neves. 2013. Analysing pressures at spatial scale in a Mediterranean basin (Pardiela Basin-Guadiana, Portugal). Revista Brasileira de Geografia Física. 5(6): 1284-1299. URL: https://periodicos.ufpe.br/revistas/rbgfe/issue/view/2543.

3548. Moran-Tejeda, E., J. Lorenzo-Lacruz, J. I. Lopez-Moreno, K. Rahman and M. Beniston. 2014. Streamflow timing of mountain rivers in Spain: Recent changes and future projections. Journal of Hydrology. 517: 1114-1127. DOI: 10.1016/j.jhydrol.2014.06.053 .

3549. Moran-Tejeda, E., J. Zabalza, K. Rahman, A. Gago-Silva, J.I. Lopez-Moreno, S. Vicente-Serrano, A. Lehmann, C.L. Tague and M. Beniston. 2015. Hydrological impacts of climate and land-use changes in a mountain watershed: Uncertainty estimation based on model comparison. Ecohydrology. 8(8): 1396-1416. DOI: 10.1002/eco.1590 .

3550. Moreira, L.L., D. Schwamback and D. Rigo. 2019. Pedological parameters for flow simulation in river basins. Revista Verde de Agroecologia e Desenvolvimento Sustentável . 14(1): 78-84. DOI: 10.18378/rvads.v14i1.5854 .

3551. Moreira, L.L., D. Schwamback and D. Rigo. 2020. Different calibration procedures for flows estimation using SWAT model. Journal of Applied Water Engineering and Research. 8(3): 205-218. DOI: 10.1080/23249676.2020.1787246 .

3552. Moreira, L.L., D. Schwamback, and D. Rigo. 2018. Sensitivity analysis of the Soil and Water Assessment Tools (SWAT) model in streamflow modeling in a rural river basin. Ambiente & Água. 13(6): e2221. DOI: 10.4136/ambi-agua.2221 .

3553. Morelli, B., T.R. Hawkins, B. Niblick, A.D. Henderson, H.E. Golden, J.E. Compton, E.J. Cooter and J.C. Bare. 2018. Critical review of eutrophication models for life cycle assessment. Environmental Science & Technology. 52(17): 9562-9578. DOI: 10.1021/acs.est.8b00967 .

3554. Moriasi, D.N. and P.J. Starks. 2010. Effects of the resolution of soil dataset and precipitation dataset on SWAT2005 streamflow calibration parameters and simulation accuracy. Journal of Soil and Water Conservation. 65(2): 163-178. DOI: 10.2489/jswc.65.2.63 .

3555. Moriasi, D.N., B.N. Wilson, K.R. Douglas-Mankin, J.G. Arnold and P.H. Gowda. 2012. Hydrologic and water quality models: Use, calibration, and validation. Transactions of the ASABE. 55(4): 1241-1247. DOI: 10.13031/2013.42265 .

3556. Moriasi, D.N., C.G. Rossi, J.G. Arnold and M.D. Tomer. 2012. Evaluating hydrology of the Soil and Water Assessment Tool (SWAT) with new tile drain equations. Journal of Soil and Water Conservation. 67(6): 513-524. DOI: 10.2489/jswc.67.6.513 .

3557. Moriasi, D.N., J.A. Verser and A.C. Cram. 2022. Using SWAT-MEA to determine optimal placement of crop management systems under no-till. Agronomy Journal. 114(2): 1115-1127. DOI: 10.1002/agj2.20996 .

3558. Moriasi, D.N., J.G. Arnold, G.G. Vaarquez-Amiaile, B.A. Engel and C.G. Rossi. 2009. Incorporation of a new shallow water table depth algorithm into SWAT2005. Transactions of the ASABE. 52(3): 771-784. URL: http://ddr.nal.usda.gov/handle/10113/34147.

3559. Moriasi, D.N., J.G. Arnold, G.G. Vazquez-Amabile and B.A. Engel. 2011. Shallow water table depth algorithm in SWAT: Recent developments. Transactions of the ASABE. 54(5): 1705-1711. DOI: 10.13031/2013.39850 .

3560. Moriasi, D.N., J.G. Arnold, M.W. Van Liew, R.L. Bingner, R.D. Harmel and T. Veith. 2007. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE. 50(3): 885-900. DOI: 10.13031/2013.23153 .

3561. Moriasi, D.N., J.L. Seiner and J.G. Arnold. 2011. Sediment measurement and transport modeling: Impact of riparian and filter strip buffers. Journal of Environmental Quality. 40(3): 807-814. DOI: 10.2134/jeq2010.0066 .

3562. Moriasi, D.N., L.F. Duriancik, E.J. Sadler, T. Tsegaye, J.L. Steiner, M.A. Locke, T.C. Strickland and D.L. Osmond. 2020. Quantifying the impacts of the Conservation Effects Assessment Project watershed assessments: The first fifteen years. Journal of Soil and Water Conservation. 75(3): 57A-74A. DOI: 10.2489/jswc.75.3.57A .

3563. Moriasi, D.N., M.W. Gitau, N. Pai and P. Daggupati. 2015. Hydrologic and water quality models: Performance measures and evaluation criteria. Transactions of the ASABE. 58(6): 1763-1785. DOI: 10.13031/trans.58.10715 .

3564. Moriasi, D.N., N. Pai, J.L. Steiner, P.H. Gowda, M. Winchell, H. Rathjens, P.J. Starks and J.A. Verser. 2019. SWAT‐LUT: A desktop graphical user interface for updating land use in SWAT. Journal of the American Water Resources Association. 55(5): 1102-1115. DOI: 10.1111/1752-1688.12789 .

3565. Moriasi, D.N., P.H. Gowda, J.G. Arnold, D.J. Mulla, S. Ale, J.L. Steiner and M.D. Tomer. 2013. Evaluation of the Hooghoudt and Kirkham tile drain equations in the Soil and Water Assessment Tool to simulate tile flow and nitrate-nitrogen. Journal of Environmental Quality. 42(6): 1699-1710. DOI: 10.2134/jeq2013.01.0018 .

3566. Moriasi, D.N., P.H. Gowda, J.G. Arnold, D.J. Mulla, S. Ale and J.L. Steiner. 2013. Modeling the impact of nitrogen fertilizer application and tile drain configuration on nitrate leaching using SWAT. Agricultural Water Management. 130: 36-43. DOI: 10.1016/j.agwat.2013.08.003 .

3567. Moriasi, D.N., P.J. Starks, J.L. Steiner, X.C. Zhang, J.D. Garbrecht and S. Glasgow. 2020. An overview of research into conservation practice effects on soil and water resources in the Upper Washita Basin, Oklahoma, United States. Journal of Soil and Water Conservation. 75(3): 330-339. DOI: 10.2489/jswc.75.3.330 .

3568. Moriasi, D.N., R.W. Zeckoski, J.G. Arnold, C.B. Baffaut, R.W. Malone, P. Daggupati, J.A. Guzman, D. Saraswat, Y. Yuan, B.W. Wilson, A. Shirmohammadi and K.R. Douglas-Mankin. 2015. Hydrologic and water quality models: Key calibration and validation topics. Transactions of the ASABE. 58(6): 1609-1618. DOI: 10.13031/trans.58.11075 .

3569. Morid, R., M. Delavar, S. Eagderi and L. Kumar. 2016. Assessment of climate change impacts on river hydrology and habitat suitability of Oxynoemacheilus bergianus. Case study: Kordan River, Iran. Hydrobiologia. 771(1): 83-100. DOI: 10.1007/s10750-015-2617-2 .

3570. Morid, R., Y. Shimatani and T. Sato. 2020. An integrated framework for prediction of climate change impact on habitat suitability of a river in terms of water temperature, hydrological and hydraulic parameters. Journal of Hydrology. 587: 124936. DOI: 10.1016/j.jhydrol.2020.124936 .

3571. Morid, S., A.K. Gosain and A.K. Keshari. 2004. Response of different snowmelt algorithms to synthesized climatic data for runoff simulation. Journal of Earth and Space Physics. 30(1): 1-4. URL: https://www.researchgate.net/profile/Saeed_Morid/publication/237650664_Response_of_different_snowmelt_algorithms_to_synthesized_climatic_data_for_runoff_simulation/links/0c96052ff1fdc12e31000000.pdf.

3572. Morsy, M.M., J.L. Goodall, A.M. Castronova, P. Dash, V. Merwade, J.M. Sadler, M.A. Rajib, J.S. Horsburgh and D.G. Tarboton. 2017. Design of a metadata framework for environmental models with an example hydrologic application in HydroShare. Environmental Modelling & Software. 93: 13-28. DOI: 10.1016/j.envsoft.2017.02.028 .

3573. Mosase, E., L. Ahiablame and R. Srinivasan. 2019. Spatial and temporal distribution of blue water in the Limpopo River Basin, Southern Africa: A case study. Ecohydrology & Hydrobiology. 19(2): 252-265. DOI: 10.1016/j.ecohyd.2018.12.002 .

3574. Mosavi, A., M. Golshan, B. Choubin, A.D. Ziegler, S.K. Sigaroodi, F. Zhang and A.A. Dineva. 2021. Fuzzy clustering and distributed model for streamflow estimation in ungauged watersheds. Scientific Reports. 11: 8243. DOI: 10.3390/land10040421 .

3575. Mosbahi, M. and S. Benabdallah. 2020. Assessment of land management practices on soil erosion using SWAT model in a Tunisian semi-arid catchment. Journal of Soils and Sediments. 20(2): 1129-1139. DOI: 10.1007/s11368-019-02443-y .

3576. Mosbahi, M., S. Benabdallah and M.R. Boussema. 2013. Assessment of soil erosion risk using SWAT model. Arabian Journal of Geosciences. 6(10): 1-9. DOI: 10.1007/s12517-012-0658-7 .

3577. Mosbahi, M., S. Benabdallah and M.R. Boussema. 2014. Sensitivity analysis of a GIS-based model: A case study of a large semi-arid catchment. Earth Science Informatics. 8(3): 569-581. DOI: 10.1007/s12145-014-0176-0 .

3578. Mosbahi, M., S. Benabdallah and M.R. Boussema. 2015. Impact of SWAT input data on soil erosion in a semi-arid catchment. Revue LJEE. 13-14: 84+. URL: http://share.ensh.dz/index.php/ljee/article/view/612.

3579. Moshtaghi, B., M.H. Niksokhan, F. Ghazban and S. Dalilsafaee. 2018. Assessing the impacts of climate change on the quantity and quality of agricultural runoff (Case study: Golgol River Basin). Irrigation and Drainage. DOI: 10.1002/ird.2211 .

3580. Motahari, M., A.S. Nia, B. Nazari and M.R. Yazdan. 2021. Evaluation of agricultural water productivity for rice crop at the basin scale based on actual evapotranspiration in the Sefidrood Basin. Journal of Geographic Space. 20(72): 139-157. URL: http://geographical-space.iau-ahar.ac.ir/browse.php?a_id=3676&sid=1&slc_lang=en.

3581. Motallebi, M., D.L. Hoag, A. Tasdighi, M. Arabi and D. L. Osmond. 2017. An economic inquisition of water quality trading programs, with a case study of Jordan Lake, NC. Journal of Environmental Management. 193: 483-490. DOI: 10.1016/j.jenvman.2017.02.039 .

3582. Motallebi, M., D.L. Hoag, A. Tasdighi, M. Arabi, D.L. Osmond and R.B. Boone. 2018. The impact of relative individual ecosystem demand on stacking ecosystem credit markets. Ecosystem Services. 29: 137-144. DOI: 10.1016/j.ecoser.2017.12.010 .

3583. Motsinger, J., P. Kalita and R. Bhattarai. 2016. Analysis of best management practices implementation on water quality using the Soil and Water Assessment Tool. Water. 8(4): 145. DOI: 10.3390/w8040145 .

3584. Mottes, C., M. Lesueur-Jannoyer, M. Le Bail and E. Malezieux. 2014. Pesticide transfer models in crop and watershed systems: A review. Agronomy for Sustainable Development. 34(1): 229-250. DOI: 10.1007/s13593-013-0176-3 .

3585. Moya, H., I. Althoff, C. Huenchuleo and P. Reggiani. 2022. Influence of land use change on the Longaví Catchment hydrology in south-center Chile. Hydrology. 9(10): 169. DOI: 10.3390/hydrology9100169 .

3586. Mozafari, B., M. Bruen, S. Donohue, F. Renou-Wilson and F. O'Loughlin. 2023. Peatland dynamics: A review of process-based models and approaches. Science of the Total Environment. 877: 162890. DOI: 10.1016/j.scitotenv.2023.162890 .

3587. Msigwa, A., C.J. Chawanda, H.C. Komakech, A. Nikwasa and A. van Griesven. 2022. Representation of seasonal land use dynamics in SWAT+ for improved assessment of blue and green water consumption. Hydrology and Earth System Sciences. 26(16): 4447–4468. DOI: 10.5194/hess-26-4447-2022 .

3588. Mtibaa, S. and S. Asano. 2022. Hydrological evaluation of radar and satellite gauge-merged precipitation datasets using the SWAT model: Case of the Terauchi Catchment in Japan. Journal of Hydrology: Regional Studies. 42: 101134. DOI: 10.1016/j.ejrh.2022.101134 .

3589. Mtibaa, S., N. Hotta and M. Irie. 2018. Analysis of the efficacy and cost-effectiveness of best management practices for controlling sediment yield: A case study of the Joumine Watershed, Tunisia. Science of the Total Environment. 616-617: 1-16. DOI: 10.1016/j.scitotenv.2017.10.290 .

3590. Mubarok, Z., K. Murtilaksono and E.D. Wahjunie. 2015. Response of landuse change on hydrological characteristics of Way Betung Watershed - Lampung. Jurnal Penelitian Kehutanan Wallacea. 4(1): 1-10. URL: http://jurnal.balithutmakassar.org/index.php/wallacea/article/view/46.

3591. Muche, M.E., S. Sinnathamby, R. Parmar, C.D. Knightes, J.M. Johnston, K. Wolfe, S.T. Purucker, M.J. Cyterski and D. Smith. 2020. Comparison and Evaluation of Gridded Precipitation Datasets in a Kansas Agricultural Watershed Using SWAT. Journal of the American Water Resources Association. 56(3): 486-506. DOI: 10.1111/1752-1688.12819 .

3592. Mudbhari, D., M.L. Kansal and P. Kalura. 2022. Impact of climate change on water availability in Marsyangdi River Basin, Nepal. Quarterly Journal of the Royal Meteorological Society. 148(744): 1407-1423. DOI: 10.1002/qj.4267 .

3593. Mudbhatkal, A. and M. Amai. 2017. Regional climate trends and topographic influence over the Western Ghat catchments of India. International Journal of Climatology. 38(5): 2265-2279. DOI: 10.1002/joc.5333 .

3594. Mudbhatkal, A., R.V. Raikar, B. Venkatesh and A Mahesha. 2017. Impacts of climate change on varied river-flow regimes of southern India. Journal of Hydrologic Engineering. 22(9): 05017017. DOI: 10.1061/(ASCE)HE.1943-5584.0001556 .

3595. Mudunuru, M.K., K. Son, P. Jiang, G. Hammond and X. Chen. 2022. Scalable deep learning for watershed model calibration. Frontiers in Earth Science. 10: 1026479. DOI: 10.3389/feart.2022.1026479 .

3596. Muenich, R.L, I. Chaubey and M. Pyron. 2016. Evaluating potential water quality drivers of a fish regime shift in the Wabash River using the SWAT model. Ecological Modelling. 340: 116-125. DOI: 10.1016/j.ecolmodel.2016.09.010 .

3597. Muenich, R.L., M. Kalcic and D. Scavia. 2016. Evaluating the impact of legacy P and agricultural conservation practices on nutrient loads from the Maumee River Watershed. Environmental Science & Technology. 50 (15): 8146–8154. DOI: 10.1021/acs.est.6b01421 .

3598. Muh Taufik, dan M.T.W. 2019. Long-term monthly discharge prediction for Cimanuk Watershed. Agromet. 33(2): 96-104. DOI: 10.29244/j.agromet.33.2.96-104 .

3599. Muhammad, A, G.R. Evenson, F. Unduche and T.A. Stadnyk. 2020. Climate change impacts on reservoir inflow in the Prairie Pothole Region: A watershed model analysis. Water. 12(1): 271. DOI: 10.3390/w12010271 .

3600. Muhammad, A., G.R. Evenson, T.A. Stadnyk, A. Boluwade, S.K. Jha and P. Coulibaly. 2018. Assessing the importance of potholes in the Canadian prairie region under future climate change scenarios. Water. 10(11): 1657. DOI: 10.3390/w10111657 .

3601. Muhammad, A., G.R. Evenson, T.A. Stadnyk, A. Boluwade, S.K. Jha and P. Coulibaly. 2019. Impact of model structure on the accuracy of hydrological modeling of a Canadian Prairie watershed. Journal of Hydrology: Regional Studies. 21: 40-56. DOI: 10.1016/j.ejrh.2018.11.005 .

3602. Muhury, N., A.A. Apan, T.N. Marasani and G.T. Ayele. 2022. Modelling floodplain vegetation response to groundwater variability using the ArcSWAT hydrological model, MODIS NDVI data, and machine learning. Land. 11(12): 2154. DOI: 10.3390/land11122154 .

3603. Mukundan, R., D.C. Pierson, E.M. Schneiderman and M.S. Zion. 2015. Using detailed monitoring data to simulate spatial sediment loading in a watershed. Environmental Monitoring and Assessment. 187:532. DOI: 10.1007/s10661-015-4751-8 .

3604. Mukundan, R., D.E. Radcliffe and L.M. Risse. 2010. Spatial resolution of soil data and channel erosion effects on SWAT model predictions of flow and sediment. Journal of Soil and Water Conservation. 65(2): 92-104. DOI: 10.2489/jswc.65.2.92 .

3605. Mukundan, R., S. M. Pradhanang, E. M. Schneiderman, D. C. Pierson, A. Anandhi, M. S. Zion, A. H. Matonse, D. G. Lounsbury and T. S. Steenhuis. 2013. Suspended sediment source areas and future climate impact on soil erosion and sediment yield in a New York City Water Supply watershed, USA. Geomorphology. 183: 110-119. DOI: 10.1016/j.geomorph.2012.06.021 .

3606. Muleta, M.K. 2011. Model performance sensitivity to objective function during automated calibrations. Journal of Hydrologic Engineering. 17(6): 1-27. DOI: 10.1061/(ASCE)HE.1943-5584.0000497 .

3607. Muleta, M.K. 2012. Improving model performance using season-based evaluation. Journal of Hydrologic Engineering. 17(1): 191-200. DOI: 10.1061/(ASCE)HE.1943-5584.0000421 .

3608. Muleta, M.K. and J.W. Nicklow. 2002. Evolutionary algorithms for multiobjective evaluation of watershed management decisions. Journal of Hydroinformatics. 4(2): 83-97. DOI: 10.2166/hydro.2002.0010 .

3609. Muleta, M.K. and J.W. Nicklow. 2004. Joint application of artificial neural networks and evolutionary algorithms to watershed management. Water Resources Management. 18(5): 459-482. DOI: 10.1023/B:WARM.0000049140.64059.d1 .

3610. Muleta, M.K. and J.W. Nicklow. 2005. Decision support for watershed management using evolutionary algorithms. Journal of Water Resources Planning and Management. 131(1): 35-44. DOI: 10.1061/(ASCE)0733-9496(2005)131:1(35) .

3611. Muleta, M.K. and J.W. Nicklow. 2005. Sensitivity and uncertainty anaylsis coupled with automatic calibration for a distributed watershed model. Journal of Hydrology. 306(1-4): 127-145. DOI: 10.1016/j.jhydrol.2004.09.005 .

3612. Muleta, M.K., J.W. Nicklow and E.G. Bekele. 2007. Sensitivity of a distributed watershed simulation model to spatial scale. Journal of Hydrologic Engineering. 12(2): 163-172. DOI: 10.1061/(ASCE)1084-0699(2007)12:2(163) .

3613. Müller, M.F., J. Yoon, S.M. Gorelick, N. Avisse and A. Tilmant. 2016. Impact of the Syrian refugee crisis on land use and transboundary freshwater resources. Proceedings of the National Academy of Sciences. 13(52): 14932–14937. DOI: 10.1073/pnas.1614342113 .

3614. Mulungu, D.M.M. and S.E. Munishi. 2007. Simiyu River catchment parameterization using SWAT model. Physics and Chemistry of the Earth. 32(15-18): 1-8. DOI: 10.1016/j.pce.2007.07.053 .

3615. Mundetia, N., D. Sharma, A. Sharma, S.K. Dubey, B.K. Mitra, R. Dasgupta and H. Jeong. 2023. Assessment of hydrological response with an integrated approach of climate, land, and water for sustainable water resources in the Khari River Basin, India. Anthropocene . 41: 100373. DOI: 10.1016/j.ancene.2023.100373 .

3616. Munoth, P. and R. Goyal. 2019. Effects of area threshold values and stream burn-in process on runoff and sediment yield using QSWAT model. ISH Journal of Hydraulic Engineering. DOI: 10.1080/09715010.2019.1670107 .

3617. Munoth, P. and R. Goyal. 2019. Effects of DEM source, spatial resolution and drainage area threshold values on hydrological modeling. Water Resources Management. 33(9): 3303–3319. DOI: 10.1007/s11269-019-02303-x .

3618. Munoth, P. and R. Goyal. 2020. Impacts of land use land cover change on runoff and sediment yield of Upper Tapi River Sub-Basin, India. International Journal of River Basin Management. 18(2): 177-189. DOI: 10.1080/15715124.2019.1613413 .

3619. Murasingh, S., J. Kuttippurath, S.S. Dash, S. Raj, R. Remesan, M.K. Jha and P. Kumar. 2022. Long-term trends and projections of hydrological fluxes under RCP climate change scenarios for a mountainous river catchment of northeast India. Journal of Water and Climate Change. 13(4): 1776-1789. DOI: 10.2166/wcc.2022.424 .

3620. Murty, P.S., A. Pandey and S. Suryavanshi. 2014. Application of semi-distributed hydrological model for basin level water balance of the Ken Basin of central India. Hydrological Processes. 28(13): 4119–4129. DOI: 10.1002/hyp.9950 .

3621. Murugan, M., P.K. Shetty and M.B. Hiremath. 2006. Atmospheric warming induced changes in future rainfall and implications on water and agriculture in India. Caspian Journal of Environmental Sciences. 4(2): 132-141. URL: http://cjes.guilan.ac.ir/article_972.html.

3622. Musau, J., J. Sang, J. Gathenya and E. Luedeling. 2015. Hydrological responses to climate change in Mt. Elgon watersheds. Journal of Hydrology: Regional Studies. 3: 233-246. DOI: 10.1016/j.ejrh.2014.12.001 .

3623. Musie, M., A. Momblanch and S. Sen. 2021. Exploring future global change-induced water imbalances in the Central Rift Valley Basin, Ethiopia. Climatic Change. 164(3-4): 47. DOI: 10.1007/s10584-021-03035-x .

3624. Musie, M., S. Sen and I. Chaubey. 2020. Hydrologic responses to climate variability and human activities in Lake Ziway Basin, Ethiopia. Water. 12(1): 164. DOI: 10.3390/w12010164 .

3625. Musie, M., S. Sen and P. Srivastava. 2020. Application of CORDEX-AFRICA and NEX-GDDP datasets for hydrologic projections under climate change in Lake Ziway Sub-basin, Ethiopia. Journal of Hydrology: Regional Studies. 31: 100721. DOI: 10.1016/j.ejrh.2020.100721 .

3626. Musie, M., S. Sen, and P. Srivastava. 2019. Comparison and evaluation of gridded precipitation datasets for streamflow simulation in data scarce watersheds of Ethiopia. Journal of Hydrology. 579: 124168. DOI: 10.1016/j.jhydrol.2019.124168 .

3627. Mustafa, M., B. Barnhart, M. Babbar-Sebens and D. Ficklin. 2018. Modeling landscape change effects on stream temperature using the Soil and Water Assessment Tool. Water. 10(9): 1143. DOI: 10.3390/w10091143 .

3628. Musyoka, F.C., P. Strauss, G. Zhao, R. Srinivasan and A. Klik. 2021. Multi-step calibration approach for SWAT model using soil moisture and crop yields in a small agricultural catchment. Water. 13(16): 2238. DOI: 10.3390/w13162238 .

3629. Muthee, S.W., B.T. Kuria, C.N. Mundia, A.W. Sichangi, D.N. Kuria, M. Goebel and A. Rienow. 2022. Using SWAT to model the response of evapotranspiration and runoff to varying land uses and climatic conditions in the Muringato basin, Kenya. Modeling Earth Systems and Environment. DOI: 10.1007/s40808-022-01579-0 .

3630. Muthuwatta, L., U.A. Amarasinghe, A. Sood and L. Surinaidu. 2017. Reviving the “Ganges Water Machine”: Where and how much? Hydrology and Earth System Sciences. 21(5): 2545-2557. DOI: 10.5194/hess-21-2545-2017 .

3631. Muttiah, R. S. and R. A. Wurbs. 2002. Modeling the impacts of climate change on water supply reliabilities. Water International. 27(3): 407-419. DOI: 10.1080/02508060208687020 .

3632. Muttiah, R. S. and R. A. Wurbs. 2002. Scale-dependent soil and climate variability effects on watershed water balance of the SWAT model. Journal of Hydrology. 256(3-4): 264-285. DOI: 10.1016/S0022-1694(01)00554-6 .

3633. Muvundja, F.A., N. Pasche, F.W.B. Bugenyi, M. Isumbisho, B. Muller, J.-N. Namugize, P. Rinta, M. Schmid, R. Stierli and A. Wuest. 2009. Balancing nutrient inputs to Lake Kivu. Journal of Great Lakes Research. 35(3): 406-418. DOI: 10.1016/j.jglr.2009.06.002 .

3634. Mwangi, H.M., S. Julich, S.D. Patil, M.A. McDonald and K.-H. Feger. 2016. Modelling the impact of agroforestry on hydrology of Mara River Basin in East Africa. Hydrological Processes. 30(18): 3139–3155. DOI: 10.1002/hyp.10852 .

3635. Mwangi, J.K., C.A. Shisanya, J.M. Gathenya, S. Namirembe and D.N. Moriasi. 2015. A modeling approach to evaluate the impact of conservation practices on water and sediment yield in Sasumua Watershed, Kenya. Journal of Soil and Water Conservation. 70(2): 75-90. DOI: 10.2489/jswc.70.2.75 .

3636. Myers, D.T., D.L. Ficklin and S.M. Robeson. 2021. Incorporating rain-on-snow into the SWAT model results in more accurate simulations of hydrologic extremes. Journal of Hydrology. 603(Part B): 126972. DOI: 10.1016/j.jhydrol.2021.126972 .

3637. Myers, D.T., D.L. Ficklin and S.M. Robeson. 2023. Hydrologic implications of projected changes in rain-on-snow melt for Great Lakes Basin watersheds. Hydrology and Earth System Sciences. 27(9): 1755-1770. DOI: 10.5194/hess-27-1755-2023 .

3638. Myers, D.T., D.L. Ficklin, S.M. Robeson, R.P. Neupane, A. Botero-Acosta and P.M. Avellaneda. 2021. Choosing an arbitrary calibration period for hydrologic models: How much does it influence water balance simulations? Hydrological Processes. 35(2): e14045. DOI: 10.1002/hyp.14045 .

3639. Mzava, P., P. Valimba and J. Nobert. 2021. Quantitative analysis of the impacts of climate and land-cover changes on urban flood runoffs: A case of Dar es Salaam, Tanzania. Journal of Water and Climate Change. 12(6): 2835-2853. DOI: 10.2166/wcc.2021.026 .

3640. N’guessan, J.-Y.K., B.M. Adahi, A.B. Konan-Waidhet, J.L. Kra, B. Koffia, M. Habel, D. Broua, S. Hironobud and E.N. Assidjo. 2023. Using the SWAT + model to assess the conditions of water inflow to a reservoir in an uncontrolled agricultural catchment. Case study of the Nanan Reservoir in the Lake Taabo Catchment (Côte d’Ivoire). Ecohydrology & Hydrobiology. DOI: 10.1016/j.ecohyd.2023.08.002 .

3641. Nabi, G., F. Hussain, R-S. Wu, V. Nangia and R. Bibi. 2020. Micro-Watershed Management for Erosion Control Using Soil and Water Conservation Structures and SWAT Modeling. Water. 12(5): 1439. DOI: 10.3390/w12051439 .

3642. Nabi, G., M. Tayyab, H. Akbar, M. Arfan, I. Ahmad, M. Masood and A. Zahra. 2022. Impact of spatial and temporal changes in climate on the Kunhar River Watershed, Pakistan. Arabian Journal of Geosciences. 15(15): 1311. DOI: 10.1007/s12517-022-10559-8 .

3643. Nabih, S., O. Tzoraki, P. Zanis, T. Tsikerdekis, D. Akritidis, I. Kontogeorgos and L. Benaabidate. 2021. Alteration of the ecohydrological status of the intermittent flow rivers and ephemeral streams due to the climate change impact (Case study: Tsiknias River). Hydrology. 8(1): 43. DOI: 10.3390/hydrology8010043 .

3644. Naderi, M. 2020. Assessment of water security under climate change for the large watershed of Dorudzan Dam in southern Iran. Hydrogeology Journal. 28: 1533-1574. DOI: 10.1007/s10040-020-02159-1 .

3645. Naderi, M. 2021. Assessing level of water resources management based on water supply and availability concepts. Journal of Cleaner Production. 305: 127086. DOI: 10.1016/j.jclepro.2021.127086 .

3646. Naderi, M. and M. Saatsaz. 2020. Impact of climate change on the hydrology and water salinity in the Anzali Wetland, northern Iran. Hydrological Sciences Journal. 65(4): 552-570. DOI: 10.1080/02626667.2019.1704761 .

3647. Naderi, M. and S. Parsa. 2022. The difference of water footprint and availability as a physical metric for sustainable water use and management. Ecohydrology. 15(2): e2397. DOI: 10.1002/eco.2397 .

3648. Naganur, S., N.S. Patil, V. Patil and G. Pujar. 2024. Evaluation of best management practices (BMPS) and their impact on environmental flow through SWAT+ model. Modeling Earth Systems and Environment. DOI: 10.1007/s40808-023-01951-8 .

3649. Nagaveni, C., K.P. Kumar and M.V. Ravibabu. 2019. Evaluation of TanDEMx and SRTM DEM on watershed simulated runoff estimation. Journal of Earth System Science. 128: 2. DOI: 10.1007/s12040-018-1035-z .

3650. Nagendra, R., N.S. Patil and M. Nataraja. 2021. Analysis of water balance components of a river sub‐basin under future climate scenarios. Sustainable Water Resources Management. 7(6): 104. DOI: 10.1007/s40899-021-00583-z .

3651. Nagireddy, N.R., V.R. Keesara, V. Sridhar and R. Srinivasan. 2022. Streamflow and sediment yield analysis of two medium-sized east-flowing river basins of India. Water. 14(19): 2960. DOI: 10.3390/w14192960 .

3652. Nahuelhual, L., F. Benra, P. Laterra, S. Marin, R. Arriagada and C. Jullian. 2018. Patterns of ecosystem services supply across farm properties: Implications for ecosystem services-based policy incentives. Science of the Total Environment. 634: 941-950. DOI: 10.1016/j.scitotenv.2018.04.042 .

3653. Naikoo, M.A. and M.A. Ahanger. 2022. Land use/land cover change detection and validation of SWAT model on VISHOW sub-basin using remote sensing and GIS techniques. International Journal of Hydrology Science and Technology. 13(1): 43-56. DOI: 10.1504/IJHST.2022.119235 .

3654. Nair, S.C. and A.B. Mirajkar. 2022. Integrated watershed development plan for a sub-basin, central India. Water Supply. 22(3): 3342-3351. DOI: 10.2166/ws.2021.399 .

3655. Nair, S.S., C. DeRolph, M.J. Peterson, R.A. McManamay and T. Mathews. 2022. Integrated watershed process model for evaluating mercury sources, transport, and future remediation scenarios in an industrially contaminated site. Journal of Hazardous Materials. 423(Part B): 127049. DOI: 10.1016/j.jhazmat.2021.127049 .

3656. Nair, S.S., K.W. King, J.D. Witter, B.L. Sohngen and N.R. Fausey. 2011. Importance of crop yield in calibrating watershed water quality simulation tools. Journal of the American Water Resources Association. 47(6): 1285–1297. DOI: 10.1111/j.1752-1688.2011.00570.x .

3657. Nair, S.S., R.A. McManamay, C.R. Derolph and M. Allen-Dumas. 2020. Methods for integrating high-resolution land, climate, and infrastructure scenarios in a hydrologic simulation model. MethodsX. 7: 100699. DOI: 10.1016/j.mex.2019.10.010 .

3658. Nakayama, T. 2017. Development of an advanced eco-hydrologic and biogeochemical coupling model aimed at clarifying the missing role of inland water in the global biogeochemical cycle. Journal of Geophysical Research. 122: 966–988. DOI: 10.1002/2016JG003743 .

3659. Nakayama, T. 2017. Scaled-dependence and seasonal variations of carbon cycle through development of an advanced eco-hydrologic and biogeochemical coupling model. Ecological Modelling. 356: 151-161. DOI: 10.1016/j.ecolmodel.2017.04.014 .

3660. Nama, A., U. Andawayanti and E. Suhartanto. 2016. Analisis tingkat bahaya erosi dan arahan konservasi lahan dengan aplikasi gis di das Manikin. Jurnal Teknik Pengairan. 7(2): 205-215. URL: http://jurnalpengairan.ub.ac.id/index.php/jtp/article/view/315.

3661. Nandgude, N., T.P. Singh, S. Nandgude and M. Tiwari. 2023. Drought prediction: A comprehensive review of different drought prediction models and adopted technologies. Sustainability. 15(15): 11684. DOI: 10.3390/su151511684 .

3662. Nandini, R., A. Kusumandari, T. Gunawan and R. Sadono. 2019. Assessment of land use impact on hydrological response using Soil and Water Analysis Tool (SWAT) in Babak Watershed, Lombok Island, Indonesia. Agriculture and Natural Resources. 53(6): 635-642. DOI: 10.34044/j.anres.2019.53.6.11 .

3663. Nantasaksiri, K., P. Charoen-Amornkitt and T. Machimura. 2021. Land potential assessment of Napier grass plantation for power generation in Thailand using SWAT model. Model validation and parameter calibration. Energies. 14(5): 1326. DOI: 10.3390/en14051326 .

3664. Nantasaksiri, K., P. Charoen-amornkitt, T. Machimura and K. Hayashi. 2021. Multi-disciplinary assessment of napier grass plantation on local energetic, environmental and socioeconomic industries: A watershed-scale study in southern Thailand. Sustainability. 13(24): 13520. DOI: 10.3390/su132413520 .

3665. Napoli, M. and S. Orlandini. 2015. Evaluating the Arc-SWAT2009 in predicting runoff, sediment, and nutrient yields from a vineyard and an olive orchard in central Italy. Agricultural Water Management. 153: 51-62. DOI: 10.1016/j.agwat.2015.02.006 .

3666. Napoli, M., L. Massetti and S. Orlandini. 2017. Hydrological response to land use and climate changes in a rural hilly basin in Italy. Catena. 157: 1-11. DOI: 10.1016/j.catena.2017.05.002 .

3667. Napoli, M., S. Orlandini, d. Grifoni and C.A. Zanchi. 2013. Modeling soil and nutrient runoff yields from an Italian vineyard using SWAT. Transactions of the ASABE. 54(6): 1397-1406. DOI: 10.13031/trans.56.9963 .

3668. Naqvi, H.R., A.S.M.A. Athick, L. Siddiqui and M.A. Siddiqui. 2019. Multiple modeling to estimate sediment loss and transport capacity employing hourly rainfall and In-Situ data: A prioritization of highland watershed in Awash River Basin, Ethiopia. Catena. 182: 104173. DOI: 10.1016/j.catena.2019.104173 .

3669. Naramngam, S. and S.Tong. 2013. Environmental and economic implications of various conservative agricultural practices in the Upper Little Miami River Basin. Agricultural Water Management. 119: 65-79. DOI: 10.1016/j.agwat.2012.12.008 .

3670. Narasimhan, B. and R. Srinivasan. 2005. Development and evaluation of Soil Moisture Deficit Index (SMDI) and Evapotranspiration Deficit Index (ETDI) for agricultural drought monitoring. Agricultural and Forest Meteorology. 133(1-4): 69-88. DOI: 10.1016/j.agrformet.2005.07.012 .

3671. Narasimhan, B., P.M. Allen, S.V. Coffman, J.G. Arnold and R. Srinivasan. 2017. Development and testing of a physically based model of streambank erosion for coupling with a basin-scale hydrologic model SWAT. Journal of the American Water Resources Association. 53(2): 344–364. DOI: 10.1111/1752-1688.12505 .

3672. Narasimhan, B., R. Srinivasan, J.G. Arnold and M. Di Luzio. 2005. Estimation of long-term soil moisture using a distributed parameter hydrologic model and verification using remotely sensed data. Transactions of the ASAE. 48(3): 1101-1113. DOI: 10.13031/2013.18520 .

3673. Narasimhan, B., R. Srinivasan, S.T. Bednarz, M.R. Ernst and P.M. Allen. 2010. A comprehensive modeling approach for reservoir water quality assessment and management due to point and nonpoint source pollution. Transactions of the ASABE. 53(5): 1605-1617. DOI: 10.13031/2013.34908 .

3674. Narendra, A., M.K. Verma and M.P. Tripathi. 2011. Hydrological modelling of chhokranala watershed using weather generator with SWAT model. Indian Journal of Soil Conservation. 39(2): 89-94. URL: http://www.indianjournals.com/ijor.aspx?target=ijor:ijsc&volume=39&issue=2&article=001.

3675. Narsimlu, B., A.K. Gosain and B.R. Chahar. 2013. Assessment of future climate change impacts on water resources of Upper Sind River Basin, India using SWAT model. Water Resources Management. 27: 3647 - 3662. DOI: 10.1007/s11269-013-0371-7 .

3676. Narsimlu, B., A.K. Gosain, B.R. Chahar, S.K. Singh and P.K. Srivastava. 2015. SWAT Model calibration and uncertainty analysis for streamflow prediction in the Kunwari River Basin, India, using sequential uncertainty fitting. Environmental Processes. 2(1): 79-95. DOI: 10.1007/s40710-015-0064-8 .

3677. Narula, K. and A. Gosain. 2013. Modeling hydrology, groundwater recharge and non-point nitrate loadings in the Himalayan Upper Yamuna Basin. Science of the Total Environment. 468-469(Supplement 1): S102-S116. DOI: 10.1016/j.scitotenv.2013.01.022 .

3678. Nasab, M.T., K. Grimm, M.H. Bazrkar, L. Zeng, A. Shabani, X. Zhang and X. Chu. 2018. SWAT modeling of non-point source pollution in depression-dominated basins under varying hydroclimatic conditions. International Journal of Environmental Research and Public Health. 15(11): 2492. DOI: 10.3390/ijerph15112492 .

3679. Nasab, M.T., V. Singh and X. Chu. 2017. SWAT modeling for depression-dominated areas: How do depressions manipulate hydrologic modeling? Water. 9(1): 58. DOI: 10.3390/w9010058 .

3680. Näschen, K., B. Diekkrüger, C. Leemhuis, S. Steinbach, L.S. Seregina, F. Thonfeld and R. van der Linden. 2018. Hydrological modeling in data-scarce catchments: The Kilombero Floodplain in Tanzania. Water. 10(5): 399. DOI: 10.3390/w10050599 .

3681. Naseri, F., M. Azari and M. T. Dastoorani. 2018. Simulation of stream flow and sediment yield in Fariman Dam Watershed using SWAT model and genetic algorithm. Journal of Water and Soil. 32(3): 447-462. DOI: 10.22067/jsw.v32i3.68900 .

3682. Naseri, F., M. Azari and M.T. Dastorani. 2021. Spatial optimization of soil and water conservation practices using coupled SWAT model and evolutionary algorithm. International Soil and Water Conservation Research. 9(4): 566-577. DOI: 10.1016/j.iswcr.2021.04.002 .

3683. Nasiri, N., K. Asghari and A.A. Besalatpour. 2022. Spatial and temporal changes of water resource components regarding different time periods and important land-uses in Zayandeh-rud Basin. Journal of Range and Watershed Management. 74(4): 867-888. DOI: 10.22059/jrwm.2022.322868.1586 .

3684. Nasiri, S., H. Ansari and A.N. Ziaei. 2020. Simulation of water balance equation components using SWAT model in Samalqan Watershed (Iran). Arabian Journal of Geosciences. 13(11): 421. DOI: 10.1007/s12517-020-05366-y .

3685. Nasiri, Sh., N. Farrahi and A.N. Ziaei. 2020. Analysis of surface and ground water changes in Semnan Watershed using SWAT model. Journal of Water and Soil Science. 24(2): 265-266. DOI: 10.47176/jwss.24.2.41771 .

3686. Nasirzadehdizaji, R and D.E. Akyuz. 2022. Application of SWAT hydrological model to assess the impacts of land use change on sediment loads. International Journal of Agriculture, Environment and Food Sciences. 6(1): 108-120. DOI: 10.31015/jaefs.2022.1.15 .

3687. Nasirzadehdizaji, R. and D.E. Akyuz. 2022. Predicting the potential impact of forest fires on runoff and sediment loads using a distributed hydrological modeling approach. Ecological Modelling. 468: 109959. DOI: 10.1016/j.ecolmodel.2022.109959 .

3688. Nasr, A., M. Bruen, P. Jordan, R. Moles, G. Kiely and P. Byrne. 2007. A comparison of SWAT, HSPF and SHETRAN/GOPC for modeling phosphorus export from three catchments in Ireland. Water Research. 41(5): 1065-1073. DOI: 10.1016/j.watres.2006.11.026 .

3689. Nasta, P., M. Palladino, N. Ursino, A. Saracino, A. Sommella and N. Romano. 2017. Assessing long-term impact of land-use change on hydrological ecosystem functions in a Mediterranean upland agro-forestry catchment. Science of the Total Environment. 605-606: 1070-1082. DOI: 10.1016/j.scitotenv.2017.06.008 .

3690. Natkhin, M., O. Dietrich, M.P. Schafer and G. Lischeid. 2014. The effects of climate and changing land use on the discharge regime of a small catchment in Tanzania. Regional Environmental Change. 15(7): 1269-1280. DOI: 10.1007/s10113-013-0462-2 .

3691. Nauman, S., Z. Zulkafli, A.H. Bin Ghazali and B. Yusuf. 2019. Impact assessment of future climate change on streamflows upstream of Khanpur Dam, Pakistan using Soil and Water Assessment Tool. Water. 11(5): 1090. DOI: 10.3390/w11051090 .

3692. Nauta, S.M., M.J. Waterloo, A.I. Gevaert, J. de Bijl and P. Brotherton. 2024. Micro-catchments, macro effects: Natural water retention measures in the Kylldal Catchment, Germany. Water. 6(5): 733. DOI: 10.3390/w16050733 .

3693. Navneet, S., K. Arun and Y. Abrar. 2023. SWAT model application for simulating water balance and water yield in the Lower Sutlej Sub-Basin. Journal of Soil and Water Conservation (India). 22(1): 75-82. URL: https://www.indianjournals.com/ijor.aspx?target=ijor:jswc&volume=22&issue=1&article=010.

3694. Navneet, S., K. Arun and Y. Abrar. 2023. SWAT model application for simulating water balance and water yield in the Lower Sutlej Sub-basin. Journal of Soil and Water Conservation (India). 22(1): 75-82. DOI: 10.5958/2455-7145.2023.00010.3 .

3695. Naz, R., A. Ashraf, C. Van der Tol and F. Aziz. 2020. Modeling hydrological response to land use/cover change: Case study of Chirah Watershed (Soan River), Pakistan. Arabian Journal of Geosciences. 13(22): 1220. DOI: 10.1007/s12517-020-06177-x .

3696. Nazar, M.N., E. Asgari, M. Baaghideh and S. Lotfi. 2020. Quantifying the long-term flood regulation ecosystem service under climate change using SWAT model. ECOPERSIA. 8(3): 169-180. URL: http://ecopersia.modares.ac.ir/article-24-36672-en.html.

3697. Nazari-Sharabian, M. and M. Taheriyoun. 2022. Climate change impact on water quality in the integrated Mahabad Dam Watershed-Reservoir System. Journal of Hydro-environment Research. 40: 28-37. DOI: 10.1016/j.jher.2021.12.001 .

3698. Nazari-Sharabian, M., M. Taheriyoun, S. Ahmad, M. Karakouzian and A. Ahmadi. 2019. Water quality modeling of Mahabad Dam Watershed–Reservoir System under climate change conditions, using SWAT and system dynamics. Water. 11(2): 394. DOI: 10.3390/w11020394 .

3699. Nazari-Sharabian, M., M. Taheriyoun and M. Karakouzian. 2020. Sensitivity analysis of the DEM resolution and effective parameters of runoff yield in the SWAT model: A case study. Journal of Water Supply: Research and Technology - AQUA. 69(1): 39-54. DOI: 10.2166/aqua.2019.044 .

3700. Nazarnejad, H., K. Solaimani, K. Shahedi and V. Sheikh. 2013. Evaluating hydrological response to land use change using the AGWA-GIS based hydrologic modeling tools. International Journal of Agriculture: Research and Review. 2(5): 942-948. URL: http://ecisi.com/wp-content/uploads/2012/10/942-948.doc.pdf.

3701. Ndhlovu, G.Z. and Y.E. Woyessa. 2021. Evaluation of streamflow under climate change in the Zambezi River Basin of southern Africa. Water. 13(21): 3114. DOI: 10.3390/w13213114 .

3702. Ndhlovu, G.Z. and Y.E. Woyessa. 2021. Use of gridded climate data for hydrological modelling in the Zambezi River Basin, Southern Africa. Journal of Hydrology. 602: 126749. DOI: 10.1016/j.jhydrol.2021.126749 .

3703. Ndomba, P., F. Mtalo and A. Killingtveit. 2008. SWAT model application in a data scarce tropical complex catchment in Tanzania. Physics and Chemistry of the Earth. 33(8-13): 1-19. DOI: 10.1016/j.pce.2008.06.013 .

3704. Ndomba, P.M., F.W. Mtalo and Å. Killingtveit. 2008. A guided SWAT model application on sediment yield modeling in Pangani River Basin: Lessons learnt. Journal of Urban and Environmental Engineering. 2(2): 53-62. DOI: https://www.researchgate.net/publication/245573613_A_guided_SWAT_model_application_on_sediment_yield_modeling_in_Pangani_river_basin_Lessons_learnt .

3705. Ndulue, E.L. and C.C. Mbajiorgu. 2018. Modeling climate and landuse change impacts on streamflow and sediment yield of an agricultural watershed using SWAT. Agricultural Engineering International: CIGR Journal. 20(4): 15-25. URL: http://www.cigrjournal.org/index.php/Ejounral/article/view/4837.

3706. Ndulue, E.L., G.I. Ezenne, C.C. Mbajiorgu and V. Ogwo. 2018. Hydrological modelling of Upper Ebonyi Watershed using the SWAT model. International Journal of Hydrology Science and Technology. 8(2): 120-133. DOI: 10.1504/IJHST.2018.10011526 .

3707. Nearing, M.A., V. Jetten, C. Baffaut, O. Cerdan, A. Couturier, M. Hernandez, Y. Le Bissonnais, M.H. Nichols, J.P. Nunes, C.S. Renschler, V. Souchère and K. van Ost. 2005. Modeling response of soil erosion and runoff to changes in precipitation and cover. Catena. 61(2-3): 131-154. DOI: 10.1016/j.catena.2005.03.007 .

3708. Negewo, T.F. and A.K. Sarma. 2021. Estimation of water yield under baseline and future climate change scenarios in Genale Watershed, Genale Dawa River Basin, Ethiopia, using SWAT model. Journal of Hydrologic Engineering. 26(3): 05020051. DOI: 10.1061/(ASCE)HE.1943-5584.0002047 .

3709. Negewo, T.F. and A.K. Sarma. 2021. Spatial and temporal variability evaluation of sediment yield and sub-basins/hydrologic response units prioritization on Genale Basin, Ethiopia. Journal of Hydrology. 603(Part D): 127190. DOI: 10.1016/j.jhydrol.2021.127190 .

3710. Neher, T.P., M.L. Soupir and R.S. Kanwar. 2021. Lake Atitlan: A review of the food, energy, and water sustainability of a mountain lake in Guatemala. Sustainability. 13(2): 515. DOI: 10.3390/su13020515 .

3711. Nejadhashemi, A.P., B.J. Wardynski and J.D. Munoz. 2012. Large-scale hydrologic modeling of the Michigan and Wisconsin agricultural regions to study impacts of land use changes. Transactions of the ASABE. 55(3): 821-838. DOI: 10.13031/2013.41517 .

3712. Nejadhashemi, A.P., S.A. Woznicki and K.R. Douglas-Mankin. 2011. Comparison of four models (STEPL, PLOAD, L-THIA, and SWAT) in simulating sediment, nitrogen, and phosphorus loads and pollutant source areas. Transactions of the ASABE. 54(3): 875-890. URL: http://cat.inist.fr/?aModele=afficheN&cpsidt=24363287.

3713. Nelson, R.G., J.C. Ascough II and M.R. Langemeier. 2005. Environmental and economic analysis of switchgrass production for water quality improvement in northeast Kansas. Journal of Environmental Management. 79(4): 336-347. DOI: 10.1016/j.jenvman.2005.07.013 .

3714. Nemeckova, S., R. Slamova and V. Sipek. 2011. Climate change impact assessment on various components of the hydrological regime of the Malse River Basin. Journal of Hydrology and Hydromechanics. 59(2): 131-143. DOI: 10.2478/v10098-011-0011-y .

3715. Nepal, D. and P.B. Parajuli. 2022. Assessment of best management practices on hydrology and sediment yield at watershed scale in Mississippi using SWAT. Agriculture. 12(4): 518. DOI: 10.3390/agriculture12040518 .

3716. Nerantzaki, S.D., D. Efstathiou, G.V. Giannakis, M. Kritsotakis, M.G. Grillakis, A.G. Koutroulis, I.K. Tsanis and N.P. Nikolaidis. 2019. Climate change impact on the hydrological budget of a large Mediterranean island. Hydrological Sciences Journal. 64(10): 1190-1203. DOI: 10.1080/02626667.2019.1630741 .

3717. Nerantzaki, S.D., D.T. Hristopulos and N.P. Nikolaidis. 2020. Estimation of the uncertainty of hydrologic predictions in a karstic Mediterranean watershed. Science of the Total Environment. 717: 137131. DOI: 10.1016/j.scitotenv.2020.137131 .

3718. Nerantzaki, S.D., G.V. Giannakis, D. Efstathiou, N.P. Nikolaidis, I.A. Sibetheros, G.P. Karatzas and I. Zacharias. 2015. Modeling suspended sediment transport and assessing the impacts of climate change in a karstic Mediterranean watershed. Science of the Total Environment. 538: 288-297. DOI: 10.1016/j.scitotenv.2015.07.092 .

3719. Nerantzaki, S.D., G.V. Giannakis, N.P. Nikolaidis, I. Zacharias, G.P. Karatzas and I.A. Sibetherous. 2016. Assessing the impact of climate change on sediment loads in a large Mediterranean watershed. Soil Science. 181(7): 306–314. DOI: 10.1097/SS.0000000000000164 .

3720. Nesru, M. 2023. A review of model selection for hydrological studies. Arabian Journal of Geosciences. 16(2): 102. DOI: 10.1007/s12517-023-11194-7 .

3721. Neto, A.A.M., P.T.S. Oliveira, D.B.B. Rodrigues and E. Wendland. 2018. Improving streamflow prediction using uncertainty analysis and bayesian model averaging. Journal of Hydrologic Engineering. 23(5): 05018004. URL: https://ascelibrary.org/doi/abs/10.1061/%28ASCE%29HE.1943-5584.0001639.

3722. Neto, S.L.R., E.A.S. Sá, A.B Debastiani, V.L. Padilha and T.A. Antunes. 2019. Efficacy of rainfall-runoff models in loose coupling spacial decision support systems modelbase. Water Resources Management. 33: 889-904. DOI: 10.1007/s11269-018-2086-2 .

3723. Netzer, M.S., G. Sidman, T.R.H. Pearson, S.M. Walker and R. Srinivasan. 2019. Combining global remote sensing products with hydrological modeling to measure the impact of tropical forest loss on water-based ecosystem services. Forests. 10(5): 413. DOI: 10.3390/f10050413 .

3724. Neupane, P., R.T. Bailey and S. Tavakoli-Kivi. 2020. Assessing controls on selenium fate and transport in watersheds using the SWAT model. Science of the Total Environment. 738: 140318. DOI: 10.1016/j.scitotenv.2020.140318 .

3725. Neupane, R.P. and S. Kumar. 2015. Estimating the effects of potential climate and land use changes on hydrologic processes of a large agriculture dominated watershed. Journal of Hydrology. 529(Part 1): 418–429. DOI: 10.1016/j.jhydrol.2015.07.050 .

3726. Neupane, R.P., D.L. Ficklin, J.H. Knouft, N. Ehsani and R. Cibin. 2019. Hydrologic responses to projected climate change in ecologically diverse watersheds of the Gulf Coast, United States. International Journal of Climatology. 39: 2227-2243. DOI: 10.1002/joc.5947 .

3727. Neupane, R.P., J. Yao and J.D. White. 2014. Estimating the effects of climate change on the intensification of monsoonal-driven stream discharge in a Himalayan watershed. Hydrological Processes. 28(26): 6236–6250. DOI: 10.1002/hyp.10115 .

3728. Neupane, R.P., J.D. White and S.E. Alexander. 2015. Projected hydrologic changes in monsoon-dominated Himalaya mountain basins with changing climate and deforestation. Journal of Hydrology. 525: 216–230. DOI: 10.1016/j.jhydrol.2015.03.048 .

3729. Neupane, R.P., J.F. Adamowski, J.D. White and S. Kumar. 2017. Future streamflow simulation in a snow-dominated Rocky Mountain headwater catchment. Hydrology Research. 49(2): ID: nh2017024. DOI: 10.2166/nh.2017.024 .

3730. Nevárez-Favela, M.M., D.S. Fernández-Reynoso, I. Sánchez-Cohen, M. Sánchez-Galindo, A. Macedo-Cruz and C. Palacios-Espinosa. 2021. Comparison between WEAP and SWAT models in a basin at Oaxaca, Mexico. Tecnología y Ciencias del Agua. 12(1): 358-401. DOI: 10.24850/j-tyca-2021-01-09 .

3731. Neves, F.F., F. das G.B. da Silva and S. Crestana. 2006. Use of the AVSWAT model in the evaluation of the contribution of nitrogen (N) and phosphorus (P) to the sources of a watershed contends poultry activity. Engenharia Sanitaria e Ambiental. 11(4): 311-317. DOI: 10.1590/S1413-41522006000400003 .

3732. Ng, K.W., Y.F. Huang, C.H. Koo, K.L. Chong, A. El-Shafie and A.N. Ahmed. 2023. A review of hybrid deep learning applications for streamflow forecasting. Journal of Hydrology. 625(Part B): 130141. DOI: 10.1016/j.jhydrol.2023.130141 .

3733. Ng, T. L., J. W. Eheart and X. M. Cai. 2010. Comparative calibration of a complex hydrologic model by stochastic methods GLUE and PEST. Transactions of the ASABE. 53(6): 1773-1786. URL: https://elibrary.asabe.org/abstract.asp?aid=35804&t=1.

3734. Ng, T.L., F. Miguez, J.W. Eheart and X. Cai. 2011. Response to Zhang et al.'s comment on "Modeling miscanthus in the Soil and Water Asssesment Tool (SWAT) to simulate its water quality effects as a bioenergy crop". Environmental Science & Technology. 45(19): 6213-6214. DOI: 10.1021/es2018016 .

3735. Ng, T.L., J.W. Eheart, X. Cai and J.B. Braden. 2011. An agent-based model of farmer decision-making and water quality impacts at the watershed scale under markets for carbon allowances and a second-generation biofuel crop. Water Resources Research. 47(W09519): 1-17. DOI: 10.1029/2011WR010399 .

3736. Ng, T.L., J.W. Eheart, X. Cai, J.B. Braden and G.F. Czapar. 2014. Agronomic and stream nitrate load responses to incentives for bioenergy crop cultivation and reductions of carbon emissions and fertilizer. Journal of Water Resources Planning and Management. 140(1): 112-120. DOI: 10.1061/(ASCE)WR.1943-5452.0000320 .

3737. Ng, T.L., J.W. Eheart, X. Cal and F. Miguez. 2010. Modeling miscanthus in the Soil and Water Assessment tool (SWAT) to simulate its water quality effects as a bioenergy crop. Environmental Science & Technology. 44(18): 7138-7144. DOI: 10.1021/es9039677 .

3738. Ngan T.T.K. and D.N. Khoi. 2019. Analysing the impact of hydropower dams on streamflow in the Be Rriver Basin. Vietnam Journal of Science, Technology and Engineering. 61(4): 35-59. DOI: 10.31276/VJSTE.61(4).35-39 .

3739. Ngeang, L., S. Tantanee and R. Anlauf. 2019. Comparison of FAO and SOILGRID data application on streamflow and suspended sediment study using SWAT model: A case study of Upper Yom Basin, Thailand. GMSARN International Journal. 13(3): 104-111. URL: http://gmsarnjournal.com/home/journal-vol-13-no-3/.

3740. Ngondo, J., J. Mango, J. Nobert, A. Dubi, X. Li and H. Cheng. 2022. Hydrological response of the Wami-Ruvu Basin to land-use and land-over changes and its impacts for the future. Water. 14(2): 184. DOI: 10.3390/w14020184 .

3741. Ngubane, Z. V. Bergion, B. Dzwairo, K. Troell, I.D. Amoah, T.A. Stenström and E. Sokolova. 2022. Water quality modelling and quantitative microbial risk assessment for uMsunduzi River in South Africa. Journal of Water and Health. 20(4): 641-656. DOI: 10.2166/wh.2022.266 .

3742. Nguyen, A., T.A. Cochrane and M. Pahlow. 2021. A framework to assess the reliability of a multipurpose reservoir under uncertainty in land use. Water. 13(3): 287. DOI: 10.3390/w13030287 .

3743. Nguyen, A., T.A. Cochrane and M. Pahlow. 2022. Optimising water allocation and land management to mitigate the effects of land use and climate change on reservoir performance. Hydrological Sciences Journal. 67(4): 2129-2146. DOI: 10.1080/02626667.2022.2132162 .

3744. Nguyen, B.N. and H.K.L. Nguyen. 2014. Basin resources management: Simulating soil erosion risk by Soil and Water Assessment Tool (SWAT) in Ta Trach River Watershed, central Vietnam. Journal of Vietnamese Environment. 6(2): 165-170. DOI: 10.13141/jve.vol6.no2.pp165-170 .

3745. Nguyen, H.H., F. Recknagel and W. Meyer. 2018. Water quality control options in response to catchment urbanization: A scenario analysis by SWAT. Water. 10: 1846. DOI: 10.3390/w10121846 .

3746. Nguyen, H.H., F. Recknagel and W. Meyer. 2019. Effects of projected urbanization and climate change on flow and nutrient loads of a Mediterranean catchment in South Australia. Ecohydrology & Hydrobiology. 19(2): 279-288. DOI: 10.1016/j.ecohyd.2018.10.001 .

3747. Nguyen, H.H., F. Recknagel, W. Meyer and J. Frizenschaf. 2017. Analysing the effects of forest cover and irrigation farm dams on streamflows of water-scarce catchments in South Australia through the SWAT Model. Water. 9(1): 33. DOI: 10.3390/w9010033 .

3748. Nguyen, H.H., F. Recknagel, W. Meyer, J. Frizenschaf and M.K. Shrestha. 2017. Modelling the impacts of altered management practices, land use and climate changes on the water quality of the Millbrook Catchment-Reservoir System in South Australia. Journal of Environmental Management. 202: 1-11. DOI: 10.1016/j.jenvman.2017.07.014 .

3749. Nguyen, H.H., F. Recknagel, W. Meyer, J. Frizenschaf, H. Ying and M.S. Gibbs. 2019. Comparison of the alternative models SOURCE and SWAT for predicting catchment streamflow, sediment and nutrient loads under the effect of land use changes. Science of the Total Environment. 662: 254-265. DOI: 10.1016/j.scitotenv.2019.01.286 .

3750. Nguyen, H.T., T.Q. Duong, L.D. Nguyen, T.Q.N. Vo, N.T. Tran, P.D.N. Dang, L.D. Nguyen, C.K. Dang and L.K. Nguyen. 2020. Development of a spatial decision support system for real-time flood early warning in the Vu Gia-Thu Bon river basin, Quang Nam Province, Vietnam. Sensors. 20(6): 1667. DOI: 10.3390/s20061667 .

3751. Nguyen, L.B. and V.Q. Do. 2021. Accuracy of integrated multi-satelliE retrievals for GPM satellite rainfall product over north Vietnam. Polish Journal of Environmental studies. 30(6): 5657-5667. DOI: 10.15244/pjoes/137331 .

3752. Nguyen, L.D., H.T. Nguyen, P.D.N. Dang, T.Q. Duong and L.K. Nguyen. 2021. Design of an automatic hydro-meteorological observation network for a real-time flood warning system: A case study of Vu Gia-Thu Bon River Basin, Vietnam. Journal of Hydroinformatics. 23(2): 324–339. DOI: 10.2166/hydro.2021.124 .

3753. Nguyen, L.D., P.D.N. Dang and L.K. Nguyen. 2021. Estimating surface water and vadose water resources for an ungauged inland catchment in Vietnam. Journal of Water and Climate Change. 12(6): 2716-2733. DOI: 10.2166/wcc.2021.343 .

3754. Nguyen, Q.H., T.T.H. Le, T.T.N. Pham and M. Kappas. 2016. Modelling surface runoff and soil erosion for Yen Bai Province, Vietnam, using the Soil and Water Assessment Tool (SWAT). Journal of Vietnamese Environment. 8(1): 71-79. DOI: 10.13141/jve.vol8.no1.pp71-79 .

3755. Nguyen, T.N., T.X. Nguyen, T.V. Pham and D.T. Nguyen. 2021. Applying the Soil and Water Assessment tool model for integrated lake basin management in northern Vietnam: Case study of the Thac Ba Reservoir Basin. Environmental Engineering Science. 38(11): 1027-1035. DOI: 10.1089/ees.2020.0378 .

3756. Nguyen, T.V., J. Dietrich, T.D. Dang, D.A. Tran, B.V. Doan, F.J. Sarrazin, K. Abbaspour and R. Srinivasan. 2022. An interactive graphical interface tool for parameter calibration, sensitivity analysis, uncertainty analysis, and visualization for the Soil and Water Assessment Tool. Environmental Modelling & Software. 156: 105497. DOI: 10.1016/j.envsoft.2022.105497 .

3757. Nguyen, V.T. and J. Dietrich. 2018. Modification of the SWAT model to simulate regional groundwater flow using a multicell aquifer. Hydrological Processes. 32(7): 939-953. DOI: 10.1002/hyp.11466 .

3758. Nguyen, V.T., H.H. Nguyen and G. Han. 2021. Development of an integrated modeling platform for watershed simulation. Environmental Modelling & Software. 139: 105014. DOI: 10.1016/j.envsoft.2021.105014 .

3759. Nguyen, V.T., J. Dietrich and B. Uniyal. 2020. Modeling interbasin groundwater flow in karst areas: Model development, application, and calibration strategy. Environmental Modelling & Software. 124: 104606. DOI: 10.1016/j.envsoft.2019.104606 .

3760. Nguyen, V.T., J. Dietrich, B. Uniyal and D.A. Tran. 2018. Verification and correction of the hydrologic routing in the Soil and Water Assessment Tool. Water. 10(10): 1419. DOI: 10.3390/w10101419 .

3761. Nguyen-Tien, V., R.J.R. Elliott and E. Strobl. 2018. Hydropower generation, flood control and dam cascades: A national assessment for Vietnam. Journal of Hydrology. 560: 109–126. DOI: 10.1016/j.jhydrol.2018.02.063 .

3762. Nhi, P.T.T., D.N. Khoi, N.T.T. Trang, T.V. Ty and S. Fang. 2022. Hydrological impacts of future climate and land use/cover changes in the Lower Mekong Basin: A case study of the Srepok River Basin, Vietnam. Environmental Monitoring and Assessment. 194(Suppl2): 768. DOI: 10.1007/s10661-022-10175-9 .

3763. Ni, S., X. Huang, W. Gan, C. Zorn, Y. Xiao, G. Huang, C. Yu, J. Cao, J. Zhang, Z. Feng, L. Yu, G. Lin and H. Silvennoinen. 2020. Coupled modelling and sampling approaches to assess the impacts of human water management on land-sea carbon transfer. Science of the Total Environment. 701: 134735. DOI: 10.1016/j.scitotenv.2019.134735 .

3764. Ni, W., A.R. Mittelstet, T.L. Messer and Y. Tang. 2022. Impact of climate and land use change on economic development in the Baoxing River Watershed in Giant Panda National Park. Journal of the American Water Resources Association. 58(6): 1561–1574. DOI: 10.1111/1752-1688.13057 .

3765. Ni, X. and P.B. Parajuli. 2018. Evaluation of the impacts of BMPs and tailwater recovery system on surface and groundwater using satellite imagery and SWAT reservoir function. Agricultural Water Management. 210: 78-87. DOI: 10.1016/j.agwat.2018.07.027 .

3766. Ni, X., P.B. Parajuli and Y. Ouyang. 2020. Assessing agriculture conservation practice impacts on groundwater levels at watershed scale. Water Resources Research. 34(1): 1553–1566. DOI: 10.1007/s11269-020-02526-3 .

3767. Ni, X., P.B. Parajuli, Y. Ouyang, P. Dash and C. Siegert. 2021. Assessing land use change impact on stream discharge and stream water quality in an agricultural watershed. Catena. 198: 105055. DOI: 10.1016/j.catena.2020.105055 .

3768. Ni, Y.-m. and Y.-l. Xi. 2015. Best management measures research on non-point source pollution of the Bahe Watershed. Arid Land Geography. 38(3): 608-617. URL: http://alg.xjegi.com/EN/volumn/volumn_1157.shtml.

3769. Niagara, R., Y. Purwanto and Y. Suharnoto. 2016. Analyze of water recharge and groundwater of Prumpung Watershed, Tuban Regency. Jurnal Pengelolaan Sumberdaya Alam dan Lingkungan. 6(1): 20-30. DOI: 10.19081/jpsl.6.1.20 .

3770. Niazi, M., C. Obropta and R. Miskewitz. 2015. Pathogen transport and fate modeling in the Upper Salem River Watershed using SWAT model. Journal of Environmental Management. 151: 167-177. DOI: 10.1016/j.jenvman.2014.12.042 .

3771. Nicklow, J.W. and M.S. Muleta. 2001. Watershed management technique to control sediment yield in agriculturally dominated areas. Water International. 26(3): 435-443. DOI: 10.1080/02508060108686935 .

3772. Nie, N., W. Zhang, M. Liu, H. Chen and D. Zhao. 2021. Separating the impacts of climate variability, land-use change and large reservoir operations on streamflow in the Yangtze River Basin, China, using a hydrological modeling approach. International Journal of Digital Earth. 14(2): 231-249. DOI: 10.1080/17538947.2020.1812740 .

3773. Nie, W., Y. Yuan, W. Kepner, C. Erickson and M. Jackson. 2012. Hydrological impacts of mesquite encroachment in the Upper San Pedro Watershed. Journal of Arid Environments. 82: 147-155. DOI: 10.1016/j.jaridenv.2012.02.008 .

3774. Nie, W., Y. Yuan, W. Kepner, M.S. Nash, M. Jackson and C. Erickson. 2011. Assessing impacts of landuse and landcover changes on hydrology for the Upper San Pedro Watershed. Journal of Hydrology. 407(1-4): 105-114. DOI: 10.1016/j.jhydrol.2011.07.012 .

3775. Nielsen, A., D. Trolle, W. Me, L. Luo, B. Han, Z. Liu, J.E. Olesen and E. Jeppesen. 2014. Assessing ways to combat eutrophication in a Chinese drinking water reservoir using SWAT. Marine and Freshwater Research. 64: 475-492. DOI: 10.1071/MF12106 .

3776. Nigam, G.K., M.P. Tripathi, S.K. Ambast, P. Singh and J. Sinha. 2019. Modeling stream flow rate and sediment concentration for identification of critical watershed of Seonath Sub-Basin using SWAT model. Journal of Soil and Water Conservation (India). 18(4): 381-393. DOI: 10.5958/2455-7145.2019.00053.5 .

3777. Nigussie, G., M.M.A. Moges, M.M.A. Moges and T.S. Steenhuis. 2019. Assessment of suitable land for surface irrigation in ungauged catchments: Blue Nile Basin, Ethiopia. Water. 11(7): 1465. DOI: 10.3390/w11071465 .

3778. Nikolaidis, N.P., F. Bouraoui and G. Bidoglio. 2013. Hydrologic and geochemical modeling of a karstic Mediterranean watershed. Journal of Hydrology. 477: 129-138. DOI: 10.1016/j.jhydrol.2012.11.018 .

3779. Nikolov, P., D. Hristova and V. Stoycheva. 2022. Modeling of flood regulation for ecosystem accounting: A case study of Ogosta River Basin. Journal of the Bulgarian Geographical Society. 46: 3-10. DOI: 10.3897/jbgs.e86288 .

3780. Nilawar, A.P. and M.L. Waikar. 2018. Use of SWAT to determine the effects of climate and land use changes on streamflow and sediment concentration in the Purna River Basin, India. Environmental Earth Sciences. 77: 783. DOI: 10.1007/s12665-018-7975-4 .

3781. Nilawar, A.P. and M.L. Waikar. 2019. Impacts of climate change on streamflow and sediment concentration under RCP 4.5 and 8.5: A case study in Purna River Basin, India. Science of the Total Environment. 650: 2685-2696. DOI: 10.1016/j.scitotenv.2018.09.334 .

3782. Nilawar, A.P., C.P. Calderella, T.Y. Lakhankar, M.L. Waikar and J. Munoz. 2017. Satellite soil moisture validation using hydrological SWAT model: A case study of Puerto Rico, USA. Hydrology. 4(4): 45. DOI: 10.3390/hydrology4040045 .

3783. Ning, J., Z. Gao and Q. Lu. 2015. Runoff simulation using a modified SWAT model with spatially continuous HRUs. Environmental Earth Sciences. 74(7): 5895-5905. DOI: 10.1007/s12665-015-4613-2 .

3784. Niraula, R., L. Kalin, P. Srivastava and C.J. Anderson. 2013. Identifying critical source areas of nonpoint source pollution with SWAT and GWLF. Ecological Modelling. 268: 123-133. DOI: 10.1016/j.ecolmodel.2013.08.007 .

3785. Niraula, R., L. Kalin, R. Wang and P. Srivastava. 2012. Determining nutrient and sediment critical source areas with SWAT: Effect of lumped calibration. Transactions of the ASABE. 55(1): 137-147. DOI: 10.13031/2013.41262 .

3786. Niraula, R., L.M. Norman, T. Meixner and J.B. Callegary. 2012. Multi-gauge calibration for modeling the semi-arid Santa Cruz Watershed in Arizona-Mexico border area using SWAT. Air, Soil and Water Research. 5: 41-57. DOI: 10.4137/ASWR.S9410 .

3787. Niraula, R., T. Meixner and L.M. Norman. 2015. Determining the effect of model calibration on predicting relative/absolute changes in streamflow from LULC and climate changes. Journal of Hydrology. 522: 439-451. DOI: 10.1016/j.jhydrol.2015.01.007 .

3788. Niroula, S., X. Cai and G.McIsaac. 2023. Sustaining crop yield and water quality under climate change in intensively managed agricultural watersheds—The need for both adaptive and conservation measures. Environmental Research Letters. 18(12): 124029. DOI: 10.1088/1748-9326/ad085f .

3789. Niu, J., Q. Liu, S. Kang and X. Zhang. 2018. The response of crop water productivity to climatic variation in the upper-middle reaches of the Heihe River Basin, northwest China. Journal of Hydrology. 563: 909-926. DOI: 10.1016/j.jhydrol.2018.06.062 .

3790. Nkhoma, L., C. Ngongondo, Z. Dulanya and M. Monjerezi. 2021. Evaluation of integrated impacts of climate and land use change on the river flow regime in Wamkurumadzi River, Shire Basin in Malawi. Journal of Water and Climate Change. 12(5): 1674–1693. DOI: 10.2166/wcc.2020.138 .

3791. Nkhonjera, G.K., M.O. Dinka and Y.E. Woyessa. 2021. Assessment of localized seasonal precipitation in the upper middle catchment of the Olifants River Basin. Journal of Water and Climate Change. 12(1): 250-264. DOI: 10.2166/wcc.2020.187 .

3792. Nkiaka, E., N.R. Nawaz and J.C. Lovett. 2017. Effect of single and multi-site calibration techniques on hydrological model performance, parameter estimation and predictive uncertainty: A case study in the Logone Catchment, Lake Chad Basin. Stochastic Environmental Research and Risk Assessment. 32(6): 1665-1682. DOI: 10.1007/s00477-017-1466-0 .

3793. Nkiaka, E., N.R. Nawaz and J.C. Lovett. 2017. Evaluating global reanalysis datasets as input for hydrological modelling in the Sudano-Sahel Region. Hydrology. 4: 13. DOI: 10.3390/hydrology4010013 .

3794. Nkwasa, A., C. J. Chawanda, J. Jägermeyr, J. and A. van Griensven. 2022. Improved representation of agricultural land use and crop management for large-scale hydrological impact simulation in Africa using SWAT+. Hydrology and Earth System Sciences. 26(1): 71–89. DOI: 10.5194/hess-26-71-2022 .

3795. Nkwasa, A., C.J. Chawanda and A. van Griensven. 2022. Regionalization of the SWAT+ model for projecting climate change impacts on sediment yield: An application in the Nile Basin. Journal of Hydrology: Regional Studies. 42: 101152. DOI: 10.1016/j.ejrh.2022.101152 .

3796. Nkwasa, A., C.J. Chawanda, A. Msigwa, H.C. Komakech, B. Verbeiren and A. van Griensven. 2020. How can we represent seasonal land use dynamics in SWAT and SWAT+ models for African cultivated catchments? Water. 12(6): 1541. DOI: 10.3390/w12061541 .

3797. Nkwasa, A., C.J. Chawanda, A. Schlemm, J. Ekolu, K. Frieler and A. van Griensven. 2024. Historical climate impact attribution of changes in river flow and sediment loads at selected gauging stations in the Nile Basin. Climatic Change. 177(3): 42. DOI: 10.1007/s10584-024-03702-9 .

3798. Nnaji, C.C., N.M. Ogarekpe and E.J. Nwankwo. 2022. Temporal and spatial dynamics of land use and land cover changes in derived savannah hydrological basin of Enugu State, Nigeria. Environment, Development, and Sustainability. 24(7): 9598–9622. DOI: 10.1007/s10668-021-01840-z .

3799. No, S.H., K.S. Jung, J.H. Park and K.S. Ryoo. 2013. Water supply change outlook for Geum River Basin considering RCP climate change scenario. Journal of the Korean Water Resources Association. 46(5): 505-517. DOI: 10.3741/JKWRA.2013.46.5.505 .

3800. Noa-Yarasca, E., M. Babbar-Sebens and C. Jordan. 2023. An improved model of shade-affected stream temperature in Soil & Water Assessment Tool. Hydrology and Earth System Sciences. 27(3): 739-759. DOI: https://doi.org/10.5194/hess-27-739-2023 .

3801. Nobre, A.M., J.G. Ferreira, J.P. Nunes, X. Yan, S. Bricker, R. Corner, S. Groom, H. Gu, A.J.S. Hawkins, R. Hutson, D. Lan, J.D. Lencart e Silva, P. Pascoe, T. Telfer, X. Zhang and M. Zhu. 2010. Assessment of coastal management options by means of multilayered ecosystem models. Estuarine, Coastal and Shelf Science. 87(1): 43-62. DOI: 10.1016/j.ecss.2009.12.013 .

3802. Noda, K., A. Iida, S. Watanabe and K. Osawa. 2019. Efficiency and sustainability of land-resource use on a small island. Environmental Research Letters. 14: 054004. DOI: 10.1088/1748-9326/ab1455 .

3803. Noda, K., K. Yoshida, H. Shirakawa, U. Surahman and K. Oki. 2017. Effect of land use change driven by economic growth on sedimentation in river reach in Southeast Asia: A case study in Upper Citarum River Basin. Journal of Agricultural Meteorology. 73(1): 22-30. DOI: 10.2480/agrmet.D-15-00021 .

3804. Noh, H., J. Lee, N. Kang, D. Lee, H.S. Kim and S. Kim. 2016. Long-term simulation of daily streamflow using radar rainfall and the SWAT model: A case study of the Gamcheon Basin of the Nakdong River, Korea. Advances in Meteorology. 2016: 2485251. DOI: 10.1155/2016/2485251 .

3805. Noh, H.J., J.M. Kim, Y.D. Kim and B.S. Kang. 2013. Prediction of water quality effect of watershed runoff change in Doam Reservoir. Journal of the Korean Society of Civil Engineers. 33(3): 975-985. DOI: 10.12652/Ksce.2013.33.3.975 .

3806. Noh, J., J.-C. Kim and J. Park. 2014. Turbidity control in downstream of the reservoir: The Nakdong River in Korea. Environmental Earth Sciences. 71(4): 1871-1880. DOI: 10.1007/s12665-013-2589-3 .

3807. Noh, J., Y. Kim, W. Yu and J. Yu. 2021. Assessment of streamflow variation considering long-term land-use change in a watershed. Korean Journal of Agricultural Science. 48(3): 629-642. DOI: 10.7744/kjoas.20210053 .

3808. Noi, S., M. Choi, K. Jung and J. Park. 2019. Prospect of discharge at Daecheong and Yongdam Dam Watershed under future greenhouse gas scenarios using SWAT Model. Engineering Journal. 23(6): 469-476. DOI: 10.4186/ej.2019.23.6.469 .

3809. Noor, H., A.B. Kalat and A. Dastranj. 2022. Spatial prioritization of sediment source areas at watershed scale. Water Harvesting Research. 5(1): 40-52. DOI: 10.22077/jwhr.2022.5426.1066 .

3810. Noor, H., M. Vafakhah and M. Mohammady. 2016. Comparison of different targeting methods for watershed management practices implementation in Taleghan Dam Watershed, Iran. Water Science and Technology. 16(6): 1484-1496. DOI: 10.2166/ws.2016.048 .

3811. Noor, H., M. Vafakhah, M. Taheriyoun and M. Moghadasi. 2014. Hydrology modelling in Taleghan mountainous watershed using SWAT. Journal of Water and Land Development. 20(1): 11-18. URL: http://www.degruyter.com/view/j/jwld.2014.20.issue-1/jwld-2014-0003/jwld-2014-0003.xml?rskey=VLL59j&result=1.

3812. Noor, H., S. Fazli, M. Rostami and A.B. Kalat. 2017. Cost-effectiveness analysis of different watershed management scenarios developed by simulation–optimization model. Water Science and Technology. 17(5): 1316-1324. DOI: 10.2166/ws.2017.029 .

3813. Noori, N. and L. Kalin. 2016. Coupling SWAT and ANN models for enhanced daily streamflow prediction. Journal of Hydrology. 533: 141-151. DOI: 10.1016/j.jhydrol.2015.11.050 .

3814. Noori, N., L. Kalin and S. Isik. 2020. Water quality prediction using SWAT-ANN coupled approach. Journal of Hydrology. 590: 125220. DOI: 10.1016/j.jhydrol.2020.125220 .

3815. Noreika, N., J. Winterová, T. Li, J. Krása and T. Dostál. 2021. The small water cycle in the Czech landscape: How has it been affected by land management changes over time? Sustainability. 13(24): 13757. DOI: 10.3390/su132413757 .

3816. Noreika, N., T. Li, D. Zumar, J. Krasa, T. Dostal and R. Srinivasan. 2020. Farm-scale biofuel crop adoption and its effects on in-basin water balance. Sustainability. 12(24): 10596. DOI: 10.3390/su122410596 .

3817. Norman, L.M. 2021. Ecosystem services of riparian restoration: A review of rock detention structures in the Madrean Archipelago Ecoregion. Air, Soil and Water Research. 13: 1-13. DOI: 10.1177/1178622120946337 .

3818. Norman, L.M. and R. Niraula. 2016. Model analysis of check dam impacts on long-term sediment and water budgets in Southeast Arizona, USA. Ecohydrology & Hydrobiology. 16(3): 125–137. DOI: 10.1016/j.ecohyd.2015.12.001 .

3819. Norman, L.M., M.L. Villarreal, F. Lara-Valencia, Y. Yuan, W. Nie, S. Wilson, G. Amaya and R. Sleeter. 2012. Mapping socio-environmentally vulnerable populations access and exposure to ecosystem services at the U.S.-Mexico borderlands. Applied Geography. 34: 413-424. DOI: 10.1016/j.apgeog.2012.01.006 .

3820. Norman, L.M., M.L. Villarreal, R. Niraula, T. Meixner, G. Frisvold and W. Labiosa. 2013. Framing scenarios of binational water policy with a tool to visualize, quantify and valuate changes in ecosystem services. Water. 5(3): 852-874. DOI: 10.3390/w5030852 .

3821. Norman, L.M., M.L. Villarreal, R. Niraula, M. Haberstich and N.R. Wilson. 2019. Modelling development of riparian ranchlands using ecosystem services at the Aravaipa Watershed, SE Arizona. Land. 8(4): 64. DOI: 10.3390/land8040064 .

3822. Norvanchig, J. and T.O. Randhir. 2021. Simulation of ecohydrological processes influencing water supplies in the Tuul River Watershed of Mongolia. Journal of Hydroinformatics. 23(5): 1130. DOI: 10.2166/hydro.2021.056 .

3823. Nossent, J. and W. Bauwens. 2012. Multi-variable sensitivity and identifiability analysis for a complex environmental model in view of integrated water quantity and water quality modeling. Water Science and Technology. 65(3): 539-549. DOI: 10.2166/wst.2012.884 .

3824. Nossent, J., P. Elsen and W. Bauwens. 2011. Sobol' sensitivity analysis of a complex environmental model. Environmental Modelling & Software. 26(2): 1515-1525. DOI: 10.1016/j.envsoft.2011.08.010 .

3825. Noteboom, M., O. Seidou and D.R. Lapen. 2021. Predicting water quality trends resulting from forest cover change in an agriculturally dominated river basin in Eastern Ontario, Canada. Water Quality Research Journal. 56(4): 218-238. DOI: 10.2166/wqrj.2021.010 .

3826. Notter, B., H. Hurni, U. Wiesmann and K.C. Abbaspour. 2012. Modelling water provision as an ecosystem service in a large East African river basin. Hydrology and Earth System Sciences. 16(1): 69-86. DOI: 10.5194/hess-16-69-2012 .

3827. Notter, B., H. Hurni, U. Wiesmann and J.O. Ngana. 2013. Evaluating watershed service availability under future management and climate change scenarios in the Pangani Basin. Physics and Chemistry of the Earth. 61-62: 1-11. DOI: 10.1016/j.pce.2012.08.017 .

3828. Nourafkan, A.H., R. Akhtari and M. Delavar. 2021. Evaluating the impact of watershed management practices on water balance components and sediment in Verdij–Varish Catchment. Iran-Water Resources Research. 17(1): 277-289. DOI: 10.22059/ijswr.2020.300306.668567 .

3829. Nouri, Z., A. Talebi and B. Ebrahimi. 2020. Analysis of effect of the climate parameters change on runoff and evapotranspiration of Mehrgerd Watershed. Journal of Water and Soil. 34(1): 225-239. DOI: 10.22067/jsw.v34i1.82329 .

3830. Nouri, Z., A. Talebi and M.A. Asadi. 2019. Investigation of the SWAT model efficiency to determine water balance components (case study: Semirom Mehrgerd Watershed). Iran-Water Resources Research. 15(3): 133-143. URL: http://iwrr.sinaweb.net/article_88804.html?lang=en.

3831. Nover, D.M., J.W. Witt, J.B. Butcher, T.E. Johnson and C.P. Weaver. 2016. The effects of downscaling method on the variability of simulated watershed response to climate change in five U.S. basins. Earth Interactions. DOI: 10.1175/EI-D-15-0024.1 .

3832. Ntona, M.M., G. Busico, Mi. Mastrocicco and N. Kazakis. 2022. Modeling groundwater and surface water interaction: An overview of current status and future challenges. Science of the Total Environment. 846: 157355. DOI: 10.1016/j.scitotenv.2022.157355 .

3833. Nune, R., B.A. George, A.W. Western, K.K. Garg, S. Dixit and R. Ragab. 2021. A comprehensive assessment framework for attributing trends in streamflow and groundwater storage to climatic and anthropogenic changes: A case study in the typical semi-arid catchments of southern India. Hydrological Processes. 35(8): e14305. DOI: 10.1002/hyp.14305 .

3834. Nunes J.P., P.N. Quintanilla, J.M. Santos, D. Serpa, C. Carvalho-Santos, J. Rocha, J.J. Keizer and S.D. Keesstra. 2017. Afforestation, subsequent forest fires and provision of hydrological services: A model-based analysis for a Mediterranean mountainous catchment. Land Degradation & Development. 29(3): 776-788. DOI: 10.1002/ldr.2776 .

3835. Nunes, F.M.S., V.S. Srinivasan, R. de Aragão and Y.M.A. de Brito. 2022. Applicability of the SWAT model for hydrosedimentological and parameter sensitivity assessment in the Sucuru River Basin. Revista AIDIS de Ingeniería y Ciencias. 15(3): 1220-1239. DOI: 10.22201/iingen.0718378xe.2022.15.3.81147 .

3836. Nunes, G., R.T. Minoti and S. Koide. 2021. Mathematical modeling of watersheds as a subsidy for reservoir water balance determination: The case of Paranoá Lake, Federal District, Brazil. Hydrology. 7(4): 85. DOI: 10.3390/hydrology7040085 .

3837. Nunes, H.G.G.C., A.M.L. de Sousa and J.T.S. dos Santos. 2019. Simulation of flow in the Capim River (PA) using the SWAT Model. Floresta e Ambiente. 26(1): e20160171. DOI: 10.1590/2179-8087.017116 .

3838. Nunes, J.P., J. Seixas and J.J. Keizer. 2013. Modeling the response of within-storm runoff and erosion dynamics to climate change in two Mediterranean watersheds: A multi-model, multi-scale approach to scenario design and analysis. Catena. 102: 27-39. DOI: 10.1016/j.catena.2011.04.001 .

3839. Nunes, J.P., J. Seixas and N.R. Pacheco. 2008. Vulnerability of water resources, vegetation productivity and soil erosion to climate change in Mediterranean watersheds. Hydrological Processes. 22(16): 3115-3134. DOI: 10.1002/hyp.6897 .

3840. Nunes, J.P., R. Jacinto and J.J. Keizer. 2017. Combined impacts of climate and socio-economic scenarios on irrigation water availability for a dry Mediterranean reservoir. Science of the Total Environment. 584-585: 219-233. DOI: 10.1016/j.scitotenv.2017.01.131 .

3841. Nur, A.S. and M.A. Noor. 2020. Hydrological aspect of Batang Alai Weir watershed due to land use change into mining areas. CERUCUK. 4(1): 61-82. DOI: 10.20527/crc.v4i1.3579 model: SWAT .

3842. Nurcahyo, H., I. Soekarno, I.K. Hadihardaja and A. Rosyidie. 2017. Development flow duration curve for critically assessment of river basin applied at the Upper Citarum River Basin, Indonesia. International Journal of GEOMATE. 13(39): 46-53. DOI: 10.21660/2017.39.98214 .

3843. Nurdin, F.A., M. Bisri, Rispiningtati and D. Priyantoro. 2014. Studi pemulihan fungsi das berdasarkan tingkat kekritisan lahan dan potensi kelongsoran di sub das jeneberang hulu. Jurnal Teknik Pengairan. 5(1): 29-41. URL: http://jurnalpengairan.ub.ac.id/index.php/jtp/article/view/202.

3844. Nurdin, M. Shalahuddin, Fakhri, Ermiyati, A. Malik and H. Saut MM. 2022. Soil Water Assessment Tool (SWAT) model based on geographic information systems (GIS) used in watershed management. Jurnal Ilmu Lingkungan. 16(2): 128-140. DOI: 10.31258/jil.16.2.p.128-140 .

3845. Nyatuame, M., L.K. Amekudzi and S.K. Agodzo. 2021. Assessing the land use/land cover and climate change impact on water balance on Tordzie Watershed. Remote Sensing Applications: Society and Environment. 20: 100381. DOI: 10.1016/j.rsase.2020.100381 .

3846. Nyeko, M. 2014. Hydrologic modelling of data scarce basin with SWAT model: Capabilities and limitations. Water Resources Management. 29(1): 81-94. DOI: 10.1007/s11269-014-0828-3 .

3847. Nyeko, M., G. D’Urso and W.W. Immerzeel. 2013. Adaptive simulation of the impact of changes in land use on water resources in the Lower Aswa Basin. Journal of Agricultural Engineering (Italy). 13(e24): 159-164. DOI: 10.4081/jae.2012.e24 .

3848. Oa, S. and H. Jun. 2010. Nutrient impact on the Bocheung Watershed by land application of the treated animal waste. Desalination and Water Treatment. 19: 119-128. DOI: 10.5004/dwt.2010.1904 .

3849. Obuobie, E., B. Diekkrueger and B. Reichert. 2010. Use of chloride mass balance method for estimating the groundwater recharge in northeastern Ghana. International Journal of River Basin Management. 8(3-4): 245-253. DOI: 10.1080/15715124.2010.505895 .

3850. Ochoa, C.G., I. Masson, G. Cazenave, L. Vives and G.V. Amábile. 2019. A novel approach for the integral management of water extremes in plain areas. Hydrology. 6(3): 70. DOI: 10.3390/hydrology6030070 .

3851. Ochoa, V. and N. Urbina-Cardona. 2017. Tools for spatially modeling ecosystem services: Publication trends, conceptual reflections and future challenges. Ecosystem Services. 26: 155-169. DOI: 10.1016/j.ecoser.2017.06.011 .

3852. O'Donnell, T.K., C. Baffaut and D.L. Galat. 2010. Predicting effects of best management practices on sediment loads to improve watershed management in the Midwest, USA. International Journal of River Basin Management. 6(3): 243-256. DOI: 10.1080/15715124.2008.9635352 .

3853. Oduor, B.O., M.Á. Campo-Bescós, N. Lana-Renault and J. Casalí. 2023. Effects of climate change on streamflow and nitrate pollution in an agricultural Mediterranean watershed in northern Spain. Agricultural Water Management. 285: 108378. DOI: 10.1016/j.agwat.2023.108378 .

3854. Oduor, B.O., M.Á. Campo-Bescós, N. Lana-Renault, A.A. Echarri and J. Casalí. 2023. Evaluation of the impact of changing from rainfed to irrigated agriculture in a Mediterranean watershed in Spain. Agriculture. 13(1): 106. DOI: 10.3390/agriculture13010106 .

3855. Oduor, B.O., M.Á. Campo-Bescós, N. Lana-Renault, K. Kyllmar, K. Mårtensson and J. Casalí. 2023. Quantification of agricultural best management practices impacts on sediment and phosphorous export in a small catchment in southeastern Sweden. Agricultural Water Management. 290: 108595. DOI: 10.1016/j.agwat.2023.108595 .

3856. Odusanya, A.E., B. Mehdi, C. Schürz, A.O. Oke, O.S. Awokola, J.A. Awomeso, J.O. Adejuwon and K. Schulz. 2019. Multi-site calibration and validation of SWAT with satellite-based evapotranspiration in a data-sparse catchment in southwestern Nigeria. Hydrology and Earth System Sciences. 23(2): 1113-1144. DOI: 10.5194/hess-23-1113-2019 .

3857. Odusanya, A.E., K. Schulz and B. Mehdi-Schulz. 2022. Using a regionalisation approach to evaluate streamflow simulated by an ecohydrological model calibrated with global land surface evaporation from remote sensing. Journal of Hydrology: Regional Studies. 40: 101042. DOI: 10.1016/j.ejrh.2022.101042 .

3858. Odusanya, A.E., K. Schulz, E.I. Biao, B.A.S. Degan and B. Mehdi-Schulz. 2021. Evaluating the performance of streamflow simulated by an eco-hydrological model calibrated and validated with global land surface actual evapotranspiration from remote sensing at a catchment scale in West Africa. Journal of Hydrology: Regional Studies. 37: 100893. DOI: 10.1016/j.ejrh.2021.100893 .

3859. Oeurng, C., S. Sauvage and J.-M. Sanchez-Perez. 2011. Assessment of hydrology, sediment and particulate organic carbon yield in a large agricultural catchment using the SWAT model. Journal of Hydrology. 401(3-4): 145-153. DOI: 10.1016/j.jhydrol.2011.02.017 .

3860. Oeurng, C., T.A. Cochrane, M.E. Arias, B. Shrestha and T. Piman. 2016. Assessment of changes in riverine nitrate in the Sesan, Srepok and Sekong tributaries of the Lower Mekong River Basin. Journal of Hydrology: Regional Studies. 8: 95-111. DOI: 10.1016/j.ejrh.2016.07.004 .

3861. Oeurng, C., T.A. Cochrane, S. Chung, M.G. Kondolf, T. Piman and M.E. Arias. 2019. Assessing climate change impacts on river flows in the Tonle Sap Lake Basin, Cambodia. Water. 11: 618. DOI: 10.3390/w11030618 .

3862. Ogbu, K.N. and C.C. Mbajiorgu. 2013. Evaluation of impact of land-use change in the Ebonyi River Watershed, south-eastern Nigeria, using SWAT. Journal of Agricultural Engineering and Technology. 21(2): 105-113. URL: http://www.niae.net/index.php?option=com_content&task=view&id=19&Itemid=33.

3863. Ogden, F. L., J. Garbrecht, P. A. DeBarry and L. E. Johnson. 2001. GIS and distributed watershed models. II: Modules, interfaces, and models. Journal of Hydrologic Engineering. 6: 515-523. DOI: 10.1061/(ASCE)1084-0699(2001)6:6(515) .

3864. Ogunlela, A.O., O.B. Omole and K.O. Yusuf. 2018. A bathymetry-based reservoir sedimentation evaluation. Malaysian Journal of Civil Engineering. 30(3): 429-441. URL: https://journals.utm.my/mjce/article/view/16068.

3865. Oh, H.-Y., Y. Shimizu and S.-K. Kim. 2018. Effect analysis regarding different scenarios to improve water quality of the Lake Paldang Basin in Korea. KSCE Journal of Civil Engineering. 22: 3246–3253. DOI: 10.1007/s12205-017-1305-3 .

3866. O'Keeffe, J., M. Piniewski, M. Szczesniak, P. Oglecki, P. Parasiewicz and T. Okruszko. 2019. Index‐based analysis of climate change impact on streamflow conditions important for Northern Pike, Chub and Atlantic Salmon. Fisheries Management and Ecology. 26(6): 474-485. DOI: 10.1111/fme.12316 .

3867. O'Keeffe, J., P. Marcinkowski, M. Utratna, M. Piniewski, I. Kardel, Z.W. Kundzewicz and T. Okruszko. 2019. Modelling climate change’s impact on the hydrology of Natura 2000 Wetland Habitats in the Vistula and Odra River Basins in Poland. Water. 11(10): 2191. DOI: 10.3390/w11102191 .

3868. Olaoye, I.A., R.B. Confesor, Jr. and J.D. Ortiz. 2021. Impact of agricultural practices on water quality of Old Woman Creek Watershed, Ohio. Agriculture. 11(15): 426. DOI: 10.3390/agriculture11050426 .

3869. Olaoye, I.A., R.B. Confesor, Jr. and J.D. Ortiz. 2021. Impact of seasonal variation in climate on water quality of Old Woman Creek Watershed Ohio using SWAT. Climate. 9(3): 50. DOI: 10.3390/cli9030050 .

3870. Olenick, K.L., J.R. Conner, R.N. Wilkins, U.P. Kreuter and W.T. Hamilton. 2004. Economic implications of brush treatments to improve water yield. Journal of Range Management. 57(4): 337-345. URL: https://journals.uair.arizona.edu/index.php/jrm/article/view/12446.

3871. Olenick, K.L., N.R. Wilkins and R.J. Conner. 2004. Increasing off-site water yield and grassland bird habitat in Texas through brush treatment practices. Ecological Economics. 49(4): 469-484. DOI: 10.1016/j.ecolecon.2004.02.001 .

3872. Oliva, R.D.P., E.A. Montevechio, F.F. Jorquera, F. Vásquez-Lavin and A. Stehr. 2021. Water use and climate stressors in a multiuser river basin setting: Who benefits from adaptation? Water Resources Management. 35(3): 897–915. DOI: 10.1007/s11269-020-02753-8 .

3873. Oliveira, L.T., R.A. Cecílio, S.S. Zanetti, R.A. Loos, D. de A. Bressiani and R. Srinivasan. 2020. Hydrological simulation of a small forested catchment under different land use and forest management. iForest - Biogeosciences and Forestry. 13(4): 301-308. DOI: 10.3832/ifor3221-013 .

3874. Oliver, C.W., D. E. Radcliffe, L. M. Risse, M. Habteselassie, R. Mukundan, J. Jeong and N. Hoghooghi. 2014. Quantifying the contribution of on-site wastewater treatment systems to stream discharge using the SWAT Model. Journal of Environmental Quality. 43(2): 539-548. DOI: 10.2134/jeq2013.05.0195 .

3875. Olivera, F., M. Valenzuela, R. Srinivasan, J. Choi, H. Cho, S. Koka and A. Agrawal. 2006. ArcGIS-SWAT: A geodata model and GIS interface for SWAT. Journal of the American Water Resources Association. 42(2): 295-309. DOI: 10.1111/j.1752-1688.2006.tb03839.x .

3876. Olofintoye, O.O., A.M. Ayanshola, A.W. Salami, A. Idrissiou, J.O. Iji and O.O Adeleke. 2022. A study on the applicability of a SWAT model in predicting the water yield and water balance of the Upper Ouémé Catchment in the Republic of Benin. Slovak Journal of Civil Engineering. 30(1): 57-66. DOI: 10.2478/sjce-2022-0007 .

3877. Olowe K.O. and M.V. Kumarasamy. 2018. Assessment of Some Existing Water Quality Models. Nature Environment and Pollution Technology. 17(3): 939-948. URL: https://neptjournal.com/upload-images/NL-65-36-(34)D-733.pdf.

3878. Omani, N., R. Srinivasan and T. Lee. 2014. Estimation of sediment and nutrient loads to bays from gauged and ungauged watersheds. Applied Engineering in Agriculture. 30(6): 869-887. DOI: 10.13031/aea.30.10162 .

3879. Omani, N., R. Srinivasan, P.K. Smith and R. Karthikeyan. 2017. Glacier mass balance simulation using SWAT distributed snow algorithm. Hydrological Sciences Journal. 62(4): 546-560. DOI: 10.1080/02626667.2016.1162907 .

3880. Omani, N., R. Srinivasan, R. Karthikeyan, K. Venkata Reddy and P.K. Smith. 2016. Impacts of climate change on the glacier melt runoff from five river basins. Transactions of the ASABE. 59(4): 829-848. DOI: 10.13031/trans.59.11320 .

3881. Omani, N., R. Srinivasan, R. Karthikeyan and P.K. Smith. 2017. Hydrological modeling of highly glacierized basins (Andes, Alps, and Central Asia). Water. 9(2): 111. DOI: 10.3390/w9020111 .

3882. Omar, A., M. Zhuguo, Z. Zheng and F. Saleem. 2020. Natural and anthropogenic influences on the recent droughts in Yellow River Basin, China. Science of the Total Environment. 704: 135428. DOI: 10.1016/j.scitotenv.2019.135428 .

3883. Omer, A., M. Zhuguo, X. Yuan, Z. Zheng and F. Saleem. 2021. A hydrological perspective on drought risk-assessment in the Yellow River Basin under future anthropogenic activities. Journal of Environmental Management. 289: 112429. DOI: 10.1016/j.jenvman.2021.112429 .

3884. Omer, A., N.A. Elagib, M. Zhuguo, F. Saleem and A. Mohammed. 2020. Water scarcity in the Yellow River Basin under future climate change and human activities. Science of the Total Environment. 749: 141446. DOI: 10.1016/j.scitotenv.2020.141446 .

3885. Omer, A., W. Wang, A.K. Basheer and B. Yong. 2017. Integrated assessment of the impacts of climate variability and anthropogenic activities on river runoff: A case study in the Hutuo River Basin, China. Hydrology Research. 48(2): 416-430. DOI: 10.2166/nh.2016.229 .

3886. Onate-Valdivieso, F. and J. Bosque Sendra. 2014. Semi-distributed hydrological model with scarce information: An application to a large South-American binational basin. Journal of Hydrologic Engineering. 19(5): 1006–1014. DOI: 10.1061/(ASCE)HE.1943-5584.0000853 .

3887. Ondr, P., J. Penčenka, J. Polenský and J. Ciml. 2016. Effect of land use changes on water run-off from a small catchment in the Czech Republic. Ekológia (Bratislava). 35(1): 78-89. DOI: 10.1515/eko-2016-0006 .

3888. Ongley, E.D., Z. Xiaolan and Y. Tao. 2010. Current status of agricultural and rural non-point source pollution assessment in China. Environmental Pollution. 158(5): 1159-1168. DOI: 10.1016/j.envpol.2009.10.047 .

3889. Ongsomwang, S. and N. Iamchuen. 2015. Integration of geospatial models for optimum land use allocation in three different scenarios. Suranaree Journal of Science and Technology. 22(4): 377-396. URL: http://ird.sut.ac.th/e-journal/index.php?year=2015&no=4&vol=22.

3890. Onishi, T., J. Yoshino, K. Hiramatsu and H. Somura. 2020. Developing a hydro‐chemical model of Ise Bay watersheds and the evaluation of climate change impacts on discharge and nitrate‐nitrogen loads. Limnology. 21(3): 465-486. DOI: 10.1007/s10201-020-00622-2 .

3891. Onyutha, C., C. Turyahabwe and P.l Kaweesa. 2021. Impacts of climate variability and changing land use/land cover on River Mpanga flows in Uganda, East Africa. Environmental Challenges. 5: 100273. DOI: https://doi.org/10.1016/j.envc.2021.100273 .

3892. Onyutha, C., R. Nyesigire and A. Nakagiri. 2021. Contributions of human activities and climatic variability to changes in River Rwizi flows in Uganda, East Africa. Hydrology. 8(4): 145. DOI: 10.3390/hydrology8040145 .

3893. Ordoñez, D.M.R., Y.V.C. De Angulo, E.L.P. Fierro and A.F. Casas. 2023. Mapping ecosystem services in an Andean water supply basin. Sustainability. 15(3): 1793. DOI: 10.3390/su15031793 .

3894. Orke, Y.A. and M.-H. Li. 2022. Impact of climate change on hydrometeorology and droughts in the Bilate Watershed, Ethiopia. Water. 14(5): 729. DOI: 10.3390/w14050729 .

3895. Orkodjo, T.P., G. Kranjac-Berisavijevis and F.K. Abagale. 2022. Impact of climate change on future precipitation amounts, seasonal distribution, and streamflow in the Omo-Gibe Basin, Ethiopia. Heliyon. 8(6): e09711. DOI: 10.1016/j.heliyon.2022.e09711 .

3896. Orkodjo,T.P., G. Kranjac-Berisavijevic and F.K. Abagale. 2022. Impact of climate change on future availability of water for irrigation and hydropower generation in the Omo-Gibe Basin of Ethiopia. Journal of Hydrology: Regional Studies. 44: 101254. DOI: 10.1016/j.ejrh.2022.101254 .

3897. Orlinska-Wozniak, P., E. Szalińska, E., Jakusik, D., Bojanowski and P. Wilk. 2021. Biomass Production Potential in a River under Climate Change Scenarios. Environmental Science & Technology. 55(16): 11113–11124. DOI: 10.1021/acs.est.1c03211 .

3898. Orlińska-Woźniak, P., E. Szalińska and P. Wilk. 2020. Do land use changes balance out sediment yields under climate change predictions on the sub-basin scale? The Carpathian Basin as an example. Water. 12(5): 1499. DOI: 10.3390/w12051499 .

3899. Orlińska-Woźniak, P., P. Wilk and E. Szalińska. 2020. Delimitation of nutrient vulnerable zones-a comprehensive method to manage a persistent problem of agriculture. Agricultural Systems. 183: 102858. DOI: 10.1016/j.agsy.2020.102858 .

3900. Ortegón, Y.A.C., J.C. Acosta-Prado and P.M.A. Castellanos. 2022. Impact of land cover changes on the availability of water resources in the Regional National Park Serranía de Las Quinchas. Sustainability. 14(6): 3237. DOI: 10.3390/su14063237 .

3901. Ortiz-Reyes, E. and R.P. Anex. 2018. A life cycle impact assessment method for freshwater eutrophication due to the transport of phosphorus from agricultural production. Journal of Cleaner Production. 177: 474-482. DOI: 10.1016/j.jclepro.2017.12.255 .

3902. Oruç, N.H., M. Çelen, F. Gülgen, M.S. Öncel, S. Vural and B. Kılıç. 2023. Evaluating the effects of soil data quality on the SWAT runoff prediction performance; A case study of Saz-Cayirova Catchment, Turkey. Urban Water Journal. DOI: 10.1080/1573062X.2022.2056060 .

3903. Osei, E., P.W. Gassman, L.M. Hauck, S. Neitsch, R.D. Jones, J. Mcnitt and H. Jones. 2003. Economic and environmental impacts of pasture nutrient management. Journal of Range Management. 56(3): 218-226. URL: https://journals.uair.arizona.edu/index.php/jrm/article/view/9795.

3904. Osei, E., P.W. Gassman, L.M. Hauck, R. Jones, L. Beran, P.T. Dyke, D.W. Goss, J.D. Flowers and A.M.S. McFarland. 2003. Environmental benefits and economic costs of manure incorporation on dairy waste application fields. Journal of Environmental Management. 68(1): 1-11. DOI: 10.1016/S0301-4797(02)00226-8 .

3905. Osei, M.A., L.K. Amekudzi, A.Y. Omari-Sasu, E.I. Yamba, E. Quansah, J.N.A. Aryee and K. Preko. 2021. Estimation of the return periods of maxima rainfall and floods at the Pra River Catchment, Ghana, West Africa using the Gumbel extreme value theory. Heliyon. 7(5): e06980. DOI: 10.1016/j.heliyon.2021.e06980 .

3906. Osei. M.A., L.K. Amekudzi, D.D. Wemegah, K. Preko, E.S. Gyawu and K. Obiri-Danso. 2019. The impact of climate and land-use changes on the hydrological processes of Owabi Catchment from SWAT analysis. Journal of Hydrology: Regional Studies. 25: 100620. DOI: 10.1016/j.ejrh.2019.100620 .

3907. Osman, M., G. Zittis, M. Haggag, A.W. Abdeldayem and J. Lelieveld. 2021. Optimizing Regional Climate Model Output for Hydro‑Climate Applications in the Eastern Nile Basin. Earth Systems and Environment. 5(2): 185–200. DOI: 10.1007/s41748-021-00222-9 .

3908. Osmond, D., C. Bolster, A. Sharpley, M. Cabrera, S. Feagley, A. Forsberg, C. Mitchell, R. Mylavarapu, J.L. Oldham, D.E. Radcliffe, J.J. Ramirez-Avila, D.E. Storm, F. Walker and H. Zhang. 2018. Southern phosphorus indices, water quality data, and modeling (APEX, APLE, and TBET) results: A comparison. Journal of Environmental Quality. 46: 1296-1305. DOI: 10.2134/jeq2016.05.0200 .

3909. Ostad‑Ali‑Askar, K. 2022. Investigation of meteorological variables on runof archetypal using SWAT: Basic concepts and fundamentals. Applied Water Science. 12(8): 177. DOI: 10.1007/s13201-022-01701-8 .

3910. Ostojski, M.S., J. Gębala, P. Orlińska-Woźniak and P. Wilk. 2016. Implementation of robust statistics in the calibration, verification and validation step of model evaluation to better reflect processes concerning total phosphorus load occurring in the catchment. Ecological Modelling. 332: 83-93. DOI: 10.1016/j.ecolmodel.2016.04.004 .

3911. Ostojski, M.S., J. Niedbala, P. Orlinska, P. Wilk and J. Wrobel. 2014. Soil and Water Assessment Tool model calibration results for different catchment sizes in Poland. Journal of Environmental Quality. 43(1): 132-144. DOI: 10.2134/jeq2011.0365 .

3912. Osypov V., N. Osadcha, D. Hlotka, V. Osadchyi and J. Nabyvanets. 2018. The Desna River daily multi-site streamflow modeling using SWAT with detail snowmelt adjustment. Journal of Geography and Geology. 10(3): 92-110. DOI: 10.5539/jgg.v10n3p92 .

3913. Osypov, V., O. Speka, A. Chyhareva, N. Osadcha, S. Krakovska and V. Osadchyi. 2021. Water resources of the Desna River Basin under future climate. Journal of Water and Climate Change. 12(7): 3355. DOI: 10.2166/wcc.2021.034 .

3914. Osypov, V.V., N.M. Osadcha and V.I. Osadchyi. 2021. Climate change and water resources of the Desna River Basin till the middle of the XXI century. Reports of the National Academy of Sciences of Ukraine. 2: 71-82. DOI: 10.15407/dopovidi2021.02.071 .

3915. Osypov, V.V., O.S. Speka, V.I. Osadchyi, N.M. Osadcha and A.S. Bonchkovskyi. 2020. Hydrograph forecasting using the SWAT model (Soil and Water Assessment Tool) on the example of the Desna Basin. Reports of the National Academy of Sciences of Ukraine. 9: 98-107. DOI: 10.15407/dopovidi2020.09.098 .

3916. Othman, D.B. and M. Gueddari. 2014. Hydrological study of the water quality of the Beja River according to the SWAT model. Desalination and Water Treatment. 52(10-12): 2047-2056. DOI: 10.1080/19443994.2013.872053 .

3917. Ouessar, M., Bruggeman, A., Abdelli, F., R.H. Mohtar, D. Gabriels and W.M. Cornelis. 2009. Modelling water-harvesting systems in the arid south of Tunisia using SWAT. Hydrology and Earth System Sciences. 13(10): 2003-2021. DOI: 10.5194/hess-13-2003-2009 .

3918. Ougahi, J.H. , S. Karim and S.A. Mahmood. 2022. Application of the SWAT model to assess climate and land use/cover change impacts on water balance components of the Kabul River Basin, Afghanistan. Journal of Water and Climate Change. 13(11): 3977. DOI: 10.2166/wcc.2022.261 .

3919. Ougahi, J.H. and S.A. Mahmood. 2022. Evaluation of satellite-based and reanalysis precipitation datasets by hydrologic simulation in the Chenab River Basin. Journal of Water and Climate Change. 13(3): 1563-1582. DOI: 10.2166/wcc.2022.410 .

3920. Ougahi, J.H., M.E.J. Cutler and S.J. Cook. 2022. Modelling climate change impact on water resources of the Upper Indus Basin. Journal of Water and Climate Change. 13(2): 482-504. DOI: 10.2166/wcc.2021.233 .

3921. Ouyang W., P. Wei, X. Gao, R. Srinivasan, H. Yen, X. Xie, L. Liu and H. Liu. 2020. Optimization of SWAT-Paddy for modeling hydrology and diffuse pollution of large rice paddy fields. Environmental Modelling & Software. 130: 104736. DOI: 10.1016/j.envsoft.2020.104736 .

3922. Ouyang, F., Y. Zhu, G. Fu, H. Lu, A. Zhang, X. Yu and X. Chen. 2015. Impacts of climate change under CMIP5 RCP scenarios on streamflow in the Huangnizhuang Catchment. Stochastic Environmental Research and Risk Assessment. 29(7): 1781-1795. DOI: 10.1007/s00477-014-1018-9 .

3923. Ouyang, W., A.K. Skidmore, A.G. Toxopeus and F. Hao. 2010. Long-term vegetation landscape pattern with non-point source nutrient pollution in upper stream of Yellow River Basin. Journal of Hydrology. 389(3-4): 373-380. DOI: 10.1016/j.jhydrol.2010.06.020 .

3924. Ouyang, W., F. Hao, A.K. Skidmore and G. Toxopeus. 2010. Soil erosion and sediment yield and their relationships with vegetation cover in upper stream of the Yellow River. Science of the Total Environment. 409(2): 396-403. DOI: 10.1016/j.scitotenv.2010.10.020 .

3925. Ouyang, W., F. Hao, K. Song and X. Zhang. 2011. Cascade dam-induced hydrological disturbance and environmental impact in the upper stream of the Yellow River. Water Resources Management. 25(3): 913-927. DOI: 10.1007/s11269-010-9733-6 .

3926. Ouyang, W., F.-H. Hao and X.-L. Wang. 2008. Nonpoint source pollution responses simulation for conversion cropland to forest in mountains by SWAT in China. Journal of Environmental Management. 41: 79-89. DOI: 10.1007/s00267-007-9028-8 .

3927. Ouyang, W., F.-H. Hao and X.-L. Wang. 2008. Regional non point source organic pollution modeling and critical area identification for watershed best environmental management. Water, Air, and Soil Pollution. 187: 251-261. DOI: 10.1007/s11270-007-9513-y .

3928. Ouyang, W., G. Cai, M. Tysklind, W. Yang, F. Hao and H. Liu. 2017. Temporal-spatial patterns of three types of pesticide loadings in a middle-high latitude agricultural watershed. Water Research. 122: 377-388. DOI: 10.1016/j.watres.2017.06.023 .

3929. Ouyang, W., H. Huang, F. Hao and B. Guo. 2013. Synergistic impacts of land-use change and soil property variation on non-point source nitrogen pollution in a freeze-thaw area. Journal of Hydrology. 495: 126–134. DOI: 10.1016/j.jhydrol.2013.04.037 .

3930. Ouyang, W., H. Huang, F. Hao, Y. Shan and B. Guo. 2012. Evaluating spatial interaction of soil property with non-point source pollution at watershed scale: The phosphorus indicator in northeast China. Science of the Total Environment. 432: 412-421. DOI: 10.1016/j.scitotenv.2012.06.017 .

3931. Ouyang, W., K. Song, X. Wang and F. Hao. 2014. Non-point source pollution dynamics under long-term agricultural agricultural development and relationship with landscape dynamics. Ecological Indicators. 45: 579-589. DOI: 10.1016/j.ecolind.2014.05.025 .

3932. Ouyang, W., L. Bing, H. Huang, F. Hao and Z. Hao. 2015. Watershed water circle dynamics during long term farmland conversion in freeze-thawing area. Journal of Hydrology. 523: 555-562. DOI: 10.1016/j.jhydrol.2015.01.050 .

3933. Ouyang, W., W. Jiao, X. Li, E. Giubilato and A. Critto. 2016. Long-term agricultural non-point source pollution loading dynamics and correlation with outlet sediment geochemistry. Journal of Hydrology. 540: 379-385. DOI: 10.1016/j.jhydrol.2016.06.043 .

3934. Ouyang, W., W. Yang, M. Tysklind, Y. Xu, C. Lin, X. Gao and Z. Hao. 2018. Using river sediments to analyze the driving force difference for nonpoint source pollution dynamics between two scales of watersheds. Water Research. 139: 311-320. DOI: 10.1016/j.watres.2018.04.020 .

3935. Ouyang, W., X. Gao, Z. Hao, H. Liu, Y. Shi and F. Hao. 2017. Farmland shift due to climate warming and impacts on temporal-spatial distributions of water resources in a middle-high latitude agricultural watershed. Journal of Hydrology. 547: 156-167. DOI: 10.1016/j.jhydrol.2017.01.050 .

3936. Ouyang, W., X. Hao, L. Wang, Y. Xu, M. Tysklind, X. Gao and C. Lin. 2019. Watershed diffuse pollution dynamics and response to land development assessment with riverine sediments. Science of the Total Environment. 659: 283-292. DOI: 10.1016/j.scitotenv.2018.12.367 .

3937. Ouyang, W., X. Wang, F. Hao and R. Srinivasan. 2009. Temporal-spatial dynamics of vegetation variation on non-point source nutrient pollution. Ecological Modelling. 220(20): 2703-2713. DOI: 10.1016/j.ecolmodel.2009.06.039 .

3938. Ouyang, W., X. Xu, Z. Hao and X. Gao. 2017. Effects of soil moisture content on upland nitrogen loss. Journal of Hydrology. 596: 71-80. DOI: 10.1016/j.jhydrol.2016.12.053 .

3939. Ouyang, Y. 2021. New insights on evapotranspiration and water yield in crop and forest lands under changing climate. Journal of Hydrology. 603(Part D): 127192. DOI: 10.1016/j.jhydrol.2021.127192 .

3940. Ouyang, Y., S.S. Panda and G. Feng. 2023. Linking Climate-Change Impacts on Hydrological Processes and Water Quality to Local Watersheds. Climate. 10(7): 96. DOI: 10.3390/cli10070096 .

3941. Ovando, P., P. Campos, J.L. Oviedo and A. Caparrós. 2016. Ecosystem accounting for measuring total income in private and public agroforestry farms. Forest Policy and Economics. 71: 43-51. DOI: 10.1016/j.forpol.2016.06.031 .

3942. Özcan, Z., E. Kentel and E. Alp. 2016. Determination of unit nutrient loads for different land uses in wet periods through modelling and optimization for a semi-arid region. Journal of Hydrology. 540: 40–49. DOI: 10.1016/j.jhydrol.2016.05.074 .

3943. Özcan, Z., E. Kentel and E. Alp. 2017. Evaluation of the best management practices in a semi-arid region with high agricultural activity. Agricultural Water Management. 194: 160-171. DOI: 10.1016/j.agwat.2017.09.007 .

3944. Özcan, Z., O. Başkan, H.Ş. Düzgün, E. Kentel and E. Alp. 2017. A pollution fate and transport model application in a semi-arid region: Is some number better than no number? Science of the Total Environment. 595: 425-440. DOI: 10.1016/j.scitotenv.2017.03.240 .

3945. Ozdemir, A. and U.M. Leloglu. 2019. A fast and automated hydrologic calibration tool for SWAT. Water and Environment Journal. 33: 488–498. DOI: 10.1111/wej.12419 .

3946. Ozdemir, A., U.M. Leloglu and K.C. Abbaspour. 2017. Hierarchical approach to hydrological model calibration. Environmental Earth Sciences. 76: 318. DOI: 10.1007/s12665-017-6560-6 .

3947. Özdemir, K. and Ö. Gungor. 2019. SWAT model on Filyos Creek Basin. Necmettin Erbakan University Journal of Science and Engineering . 1(2): 90-102. URL: https://dergipark.org.tr/en/pub/neufmbd/issue/50471/559228.

3948. Ozturk, I., B. Sharif, S. Baby, M. Jabloun and J.E. Olesen. 2018. Long-term simulation of temporal change of soil organic carbon in Denmark: Comparison of three model performances under climate change. The Journal of Agricultural Science. DOI: 10.1017/S0021859617000971 .

3949. Pacetti, T., G. Castelli, B. Schröder, E. Bresci and E. Caporali. 2021. Water ecosystem services footprint of agricultural production in central Italy. Science of the Total Environment. 797: 149095. DOI: 10.1016/j.scitotenv.2021.149095 .

3950. Pacetti, T., M. Lompi, C. Petri and E. Caporali. 2020. Mining activity impacts on soil erodibility and reservoirs silting: Evaluation of mining decommissioning strategies. Journal of Hydrology. 589: 125107. DOI: 10.1016/j.jhydrol.2020.125107 .

3951. Padhiary, J., D.M. Das, K.C. Patra, B.C. Sahoo and B. Panigrahi. 2019. Identification of sensitive parameters and uncertainty analysis for simulating streamflow in Jaraikela Catchment of Brahmani River Basin using SWAT model. Journal of Soil Conservation. 47(2): 111-118. URL: https://www.indianjournals.com/ijor.aspx?target=ijor:ijsc&volume=47&issue=2&article=001.

3952. Padhiary, J., K.C. Patra, S.S. Dash and A.U. Kumar. 2020. Climate change impact assessment on hydrological fluxes based on ensemble GCM outputs: A case study in eastern Indian river basin. Journal of Water and Climate Change. 11(4): 1676-1694. DOI: 10.2166/wcc.2019.080 .

3953. Paez-Trujillo, A., G.A. Corzo, S. Maskey and D. Solomatine. 2023. Model-based assessment of preventive drought management measures’ effect on droughts severity. Water. 15(8): 1442. DOI: 10.3390/w15081442 .

3954. Pagliero, L., F. Bouraoui, J. Diels, P. Willems and N. McIntyre. 2019. Investigating regionalization techniques for large-scale hydrological modelling. Journal of Hydrology. 570: 220–235. DOI: 10.1016/j.jhydrol.2018.12.071 .

3955. Pagliero, L., F. Bouraoui, P. Willems and J. Diels. 2014. Large scale hydrological simulations using SWAT, protocol development and application in the Danube Basin. Journal of Environmental Quality. 43(1): 145–154. DOI: 10.2134/jeq2011.0359 .

3956. Pai, N. and D. Saraswat. 2011. SWAT2009_LUC: A tool to activate the land use change module in SWAT 2009. Transactions of the ASABE. 54(5): 1649-1658. URL: http://baegrisk.ddns.uark.edu/SWAT_Model_Tools/SWAT2009_LUC/docs/2011_Pai_SWAT2009_LUC.pdf.

3957. Pai, N. and D. Saraswat. 2013. Impact of land use and land cover categorical uncertainty on SWAT hydrologic modeling. Transactions of the ASABE. 56(4): 1387-1397. DOI: 10.13031/trans.56.10062 .

3958. Pai, N., D. Saraswat and M. Daniels. 2011. Identifying priority subwatersheds in the Illinois River Drainage Area in Arkansas watershed using a distributed modeling approach. Transactions of the ASABE. 54(6): 2181-2196. URL: http://comp.uark.edu/~npai/doc/2011_Pai_SWAT_Prioritization.pdf.

3959. Pai, N., D. Saraswat and R. Srinivasan. 2012. Field_SWAT: A tool for mapping SWAT output to field boundries. Computers & Geosciences. 40: 175-184. DOI: 10.1016/j.cageo.2011.07.006 .

3960. Paim, J.B. and J.T. de Menezes. 2009. Estimate of sediment budget of the Tijucas River Basin applying SWAT hydrologic model. Revista Geográfica Acadêmica. 3(2): 5-14. URL: http://revista.ufrr.br/index.php/rga/issue/view/179.

3961. Palamuleni, L.G., P.M. Ndomba and H.J. Annegarn. 2011. Evaluating land cover change and its impact on hydrological regime in Upper Shire River Catchment, Malawi. Regional Environmental Change. 11(4): 845-855. DOI: 10.1007/s10113-011-0220-2 .

3962. Palanisamy, B. and S. R. Workman. 2015. Hydrologic modeling of flow through sinkholes located in streambeds of Cane Run Stream, Kentucky. Journal of Hydrologic Engineering. 20(5). DOI: 10.1061/(ASCE)HE.1943-5584.0001060 .

3963. Palao, L.K.M., M.M. Dorado, K.P.A. Anit and R.D. Lasco. 2013. Using the Soil and Water Assessment Tool (SWAT) to assess material transfer in the Layawan Watershed, Mindanao, Philippines and its implications on payment for ecosystem services. Journal of Sustainable Development. 6(6): 73-88. DOI: 10.5539/jsd.v6n6p73 .

3964. Palash, W., S.R. Bajracharya, A.B. Shrestha, S. Wahid, Md. S. Hossain, T.K. Mogumder and L.C. Mazumder. 2023. Climate change impacts on the hydrology of the Brahmaputra River Basin. Climate. 11(1): 18. DOI: 10.3390/cli11010018 .

3965. Palazon, L. and A. Navas. 2013. Sediment production of an alpine catchment with SWAT. Zeitshrift fur Geomorphologie. 57(2): 69-85. DOI: 10.1127/0372-8854/2013/S-00136 .

3966. Palazón, L. and A. Navas. 2016. Case study: Effect of climatic characterization on river discharge in an alpine-prealpine catchment of the Spanish Pyrenees using the SWAT model. Water. 8(10: 471. DOI: doi:10.3390/w8100471 .

3967. Palazón, L. and A. Navas. 2016. Land use sediment production response under different climatic conditions in an alpine–prealpine catchment. Catena. 137: 244-255. DOI: 10.1016/j.catena.2015.09.025 .

3968. Palazón, L., B. Latorre, L. Gaspar, W.H. Blake, H.G. Smith and A. Navas. 2016. Combining catchment modelling and sediment fingerprinting to assess sediment dynamics in a Spanish Pyrenean river system. Science of the Total Environment. 569–570: 1136–1148. DOI: 10.1016/j.scitotenv.2016.06.189 .

3969. Palazzoli, I., S. Maskey, S. Uhlenbrook, E. Nana and D. Bocchiola. 2015. Impact of prospective climate change on water resources and crop yields in the Indrawati Basin, Nepal. Agricultural Systems. 133: 143–157. DOI: 10.1016/j.agsy.2014.10.016 .

3970. Palm-Forster, L.H., S.M. Swinton, F. Lupi and R.S. Shupp. 2016. Too burdensome to bid: Transaction costs and pay-for-performance conservation. American Journal of Agricultural Economics. 98(5): 1374-1333. DOI: 10.1093/ajae/aaw071 .

3971. Palm-Forster, L.H., S.M. Swinton, T.M. Redder, J.V. DePinto and C.M.W. Boles. 2016. Using conservation auctions informed by environmental performance models to reduce agricultural nutrient flows into Lake Erie. Journal of Great Lakes Research. 42(6): 1357-1371. DOI: 10.1016/j.jglr.2016.08.003 .

3972. Palm-Forster, L.H., S.M. Swinton and R.S. Shupp. 2017. Farmer preferences for conservation incentives that promote voluntary phosphorus abatement in agricultural watersheds. Journal of Soil and Water Conservation. 72(5): 493-505. DOI: 10.2489/jswc.72.5.493 .

3973. Pamungkas, A. and S. Purwitaningsih. 2019. Green and grey infrastructures approaches in flood reduction. International Journal of Disaster Resilience in the Built Environment. 10(5): 343-362. URL: https://www.emerald.com/insight/publication/issn/1759-5908/vol/10/iss/5.

3974. Pamungkas, A. and S. Purwitaningsih. 2021. Is Surabaya being planned as a low-risk city? International review for spatial planning and sustainable development A: Planning Strategies and Design. 9(1): 78-92. DOI: 10.14246/irspsda.9.1_78 .

3975. Pan, D. and L. Ren. 2012. Application of distributed hydrological model in irrigation management of Tuhai-Majia River Basin I. Parameter calibration and validation. Scientia Agricultura Sinica. 45(3): 471-479. DOI: 10.3864/j.issn.0578-1752.2012.03.008 .

3976. Pan, D. and L. Ren. 2012. Application of distributed hydrological model in irrigation management of Tuhai-Majia River Basin II. Crop water production function and optimal irrigation. Scientia Agricultura Sinica. 45(3): 480-488. DOI: 10.3864/j.issn.0578-1752.2012.03.009 .

3977. Pan, S., D. Liu, Z. Wang, Q. Zhao, H. Zou, Y. Hou, P. Liu and L. Xiong. 2017. Runoff responses to climate and land use/cover changes under future scenarios. Water. 9(7): 475. DOI: 10.3390/w9070475 .

3978. Pan, T., L. Zuo, Z. Zhang, X. Zhao, F. Sun, Z. Zhu and Y. Liu. 2021. Impact of land use change on water conservation: A case study of Zhangjiakou in Yongding River. Sustainability. 13(1): 22. DOI: 10.3390/su13010022 .

3979. Pan, T., L. Zuo, Z. Zhang, X. Zhao, F. Sun, Z. Zhu and Y. Liu. 2022. Effects of afforestation projects on tradeoffs between ecosystem services: A case study of the Guanting Reservoir Basin, China. Forests. 13(2): 232. DOI: 10.3390/f13020232 .

3980. Panagopoulos Y., C. Makropoulos and M. Mimikou. 2011. Diffuse surface water pollution: Driving factors for different geoclimatic regions. Water Resources Management. 25(14): 3635-3660. DOI: 10.1007/s11269-011-9874-2 .

3981. Panagopoulos, I., M. Mimikou and M. Kapetanaki. 2007. Estimation of nitrogen and phosphorus losses to surface water and groundwater through the implementation of the SWAT model for Norwegian soils. Journal of Soils and Sediment. 7(4): 223-231. DOI: 10.1065/jss2007.04.219 .

3982. Panagopoulos, Y., C Makropoulos and M. Mimikou. 2013. Multi-objective optimization for diffuse pollution control at zero cost. Soil Use and Management. 29(supplement s1): 83-93. DOI: 10.1111/sum.12012 .

3983. Panagopoulos, Y., C. Makkropoulos and M. Mimikou. 2011. Reducing surface water pollution through the asseessment of the cost-effectiveness of BMPs at different spatial scales. Journal of Environmental Management. 92(10): 2823-2835. DOI: 10.1016/j.jenvman.2011.06.035 .

3984. Panagopoulos, Y., C. Makropoulos, E. Baltas and M. Mimikou. 2011. SWAT parameterization for the identification of critical diffuse pollution source areas under data limitations. Ecological Modelling. 222 (19): 3500-3512. DOI: 10.1016/j.ecolmodel.2011.08.008 .

3985. Panagopoulos, Y., C. Makropoulos and M. Mimikou. 2012. Decision support for diffuse pollution management. Environmental Modelling & Software. 30: 57-70. DOI: 10.1016/j.envsoft.2011.11.006 .

3986. Panagopoulos, Y., C. Makropoulos, A. Gkiokas, M. Kossida, L. Evangelou, G. Lourmas, S. Michas, C. Tsadilas, S. Papageorgiou, V. Perleros, S. Drakopoulou and M. Mimikou. 2014. Assessing the cost-effectiveness of irrigation water management practices in water stressed agricultural catchments: The case of Pinios. Agricultural Water Management. 139: 31-42. DOI: 10.1016/j.agwat.2014.03.010 .

3987. Panagopoulos, Y., C. Makropoulos, M. Kossida and M. Mimikou. 2014. Optimal implementation of irrigation practices: A cost-effective desertification action plan for Pinios. Journal of Water Resources Planning and Management. 139: 31–42. DOI: 10.1061/(ASCE)WR.1943-5452.0000428 .

3988. Panagopoulos, Y., E. Dimitriou, and N. Skoulikidis. 2019. Vulnerability of a northeast Mediterranean island to soil loss. Can grazing management mitigate erosion? Water. 11(7): 1491. DOI: 10.3390/w11071491 .

3989. Panagopoulos, Y., E. Georgiou, A. Grammatikogiannis, E. Polizoi and M. Mimikou. 2008. Impacts of human interaction on the sediment transport processes in the Arachtos River Basin, western Greece. European Water. 21/22: 3-15. URL: http://www.ewra.net/ew/pdf/EW_2008_21-22_01.pdf.

3990. Panagopoulos, Y., P.W. Gassman, R.W. Arritt, D.E. Herzmann, T.D. Campbell, M.K. Jha, C.L. Kling, R. Srinivasan, M. White and J. G. Arnold. 2014. Surface water quality and cropping systems sustainability under a changing climate in the Upper Mississippi River Basin. Journal of Soil and Water Conservation. 69(6): 483-494. DOI: 10.2489/jswc.69.6.483 .

3991. Panagopoulos, Y., P.W. Gassman, M.K. Jha, C.L. Kling, T. Campbell, R. Srinivasan, M. White and J.G. Arnold. 2015. A refined regional modeling approach for the Corn Belt - experiences and recommendations for large-scale integrated modeling. Journal of Hydrology. 524: 348–366. DOI: 10.1016/j.jhydrol.2015.02.039 .

3992. Panagopoulos, Y., P.W. Gassman, R.W. Arritt, D.E. Herzmann, T.D Campbell, A. Valcu, M.K. Jha, C.L. Kling, R. Srinivasan, M. White and J.G. Arnold. 2015. Impacts of climate change on hydrology, water quality and crop productivity in the Ohio-Tennessee River Basin. International Journal of Agricultural and Biological Engineering. 8(3): 36-53. DOI: 10.3965/j.ijabe.20150803.1497 .

3993. Panagopoulos, Y., P.W. Gassman, C.L. Kling, R. Cibin and I. Chaubey. 2017. Water quality assessment of large-scale bioenergy cropping scenarios for the Upper Mississippi and Ohio-Tennessee River basins. Journal of the American Water Resources Association. 53(6): 1355-1367. DOI: 10.1111/1752-1688.12594 .

3994. Panagopoulous, Y., C. Makropoulos and M. Mimikou. 2012. Decision support for agricultural water management. Global Nest Journal. 14(3): 255-263. DOI: 10.30955/gnj.000887 .

3995. Panahi, G., M.H. Eskafi and A. Faridhosseini. 2022. Projection of the temperature and precipitation impacts on the runof using a representative concentration pathway scenario in the Agh‑Darband Basin, Iran. Arabian Journal of Geosciences. 15(12): 1167. DOI: 10.1007/s12517-022-10443-5 .

3996. Panchanathan, A, A.T. Haghighi and M. Oussalah. 2023. A multi-criteria approach for improving streamflow prediction in a rapidly urbanizing data scarce catchment. International Journal of River Basin Management. DOI: 10.1080/15715124.2023.2188597 .

3997. Panda, C., D.M. Das, B.C. Sahoo, B. Panigrahi and K.K. Singh. 2021. Spatio-temporal modeling of surface runoff in ungauged sub-catchments of Subarnarekha River Basin using SWAT. MAUSAM. 72(3): 597-606. DOI: 10.54302/mausam.v72i3.1309 .

3998. Panda, C., D.M. Das, S.K. Raul and B.C. Sahoo. 2021. Sediment yield prediction and prioritization of sub-watersheds in the Upper Subarnarekha Basin (India) using SWAT. Arabian Journal of Geosciences. 14(9): 809. DOI: 10.1007/s12517-021-07170-8 .

3999. Pandey, A. and S.S. Palmate. 2019. Assessing future water-sediment interaction and critical area prioritization at sub-watershed level for sustainable management. Paddy and Water Environment. 17(3): 373–382. DOI: 10.1007/s10333-019-00732-3 .

4000. Pandey, A., D. Lalrempuia and S.K. Jain. 2015. Assessment of hydropower potential using spatial technology and SWAT modeling in the Mat River of southern Mizoram, India. Hydrological Sciences Journal. 60(10): 1651-1665. DOI: 10.1080/02626667.2014.943669 .

4001. Pandey, A., K.C. Bishal, P. Kalura, V.M. Chowdary, C.S. Jha and A. Cerda. 2021. A Soil Water Assessment Tool (SWAT) modeling approach to prioritize soil conservation management in river basin critical areas coupled with future climate scenario analysis. Air, Soil and Water Research. 14. DOI: 10.1177/11786221211021395 .

4002. Pandey, A., S.K. Himanshu, S.K. Mishra and V.P. Singh. 2016. Physically based soil erosion and sediment yield models revisited. Catena. 147: 595-620. DOI: 10.1016/j.catena.2016.08.002 .

4003. Pandey, B.K., A.K. Gosain, G. Paul and D. Khare. 2017. Climate change impact assessment on hydrology of a small watershed using semi-distributed model. Applied Water Science. 7(4): 2029–2041. DOI: 10.1007/s13201-016-0383-6 .

4004. Pandey, B.K., D, Khare, A. Kawasaki and P.K. Mishra. 2019. Climate change impact assessment on blue and green water by coupling of representative CMIP5 climate models with physical based hydrological model. Water Resources Management. 33(1): 141–158. DOI: 10.1007/s11269-018-2093-3 .

4005. Pandey, B.K., D. Khare, A. Kawasaki and T.W. Meshesha. 2021. Integrated approach to simulate hydrological responses to land use dynamics and climate change scenarios employing scoring method in Upper Narmada Basin, India. Journal of Hydrology. 598: 126429. DOI: 10.1016/j.jhydrol.2021.126429 .

4006. Pandey, P.K., M.L. Soupir, C.D. Ikenberry and C.R. Rehmann. 2016. Predicting streambed sediment and water column Escherichia coli levels at watershed scale. Journal of the American Water Resources Association. 52(1): 184–197. DOI: 10.1111/1752-1688.12373 .

4007. Pandey, S., P. Kumar, M. Zlatic, R. Nautiyal and V.P. Panwar. 2021. Recent advances in assessment of soil erosion vulnerability in a watershed. International Soil and Water Conservation Research. 9(3): 305-318. DOI: 10.1016/j.iswcr.2021.03.001 .

4008. Pandey, V.K., S.N. Panda and S. Sudhakar. 2005. Modelling of an agricultural watershed using remote sensing and a geographic information system. Biosystems Engineering. 90(3): 331-347. DOI: 10.1016/j.biosystemseng.2004.10.001 .

4009. Pandey, V.K., S.N. Panda, A. Pandey and S. Sudhakar. 2008. Evaluation of effective management plan for an agricultural watershed using AVSWAT model, remote sensing and GIS. Environmental Geology. 56(5): 993-1008. DOI: 10.1007/s00254-008-1201-8 .

4010. Pandey, V.P., S. Dhaubanjar, L. Bharati and B.R. Thapa. 2020. Spatio-temporal distribution of water availability in Karnali-Mohana Basin, Western Nepal: Hydrological model development using multi-site calibration approach (Part-A). Journal of Hydrology: Regional Studies. 29: 100690. DOI: 10.1016/j.ejrh.2020.100690 .

4011. Pandhumas, T., K. Kuntiyawichai, C. Jothityangkoon and F.X. Suryadi. 2020. Assessment of climate change impacts on drought severity using SPI and SDI over the Lower Nam Phong River Basin, Thailand. Engineering and Applied Science Research. 47(3): 326-338. DOI: 10.14456/easr.2020.35 .

4012. Pandi, D., S. Kothandaraman, K.S. Kasiviswanathan and M. Kuppusamy. 2022. A catchment scale assessment of water balance components: A case study of Chittar Catchment in South India. Environmental Science and Pollution Research. 29(48): 72384–72396. DOI: 10.1007/s11356-022-19032-1 .

4013. Pandjaitan, N.H., A.Y. Afifi and A. Sapei. 2022. Design of water source alternative based on SWAT model simulation. Jurnal Teknik Pertanian Lampung. 11(4): 636-646. DOI: 10.23960/jtep-l.v11i4.636-646 .

4014. Pang, J.-P., Z-X. Xu and C.-M. Liu. 2007. SWAT model application: State-of-the-art review. Research of Soil and Water Conservation. 14(3): 31-35. URL: http://caod.oriprobe.com/articles/12277198/SWAT_Model_Application__State_of_the_Art_Review.htm.

4015. Pang, S., X. Wang, C.S. Melching and K.-H. Feger. 2020. Development and testing of a modified SWAT model based on slope condition and precipitation intensity. Journal of Hydrology. 588: 125098. DOI: 10.1016/j.jhydrol.2020.125098 .

4016. Panondi, W. and N. Izumi. 2021. Climate change impact on the hydrologic regimes and sediment yield of Pulangi River Basin (PRB) for watershed sustainability. Sustainability. 13(16): 9041. DOI: 10.3390/su13169041 .

4017. Papadaki, C., K. Soulis, L. Ntoanidis, S. Zogaris, N. Dercas and E. Dimitriou. 2017. Comparative assesment of environmental flow estimation methods in a Mediterranean mountain river. Environmental Management. 60(2): 280-292. DOI: 10.1007/s00267-017-0878-4 .

4018. Papadaki, C., K. Soulis, R. Muñoz-Mas, F. Martinez-Capel, S. Zogaris, L. Ntoanidis and E. Dimitriou. 2015. Potential impacts of climate change on flow regime and fish habitat in mountain rivers of the south-western Balkans. Science of the Total Environment. 540: 418–428. DOI: 10.1016/j.scitotenv.2015.06.134 .

4019. Paparrizos, S. and A. Matzarakis. 2017. Assessment of future climate change impacts on the hydrological regime of selected Greek areas with different climate conditions. Hydrology Research. 48(5) : 1327-1342. DOI: 10.2166/nh.2016.018 .

4020. Papassiopi, N., C. Zharia, A. Xenidis, K. Adam, A. Liakopoulos and I. Romaidis. 2014. Assessment of contaminants transport in a watershed affected by acid mine drainage, by coupling hydrological and geochemical modeling tools. Minerals Engineering. 64: 78-91. DOI: 10.1016/j.mineng.2014.04.002 .

4021. Parajuli, P., P. Jayakodya, G. Sassenrath, Y. Ouyang and J. Potea. 2013. Assessing the impacts of crop-rotation and tillage on crop yields and sediment yield using a modeling approach. Agricultural Water Management. 119: 32-42. DOI: 10.1016/j.agwat.2012.12.010 .

4022. Parajuli, P.B. 2010. Assessing sensitivity of hydrologic responses to climate change from forested watershed in Mississippi. Hydrological Processes. 24(26): 3785-3797. DOI: 10.1002/hyp.7793 .

4023. Parajuli, P.B. 2012. Evaluation of spatial variability on hydrology and nutrient source loads at watershed scale using a modeling approach. Hydrology Research. 43(6): 808-821. DOI: 10.2166/nh.2012.013 .

4024. Parajuli, P.B. and A. Risal. 2021. Evaluation of climate change on streamflow, sediment, and nutrient load at watershed scale. Climate. 9(11): 165. DOI: 10.3390/cli9110165 .

4025. Parajuli, P.B., A. Risal, Y. Ouyang and A. Thompson. 2022. Comparison of SWAT and MODIS evapotranspiration data for multiple timescales. Hydrology. 9(6): 103. DOI: 10.3390/hydrology9060103 .

4026. Parajuli, P.B., K.R. Douglas-Mankin, P.L. Barnes and C.G. Rossi. 2009. Fecal bacteria source characterization and sensitivity analysis of SWAT 2005. Transactions of the ASABE. 52(6): 1847-1858. URL: https://elibrary.asabe.org/abstract.asp?aid=23378&t=2&redir=&redirType=.

4027. Parajuli, P.B., K.R. Mankin and P.L. Barnes. 2008. Applicability of targeting vegetative filter strips to abate fecal bacteria and sediment yield using SWAT. Agricultural Water Management. 95: 1189-1200. DOI: 10.1016/j.agwat.2008.05.006 .

4028. Parajuli, P.B., K.R. Mankin and P.L. Barnes. 2008. Source specific fecal bacteria modeling using soil and water assessment tool model. Bioresource Technology. 100(2): 1-11. DOI: 10.1016/j.biortech.2008.06.045 .

4029. Parajuli, P.B., N.O. Nelson, L.D. Frees and K.R. Mankin. 2008. Comparison of AnnAGNPS and SWAT model simulation results in USDA-CEAP agricultural watersheds in south-central Kansas. Hydrological Processes. 23(5): 748-763. DOI: 10.1002/hyp.7174 .

4030. Parajuli, P.B., P. Jayakody and Y. Ouyang. 2018. Evaluation of using remote sensing evapotranspiration data in SWAT. Water Resources Management. 32(3): 985-996. DOI: 10.1007/s11269-017-1850-z .

4031. Parajuli, P.B., P. Jayakody, G.F. Sassenrath and Y. Ouyang. 2016. Assessing the impacts of climate change and tillage practices on stream flow, crop and sediment yields from the Mississippi River Basin. Agricultural Water Management. 168: 112–124. DOI: 10.1016/j.agwat.2016.02.005 .

4032. Parish, E.S., M.R. Hilliard, L.M. Baskaran, V.H. Dale, N.A. Griffiths, P.J. Mulholland, A. Sorokine, N.A. Thomas, M.E. Downing and R.S. Middleton. 2012. Multimetric spatial optimization of switchgrass plantings across a watershed. Biofuels, Bioproducts and Biorefining. 6(1): 58-72. DOI: 10.1002/bbb.342 .

4033. Park, G.A, J.Y. Park, H.K. Joh, J.W. Lee, S.R. Ahn and S.J. Kim. 2014. Evaluation of mixed forest evapotransipiration and soil moisture using measured and SWAT simulated results in a hillslope watershed. KSCE Journal of Civil Engineering. 18(1): 315-322. DOI: 10.1007/s12205-014-0193-z .

4034. Park, H., S. Chung, E. Cho and K. Lim. 2018. Impact of climate change on the persistent turbidity issue of a large dam reservoir in the temperate monsoon region. Climatic Change. 151(3-4): 365-378. DOI: 10.1007/s10584-018-2322-z .

4035. Park, J.H., S.H. No and G.S. Lee. 2013. Outlook analysis of future discharge according to land cover change using CA-Markov technique based on GIS. Journal of the Korean Association of Geographic Information Studies. 16(3): 25-39. DOI: 10.11108/kagis.2013.16.3.025 .

4036. Park, J.Y. and S.J. Kim. 2014. Potential impacts of climate change on the reliability of water and hydropower supply from a multipurpose dam in South Korea. Journal of the American Water Resources Association. 50(5): 1273-1288. DOI: 10.1111/jawr.12190 .

4037. Park, J.Y., S. Ale, W.R. Teague and S.L. Dowhower. 2017. Simulating hydrologic responses to alternate grazing management practices at the ranch and watershed scales. Journal of Soil and Water Conservation. 72(2): 102-121. DOI: 10.2489/jswc.72.2.102 .

4038. Park, J.Y., G.A. Park and S.J. Kim. 2013. Assessment of future climate change impact on water quality of Chungju Lake, South Korea, using WASP coupled with SWAT. Journal of the American Water Resources Association. 49(6): 1225–1238. DOI: 10.1111/jawr.12085 .

4039. Park, J.-Y., H. Jung, C.-H. Jang and S.J. Kim. 2014. Assessing climate change impact on hydrological components of Yongdam Dam watershed using RCP emission scenarios and SWAT model. Journal of the Korean Society of Agricultural Engineers. 56(3): 19-29. DOI: 10.5389/KSAE.2014.56.3.019 .

4040. Park, J.-Y., M.-J. Park, H.-K. Joh, H.-J. Shin, H.-J. Kwon, R. Srinivasan and S.-J. Kim. 2011. Assessment of MIROC3.2 HiRes climate and CLUE-s land use change impacts on watershed hydrology using SWAT. Transactions of the ASABE. 54(5): 1713-1724. DOI: 10.13031/2013.39842 .

4041. Park, J.Y., M.J. Park, S.R. Ahn and S.J. Kim. 2009. Watershed modeling for assessing climate change impact on stream water quality of Chungju Dam Watershed. Journal of the Korean Water Resources Association. 42(10): 877-889. DOI: 10.3741/JKWRA.2009.42.10.877 .

4042. Park, J.Y., M.S. Lee, G.A. Park and S.J. Kim. 2008. Comparative analysis of SWAT generated streamflow and stream water quality using different spatial resolution data. Journal of the Korean Water Resources Association. 41(11): 1079-1094. DOI: 10.3741/JKWRA.2008.41.11.1079 .

4043. Park, J.-Y., S.-R. Ahn, S.-J. Hwang, C.-H. Jang, G.-A. Park and S.-J. Kim. 2014. Evaluation of MODIS NDVI and LST for indicating soil moisture of forest areas based on SWAT modeling. Paddy and Water Environment. 12(Supp. 1): S77-S88. DOI: 10.1007/s10333-014-0425-3 .

4044. Park, J.-Y., Y.-S. Yu, S.-J. Hwang, C. Kim and S.-J. Kim. 2014. SWAT modeling of best management practices for Chungju Dam Watershed in South Korea under future climate change scenarios. Paddy and Water Environment. 12(Supp.1): 565-575. DOI: 10.1007/s10333-014-0424-4 .

4045. Park, J-Y., S. Ale and W.R. Teague. 2017. Simulated water quality effects of alternate grazing management practices at the ranch and watershed scales. Ecological Modelling. 300: 1-13. DOI: 10.1016/j.ecolmodel.2017.06.019 .

4046. Park, M.-J., H.-J Shin, J.-Y. Park, G.-A. Park, R. Srinivasan and S.-J. Kim. 2012. Comparison of watershed streamflow using projected MIROC3.2 Hires GCM data and observed weather data for 2000-2009 under SWAT simulation. Transactions of the ASABE. 55(3): 1003-1010. DOI: 10.13031/2013.41513 .

4047. Park, M.J., J.Y. Park, H.J. Shin, M.S. Lee, G.A. Park, I.K. Jung and S.J. Kim. 2010. Projection of future climate change impacts on nonpoint source pollution loads for a forest dominant dam watershed by reflecting future vegetation canopy in a Soil and Water Assessment Tool model. Water Science and Technology. 61(8): 1975-1986. DOI: 10.2166/wst.2010.109 .

4048. Park, M.J., R. Ha, N.W. Kim, K.J. Lim and S.J. Kim. 2014. Assessment of future climate and vegetation canopy change impacts on hydrological behavior of Chungju Dam Watershed using SWAT model. KSCE Journal of Civil Engineering. 18(4): 1185-1196. DOI: 10.1007/s12205-013-0176-5 .

4049. Park, S., A. Nielsen, R.T. Bailey, D. Trolle and K. Bieger. 2019. A QGIS-based graphical user interface for application and evaluation of SWAT-MODFLOW models. Environmental Modelling & Software. 111: 493-497. DOI: 10.1016/j.envsoft.2018.10.017 .

4050. Park, Y., Y. Pachepsky, E.-M. Hong, D. Shelton and C. Coppock. 2017. Escherichia coli release from streambed to water column during baseflow periods: A modeling study. Journal of Environmental Quality. 46(1): 219-226. DOI: 10.2134/jeq2016.03.0114 .

4051. Park, Y.S. and J.H. Kwon. 2014. Application and effectiveness analysis of SWAT filter strip in Golji Watershed. Korean Journal of Environmental Agriculture. 33(1): 30-36. DOI: 10.5338/KJEA.2014.33.1.30 .

4052. Park, Y.S., J.H. Park, W.S. Jang, J.C. Ryu, H. Kang, J. Choi and K.J.Lim. 2011. Hydrologic response unit routing in SWAT to simulate effects of vegetated filter strip for South-Korean conditions based on VFSMOD. Water. 3: 819-842. DOI: 10.3390/w3030819 .

4053. Park, Y.-Y., M.-J. Park, S.-R. Ahn, G.-A. Park, J.-E. Yi, G.-S. Kim, R. Srinivasan and S.-J. Kim. 2011. Assessment of future climate change impacts on water quantity and quality for a mountainous dam watershed using SWAT. Transactions of the ASABE. 54(5): 1725-1737. URL: http://cat.inist.fr/?aModele=afficheN&cpsidt=24771141.

4054. Parker, R., J.G. Arnold, M. Barrett, L. Burns, L. Carrubba, S.L. Neitsch, N.J. Snyder and R. Srinivasan. 2007. Evaluation of three watershed-scale pesticide environmental transport and fate models. Journal of the American Water Resources Association. 43(5): 1-20. DOI: 10.1111/j.1752-1688.2007.00101.x .

4055. Parshotam, A. 2018. Deriving a dataset from the New Zealand National Soils Database (NZ-NSD) for use in Soil and Water Assessment Tool (SWAT) modelling. Agronomy New Zealand. 48: 191-203. URL: https://www.agronomysociety.org.nz/2018-journal-papers.

4056. Parshotam, A. 2019. An evaluation of Climate Forecast System Reanalysis (CFSR) data for use in models that require meteorological weather station data in New Zealand. Agronomy New Zealand. 49: 51-62. URL: https://www.agronomysociety.org.nz/files/ASNZ_2019_06._CFSR_evaluation_in_NZ.pdf.

4057. Parupalli, S., K.P. Kumari and S. Ganapuram. 2019. Assessment and planning for integrated river basin management using remote sensing, SWAT model and morphometric analysis (case study: Kaddam River Basin, India). Geocarto International. 34(12): 1332–1362. DOI: 10.1080/10106049.2018.1489420 .

4058. Pascual, D., E. Pla, J.A. Lopez-Bustins, J. Retana and J. Terradas. 2015. Impacts of climate change on water resources in the Mediterranean. Hydrological Sciences Journal. 60(12): 2132-2147. DOI: 10.1080/02626667.2014.947290 .

4059. Passos, F.O., B.C. da Silva and F. das G.B. da Silva. 2021. Impact assessment of changes in land use and management on the losses of the water source of the José Pereira Stream, using the SWAT model. Revista Brasileira de Geografia Física. 14(02): 619-633. URL: https://periodicos.ufpe.br/revistas/rbgfe/article/view/244450.

4060. Patel, D.P. and N. Nandhakumar. 2016. Runoff potential estimation of Anjana Khadi Watershed using SWAT model in the part of Lower Tapi Basin, west India. Sustainable Water Resources Management. 2(1): 103–118. DOI: 10.1007/s40899-015-0042-3 .

4061. Pathan, S.A. and B.S. Sil. 2019. Parameterization and uncertainty analysis of stream flow in the Barak River Basin – a case study. ISH Journal of Hydraulic Engineering. DOI: 10.1080/09715010.2019.1570828 .

4062. Pati, A., S. Sen and M. Perumal. 2018. Modified channel-routing scheme for SWAT model. Journal of Hydrologic Engineering. 23(6): 04018019. DOI: 10.1061/(ASCE)HE.1943-5584.0001657 .

4063. Patil, A. and R. Ramsankaran. 2017. Improving streamflow simulations and forecasting performance of SWAT model by assimilating remotely sensed soil moisture observations. Journal of Hydrology. 565: 683-696. DOI: 10.1016/j.jhydrol.2017.10.058 .

4064. Patil, A. and R. Ramsankaran. 2018. Improved streamflow simulations by coupling soil moisture analytical relationship in EnKF based hydrological data assimilation framework. Advances in Water Resources. 121: 173-188. DOI: 10.1016/j.advwatres.2018.08.010 .

4065. Patil, M., M. Kothari, S.D. Gorantiwar and P.K. Singh. 2019. Runoff simulation using the SWAT model and SUFI-2 algorithm in Ghod Catchment of Upper Bhima River Basin. Indian Journal of Soil Conservation. 47(1): 7-13. URL: https://www.indianjournals.com/ijor.aspx?target=ijor:ijsc&volume=47&issue=1&article=002.

4066. Patil, N.S. and N.M. Nataraja. 2020. Effect of land use land cover changes on runoff using hydrological model: A case study in Hiranyakeshi Watershed. Modeling Earth Systems and Environment. 6(4): 2345-2357. DOI: 10.1007/s40808-020-00808-8 .

4067. Patil, N.S., M. Nataraja and T. Omprakash. 2018. Evaluation of hydrological components using hydrological model SWAT for Malaprabha Subbasin. Journal of the Geological Society of India. 92(2): 195-200. DOI: 10.1007/s12594-018-0981-z .

4068. Pattison-Williams, J.K., W. Yang, Y. Liu and S. Gabor. 2017. Riparian wetland conservation: A case study of phosphorous and social return on investment in the Black River Watershed. Ecosystem Services. 26: 400-410. DOI: 10.1016/j.ecoser.2016.10.005 .

4069. Paul, M. and M. Negahban-Azar. 2018. Sensitivity and uncertainty analysis for streamflow prediction using multiple optimization algorithms and objective functions: San Joaquin Watershed, California. Modeling Earth Systems and Environment. 4(4): 1509-1525. DOI: 10.1007/s40808-018-0483-4 .

4070. Paul, M., A. Rajib, M. Negahban-Azar, A. Shirmohammadi and P. Srivastava. 2021. Improved agricultural water management in data-scarce semi-arid watersheds: Value of integrating remotely sensed leaf area index in hydrological modeling. Science of the Total Environment. 791: 148177. DOI: 10.1016/j.scitotenv.2021.148177 .

4071. Paul, M., M. Negahban-Azar and A. Shirmohammadi. 2021. Assessing crop water productivity under different irrigation scenarios in the Mid–Atlantic Region. Water. 13(13): 1826. DOI: 10.3390/w13131826 .

4072. Paul, M., M.A. Rajib and L. Ahiablame. 2017. Spatial and temporal evaluation of hydrological response to climate and land use change in three South Dakota watersheds. Journal of the American Water Resources Association. 53(1): 69–88. DOI: 10.1111/1752-1688.12483 .

4073. Paul, M., S. Dangol, V. Kholodovsky, A.R. Sapkota, M. Negahban-Azar and S. Lansing. 2020. Modeling the impacts of climate change on crop yield and irrigation in the Monocacy River Watershed, USA. Water. 8(12): 139. DOI: 10.3390/cli8120139 .

4074. Paul, P.K., Y. Zhang, A. Mishra, N. Panigrahy and R. Singh. 2019. Comparative study of two state-of-the-art semi-distributed hydrological models. Water. 11: 871. DOI: 10.3390/w11050871 .

4075. Paul, P.K., Y. Zhang, N. Ma, A. Mishra, N. Panigrahy and R. Singh. 2021. Selecting hydrological models for developing countries: Perspective of global, continental, and country scale models over catchment scale models. Journal of Hydrology. 600: 126561. DOI: 10.1016/j.jhydrol.2021.126561 .

4076. Paul, S., M.A. Cashman, K. Szura and S.M. Pradhanang. 2017. Assessment of nitrogen inputs into Hunt River by onsite wastewater treatment system via SWAT simulation. Water. 9(8): 610. DOI: 10.3390/w9080610 .

4077. Paulding, C. and T.O. Randhir. 2021. An ecohydrological assessment of potential impacts of climate change on the herpetofauna. Sustainability and Climate Change. 14(1): 22-34. DOI: 10.1089/scc.2020.0027 .

4078. Paz, Y.M., J.D. Galvincio, R.M. de Holanda, R. Srinivasan and C.A. Jones. 2018. Analysis of sensitivity and calibration of the SWAT model applied in a basin in northeast of Brazil using observed and reanalysis climatic data. Revista Brasileira de Geografia Física. 11(1): 371-388. DOI: 10.26848/rbgf.v11.1.p371-388 .

4079. Paz, Y.M., J.F. da Silva, R.M. de Holanda and J.D. Galvíncio. 2022. Spatial assessment of sediment production and strategies for reducing erosive processes in a watershed in northeastern Brazil. Derbyana, São Paulo. 43: e753. DOI: 10.14295/derb.v43.753 .

4080. Peker, I.B. and A.A. Sorman. 2021. Application of SWAT using snow data and detecting climate change impacts in the mountainous eastern regions of Turkey. Water. 13(14): 1982. DOI: 10.3390/w13141982 .

4081. Peker, I.B. and G. Cüceloğlu. 2022. An overview of SWAT (Soil and Water Assessment Tool) model and its applications in Turkey. Çevre, İklim ve Sürdürülebilirlik. 23(1): 9-26. URL: https://dergipark.org.tr/en/pub/itucis/issue/68628/1036237.

4082. Peker, I.B. and S. Gülbaz. 2023. Examining the open-source datasets for water quantity and quality using the Soil and Water Assessment Tool (SWAT). Water Science and Technology. 88(7): 1621-1634. DOI: 10.2166/wst.2023.297 .

4083. Peng, A., X. Zhang, W. Xu and Y. Tian. 2022. Effects of training data on the learning performance of LSTM network for runoff simulation. Water Resources Management. 36(7): 2381-2394. DOI: 10.1007/s11269-022-03148-7 .

4084. Peng, J., A. Huo, Y. Cheng, J. Dang, H. Wei, X. Wang and C. Li. 2017. Submersion simulation in a typical debris flow watershed of Jianzhuangchuan Catchment, Loess Plateau. Environmental Earth Sciences. 76: 462. DOI: 10.1007/s12665-017-6797-0 .

4085. Peng, J., C. Jin, Y. Wu, Z. Hou, S. Gao, Z. Chu and B. Zheng. 2022. Modeling non-point source nutrient loads with different cropping systems in an agricultural lake watershed in southwestern China: From field to watershed scale. Mathematics. 10(21): 4047. DOI: 10.3390/math10214047 .

4086. Peng, J., T. Liu, Y. Huang, Y. Ling, Z. Li, A. Bao, X. Chen, A. Kurban and P. De Maeyer. 2021. Satellite-based precipitation datasets evaluation using gauge observation and hydrological modeling in a typical arid land watershed of central Asia. Remote Sensing. 13(2): 221. DOI: 10.3390/rs13020221 .

4087. Peng, S., C. Wang, S. Eguchi, K. Kuramochi, K. Kohyama, S. Yoshikawa, S. Itahashi, M. Igura, S. Ohkoshi and R. Hatano. 2021. Response of hydrological processes to climate and land use changes in Hiso River Watershed, Fukushima, Japan. Physics and Chemistry of the Earth, Parts A/B/C. 123: 103010. DOI: 10.1016/j.pce.2021.103010 .

4088. Pennington, D.N., B. Dalzell, E. Nelson, D. Mulla, S. Taff, P. Hawthorne and S. Polasky. 2017. Cost-effective land use planning: Optimizing land use and land management patterns to maximize social benefits. Ecological Economics. 139: 75-90. DOI: 10.1016/j.ecolecon.2017.04.024 .

4089. Peraza-Castro, M., E. Ruiz-Romera, L.H. Montoya-Armenta, J.M. Sanchez-Perez and S. Sauvage. 2015. Evaluation of hydrology, suspended sediment and nickel loads in a small watershed in Basque Country (Northern Spain) using eco-hydrological SWAT model. International Journal of Limnology. 51: 59-70. DOI: 10.1051/limn/2015006 .

4090. Peraza-Castro, M., E. Ruiz-Romera, M. Meaurio, S. Sauvage and J.M. Sánchez-Pérez. 2018. Modelling the impact of climate and land cover change on hydrology and water quality in a forest watershed in the Basque Country (Northern Spain). Ecological Engineering. 122: 315-326. DOI: 10.1016/j.ecoleng.2018.07.016 .

4091. Perazzoli, M., A. Pinheiro and V. Kaufmann. 2013. Assessing the impact of climate change scenarios on water resources in southern Brazil. Hydrological Sciences Journal. 58(1): 77-87. DOI: 10.1080/02626667.2012.742195 .

4092. Perazzoli, M., A. Pinheiro and V. Kaufmann. 2013. Effects of scenarios of landuse on water regime and sediment transport in the Concordia River Basin, SC. Revista Árvore. 37(5): 859-869. DOI: 10.1590/S0100-67622013000500008 .

4093. Pereira de Andrade, M. and C.B. de Melo Ribeiro. 2020. Impacts of land use and cover change on Paraíba do Sul Whatershed streamflow using the SWAT model. Revista Brasileira de Recursos Hidricos. 25: e12. DOI: 10.1590/2318-0331.252020190034 .

4094. Pereira, C.O., R. Escanilla-Minchel, A.C. González, H. Alcayaga, M. Aguayo, M.A. Arias and A.N. Flores. 2022. Assessment of future land use/land cover scenarios on the hydrology of a coastal basin in south-central Chile. Sustainability. 14(24): 16363. DOI: 10.3390/su142416363 .

4095. Pereira, D. dos R., E.M. Uliana, M.A. Martinez and D.D. da Silva. 2016. Performance of a lumped and a semi-distributed hydrologic model in predicting daily flow rates. Brazilian Journal of Irrigation and Drainage. 21(2): 398-413. URL: http://irriga.fca.unesp.br/index.php/irriga/article/view/2073.

4096. Pereira, D. dos R., M.A. Martinez, F.F. Pruski and D.D. da Silva. 2016. Hydrological simulation in a basin of typical tropical climate and soil using the SWAT model part I: Calibration and validation tests. Journal of Hydrology: Regional Studies. 7: 14-37. DOI: 10.1016/j.ejrh.2016.05.002 .

4097. Pereira, D. dos R., M.A. Martinez, D.D. da Silva and F.F. Pruski. 2016. Hydrological simulation in a basin of typical tropical climate and soil using the SWAT Model Part II: Simulation of hydrological variables and soil use scenarios. Journal of Hydrology: Regional Studies. 5: 149-163. DOI: 10.1016/j.ejrh.2015.11.008 .

4098. Pereira, D.D.R., A.Q. de Almeida, M.A. Martinez and D.R.Q. Rosa. 2014. Impacts of deforestation on water balance components of a watershed on the Brazilian East Coast. Revista Brasileira de Ciência do Solo. 38: 1350-1358. DOI: 10.1590/S0100-06832014000400030 .

4099. Pereira, D.D.R., M.A. Martinez, A.Q. de Almeida, F.F. Pruski, D.D. da Silva and J.H. Zonta. 2014. Hydrological simulation using SWAT model in headwater basin in southeast Brazil. Engenharia Agricola. 34(4): 787-799. DOI: 10.1590/S0100-69162014000400018 .

4100. Pérez-Blanco, C.D., A.H. Essenfelder and C. Gutiérrez-Martín. 2020. A tale of two rivers: Integrated hydro-economic modeling for the evaluation of trading opportunities and return flow externalities in inter-basin agricultural water markets. Journal of Hydrology. 584: 124676. DOI: 10.1016/j.jhydrol.2020.124676 .

4101. Pérez-Gutiérrez, J.D. and S. Kumar. 2019. Simulating the influence of integrated crop-livestock systems on water yield at watershed scale. Journal of Environmental Management. 239: 385-394. DOI: 10.1016/j.jenvman.2019.03.068 .

4102. Pérez-Sánchez, J., J. Senent-Aparicio, C.M. Santa-María and A. López-Ballesteros. 2020. Assessment of ecological and hydro-geomorphological alterations under climate change using SWAT and IAHRIS in the Eo River in northern Spain. Water. 12(6): 1745. DOI: 10.3390/w12061745 .

4103. Perez-Valdivia C., B. Cade-Menun and D.W. McMartin. 2017. Hydrological modeling of the Pipestone Creek Watershed using the Soil Water Assessment Tool (SWAT): Assessing impacts of wetland drainage on hydrology. Journal of Hydrology: Regional Studies. 14: 109-129. DOI: 10.1016/j.ejrh.2017.10.004 .

4104. Perkins, S.P. and M. Sophocleous. 1999. Development of a comprehensive watershed model applied to study stream yield under drought conditions. Groundwater. 37(3): 418-426. DOI: 10.1111/j.1745-6584.1999.tb01121.x .

4105. Perra, E., M. Piras, R. Deidda, C. Paniconi, G. Mascaro, E.R. Vivoni, P. Cau, P.A. Marras, R. Ludwig and S. Meyer. 2018. Multimodel assessment of climate change-induced hydrologic impacts for a Mediterranean catchment. Hydrology and Earth System Sciences. 22(7): 4125-4143. DOI: 10.5194/hess-22-4125-2018 .

4106. Perrin, J., S. Ferrant, S. Massuel, B. Dewandel, J.C. Maréchal, S. Aulong and S. Ahmed. 2012. Assessing water availability in a semi-arid watershed of southern India using a semi-distributed model. Journal of Hydrology. 460-461: 143-155. DOI: 10.1016/j.jhydrol.2012.07.002 .

4107. Pervez, M.S. and G.M. Henebry. 2015. Assessing the impacts of climate and land use and land cover change on the freshwater availability in the Brahmaputra River Basin. Journal of Hydrology: Regional Studies. 3: 285-311. DOI: 10.1016/j.ejrh.2014.09.003 .

4108. Pesce M., A. Critto, S. Torresan, E. Giubilato, M. Santini, A. Zirino, W. Ouyang and A. Marcomini. 2018. Modelling climate change impacts on nutrients and primary production in coastal waters. Science of the Total Environment. 628-629: 919-937. DOI: 10.1016/j.scitotenv.2018.02.131 .

4109. Pesce, M., A. Critto, S. Torresan, E. Giubilato, L. Pizzol and A. Marcomini. 2019. Assessing uncertainty of hydrological and ecological parameters originating from the application of an ensemble of ten global-regional climate model projections in a coastal ecosystem of the Lagoon of Venice, Italy. Ecological Engineering. 133: 121-136. DOI: 10.1016/j.ecoleng.2019.04.011 .

4110. Peschel, J.M., P.K. Haan and R.E. Lacy. 2006. Influences of soil dataset resolution on hydrologic modeling. Journal of the American Water Resources Association. 42(5): 1371-1389. DOI: 10.1111/j.1752-1688.2006.tb05307.x .

4111. Peter, L., K. Rajkai, L. Pasztor, J. Szabo and I. Sisak. 2005. Sensitivity of the SWAT model to soil organic carbon content: A Lake Balaton Catchment case study. Cereal Research Communications. 33(1): 297-300. DOI: 10.1556/CRC.33.2005.1.73 .

4112. Peters, K., P.D. Wagner, E.W. Phyo, W.W. Zin, C.C.T. Kyi and N. Fohrer. 2023. Spatial and temporal assessment of human‐water interactions at the Inle Lake, Myanmar: A socio‐hydrological DPSIR analysis. Environmental Monitoring and Assessment. 195(1): 220. DOI: 10.1007/s10661-022-10730-4 .

4113. Peterson, J.R. and J.M. Hamlett. 1998. Hydrologic calibration of the SWAT model in a watershed containing fragipan soils. Journal of the American Water Resources Association. 34(3): 531-544. DOI: 10.1111/j.1752-1688.1998.tb00952.x .

4114. Petpongpan, C., C. Ekkawatpanit and D. Kositgittiwong. 2020. Climate change impact on surface water and groundwater recharge in northern Thailand. Water. 12(4): 1029. DOI: 10.3390/w12041029 .

4115. Petpongpan, C., C. Ekkawatpanit, S. Visessri and D. Kositgittiwong. 2021. Projection of hydro-climatic extreme events under climate change in Yom and Nan River Basins, Thailand. Water. 13(5): 665. DOI: 10.3390/w13050665 .

4116. Petpongpana, C., C. Ekkawatpanita, R.T. Bailey and D. Kositgittiwong. 2021. Improving integrated surface water–groundwater modelling with groundwater extraction for water management. Hydrological Sciences Journal. 66(10): 1513–1530. DOI: 10.1080/02626667.2021.1948549 .

4117. Petrakis, R.E., L.M. Norman, K. Vaughn, R. Pritzlaff, C. Weaver, A. Rader and H.R. Pulliam. 2021. Hierarchical clustering for paired watershed experiments: Case study in southeastern Arizona, U.S.A. Water. 13(21): 2955. DOI: 10.3390/w13212955 .

4118. Pezet, F., J.-M. Dorioz, P. Quetin, M. Lafforgue and D. Trevisan. 2014. Using SWAT-VSA to predict diffuse P pollution in an agricultural catchment with several aquifers. Journal of Hydrologic Engineering. 19(7): 1462-1470. DOI: 10.1061/(ASCE)HE.1943-5584.0000914 .

4119. Pfannerstill, M., B. Guse and N. Fohrer. 2014. A multi-storage groundwater concept for the SWAT model to emphasize nonlinear groundwater dynamics in lowland catchments. Hydrological Processes. 28(22): 5599-5612. DOI: 10.1002/hyp.10062 .

4120. Pfannerstill, M., B. Guse and N. Fohrer. 2014. Smart low flow signature metrics for an improved overall performance evaluation of hydrological models. Journal of Hydrology. 510: 447-458. DOI: 10.1016/j.jhydrol.2013.12.044 .

4121. Pfannerstill, M., B. Guse, D. Reusser and N. Fohrer. 2015. Process verification of a hydrological model using a temporal parameter sensitivity analysis. Hydrology and Earth System Sciences. 19(10): 4365-4376. DOI: 10.5194/hess-19-4365-2015 .

4122. Pfannerstill, M., K. Bieger, B. Guse, D.D. Bosch, N. Fohrer and J.G. Arnold. 2017. How to constrain multi-objective calibrations of the SWAT model using water balance components. Journal of the American Water Resources Association. 53(3): 532-546. DOI: 10.1111/1752-1688.12524 .

4123. Phan, D.B., C.C. Wu and S.C. Hsieh. 2011. Impact of climate change on stream discharge and sediment yield in northern Viet Nam. Water Resources. 38(6): 827-836. DOI: 10.1134/S0097807811060133 .

4124. Philip, S., S. Sparrow, S.F. Kew, K. van der Wiel, N. Wanders, R. Singh, A. Hassan, K. Mohammed, H. Javid, K. Haustein, F.E.L. Otto, F. Hirpa, R.H. Rimi, A.K.M. Saiful Islam, D.C.H. Wallom and G. Jan van Oldenborgh. 2019. Attributing the 2017 Bangladesh floods from meteorological and hydrological perspectives. Hydrology and Earth System Sciences. 23(3): 1409-1429. DOI: 10.5194/hess-23-1409-2019 .

4125. Phimchaisai, N. and E. Kositsakulchai. 2023. Calibration and performance evaluation of SWAT model on rice yield and evapotranspiration simulation in the Greater Mae Klong Irrigation Project Area. Journal of Science and Technology. 12(1): 1-14. URL: http://kuojs.lib.ku.ac.th/index.php/jstku/article/view/5063.

4126. Phiri, T.L.C. and D.M.M. Mulungu. 2019. Simulation modelling for integration of hydropower, irrigation water and water supply potentials of Lweya Basin, Malawi. International Journal of River Basin Management. DOI: 10.1080/15715124.2019.1683854 .

4127. Phiri, W.K., D. Vanzo, K. Banda, E. Nyirenda and I.A. Nyambe. 2021. A pseudo-reservoir concept in SWAT model for the simulation of an alluvial floodplain in a complex tropical river system. Journal of Hydrology: Regional Studies. 33: 100770. DOI: 10.1016/j.ejrh.2020.100770 .

4128. Phomcha, P., P. Wirojanaguda, T. Vangpaisala and T. Thaveevouthti. 2011. Predicting sediment discharge in an agricultural watershed: A case study of the Lam Sonthi Watershed, Thailand. ScienceAsia. 37(1): 43-50. URL: http://scienceasia.org/2011.37.n1/scias37_43.pdf.

4129. Phukoetphim, P., A.Y. Shamseldin and K. Adams. 2016. Multimodel approach using neural networks and symbolic regression to combine the estimated discharges of rainfall-runoff models. Journal of Hydrologic Engineering. 21(8). DOI: 10.1061/(ASCE)HE.1943-5584.0001332 .

4130. Phung, Q.A., A.L. Thompson, C. Baffaut, C. Costello and E.J. Sadler. 2022. Assessing future water allocation under climate variability and land management change in an agricultural watershed. Journal of the American Water Resources Association. 58(6): 1575–1591. DOI: 10.1111/1752-1688.13059 .

4131. Phy, S.P., S. Try, T. Sok, I. Ich, R. Chan and C. Oeurng. 2022. Integration of hydrological and flood inundation models for assessing flood events in the Lower Prek Thnot River Basin under climate change. Journal of Hydrologic Engineering. 27(10): 05022012. DOI: 10.1061/(ASCE)HE.1943-5584.0002203 .

4132. Pianosi, F. and T. Wagener. 2018. Distribution-based sensitivity analysis from a generic input-output sample. Environmental Modelling & Software. 108: 197-207. DOI: 10.1016/j.envsoft.2018.07.019 .

4133. Piemonti, A.D., M. Babbar-sebens and E.J. Luzar. 2013. Optimizing conservation practices in watershed: Do community preferences matter? Water Resources Research. 49: 1-25. DOI: 10.1002/wrcr.20491 .

4134. Piemonti, A.D., M. Babbar-Sebens, S. Mukhopadhyay and A. Kleinberg. 2017. Interactive genetic algorithm for user-centered design of distributed conservation practices in a watershed: An examination of user preferences in objective space and user behavior. Water Resources Research. 53: 4303-4326. DOI: 10.1002/2016WR019987 .

4135. Pignalosa, A., N. Silvestri, F. Pugliese, A. Corniello, C. Gerundo, N. Del Seppia, M. Lucchesi, N. Coscini, F. De Paola and M. Giugni. 2022. Long-term simulations of Nature-Based Solutions effects on runoff and soil losses in a flat agricultural area within the Catchment of Lake Massaciuccoli (Central Italy). Agricultural Water Management. 273: 107870. DOI: 10.1016/j.agwat.2022.107870 .

4136. Pignotti, G., H. Rathjens, I. Chaubey, M. Williams and M. Crawford. 2021. Strong sensitivity of watershed-scale, ecohydrologic model predictions to soil moisture. Environmental Modelling & Software. 144: 105162. DOI: 10.1016/j.envsoft.2021.105162 .

4137. Pignotti, G., H. Rathjens, R. Cibin, I. Chaubey and M. Crawford. 2017. Comparative analysis of HRU and grid-based SWAT models. Water. 9(4): 272. DOI: https://doi.org/10.3390/w9040272 .

4138. Pignotti, G., I. Chaubey, K. Cherkauer, M. Williams and M. Crawford. 2021. Evaluating soil water routing approaches in watershed-scale, ecohydrologic modelling. Hydrological Processes. 35(3): e14034. DOI: 10.1002/hyp.14034 .

4139. Pikounis, M., E. Varanou, E. Baltas, A. Dassaklis and M. Mimikou. 2003. Application of the SWAT model in the Pinios River Basin under different land-use scenarios. Global Nest Journal. 5(2): 71-79. DOI: 10.30955/gnj.000277 .

4140. Piman, T., T. Lennaerts and P. Southalack. 2013. Assessment of hydrological changes in the Lower Mekong Basin from basin-wide development scenarios. Hydrological Processes. 27(15): 2115–2125. DOI: 10.1002/hyp.9764 .

4141. Piman, T., T.A. Cochrane and M.E. Arias. 2016. Effect of proposed large dams on water flows and hydropower production in the Sekong, Sesan and Srepok Rivers of the Mekong Basin. River Research and Applications. 32(10): 2095–2108. DOI: 10.1002/rra.3045 .

4142. Piman, T., T.A. Cochrane, M.E. Arias, A. Green and N.D. Dat. 2013. Assessment of flow changes from hydropower development and operations in Sekong, Sesan and Srepok Rivers of the Mekong Basin. Journal of Water Resources Planning and Management. 139(6): 723–732. DOI: 10.1061/(ASCE)WR.1943-5452.0000286 .

4143. Pinheiro, A., V. Kaufmann, G.A. Piazza and C.G.C. Campo. 2019. Scenarios from the Eta Model on quality and hydrological quantity in the Atlantic Forest, Southern Brazil. Revista Brasileira de Recursos Hidricos. 24: e34. DOI: 10.1590/2318-0331.241920180189 .

4144. Piniewski, M, I. Kardel, M. Giełczewski, P. Marcinkowski and T. Okruszko. 2013. Climate change and agricultural development: Adapting Polish agriculture to reduce future nutrient olads in a coastal watershed. Ambio. 43(5): 644-660. DOI: 10.1007/s13280-013-0461-z .

4145. Piniewski, M., M. Szcześniak, I. Kardel, T. Berezowski, T. Okruszko, R. Srinivasan, D. Vikhamar Schuler and Z.W. Kundzewicz. 2017. Hydrological modelling of the Vistula and Odra River Basins using SWAT. Hydrological Sciences Journal. 62(8): 1266-1289. DOI: 10.1080/02626667.2017.1321842 .

4146. Piniewski, M., C.L.R. Laize, M.C. Acreman, T. Okruszko and C. Schneider. 2014. Effect of Climate Change on Environmental Flow Indicators in the Narew Basin, Poland. Journal of Environmental Quality. 43(1): 155-167. DOI: 10.2134/jeq2011.0386 .

4147. Piniewski, M., F. Voss, I. Bärlund, T. Okruszko and Z.W. Kundzewicz. 2013. Effect of modelling scale on the assessment of climate change impact on river runoff. Hydrological Sciences Journal. 58(4): 737–754. DOI: 10.1080/02626667.2013.778411 .

4148. Piniewski, M., H.K. Meresa, R. Romanowicz, M. Osuch, M. Szcześniak, I. Kardel, T. Okruszko, A. Mezghani and Z.W. Kundzewicz. 2017. What can we learn from the projections of changes of flow patterns? Results from Polish case studies. Acta Geophysica. 65(4): 809-827. DOI: 10.1007/s11600-017-0061-6 .

4149. Piniewski, M., K. Bieger and B. Mehdi. 2019. Advancements in Soil and Water Assessment Tool (SWAT) for ecohydrological modelling and application. Ecohydrology & Hydrobiology. 19: 179-181. DOI: 10.1016/j.ecohyd.2019.05.001 .

4150. Piniewski, M., M. Szcześniak and I. Kardel. 2017. CHASE-PL—Future hydrology data set: Projections of water balance and streamflow for the Vistula and Odra Basins, Poland. Data. 2(2): 14. DOI: 10.3390/data2020014 .

4151. Piniewski, M., M. Szcześniak, Z.W. Kundzewicz, A. Mezghani and Ø. Hov. 2017. Changes in low and high flows in the Vistula and the Odra basins: Model projections in the European-scale context. Hydrological Processes. 31(12): 2210–2225. DOI: 10.1002/hyp.11176 .

4152. Piniewski, M., M. Szcześniak, S. Huang and Z.W. Kundzewicz. 2018. Projections of runoff in the Vistula and the Odra river basins with the help of the SWAT model. Hydrology Research. 49(2): 303-316. DOI: 10.2166/nh.2017.280 .

4153. Piniewski, M., P. Marcinkowski, I. Kardel, M. Giełczewski, K. Izydorczyk and W. Fratczak. 2015. Spatial quantification of non-point source pollution in a meso-scale catchment for an assessment of buffer zones efficiency. Water. 7(5): 1889-1920. DOI: 10.3390/w7051889 .

4154. Piniewski, M., P. Marcinkowski, J. Koskiaho and S. Tattari. 2019. The effect of sampling frequency and strategy on water quality modelling driven by high-frequency monitoring data in a boreal catchment. Journal of Hydrology. 579: 124186. DOI: 10.1016/j.jhydrol.2019.124186 .

4155. Piniewski, M., P. Marcinkowski, J. O’Keeffe, M. Szcześniak, A. Nieróbca, J. Kozyra, Z.W. Kundzewicz and T. Okruszko. 2020. Model-based reconstruction and projections of soil moisture anomalies and crop losses in Poland. Theoretical and Applied Climatology. 140(1): 691-708. DOI: 10.1007/s00704-020-03106-6 .

4156. Piniewski, M., S. Tattari, J. Koskiaho, O. Olsson, F. Djodjic, M. Giełczewski, P. Marcinkowski, M. Ksiezniak and T. Okruszko. 2021. How effective are River Basin Management Plans in reaching the nutrient load reduction targets? Ambio. 50(3): 706–722. DOI: 10.1007/s13280-020-01393-x .

4157. Piniewski, M., T. Okruszko and M.C. Acreman. 2014. Environmental water quantity projections under market-driven and sustainability-driven future scenarios in the Narew Basin, Poland. Hydrological Sciences Journal. 59(3-4): 916-934. DOI: 10.1080/02626667.2014.888068 .

4158. Pinsri, P., S. Shrestha, K.C. Saurav, S. Mohanasundaram, S.G.P. Virdis, T.P.L. Nguyen and W. Chaowiwat. 2022. Assessing the future climate change, land use change, and abstraction impacts on groundwater resources in the Tak Special Economic Zone, Thailand. Environmental Research. 211: 113026. DOI: 10.1016/j.envres.2022.113026 .

4159. Pinto, D.B.F., A.M. da Silva, S. Beskow, C.R. de Mello and G. Coelho. 2013. Application of the Soil and Water Assessment Tool (SWAT) for sediment transport simulation at a headwater watershed in Minas Gerais State, Brazil. Transactions of the ASABE. 56(2): 697-709. DOI: 10.13031/2013.42668 .

4160. Pirnia, A., H. Darabi, B. Choubin, E. Omidvar, C. Onyutha and A.T. Haghighi. 2019. Contribution of climatic variability and human activities to stream flow changes in the Haraz River Basin, northern Iran. Journal of Hydro-environment Research. 25: 12-24. DOI: 10.1016/j.jher.2019.05.001 .

4161. Pisinaras, V. 2016. Assessment of future climate change impacts in a Mediterranean aquifer. Global Nest Journal. 18(1): 119-150. DOI: 10.30955/gnj.001496 .

4162. Pisinaras, V., C. Paraskevas and A. Panagopoulos. 2021. Investigating the effects of agricultural water management in a Mediterranean coastal aquifer under current and projected climate conditions. Water. 13(1): 108. DOI: 10.3390/w13010108 .

4163. Pisinaras, V., C. Petalas, G.D. Gikas, A. Gemitzi and V.A. Tsihrintzis. 2009. Hydrological and water quality modeling in a medium-sized basin using the Soil and Water Assessment Tool (SWAT). Desalination. 250(1): 274-286. DOI: 10.1016/j.desal.2009.09.044 .

4164. Pisinaras, V., C. Petalas, V.A. Tsihrintzis and G.P. Karatzas. 2013. Integrated modeling as a decision-aiding tool for groundwater management in a Mediterranean agricultural watershed. Hydrological Processes. 27(14): 1973–1987. DOI: 10.1002/hyp.9331 .

4165. Pisinaras, V., Y. Wei, L. Barring and A. Gemitzi. 2014. Conceptualizing and assessing the effects of installation and operation of photovoltaic power plants on major hydrologic budget constituents. Science of the Total Environment. 493: 239-250. DOI: 10.1016/j.scitotenv.2014.05.132 .

4166. Plesca, I., E. Timbe, J.-F. Exbrayat, D. Windhorst, P. Kraft, P. Crespo, K.B. Vache, H.-G. Frede and L. Breuer. 2012. Model intercomparison to explore catchment functioning: Results from a remote montaine tropical rainforest. Ecological Modelling. 239: 3–13. DOI: 10.1016/j.ecolmodel.2011.05.005 .

4167. Plunge, S. M. Gudas, A. Povilaitis and M. Piniewski. 2022. Evaluation of the costs of agricultural diffuse water pollution abatement in the context of Lithuania’s water protection goals and climate change. Environmental Management. DOI: 10.1007/s00267-022-01745-1 .

4168. Plunge, S., B. Szabó, M. Strauch, N. Čerkasova, C. Schürz and M. Piniewski. 2024. SWAT+ input data preparation in a scripted workflow: SWATprepR. Environmental Sciences Europe. 36(1): 53. DOI: 10.1186/s12302-024-00873-1 .

4169. Plunge, S., C. Schürz, N. Čerkasova, M. Strauch and M. Piniewski. 2024. SWAT+ model setup verification tool: SWATdoctR. Environmental Modelling & Software. 171: 105878. DOI: 10.1016/j.envsoft.2023.105878 .

4170. Plunge, S., M. Gudas and A. Povilaitis. 2022. Expected climate change impacts on surface water bodies in Lithuania. Ecohydrology & Hydrobiology. 22(2): 246-268. DOI: 10.1016/j.ecohyd.2021.11.004 .

4171. Plunge, S., M. Gudas and A. Povilaitis. 2023. Effectiveness of best management practices for non-point source agricultural water pollution control with changing climate – Lithuania’s case. Agricultural Water Management. 267: 107635. DOI: 10.1016/j.agwat.2022.107635 .

4172. Pluntke, T., D. Pavlik and C. Bernhofer. 2014. Reducing uncertainty in hydrological modelling in a data sparse region. Environmental Earth Sciences. 72(12): 4801-2816. DOI: 10.1007/s12665-014-3252-3 .

4173. Plus, M., I. La Jeunesse, F. Bouraoui, J.-M. Zaldívar, A. Chapelle and P. Lazure. 2006. Modelling water discharges and nitrogen inputs into a Mediterranean lagoon: Impact on the primary production. Ecological Modelling. 193(1-2): 69-89. DOI: 10.1016/j.ecolmodel.2005.07.037 .

4174. Pohle, I., H. Koch, T. Conradt, A. Gadeke and U. Grunewald. 2015. Potential impacts of climate change and regional anthropogenic activities in Central European mesoscale catchments. Hydrological Sciences Journal. 60(5): 912-928. DOI: 10.1080/02626667.2014.968571 .

4175. Pohlert, T., J.A. Huisman, L. Breuer and H.-G. Freude. 2005. Modelling of point and non-point source pollution of nitrate with SWAT in the River Dill, Germany. Advances in Geosciences. 5: 7-12. DOI: 10.5194/adgeo-5-7-2005 .

4176. Pohlert, T., J.A. Huisman, L. Breuer and H.-G. Freude. 2007. Integration of a detailed biogeochemical model into SWAT for improved nitrogen predictions—Model development, sensitivity, and GLUE analysis. Ecological Modelling. 203(3-4): 215-228. DOI: 10.1016/j.ecolmodel.2006.11.019 .

4177. Pohlert, T., L. Breuer, J. A. Huisman and H.-G. Frede. 2007. Assessing the model performance of an integrated hydrological and biogeochemical model for discharge and nitrate load predictions. Hydrology and Earth System Sciences. 11(2): 997-1011. DOI: 10.5194/hess-11-997-2007 .

4178. Pointes, L.M., M.R. Viola, M.L.N. Silva, D.F.A. Bispo and N.Curi. 2017. Hydrological modeling of tributaries of Cantareira System, southeast Brazil, with the SWAT model. Engenharia Agricola. 36(6): 1037-1049. DOI: 10.1590/1809-4430-Eng.Agric.v36n6p1037-1049/2016 .

4179. Pokhrel, B.K. 2018. Impact of land use change on flow and sediment yields in the Khokana Outlet of Bagmati River, Kathmandu, Nepal. Hydrology. 5(2): 22. DOI: 10.3390/hydrology5020022 .

4180. Pokhrel, Y., M. Burbano, J. Roush, H. Kang, V. Sridhar and D.W. Hyndman. 2018. A review of the integrated effects of changing climate, land use, and dams on Mekong River hydrology. Water. 10: 266. DOI: 10.3390/w10030266 .

4181. Polong, F., K. Deng, Q.B. Pham, N.T.T. Linh, S.I. Abba, A.N. Ahmed, D.T. Anh, K.M. Khedher and A. El-Shafie. 2023. Separation and attribution of impacts of changes in land use and climate on hydrological processes. Theoretical and Applied Climatology. 151(3): 1337-1353. DOI: 10.1007/s00704-022-04351-7 .

4182. Poméon, T., B. Diekkrüger, A. Springer, J. Kusche and A. Eicker. 2018. Multi-objective validation of SWAT for sparsely-gauged West African river basins - A remote sensing approach. Water. 10(4): 451. DOI: 10.3390/w10040451 .

4183. Ponce Oliva, R.D., F.J. Fernández, F. Vasquez-Lavin, E.A. Montevechio, N. Julio and A. Stehr. 2021. Nexus thinking at river basin scale: Food, water and welfare. Water. 13(7): 1000. DOI: 10.3390/w13071000 .

4184. Ponce, R.D., F. Fernández, A. Stehr, F. Vásquez-Lavín and A. Godoy-Faúndez. 2017. Distributional impacts of climate change on basin communities: An integrated modeling approach. Regional Environmental Change. 17(6): 1811–1821. DOI: 10.1007/s10113-017-1152-2 .

4185. Pongpetch, N., P. Suwanwaree, C. Yossapol, S. Dasananda and T. Kongjun. 2015. Using SWAT to assess the critical areas and nonpoint source pollution reduction best management practices in Lam Takong River Basin, Thailand. EnvironmentAsia. 8(1): 41-52. URL: http://www.tshe.org/ea/ea_january2015.html.

4186. Pontes, L.M., P.V.G. Batista, B.P.C. Silva, M.R. Viola, H.R.D. Rocha and M.L.N. Silva. 2021. Assessing sediment yield and streamflow with SWAT model in a small sub-basin of the Cantareira System. Revista Brasileira de Ciência do Solo. 45: e0200140. DOI: 10.36783/18069657rbcs20200140 .

4187. Poon, D., J.K. Whalen and A.R. Michaud. 2021. Re-conceptualizing the Soil and Water Assessment Tool to predict subsurface water flow through macroporous soils. Frontiers in Water. 3: 704291. DOI: 10.3389/frwa.2021.704291 .

4188. Pooralihossein, S. and M. Delavar. 2020. A multi-model ensemble approach for the assessment of climatic and anthropogenic impacts on river flow change. Hydrological Sciences Journal. 65(1): 71-86. DOI: 10.1080/02626667.2019.1682148 .

4189. Poorheydari, S., H. Ahmadi, A. Moeini, S. Feiznia and M. Jafari. 2020. Efficiency of SWAT model for determining hydrological responses of marl formation. International Journal of Environmental Science and Technology. 17: 3741-3750. DOI: 10.1007/s13762-020-02688-y .

4190. Post, J., T. Conradt, F. Suckow, V. Krysanova, F. Wechsung and F.F. Hatterman. 2008. Integrated assessment of cropland soil carbon sensitivity to recent and future climate in the Elbe River Basin. Hydrological Sciences Journal. 53(5): 1043-1058. DOI: 10.1623/hysj.53.5.1043 .

4191. Post, J., V. Krysanova, F. Suckow, W. Mirshel, J. Rogasik and I. Merbach. 2007. Integrated eco-hydrological modeling of soil organic matter dynamics for the assessment of environmental change impacts in meso-to macro-scale river basins. Ecological Modelling. 206: 93-109. DOI: 10.1016/j.ecolmodel.2007.03.028 .

4192. Potić, I., L.M. Mihajlović, V. Šimunić, N.B. Ćurčić and M. Milinčić. 2022. Deforestation as a cause of increased surface runoff in the catchment: Remote sensing and SWAT approach - A case study of southern Serbia. Frontiers in Environmental Science. 10: 896404. DOI: 10.3389/fenvs.2022.896404 .

4193. Potić, I.M., N.B. Ćurčić, M.M. Radovanović, G.B. Stanojević, S.B. Malinović-Milićević, S.A. Yamashkin and A.A. Yamashkin. 2021. Estimation of soil erosion dynamics using remote sensing and SWAT in Kopaonik National Park, Serbia. Journal of the Geographical Institute “Jovan Cvijic” SASA. 71(3): 231-247. DOI: 10.2298/IJGI2103231P .

4194. Pott, C.A. and N. Fohrer. 2017. Best management practices to reduce nitrate pollution in a rural watershed in Germany. Ambiente & Água. 12(6): 888-891. DOI: 10.4136/ambi-agua.2099 .

4195. Pott, C.A. and N. Fohrer. 2017. Hydrological modeling in a rural catchment in Germany. Brazilian Journal of Applied Technology for Agricultural Science. 10(1): 7-16. URL: http://revistas.unicentro.br/index.php/repaa/article/view/4671.

4196. Potter, C. and S. Hiatt. 2009. Modeling river flows and sediment dynamics for the Laguna de Santa Rosa Watershed in Northern California. Journal of Soil and Water Conservation. 64(6): 383-393. DOI: 10.2489/jswc.64.6.383 .

4197. Poudel, D.D., T. Lee, R. Srinivasan, K. Abbaspour and C.Y. Jeong. 2013. Assessment of seasonal and spatial variation of surface water quality, identification of factors associated with water quality variability, and the modeling of critical nonpoint source pollution areas in an agricultural watershed. Journal of Soil and Water Conservation. 68(3): 155-171. DOI: 10.2489/jswc.68.3.155 .

4198. Prabhanjan, A., E.P. Rao and T.I. Eldho. 2015. Application of SWAT model and geospatial techniques for sediment-yield modeling in ungauged watersheds. Journal of Hydrologic Engineering. 20(6): C6014005. DOI: 10.1061/(ASCE)HE.1943-5584.0001123 .

4199. Prabnakorn, S., F. X. Suryadi, J. Chongwilaikasem and C. de Fraiture. 2019. Development of an integrated flood hazard assessment model for a complex river system: A case study of the Mun River Basin, Thailand. Modeling Earth Systems and Environment. 5: 1265–1281. DOI: 10.1007/s40808-019-00634-7 .

4200. Pradhan, N.S., S. Sijapati and S.R. Bajracharya. 2015. Farmers’ responses to climate change impact on water availability: Insights from the Indrawati Basin in Nepal. International Journal of Water Resources Development. 31(2): 269-283. DOI: 10.1080/07900627.2015.1033514 .

4201. Pradhan, P., T. Tingsanchali and S. Shresha. 2020. Evaluation of Soil and Water Assessment Tool and artificial neural network models for hydrologic simulation in different climatic regions of Asia. Science of the Total Environment. 701: 134308. DOI: 10.1016/j.scitotenv.2019.134308 .

4202. Pradhan, P., T.T.H. Pham, S. Shrestha, H.H. Loc and E. Park. 2022. Projecting the impact of human activities and climate change on water resources in the transboundary Sre Pok River Basin. Climatic Change. 172: 26. DOI: 10.1007/s10584-022-03367-2 .

4203. Pradhan, S., P. Tongdeenok and N. Kaewjampa. 2018. Estimation of streamflow using SWAT model under climate change in the Upper Wangchhu Watershed, Bhutan. Journal of Tropical Forest Research. 2(1): 61-76. URL: http://www.jtfr.forest.ku.ac.th/?p=201.

4204. Pradhanang, S.M., A. Anandhi, R. Mukundan, M.S. Zion, D.C. Pierson, E.M. Schneiderman, A. Matonse and A. Frei. 2011. Application of SWAT model to assess snowpack development and streamflow in the Cannonsville Watershed, New York, USA. Hydrological Processes. 25(21): 3268-3277. DOI: 10.1002/hyp.8171 .

4205. Pradhanang, S.M., R. Mukundan, E.M. Schneiderman, M.S. Zion, A. Anandhi, D.C. Pierson, A. Frie, Z.M. Easton, D. Fuka and T.S. Steenhuis. 2013. Streamflow responses to climate change: Analysis of hydrologic indicators in a New York City water supply watershed. Journal of the American Water Resources Association. 49(6): 1308–1326. DOI: 10.1111/jawr.12086 .

4206. Prasanchum, H. and A. Kangrang. 2018. Optimal reservoir rule curves under climatic and land use changes for Lampao Dam using genetic algorithm. KSCE Journal of Civil Engineering. 22(1): 351–364. DOI: 10.1007/s12205-017-0676-9 .

4207. Prasena, A. and D.B.P. Shrestha. 2013. Assessing the effects of land use change on runoff in Bedog Sub Watershed Yogyakarta. Indonesian Journal of Geography. 45(1): 48-61. URL: http://jurnal.ugm.ac.id/index.php/ijg/article/view/2406.

4208. Praskievicz, S. 2016. Impacts of projected climate changes on streamflow and sediment transport for three snowmelt-dominated rivers in the interior Pacific Northwest. River Research and Applications. 32(1): 4-17. DOI: 10.1002/rra.2841 .

4209. Praskievicz, S. and P. Bartlein. 2014. Hydrologic modeling using elevationally adjusted NARR and NARCCAP regional climate-model simulations: Tucannon River, Washington. Journal of Hydrology. 517: 803-814. DOI: 10.1016/j.jhydrol.2014.06.017 .

4210. Pratama, M.A., M. Yoneda, Y. Shimada, Y. Matsui and Y. Yamashiki. 2015. Future projection of radiocesium flux to the ocean from the largest river impacted by Fukushima Daiichi Nuclear Power Plant. Scientific Reports. 5: 8408. DOI: 10.1038/srep08408 .

4211. Prato, T. and B.I. Woo. 2008. Integrated analysis of weed control practices for reducing atrazine contamination in an agricultural watershed. Journal of Soil and Water Conservation. 63(2): 99-104. DOI: 10.2489/jswc.63.2.99 .

4212. Prato, T. and S. Hajkowicz. 1999. Selection and sustainability of land and water resource management systems. Journal of the American Water Resources Association. 35(4): 739-752. DOI: 10.1111/j.1752-1688.1999.tb04171.x .

4213. Preetha, P. and M. Hasan. 2023. Scrutinizing the hydrological responses of Chennai, India using coupled SWAT-FEM model under land use land cover and climate change scenarios. Land. 12(5): 938. DOI: 10.3390/land12050938 .

4214. Preetha, P.P, N. Joseph and B. Narasimhan. 2021. Quantifying surface water and ground water interactions using a coupled SWAT_FEM model: Implications of management practices on hydrological processes in irrigated river basins. Water Resources Management. 35(9): 2781-2797. DOI: 10.1007/s11269-021-02867-7 .

4215. Preetha, P.P. and A. Al-Hamdan. 2022. A union of dynamic hydrological modeling and satellite remotely-sensed data for spatiotemporal assessment of sediment yields. Remote Sensing. 14(2): 400. DOI: 10.3390/rs14020400 .

4216. Preetha, P.P. and A. Al-Hamdan. 2022. Synergy of remotely sensed data in spatiotemporal dynamic modeling of the crop and cover management factor. Pedosphere. 32(3): 381–392. DOI: 10.1016/S1002-0160(21)60081-4 .

4217. Preetha, P.P. and A.Z. Al-Hamdan. 2020. Developing nitrate-nitrogen transport models using remotely-sensed geospatial data of soil moisture profiles and wet depositions. Journal of Environmental Science and Health, Part A - Toxic/Hazardous Substances and Environmental Engineering. 55(5): 615-628. DOI: 10.1080/10934529.2020.1724503 .

4218. Preetha, P.P. and A.Z. Al-Hamdan. 2020. Integrating finite-element-model and remote-sensing data into SWAT to estimate transit times of nitrate in groundwater. Hydrogeology Journal. 28(6): 2187-2205. DOI: 10.1007/s10040-020-02171-5 .

4219. Preetha, P.P., A.Z. Al-Hamdan and M.D. Anderson. 2021. Assessment of climate variability and short-term land use land cover change effects on water quality of Cahaba River Basin. International Journal of Hydrology Science and Technology. 11(1): 54-75. URL: https://www.inderscience.com/info/inarticle.php?artid=112656.

4220. Preetha, P.P., and A.Z. Al-Hamdan. 2019. Multi-level pedotransfer modification functions of the USLE-K factor for annual soil erodibility estimation of mixed landscapes. Modeling Earth Systems and Environment. 5(3): 767-779. DOI: 10.1007/s40808-018-0563-5 .

4221. Prepas, E.E., G. Putz, D.W. Smith,, J.M. Burke and J.D. MacDonald. 2008. The FORWARD Project: Objectives, framework and initial integration into a detailed forest management plan in Alberta. The Forestry Chronicle. 84(3): 330-337. DOI: 10.5558/tfc84330-3 .

4222. Pribadi, A.D., R.D. Kusumawati and A.A. Firdausi. 2020. The effect of land cover changes on hydrological characteristics in Sampean Watershed Bondowoso District. Jurnal Ilmiah Desain dan Konstruksi. 19(2): 84-101. DOI: 10.35760/dk.2020.v19i2.3492 .

4223. Price, K., S.T. Purucker, S.R. Kraemer and J.E. Babendreier. 2012. Tradeoffs among watershed model calibration targets for parameter estimation. Water Resources Research. 48(w10542): 1-16. DOI: 10.1029/2012WR012005 .

4224. Price, K., S.T. Purucker, S.R. Kraemer, J.E. Babendreier and C.D. Knightes. 2014. Comparison of radar and gauge precipitation data in watershed models across varying spatial and temporal scales. Hydrological Processes. 28(9): 3505-3520. DOI: 10.1002/hyp.9890 .

4225. Prieto, C., A. Kotronarou and G. Destouni. 2006. The influence of temporal hydrological randomness on seawater intrusion in coastal aquifers. Journal of Hydrology. 330: 285-300. DOI: 10.1016/j.jhydrol.2006.03.024 .

4226. Pritchard, H. 2017. Asia’s glaciers are a regionally important buffer against drought. Nature. 545: 169-174. DOI: 10.1038/nature22062 .

4227. Prochnow, S.J., J.D. White, T. Scott and C. Filstrup. 2007. Small reservoir impact on simulated watershed-scale nutrient yield. Research Letters in Ecology. 2007: 12571. DOI: 10.1155/2007/12571 .

4228. Prochnow, S.J., J.D. White, T. Scott and C.D. Filstrup. 2008. Multi-scenario simulation analysis in prioritizing management options for an impacted watershed system. Ecohydrology & Hydrobiology. 8(1): 3-15. DOI: 10.2478/v10104-009-0001-4 .

4229. Pryor, J.W., Q. Zhang and M.E. Arias. 2022. Integrating climate change, hydrology, and water footprint to measure water scarcity in Lesotho, Africa. Journal of Water Resources Planning and Management. 148(1): 05021025. DOI: 10.1061/(ASCE)WR.1943-5452.0001502 .

4230. Pulighe, G., F. Lupia, H. Chen and H. Yin. 2021. Modeling climate change impacts on water balance of a Mediterranean watershed using SWAT+. Hydrology. 8(4): 157. DOI: 10.3390/hydrology8040157 .

4231. Pulighe, G., G. Bonati, M. Colangeli, L. Traverso, F. Lupia, F. Altobelli, A. Dalla Marta and M. Mapoli. 2020. Predicting streamflow and nutrient loadings in a semi-arid Mediterranean watershed with ephemeral streams using the SWAT model. Agronomy. 10(1): 22. DOI: 10.3390/agronomy10010002 .

4232. Puno, R.C.C., G.R. Puno and B.A.M. Talisay. 2019. Hydrologic responses of watershed assessment to land cover and climate change using soil and water assessment tool model. Global Journal of Environmental Science and Management. 5(1): 71-82. DOI: 10.22034/gjesm.2019.01.06 .

4233. Purnell, S., R. Kennedy, E. Williamson and R. Remesan. 2020. Metaldehyde prediction by integrating existing water industry datasets with the Soil and Water Assessment Tool. Water Research. 183: 116053. DOI: 10.1016/j.watres.2020.116053 .

4234. Putera, M.I., S. Alam, S. Surahman, Irmayani and Masnur. 2018. Land use potential on water balance based on SWAT method in Saddang Watershed in Bendung Benteng irrigation system. Agrotech Journal ATJ. 3(2): 53-60. DOI: 10.31327/atj.v3i2.857 .

4235. Putra, T.A., K.S. Hindarto and P. Prawito. 2022. Prediction of erosion and sedimentation in micro catchment area of Air Lanang using Soil and Water Assessment Tool (SWAT) model. TERRA: Journal of Land Restoration. 5(1): 27-37. DOI: 10.31186/terra.5.1.27-37 .

4236. Putz, G., J.M. Burke, D.W. Smith, D.S. Chanasyk, E.E. Prepas and E. Mapfumo. 2003. Modelling the effects of boreal forest landscape management upon streamflow and water quality: Basic concepts and considerations. Journal of Environmental Engineering and Science. 7(S1): S87-S101. DOI: 10.1139/S03-032 .

4237. Pyo, J., S-S. Baek, M. Kim, S. Park, H. Lee, J-S. Ra and K.H. Cho. 2017. Optimizing agricultural best management practices in a Lake Erie watershed. Journal of the American Water Resources Association. 53(6): 1281-1292. DOI: 10.1111/1752-1688.12571 .

4238. Pyo, J.C., Y.A. Pachepsky, M. Kim, S.-S. Baek, H. Lee, Y.K. Cha, Y. Park and K.H. Cho. 2019. Simulating seasonal variability of phytoplankton in stream water using the modified SWAT model. Environmental Modelling & Software. 122: 104073. DOI: 10.1016/j.envsoft.2017.11.005 .

4239. Qi, C. and S. Grunwald. 2005. GIS-based hydrologic modeling in the Sandusky Watershed using SWAT. Transactions of the ASAE. 48(1): 169-180. DOI: 10.13031/2013.17960 .

4240. Qi, H. and Z. Qi. 2017. Simulating phosphorus loss to subsurface tile drainage flow: A review. Environmental Reviews. 25(2): 150-162. DOI: 10.1139/er-2016-0024 .

4241. Qi, J., Q. Wang and X. Zhang. 2019. On the use of NLDAS2 weather data for hydrologic modeling in the Upper Mississippi River Basin. Water. 11(5): 960. DOI: 10.3390/w11050960 .

4242. Qi, J., S. Lee, X. Du, D.L. Ficklin, Q. Wang, D. Myers, D. Singh, G.E. Moglen, G.W. McCarty, Y. Zhou and X. Zhang. 2021. Coupling terrestrial and aquatic thermal processes for improving stream temperature modeling at the watershed scale. Journal of Hydrology. 603: 126983. DOI: 10.1016/j.jhydrol.2021.126983 .

4243. Qi, J., S. Lee, X. Zhang, Q. Yang, G.W. McCarty and G.E. Moglen. 2020. Effects of surface runoff and infiltration partition methods on hydrological modeling: A comparison of four schemes in two watersheds in the northeastern US. Journal of Hydrology. 581: 124415. DOI: 10.1016/j.jhydrol.2019.124415 .

4244. Qi, J., S. Li, C.P.-A. Bourque, Z. Xing and F.-R. Meng. 2018. Developing a decision support tool for assessing land use change and BMP's in ungauged watersheds based on decision rules provided by SWAT simulation. Hydrology and Earth System Sciences. 22(7): 3789-3806. DOI: 10.5194/hess-22-3789-2018 .

4245. Qi, J., S. Li, Q. Li, Z. Xing, C.P.-A. Bourque and F.-R. Meng. 2016. A new soil-temperature module for SWAT application in regions with seasonal snow cover. Journal of Hydrology. 538: 863-87. DOI: 10.1016/j.jhydrol.2016.05.003 .

4246. Qi, J., S. Li, Q. Li, Z. Xing, C.P.-A. Bourque and F.-R. Meng. 2016. Assessing an enhanced version of SWAT on water quantity and quality simulation in regions with seasonal snow cover. Water Resources Management. 30(14): 5021–5037. DOI: 10.1007/s11269-016-1466-8 .

4247. Qi, J., S. Li, Q. Yang, Z. Xing and F.-R. Meng. 2017. SWAT setup with long-term detailed landuse and management records and modification for a micro-watershed influenced by freeze-thaw cycles. Water Resources Management. 31(12): 3953–3974. DOI: 10.1007/s11269-017-1718-2 .

4248. Qi, J., S. Li, R. Jamieson, D. Hebb, Z. Xing and F.-R. Meng. 2017. Modifying SWAT with an energy balance module to simulate snowmelt for maritime regions. Environmental Modelling & Software. 93: 146-160. DOI: 10.1016/j.envsoft.2017.03.007 .

4249. Qi, J., S.T. Brantley and S.W. Golladay. 2020. Simulated irrigation reduction improves low flow in streams—A case study in the Lower Flint River Basin. Journal of Hydrology: Regional Studies. 28: 100665. DOI: 10.1016/j.ejrh.2020.100665 .

4250. Qi, J., S.T. Brantley and S.W. Golladay. 2022. Simulated longleaf pine (Pinus palustris Mill.) restoration increased streamflow—A case study in the Lower Flint River Basin. Ecohydrology. 15(1): e2365. DOI: 10.1002/eco.2365 .

4251. Qi, J., X. Du, X. Zhang, S. Lee, Y. Wu, J. Deng, G.E. Moglen, A.M. Sadeghi and G.W. McCarty. 2020. Modeling riverine dissolved and particulate organic carbon fluxes from two small watersheds in the northeastern United States. Environmental Modelling & Software. 124: 104601. DOI: 10.1016/j.envsoft.2019.104601 .

4252. Qi, J., X. Kang, S. Li and F. Meng. 2022. Evaluating impacts of detailed land use and management inputs on the accuracy and resolution of SWAT predictions in an experimental watershed. Water. 14(15): 2352. DOI: 10.3390/w14152352 .

4253. Qi, J., X. Zhang and M.H. Cosh. 2019. Modeling soil temperature in a temperate region: A comparison between empirical and physically based methods in SWAT. Ecological Engineering. 129: 134-143. DOI: 10.1016/j.ecoleng.2019.01.017 .

4254. Qi, J., X. Zhang and Q. Wang. 2019. Improving hydrological simulation in the Upper Mississippi River Basin through enhanced freeze-thaw cycle representation. Journal of Hydrology. 571: 605-618. DOI: 10.1016/j.jhydrol.2019.02.020 .

4255. Qi, J., X. Zhang, G.W. McCarty, A.M. Sadeghi, M.H. Cosh, X. Zeng, F. Gao, C.S.T. Daughtry, C. Huang, M.W. Lang and J.G. Arnold. 2018. Assessing the performance of a physically-based soil moisture module integrated within the Soil and Water Assessment Tool. Environmental Modelling & Software. 109: 329-341. DOI: 10.1016/j.envsoft.2018.08.024 .

4256. Qi, J., X. Zhang, Q. Yang, R. Srinivasan, J.G. Arnold, J. Li, S.T. Waldholf and J. Cole. 2020. SWAT ungauged: Water quality modeling in the Upper Mississippi River Basin. Journal of Hydrology. DOI: 10.1016/j.jhydrol.2020.124601 .

4257. Qi, J., X. Zhang, S. Lee, G.E. Moglen, A.M. Sadeghi and G.W. McCarty. 2019. A coupled surface water storage and subsurface water dynamics model in SWAT for characterizing hydroperiod of geographically isolated wetlands. Advances in Water Resources. 131: 103380. DOI: 10.1016/j.advwatres.2019.103380 .

4258. Qi, J., X. Zhang, S. Lee. Y. Wu, G.E. Moglen and G.W. McCarty. 2020. Modeling sediment diagenesis processes on riverbed to better quantify aquatic carbon fuxes and stocks in a small watershed of the Mid-Atlantic region. Carbon Balance and Management. 15: 13. DOI: 10.1186/s13021-020-00148-1 .

4259. Qi, Z., G. Kang, C. Chu, Y. Qiu, Z. Xu and Y. Wang. 2017. Comparison of SWAT and GWLF model simulation performance in humid south and semi-arid north of China. Water. 9(8): 567. DOI: 10.3390/w9080567 .

4260. Qian, S.S., J.G. Kennen, J. May, M.C. Freeman and T.F. Cuffney. 2021. Evaluating the impact of watershed development and climate change on stream ecosystems: A Bayesian network modeling approach. Water Research. 205: 117685. DOI: 10.1016/j.watres.2021.117685 .

4261. Qiao, L., C.B. Zou, R. Will and E. Stebler. 2015. Calibration of SWAT model for woody plant encroachment using paired experimental watershed data. Journal of Hydrology. 523: 231–239. DOI: 10.1016/j.jhydrol.2015.01.056 .

4262. Qiao, L., R. Will, K. Wagner, T. Zhang and C. Zou. 2022. Improvement of evapotranspiration estimates for grasslands in the southern Great Plains: Comparing a biophysical model (SWAT) and remote sensing (MODIS). Journal of Hydrology: Regional Studies. 44: 101275. DOI: 10.1016/j.ejrh.2022.101275 .

4263. Qiao, L., R.B. Herrmann and Z. Pan. 2013. Parameter uncertainty reduction for SWAT using grace, streamflow, and groundwater table data for lower Missouri River Basin. Journal of the American Water Resources Association. 49(2): 343–358. DOI: 10.1111/jawr.12021 .

4264. Qiao, L., Z. Pan, R.B. Herrmann and Y. Hong. 2014. Hydrological variability and uncertainty of lower Missouri River Basin under changing climate. Journal of the American Water Resources Association. 50(1): 246–260. DOI: 10.1111/jawr.12126 .

4265. Qiao, P., M. Lei, S. Yang, J. Yang, X. Zhou, N. Dong and G. Guo. 2018. Development of a model to simulate soil heavy metals lateral migration quantity based on SWAT in Huanjiang Watershed, China. Journal of Environmental Sciences. DOI: 10.1016/j.jes.2018.06.020 .

4266. Qin , F., Y. Zhu, T. Ao and T. Chen. 2021. The development trend and research frontiers of distributed hydrological models—Visual bibliometric analysis based on Citespace. Water. 13(2): 174. DOI: 10.3390/w13020174 .

4267. Qin G., J. Liu, T. Wang, S. Xu and G. Su. 2018. An integrated methodology to analyze the total nitrogen accumulation in a drinking water reservoir based on the SWAT model driven by CMADS: A case study of the Biliuhe Reservoir in northeast China. Water. 10(11): 1535. DOI: 10.3390/w10111535 .

4268. Qin, Z. 2015. Validation of a locally revised topographic index in central New Jersey, USA. Water. 7(11): 6616-6633. DOI: 10.3390/w7116616 .

4269. Qingqing, D., Z. Chesheng, W. Huixiao, W. Feiyu and Z. Mingcheng. 2016. A review on evapotranspiration data assimilation based on hydrological models. Journal of Geographical Sciences. 26(2): 230-242. DOI: 10.1007/s11442-016-1265-4 .

4270. Qiu, G.Y., J. Yin, F. Tian and S. Geng. 2011. Effects of the "Conversion of Cropland to Forest and Grassland Program" on the water budget of the Jinghe River Catchment in China. Journal of Environmental Quality. 40(6): 1745-1755. DOI: 10.2134/jeq2010.0263 .

4271. Qiu, H., Junyu Qi, Sangchul Lee, Glenn E. Moglend, Gregory W. McCarty, Min Chen and Xuesong Zhang. 2021. Effects of temporal resolution of river routing on hydrologic modeling and aquatic ecosystem health assessment with the SWAT model. Environmental Modelling & Software. 146: 105232. DOI: 10.1016/j.envsoft.2021.105232 .

4272. Qiu, J., Q. Yang, X. Zhang, M. Huang, J.C. Adam and K. Malek. 2019. Implications of water management representations for watershed hydrologic modeling in the Yakima River Basin. Hydrology and Earth System Sciences. 23: 35-49. DOI: 10.5194/hess-23-35-2019 .

4273. Qiu, J., Z. Shen and H. Xie. 2023. Drought impacts on hydrology and water quality under climate change. Science of the Total Environment. 858(Part1): 159854. DOI: 10.1016/j.scitotenv.2022.159854 .

4274. Qiu, J., Z. Shen, G. Leng, H. Xie, X. Hou and G. Wei. 2019. Impacts of climate change on watershed systems and potential adaptation through BMPs in a drinking water source area. Journal of Hydrology. 573: 123-135. DOI: 10.1016/j.jhydrol.2019.03.074 .

4275. Qiu, J., Z. Shen, L. Chen and X. Hou. 2019. Quantifying effects of conservation practices on non-point source pollution in the Miyun Reservoir Watershed, China. Environmental Monitoring and Assessment. 191: 582. DOI: 10.1007/s10661-019-7747-y .

4276. Qiu, J., Z. Shen, M. Huang and X. Zhang. 2018. Exploring effective best management practices in the Miyun Reservoir Watershed, China. Ecological Engineering. 123: 30-42. DOI: 10.1016/j.ecoleng.2018.08.020 .

4277. Qiu, J., Z. Shen, X. Hou, H. Xie and G. Leng. 2020. Evaluating the performance of conservation practices under climate change scenarios in the Miyun Reservoir Watershed, China. Ecological Engineering. 147: 105700. DOI: 10.1016/j.ecoleng.2019.105700 .

4278. Qiu, L., F. Zheng and R. Yin. 2012. SWAT-based runoff and sediment simulation in a small watershed, the loessial hilly-gullied region of China: Capabilities and challenges. International Journal of Sediment Research. 27(2): 226-234. DOI: 10.1016/S1001-6279(12)60030-4 .

4279. Qiu, L., Y. Wu, L. Wang, X. Lei, W. Liao, Y. Hui and X. Meng. 2017. Spatiotemporal response of the water cycle to land use conversions in a typical hilly–gully basin on the Loess Plateau, China. Hydrology and Earth System Sciences. 21(12): 6485-6499. DOI: 10.5194/hess-21-6485-2017 .

4280. Qiu, Z. 2005. Using multi-criteria decision models to assess the economic and environmental impacts of farming decisions in an agricultural watershed. Review of Agricultural Economics. 27(2): 229-244. DOI: 10.1111/j.1467-9353.2005.00223.x .

4281. Qiu, Z. 2013. Comparative assessement of stormwater and nonpoint source pollution best management practices in suburban watershed management. Water. 5(1): 280-291. DOI: 10.3390/w5010280 .

4282. Qiu, Z. and L. Wang. 2014. Hydrological and water quality assessment in a suburban watershed with mixed land uses using the SWAT model. Journal of Hydrologic Engineering. 19(4): 816-827. DOI: 10.1061/(ASCE)HE.1943-5584.0000858 .

4283. Qiu, Z. and T. Prato. 1998. Economic evaluation of riparian buffers in an agricultural watershed. Journal of the American Water Resources Association. 34(4): 877-890. DOI: 10.1111/j.1752-1688.1998.tb01523.x .

4284. Qiu, Z. and T. Prato. 1999. Accounting for spatial characteristics of watersheds in evaluating water pollution abatement policies. Journal of Agricultural and Applied Economics. 31(1): 161-175. URL: https://ageconsearch.umn.edu/record/15135?ln=en.

4285. Qiu, Z. and T. Prato. 2001. Physical determinants of economic value of riparian buffers in an agricultural watershed. Journal of the American Water Resources Association. 37(2): 295-303. DOI: 10.1111/j.1752-1688.2001.tb00969.x .

4286. Qiu, Z., S. Giri, L. Wang and B. Luo. 2018. SWAT modeling of fecal indicator bacteria fate and transport in a suburban watershed with mixed land uses. Proceedings of the International Academy of Ecology and Environmental Sciences. 8(1): 28-46. URL: http://www.iaees.org/publications/journals/piaees/articles/2018-8(1)/SWAT-modeling-of-fecal-indicator-bacteria-fate.pdf.

4287. Qoraqi, R.H. and M. Delavar. 2024. Investigating changes in water balance components using the SWAT+ model and determining the role of factors affecting them. Journal of Water and Irrigation Management. 13(4): 1071-1092. URL: https://jwim.ut.ac.ir/article_95626.html?lang=en.

4288. Qu, J., J. Zhou and K. Ren. 2015. Identification of nonpoint source of pollution with nitrogen based on soil and water assessment tool (SWAT) in Qinhuangdao City, China. Environmental Engineering and Management Journal. 14(8): 1887-1895. URL: http://89.44.47.69/index.php/EEMJ/article/view/2353.

4289. Quan, N.H. and M.T. Thang. 2014. Application of SWAT model in assesment water resources of upper stream of Thi Nai Lagoon serving sustainable develoment of Binh Dinh Province. Science and Technology Development Journal. 17(2): 109-118. DOI: 10.32508/stdj.v17i2.1303 .

4290. Quan, N.V. 2014. Assessment impacts of climate change on annual flow in river basin in the future case study: Nakdong River Basin in Korea. Tạp chí Khoa học kỹ thuật Thủy lợi và Môi trường. 46: 165-169. URL: http://tapchivatuyentap.tlu.edu.vn/Home/groupid/62.

4291. Quansah, J.E., A.B. Naliaka, S. Fall, R. Ankumah and G. El Afandi. 2021. Assessing future impacts of climate change on streamflow within the Alabama River Basin. Climate. 9(4): 55. DOI: 10.3390/cli9040055 .

4292. Quansah, J.E., B.A. Engel and I. Chaubey. 2008. Tillage practices usage in early warning prediction of atrazine pollution. Transactions of the ASABE. 51(4): 1311-1321. DOI: 10.13031/2013.25247 .

4293. Quets, J.J., G.J.M. De Lannoy and V.R.N. Pauwels. 2010. Comparison of spectral and time domain calibration methods for precipitation-discharge processes. Hydrological Processes. 24(8): 1048-1062. DOI: 10.1002/hyp.7546 .

4294. Quilbe, R., A. N. Rousseau, P. Lafrance, J. Leclerc and M. Amrani. 2006. Selecting a pesticide fate model at the watershed scale using a multi-criteria analysis. Water Quality Research Journal of Canada. 41(3): 283-295. URL: https://www.cawq.ca/cgi-bin/journal/abstract.cgi?language=english&pk_article=314.

4295. Quintero, M., S. Wunder and R.D. Estrada. 2009. For services rendered? Modeling hydrology and livelihoods in Andean payments for environmental services schemes. Forest Ecology and Management. 258(9): 1871-1880. DOI: 10.1016/j.foreco.2009.04.032 .

4296. Quyang, W., A.K. Skidmore, F. Hao and T. Wang. 2010. Soil erosion dynamics response to landscape pattern. Science of the Total Environment. 87(6): 1358-1366. DOI: 10.1016/j.scitotenv.2009.10.062 .

4297. Quyen, N.T.N., N.D. Liem and N.K. Loi. 2015. Effect of land use change on water discharge in Srepok Watershed, Central Highland, Viet Nam. International Soil and Water Conservation Research. 2(3): 74-86. DOI: 10.1016/S2095-6339(15)30025-3 .

4298. Rabelo, U.P., J. Dietrich, A.C. Costa, M.N. Simshäuser, F.E. Scholz, V.T. Nguyen and I.E.L. Neto. 2021. Representing a dense network of ponds and reservoirs in a semi-distributed dryland catchment model. Journal of Hydrology. 603(Part C): 127103. DOI: 10.1016/j.jhydrol.2021.127103 .

4299. Rabotyagov, S., T. Campbell, A. Valcu, P. Gassman, M. Jha, K. Schilling, C. Wolter and C. Kling. 2013. Spatial multiobjective optimization of agricultural conservation practices using a SWAT model and an evolutionary algorithm. Journal of Visualized Experiments. 70(e4009): 1-11. DOI: 10.3791/4009 .

4300. Rabotyagov, S., T. Campbell, M. Jha, P.W. Gassman, J. Arnold, L. Kurkalova, S. Secchi, H. Feng and C.L. Kling. 2010. Least-cost control of agricultural nutrient contributions to the Gulf of Mexico hypoxic zone. Ecological Applications. 20(6): 1542-1555. DOI: 10.1890/08-0680.1 .

4301. Rabotyagov, S.S., A. Valcu, T. Campbell, P.W. Gassman, M. Jha and C.L. Kling. 2014. An improved reverse auction for addressing water quality in agricultural watersheds using coupled simulation-optimization models. Frontiers of Economics in China. 9(1): 25-51. DOI: 10.3868/s060-003-014-0003-1 .

4302. Rabotyagov, S.S., A.M. Valcu and C.L. Kling. 2014. Revising property rights: Practice-based approaches for controlling agricultural nonpoint-source water pollution when emissions aggregate nonlinearly. American Journal of Agricultural Economics. 96(2): 397-419. DOI: 10.1093/ajae/aat094 .

4303. Rabotyagov, S.S., A.M. Valcu-Lisman and C.L. Kling. 2016. Resilient provision of ecosystem services from agricultural landscapes: Trade-offs involving means and variances of water quality improvements. American Journal of Agricultural Economics. 98(5): 1295-1313. DOI: 10.1093/ajae/aaw068 .

4304. Rabotyagov, S.S., M. Jha and T. Campbell. 2010. Impact of crop rotations on optimal selection of conservation practices for water quality protection. Journal of Soil and Water Conservation. 65(6): 369-380. DOI: 10.2489/jswc.65.6.369 .

4305. Rabotyagov, S.S., M. Jha and T.D. Campbell. 2010. Nonpoint-source pollution reduction for an Iowa watershed: An application of evolutionary algorithms. Canadian Journal of Agricultural Economics. 58(4): 411-431. DOI: 10.1111/j.1744-7976.2010.01198.x .

4306. Rabotyagov, S.S., T.D. Campbell, M. White, J.G. Arnold, J. Atwood, M.L. Norfleet, C.L. Kling, P.W. Gassman, A. Valcu, J. Richardson, R.E. Turner and N.N. Rabalais. 2014. Cost-effective targeting of conservation investments to reduce the northern Gulf of Mexico hypoxic zone. Proceedings of the National Academy of Sciences. 111(52): 18530–18535. DOI: 10.1073/pnas.1405837111 .

4307. Radcliffe, D.E. and R. Mukundan. 2017. PRISM vs. CFSR precipitation data effects on calibration and validation of SWAT models. Journal of the American Water Resources Association. 53(1): 89–100. DOI: 10.1111/1752-1688.12484 .

4308. Radcliffe, D.E., D.K. Reid, K. Blombäck, C.H. Bolster, A.S. Collick, Z.M. Easton, W. Francesconi, D.R. Fuka, H. Johnsson, K. King, M. Larsbo, M.A. Youssef, A.S. Mulkey, N.O. Nelson, K. Persson, J.J. Ramirez-Avila, F. Schmieder and D.R. Smith. 2015. Applicability of models to predict phosphorus losses in drained fields: a review. Journal of Environmental Quality. 44(2): 614-628. DOI: 10.2134/jeq2014.05.0220 .

4309. Radcliffe, D.E., J. Freer and O. Schoumans. 2009. Diffuse phosphorus models in the United States and Europe: Their usages, scales, and uncertainties. Journal of Environmental Quality. 38: 1956-1967. DOI: 10.2134/jeq2008.0060 .

4310. Radcliffe, D.E., Z. Lin, L.M. Risse, J.J. Romeis and C.R. Jackson. 2007. Modeling phosphorus in the Lake Allatoona Watershed using SWAT: I. Developing phosphorus parameter values. Journal of Environmental Quality. 38: 111-120. DOI: 10.2134/jeq2007.0110 .

4311. Raeisi A., A. Talebi, Kh. Abdollahi and H.A. Torabi. 2020. Effective factors on runoff generation and hydrologic sensitivity in a mountainous watersheds (A case study: Farsan watershed, upstream of Karoun River). ECOPERSIA. 8(1): 15-21. URL: https://esopersia.modares.ac.ir/article-24-23831-fa.html.

4312. Raeisi, L.G., S. Morid, M. Delavar and R. Srinivasan. 2019. Effect and side-effect assessment of different agricultural water saving measures in an integrated framework. Agricultural Water Management. 223: 105685. DOI: 10.1016/j.agwat.2019.105685 .

4313. Rafee, S.A.A., C.B. Uvo, J.A. Martins, L.M. Domingues, A.P. Rudke, T. Fujita and E.D. Freitas. 2019. Large-scale hydrological modelling of the Upper Paraná River Basin. Water. 11(5). DOI: 10.3390/w11050882 .

4314. Rafee, S.A.A., C.B. Uvo, J.A. Martins, C.B. Machado and E.D. Freitas. 2022. Land Use and Cover Changes versus climate shift: Who is the main player in river discharge? A case study in the Upper Paraná River Basin. Journal of Environmental Management. 309: 114651. DOI: 10.1016/j.jenvman.2022.114651 .

4315. Rafee, S.A.A., E.D. de Freitas, J.A. Martins, C.B. Machado and C.B. Uvo. 2021. Hydrologic response to large scale land use and cover changes in the Upper Paraná River Basin between 1985 and 2015. Regional Environmental Change. 21(4): 112. DOI: 10.1007/s10113-021-01827-6 .

4316. Raffar, N., Z. Zulkafli, M. Yiwen, F.M. Muharam, B.M. Rehan and K. Nurulhuda. 2022. Watershed-scale modelling of the irrigated rice farming system at Muda, Malaysia, using the Soil Water Assessment Tool. Hydrological Sciences Journal. 67(3): 462–476. DOI: 10.1080/02626667.2021.2022682 .

4317. Rafiee, V. and M. Shourian. 2016. Optimum multicrop-pattern planning by coupling SWAT and the Harmony Search algorithm. Journal of Irrigation and Drainage Engineering. 142(12): 04016063. DOI: 10.1061/(ASCE)IR.1943-4774.0001104 .

4318. Rafiei, V., A. Ghahramanim, D.A. An-Vo and S. Mushtaq. 2020. Modelling hydrological processes and identifying soil erosion sources in a tropical catchment of the Great Barrier Reef using SWAT. Water. 12: 8. DOI: 10.3390/w12082179 .

4319. Raghavan, S.V., M.T. Vu and S.-Y. Liong. 2012. Assessment of future stream flow over the Sesan Catchment of the Lower Mekong Basin in Vietnam. Hydrological Processes. 26(24): 1-8. DOI: 10.1002/hyp.8452 .

4320. Raghavan, S.V., V.M. Tue and L. Shie-Yui. 2014. Impact of climate change on future stream flow in the Dakbla River Basin. Journal of Hydroinformatics. 16(1): 231-244. DOI: 10.2166/hydro.2013.165 .

4321. Rahaman, M.H., M. Masroor, S. Rehman, R. Singh, R. Ahmed, M. Sahana and H. Sajjad. 2022. State of art of review on climate variability and water resources: Bridging knowledge gaps and the way forward. Water Resources. 49(4): 699–710. DOI: 10.1134/S0097807822040169 .

4322. Rahayu, A.S., M. Nursaputra and I.N. Manyoe. 2019. Simulasi arahan penggunaan lahan di DAS Limboto dalam rangka pengendalian kekeringan. Majalah Geograf Indonesia. 33(2): 87-94. DOI: 10.22146/mgi.37460 .

4323. Rahayuningtyas, C., R.-S. Wu, R. Anwar and L- C. Chiang. 2014. Improving AVSWAT stream flow simulation by incorporating groundwater recharge prediction in the upstream Lesti Watershed, East Java, Indonesia. Terrestrial, Atmospheric and Oceanic Sciences. 25(6): 881-892. DOI: 10.3319/TAO.2014.07.25.01(Hy) .

4324. Rahbeh, M., D. Chanasyk and J. Miller. 2011. Two-way calibration-validation of SWAT model for a small prairie watershed with short observed record. Canadian Water Resources Journal. 36(3): 247-270. DOI: 10.4296/cwrj3603884 .

4325. Rahbeh, M., D. Chanasyk and J. Miller. 2013. Modelling the effect of irrigation on the hydrological output from a small prairie watershed. Canadian Water Resources Journal. 38(4): 280-285. DOI: 10.1080/07011784.2013.849856 .

4326. Rahbeh, M., R. Srinivasan and R. Mohtar. 2019. Numerical and conceptual evaluation of preferential flow in Zarqa River Basin, Jordan. Ecohydrology & Hydrobiology. 19(2): 224-237. DOI: 10.1016/j.ecohyd.2019.04.001 .

4327. Rahimpour, M., M. Tajbakhsh, H. Memarian and A.A. Afshar. 2021. Impact assessment of climate change on hydro-climatic conditions of arid and semi-arid watersheds (case study: Zoshk-Abardeh Watershed, Iran). Journal of Water and Climate Change. 12(2): 580-595. DOI: 10.2166/wcc.2020.224 .

4328. Rahman, K., A.G. da Silva, E.M. Tejeda, A. Gobiet, M. Beniston and A. Lehmann. 2015. An independent and combined effect analysis of land use and climate change in the Upper Rhone River Watershed, Switzerland. Applied Geography. 63: 264-272. DOI: 10.1016/j.apgeog.2015.06.021 .

4329. Rahman, K., C. Etienne, A. Gago-Silva, C. Maringanti, M. Beniston and A. Lehmann. 2014. Streamflow response to regional climate model output in the mountainous watershed: A case study from the Swiss Alps. Environmental Earth Sciences. 72(11): 4357-4369. DOI: 10.1007/s12665-014-3336-0 .

4330. Rahman, K., C. Maringanti, M. Beniston, F. Widmer, K. Abbaspour and A. Lehmann. 2013. Streamflow modeling in a highly managed mountainous glacier watershed using SWAT: The Upper Rhone River Watershed case in Switzerland. Water Resources Management. 27(22): 323-339. DOI: 10.1007/s11269-012-0188-9 .

4331. Rahman, K., N. Ray, G. Giuliani, C. Maringanti, C. George and A. Lehmann. 2017. Breaking walls towards fully open source hydrological modeling. Water Resources. 44(1): 23-30. DOI: 10.1134/S0097807817010067 .

4332. Rahman, K.U., Q.B. Pham, K.Z. Jadoon, M.Shahid, D.P. Kushwaha, Z. Duan, B. Mohammadi, K.M. Khedher and D.T. Anh. 2022. Comparison of machine learning and process-based SWAT model in simulating streamflow in the Upper Indus Basin. Applied Water Science. 12(8): 178. DOI: 10.1007/s13201-022-01692-6 .

4333. Rahman, K.U., S. Shang, M. Shahid and Y. Wen. 2020. Hydrological evaluation of merged satellite precipitation datasets for streamflow simulation using SWAT: A case study of Potohar Plateau, Pakistan. Journal of Hydrology. 587: 125040. DOI: 10.1016/j.jhydrol.2020.125040 .

4334. Rahman, M. M., J. R. Thompson and R. J. Flower. 2016. An enhanced SWAT wetland module to quantify hydraulic interactions between riparian depressional wetlands, rivers and aquifers. Environmental Modelling & Software. 84: 263-289. DOI: 10.1016/j.envsoft.2016.07.003 .

4335. Rahman, M., T. Bolisetti and R. Balachandar. 2010. Effect of climate change on low-flow conditions in the Ruscom River Watershed, Ontario. Transactions of the ASABE. 53(5): 1521-1532. DOI: 10.13031/2013.34904 .

4336. Rahman, M., T. Bolisetti and R. Balachandar. 2012. Hydrologic modelling to assess the climate change impacts in a southern Ontario watershed. Canadian Journal of Civil Engineering. 39(1): 91-103. DOI: 10.1139/L11-112 .

4337. Rahman, M.M., D. Harisuseno and D. Sisinggih. 2013. Studi Penanganan Konservasi Lahan Di Sub Das Keduang Das Bengawan Solo Kabupaten Wonogiri. Jurnal Teknik Pengairan. 3(2): 250-257. URL: http://jurnalpengairan.ub.ac.id/index.php/jtp/article/view/170.

4338. Rahman, M.M., J.R. Thompson and R.J. Flower. 2020. Hydrological impacts of climate change on rice cultivated riparian wetlands in the Upper Meghna River Basin (Bangladesh and India). Hydrological Sciences Journal. 65(1): 33-56. DOI: 10.1080/02626667.2019.1676427 .

4339. Rahman, M.M., Z. Lin, X. Jia, D.D. Steele and T.M. DeSutter. 2014. Impact of subsurface drainage on streamflows in the Red River of the North Basin. Journal of Hydrology. 511: 474-483. DOI: 10.1016/j.jhydrol.2014.01.070 .

4340. Rahman, N.F.A., B.N. Noramira, V.C. Tai, and M. Mohammad. 2022. Trend analysis of river flow in Langat River Basin using SWAT model. Journal of Engineering and Technological Advances. 7(1): 13-22. DOI: 10.35934/segi.v7i1 .

4341. Rahmani-Rezaeieh, A., M. Mohammadi and A.D. Mehr. 2020. Climate change impacts on floodway and floodway fringe: A case study in Shahrchay River Basin, Iran. Arabian Journal of Geosciences. 13(12): 494. DOI: 10.1007/s12517-020-05444-1 .

4342. Rai, P.K., C.T. Dhanya and B.R. Chahar. 2018. Coupling of 1D models (SWAT and SWMM) with 2D model (iRIC) for mapping inundation in Brahmani and Baitarani River Delta. Natural Hazards. 92: 1821-1840. DOI: 10.1007/s11069-018-3281-4 .

4343. Raihan, F., G. Ondrasek, M.S. Islam, J.M. Maina and L.J. Beaumont. 2021. Combined impacts of climate and land use changes on long-term streamflow in the Upper Halda Basin, Bangladesh. Sustainability. 13(21): 12067. DOI: 10.3390/su132112067 .

4344. Raihan, F., L.J. Beaumont, J. Maina, A.S. Islam and S.P. Harrison. 2020. Simulating streamflow in the Upper Halda Basin of southeastern Bangladesh using SWAT model. Hydrological Sciences Journal. 65(1): 138-151. DOI: 10.1080/02626667.2019.1682149 .

4345. Raij-Hoffman, I., K. Miller, G. Paul, Y. Yimam, S. Mehan, J. Dickey, T. Harter and I. Kisekka. 2022. Modeling water and nitrogen dynamics from processing tomatoes under different management scenarios in the San Joaquin Valley of California. Journal of Hydrology: Regional Studies. 43: 101195. DOI: 10.1016/j.ejrh.2022.101195 .

4346. Rajaei, F., A.E. Sari, A. Salmanmahiny, M. Delavar, A.R.M. Bavani and R. Srinivasan. 2017. Surface drainage nitrate loading estimate from agriculture fields and its relationship with landscape metrics in Tajan Watershed. Paddy and Water Environment. 15(3): 541-552. DOI: 10.1007/s10333-016-0570-y .

4347. Rajaei, F., R.D. Behrooz, E. Ahmadisharaf, S. Galalizadeh, B. Dudic, V. Spalevic and R. Novicevic. 2021. Application of integrated watershed management measures to minimize the land use change impacts. Water. 13(15): 2039. DOI: 10.3390/w13152039 .

4348. Rajib, A. and V. Merwade. 2017. Hydrologic response to future land use change in the Upper Mississippi River Basin by the end of 21st century. Hydrological Processes. 31: 3645-3661. DOI: 10.1002/hyp.11282 .

4349. Rajib, A., G.R. Evenson, H.E. Golden and C.R. Lane. 2018. Hydrologic model predictability improves with spatially explicit calibration using remotely sensed evapotranspiration and biophysical parameters. Journal of Hydrology. 567: 668-683. DOI: 10.1016/j.jhydrol.2018.10.024 .

4350. Rajib, A., H.E. Golden, C.R. Lane and Q. Wu. 2020. Surface depression and wetland water storage improves major river basin hydrologic predictions. Water Resources Research. 56(7): e2019WR026561. DOI: 10.1029/2019WR026561 .

4351. Rajib, A., I.L. Kim, H.E. Golden, C.R. Lane, S.V. Kumar, Z. Yu and S. Jeyalakshmi. 2020. Watershed modeling with remotely sensed big data: MODIS Leaf Area Index improves hydrology and water quality predictions. Remote Sensing. 12(13): 2148. DOI: 10.3390/rs12132148 .

4352. Rajib, A., I.L. Kim, M.B. Ercan, V. Merwade, L. Zhao, C. Song and H. Lin. 2022. Cyber-enabled autocalibration of hydrologic models to support Open Science. Environmental Modelling & Software. 158: 105561. DOI: 10.1016/j.envsoft.2022.105561 .

4353. Rajib, A., V. Merwade and Z. Yu. 2018. Rationale and efficacy of assimilating remotely sensed potential evapotranspiration for reduced uncertainty of hydrologic models. Water Resources Research. 54: 4615-4637. DOI: 10.1029/2017WR021147 .

4354. Rajib, A., Z. Liu, V. Merwade, A.A. Tavakoly and M.L. Follum. 2020. Towards a large-scale locally relevant flood inundation modeling framework using SWAT and LISFLOOD-FP. Journal of Hydrology. 581: 124406. DOI: 10.1016/j.jhydrol.2019.124406 .

4355. Rajib, M.A. and V. Merwade. 2016. Improving soil moisture accounting and streamflow prediction in SWAT by incorporating a modified time-dependent Curve Number Method. Hydrological Processes. 30(4): 603-624. DOI: 10.1002/hyp.10639 .

4356. Rajib, M.A., L. Ahiablame and M. Paul. 2016. Modeling the effects of future land use change on water quality under multiple scenarios: A case study of low-input agriculture with hay/pasture production. Sustainability of Water Quality and Ecology. 8: 50–66. DOI: 10.1016/j.swaqe.2016.09.001 .

4357. Rajib, M.A., V. Merwade and Z. Yu. 2016. Multi-objective calibration of a hydrologic model using spatially distributed remotely sensed/in-situ soil moisture. Journal of Hydrology. 536: 192-207. DOI: 10.1016/j.jhydrol.2016.02.037 .

4358. Rajib, M.A., V. Merwade, I.L. Luk, L. Zhao, C.X. Song and S. Zhe. 2016. SWATShare – A web platform for collaborative research and education through online sharing, simulation and visualization of SWAT models. Environmental Modelling & Software. 75(C): 498-512. DOI: 10.1016/j.envsoft.2015.10.032 .

4359. Rajsekhar, D. and S.M. Gorelick. 2017. Increasing drought in Jordan: Climate change and cascading Syrian land-use impacts on reducing transboundary flow. Science Advances. 3(8): e1700581. DOI: 10.1126/sciadv.1700581 .

4360. Raju, B.C.K. and L. Nandagin. 2018. Assessment of variable source area hydrological models in humid tropical watersheds. International Journal of River Basin Management. 16(2): 145-156. DOI: 10.1080/15715124.2017.1372446 .

4361. Raju, K.B.C. and L. Nandagiri. 2015. Evaluating uncertainty of the Soil and Water Assessment Tool (SWAT) model in the Upper Cauvery Basin, Karnataka, India. International Journal of Earth Sciences and Engineering. 8(4): 1675-1681.

4362. Rakotoarisoa, M., C. Fleurant, A. Randriamaherisoa and T. Razakamanana. 2014. Mise en oeuvre d’un modèle hydrologique conceptuel sur le bassin versant de la Sisaony, Région Analamanga, Madagascar. Madamines. 6: 22-37. URL: https://www.researchgate.net/publication/282192266_Mise_en_oeuvre_d'un_modele_hydrologique_conceptuel_sur_le_bassin_versant_de_la_Sisaony_Region_Analamanga_Madagascar.

4363. Ramabrahmam, K., V.R. Keesara, R. Srinivasan, D. Pratap and V. Sridhar. 2021. Flow simulation and storage assessment in an ungauged irrigation tank cascade system using the SWAT model. Sustainability. 13(23): 13158. DOI: 10.3390/su132313158 .

4364. Ramadhani, E., S. Suprayogi and M.P. Hadi. 2020. Pengaruh Perubahan Penggunaan Lahan Terhadap Limpasan Menggunakan Multidata Iklim Satelit di Sub DAS Samin. Media Komunikasi Geografi. 22(1): 31-50. DOI: 10.23887/mkg.v22i1.30589 .

4365. Ramanarayanan, T., B. Narasimhan and R. Srinivasan. 2005. Characterization of fate and transport of Isoxaflutole, a soil-applied corn herbicide, in surface water using a watershed model. Journal of Agricultural and Food Chemistry. 53(22): 8848-8858. DOI: 10.1021/jf0508596 .

4366. Ramesh, R., L. Kalin, M. Hantush, M. Rezaeinzadeh and C. Anderson. 2020. Challenges calibrating hydrology for groundwater-fed wetlands: A headwater wetland case study. Environmental Modeling & Assessment. 25: 355-371. DOI: 10.1007/s10666-019-09684-8 .

4367. Ramião, J.P., C. Carvalho-Santos, R. Pinto and C. Pascoal. 2022. Modeling the effectiveness of sustainable agricultural practices in reducing sediments and nutrient export from a river basin. Water. 14(23): 3962. DOI: 10.3390/w14233962 .

4368. Ramkar, P. and S.M. Yadav. 2019. Identification of critical watershed using hydrological model and drought indices: A case study of Upper Girna, Maharashtra, India. ISH Journal of Hydraulic Engineering. DOI: 10.1080/09715010.2019.1594416 .

4369. Ramos, M.C. and J.A. Maritnez-Casasnovas. 2014. Soil water variability and its influence on transpirable soil water fraction with two grape varieties under different rainfall regimes. Agriculture Ecosystems and Environment. 185: 253-262. DOI: 10.1016/j.agee.2013.12.025 .

4370. Ramos, M.C. and J.A. Martinez-Casasnovas. 2015. Climate change influence on runoff and soil losses in a rainfed basin with Mediterranean climate. Natural Hazards. 78(2): 1065-1089. DOI: 10.1007/s11069-015-1759-x .

4371. Ramos, M.C. and J.A. Martinez-Casasnovas. 2015. Soil water content, runoff and soil loss prediction in a small ungauged agricultural basin in the Mediterranean region using the Soil and Water Assessment Tool. The Journal of Agricultural Science. 153(03): 481-496. DOI: 10.1017/S0021859614000422 .

4372. Ramos, M.C., C. Benito and J.A. Martínez-Casasnovas. 2015. Simulating soil conservation measures to control soil and nutrient losses in a small, vineyard dominated, basin. Agriculture Ecosystems and Environment. 213: 194-208. DOI: 10.1016/j.agee.2015.08.004 .

4373. Ramos, T.B., H. Darouich, M.C. Gonçalves, D. Brito, M.A.C. Branco, J.C. Martins, M.L. Fernandes, F.P. Pires, M. Morais and R. Neves. 2018. An integrated analysis of the eutrophication process in the Enxoé Reservoir within the DPSIR framework. Water. 10(11): 1576. DOI: 10.3390/w10111576 .

4374. Ramos, T.D., M.C. Goncalves, D. Brito, J.C. Martins and L.S. Pereira. 2013. Development of class pedotransfer functions for integrating water retention properties into Portuguese soil maps. Soil Research. 51(4): 262-277. DOI: 10.1071/SR12347 .

4375. Ran, L., Y. Yuan, E. Cooter, V. Benson, D. Yang, J. Pleim, R. Wang and J. Williams. 2019. An integrated agriculture, atmosphere, and hydrology modeling system for ecosystem assessments. Journal of Advances in Modeling Earth Systems. 11(12): 4645-4668. DOI: 10.1029/2019MS001708 .

4376. Ranatunga, K. 2011. Estimating water yield response to land use in the Namoi Catchment of the Murray-Darling Basin, Australia. International Journal of Water. 6(1/2): 43-56. DOI: 10.1504/IJW.2011.043316 .

4377. Randhir, T. 2003. Watershed-scale effects of urbanization on sediment export: Assessment and policy. Water Resources Research. 39(6): 5-1 - 5-13. DOI: 10.1029/2002WR001913 .

4378. Rane, N.L. and G.K. Jayaraj. 2023. Enhancing SWAT model predictivity using multi‑objective calibration: Effects of integrating remotely sensed evapotranspiration and leaf area index. International Journal of Environmental Science and Technology. 20(6): 6449-6468. DOI: 10.1007/s13762-022-04293-7 .

4379. Raneesh, K.Y. and G.T. Santosh. 2011. A study on the impact of climate change on streamflow at the watershed scale in the humid tropics. Hydrological Sciences Journal. 56(6): 946-965. DOI: 10.1080/02626667.2011.595371 .

4380. Rani, S. and S. Sreekesh. 2019. Evaluating the responses of streamflow under future climate change scenarios in a western Indian Himalaya watershed. Environmental Processes. 6: 155–174. DOI: 10.1007/s40710-019-00361-2 .

4381. Rani, S. and S. Sreekesh. 2021. Flow regime changes under future climate and land cover scenarios in the Upper Beas Basin of Himalaya using SWAT model. International Journal of Environmental Studies. 78(3): 382-397. DOI: 10.1080/00207233.2020.1811574 .

4382. Ranjan, R. and A. Mishra. 2022. Examining model performances and parameter uncertainty for streamflow and suspended sediment regime simulation: Comparison of three calibration methods. Journal of Hydrology. 612(Part C): 128304. DOI: 10.1016/j.jhydrol.2022.128304 .

4383. Rao, M., G. Fan, J. Thomas, G. Cherian, V. Chudiwale and M. Awawdeh. 2006. A web-based GIS decision support system for managing and planning USDA’s Conservation Reserve Program (CRP). Environmental Modelling & Software. 22(9): 1270-1280. DOI: 10.1016/j.envsoft.2006.08.003 .

4384. Rao, M.N. and Z. Yang. 2010. Groundwater impacts due to conservation reserve program in Texas County Oklahoma. Applied Geography. 30(3): 317-328. DOI: 10.1016/j.apgeog.2009.08.006 .

4385. Raposo, J.R., J. Dafonte and J. Molinero. 2013. Assessing the impact of future climate change on groundwater recharge in Galicia-Costa, Spain. Hydrogeology Journal. 21(2): 459-479. DOI: 10.1007/s10040-012-0922-7 .

4386. Raschke, A., A.P. Nejadhashemi, V. Rafiei, N. Fernandez, A. Shabani and S.-G. Li. 2022. Opportunities and challenges of integrated large-scale PFAS modeling: A case study for PFAS modeling at a watershed scale. Journal of Environmental Engineering. 148(9): 05022005. DOI: 10.1061/(ASCE)EE.1943-7870.0002034 .

4387. Raschke, A., J.S. Hernandez-Suarez, A.P. Nejadhashemi and K. Deb. 2021. Multidimensional aspects of sustainable biofuel feedstock production. Sustainability. 13(3): 1424. DOI: 10.3390/su13031424 .

4388. Rashid, H., K. Yang, A. Zeng, S. Ju, A. Rashid, F. Guo and S. Lan. 2021. The influence of landcover and climate change on the Hydrology of the Minjiang River Watershed. Water. 13(24): 3554. DOI: 10.3390/w13243554 .

4389. Rashid, H., K. Yang, A. Zeng, S. Ju, A. Rashid, F. Guo and S. Lan. 2022. Predicting the hydrological impacts of future climate change in a humid-subtropical watershed. Atmosphere. 13(1): 12. DOI: 10.3390/atmos13010012 .

4390. Rasolomanana, S.D., P. Lessard and P.A. Vanrolleghem. 2012. Single-objective vs. multi-objective autocalibration in modelling total suspended solids and phosphorus in a small agricultural watershed with SWAT. Water Science and Technology. 65(4): 643-652. DOI: 10.2166/wst.2012.895 .

4391. Rasool, T. and R. Kumar. 2019. Application of Soil and Water Assessment Tool for runoff simulation in a data scarce Himalayan watershed. Journal of Agricultural Engineering (India). 56(2): 136-146. URL: https://www.indianjournals.com/ijor.aspx?target=ijor:joae&volume=56&issue=2&article=008.

4392. Rath, S., M. Zamora-Re, W. Graham, M. Dukes and D. Kaplan. 2021. Quantifying nitrate leaching to groundwater from a corn-peanut rotation under a variety of irrigation and nutrient management practices in the Suwannee River Basin, Florida. Agricultural Water Management. 246: 106634. DOI: 10.1016/j.agwat.2020.106634 .

4393. Rathinasamy, M., R. Khosa, J. Adamowski, S. Ch, P.G. Jatin and A.B. Narsimlu. 2014. Wavelet based multi-scale performance analysis: An approach to assess and improve hydrological models. Water Resources Research. 50(12): 9721–9737. DOI: 10.1002/2013WR014650 .

4394. Rathjens, H. and N. Oppelt. 2012. SWATgrid: An interface for setting up SWAT in a grid-based discretization scheme. Computers & Geosciences. 45: 161–167. DOI: 10.1016/j.cageo.2011.11.004 .

4395. Rathjens, H., J. Kiesel, M. Winchell, J. Arnold and R. Su. 2023. Technical note: Extending the SWAT model to transport chemicals through tile and groundwater flow. Hydrology and Earth System Sciences. 27(1): 159–167. DOI: 10.5194/hess-27-159-2023 .

4396. Rathjens, H., J. Kiesel, M.B. Miguez, M. Winchell, J.G. Arnold and R. Sur. 2022. Simulation of pesticide and metabolite concentrations using SWAT+ landscape routing and conditional management applications. Water. 14(9): 1332. DOI: 10.3390/w14091332 .

4397. Rathjens, H., K. Bieger, I. Chaubey, J.G. Arnold, P.M. Allen, R. Srinivasan, D.D. Bosch and M. Volk. 2016. Delineating floodplain and upland areas for hydrologic models: A comparison of methods. Hydrological Processes. 30(23): 4367-4383. DOI: 10.1002/hyp.10918 .

4398. Rathjens, H., N. Oppelt, D.D. Bosch, J.G. Arnold and M. Volk. 2014. Development of a grid-based version of the SWAT landscape model. Hydrological Processes. 29(6): 900-914. DOI: 10.1002/hyp.10197 .

4399. Rautela, K.S., M. Kumar, M.S. Sofi, J.C. Kuniyal and S.U. Bhat. 2022. Modelling of streamflow and water balance in the Kuttiyadi River Basin using SWAT and remote sensing/GIS tools. International Journal of Environmental Research. 16(4): 37(4). DOI: 10.1007/s41742-022-00416-7 .

4400. Ravindranath, N.H., S. Rao, N. Sharma, M. Nair, R. Gopalakrishnan, A.S. Rao, S. Malaviya, R. Tiwari, A. Sagadevan, M. Munsi, N. Krishna and G. Bala. 2011. Climate change vulnerability profiles for north east India. Current Science. 101(3): 384-394. URL: https://www.currentscience.ac.in/php/toc.php?vol=101&issue=03.

4401. Ray, A., V.P. Pandey and B.R. Thapa. 2022. An assessment of climate change impacts on water sufficiency: The case of Extended East Rapti Watershed, Nepal. Environmental Research. 212(Part D): 113434. DOI: 10.1016/j.envres.2022.113434 .

4402. Ray, R., T. Miyajima, A. Watanabe, M. Yoshikai, C.M. Ferrera, I. Orizar, T. Nakamura, M.L. San Diego-McGlone, E.C. Herrera and K. Nadaoka. 2021. Dissolved and particulate carbon export from a tropical mangrove-dominated riverine system. Limnology and Oceanography. 66: 3944–3962. DOI: 10.1002/lno.11934 .

4403. Ray, R.L., R.P. Sishodia and G.W. Tefera. 2022. Evaluation of gridded precipitation data for hydrologic modeling in north-central Texas. Remote Sensing. 14(16): 3860. DOI: 10.3390/rs14163860 .

4404. Razavi, S. and B.A. Tolson. 2013. An efficient framework for hydrologic model calibration on long data periods. Water Resources Research. 41(12): 8418-8431. DOI: 10.1002/2012WR013442 .

4405. Razavi, S., B.A. Tolson and D.H. Burn. 2012. Numerical assessment of metamodelling strategies in computationally intensive optimization. Environmental Modelling & Software. 34: 67-86. DOI: 10.1016/j.envsoft.2011.09.010 .

4406. Razavi, S., B.A. Tolson, L.S. Matott, N.R. Thomson, A. MacLean and F.R. Seglenieks. 2010. Reducing the computational cost of automatic calibration through model preemption. Water Resources Research. 46(W11523): 1-17. DOI: 10.1029/2009WR008957 .

4407. Razi, N. and M. Shourian. 2022. Watershed‑scale optimum livestock distribution and crop pattern planning constrained to the minimum nitrogen and phosphorus load in the runoff. Environmental Monitoring and Assessment. 194(9): 655. DOI: 10.1007/s10661-022-10333-z .

4408. Records, R.M., M. Arabi, S.R. Fassnacht, W.G. Duffy, M. Ahmadi and K.C. Hegewisch. 2014. Climate change and wetland loss impacts on a western river’s water quality. Hydrology and Earth System Sciences. 18: 4509-4527. DOI: 10.5194/hess-18-4509-2014 .

4409. Reda, K.W., X. Liu and Q. Tang. 2022. Intra-annual variation of high and low-flow extremes associated with land use and climate change in the Upper Tekeze of the Nile River Basin. Journal of Geophysical Research: Atmospheres. 127(8): e2021JD036325. DOI: 10.1029/2021JD036325 .

4410. Reda, K.W., X. Liu, G.G. Haile, S. Sun and Q. Tang. 2022. Hydrological evaluation of satellite and reanalysis-based rainfall estimates over the Upper Tekeze Basin, Ethiopia. Hydrology Research. 53(4): 584-604. DOI: 10.2166/nh.2022.131 .

4411. Reddy, A.S. and M.J. Reddy. 2015. Evaluating the influence of spatial resolutions of DEM on watershed runoff and sediment yield using SWAT. Journal of Earth System Science. 124(7): 1517-1529. DOI: 10.1007/s12040-015-0617-2 .

4412. Reddy, K.S., V. Maruthi, P.K. Pankaj, M. Kumar, Pushpanjali, M. Parbhakar, A.G.K. Reddy, K.S. Reddy, V.K. Singh and A.K. Koradia. 2022. Water footprint assessment of rainfed crops with critical irrigation under different climate change scenarios in SAT regions. Water. 14(8): 1206. DOI: 10.3390/w14081206 .

4413. Reddy, N.N., K.V. Reddy, J.S.L.S. Vani, P. Daggupati and R. Srinivasan. 2018. Climate change impact analysis on watershed using QSWAT. Spatial Information Research. 26(3): 253-259. DOI: 10.1007/s41324-017-0159-6 .

4414. Reed, S., V. Koren, M. Smith, Z. Zhang, F. Moreda, D.-J. Seo and DMIP Participants. 2004. Overall distributed model intercomparison project results. Journal of Hydrology. 298: 27-60. DOI: 10.1016/j.jhydrol.2004.03.031 .

4415. Reeling, C.J. and B.M. Gramig. 2012. A novel framework for analysis of cross-media environmental effects from agricultural conservation practices. Agriculture Ecosystems and Environment. 146(1): 44-51. DOI: 10.1016/j.agee.2011.10.007 .

4416. Refsgaard, J.C., B. Storm and T. Clausen. 2010. Système Hydrologique Européen (SHE): Review and perspectives after 30 years development in distributed physically-based hydrological modelling. Hydrology Research. 41(5): 355-377. DOI: 10.2166/nh.2010.009 .

4417. Reichert, P. 2006. A standard interface between simulation programs and systems analysis software. Water Science and Technology. 53(1): 267-275. DOI: 10.2166/wst.2006.029 .

4418. Ren W., T. Yang, P. Shi, C.-Y. Xu, K. Zhang, X. Zhou, Q. Shao and P. Ciais. 2018. A probabilistic method for streamflow projection and associated uncertainty analysis in a data sparse alpine region. Global and Planetary Change. 165: 100-113. DOI: 10.1016/j.gloplacha.2018.03.011 .

4419. Ren, D., B. Engel and M.R. Tuinstra. 2022. Crop improvement influences on water quantity and quality processes in an agricultural watershed. Water Research. 217: 118353. DOI: 10.1016/j.watres.2022.118353 .

4420. Ren, D., B. Engel, J. Alexander, V. Mercado, T. Guo, Y. Liu and G. Huang. 2022. Modeling and assessing water and nutrient balances in a tile-drained agricultural watershed in the U.S. Corn Belt. Water Research. 210: 117976. DOI: 10.1016/j.watres.2021.117976 .

4421. Ren, P., J. Li, P. Feng, Y. Guo and Q. Ma. 2018. Evaluation of multiple satellite precipitation products and use in hydrological modelling over the Luanhe River Basin, China. Water. 10(6): 677. DOI: 10.3390/w10060677 .

4422. Ren, Z., Z. Feng, P. Li, D. Wang, S. Cheng and J. Gong. 2017. Response of runoff and sediment yield from climate change in Yanhe Watershed, China. Journal of Coastal Research. SI(80): 30-35. DOI: 10.2112/SI80-006.1 .

4423. Renkenberger, J., H. Montas, P.T. Leisnham, V. Chanse, A. Shirmohammadi, A. Sadeghi, K. Brubaker, A. Rockler, T. Hutson and D. Lansing. 2017. Effectiveness of best management practices with changing climate in a Maryland watershed. Transactions of the ASABE. 60(3): 769-782. DOI: 10.13031/trans.11691 .

4424. Renschler, C.S. and T. Lee. 2005. Spatially distributed assessment of short- and long-term impacts of mutiple best management practices in agricultural watersheds. Journal of Soil and Water Conservation. 60(6): 446-455. URL: http://www.jswconline.org/content/60/6/446.short.

4425. Rentachintala, L.R.N.P., M.R.M. Gangireddy and P.K. Mohapatra. 2023. Stormwater reuse for water-sensitive city – Integrated analysis of urban hydrology for efficient alternatives of Amaravati City, India. Water Science and Technology. 88(12): 3151-3167. DOI: 10.2166/wst.2023.393 .

4426. Reshmidevi, T.V. and D.N. Kumar. 2014. Modelling the impact of extensive irrigation on the groundwater resources. Hydrological Processes. 28(3): 628–639. DOI: 10.1002/hyp.9615 .

4427. Reshmidevi, T.V., D.N. Kumar, R. Mehrotra and A. Sharma. 2018. Estimation of the climate change impact on a catchment water balance using an ensemble of GCMs. Journal of Hydrology. 556: 1192-1204. DOI: 10.1016/j.jhydrol.2017.02.016 .

4428. Reungsang, P., R.S. Kanwar, M. Jha, P.W. Gassman, K. Ahmad and A. Saleh. 2007. Calibration and validation of SWAT for the Upper Maquoketa River Watershed. International Agricultural Engineering Journal. 16(1-2): 35-48. URL: https://lib.dr.iastate.edu/card_workingpapers/372/.

4429. Rezaeianzadeh, M., L. Kalin and M.M. Hantush. 2018. An integrated approach for modeling wetland water level: Application to a headwater wetland in coastal Alabama, USA. Water. 10(7): 879. DOI: 10.3390/w10070879 .

4430. Rhomad, H., K. Khalil and K. Elkalay. 2022. Water quality modeling in Atlantic Region: Review, science mapping and future research directions. Water Resources Management. DOI: 10.1007/s11269-022-03382-z .

4431. Ribaudo, M. and J. Savage. 2014. Controlling non-additional credits from nutrient management in water quality trading programs through eligibility baseline stringency. Ecological Economics. 105: 233-239. DOI: 10.1016/j.ecolecon.2014.06.017 .

4432. Ribaudo, M., J. Savage and J. Talberth. 2014. Encouraging reductions in nonpoint source pollution through point-nonpoint trading: The roles of baseline choice and practice subsidies. Applied Economic Perspectives and Policy. 36(3): 560-576. DOI: 10.1093/aepp/ppu004 .

4433. Ricci, G.F., F. Zahi, E. D’Ambrosio, A.M. De Girolamo, G. Parete, T.H. Debieche and F. Gentile. 2022. Evaluating flow regime alterations due to point sources in intermittent rivers: A modeling approach. Journal of Agricultural Engineering (Italy). 53(2): 1333. URL: https://www.agroengineering.org/index.php/jae/article/view/1333.

4434. Ricci, G.F., A.M. De Girolamo, O.M.M. Abdelwahab and F. Gentile. 2018. Identifying sediment source areas in a Mediterranean watershed using the SWAT model. Land Degradation & Development. 29 (4): 1233-1248. DOI: 10.1002/ldr.2889 .

4435. Ricci, G.F., E. D’Ambrosio, A.M. De Girolamo and F. Gentile. 2022. Efficiency and feasibility of Best Management Practices to reduce nutrient loads in an agricultural river basin. Agricultural Water Management. 259: 107241. DOI: 10.1016/j.agwat.2021.107241 .

4436. Ricci, G.F., J. Jeong, A.M. De Girolamo and F. Gentile. 2020. Effectiveness and feasibility of different management practices to reduce soil erosion in an agricultural watershed. Land Use Policy. 90: 104306. DOI: 10.1016/j.landusepol.2019.104306 .

4437. Ricci, G.F., M. Centanni, A.M. De Girolamo and F. Gentile. 2023. Modelling daily streamflow in a temporary karst river system: Comparing three approaches using the SWAT model. Hydrological Sciences Journal. 68(3): 462-473. DOI: 10.1080/02626667.2023.2174027 .

4438. Richards, C.E., C.L. Munster, D.M. Vietor, J.G. Arnold and R. White. 2007. Assessment of a turfgrass sod best management practice on water quality in a suburban watershed. Journal of Environmental Management. 86(1): 229-245. DOI: 10.1016/j.jenvman.2006.12.039 .

4439. Richardson, C.W., D.A. Bucks and E.J. Sadler. 2008. The Conservation Effects Assessment Project benchmark watersheds: Synthesis of preliminary findings. Journal of Soil and Water Conservation. 63(6): 590-604. DOI: 10.2489/jswc.63.6.590 .

4440. Ridwansyah, I., H. Pawitan, N. Sinukaban and Y. Hidayat. 2014. Watershed modeling with ArcSWAT and SUF12 in Cisadane Catchment area: Calibration and validation of river flow prediction. International Journal of Science and Engineering. 6(2): 12-21. DOI: 10.12777/ijse.6.2.92-101 .

4441. Riebschleager, K.J., R. Karthikeyan, R. Srinivasan and K. McKee. 2012. Estimating potential E. coli sources in a watershed using spatially explicit modeling techniques. Journal of the American Water Resources Association. 48(4): 745-761. DOI: 10.1111/j.1752-1688.2012.00649.x .

4442. Rigby, A.M.F., P.W.S. Butcher, P.D. Ritsos S.D. and Patil. 2022. LUCST: A novel toolkit for Land Use Land Cover change assessment in SWAT+ to support flood management decisions. Environmental Modelling & Software. 156: 105469. DOI: 10.1016/j.envsoft.2022.105469 .

4443. Rijal, M., H.P. Pandit and B.K. Mishra. 2022. SWAT-based runoff and sediment simulation in a small watershed of Nepalese river: a case study of Jhimruk watershed. International Journal of Hydrology Science and Technology. 13(2): 215-235. DOI: 10.1504/IJHST.2022.120629 .

4444. Ringler, C., X. Cai, J. Wang, A. Ahmed, Y. Xue, Z. Xu, E. Yang, Z. Jianshi, T. Zhu, L. Cheng, F. Yongfeng, F. Xinfeng, G. Xiaowei and L. You. 2010. Yellow River Basin: Living with scarcity. Water International. 35(5): 681-701. DOI: 10.1080/02508060.2010.509857 .

4445. Risal, A. and P.B. Parajuli. 2019. Quantification and simulation of nutrient sources at watershed scale in Mississippi. Science of the Total Environment. 670: 633-643. DOI: 10.1016/j.scitotenv.2019.03.233 .

4446. Risal, A. and P.B. Parajuli. 2022. Evaluation of the impact of best management practices on streamflow, sediment and nutrient yield at field and watershed scales. Water Resources Management. 36(3): 1093–1105. DOI: 10.1007/s11269-022-03075-7 .

4447. Risal, A., A. Urfels, R. Srinivasan, Y. Bayissa, N. Shrestha, G.P. Paudel and T.J. Krupnik. 2022. Impact of climate change on water resources and crop production in western Nepal: Implications and adaptation strategies. Hydrology. 9(8): 132. DOI: 10.3390/hydrology9080132 .

4448. Risal, A., P.B. Parajuli and Y. Ouyang. 2021. Impact of BMPs on water quality: A case study in Big Sunflower River Watershed, Mississippi. International Journal of River Basin Management. DOI: 10.1080/15715124.2020.1870993 .

4449. Risal, A., P.B. Parajuli, P. Dash, Y. Ouyang and A. Linhoss. 2020. Sensitivity of hydrology and water quality to variation in land use and land cover data. Agricultural Water Management. 241: 106366. DOI: 10.1016/j.agwat.2020.106366 .

4450. Ritschard, R. L., J.F. Cruise and L.U. Hatch. 1999. Spatial and temporal analysis of agricultural water requirements in the Gulf Coast of the United States. Journal of the American Water Resources Association. 35(6): 1585-1596. DOI: 10.1111/j.1752-1688.1999.tb04239.x .

4451. Rivas-Tabares, D., A.M. Tarquis, B. Willaarts and A. De Miguel. 2019. An accurate evaluation of water availability in sub-arid Mediterranean watersheds through SWAT: Cega-Eresma-Adaja. Agricultural Water Management. 212: 211-225. DOI: 10.1016/j.agwat.2018.09.012 .

4452. Rivas-Tabares, D., A.M. Tarquis, Á. De Miguel, A. Gobin and B. Willaarts. 2022. Enhancing LULC scenarios impact assessment in hydrological dynamics using participatory mapping protocols in semiarid regions. Science of the Total Environment. 803: 149906. DOI: 10.1016/j.scitotenv.2021.149906 .

4453. Rivera-Toral, F., S. Perez-Nieto, L.A. Ibanez-Castillo and F.R. Hernandez-Saucedo. 2012. Applicability of SWAT model for estimating water erosion in Mexico's watersheds. Agrociencia. 46: 101-105. URL: http://www.scielo.org.mx/scielo.php?script=sci_abstract&pid=S1405-31952012000200001&lng=en&nrm=iso&tlng=en.

4454. Roba, N.T., A.K. Kassa, D.Y. Geleta and A.E. Harka. 2021. Streamflow and sediment yield estimation, and area prioritization for better conservation planning in the Dawe River Watershed of the Wabi Shebelle River Basin, Ethiopia. Heliyon. 7(12): e08509. DOI: 10.1016/j.heliyon.2021.e08509 .

4455. Robinson, N.J., P.G. Dahlhaus, R.J. Macewan and J.K. Alexander. 2016. Soil data for biophysical models in Victoria, Australia: Current needs and future challenges. Geoderma. 7(3): 259–270. DOI: 10.1016/j.geodrs.2016.03.004 .

4456. Rocha, A.K.P., L.S.B. de Souza, A.A. de Assunção Montenegro, W.M. de Souza and T.G.F. da Silva. 2023. Revisiting the application of the SWAT model in arid and semi‑arid regions: A selection from 2009 to 2022. Theoretical and Applied Climatology. DOI: 10.1007/s00704-023-04546-6 .

4457. Rocha, A.M., J.F.L. de Moraes and I.C. De Maria. 2019. Sediment yield simulation in a watershed characterized by the expansion of sugarcane. Brazilian Journal of Development . 5(10): 21449-21466. DOI: 10.34117/bjdv5n10-299 .

4458. Rocha, E.O., M.L. Calijuri, A.F. Santiago, L.C. de Assis and L.G.S. Alves. 2012. The contribution of conservation practices in reducing runoff, soil loss, and transport of nutrients at the watershed level. Water Resources Management. 26(13): 3831-3852. DOI: 10.1007/s11269-012-0106-1 .

4459. Rocha, J., A. Duarte, M. Silva, S. Fabres, J. Vasques, B. Revilla-Romero and A. Quintela. 2020. The importance of high resolution digital elevation models for improved hydrological simulations of a Mediterranean forested catchment. Remote Sensing. 12(20): 3287. DOI: 10.3390/rs12203287 .

4460. Rocha, J., A. Duarte, S. Fabres, A. Quintela and D. Serpa. 2023. Influence of DEM resolution on the hydrological responses of a terraced catchment: An exploratory modelling approach. Remote Sensing. 15(1): 169. DOI: 10.3390/rs15010169 .

4461. Rocha, J., C. Carvalho-Santos, P. Diogo, P. Beça, J.J. Keizer and J.P. Nunes. 2020. Impacts of climate change on reservoir water availability, quality and irrigation needs in a water scarce Mediterranean region (southern Portugal). Science of the Total Environment. 736: 139477. DOI: 10.1016/j.scitotenv.2020.139477 .

4462. Rocha, J., P. Roebeling and M.E. Rival-Rivas. 2015. Assessing the impacts of sustainable agricultural practices for water quality improvements in the Vouga Catchment (Portugal) using the SWAT model. Science of the Total Environment. 536: 48-58. DOI: 10.1016/j.scitotenv.2015.07.038 .

4463. Rode, M., B. Klauer, D. Petry, M. Volk, G. Wenk and D. Wagenschein. 2008. Integrated nutrient transport modelling with respect to the implementation of the European WFD: The Weisse Elster Case Study, Germany. Water SA. 34(4): 490-496. DOI: 10.4314/wsa.v34i4.183661 .

4464. Rodila, D., N. Ray and D. Gorgan. 2015. Conceptual model for environmental science applications on parallel and distributed infrastructures. Environmental Systems Research. 4:23: 1-16. DOI: 10.1186/s40068-015-0050-1 .

4465. Rodila, D., V. Bacu and D. Gorgan. 2012. Comparative parallel execution of SWAT hydrological model on multicore and grid architectures. International Journal of Web and Grid Services. 8(3). DOI: 10.1504/IJWGS.2012.049172 .

4466. Rodrigues, D.B.B., H.V. Gupta and E.M. Mendiondo. 2014. A blue/green water-based accounting framework for assessment of water security. Water Resources Research. 50(9): 7187–7205. DOI: 10.1002/2013WR014274 .

4467. Rodrigues, D.B.B., H.V. Gupta, E.M. Mendiondo and P.T.S. Oliveira. 2015. Assessing uncertainties in surface water security: An empirical multi-model approach. Water Resources Research. 51(11): 9013-9028. DOI: 10.1002/2014WR016691 .

4468. Rodrigues, E.L., C.M. Jacobi and J.E.C. Figueira. 2019. Wildfires and their impact on the water supply of a large neotropical metropolis: A simulation approach. Science of the Total Environment. 651: 1261-1271. DOI: 10.1016/j.scitotenv.2018.09.289 .

4469. Rodrigues, E.L., M.A.T. Elmiro, C.M. Jacobi and W.L. Lamounier. 2015. Application of SWAT model in the evaluation of water consumption in planted forest areas in Pará River Basin, Upper São Francisco, in Minas Gerais. Sociedade & Natureza. 27(3): 485-500. DOI: 10.1590/1982-451320150309 .

4470. Rodrigues, E.L., M.A.T. Elmiro, F.D.A. Braga, C.M. Jacobi and R.D. Rossi. 2015. Impact of changes in land use in the flow of the Pará River Basin, MG. Revista Brasileira de Engenharia Agricola e Ambiental. 19(1): 70-76. DOI: 10.1590/1807-1929/agriambi.v19n1p70-76 .

4471. Rodrigues, J.A.M., A.C. de Oliveira Andrade, M.R. Viola, D.D. Ferreira, C.R. de Mello and M.S. Thebaldi. 2021. Hydrological modeling in a basin of the Brazilian Cerrado Biome. Revista Ambiente & Água. 16(1): e2639. DOI: 10.4136/ambi-agua.2639 .

4472. Rodríguez, H.G., J. Popp, C. Maringanti and I. Chaubey. 2011. Selection and placement of best management practices used to reduce water quality degradation in Lincoln Lake Watershed. Water Resources Research. 47(1): W01507. DOI: 10.1029/2009WR008549 .

4473. Rodriguez, H.G., J. Popp, E. Ghur and I. Chaubey. 2011. Environmental and economic impacts of reducing total phosphorous runoff in an agricultural watershed. Agricultural Systems. 104(8): 623-633. DOI: 10.1016/j.agsy.2011.06.005 .

4474. Rodriguez-Blanco, M.L., R. Arias, M.M. Taboada-Castro, J.P. Nunes, J.J. Keizer and M.T. Taboada-Castro. 2016. Sediment yield at catchment scale using the SWAT (Soil and Water Assessment Tool) model. Soil Science. 181(7): 326–334. DOI: 10.1097/SS.0000000000000158 .

4475. Rodríguez-Blanco, M.L., R. Arias, M.M. Taboada-Castro, J.P. Nunes, J.J. Keizer and M.T. Taboada-Castro. 2016. Potential impact of climate change on suspended sediment yield in NW Spain: A case study on the Corbeira Catchment. Water. 8(10): 444. DOI: 10.3390/w8100444 .

4476. Roebeling, P., H. Alves, J. Rocha, A. Brito, P. Almeida and J. Mamede. 2015. Gains from trans-boundary water quality management in linked catchment and coastal socio-ecological systems: A case study for the Minho Region. Water Resources and Economics. 8: 32-42. DOI: 10.1016/j.wre.2014.10.002 .

4477. Roebeling, P.C., J. Rocha, J.P. Nunes, T. Fidelis, H. Aves and S. Fonseca. 2014. Using the Soil and Water Assessment Tool to estimate dissolved inorganic nitrogen water pollution abatement cost functions in central Portugal. Journal of Environmental Quality. 43(1): 168-176. DOI: 10.2134/jeq2011.0400 .

4478. Rojas-Rodríguez, I.S., M.A. Coronado-García, S.R. Rossetti-López and F. A. Beltrán-Morales. 2020. Pollution by nitrates and phosphates from agricultural activity in the low basin of the Mayo River in the State of Sonora, Mexico. Terra Latinoamericana. 38(2): 247-256. DOI: 10.28940/terra.v38i2.642 .

4479. Rojas-Rodríguez, I.S., V. Salazar-Solano and J.M. Moreno-Dena. 2021. Simulation of agricultural diffuse pollution in the lower basin of the Río Mayo. Agronomía Costarricense. 45(1): 143-151. DOI: 10.15517/rac.v45i1.45733 .

4480. Rollo, N. and M. Robin. 2009. Relevance of watershed modelling to assess the contamination of coastal waters due to land-based souces and activities. Estuarine, Coastal and Shelf Science. 86: 518-525. DOI: 10.1016/j.ecss.2009.10.025 .

4481. Romagnolia, M., M. Portapila, A. Rigalli, G. Maydana, M. Burgués and C.M. García. 2017. Assessment of the SWAT model to simulate a watershed with limited available data in the Pampas Region, Argentina. Science of the Total Environment. 596-597: 437-450. DOI: 10.1016/j.scitotenv.2017.01.041 .

4482. Romanowicz, A.A., M. Vanclooster, M. Rounsevell and I. La Junesse. 2005. Sensitivity of the SWAT model to the soil and land use data parametrisation: A case study in the Thyle Catchment, Belgium. Ecological Modelling. 187(1): 27-39. DOI: 10.1016/j.ecolmodel.2005.01.025 .

4483. Romshoo, S.A., S.A. Bhat and I. Rashid. 2012. Geoinformatics for assessing the morphometric control on hydrological reponse at watershed scale in the Upper Indus Basin. Journal of Earth System Science. 121(3): 659-686. DOI: 10.1007/s12040-012-0192-8 .

4484. Rong, Y., P. Du, F. Sun and S. Zeng. 2021. Quantitative analysis of economic and environmental benefits for land fallowing policy in the Beijing-Tianjin-Hebei region. Journal of Environmental Management. 286: 112234. DOI: 10.1016/j.jenvman.2021.112234 .

4485. Rosenberg, N.J., D.L. Epstein, D. Wang, L. Vail, R. Srinivasan and J.G. Arnold. 1999. Possible impacts of global warming on the hydrology of the Ogallala Aquifer Region. Climatic Change. 42(4): 677-692. DOI: 10.1023/A:1005424003553 .

4486. Rosenberg, N.J., R.A. Brown, R.C. Izaurralde and A.M. Thomson. 2003. Integrated assessment of Hadley Centre (HadCM2) climate change projections in agricultural productivity and irrigation water supply in the conterminous United States: I. Climate change scenarios and impacts on irrigation water supply simulated with the HUMUS model. Agricultural and Forest Meteorology. 117(1-2): 73-96. DOI: 10.1016/S0168-1923(03)00025-X .

4487. Rosenthal, W.D. and D.W. Hoffman. 1999. Hydrologic modeling/GIS as an aid in locating monitoring sites. Transactions of the ASAE. 42(6): 1591-1598. DOI: 10.13031/2013.13324 .

4488. Rosenthal, W.D., R. Srinivasan and J.G. Arnold. 1995. Alternative river management using a linked GIS‑hydrology model. Transactions of the ASAE. 38(3): 783-790. URL: http://ssl.tamu.edu/media/12011/alternative%20river%20mgmt%20using%20linked%20gis-hydrology%20model.pdf.

4489. Rospriandana, N. and M. Fujii. 2017. Assessment of small hydropower potential in the Ciwidey Subwatershed, Indonesia: A GIS and hydrological modeling approach. Hydrological Research Letters. 11(1): 6-11. DOI: 10.3178/hrl.11.6 .

4490. Rossetto, R., G. De Filippis , F. Triana , M. Ghetta , I. Borsi and W. Schmid. 2019. Software tools for management of conjunctive use of surface- and ground-water in the rural environment: Integration of the farm process and the crop growth module in the FREEWAT platform. Agricultural Water Management. 223: 105717. DOI: 10.1016/j.agwat.2019.105717 .

4491. Rossi, C.G., D.M. Heil, N.B. Bonumà and J.R. Williams. 2012. Evaluation of the Langmuir Model in the Soil and Water Assessment Tool for a high soil phosphorus condition. Environmental Modelling & Software. 38: 40-49. DOI: 10.1016/j.envsoft.2012.04.018 .

4492. Rossi, C.G., R. Srinivasan, K. Jirayoot, T. Le Due, P Souvannabouth, N. Binh and P.W. Gassman. 2009. Hydrologic evaluation of the Lower Mekong River Basin with the Soil and Water Assessment Tool model. International Agricultural Engineering Journal. 18(1-2): 1-13. URL: https://ssl.tamu.edu/media/20691/hydrologic-evaluation-of-the-lower-mekong-river-basin.pdf.

4493. Rossi, C.G., T.J. Dybala, C. Amonett, J.G. Arnold and T. Marek. 2012. Manure nutrient management effects in the Leon River Watershed. Journal of Soil and Water Conservation. 67(3): 147-157. DOI: 10.2489/jswc.67.3.147 .

4494. Rossi, C.G., T.J. Dybala, D.N. Moriasi, J.G. Arnold, C. Amonett and T. Marek. 2008. Hydrologic calibration and validation of the Soil and Water Assessment Tool for the Leon River Watershed. Journal of Soil and Water Conservation. 63(6): 533-541. DOI: 10.2489/jswc.63.6.533 .

4495. Rostamian, R., A. Jaleh, M. Afyuni, S.F. Mousavi, M. Heidarpour, A. Jalalian and K.C Abbaspour. 2008. Application of a SWAT model for estimating runoff and sediment in two mountainous basins in central Iran. Hydrological Sciences Journal. 53(5): 977-988. DOI: 10.1623/hysj.53.5.977 .

4496. Roth, V. and T. Lemann. 2016. Comparing CFSR and conventional weather data for discharge and soil loss modelling with SWAT in small catchments in the Ethiopian Highlands. Hydrology and Earth System Sciences. 20: 921-934. DOI: 10.5194/hess-20-921-2016 .

4497. Roth, V., T. Lemann, G. Zeleke, A.T. Subhatu, T.K. Nigussie and H. Hurni. 2018. Effects of climate change on water resources in the Upper Blue Nile Basin of Ethiopia. Heliyon. 4(9): e00771. DOI: 10.1016/j.heliyon.2018.e00771 .

4498. Roth, V., T.K. Nigussie and T. Lemann. 2016. Model parameter transfer for streamflow and sediment loss prediction with SWAT in a tropical watershed. Environmental Earth Sciences. 75: 1321. DOI: 10.1007/s12665-016-6129-9 .

4499. Rouhani, H. and M.S. Jafarzadeh. 2018. Assessing the climate change impact on hydrological response in the Gorganrood River Basin, Iran. Journal of Water and Climate Change. 9(3): 421 - 433. DOI: 10.2166/wcc.2017.207 .

4500. Rouhani, H. and R. Leconte. 2018. A methodological framework to assess PMP and PMF in snow-dominated watersheds under changing climate conditions – A case study of three watersheds in Québec (Canada). Journal of Hydrology. 561: 796-809. DOI: 10.1016/j.jhydrol.2018.04.047 .

4501. Rouhani, H., P. Willems and J. Feyen. 2009. Effect of watershed delineation and areal rainfall distribution on runoff prediction using the SWAT model. Hydrology Research. 40(6): 505-519. DOI: 10.2166/nh.2009.042 .

4502. Rouhani, H., P. Willems, G. Wyseure and J. Feyen. 2007. Parameter estimation in semi-distributed hydrological catchment modelling using a multi-criteria objective function. Hydrological Processes. 21(22): 2998-3008. DOI: 10.1002/hyp.6527 .

4503. Rouholahnejad, E., K.C. Abbaspour, M. Vejdani, R. Srinivasan, R. Schulin and A. Lehman. 2012. A parallelization framework for calibration of hydrological models. Environmental Modelling & Software. 31: 28-36. DOI: 10.1016/j.envsoft.2011.12.001 .

4504. Rouholahnejad, E., K.C. Abbaspour, R. Srinivasan, V. Bacu, and A. Lehmann. 2014. Water resources of the Black Sea Basin at high spatial and temporal resolution. Water Resources Research. 50(7): 5866-5885. DOI: 10.1002/2013WR014132 .

4505. Rousseau, A.N., S. Savary, D.W. Hallema, S.J. Gumiere and É. Foulon. 2013. Modeling the effects of agricultural BMPs on sediments, nutrients, and water quality of the Beaurivage River Watershed (Quebec, Canada). Canadian Water Resources Journal. 38(2): 99-120. DOI: 10.1080/07011784.2013.780792 .

4506. Ruan, H., S. Zou, D. Yang, Y. Wang, Z. Yin, Z. Lu, F. Li and B. Xu. 2017. Runoff simulation by SWAT Model using high-resolution gridded precipitation in the Upper Heihe River Basin, northeastern Tibetan Plateau. Water. 9(11): 866. DOI: 10.3390/w9110866 .

4507. Ruan, H., S. Zou, Z. Lu , P. Wang, F. Li, B. Xu, S. Jin, G. Cao and Y. Shen. 2021. A statistical method combined with a hydrological model to improve artificial precipitation enhancement in the eastern Tibetan Plateau. Journal of Cleaner Production. 287: 125009. DOI: 10.1016/j.jclepro.2020.125009 .

4508. Rudra, R.R., B. Mekonnen, R.R. Shukla, N.K. Shrestha, P.K. Goel, P. DaggupatI and A. Biswas. 2020. Currents Status, challenges, and future directions in identifying critical source areas for non-point source pollution in Canadian conditions. Agriculture. 10(10): 468. DOI: 10.3390/agriculture10100468 .

4509. Rufino, P.R., B. Gücker, M. Faramarzi, I.G. Boëchat, F. da S. Cardozo, P.R. Santos, G.D. Zanin, G. Mataveli and G. Pereira. 2023. Evaluation of the SWAT model for the simulation of flow and water balance based on orbital data in a poorly monitored basin in the Brazilian Amazon. Geographies. 3(1): 1-18. DOI: 10.3390/geographies3010001 .

4510. Ruiz Cánovas, C., F. Macías and M. Olías. 2018. Hydrogeochemical behavior of an anthropogenic mine aquifer: Implications for potential remediation measures. Science of the Total Environment. 636: 85-93. DOI: 10.1016/j.scitotenv.2018.04.270 .

4511. Ruiz-Giberta, J.M., M. Hallack-Alegría, A. Robles-Morua and E. Molina-Navarro. 2019. Using an integrated hydrological model to estimate the impacts of droughts in a semiarid transboundary river basin: The case of study of the Tijuana River Basin. International Journal of River Basin Management. DOI: 10.1080/15715124.2019.1597727 .

4512. Runzhe, G., L. Mingtao, W. Xiaoyan and P. Shujiang. 2015. Effect of land use/landscape changes on diffuse pollution load from watershed based on SWAT model. Transactions of the Chinese Society of Agricultural Engineering. 21(16): 241-250. URL: http://www.tcsae.org/nygcxben/article/abstract/20151632.

4513. Ryu, J., J. Cho, I.J. Kim, Y. Mun, J.P. Moon, N.W. Kim, S.J. Kim, D.S. Kong and K.J. Lim. 2011. Enhancement of SWAT-REMM to simulate reducation of total nitrogen with riparian buffer. Transactions of the ASABE. 54(5): 1791-1798. DOI: 10.13031/2013.39845 .

4514. Ryu, J.H., J.H. Lee, S. Jeong, S.K. Park and K. Han. 2011. The impacts of climate change on local hydrology and low flow frequency in the Geum River Basin, Korea. Hydrological Processes. 25(22): 3437-3447. DOI: 10.1002/hyp.8072 .

4515. Ryu. J., D. Kum, D.S. Shin, K.H. Ahn, B.K. Park and K.J. Lim. 2014. Enhancement of HRSM4BMP model to simulate sediment reduction efficiency based on watershed scale. Journal of the Korean Society of Environmental Engineering. 36(8): 521-527. DOI: 10.4491/KSEE.2014.36.8.521 .

4516. Saadatpour, A., A. Alizadeh, A.N. Ziaei and A. Izady. 2019. Integrated surface and groundwater flow modeling in Neishaboor watershed with SWAT-MODFLOW. Journal of Water and Soil. 33(4): 521-536. DOI: 10.22067/jsw.v0i0.74658 .

4517. Saadatpour, M. and F. Kamali. 2022. A novel approach to the optimization of the spatial distribution of the multiple crop pattern on a river basin scale. Water Resources Management. 36(14): 5565-5580. DOI: 10.1007/s11269-022-03318-7 .

4518. Saade, J., M. Atieh, S. Ghanimeh and G. Golmohammadi. 2021. Modeling impact of climate change on surface water availability using SWAT model in a semi-arid basin: Case of El Kalb River, Lebanon. Hydrology. 8(3): 134. DOI: 10.3390/hydrology8030134 .

4519. Saari, M., P.M. Rossi, H. Postila and H. Marttila. 2020. Predicting iron transport in boreal agriculture-dominated catchments under a changing climate. Science of the Total Environment. 714: 136743. DOI: 10.1016/j.scitotenv.2020.136743 .

4520. Sabale, R., B. Venkatesh and M. Jose. 2023. Sustainable water resource management through conjunctive use of groundwater and surface water: A review. Innovative Infrastructure Solutions. 8(1): 17. DOI: 10.1007/s41062-022-00992-9 .

4521. Sabbagh, G.J., G.A. Fox, A Kamanzi, B. Roepke and J.-Z. Tang. 2009. Effectiveness of Vegetative Filter Strips in Reducing Pesticide Loading: Quantifying Pesticide Trapping Efficiency. Journal of Environmental Quality. 38: 762-771. DOI: 10.2134/jeq2008.0266 .

4522. Sabo, J.L. 2014. Predicting the river’s blue line for fish conservation. Proceedings of the National Academy of Sciences. 111(38): 13686-13687. DOI: 10.1073/pnas.1414385111 .

4523. Sabzzadeh I. and M. Shourian. 2020. Maximizing crops yield net benefit in a groundwater-irrigated plain constrained to aquifer stable depletion using a coupled PSO-SWAT-MODFLOW hydro-agronomic model. Journal of Cleaner Production. 262: 121349. DOI: 10.1016/j.jclepro.2020.121349 .

4524. Sada, R., B. Schmalz, J. Kiesel and N. Fohrer. 2019. Projected changes in climate and hydrological regimes of the Western Siberian Lowlands. Environmental Earth Sciences. 78: 56. DOI: 10.1007/s12665-019-8047-0 .

4525. Saddiqi, M.M. and M.E. Karpuzcu. 2020. Modeling Kucuk Menderes Watershed with SWAT. Çukurova University Journal of the Faculty of Engineering and Architecture . 34(4): 55-69. DOI: 10.21605/cukurovaummfd.702065 .

4526. Saddique, N., M. Usman and C. Bernhofer. 2019. Simulating the impact of climate change on the hydrological regimes of a sparsely gauged mountainous basin, Northern Pakistan. Water. 11(10): 2141. DOI: 10.3390/w11102141 .

4527. Saddique, N., T. Mahmood and C. Bernhofer. 2020. Quantifying the impacts of land use/land cover change on the water balance in the afforested River Basin, Pakistan. Environmental Earth Sciences. 79(19): 448. DOI: 10.1007/s12665-020-09206-w .

4528. Sadhwani, K., T.I. Eldho and S. Karmakar. 2023. Investigating the influence of future landuse and climate change on hydrological regime of a humid tropical river basin. Environmental Earth Sciences. 82(9): 210. DOI: 10.1007/s12665-023-10891-6 .

4529. Sadhwani, K., T.I. Eldho, M.K. Jha and S. Karmakar. 2022. Effects of dynamic land use/land cover change on flow and sediment yield in a monsoon-dominated tropical watershed. Water. 14(22): 3666. DOI: 10.3390/w14223666 .

4530. Sadiqi, S.S.J., E.-M. Hong and W.H. Nam. 2022. Identification of priority management practices for soil erosion control through estimation of runoff and sediment yield using Soil and Water ssessment tool on Salma watershed in Afghanistan. Irrigation and Drainage. 71(3): 804-822. DOI: 10.1002/ird.2668 .

4531. Saedi, F., A. Ahmadi and K.C. Abbaspour. 2021. Optimal water allocation of the Zayandeh-Roud Reservoir in Iran based on inflow projection under climate change scenarios. Journal of Water and Climate Change. 12(5): 2068-2081. DOI: 10.2166/wcc.2021.219 .

4532. Saeed, F.H., M.S. Al-Khafaji and F. Al-Faraj. 2022. Hydrologic response of arid and semi-arid river basins in Iraq under a changing climate. Journal of Water and Climate Change. 13(3): 1225-1240. DOI: 10.2166/wcc.2022.418 .

4533. Saeed, F.H., M.S. Al-Khafaji and F. Al-Faraj. 2022. Potential impact of global warming on climate and streamflow of Adhaim River Basin, Iraq. Engineering and Technology Journal. 40(11): 1510-1521. DOI: 10.30684/etj.2022.133474.1188 .

4534. Saeed, F.H., M.S. Al-Khafaji and F. Al-Faraj. 2022. Spatiotemporal hydroclimatic characteristics of arid and semi-arid river basin under climate change: A case study of Iraq. Arabian Journal of Geosciences. 15(14): 1260. DOI: 10.1007/s12517-022-10548-x .

4535. Saghafian, B., S. Sima, S. Sadeghi and F. Jeirani. 2012. Application of unit response approach for spatial prioritization of runoff and sediment sources. Agricultural Water Management. 109: 36-45. DOI: 10.1016/j.agwat.2012.02.004 .

4536. Sagintayev, Z., M. Sultan, S.D. Khan, S.A. Khan, K. Mahmood, E. Yan, A. Milewski and P. Marsala. 2012. A remote sensing contribution to hydrologic modelling in arid and inaccessible watersheds, Pishin Lora Basin, Pakistan. Hydrological Processes. 26(1): 85-99. DOI: 10.1002/hyp.8114 .

4537. Saha, G.K., R. Cibin, H.A. Elliott and H.E. Preisendanz. 2022. Toward a robust land suitability framework for manure management: Modeling impacts and evaluating biophysical characteristics. Journal of the American Water Resources Association. 58(3): 435-452. DOI: 10.1111/1752-1688.13008 .

4538. Saha, P. P., K. Zeleke, and M. Hafeez. 2014. Streamflow modeling in a fluctuant climate using SWAT: Yass River catchment in south eastern Australia. Environmental Earth Sciences. 71(12): 5241-5254. DOI: 10.1007/s12665-013-2926-6 .

4539. Saha, P.P. and K. Zeleke. 2014. Modelling streamflow response to climate change for the Kyeamba Creek catchment of south eastern Australia. International Journal of Water. 8(3): 241-258. DOI: 10.1504/IJW.2014.064237 .

4540. Sahana, V. and P.V. Timbadiya. 2020. Spatiotemporal variation of water availability under changing climate: Case study of the Upper Girna Basin, India. Journal of Hydrologic Engineering. 25(5): 05020004. DOI: 10.1061/(ASCE)HE.1943-5584.0001890 .

4541. Sahar, A.A., M.A. Hassan and A.A. Jasim. 2021. Estimating the volume of sediments and assessing the water balance of the Bandra Basin, eastern Iraq, using SWAT model and remote sensing data. Iraqi Geological Journal . 54(2C): 88-99. DOI: 10.46717/igj.54.2C.9Ms-2021-09-28 .

4542. Saharia, A.M. and A.K. Sarma. 2018. Future climate change impact evaluation on hydrologic processes in the Bharalu and Basistha basins using SWAT model. Natural Hazards. DOI: 10.1007/s11069-018-3259-2 .

4543. Sahoo, K., A.M. Milewski, S. Mani, N. Hoghooghi and S.S. Panda. 2019. Assessment of miscanthus yield potential from strip-mined lands (SML) and its impacts on stream water quality. Water. 11(3): 546. DOI: 10.3390/w11030546 .

4544. Sahoo, S. and B. Sahoo. 2020. Is hillslope-based catchment decomposition approach superior to hydrologic response unit (HRU) for stream-aquifer interaction modelling: Inference from two process-based coupled models. Journal of Hydrology. 591: 125588. DOI: 10.1016/j.jhydrol.2020.125588 .

4545. Sahoo, S., A. Dhar, A. Debsarkar and A. Kar. 2018. Impact of water demand on hydrological regime under climate and LULC change scenarios. Environmental Earth Sciences. 77: 341. DOI: 10.1007/s12665-018-7531-2 .

4546. Sahoo, S., A. Dhar, A. Debsarkar and A. Kar. 2019. Future scenarios of environmental vulnerability mapping using Grey Analytic Hierarchy Process. Natural Resources Research. 28(4): 1461-1483. DOI: 10.1007/s11053-019-09462-z .

4547. Sahoo, S., A. Dhar, A. Debsarkar and A. Kar. 2020. Can groundwater scenarios be predicted from future regional climatic input variables? Water Resources Management. 34(15): 4815–4830. DOI: 10.1007/s11269-020-02692-4 .

4548. Sahoo, S., A. Dhar, A. Debsarkar, B. Pradhan and A.M. Alamri. 2020. Future water use planning by water evaluation and planning system model. Water Resources Management. 34(15): 4649–4664. DOI: 10.1007/s11269-020-02680-8 .

4549. Sahoo, S., M. Khatun, S. Pradhan and P. Das. 2021. Evaluation of a physically-based model to assess the eco-hydrological components on the basin hydrology. Sustainable Water Resources Management. 7(2): 53. DOI: 10.1007/s40899-021-00536-6 .

4550. Sahoo, S., S. Dey, A. Dhar, A. Debsarkar and B. Pradhan. 2019. On projected hydrological scenarios under the influence of bias-corrected climatic variables and LULC. Ecological Indicators. 106: 105440. DOI: 10.1016/j.ecolind.2019.105440 .

4551. Sahoo, S.P., A.K. Nema and P.K. Mishra. 2019. Rainfall-runoff modelling using SWAT for Ong River Basin. Indian Journal of Soil Conservation. 47(2): 126-133. URL: https://www.indianjournals.com/ijor.aspx?target=ijor:ijsc&volume=47&issue=2&article=003.

4552. Sahu, M. and R.R. Gu. 2009. Modeling the effects of riparian buffer zone and contour strips on stream water quality. Ecological Engineering. 35(8): 1167-1177. DOI: 10.1016/j.ecoleng.2009.03.015 .

4553. Sahu, M.K., H.R. Shwetha and G.S. Dwarakish. 2023. State‑of‑the‑art hydrological models and application of the HEC‑HMS model: A review. Modeling Earth Systems and Environment. 9(3): 3029-3051. DOI: 10.1007/s40808-023-01704-7 .

4554. Saia, S.M., K.M. Suttles, B.B. Cutts, R.E. Emanuel, K.L. Martin, D.N. Wear, J.W. Coulston and J.M. Vose. 2020. Applying climate change risk management tools to integrate streamflow projections and social vulnerability. Ecosystems. 23: 67-83. DOI: 10.1007/s10021-019-00387-5 .

4555. Said, M., C. Hyandye, I.C. Mjemah, H.C. Komakech and L.K. Munishi. 2021. Evaluation and prediction of the impacts of land cover changes on hydrological processes in data constrained southern slopes of Kilimanjaro, Tanzania. Earth. 2(2): 225-247. DOI: 10.3390/earth2020014 .

4556. Saifullah, M., Z. Li, Q. Li, S. Hashim, M. Zaman and K. Liu. 2016. Assessment the impacts of land surface change on the hydrological process based on similar hydro-meteorological conditions with SWAT. Fresenius Environmental Bulletin. 25(8): 3071-3082. URL: http://www.prt-parlar.de/download_feb_2016/.

4557. Saim, A.A. and S.H. Rahman. 2021. Impacts of climate change on dry season flow of Gorai River, Bangladesh using SWAT model. Bangladesh Journal of Environmental Research. 12: 20-36. URL: https://www.juniv.edu/journal/11217/file.

4558. Saini, M., V. Dutta, N.P. Singh and O. Bajpai. 2018. Modeling and assessing land-use and hydrological regimes to future land-use scenario for sustainable watershed management in a semi-arid region of southern India. Environmental Sustainability. 1(4): 393–409. DOI: 10.1007/s42398-018-00035-z .

4559. Sajikumar, N. and R.S. Remya. 2014. Impact of land cover and land use change on runoff characteristics. Journal of Environmental Management. 161: 460-468. DOI: 10.1016/j.jenvman.2014.12.041 .

4560. Sakaguchi, A., S. Eguchi and M. Kasuya. 2014. Examination of the water balance of irrigated paddy fields in SWAT 2009 using the curve number procedure and the pothole module. Soil Science and Plant Nutrition. 60(4): 551-564. DOI: 10.1080/00380768.2014.919834 .

4561. Sakaguchi, A., S. Eguchi, T. Kato, M. Kasuya, K. Ono, A. Miyata and N. Tase. 2014. Development and evaluation of a paddy module for improving hydrological simulation in SWAT. Agricultural Water Management. 137: 116–122. DOI: 10.1016/j.agwat.2014.01.009 .

4562. Salah, N.C.B. and H. Abida. 2018. Assessment of soil erosion risk using SWAT model. Journal International Sciences et Technique de l'Eau et de l'Environment. 3(2): 42-46. URL: http://jistee.org/volume-iii-2018/.

4563. Salas, E.A.L. and S.K. Subburayalu. 2019. Implications of climate change on nutrient pollution: A look into the nitrogen and phosphorus loadings in the Great Miami and Little Miami Watersheds in Ohio. Environmental Science. 6(3): 186-221. DOI: 10.3934/environsci.2019.3.186 .

4564. Salas-Martínez, R., L.A. Ibáñez-Castillo, R. Arteaga-Ramírez, M.R. Martínez-Menes and D.S. Fernández-Reynoso. 2014. Hydrological modelling of Mixteco River Watershed in the state of Oaxaca, Mexico. Agrociencia. 48: 1-15. URL: http://www.scielo.org.mx/scielo.php?script=sci_abstract&pid=S1405-31952014000100001&lng=en&nrm=iso&tlng=en.

4565. Salau, W. and P.I. Ifabiyi. 2019. Hydro-Geomorphic factors and the potential of hydrokinetic power production upstream of Ikere Gorge Dam, Nigeria. Geosfera Indonesia. 4(1): 25-41. DOI: 10.19184/geosi.v4i1.9511 .

4566. Salau, W., I.I. Paul and A.A. Ganiyu. 2017. SWAT analysis of Ikere Gorge basin for hydrokinetic power estimation in selected rural settlements of Oke Ogun, Nigeria. Ruhuna Journal of Science. 8: 24-43. URL: https://rjs.sljol.info/articles/abstract/10.4038/rjs.v8i1.24/.

4567. Salazar-Solano, V., J.M. Moreno-Dena, I.S. Rojas-Rodríguez and H.C. De La Torre-Valdez. 2022. Validation of a model to estimate climate effects on wheat (Triticum aestivum L.) production in a hydrological basin. Agro Productividad. DOI: 10.32854/agrop.v15i1.2136 .

4568. Saleh, A. and B. Du. 2004. Evaluation of SWAT and HSPF within BASINS program for the Upper North Bosque River watershed in central Texas. Transactions of the ASAE. 47(4): 1039-1049. DOI: 10.13031/2013.16577 .

4569. Saleh, A. and O. Gallego. 2007. Application of SWAT and APEX using the SWAPP (SWAT-APEX) program for the Upper North Bosque River Watershed in Texas. Transactions of the ASABE. 50(4): 1177-1187. DOI: 10.13031/2013.23632 .

4570. Saleh, A., E. Osei, D.B. Jaynes, B. Du and J.G. Arnold. 2007. Economic and environmental impacts of LSNT and cover crops for nitrate-nitrogen reduction in Walnut Creek Watershed, Iowa, using FEM and enhanced SWAT models. Transactions of the ASABE. 50(4): 1251-1259. DOI: 10.13031/2013.23635 .

4571. Saleh, A., J.G. Arnold, P.W. Gassman, L.W. Hauck, W.D. Rosenthal, J.R. Williams and A.M.S. McFarland. 2000. Application of SWAT for the Upper North Bosque River Watershed. Transactions of the ASAE. 43(5): 1077-1087. DOI: 10.13031/2013.3000 .

4572. Salerno, F. and G. Tartari. 2009. A coupled approach of surface hydrological modelling and wavelet analysis for understanding the baseflow components of river discharge in karst environments. Journal of Hydrology. 376(1-2): 295-306. DOI: 10.1016/j.jhydrol.2009.07.042 .

4573. Salerno, F., G. Viviano, E. Carraro, E. Chiara Manfredi, A. Lami, S. Musazzi, A. Marchetto, N. Guyennon, G. Tartari and D. Copetti. 2014. Total phosphorus reference condition for subalpine lakes: A comparison among traditional methods and a new process-based watershed approach. Journal of Environmental Management. 145: 94-105. DOI: 10.1016/j.jenvman.2014.06.011 .

4574. Sales, J.M. de J., A. de O.A. Netto and C.M. de Carvalho. 2022. Hydrological modeling of hydrographic basin in the northeast semiarid region of Brazil. Research, Society and Development. 11(3): e48711326735. DOI: 10.33448/rsd-v11i3.26735 .

4575. Salhi, C., B. Touaibia, A. Zeroual, N. Benblida and A. Assani. 2022. Evaluation of soil erosion in Northern Algeria watershed using SWAT and RUSLE models. Geocarto International. 37(26): 11559-11589. DOI: 10.1080/10106049.2022.2060314 .

4576. Salim, A.G., I.W.S. Dharmawan and B.H. dan Narendra. 2019. Pengaruh luas tutupan lahan hutan terhadap karakteristik hidrologi DAS Citarum Hulu. Jurnal Ilmu Lingkungan. 17(2): 333-340. DOI: 10.14710/jil.17.2.333-340 .

4577. Salmoral, G., B. Willaarts, A. Garrido and B. Guse. 2017. Fostering integrated land and water management approaches: Evaluating the water footprint of a Mediterranean basin under different agricultural land use scenarios. Land Use Policy. 61: 24-39. DOI: 10.1016/j.landusepol.2016.09.027 .

4578. Salmoral, G., K. Khatun, F. Llive and C.M. Lopez. 2018. Agricultural development in Ecuador: A compromise between water and food security? Journal of Cleaner Production. 202: 779-791. DOI: 10.1016/j.jclepro.2018.07.308 .

4579. Salvetti, R., M. Acutis, A. Azzellino, M. Carpani, C. Giupponi, P. Parati, M. Vale and R. Vismara. 2008. Modelling the point and non-point nitrogen loads to the Venice Lagoon (Italy): The application of water quality models to the Dese-Zero Basin. Desalination. 226: 81-88. DOI: 10.1016/j.desal.2007.01.236 .

4580. Salvetti, R., A. Azzellino and R. Vismara. 2006. Diffuse source apportionment of the Po River eutrophying load to the Adriatic sea: Assessment of Lombardy contribution to Po River nutrient load apportionment by means of an integrated modelling approach. Chemosphere. 65(11): 2168-2177. DOI: 10.1016/j.chemosphere.2006.06.012 .

4581. Sam, T.T, D.N. Khoi , N.T.T. Thao, P.T.T. Nhi, N.T. Quan, N.X. Hoan and V.T. Nguyen. 2019. Impact of climate change on meteorological, hydrological and agricultural droughts in the Lower Mekong River Basin: A case study of the Srepok Basin, Vietnam. Water and Environment Journal. 33: 547-559. DOI: 10.1111/wej.12424 .

4582. Sam, T.T. and D.N. Khoi. 2022. The responses of river discharge and sediment load to historical land‐use/land‐cover change in the Mekong River Basin. Environmental Monitoring and Assessment. 194(10): 700. DOI: 10.1007/s10661-022-10400-5 .

4583. Samad, N., M.H. Ch., M. Ashraf, M. Saleem, Q. Hamid, U. Babar, H. Tariq and M.S. Farid. 2016. Sediment yield assessment and identification of check dam sites for Rawal Dam catchment. Arabian Journal of Geosciences. 9: 466. DOI: 10.1007/s12517-016-2484-9 .

4584. Samadi, S. D.L. Tufford and G.J. Carbone. 2017. Assessing Parameter Uncertainty of a semi-distributed hydrology model for a shallow aquifer dominated environmental system. Journal of the American Water Resources Association. 53(6): 1368–1389. DOI: 10.1111/1752-1688.12596 .

4585. Samadi, S., D.L. Tufford and G.J. Carbone. 2018. Estimating hydrologic model uncertainty in the presence of complex residual error structures. Stochastic Environmental Research and Risk Assessment. 32: 1259-1281. DOI: 10.1007/s00477-017-1489-6 .

4586. Samadi, S.Z. 2017. Assessing the sensitivity of SWAT physical parameters to potential evapotranspiration estimation methods over a coastal plain watershed in the southeastern United States. Hydrology Research. 48(2): 395-415. DOI: 10.2166/nh.2016.034 .

4587. Samadi, S.Z. and M.E. Meadows. 2017. The transferability of terrestrial water balance components under uncertainty and nonstationarity: A case study of the Coastal Plain watershed in the southeastern USA. River Research and Applications. 33(5): 796–808. DOI: 10.1002/rra.3127 .

4588. Samal, D.R. and S. Gedam. 2021. Assessing the impacts of land use and land cover change on water resources in the Upper Bhima River Basin, India. Environmental Challenges. 5: 100251. DOI: 10.1016/j.envc.2021.100251 .

4589. Samaras, A.G. and C.G. Koutitas. 2012. An integrated approach to quantify the impact of watershed management on coastal morphology. Ocean & Coastal Management. 69: 68–77. DOI: 10.1016/j.ocecoaman.2012.08.010 .

4590. Samaras, A.G. and C.G. Koutitas. 2014. Modeling the impact of climate change on sediment transport and morphology in coupled watershed-coast systems: A case study using an integrated approach. International Journal of Sediment Research. 29: 304-315. DOI: 10.1016/S1001-6279(14)60046-9 .

4591. Samaras, A.G. and C.G. Koutitas. 2014. The impact of watershed management on coastal morphology: A case study using an integrated approach and numerical modeling. Geomorphology. 211: 52-63. DOI: 10.1016/j.geomorph.2013.12.029 .

4592. Samarinas, N., N. Tziolas and G. Zalidis. 2020. Improved estimations of nitrate and sediment concentrations based on SWAT simulations and annual updated land cover products from a deep learning classification algorithm. International Journal of Geo-Information. 9(10): 576. DOI: 10.3390/ijgi9100576 .

4593. Samavati, A., O. Babamiri, Y. Rezai and M. Heidarimozaffar. 2023. Investigating the effects of climate change on future hydrological drought in mountainous basins using SWAT model based on CMIP5 model. Stochastic Environmental Research and Risk Assessment. 37(3): 849-875. DOI: 10.1007/s00477-022-02319-7 .

4594. Samie, M., R. Ghazavi, A. Vali and M. Pakparvar. 2019. Evaluation of the effect of land use change on runoff using supervised classified satellite data. Global Nest Journal. 21 (2): 245-252. DOI: 10.30955/gnj.002631 .

4595. Samimi, M., A. Mirchi, D. Moriasi, S. Ahn, S. Alian, S. Taghvaeian and Z. Sheng. 2020. Modeling arid/semi-arid irrigated agricultural watersheds with SWAT: Applications, challenges, and solution strategies. Journal of Hydrology. 590: 125418. DOI: 10.1016/j.jhydrol.2020.125418 .

4596. Samimi, M., A. Mirchi, N. Townsend, D. Gutzler, S. Daggubati, S. Ahn, Z. Sheng, D. Moriasi, A. Granados-Olivas, S. Alian, A. Mayer and W. Hargrove. 2022. Climate change impacts on agricultural water availability in the Middle Rio Grande Basin. Journal of the American Water Resources Association. 58(2): 164-184. DOI: 10.1111/1752-1688.12988 .

4597. Sammartano, V., L. Liuzzo and G. Freni. 2019. Identification of potential locations for run-of-river hydropower plants using a GIS-based procedure. Energies. 12(18): 3446. DOI: 10.3390/en12183446 .

4598. Sampson, D.A., D.M. Amatya, C.D.B. Lawson and R.W. Skaggs. 2011. Leaf area index (LAI) of loblolly pine and emergent vegetation following a harvest. Transactions of the ASABE. 54(6): 2057-2066. DOI: 10.13031/2013.40664 .

4599. Sanadhya, P., J. Gironas and M. Arabi. 2014. Global sensitivity analysis of hydrologic processes in major snow-dominated mountainous river basins in Colorado. Hydrological Processes. 28(9): 3404-3418. DOI: 10.1002/hyp.9896 .

4600. Sanchez, G.M., A.P. Nejadhashemi, Z. Zhang, S. Marquart-Pyatt, G. Habron and A. Shortridge. 2015. Linking watershed-scale stream health and socioeconomic indicators with spatial clustering and structural equation modeling. Environmental Modelling & Software. 70: 113-127. DOI: 10.1016/j.envsoft.2015.04.012 .

4601. Sánchez-Gómez, A., S. Martínez-Pérez, S. Leduc, A. Sastre-Merlín and E. Molina-Navarro. 2022. Streamflow components and climate change: Lessons learnt and energy implications after hydrological modeling experiences in catchments with a Mediterranean climate. Energy Reports. 194: 108. DOI: 10.1007/s10661-022-09761-8 .

4602. Sánchez‑Gómez, A., S. Martínez‑Pérez, F.M. Pérez‑Chavero and E. Molina‑Navarro. 2022. Optimization of a SWAT model by incorporating geological information through calibration strategies. Optimization and Engineering. 23(4): 2203-2233. DOI: 10.1007/s11081-022-09744-1 .

4603. Sang, C.C. 2022. Evaluation of management practices for sustainability of water resources in Arror River Watershed, Kenya. Africa Environmental Review Journal. 5(2): 1-20. URL: http://ojs.uoeld.ac.ke/index.php/aerj/article/view/247.

4604. Sang, X., Z. Zhou, H. Wang, D. Qin, Z. Zhai and Q. Chen. 2010. Deveopment of Soil and Water Assessment Tool Model on Human Water Use and Application in the Area of High Human Activites, Tianjin, China. Journal of Irrigation and Drainage Engineering. 136(1): 23-30. DOI: 10.1061/(ASCE)IR.1943-4774.0000115 .

4605. Sangeetha, K., B. Narasimhan and R. Srinivasan. 2022. A coupled SWAT-AEM modelling framework for a comprehensive hydrologic assessment. Water. 14(17): 2753. DOI: 10.3390/w14172753 .

4606. Sangha, L., J. Lamba and H. Kumar. 2020. Effect of ENSO-based upstream water withdrawals for irrigation on downstream water withdrawals. Hydrology Research. 51(4): 602-620. DOI: 10.2166/nh.2020.156 .

4607. Sangha, L., J. Lamba and H. Kumar. 2020. Effect of ENSO-based upstream water withdrawals for irrigation on downstream water withdrawal. Hydrology Research. 51(4): 602-620. DOI: 10.2166/nh.2020.156 .

4608. Sangha, L., J. Lamba, H. Kumar, P. Srivastava, M. Dougherty and R. Prasad. 2020. An innovative approach to rainwater harvesting for irrigation based on El Niño Southern Oscillation forecasts. Journal of Soil and Water Conservation. 75(5): 565-578. DOI: 10.2489/jswc.2020.00085 .

4609. Sangmanee, C., G. Wattayakorn and P. Sojisuporn. 2013. Simulating changes in discharge and suspended sediment loads of the Bangpakong River, Thailand, driven by future climate change. Maejo International Journal of Science and Technology. 7(Special Issue 1): 72-84. URL: http://www.mijst.mju.ac.th/vol7/special1.html.

4610. Sanmiguel-Vallelado, A., E. Moran-Tejeda, E. Alonso-Gonzalez and J.I. Lopez-Moreno. 2017. Effect of snow on mountain river regimes: An example from the Pyrenees. Frontiers in Earth Science. 11(3): 515-530. DOI: 10.1007/s11707-016-0630-z .

4611. Santana, M. and J.A. do N. Batista. 2022. Bilateral interdependencies between water and land uses and water availability in the Rio Grande Watershed. Engenharia Sanitaria e Ambiental. 27(6): 1253-1262. DOI: 10.1590/S1413-415220210270 .

4612. Santelman, M.V., D. White, K. Freemark, J.I. Nassauer, J.M. Eilers, K.B. Vaché, B.J. Danielson, R.C. Corry, M.E. Clark, S. Polasky, R.M. Cruse, J. Sifneos, H. Rustigian, C. Coiner, J. Wu and D. Debinski. 2004. Assessing alternative futures for agriculture in Iowa, U.S.A. Landscape Ecology. 19(4): 357-374. DOI: 10.1023/B:LAND.0000030459.43445.19 .

4613. Santhi, C. N. Kannan, M. White, M. Di Luzio, J.G. Arnold, X. Wang and J.R. Williams. 2014. An integrated modeling approach for estimating the water quality benefits of conservation practices at river basin scale. Journal of Environmental Quality. 43(1): 177-198. DOI: 10.2134/jeq2011.0460 .

4614. Santhi, C., R.S. Muttiah, J.G. Arnold and R. Srinivasan. 2005. A GIS-Based regional planning tool for irrigation demand assessment and savings using SWAT. Transactions of the ASAE. 48(1): 137-147. DOI: 10.13031/2013.17957 .

4615. Santhi, C., J. G. Arnold, M. White, M. Di Luzio, N. Kannan, L. Norfleet, J. Atwood, R. Kellogg, X. Wang, J. R. Williams and T. Gerik. 2014. Effects of agricultural conservation practices on N loads in the Mississippi–Atchafalaya River Basin. Journal of Environmental Quality. 43(6): 1903-1915. DOI: 10.2134/jeq2013.10.0403 .

4616. Santhi, C., J.G. Arnold, J.R. Williams, W.A. Dugas and L. Hauck. 2001. Validation of the SWAT model on a large river basin with point and nonpoint sources. Journal of the American Water Resources Association. 37(5): 1169-1188. DOI: 10.1111/j.1752-1688.2001.tb03630.x .

4617. Santhi, C., J.G. Arnold, J.R. Williams, W.A. Dugas and L. Hauck. 2002. Application of a watershed model to evaluate management effects on point and nonpoint source pollution. Transactions of the ASAE. 44(6): 1559-1570. DOI: 10.13031/2013.7041 .

4618. Santhi, C., M. White, J.G. Arnold, L. Norfleet, J. Atwood, R. Kellogg, N. Kannan, X. Wang, M. Di Luzio, J.R. Williams and T. Gerik. 2014. Estimating the effects of agricultural conservation practices on phosphorus loads in the Mississippi-Atchafalaya River Basin. Transactions of the ASABE. 57(5): 1339-1357. DOI: 10.13031/trans.57.10458 .

4619. Santhi, C., N. Kannan, J.G. Arnold and M. Di Luzio. 2008. Spatial calibration and temporal validation of flow for regional scale hydrologic modeling. Journal of the American Water Resources Association. 44(4): 829-846. DOI: 10.1111/j.1752-1688.2008.00207.x .

4620. Santhi, C., R. Srinivasan, J.G. Arnold and J.R. Williams. 2006. A modeling approach to evaluate the impacts of water quality management plans implemented in a watershed in Texas. Environmental Modelling & Software. 21(8): 1141-1157. DOI: 10.1016/j.envsoft.2005.05.013 .

4621. Santos, C.A.S., C. Almeida, T.B. Ramos, F.A. Tocha, R. Oliveira and R. Neves. 2018. Using a hierarchical approach to calibrate SWAT and predict the semi-arid hydrologic regime of northeastern Brazil. Water. 10(9): 1137. DOI: 10.3390/w10091137 .

4622. Santos, R., L.S. Fernandes, R. Cortes and F. Pacheco. 2018. Analysis of hydrology and water allocation with SWAT and MIKE Hydro Basin in the Sabor River Basin, Portugal. Transactions on Ecology and the Environment. 215: 347-355. DOI: 10.2495/EID180311 .

4623. Santos, R.M.B., L.F.S. Fernandes, R.M.V. Cortes and F.A.L. Pacheco. 2019. Development of a hydrologic and water allocation model to assess water availability in the Sabor River Basin (Portugal). International Journal of Environmental Research. 16(13): 2419. DOI: 10.3390/ijerph16132419 .

4624. Santra, P. and B.S. Das. 2013. Modeling runoff from an agricultural watershed of western catchment of Chilika lake through ArcSWAT. Journal of Hydro-environment Research. 7(4): 261–269. DOI: 10.1016/j.jher.2013.04.005 .

4625. Santra, P., B.S. Das, and D. Chakravarty. 2011. Delineation of hydrologically similar units in a watershed based on fuzzy classification of soil hydraulic properties. Hydrological Processes. 25(1): 64-79. DOI: 10.1002/hyp.7820 .

4626. Sanyal, J., J.W. Lauer and S. Kanae. 2021. Examining the downstream geomorphic impact of a large dam under climate change. Catena. 196: 104850. DOI: 10.1016/j.catena.2020.104850 .

4627. Sao, D., T. Kato, L.H. Tu, P. Thouk, A. Fitriyah and C. Oeurng. 2020. Evaluation of different objective functions used in the SUFI-2 calibration process of SWAT-CUP on water balance analysis: A case study of the Pursat River basin, Cambodia. Water. 12(10): 2901. DOI: 10.3390/w12102901 .

4628. Saraf, V.R. and D.G. Regulwar. 2018. Impact of climate change on runoff generation in the Upper Godavari River Basin, India. Journal of Hazardous, Toxic and Radioactive Waste. 22(4): 04018021. DOI: 10.1061/(ASCE)HZ.2153-5515.0000416 .

4629. Sarah, S., W. Shah and S. Ahmed. 2021. Modeling and comparing streamflow simulations in two different montane watersheds of Western Himalayas. Groundwater for Sustainable Development. 15: 100689. DOI: 10.1016/j.gsd.2021.100689 .

4630. Saranya, S.M. and V.V. Nair. 2022. Impact evaluation and analysis at a river basin scale under projected climate and land-use change. Water Supply. 22(12): 8907-8922. DOI: 10.2166/ws.2022.417 .

4631. Saraswat, D., J.R. Frankenberg, N. Pai, S. Ale, P. Daggupati, K.R. Douglas-Mankin and M.A. Youssef. 2015. Hydrologic and water quality models: Documentation and reporting procedures for calibration, validation and use. Transactions of the ASABE. 58(6): 1787-1797. DOI: 10.13031/trans.58.10707 .

4632. Sareshtehdari, A., M. Ghafouri, A.J. Ardakani and R. Bayat. 2014. Reliability of land capability map in watershed hydrological simulation using SWAT model. ECOPERSIA. 2(3): 715-725. URL: http://ecopersia.modares.ac.ir/article_12813_5183.html.

4633. Sari, O. and C. Donmez. 2018. Modelling hydrologic dynamics of Lower Seyhan Basin by SWAT model approach. Çukurova Üniversitesi Fen Bilimleri Enstitüsü. 36(1): 91-104. URL: https://fbe.cukurova.edu.tr/cu/e-dergi/makaleler/2018-yili.

4634. Sarkar, S. and S.A. Miller. 2014. Water quality impacts of converting intensively-managed agricultural lands to switchgrass. Biomass & Bioenergy. 68: 32-43. DOI: 10.1016/j.biombioe.2014.05.026 .

4635. Sarkar, S., H.N. Yonce, A. Keeley, T.J. Canfield, J.B. Butcher and M.J. Paul. 2019. Integration of SWAT and HSPF for simulation of sediment sources in legacy sediment-impacted agricultural watersheds. Journal of the American Water Resources Association. 55(2): 497-510. DOI: 10.1111/1752-1688.12731 .

4636. Sarkar, S., S.A. Miller, J.R. Frederick and J.F. Chamberlain. 2011. Modeling nitrogen loss from switchgrass agricultural systems. Biomass & Bioenergy. 35(10): 4381-4389. DOI: 10.1016/j.biombioe.2011.08.009 .

4637. Sarkar, S., V. Vaibhav and A. Singh. 2017. Estimation of sediment yield by using Soil and Water Assessment Tool for an agricultural watershed in eastern India. Indian Journal of Soil Conservation. 41(1): 52-59. URL: http://www.indianjournals.com/ijor.aspx?target=ijor:ijsc&volume=45&issue=1&article=007.

4638. Sarkar, T. and T. Pal. 2020. Revisiting the methodological development in soil erosion research. Ensemble. : 20073100297RF. URL: https://www.ensembledrms.in/articles/ensemble-2020-0202-a016/.

4639. Sarma, A. and K.N. Tiwari. 2014. A comparative appraisal of hydrological behavior of SRTM DEM at catchment level. Journal of Hydrology. 519 (Part B): 1394–1404. DOI: 10.1016/j.jhydrol.2014.08.062 .

4640. Sarmadian, F., P. Rahimy, and A. Keshavarzi. 2010. Modeling of Sediment Yield and Bicarbonate Concentration in Kordan Watershed. Journal of Agricultural Science and Technology. 12(1): 121-131. URL: http://www.ldd.go.th/swcst/Report/soil/.%5Csymposium/.%5Cpdf/1829.pdf.

4641. Sarrazin, F., F. Pianosi and T. Wagener. 2016. Global sensitivity analysis of environmental models: Convergence and validation. Environmental Modelling & Software. 79: 135-152. DOI: 10.1016/j.envsoft.2016.02.005 .

4642. Satriawan, H. 2013. Permodelan dalam perencanaan konservasi tanah dan air. Jurnal Lentera. 13(1): 10-18. URL: http://siakad.umuslim.ac.id/jurnal/index.php/LTR1/article/view/63.

4643. Savage, J. and M. Ribaudo. 2016. Improving the efficiency of voluntary water quality conservation programs. Land Economics. 92(1): 148-166. DOI: 10.3368/le.92.1.148 .

4644. Savé, R., F. de Herralde, X. Aranda, E. Pla, D. Pascual, I. Funes and C. Biel. 2012. Potential changes in irrigation requirements and phenology of maize, apple trees and alfalfa under global change conditions in Fluvià watershed during XXIst century: Results from a modeling approximation to watershed-level water balance. Agricultural Water Management. 114: 78-87. DOI: 10.1016/j.agwat.2012.07.006 .

4645. Sayasane, R., A. Kawasaki, S. Shrestha and M. Takamatsu. 2016. Assessment of potential impacts of climate and land use changes on stream flow: A case study of the Nam Xong Watershed in Lao PDR. Journal of Water and Climate Change. 7(1): 184-197. DOI: 10.2166/wcc.2015.050 .

4646. Sayyad, D. and E. Omidvar. 2021. Evaluation of the efficiency of SWAT model in estimating daily discharges of no gauge basins with zoning approach in arid regions. Journal of Hydrogeomorphology. 7(25): 182-161. URL: https://hyd.tabrizu.ac.ir/article_12675.html?lang=en.

4647. Scavia, D., J.D. Allan, K.K. Arend, S. Bartell, D. Beletsky, N.S. Bosch, S.B. Brandt, R.D. Briland, I. Daloglu, J.V. DePinto, D.M. Dolan, M.A. Evans, T.M. Farmer, D. Goto, H. Han, T.O. Hook, R. Knight, S.A. Ludsin, D. Mason, A.M. Michalak, R.P. Richards, J.J Roberts, D.K. Rucinski, E. Rutherford, D.J. Schwab, T.M. Sesterhenn, H. Zhang and Y. Zhou. 2014. Assessing and addressing the re-eutrophication of Lake Erie: Central basin hypoxia. Journal of Great Lakes Research. 40(2): 226-246. DOI: 10.1016/j.jglr.2014.02.004 .

4648. Scavia, D., M. Kalcic, R.L. Muenich, J. Read, N. Aloysius, I. Bertani, C. Boles, R. Confesor, J. DePinto, M. Gildow, J. Martin, T. Redder, D. Robertson, S. Sowa, Y.-C. Wang and H. Yen. 2017. Multiple models guide strategies for agricultural nutrient reductions. Frontiers in Ecology and the Environment. 15(3): 126-132. DOI: 10.1002/fee.1472 .

4649. Scavia, D., Y.-C. Wang, D.R. Obenour, A. Apostel, S.J. Basile, M.M. Kalcic, C.J. Kirchhoff, L. Miralha, R.L. Muenich and A.L. Steiner. 2021. Quantifying uncertainty cascading from climate, watershed, and lake models in harmful algal bloom predictions. Science of the Total Environment. 759: 143487. DOI: 10.1016/j.scitotenv.2020.143487 .

4650. Schenck, K., L. Rosenblum, B. Ramakrishnan, J. Carson, D. Macke and C. Nietch. 2015. Correlation of trace contaminants to wastewater management practices in small watersheds. Environmental Science Processes & Impacts. 17: 956-964. DOI: 10.1039/c4em00583j .

4651. Scherer, L., A. Venkatesh, R. Karuppiah and S. Pfister. 2015. Large-scale hydrological modeling for calculating water stress indices: Implications of improved spatio-temporal resolution, surface-groundwater differentiation and uncertainty characterization. Environmental Science & Technology. 49 (8): 4971–4979. DOI: 10.1021/acs.est.5b00429 .

4652. Schierhorn, F., D. Muller, A.V. Prishchepov, M. Faramarzi and A. Balmann. 2014. The potential of Russia to increase its wheat production through cropland expansion and intensification. Global Food Security. 3(3–4): 133–141. DOI: 10.1016/j.gfs.2014.10.007 .

4653. Schierhorn, F., M. Faramarzi, A.V. Prishchepov, F.J. Koch and D. Muller. 2014. Quantifying yield gaps in wheat production in Russia. Environmental Research Letters. 9: 1-12. DOI: 10.1088/1748-9326/9/8/084017 .

4654. Schilling, C., M. Zessner, A.P. Blaschke, D. Gutknecht and H. Kroiss. 2008. Groundwater protection and diffuse nitrogen emissions to surface waters-which catchment areas have to be considered? Water Science and Technology. 7(3): 103-110. DOI: 10.2166/ws.2007.072 .

4655. Schilling, K.E. and C.F. Wolter. 2009. Modeling nitrate-nitrogen load reduction strategies for the Des Moines River, Iowa using SWAT. Environmental Management. 44(4): 671-682. DOI: 10.1007/s00267-009-9364-y .

4656. Schilling, K.E., J. Mount , K.M. Suttles, E.L. McLellan, P.W. Gassman, M.J. White and J.G. Arnold. 2023. An approach for prioritizing natural infrastructure practices to mitigate flood and nitrate risks in the Mississippi-Atchafalaya River Basin. Land. 12(2): 276. DOI: 10.3390/land12020276 .

4657. Schilling, K.E., M.K. Jha, Y.-K. Zhang, P.W. Gassman, and C.F. Wolter. 2008. Impact of land use and land cover change on the water balance of a large agricultural watershed: Historical effects and future directions. Water Resources Research. 44: 1-12. DOI: 10.1029/2007WR006644 .

4658. Schilling, K.E., P.W. Gassman, C.L. Kling, T. Campbell, M.K. Jha, C.F. Wolter and J.G. Arnold. 2014. The potential for agricultural land use change to reduce flood risk in a large watershed. Hydrological Processes. 28(8): 3314-3325. DOI: 10.1002/hyp.9865 .

4659. Schilling, K.E., P.W. Gassman, A. Arenas-Amado, C.S. Jones and J. Arnold. 2019. Quantifying the contribution of tile drainage to basin-scale water yield using analytical and numerical models. Science of the Total Environment. 657: 297-309. DOI: 10.1016/j.scitotenv.2018.11.340 .

4660. Schmalz, B. and N. Fohrer. 2009. Comparing model sensitivities of different landscapes using the ecohydrological SWAT model. Advances in Geosciences. 21: 91-98. DOI: 10.5194/adgeo-21-91-2009 .

4661. Schmalz, B., F. Tavares and N. Fohrer. 2007. Assessment of nutrient entry pathways and dominating hydrological processes in lowland catchments. Advances in Geosciences. 11: 107-112. DOI: 10.5194/adgeo-11-107-2007 .

4662. Schmalz, B., F. Tavares and N. Fohrer. 2008. Modelling hydrological processes in mesoscale lowland river basins with SWAT - capabilities and challenges. Hydrological Sciences Journal. 53(5): 989-1000. DOI: 10.1623/hysj.53.5.989 .

4663. Schmalz, B., K. Bieger and N. Fohrer. 2008. A method to assess instream water quality - the role of nitrogen entries in a north German rural lowland catchment. Advances in Geosciences. 18: 37-41. DOI: 10.5194/adgeo-18-37-2008 .

4664. Schmalz, B., M. Kruse, J. Kiesel, F. Müller and N. Fohrer. 2016. Water-related ecosystem services in Western Siberian lowland basins—Analysing and mapping spatial and seasonal effects onregulating services based on ecohydrological modelling results. Ecological Indicators. 71: 55-65. DOI: 10.1016/j.ecolind.2016.06.050 .

4665. Schmalz, B., M. Kuemmerlen, A. Strehmel, S. Song, Q. Cai, S. Jahnig and N. Fohrer. 2012. Integrated modelling of aquatic ecosystems in China: Ecohydrology and hydraulics. Hydrologie und Wasserbewirtschaftung. 56(4): 169-184. DOI: 10.5675/HyWa_2012,4_2 .

4666. Schmalz, B., M. Kuemmerlen, J. Kiesel, Q. Cai, S.C. Jahnig and N. Fohrer. 2015. Impacts of land use changes on hydrological components and macroinvertebrate distributions in the Poyang lake area. Ecohydrology. 8(6): 1119-1136. DOI: 10.1002/eco.1569 .

4667. Schmalz, B., Q. Zhang, M. Kemmerlen, Q. Cai, S.C. Jahnig and N. Fohrer. 2015. Modelling spatial distribution of surface runoff and sediment yield in a Chinese river basin without continuous sediment monitoring. Hydrological Sciences Journal. 60(5): 801-824. DOI: 10.1080/02626667.2014.967245 .

4668. Schmidt, A., R.A. Fournier, J.E. Luther and M. Trudel. 2020. Development of a mapping framework for ecosystem services: The case of sediment control supply at a watershed scale in Newfoundland, Canada. Ecological Indicators. 117: 106518. DOI: 10.1016/j.ecolind.2020.106518 .

4669. Schmidt, E. and B. Zemadim. 2015. Expanding sustainable land management in Ethiopia: Scenarios for improved agricultural water management in the Blue Nile. Agricultural Water Management. 158: 166-178. DOI: 10.1016/j.agwat.2015.05.001 .

4670. Schmidt, E., P. Chinowsky, S. Robinson and K. Strzepek. 2017. Determinants and impact of sustainable land management (SLM) investments: A systems evaluation in the Blue Nile Basin, Ethiopia. Agricultural Economics. 48(5): 613-627. DOI: 10.1111/agec.12361 .

4671. Schmidt, M.L., S. Sarkar, J.B. Butcher, T.E. Johnson and S.H. Julius. 2019. Agricultural best management practice sensitivity to changing air temperature and precipitation. Transactions of the ASABE. 62(4): 1021-1033. DOI: 10.13031/trans.13292 .

4672. Schneider, K., B. Ketzer, L. Breuer, K. B. Vache, C. Bernhofer and H.-G. Frede. 2007. Evaluation of evapotranspiration methods for model validation in a semi-arid watershed in northern China. Advances in Geosciences. 11: 37-42. DOI: 10.5194/adgeo-11-37-2007 .

4673. Schomberg, J.D., G. Host, L.B. Johnson and C. Richards. 2005. Evaluating the influence of landform, surficial geology, and land use on streams using hydrologic simulation modeling. Aquatic Sciences. 67(4): 528-540. DOI: 10.1007/s00027-005-0785-2 .

4674. Schoumans, O.F., M. Silgram, D.J.J. Walvoort, P. Groenendijk, F. Bouraoui, H.E. Andersen, A. Lo Porto, H. Reisser, G. Le Gall, S. Anthony, B. Arheimer, H. Johnsson, Y. Panagopoulos, M. Mimikou, U. Zwerynert, H. Behrendt and A. Barr. 2009. Evaluation of the difference of eight model applications to assess diffuse annual nutrient losses from agricultural land. Journal of Environmental Monitoring. 11(3): 540-553. DOI: 10.1039/b823240g .

4675. Schoumans, O.F., M. Silgram, P. Groenendijk, F. Bouraoui, H.E. Andersen, B. Kronvang, H. Behrendt, B. Arheimer, H. Johnsson, Y. Panagopoulos, M. Minikou, A. Lo Porto, H. Reisser, G. Le Gall, A. Barr and S.G. Anthony. 2009. Description of nine nutrient loss models: Capabilities and suitability based on their characteristics. Journal of Environmental Monitoring. 11(3): 506-514. DOI: 10.1039/b823239c .

4676. Schull, V.Z., B. Daher, M.W. Gitau, S. Mehan and D.C. Flanagan. 2020. Analyzing FEW nexus modeling tools for water resources decision-making and management applications. Food and Bioproducts Processing. 119: 108-124. DOI: 10.1016/j.fbp.2019.10.011 .

4677. Schull, V.Z., S. Mehan, M.W. Gitau, D.R. Johnson, S. Singh, J.P. Sesmero and D.C. Flanagan. 2021. Construction of critical periods for water resources management and their application in the FEW Nexus. Water. 13(5): 718. DOI: 10.3390/w13050718 .

4678. Schuol, J. and K.C. Abbaspour. 2006. Calibration and uncertainty issues of a hydrological model (SWAT) applied to West Africa. Advances in Geosciences. 9: 137-143. DOI: 10.5194/adgeo-9-137-2006 .

4679. Schuol, J. and K.C. Abbaspour. 2007. Using monthly weather statistics to generate daily data in a SWAT model application to West Africa. Ecological Modelling. 201(3-4): 301-311. DOI: 10.1016/j.ecolmodel.2006.09.028 .

4680. Schuol, J., K. C. Abbaspour, R. Srinivasan, and H. Yang. 2008. Estimation of freshwater availability in the West African sub-continent using the SWAT hydrologic model. Journal of Hydrology. 352(1-2): 30-49. DOI: 10.1016/j.jhydrol.2007.12.025 .

4681. Schuol, J., K.C. Abbaspour, H. Yang, R. Srinivasan, and A.J.B. Zehnder. 2008. Modeling blue and green water availability in Africa. Water Resources Research. 44(W07406): 1-18. URL: http://swatmodel.tamu.edu/publications/peer-reviewed-publications/.

4682. Schürz, C., B. Hollosi, C. Matulla, A. Pressi, T. Erti, K. Schulz and B. Mehdi. 2019. A comprehensive sensitivity and uncertainty analysis for discharge and nitrate-nitrogen loads involving multiple discrete model inputs under future changing conditions. Hydrology and Earth System Sciences. 23(3): 1211-1244. DOI: 10.5194/hess-23-1211-2019 .

4683. Schwab, E.R., M.M. Kalcic and R.S. Wilson. 2021. Assessing the accuracy of farmers’ nutrient loss risk perceptions. Environmental Management. 68(4): 539–552. DOI: 10.1007/s00267-021-01519-1 .

4684. Schwank, J., R. Escobar, G.H. Giron and E. Moran-Tejeda. 2014. Modeling of the Mendoza river watershed as a tool to study climate change impacts on water availability. Environmental Science and Policy. 43: 91-97. DOI: 10.1016/j.envsci.2014.01.002 .

4685. Schweizer, P.E. and H.I. Jager. 2011. Modeling regional variation in riverine fish biodiversity in the Arkansas-White-Red River Basin. Transactions of the American Fisheries Society. 140(5): 1227-1239. DOI: 10.1080/00028487.2011.618354 .

4686. Scott, J.T., R. D. Doyle, S.J. Prochnow and J.D. White. 2008. Are watershed and lacustrine controls on Planktonic N2 fixation hierarchically structured? Ecological Applications. 18(3): 805-819. DOI: 10.1890/07-0105.1 .

4687. Scott, L. and A. Villamagna. 2020. SWAT vs. RUSLE: Which better predicts benthic habitat condition? Journal of Soil and Water Conservation. 75(6): 765-774. DOI: 10.2489/jswc.2020.00183 .

4688. Scott-Shaw, B.C., R. Lechmere-Oertel and T.R. Hill. 2022. Calibration, validation and application of the SWAT model to determine the hydrological benefit of wetland rehabilitation in KwaZulu-Natal, South Africa. Water SA. 48(4): 348–358. DOI: 10.17159/wsa/2022.v48.i4.3857 .

4689. Scott-Shaw, B.C., T.R. Hill and J.S. Gillham. 2020. Calibration of a modelling approach for sediment yield in a wattle plantation, KwaZulu-Natal, South Africa. Water SA. 46(2): 171-181. DOI: 10.17159/wsa/2020.v46.i2.8232 .

4690. Secchi, S., P.W. Gassman, M. Jha, L. Kurkalova, H.H. Feng, T. Campbell and C.L. Kling. 2007. The cost of cleaner water: Assessing agricultural pollution reduction at the watershed scale. Journal of Soil and Water Conservation. 62(1): 10-21. URL: http://www.jswconline.org/content/62/1/10.short.

4691. Secchi, S., P.W. Gassman, M. Jha, L. Kurkalova and C.L. Kling. 2011. Potential water quality changes due to corn expansion in the Upper Mississippi River Basin. Ecological Applications. 21(4): 1068-1084. DOI: 10.1890/09-0619.1 .

4692. Sedighkia, M. and A. Abdoli. 2023. Design of optimal environmental flow regime at downstream of multireservoir systems by a coupled SWAT‐reservoir operation optimization method. Environment, Development, and Sustainability. 25(1): 834–854. DOI: 10.1007/s10668-021-02081-w .

4693. Sedighkia, M., B. Datta and A. Abdoli. 2022. Reducing impacts of rice felds nitrate contamination on the river ecosystem by a coupled SWAT reservoir operation optimization model. Arabian Journal of Geosciences. 15(2): 160. DOI: 10.1007/s12517-022-09439-y .

4694. Sedighkia, M., B. Datta and S. Razavi. 2023. Optimizing agricultural cropping patterns under irrigation water use restrictions due to environmental flow requirements and climate change. Water Resources and Economics. 41: 100216. DOI: 10.1016/j.wre.2023.100216 .

4695. Sedighkia, M.Z. Fathi and A. Abdoli. 2022. Evaluating linked treatment‐reservoir operation system to mitigate nitrate concentration of agricultural runoff. International Journal of Environmental Science and Technology. 19(10): 9915-9928. DOI: 10.1007/s13762-021-03821-1 .

4696. Segurado, P., C. Almeida, R. Neves, M.T. Ferreira and P. Branco. 2018. Understanding multiple stressors in a Mediterranean basin: Combined effects of land use, water scarcity and nutrient enrichment. Science of the Total Environment. 624: 1221-1233. DOI: 10.1016/j.scitotenv.2017.12.201 .

4697. Sehgal, V. and V. Sridhar. 2018. Effect of hydroclimatological teleconnections on the watershed-scale drought predictability in the southeastern United States. International Journal of Climatology. 38 (Suppl.1): e1139-e1157. DOI: 10.1002/joc.5439 .

4698. Sehgal, V. and V. Sridhar. 2019. Watershed-scale retrospective drought analysis and seasonal forecasting using multi-layer, high-resolution simulated soil moisture for Southeastern U.S. Weather and Climate Extremes. 23: 100191. DOI: 10.1016/j.wace.2018.100191 .

4699. Sehgal, V., V. Sridhar, L. Juran and J.A. Ogejo. 2018. Integrating climate forecasts with the Soil and Water Assessment Tool (SWAT) for high-resolution hydrologic simulations and forecasts in the Southeastern U.S. Sustainability. 10(9): 3079. DOI: 10.3390/su10093079 .

4700. Seidou, O., A. Ramsay and I. Nistor. 2012. Climate change impacts on extreme floods I: Combining imperfect deterministic simulations and non-stationary frequency analysis. Natural Hazards. 61(2): 647-659. DOI: 10.1007/s11069-011-0052-x .

4701. Seidou, O., A. Ramsay and I. Nistor. 2012. Climate change impacts on extreme floods II: Improving flood future peaks simulation using non-stationary frequency analysis. Natural Hazards. 60(2): 715-726. DOI: 10.1007/s11069-011-0047-7 .

4702. Seka, A.M., J. Zhang, G.T. Ayele, Y.G. Demeke, J. Han and F.A. Prodhan. 2022. Spatio-temporal analysis of water storage variation and temporal correlations in the East Africa lake basins. Journal of Hydrology: Regional Studies. 41: 101094. DOI: 10.1016/j.ejrh.2022.101094 .

4703. Sellami, H., I. La Jeunesse, S. Benabdallah, and M. Vanclooster. 2013. Parameter and rating curve uncertainty propagation analysis of the SWAT model for two small Mediterranean catchments. Hydrological Sciences Journal. 58(8): 1635-1657. DOI: 10.1080/02626667.2013.837222 .

4704. Sellami, H., I. La Jeunesse, S. Benabdallah, N. Baghdadi and M. Vanclooster. 2014. Uncertainty analysis in model parameters regionalization: a case study involving the SWAT model in Mediterranean catchments (Southern France). Hydrology and Earth System Sciences. 18: 2393-2413. DOI: 10.5194/hess-18-2393-2014 .

4705. Sellami, H., S. Benabdallah, I.L. Jeunesse and M. Vanclooster. 2016. Climate models and hydrologic parameter uncertainties in climate change impacts on monthly runoff and daily flow duration curve of a Mediterranean catchment. Hydrological Sciences Journal. 61(8): 1415-1429. DOI: 10.1080/02626667.2015.1040801 .

4706. Sellami, H., S. Benabdallah, I. La Jeunesse and M. Vanclooster. 2016. Quantifying hydrological responses of small Mediterranean catchments under climate change projections. Science of the Total Environment. 543 (Part B): 924-936. DOI: 10.1016/j.scitotenv.2015.07.006 .

4707. Semiromi M.T. and M. Koch. 2019. Analysis of spatio-temporal variability of surface–groundwater interactions in the Gharehsoo River Basin, Iran, using a coupled SWAT-MODFLOW model. Environmental Earth Sciences. 78: 201. DOI: 10.1007/s12665-019-8206-3 .

4708. Semiromi, M.T. and M. Koch. 2020. How do gaining and losing streams react to the combined effects of climate change and pumping in the Gharehsoo River Basin, Iran? Water Resources Research. 56: e2019WR025388. DOI: 10.1029/2019WR025388 .

4709. Sen, S., P. Srivastava, P.A. Vadas and L. Kalin. 2012. Watershed-level comparison of predictability and sensitivity of two phosphorus models. Journal of Environmental Quality. 41(5): 1642-1652. DOI: 10.2134/jeq2011.0242 .

4710. Senan, S., J. Thomas, V.K. Vema, P.J. Jainet, S. Nizar, S. Sivan and K.P. Sudheer. 2022. A study of the influence of rainfall datasets’ spatial resolution on stream simulation in Chaliyar River Basin, India. Journal of Water and Climate Change. 13(12): 4234-4254. DOI: 10.2166/wcc.2022.273 .

4711. Senbeta, T.B. and R.J. Romanowicz. 2021. The Role of climate change and human interventions in affecting watershed runoff responses. Hydrological Processes. 35(12): e14448. DOI: 10.1002/hyp.14448 .

4712. Senent-Aparicio, J., A. López-Ballesteros, A. Nielsen and D. Trolle. 2021. A holistic approach for determining the hydrology of the mar menor coastal lagoon by combining hydrological & hydrodynamic models. Journal of Hydrology. 603(Part D): 127150. DOI: 10.1016/j.jhydrol.2021.127150 .

4713. Senent-Aparicio, J., A. López-Ballesteros, F. Cabezas, J. Pérez-Sánchez and E. Molina-Navarro. 2021. A Modelling approach to forecast the effect of climate change on the Tagus-Segura interbasin water transfer. Water Resources Management. 35(11): 3791-3808. DOI: 10.1007/s11269-021-02919-y .

4714. Senent-Aparicio, J., C. George and R. Srinivasan. 2021. Introducing a new post-processing tool for the SWAT+ model to evaluate environmental flows. Environmental Modelling & Software. 136: 104944. DOI: 10.1016/j.envsoft.2020.104944 .

4715. Senent-Aparicio, J., F.J. Alcalá, S. Liu and P. Jimeno-Sáez. 2020. Coupling SWAT model and CMB method for modeling of high-permeability bedrock basins receiving interbasin groundwater flow. Water. 12(3): 657. DOI: 10.3390/w12030657 .

4716. Senent-Aparicio, J., J. Pérez-Sánchez, J. Carrillo-García and J. Soto. 2017. Using SWAT and fuzzy TOPSIS to assess the impact of climate change in the headwaters of the Segura River Basin (SE Spain). Water. 9(2): 149. DOI: 10.3390/w9020149 .

4717. Senent-Aparicio, J., P. Blanco-Gómez, A. López-Ballesteros, P. Jimeno-Sáez and J. Pérez-Sánchez. 2021. Evaluating the potential of GloFAS-ERA5 river discharge reanalysis data for calibrating the SWAT model in the Grande San Miguel River Basin (El Salvador). Remote Sensing. 13(16): 3299. DOI: 10.3390/rs13163299 .

4718. Senent-Aparicio, J., P. Jimeno-Sáez, A. Bueno-Crespo, J. Pérez-Sánchez and D. Pulido-Velázquez. 2019. Coupling machine-learning techniques with SWAT model for instantaneous peak flow prediction. Biosystems Engineering. 177: 67-77. DOI: 10.1016/j.biosystemseng.2018.04.022 .

4719. Senent-Aparicio, J., P. Jimeno-Sáez, A. López-Ballesteros, J. Ginés Giménez, J. Pérez-Sánchez, José M. Cecilia and R. Srinivasan. 2021. Impacts of SWAT weather generator statistics from high-resolution datasets on monthly streamflow simulation over Peninsular Spain. Journal of Hydrology: Regional Studies. 35: 100826. DOI: 10.1016/j.ejrh.2021.100826 .

4720. Senent-Aparicio, J., S. Liu, J. Pérez-Sánchez, A. López-Ballesteros and P. Jimeno-Sáez. 2018. Assessing impacts of climate variability and reforestation activities on water resources in the headwaters of the Segura River Basin (SE Spain). Sustainability. 10(9): 3277. DOI: 10.3390/su10093277 .

4721. Seo, D., J.S. Kim and E. Chang. 2008. Application of medium class land cover maps to AVSWAT2000 for the prediction of inflow, CBOD, TN and TP for Yongdam Lake, Korea. Water Science and Technology. 55(1-2): 513-518. DOI: 10.2166/wst.2007.011 .

4722. Seo, M., F. Jaber and R. Srinivasan. 2017. Evaluating various low-impact development scenarios for optimal design criteria development. Water. 9(4): 270. DOI: 10.3390/w9040270 .

4723. Seo, M., F. Jaber, R. Srinivasan and J. Jeong. 2017. Evaluating the impact of Low Impact Development (LID) practices on water quantity and quality under different development designs using SWAT. Water. 9(3): 193. DOI: 10.3390/w9030193 .

4724. Seo, M., H. Yen, M.-K. Kim and J. Jeong. 2014. Transferability of SWAT Models between SWAT2009 and SWAT2012. Journal of Environmental Quality. 43(3): 869–880. DOI: 10.2134/jeq2013.11.0450 .

4725. Seong, Y.J., S.H. Lee and Y. Jung. 2019. Assessment of the uncertainty in the SWAT parameters based on formal and informal likelihood measure. Journal of Korea Water Resources Association. 52(11): 931-940. DOI: 10.3741/JKWRA.2019.52.11.931 .

4726. Serpa, D., J.P. Nunes, J.J. Keizer and N. Abrantes. 2017. Impacts of climate and land use changes on the water quality of a small Mediterranean catchment with intensive viticulture. Environmental Pollution. 224: 454-465. DOI: 10.1016/j.envpol.2017.02.026 .

4727. Serpa, D., J.P. Nunes, J. Santos, E. Sampaio, R. Jacinto, S. Veiga, J.C. Lima, M. Moreira, J. Corte-Real, J.J. Keizer and N. Abrantes. 2015. Impacts of climate and land use changes on the hydrological and erosion processes of two contrasting Mediterranean catchments. Science of the Total Environment. 538: 64-77. DOI: 10.1016/j.scitotenv.2015.08.033 .

4728. Serrão, E.A. de O., M.T. Silva, F. de A.S. Sousa, A.M.M. de Lima, C.A. dos Santos, L.C.P. de Ataide and V.P.R. de Silva. 2019. Four decades of hydrological process simulation of the Itacaiúnas River Watershed, southeast Amazon. Bulletin of Geodetic Sciences. 25(3): e20190018. DOI: 10.1590/s1982-21702019000300018 .

4729. Serrão, E.A. de O., M.T. Silva, T.R. Ferreira, L.C.P. de Ataide, C.A. dos Santos, A.M.M. de Lima, V. de P.R. da Silva, F. de A.S. de Sousa and D.J.C. Gomes. 2021. Impacts of land use and land cover changes on hydrological processes and sediment yield determined using the SWAT model. International Journal of Sediment Research. 37(1): 54-69. DOI: 10.1016/j.ijsrc.2021.04.002 .

4730. Sertel, E., M.Z. Imamoglu, G. Cuceloglu and A. Erturk. 2019. Impacts of land cover/use changes on hydrological processes in a rapidly urbanizing mid-latitude water supply catchment. Water. 11(5): 1075. DOI: 10.3390/w11051075 .

4731. Setegn, S.G., A.M. Melesse, A. Haiduk, D. Webber, X. Wang and M.E. McClain. 2014. Modeling hydrological variability of fresh water resources in the Rio Cobre watershed, Jamaica. Catena. 120: 81-90. DOI: 10.1016/j.catena.2014.04.005 .

4732. Setegn, S.G., B. Darfahi, R. Srinivasan and A.M. Melesse. 2010. Modeling of sediment yield from Anjeni-gauged watershed, Ethiopia using SWAT model. Journal of the American Water Resources Association. 46(3): 514-526. DOI: 10.1111/j.1752-1688.2010.00431.x .

4733. Setegn, S.G., D. Rayner, A.M. Melesse, B. Dargahi and R. Srinivasan. 2011. Impact of climate change on the hydroclimatology of Lake Tana Basin, Ethiopia. Water Resources Research. 47(W04511): 1-13. DOI: 10.1029/2010WR009248 .

4734. Setegn, S.G., R. Srinivasan, B. Dargahi and A.M. Melesse. 2009. Spatial delineation of soil erosion vulnerability in the Lake Tana Basin, Ethiopia. Hydrological Processes. 23(26): 3738-3750. DOI: 10.1002/hyp.7476 .

4735. Setti S., R. Maheswaran, V. Sridhar, K.K. Barik, B. Merz and A. Agarwal. 2020. Inter-comparison of gauge-based gridded data, reanalysis and satellite precipitation product with an emphasis on hydrological modeling. Atmosphere. 11(11): 1252. DOI: 10.3390/atmos11111252 .

4736. Setti, S., M. Rathinasamy and S. Chandramouli. 2018. Assessment of water balance for a forest dominated coastal river basin in India using a semi distributed hydrological model. Modeling Earth Systems and Environment. 4(1): 127-140. DOI: 10.1007/s40808-017-0402-0 .

4737. Setti, S., K.K. Barik, B. Merz, A. Agarwal and M. Rathinasamy. 2022. Investigating the impact of calibration timescales on streamflow simulation, parameter sensitivity and model performance for Indian catchments. Hydrological Sciences Journal. 67(5): 661-675. DOI: 10.1080/02626667.2022.2036340 .

4738. Setti, S., R. Maheswaran, D. Radha, V. Sridhar, M. Asce, K.K. Barik and M.L. Narasimham. 2020. Attribution of hydrologic changes in a tropical river basin to rainfall variability and land-use change: Case study from India. Journal of Hydrologic Engineering. 25(8): 05020015. DOI: 10.1061/(ASCE)HE.1943-5584.0001937 .

4739. Setyorini, A., D. Khare and S.M. Pingale. 2017. Simulating the impact of land use/land cover change and climate variability on watershed hydrology in the Upper Brantas basin, Indonesia. Applied Geomatics. 9(3): 191–204. DOI: 10.1007/s12518-017-0193-z .

4740. Sexton, A.M., A. Shirmohammadi, A.M. Sadeghi and H.J. Montas. 2011. A stochastic method to characterize model uncertainty for a nutrient TMDL. Transactions of the ASABE. 54(6): 2197-2207. DOI: 10.13031/2013.40659 .

4741. Sexton, A.M., A. Shirmohammadi, A.M. Sedghi and H.J. Montas. 2011. Impact of parameter uncertainty on critical SWAT output simulations. Transactions of the ASABE. 54(2): 461-471. DOI: 10.13031/2013.36449 .

4742. Sexton, A.M., A.M. Sadeghi, X. Zhang, R. Srinivasan and A. Shirmohammadi. 2010. Using NEXRAD and rain gauge precipitation data for hydrologic calibration of SWAT in a northeastern watershed. Transactions of the ASABE. 53(5): 1501-1510. DOI: 10.13031/2013.34900 .

4743. Seyoum, W.M., A.M. Milewski and M.C. Durham. 2015. Understanding the relative impacts of natural processes and human activities on the hydrology of the Central Rift Valley Lakes, East Africa. Hydrological Processes. 29(19): 4312-4324. DOI: 10.1002/hyp.10490 .

4744. Shabani, A., X. Zhang and M. Ell. 2017. Modeling water quantity and sulfate concentrations in the Devils Lake watershed using the coupled SWAT and CE-QUAL-W2. Journal of the American Water Resources Association. 53(4): 748-760. DOI: 10.1111/1752-1688.12535 .

4745. Shabani, A., X. Zhang, X. Chu, T.P. Dodd and H. Zheng. 2020. Mitigating impact of Devils Lake flooding on the Sheyenne River sulfate concentration. Journal of the American Water Resources Association. 56(2): 297-309. DOI: 10.1111/1752-1688.12825 .

4746. Shafeeque, M., M.J.M. Cheema, A. Sarwar and M.W. Hussain. 2016. Quantification of groundwater abstraction using SWAT model in Hakra branch canal system of Pakistan. Pakistan Journal of Agricultural Sciences. 53(1): 249-255. DOI: 10.21162/PAKJAS/16.4199 .

4747. Shafeeque, M., Y. Luo, X. Wang and L. Sun. 2020. Altitudinal distribution of meltwater and its effects on glacio-hydrology in glacierized catchments, Central Asia. Journal of the American Water Resources Association. 56(1): 30-52. DOI: 10.1111/1752-1688.12805 .

4748. Shafiee-Jood, M., X. Cai, L. Chen, L. X.-Z. Liang and P. Kumar. 2014. Assessing the value of seasonal climate forecast information through an end-to-end forecasting framework: Application to U.S. 2012 drought in central Illinois. Water Resources Research. 50: 1-17. DOI: 10.1002/2014WR015822 .

4749. Shafiei, M., H. Ansari, K. Davari and B.Ghahraman. 2013. Calibration and Uncertainty Analysis of a Semi-Distributed Model in a Semi-Arid Region, Case Study: Nishabour Watershed. Journal of Science and Technology of Agriculture and Natural Resources. 17(64): 137-149. URL: http://jstnar.iut.ac.ir/browse.php?a_code=A-10-1502-1&sid=1&slc_lang=fa.

4750. Shafii, M. and B.A. Tolson. 2015. Optimizing hydrological consistency by incorporating hydrological signatures into model calibration objectives. Water Resources Research. 51(5): 3796-3814. DOI: 10.1002/2014WR016520 .

4751. Shafii, M., B. Tolson and L.S. Matott. 2015. Addressing subjective decision-making inherent in GLUE-based multi-criteria rainfall–runoff model calibration. Journal of Hydrology. 523: 693-705. DOI: 10.1016/j.jhydrol.2015.01.051 .

4752. Shah, M.I., A. Khan, T.A. Akbar, Q.K. Hassan, A.J. Khan and A. Dewan. 2020. Predicting hydrologic responses to climate changes in highly glacierized and mountainous region Upper Indus Basin. Royal Society Open Science. 7: 191957. DOI: 10.1098/rsos.191957 .

4753. Shah, S., Z. Duan, X. Song, R. Li, H. Mao, J. Liu, T. Ma and M. Wang. 2021. Evaluating the added value of multi-variable calibration of SWAT with remotely sensed evapotranspiration data for improving hydrological modeling. Journal of Hydrology. 603: 127046. DOI: 10.1016/j.jhydrol.2021.127046 .

4754. Shahid, M., K.U. Rahman, S. Haider, H.F. Gabriel, A.J. Khan, Q.B. Pham, B. Mohammadi, N.T.T. Linh and D.T. Anh. 2021. Assessing the potential and hydrological usefulness of the CHIRPS precipitation dataset over a complex topography in Pakistan. Hydrological Sciences Journal. 66(11): 1664-1684. DOI: 10.1080/02626667.2021.1957476 .

4755. Shahid, M., K.U. Rahman, S. Haider, H.F. Gabriel, A.J. Khan, Q.B. Pham, C.B. Prande, N.T.T. Linh and D.T. Ahn. 2021. Quantitative assessment of regional land use and climate change impact on runoff across Gilgit watershed. Environmental Earth Sciences. 80(22): 743. DOI: 10.1007/s12665-021-10032-x .

4756. Shahoei, S.V., J. Porhemmat, H. Sedghi, M. Hosseini and A. Saremi. 2017. Daily runoff simulation in Ravansar Sanjabi Basin, Kermanshah, Iran, using remote sensing through SRM Model and comparison to SWAT Model. Applied Ecology and Environmental Research. 15(3): 1843-1862. DOI: 10.15666/aeer/1503_18431862 .

4757. Shahvari, N., S. Khalilian, S.H. Mosavi and S.A. Mortazavi. 2019. Assessing climate change impacts on water resources and crop yield: A case study of Varamin Plain Basin, Iran. Environmental Monitoring and Assessment. 191: 134. DOI: 10.1007/s10661-019-7266-x .

4758. Shan, N., X.-H. Ruan, J. Xu and Z.-R. Pan. 2014. Estimating the optimal width of buffer strip for nonpoint source pollution control in the Three Gorges Reservoir Area, China. Ecological Modelling. 276: 51-63. DOI: 10.1016/j.ecolmodel.2013.12.019 .

4759. Shan, X., Z. Zhu, J. Ma, D. Fu, Y. Song, Q. Li, Z. Huang, L. Pei and H. Zhao. 2023. Modeling nutrient flows from land to rivers and seas – A review and synthesis. Marine Environmental Research. 186: 105928. DOI: 10.1016/j.marenvres.2023.105928 .

4760. Shang, X., X. Jiang, R. Jia and C. Wei. 2019. Land use and climate change effects on surface runoff variations in the Upper Heihe River Basin. Water. 11(2): 344. DOI: 10.3390/w11020344 .

4761. Shang, X., X. Wang, D. Zhang, W. Chen, X. Chen and H. Kong. 2012. An improved SWAT-based computational framework for identifying critical source areas for agricultural pollution at the lake basin scale. Ecological Modelling. 226: 1-10. DOI: 10.1016/j.ecolmodel.2011.11.030 .

4762. Shao, G., D. Zhang, Y. Guan, Y. Xie and F. Huang. 2019. Application of SWAT Model with a modified groundwater module to the semi-arid Hailiutu River Catchment, northwest China. Sustainability. 11(7): 2031. DOI: 10.3390/su11072031 .

4763. Shao, G., Y. Guan, D. Zhang, B. Yu, and J. Zhu. 2018. The impacts of climate variability and land use change on streamflow in the Hailiutu river basin. Water. 10(6): 814. DOI: 10.3390/w10060814 .

4764. Shao, H., C. Baffaut, J. E. Gao, N. O. Nelson, K. A. Janssen, G. M. Pierzynski and P. L. Barnes. 2013. Development and Application of Algorithms for Simulating Terraces within SWAT. Transactions of the ASABE. 56(5): 1715-1730. DOI: 10.13031/trans.56.10047 .

4765. Shao, H., J.-e. Gao, C. Baffaut, K.-q. Wang and H.-h. Fan. 2014. Simulation of sediment and nutrients runoff of terrace in the red soil district of China using the newly developed terrace algorithm within SWAT model. Journal of Northwest A&F University (Natural Science Edition). 42(5): 147-156. URL: http://www.xnxbz.net/xbnlkjdxzr/ch/reader/view_abstract.aspx?file_no=20140523.

4766. Shao, H., W. Yang, J. Lindsay, Y. Liu, Z. Yu and A. Oginskyy. 2017. An open source GIS-based decision support system for watershed evaluation of best management practices. Journal of the American Water Resources Association. 53(3): 521–531. DOI: 10.1111/1752-1688.12521 .

4767. Shao, Y., R.S. Lunetta, A.J. Macpherson, J. Luo and G. Chen. 2013. Assessing sediment yield for selected watersheds in the Laurentian Great Lakes basin under future agricultural scenarios. Environmental Management. 51(1): 59-69. DOI: 10.1007/s00267-012-9903-9 .

4768. Shaohua, Z., Q. Guoyu, Y. Yonghui, W. Xiao and Y. Jing. 2006. Advances in the coupled model of remote sensing and hydrology. Ecology and Environment. 15(6): 1391-1396. URL: http://caod.oriprobe.com/articles/11100314/Advances_in_the_coupled_model_of_remote_sensing_and_hydrology.htm.

4769. Sharafati, A. and E. Pezeshki. 2020. A strategy to assess the uncertainty of a climate change impact on extreme hydrological events in the semi-arid Dehbar Catchment in Iran. Theoretical and Applied Climatology. 139: 389-402. DOI: 10.1007/s00704-019-02979-6 .

4770. Sharannya, T.M., A. Mudbhatkal and A. Mahesha. 2018. Assessing climate change impacts on river hydrology - A case study in the Western Ghats of India. Journal of Earth System Science. 127: 78. DOI: 10.1007/s12040-018-0979-3 .

4771. Sharannya, T.M., K. Venkatesh, A. Mudbhatkal, M. Dineshkumar and A. Mahesha. 2021. Effects of land use and climate change on water scarcity in rivers of the Western Ghats of India. Environmental Monitoring and Assessment. 193(12): 820. DOI: 10.3390/su132414025 .

4772. Sharannya, T.M., N. Al-Ansari, S.D. Barma and A. Mahesha. 2020. Evaluation of satellite precipitation products in simulating streamflow in a humid tropical catchment of India using a semi-distributed hydrological model. Water. 12(9): 2400. DOI: 10.3390/w12092400 .

4773. Sharannya, T.M., V. Kolluru, M. Amai and T.D. Acharya. 2022. Enhanced streamflow simulations using nudging-based optimization coupled with data-driven and hydrological models. Journal of Hydrology: Regional Studies. 43(10): 101190. DOI: 10.1016/j.ejrh.2022.101190 .

4774. Sharifi, A., H. Yen, K.M.B. Boomer, L. Kalin, X. Li and D.E. Weller. 2017. Using multiple watershed models to assess the water quality impacts of alternate land development scenarios for a small community. Catena. 150: 87-99. DOI: 10.1016/j.catena.2016.11.009 .

4775. Sharifi, A., M.W. Lang, G.W. McCarty, A.M. Sadeghi, S. Lee, H. Yen, M.C. Rabenhorst, J. Jeong and I.-Y. Yeo. 2016. Improving model prediction reliability through enhanced representation of wetland soil processes and constrained model auto calibration – A paired watershed study. Journal of Hydrology. 541(Part B): 1088–1103. DOI: 10.1016/j.jhydrol.2016.08.022 .

4776. Sharma, A. and K.N. Tiwari. 2019. Predicting non-point source of pollution in Maithon Reservoir using a semi-distributed hydrological model. Environmental Monitoring and Assessment. 191: 522. DOI: 10.1007/s10661-019-7674-y .

4777. Sharma, A., P.L. Patel and P.J. Sharma. 2022. Influence of climate and land-use changes on the sensitivity of SWAT model parameters and water availability in a semi-arid river basin. Catena. 215: 106298. DOI: 10.1016/j.catena.2022.106298 .

4778. Sharma, S., S. Isik, P. Srivastava and L. Kalin. 2013. Deriving spatially-distributed precipitation using the artificial neural network and multi-linear regression models. Journal of Hydrologic Engineering. 18(2): 194–205. DOI: 10.1061/(ASCE)HE.1943-5584.0000617 .

4779. Sharma, S.K., M.L. Kansal and A. Tyagi. 2015. Resource assessment and strategic planning for improvement of water supply to Shimla city in India using geo-spatial techniques. The Egyptian Journal of Remote Sensing and Space Sciences. 18(1): 85–97. DOI: 10.1016/j.ejrs.2015.04.001 .

4780. Sharma, S.K., M.L. Kansal and A. Tyagi. 2016. Integrated water management plan for Shimla City in India using geo-spatial techniques. Water Science and Technology. 16(3): 641-652. DOI: 10.2166/ws.2015.173 .

4781. Sharma, S.K., R.K. Sinha, T.I. Eldho and H.M. Patel. 2023. Individual and combined impacts of land use/cover and climate change on water balance components of a tropical river basin. Environmental Modeling & Assessment. DOI: 10.1007/s10666-023-09916-y .

4782. Sharpley, A., P. Kleinman, C. Baffaut, D. Beegle, C. Bolster, A. Collick, Z. Easton, J. Lory, N. Nelson, D. Osmond, D. Radcliffe, T. Veith and J. Weld. 2017. Evaluation of phosphorous site assessment tools: Lessons from the USA. Journal of Environmental Quality. 46(6): 1250-1256. DOI: 10.2134/jeq2016.11.0427 .

4783. Shawul, A.A. and S. Chakma. 2020. Suitability of global precipitation estimates for hydrologic prediction in the main watersheds of Upper Awash Basin. Environmental Earth Sciences. 79(2): 53. DOI: 10.1007/s12665-019-8801-3 .

4784. Shawul, A.A., S. Chakma and A.M. Melesse. 2019. The response of water balance components to land cover change based on hydrologic modeling and partial least squares regression (PLSR) analysis in the Upper Awash Basin. Journal of Hydrology: Regional Studies. 26: 100640. DOI: 10.1016/j.ejrh.2019.100640 .

4785. Sheikh, V., H. Salmani, A.S. Mahiny, M. Ownegh and A. Fathabadi. 2021. Land use optimization through bridging multiobjective optimization and multicriteria decision‐making models (case study: Tilabad Watershed, Golestan Province, Iran). Natural Resource Modeling. 34(2): e12301. DOI: 10.1111/nrm.12301 .

4786. Sheikhzeinoddin, A. and A. Esmaeili. 2017. Ecological and economic impacts of different irrigation and fertilization practices: Case study of a watershed in the southern Iran. Environment, Development, and Sustainability. 19(6): 2499-2515. DOI: 10.1007/s10668-016-9868-6 .

4787. Shekar, N.C.S. and D.C. Vinay. 2021. Performance of HEC-HMS and SWAT to simulate streamflow in the sub-humid tropical Hemavathi Catchment. Journal of Water and Climate Change. 12(7): 3005-3017. DOI: 10.2166/wcc.2021.072 .

4788. Shelton, S. 2021. Evaluation of the streamflow simulation by SWAT model for selected catchments in Mahaweli River Basin, Sri Lanka. Water Conservation Science and Engineering. 6(4): 233-248. DOI: 10.1007/s41101-021-00117-w .

4789. Shen, C., M.S. Phanikumar, T.T. Fong, I. Aslam, S.P. Mcelmurry, S.L. Molloy and J.B. Rose. 2008. Evaluating Bacteriophage P22 as a Tracer in a Complex Surface Water System: The Grand River, Michigan. Environmental Science & Technology. 42(7): 2426-2431. DOI: 10.1021/es702317t .

4790. Shen, Y. and C. Jiang. 2023. A comprehensive review of watershed flood simulation model. Natural Hazards. 118: 875–902. DOI: 10.1007/s11069-023-06047-1 .

4791. Shen, Z., H. Xie, L. Chen, J. Qiu and Y. Zhong. 2015. Uncertainty analysis for nonpoint source pollution modeling: Implications for watershed models. International Journal of Environmental Science and Technology. 12(2): 739-746. DOI: 10.1007/s13762-014-0598-8 .

4792. Shen, Z., L. Chen and L. Xu. 2013. A topography analysis incorporated optimization method for the selection and placement of best management practices. PLoS ONE. 8(1): e54520. DOI: 10.1371/journal.pone.0054520.t001 .

4793. Shen, Z., L. Chen, Q. Hong, H. Xie, J. Qiu and R. Liu. 2013. Vertical variation of nonpoint source pollutants in the Three Gorges Reservoir Region. PLoS ONE. 8(8) (e71194): 1-7. DOI: 10.1371/journal.pone.0071194 .

4794. Shen, Z., L. Chen, Q. Hong, J. Qiu, H. Xie and R. Liu. 2013. Assessment of nitrogen and phosphorus loads and causal factors from different land use and soil types in the Three Gorges Reservoir Area. Science of the Total Environment. 454-455: 383-392. DOI: 10.1016/j.scitotenv.2013.03.036 .

4795. Shen, Z., Q. Hong, H. Yu and J. Niu. 2010. Parameter uncertainty analysis of non-point source pollution from different land use types. Science of the Total Environment. 408(8): 1971-1978. DOI: 10.1016/j.scitotenv.2009.12.007 .

4796. Shen, Z., Q. Hong, H. Yu and R. Liu. 2008. Parameter uncertainty analysis of the non-point source pollution in the Daning River watershed of the Three Gorges Reservoir Region, China. Science of the Total Environment. 405(1-3): 195-205. DOI: 10.1016/j.scitotenv.2008.06.009 .

4797. Shen, Z., Q. Huang, Q. Liao, L. Chen, R. Liu, and H. Xie. 2015. Uncertainty in flow and water quality measurement data: A case study in the Daning River watershed in the Three Gorges Reservoir region, China. Desalination and Water Treatment. 51(19-21): 3995-4010. DOI: 10.1080/19443994.2013.781001 .

4798. Shen, Z., Q.Liao, Q. Hong and Y. Gong. 2012. An overview of research on agricultural non-point source pollution modelling in China. Separation and Purification Technology. 84: 104-111. DOI: 10.1016/j.seppur.2011.01.018 .

4799. Shen, Z., W. Zhang, H. Peng, G. Xu, X. Chen, X. Zhang and Y. Zhao. 2022. Spatial characteristics of nutrient budget on town scale in the Three Gorges Reservoir Area, China. Science of the Total Environment. 819: 152677. DOI: 10.1016/j.scitotenv.2021.152677 .

4800. Shen, Z., Y. Zhong, Q. Huang and L. Chen. 2014. Identifying non-point source priority management areas in watersheds with multiple functional zones. Water Research. 68: 563-571. DOI: 10.1016/j.watres.2014.10.034 .

4801. Shen, Z.Y., L. Chen and T. Chen. 2012. Analysis of parameter uncertainty in hydrological and sediment modeling using GLUE method: a case study of SWAT model applied to Three Gorges Reservoir Region, China. Hydrology and Earth System Sciences. 16: 121-132. DOI: 10.5194/hess-16-121-2012 .

4802. Shen, Z.Y., L. Chen, Q. Liao, R.M. Liu and Q. Huang. 2013. A comprehensive study of the effect of GIS data on hydrology and non-point source pollution modeling. Agricultural Water Management. 118: 93-102. DOI: 10.1016/j.agwat.2012.12.005 .

4803. Shen, Z.Y., Y.W. Gong, Y.H. Li, Q. Hong, L. Xu and R.M. Liu. 2009. A comparison of WEPP and SWAT for modeling soil erosion of the Zhangjiachong Watershed in the Three Gorges Reservoir Area. Agricultural Water Management. 96(10): 1435-1442. DOI: 10.1016/j.agwat.2009.04.017 .

4804. Sheng, H., Q. Haijun, Y. Dongdong, C. Mingming, S. Jinxi, W. Jiang, H. Chenlu and G. Yu. 2017. Evaluation of the applicability of climate forecast system reanalysis weather data for hydrologic simulation: A case study in the Bahe River Basin of the Qinling Mountains, China. Journal of Geographical Sciences. 27(5): 546-564. DOI: 10.1007/s11442-017-1392-6 .

4805. Shepherd, B., D. Harper and A. Millington. 1999. Modelling catchment-scale nutrient transport to watercourses in the U.K. Hydrobiologia. 395-396: 227-237. DOI: 10.1023/A:1017009921688 .

4806. Sheshukov, A.Y. and K.R. Douglas-Mankin. 2017. Hydrologic alterations predicted by seasonally-consistent subset ensembles of general circulation models. Climate. 5(3): 44. DOI: 10.3390/cli5030044 .

4807. Sheshukov, A.Y., C.B. Siebenmorgen and K.R. Douglas-Mankin. 2011. Seasonal and annual impacts of climate change on watershed response using an ensemble of global climate models. Transactions of the ASABE. 54(6): 2209-2218. URL: http://www-proxy.bae.ksu.edu/watershed/ashesh/publications/Sheshukov%20et%20al%20-%202011%20-%20Impacts%20of%20Climate%20Change.pdf.

4808. Sheshukov, A.Y., J. Gao, K.R. Douglas-Mankin and H. Yen. 2021. Intercomparison of bais-correction data sources and their influence on watershed-specific downscaling climate predictions. Transactions of the ASABE. 64(1): 203-220. DOI: 10.13031/trans.14061 .

4809. Sheshukov, A.Y., K.R. Douglas-Mankin, S. Sinnathamby and P. Daggupati. 2016. Pasture BMP effectiveness using an HRU-based subarea approach in SWAT. Journal of Environmental Management. 166: 276-284. DOI: 10.1016/j.jenvman.2015.10.023 .

4810. Shi, M., T. Shiraiwa, H. Mitsudera and Y. Muravyev. 2021. Estimation of freshwater discharge from the Kamchatka Peninsula to its surrounding oceans. Journal of Hydrology: Regional Studies. 36: 100836. DOI: 10.1016/j.ejrh.2021.100836 .

4811. Shi, P., C. Chen, R. Srinivasan, X. Zhang, T. Cai, X. Fang, S. Qu, X. Chen and Q. Li. 2011. Evaluating the SWAT model for hydrological modeling in the Xixian watershed and a comparison with the XAJ model. Water Resources Management. 25(10): 2595-2612. DOI: 10.1007/s11269-011-9828-8 .

4812. Shi, P., X. Ma, Y, Hou, Q. Li, Z. Zhang, S. Qu, C. Chen, T. Cai and X. Fang. 2013. Effects of Land-Use and Climate Change on Hydrological Processes in the Upstream of Huai River, China. Water Resources Management. 27: 1263-1278. DOI: 10.1007/s11269-012-0237-4 .

4813. Shi, P., Y. Hou, Y. Xie, C. Chen, X. Chen, Q. Li, S. Qu, X. Fang and R. Srinivasan. 2013. Application of a SWAT model for hydrological modeling in the Xixian watershed, China. Journal of Hydrologic Engineering. 18(11): 1522-1529. DOI: 10.1061/(ASCE)HE.1943-5584.0000578 .

4814. Shi, P., Y. Zhang, Z. Ren, Y. Yu, P. Li and J. Gong. 2019. Land-use changes and check dams reducing runoff and sediment yield on the Loess Plateau of China. Science of the Total Environment. 664: 984-994. DOI: 10.1016/j.scitotenv.2019.01.430 .

4815. Shi, W. and M. Huang. 2021. Predictions of soil and nutrient losses using a modified SWAT model in a large hilly-gully watershed of the Chinese Loess Plateau. International Soil and Water Conservation Research. 9(2): 291-304. DOI: 10.1016/j.iswcr.2020.12.002 .

4816. Shi, W., J. Xia, C.J. Gippel, J.X. Chen and S. Hong. 2017. Influence of disaster risk, exposure and water quality on vulnerability of surface water resources under a changing climate in the Haihe River basin. Water International. 42(4): 462-485. DOI: 10.1080/02508060.2017.1301143 .

4817. Shi, Y., G. Xu, Y. Wang, B.A. Engel, H. Peng, W. Zhang, M. Chenga and M. Dai. 2017. Modelling hydrology and water quality processes in the Pengxi River Basin of the Three Gorges Reservoir using the Soil and Water Assessment Tool. Agricultural Water Management. 182: 24-38. DOI: 10.1016/j.agwat.2016.12.007 .

4818. Shi, Z.H., X.D. Huang, L. Ai, N.F. Fang and G.L. Wu. 2014. Quantitative analysis of factors controlling sediment yield in mountainous watersheds. Geomorphology. 226: 193–201. DOI: 10.1016/j.geomorph.2014.08.012 .

4819. Shields Jr., F.D., E.J. Langendoen and M.W. Doyle. 2006. Adapting existing models to examine effects of agricultural conservation programs on stream habitat quality. Journal of the American Water Resources Association. 42(1): 25-33. DOI: 10.1111/j.1752-1688.2006.tb03820.x .

4820. Shiferaw, H., A. Gebremedhin, T. Gebretsadkan and A. Zenebe. 2018. Modelling hydrological response under climate change scenarios using SWAT model: The case of Ilala watershed, northern Ethiopia. Modeling Earth Systems and Environment. 4(1): 437-449. DOI: 10.1007/s40808-018-0439-8 .

4821. Shigute, M., T. Alamirew, A. Abebe, C.E. Ndehedehe and H.T. Kassahun. 2022. Understanding hydrological processes under land use land cover change in the Upper Genale River Basin, Ethiopia. Water. 14(23): 3881. DOI: 10.3390/w14233881 .

4822. Shimizu, Y. and S.-i. Onodera. 2015. Effects of climate change on nutrient discharges in suburban watershed. Japanese Journal of Limnology. 73: 235. DOI: 10.3739/rikusui.73.235 .

4823. Shimizu, Y., S. Onodera and M. Saito. 2015. Applicability of SWAT model for estimation of phosphorus discharge in a suburban catchment. Journal of Japan Society of Hydrology and Water Resources. 28(5): 153-173. DOI: 10.3178/jjshwr.26.153 .

4824. Shimola, K. and M. Krishnaveni. 2015. Sensitivity of SWAT simulated reservoir inflow to climate change in a semi arid basin. MAUSAM. 66(2): 181-186. URL: http://metnet.imd.gov.in/imdmausam/.

4825. Shin, H.-J., M.-J. Park, J.-W. Lee, E.-H. Hwang, S.-M. Kang and H.-S. Chae. 2018. Evaluation of accuracy improvement of SWAT model for the Yongdam-Dam Watershed based on multi-point hydrological observations. Journal of the Korean Association of Geographic Information Studies. 21(3): 104-118. DOI: 10.11108/kagis.2018.21.3.104 .

4826. Shin, H.-J., M.-J. Park, S.-J. Hwang, J.-Y. Park and S.-J. Kim. 2014. Hydrologic impact of climate change with adaptation of vegetation community in a forest-dominant watershed. Paddy and Water Environment. 12(Supp. 1): 51-63. DOI: 10.1007/s10333-014-0426-2 .

4827. Shin, S., Y. Her, J.-H. Song and M.-S. Kang. 2019. Integrated sediment transport process modeling by coupling Soil and Water Assessment Tool and Environmental Fluid Dynamics Code. Environmental Modelling & Software. 116: 26-39. DOI: 10.1016/j.envsoft.2019.02.002 .

4828. Shin, S.B., S.-H. Hwang, Y. Her, J.H. Song, H.K. Kim and M.S. Kang. 2018. Modeling sedimentation process in Ipjang Reservoir using SWAT and EFDC. Journal of the Korean Society of Agricultural Engineers. 60(3): 135-148. DOI: 10.5389/KSAE.2018.60.3.135 .

4829. Shinde, V.T., K.N. Tiwari, M. Singh and B. Uniyal. 2017. Impact of abandoned opencast mines on hydrological processes of the Olidih Watershed in Jharia Coalfield, India. Environmental Processes. 4(3): 697-710. DOI: 10.1007/s40710-017-0258-3 .

4830. Shirmohammadi, A., I. Chaubey, R.D. Harmel, D.D. Bosch, R. Muñoz-Carpena, C. Dharmasri, A. Sexton, M. Arabi, M.L. Wolfe, J. Frankenberger, C. Graff and T.M. Sohrabi. 2006. Uncertainty in TMDL models. Transactions of the ASABE. 49(4): 1033-1049. DOI: 10.13031/2013.21741 .

4831. Shirmohammadi, A., T.-W. Chu and H.J. Montas. 2008. Modeling at catchment scale and associated uncertainties. Boreal Environment Research. 13: 185-193. URL: http://www.borenv.net/BER/pdfs/ber13/ber13-185.pdf.

4832. Shirzadi, S. and G. Ghaffari. 2018. The soil nutrient loss simulation in Gheshlagh Dam Basin using SWAT Model. Journal of Soil Management and Sustainable Production. 8(3): 79-96. DOI: 10.22069/ejsms.2018.11859.1679 .

4833. Shivare, N., A.K. Ruhul, P.J. Omar, M.S. Chauhan, S. Guar, P.K.S. Dikshit and S.B. Dwivedi. 2017. Identification of critical soil erosion prone areas and prioritization of microwatersheds using geoinformatics techniques. Ecological Engineering. DOI: 10.1016/j.ecoleng.2017.09.004 .

4834. Shivhare, N., P.K.S. Dikshit and S.B. Dwivedi. 2018. A comparison of SWAT model calibration techniques for hydrological modeling in the Ganga River watershed. Engineering. 4(5): 643-652. DOI: 10.1016/j.eng.2018.08.012 .

4835. Shoemaker, C.A., R.G. Gegis and R.C. Fleming. 2007. Watershed calibration using multistart local optimization and evolutionary optimization with radial basis function approximation. Hydrological Sciences Journal. 52(3): 450-465. DOI: 10.1623/hysj.52.3.450 .

4836. Shokouhifar, Y., M. Lotfirad, H. Esmaeili-Gisavandani and A. Adib. 2022. Evaluation of climate change effects on flood frequency in arid and semi-arid basins. Water Supply. 22(8): 6740. DOI: 10.2166/ws.2022.271 .

4837. Sholagberu, A.T., F.O. Okikiola, A. Bashir, A.S. Adeniyi, I.O. Juliana, M.M. Muhammad and A.S. Abdurrasheed. 2022. Performance evaluation of SWAT-based model for the prediction of potential and actual evapotranspiration. Jordan Journal of Civil Engineering. 16(1): 1-16. URL: https://jjce.just.edu.jo/issues/show_paper.php?pid=6120.

4838. Sholichin, M. and T.B. Prayogo. 2021. Assessment of the impact of land cover type on the water quality in Lake Tondano using a SWAT model. Journal of Southwest Jiaotong University. 56(1): 303-312. DOI: 10.35741/issn.0258-2724.56.1.25 .

4839. Shon, T.S., S.D. Kim, M.E. Kim, J.B. Park, K.S. Min and H.S. Shin. 2012. Developing delivery ratio duration curve (DRDC) based on SWAT modeling in Nakdong river basin. Desalination and Water Treatment. 38(1-3): 354-363. DOI: 10.1080/19443994.2012.664389 .

4840. Shooshtari, S.J., K. Shayesteh, M. Gholamalifard, M. Azari, R. Serrano-Notivoli and J.I. López-Moreno. 2017. Impacts of future land cover and climate change on the water balance in northern Iran. Hydrological Sciences Journal. 62(16): 2655-2673. DOI: 10.1080/02626667.2017.1403028 .

4841. Shooshtari, S.J., K. Shayesteh, M. Gholamalifard, M. Azari and J.I. López-Moreno. 2021. Responses of surface water quality to future land cover and climate changes in the Neka River Basin, Northern Iran. Environmental Modeling & Assessment. 193(7): 411. DOI: 10.1007/s10661-021-09184-x .

4842. Shope, C.L. and G.R. Maharjan. 2015. Modeling spatiotemporal precipitation: Effects of density, interpolation, and land use distribution. Advances in Meteorology. : 174196. DOI: 10.1155/2015/174196 .

4843. Shope, C.L., G. R. Maharjan, J. Tenhunen, B. Seo, K. Kim, J. Riley, S. Arnhold, T. Koellner, Y. S. Ok, S. Peiffer, B. Kim, J.-H. Park and B. Huwe. 2014. Using the SWAT model to improve process descriptions and define hydrologic partitioning in South Korea. Hydrology and Earth System Sciences. 18: 539-557. DOI: 10.5194/hess-18-539-2014 .

4844. Shray, P., C.S.P. Ojha, A.K. Shukla and R.D. Garg. 2019. Assessment of annual water-balance models for diverse Indian watersheds. Journal of Sustainable Water in the Built Environment. 5(3): 04019002. DOI: 10.1061/JSWBAY.0000881 .

4845. Shrestha, A., S. Sharma, C.E McLean, B.A Kelly and S.C. Martin. 2017. Scenario analysis for assessing the impact of hydraulic fracturing on stream low flows using the SWAT model. Hydrological Sciences Journal. 62(5): 849-861. DOI: 10.1080/02626667.2016.1235276 .

4846. Shrestha, A., S. Shrestha, T. Tingsanchali, A. Budhathoki and S. Ninsawat. 2021. Adapting hydropower production to climate change: A case study of Kulekhani Hydropower Project in Nepal. Journal of Cleaner Production. 279: 123483. DOI: 10.1016/j.jclepro.2020.123483 .

4847. Shrestha, B., M.S. Babel, S. Maskey, A. van Griensven, S. Uhlenbrook, A. Green and I. Akkharath. 2013. Impact of climate change on sediment yield in the Mekong River basin: A case study of the Nam Ou basin, Lao PDR. Hydrology and Earth System Sciences. 17: 1-20. DOI: 10.5194/hess-17-1-2013 .

4848. Shrestha, B., S. Maskey, M.S. Babel, A. van Griensven and S. Uhlenbrook. 2016. Sediment related impacts of climate change and reservoir development in the Lower Mekong River Basin: A case study of the Nam Ou Basin, Lao PDR. Climatic Change. DOI: 10.1007/s10584-016-1874-z .

4849. Shrestha, B., T.A Cochrane, B.S. Caruso, M.E. Arias and T.B. Wild. 2021. Sediment management for reservoir sustainability and cost implications under land use/land cover change uncertainty. Water Resources Research. 57(4): e2020WR028351. DOI: 10.1029/2020WR028351 .

4850. Shrestha, B., T.A. Cochrane, B.S. Caruso, M.E. Arias and T. Piman. 2016. Uncertainty in flow and sediment projections due to future climate scenarios for the 3S Rivers in the Mekong Basin. Journal of Hydrology. 540: 1088–1104. DOI: 10.1016/j.jhydrol.2016.07.019 .

4851. Shrestha, B., T.A. Cochrane, B.S. Caruso and M.E. Arias. 2018. Land use change uncertainty impacts on streamflow and sediment projections in area undergoing rapid development: A case study in the Mekong Basin. Land Degradation & Development. 29: 835-848. DOI: 10.1002/ldr.2831 .

4852. Shrestha, J.P., M. Pahlow and T.A. Cochrane. 2020. Development of a SWAT hydropower operation routine and its application to assessing hydrological alterations in the Mekong. Water. 12 (8): 2193. DOI: 10.3390/w12082193 .

4853. Shrestha, J.P., M. Pahlow and T.A. Cochrane. 2022. Managing reservoir sedimentation through coordinated operation of a transboundary system of reservoirs in the Mekong. Journal of Hydrology. 610: 127930. DOI: 10.1016/j.jhydrol.2022.127930 .

4854. Shrestha, M., S.C. Acharya and P.K. Shrestha. 2017. Bias correction of climate models for hydrological modelling – Are simple methods still useful? Meteorological Applications. 24(3): 531-539. DOI: 10.1002/met.1655 .

4855. Shrestha, M.K., F. Recknagel, J. Frizenschaf and W. Meyer. 2016. Assessing SWAT models based on single and multi-site calibration for the simulation of flow and nutrient loads in the semi-arid Onkaparinga Catchment in South Australia. Agricultural Water Management. 175: 61-71. DOI: 10.1016/j.agwat.2016.02.009 .

4856. Shrestha, N.K and J. Wang. 2018. Predicting sediment yield and transport dynamics of a cold climate region watershed in changing climate. Science of the Total Environment. 625: 1030–1045. DOI: 10.1016/j.scitotenv.2017.12.347 .

4857. Shrestha, N.K, Rudra, R., Daggupati, P., Goel, P., Shukla, R.R. 2021. A comparative evaluation of the continuous and event-based modelling approaches for identifying critical source areas for sediment and phosphorus losses. Journal of Environmental Management. 277: 111427. DOI: 10.1016/j.jenvman.2020.111427 .

4858. Shrestha, N.K, T. Akhtar, U. Ghimire, R. Rudra, P. Goel, R.R. Shukla and P. Daggupati. 2021. Can-GLWS: Canadian Great Lakes Weather Service for the Soil and Water Assessment Tool (SWAT) modelling. Journal of Great Lakes Research. 47: 242-251. DOI: 10.1016/j.jglr.2020.10.009 .

4859. Shrestha, N.K. and J. Wang. 2018. Current and future hot-spots and hot-moments of nitrous oxide emission in a cold climate river basin. Environmental Pollution. 239: 648–660. DOI: 10.1016/j.envpol.2018.04.068 .

4860. Shrestha, N.K., B.W. Thomas, X. Du, X. Hao and J. Wang. 2018. Modeling nitrous oxide emissions from rough fescue grassland soils subjected to long-term grazing of different intensities using the Soil and Water Assessment Tool (SWAT). Environmental Science and Pollution Research. DOI: 10.1007/s11356-018-2719-2 .

4861. Shrestha, N.K., C. Punzal, O.T. Leta and W. Bauwens. 2018. Trace metal modelling of a complex river basin using the suite of models integrated in the OpenMI Platform. Environments. 5(4): 48. DOI: 10.3390/environments5040048 .

4862. Shrestha, N.K., O.T. Leta and W. Bauwens. 2017. Development of RWQM1-based integrated water quality model in OpenMI with application to the River Zenne, Belgium. Hydrological Sciences Journal. 62(5): 774-799. DOI: 10.1080/02626667.2016.1261143 .

4863. Shrestha, N.K., O.T. Leta, B. De Fraine, A. van Griensven and W. Bauwens. 2013. OpenMI-based integrated sediment transport modelling of the River Zenne, Belgium. Environmental Modelling & Software. 47: 193-206. DOI: 10.1016/j.envsoft.2013.05.004 .

4864. Shrestha, N.K., P.C. Shakti and P. Gurung. 2010. Calibration and validation of SWAT model for low lying watersheds: A case study on the Kliene Nete Watershed, Belgium. Hydro Nepal: Journal of Water, Energy and Environment. 6: 47-51. DOI: 10.3126/hn.v6i0.4194 .

4865. Shrestha, N.K., X. Du, Xinzhong and J. Wang. 2017. Assessing climate change impacts on fresh water resources of the Athabasca River Basin, Canada. Science of the Total Environment. 601-602: 425–440. DOI: 10.1016/j.scitotenv.2017.05.013 .

4866. Shrestha, N.K.; O.T. Leta, B. De Fraine, T. Garcia-Armisen, N.K. Ouattara, P. Servais, A. van Griensven and W. Bauwens. 2014. Modelling Escherichia coli dynamics in the river Zenne (Belgium) using an OpenMI based integrated model. Journal of Hydroinformatics. 16(2): 354-374. DOI: 10.2166/hydro.2013.171 .

4867. Shrestha, R.R., Y.B. Dibike and T.D. Prowse. 2011. Modeling climate change impacts on hydrology and nutrient loading in the Upper Assiniboine Catchment. Journal of the American Water Resources Association. 48(1): 74-89. DOI: 10.1111/j.1752-1688.2011.00592.x .

4868. Shrestha, R.R., Y.B. Dibike and T.D. Prowse. 2011. Modelling of climate-induced hydrologic changes in the Lake Winnipeg watershed. Journal of Great Lakes Research. 38(3): 1-12. DOI: 10.1016/j.jglr.2011.02.004 .

4869. Shrestha, S. and A.Y. Htut. 2016. Land use and climate change impacts on the hydrology of the Bago River Basin, Myanmar. Environmental Modeling & Assessment. 21(6): 819–833. DOI: 10.1007/s10666-016-9511-9 .

4870. Shrestha, S. and A.Y. Htut. 2016. Modelling the potential impacts of climate change on hydrology of the Bago River Basin, Myanmar. International Journal of River Basin Management. 14(3): 287-297. DOI: 10.1080/15715124.2016.1164177 .

4871. Shrestha, S. and S. Sharma. 2021. Assessment of climate change impact on high flows in a watershed characterized by flood regulating reservoirs. International Journal of Agricultural and Biological Engineering. 14(1): 178–191. DOI: 10.25165/j.ijabe.20211401.5883 .

4872. Shrestha, S., A.R. Bajracharya and M.S. Babel. 2016. Assessment of risks due to climate change for the Upper Tamakoshi Hydropower Project in Nepal. Climate Risk Management. 14: 27–41. DOI: 10.1016/j.crm.2016.08.002 .

4873. Shrestha, S., B. Bhatta, M. Shrestha and P.K. Shrestha. 2018. Integrated assessment of the climate and landuse change impact on hydrology and water quality in the Songkhram River Basin, Thailand. Science of the Total Environment. 643: 1610-1622. DOI: 10.1016/j.scitotenv.2018.06.306 .

4874. Shrestha, S., B. Bhatta, R. Talchabhadel and S.G.P. Virdis. 2022. Integrated assessment of the landuse change and climate change impacts on the sediment yield in the Songkhram River Basin, Thailand. Catena. 209(Part 2): 105859. DOI: 10.1016/j.catena.2021.105859 .

4875. Shrestha, S., D.-H. Bae, P. Hok, S. Ghimire and Y. Pokhrel. 2021. Future hydrology and hydrological extremes under climate change in Asian river basins. Scientific Reports. 11: 17089. DOI: 10.1038/s41598-021-96656-2 .

4876. Shrestha, S., H. Sattar, M.S. Khattak, G. Wang and M. Babur. 2020. Evaluation of adaptation options for reducing soil erosion due to climate change in the Swat River Basin of Pakistan. Ecological Engineering. 158: 106017. DOI: 10.1016/j.ecoleng.2020.106017 .

4877. Shrestha, S., M. Shrestha and M.S. Babel. 2016. Modelling the potential impacts of climate change on hydrology and water resources in the Indrawati River Basin, Nepal. Environmental Earth Sciences. 75: 280. DOI: 10.1007/s12665-015-5150-8 .

4878. Shrestha, S., M. Shrestha and M.S. Babel. 2017. Assessment of climate change impact on water diversion strategies of Melamchi Water Supply Project in Nepal. Theoretical and Applied Climatology. 128(1–2): 311–323. DOI: 10.1007/s00704-015-1713-6 .

4879. Shrestha, S., M. Shrestha and P.K. Shrestha. 2018. Evaluation of the SWAT model performance for simulating river discharge in the Himalayan and tropical basins of Asia. Hydrology Research. 49(3): 846-860. DOI: 10.2166/nh.2017.189 .

4880. Shrestha, S., P. Dwivedi, S.K. McKay and D. Radcliffe. 2019. Assessing the potential impact of rising production of industrial wood pellets on streamflow in the presence of projected changes in land use and climate: A case study from the Oconee River Basin in Georgia, United States. Water. 11(1): 142. DOI: 10.3390/w11010142 .

4881. Shrestha, S., S. Neupane, S. Mohanasundaram and V.P. Pandey. 2020. Mapping groundwater resiliency under climate change scenarios: A case study of Kathmandu Valley, Nepal. Environmental Research. 183: 109149. DOI: 10.1016/j.envres.2020.109149 .

4882. Shrestha, S., S. Sharma, R. Gupta and R. Bhattarai. 2019. Impact of global climate change on stream low flows: A case study of the great Miami River Watershed, Ohio. International Journal of Agricultural and Biological Engineering. 12(1): 84–95. DOI: 10.25165/j.ijabe.20191201.4486 .

4883. Shrivastava, P.K., M.P. Tripathi and S.N. Das. 2004. Hydrological modelling of a small watershed using satellite data and GIS technique. Journal of the Indian Society of Remote Sensing. 32(2): 145-157. DOI: 10.1007/BF03030871 .

4884. Shriver, D.M. and T.O. Randhir. 2006. Integrating stakeholder values with multiple attributes to quantify watershed performance. Water Resources Research. 42(8): W08435. DOI: 10.1029/2005WR004413 .

4885. Shukla, S. and S. Gedam. 2018. Assessing the impacts of urbanization on hydrological process in a semi-arid river basin of Maharashtra, India. Modeling Earth Systems and Environment. 4(2): 699-728. DOI: 10.1007/s40808-018-0446-9 .

4886. Shukla, S. and S. Gedam. 2019. Evaluating hydrological responses to urbanization in a tropical river basin: A water resources management perspective. Natural Resources Research. 28(2): 327–347. DOI: 10.1007/s11053-018-9390-7 .

4887. Shukla, S., S.K. Jain and M.L. Kansal. 2021. Hydrological modelling of a snow/glacier-fed western Himalayan basin to simulate the current and future streamflows under changing climate scenarios. Science of the Total Environment. 795: 148871. DOI: 10.1016/j.scitotenv.2021.148871 .

4888. Shukla. A.K., C.S.P. Ojha, R.D. Garg, S. Shukla and L. Pal. 2020. Influence of spatial urbanization on hydrological components of the Upper Ganga River Basin, India. Journal of Hazardous, Toxic and Radioactive Waste. 24(4): 04020028. DOI: 10.1061/(ASCE)HZ.2153-5515.0000508 .

4889. Shuler, C.K., H. Dulai, O.T. Leta, J. Fackrell, E. Welch and A.I. El-Kadi. 2020. Understanding surface water–groundwater interaction, submarine groundwater discharge, and associated nutrient loading in a small tropical island watershed. Journal of Hydrology. 585: 124342. DOI: 10.1016/j.jhydrol.2019.124342 .

4890. Si, H., Z.-Y. Zhang, B.-P. Feng, Y. Su, L.-T. Sheng and A. Bakour. 2015. Researching the optimal irrigation regime in China’s Zhuozhang River basin. Polish Journal of Environmental studies. 24(6): 2607-2618. DOI: 10.15244/pjoes/59071 .

4891. Sidike, A., X. Chen, T. Liu, K. Durdiev and Y. Huang. 2016. Investigating alternative climate data sources for hydrological simulations in the upstream of the Amu Darya River. Water. 8(10): 441. DOI: 10.3390/w8100441 .

4892. Sil, A., A.P. Rodrigues, C. Carvalho-Santos, J P. Nunes, J. Honrado, J. Alonso, C. Marta-Pedroso and J.C. Azevedo. 2016. Trade-offs and synergies between provisioning and regulating ecosystem services in a mountain area in Portugal affected by landscape change. Mountain Research and Development. 36(4): 452-464. DOI: 10.1659/MRD-JOURNAL-D-16-00035.1 .

4893. Silgram, M., O.F. Schoumans, D.J.J. Walvoort, S.G. Anthongy, P. Groenendijk, J. Stromqvist, F. Bouraoui, B. Arheimer, M. Kapetanaki, A. Lo Porto and K. Martensson. 2009. Subannual models for catchment management: Evaluating model performance on three European catchments. Journal of Environmental Monitoring. 11(3): 526-539. DOI: 10.1039/b823250d .

4894. Silgram, M., S.G. Anthony, A.L. Collins, J. Stromqvist, F. Bouraoui, O. Schoumans, A. Lo Porto, P. Groenendijk, B. Arheimer, M. Mimikou and H. Johnsson. 2009. Evaluation of diffuse pollution model applications in EUROHARP catchments with limited data. Journal of Environmental Monitoring. 11(3): 554-571. DOI: 10.1039/b901181a .

4895. Silva, A.K.L., A.M.L. de Sousa, J.T.S. dos Santos, J.M. Villela, L.G. Martorano and S. Crestana. 2018. Estimation of sediment production in oil palm expansion areas in the Amazon. Revista Brasileira de Engenharia Agricola e Ambiental. 22(5): 344-348. DOI: 10.1590/1807-1929/agriambi.v22n5p344-348 .

4896. Silva, A.M., R.M. da Silva, C.A.G. Santos, F.M. Linhares and A.P.C. Xaiver. 2022. Modeling the effects of future climate and land-use changes on streamflow in a headwater basin in the Brazilian Caatinga Biome. Geocarto International. 37(26): 12436-12465. DOI: 10.1080/10106049.2022.2068672 .

4897. Silva, L. and S.D. dos Santos Cota. 2019. Derivation of parameters for the use of the SWAT in the groundwater recharge estimate in a karst-fissural aquifero in Brazil semiarid. Revista Águas Subterrâneas . 33(1): 23-33. DOI: 10.14295/ras.v33i1.29160 .

4898. Silva, L.S. da, L.L. Ferraz, L.F. de Sousa, R.M. de Jesus, C.A.S. Santos and F.A. Rocha. 2023. Assessment of changes in land use and occupation on the hydrological regime of a basin in the west of Bahia. Journal of South American Earth Sciences. 123: 104218. DOI: 10.1016/j.jsames.2023.104218 .

4899. Silva, M.G. da, A.N. do Vasco, C.C. Soares, R.J. de J. Neves, C.A.B. Garcia and A. de O.A. Netto. 2022. Spatial modeling of nitrogen and phosphorus in an agricultural basin in northeastern Brazil. Research, Society and Development. 11(15): e475111537047. DOI: 10.33448/rsd-v11i15.37047 .

4900. Silva, M.T., P.V. de Azevedo, V. de P.R. da Silva, B.K. da Nobrega Silva, E.B. Mariano and M.R.B. Amorim. 2017. Estimate the sediment yield in the basin of lower-middle São Francisco River. Journal of Environmental Analysis and Progress. 2(3): 203-211. DOI: 10.24221/jeap.2.3.2017.1430.203-211 .

4901. Silva, M.T., V. de P.R. da Silva, E.P. de Souza and A.L. Araújo. 2015. SWAT model application to estimate the flow in the basin of lower-middle São Francisco River. Revista Brasileira de Geografia Física. 8(6): 1615-1627. URL: https://periodicos.ufpe.br/revistas/rbgfe/article/view/233679.

4902. Silva, N.D.M. and C. Christofaro. 2016. Calibração do modelo hidrológico SWAT para estimative da vazão em sub-bacia hidrográfica do Rio Jequitinhonha. Geografias. : 31-39. URL: http://www.igc.ufmg.br/portaldeperiodicos/index.php/geografias/article/view/808.

4903. Silva, V.A., M.S. Moreau, A.M.S.S. Moreau and N.A.C. Rego. 2011. Land use and soil loss in the Colonia River Watershed, Bahia. Revista Brasileira de Engenharia Agricola e Ambiental. 15(3): 310-315. DOI: 10.1590/S1415-43662011000300013 .

4904. Sime, C.H., T.A. Demissie and F.G. Tufa. 2020. Surface runoff modeling in Ketar Watershed, Ethiopia. Journal of Sedimentary Environments. 5(1): 151-162. DOI: 10.1007/s43217-020-00009-4 .

4905. Simic, Z., N. Millivojevic, D. Prodanovic, V. Milivojevic and N. Perovic. 2014. SWAT-based runoff modeling in complex catchment areas- theoretical background and numerical procedures. Journal of the Serbian Society for Computational Mechanics. 3(1): 38-63. URL: http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CCUQFjAA&url=http%3A%2F%2Fwww.researchgate.net%2Fprofile%2FNevena_Perovic%2Fpublication%2F228950669_SWAT-Based_Runoff_Modeling_in_Complex_Catchment_AreasTheoretical_Background_and_Numerical_Procedures%2Flinks%2F00b7d5261223119d09000000&ei=7rd8VODnJvT8sATOmIH4Cg&usg=AFQjCNHYhkjkpu9H1_43gIbh5Gdb3vrKaA&sig2=7q2vzLh9jKrUx-x7WOEHdg.

4906. Simões, K., R. de C.C. Conde, H.L. Roig and R.E. Cicerelli. 2021. Application of the SWAT hydrological model in flow and solid discharge simulation as a management tool of the Indaia River Basin, Alto São Francisco, Minas Gerais. Revista Águas Subterrâneas . 16(3): e2694. DOI: 10.4136/ambi-agua.2694 .

4907. Sinclair, A., R. Jamieson, A. Madani, R.J. Gordon, W. Hart and D. Hebb. 2014. A watershed modeling framework for phosphorus loading from residential and agricultural sources. Journal of Environmental Quality. 43(4): 1356-1369. DOI: 10.2134/jeq2013.09.0368 .

4908. Sinclair, A.C., R.C. Jamieson, R.J. Gordon, A. Madani, W. Hart and D. Hebb. 2016. Modeling impacts of residential and agricultural development and beneficial management practice scenarios on phosphorus dynamics in a small watershed. Transactions of the ASABE. 59(1): 63-79. DOI: 10.13031/trans.59.10842 .

4909. Sing, V., A. Sharma and M.K. Goyal. 2019. Projection of hydro-climatological changes over eastern Himalayan catchment by the evaluation of RegCM4 RCM and CMIP5 GCM models. Hydrology Research. 50(1): 117-137. DOI: 10.2166/nh.2017.193 .

4910. Singh, A. 2016. Modeling stream flow with prediction uncertainty by using SWAT hydrologic and RBNN models for an agricultural watershed in India. National Academy Science Letters. 39(3): 213-216. DOI: 10.1007/s40009-016-0436-2 .

4911. Singh, A. 2019. Environmental problems of salinization and poor drainage in irrigated areas: Management through the mathematical models. Journal of Cleaner Production. 206: 572-579. DOI: 10.1016/j.jclepro.2018.09.211 .

4912. Singh, A. and A.K. Gosain. 2011. Climate-change impact assessment using GIS-based hydrological modelling. Water International. 36(3): 386-397. DOI: 10.1080/02508060.2011.586761 .

4913. Singh, A. and S.K. Jha. 2021. Identification of sensitive parameters in daily and monthly hydrological simulations in small to large catchments in central India. Journal of Hydrology. 601: 126632. DOI: 10.1016/j.jhydrol.2021.126632 .

4914. Singh, A., M. Imtiyaz, R.K. Isaac and D.M. Denis. 2012. Comparison of soil and water assessment tool (SWAT) and multilayer perceptron (MLP) artificial neural network for predicting sediment yield in the Nagwa agricultural watershed in Jharkhand, India. Agricultural Water Management. 104: 113-120. DOI: 10.1016/j.agwat.2011.12.005 .

4915. Singh, D., R.D. Gupta and S.K. Jain. 2015. Assessment of impact of climate change on water resources in a hilly river basin. Arabian Journal of Geosciences. 8(2): 10625-10646. DOI: 10.1007/s12517-015-1985-2 .

4916. Singh, G. and D. Saraswat. 2016. Development and evaluation of targeted marginal land mapping approach in SWAT model for simulating water quality impacts of selected second generation biofeedstock. Environmental Modelling & Software. 81: 26-39. DOI: 10.1016/j.envsoft.2015.12.001 .

4917. Singh, G., D. Saraswat and A. Sharpley. 2018. A sensitivity analysis of impacts of conservation practices on water quality in L'Anguille River Watershed, Arkansas. Water. 10(4): 443. DOI: 10.3390/w10040443 .

4918. Singh, G., D. Saraswat, N. Pai and B. Hancock. 2019. LUU CHECKER: A web-based tool to incorporate emerging LUs in the SWAT Model. Applied Engineering in Agriculture. 35(5): 723-731. DOI: 10.13031/aea.13295 .

4919. Singh, H., T. Sinha and A. Sankarasubramanian. 2014. Impacts of near-term climate change and population growth on within-year reservoir systems. Journal of Water Resources Planning and Management. 141(6). DOI: 10.1061/(ASCE)WR.1943-5452.0000474 .

4920. Singh, H.V., L. Kalin and P. Srivastava. 2011. Effect of soil data resolution on identification of critical source areas of sediment. Journal of Hydrologic Engineering. 16(3): 253-278. DOI: 10.1061/(ASCE)HE.1943-5584.0000318 .

4921. Singh, H.V., L. Kalin, A. Morrison, P. Srivastava, G. Lockaby and S. Pan. 2015. Post-validation of SWAT model in a coastal watershed for predicting land use/cover change impacts. Hydrology Research. 46(6). DOI: 10.2166/nh.2015.222 .

4922. Singh, J, H.V. Knapp, J.G. Arnold, and M. Demissie. 2005. Hydrological Modeling of the Iroquois River watershed using HSPF and SWAT. Journal of the American Water Resources Association. 41(2): 343-360. DOI: 10.1111/j.1752-1688.2005.tb03740.x .

4923. Singh, L. and S. Saravanan. 2020. Evaluation of various spatial rainfall datasets for streamflow simulation using SWAT model of Wunna Basin, India. International Journal of River Basin Management. DOI: 10.1080/15715124.2020.1776305 .

4924. Singh, L. and S. Saravanan. 2020. Impact of climate change on hydrology components using CORDEX South Asia climate model in Wunna, Bharathpuzha, and Mahanadi, India. Environmental Monitoring and Assessment. 192: 678. DOI: 10.1007/s10661-020-08637-z .

4925. Singh, L. and S. Saravanan. 2020. Simulation of monthly streamflow using the SWAT model of the Ib River Watershed, India. HydroResearch. 3: 95-105. DOI: 10.1016/j.hydres.2020.09.001 .

4926. Singh, L. and S. Saravanan. 2022. Adaptation of satellite-based precipitation product to study runof and sediment of Indian River watersheds. Arabian Journal of Geosciences. 15(4): 326. DOI: 10.1007/s12517-022-09610-5 .

4927. Singh, L. and S. Saravanan, S. 2022. Evaluation of blue and green water using combine stream flow and soil moisture simulation in Wunna Watershed, India. Water Conservation Science and Engineering. DOI: 10.1007/s41101-022-00138-z .

4928. Singh, L. and S. Subbarayan. 2022. Adaptation of satellite-based precipitation product to study runoff and sediment of Indian River watersheds. Arabian Journal of Geosciences. 15(4): 326. DOI: 10.1007/s12517-022-09610-5 .

4929. Singh, L. and S. Subbarayan. 2022. Assessing streamflow modeling using single and multi-site calibration approach on Bharathpuzha Catchment, India: A case study. Modeling Earth Systems and Environment. DOI: 10.1007/s40808-022-01353-2 .

4930. Singh, L., P.K. Mishra, S.M. Pingale, D. Khare and H.P. Thakur. 2022. Streamflow regionalisation of an ungauged catchment with machine learning approaches. Hydrological Sciences Journal. 67(6): 886-897. DOI: 10.1080/02626667.2022.2049271 .

4931. Singh, N. and K.K. Singh. 2016. Simulation modelling of crop water demand using SWAT model: A case study of Butana Distributary, Haryana, India. Journal of Indian Water Resources Society. 36(4): 6-14. URL: http://iwrs.org.in/36-4/.

4932. Singh, R.K., M.K. Jain and V. Gupta. 2022. Impact of climate change on runof regime of the Godavari River in India. Sustainable Water Resources Management. 8(3): 69. DOI: 10.1007/s40899-021-00558-0 .

4933. Singh, R.K., S.K. Ghosh, N.N. Thach and P.X. Canh. 2011. Simulation of runoff and sediment yield for the calo watershed, Vinh Phuc province by using swat model. VNU Journal of Science: Earth and Environmental Sciences. 27(3): 174-190. URL: http://js.vnu.edu.vn/index.php/EES/article/view/1514.

4934. Singh, S., P. Sharma and S.D. Sharma. 2023. Modeling streamfow in Sot River Catchment of Uttar Pradesh, India. Arabian Journal of Geosciences. 16(10): 562. DOI: 10.1007/s12517-023-11659-9 .

4935. Singh, S., S. Hwang, J.G. Arnold and R. Bhattarai. 2023. Evaluation of agricultural BMPs’ impact on water quality and crop production using SWAT+ model. Agriculture. 13(8): 1484. DOI: 10.3390/agriculture13081484 .

4936. Singh, S.K., S. Kanga, B. Gulati, M. Raič, B. Sajan, B. Durin and S. Singh. 2023. Spatial and temporal analysis of hydrological modelling in the Beas Basin using SWAT+ model. Water. 15(19): 3338. DOI: 10.3390/w15193338 .

4937. Singh, V. and M.K. Goyal. 2017. Curve number modifications and parameterization sensitivity analysis for reducing model uncertainty in simulated and projected streamflows in a Himalayan catchment. Ecological Engineering. 108(Part A): 17-29. DOI: 10.1016/j.ecoleng.2017.08.002 .

4938. Singh, V. and M.K. Goyal. 2017. Unsteady high velocity flood flows and the development of rating curves in a Himalayan Basin under climate change scenarios. Journal of Hydrologic Engineering. 22(8): 04017023. DOI: 10.1061/(ASCE)HE.1943-5584.0001530 .

4939. Singh, V., M.K. Goyal and X. Chu. 2016. Multicriteria evaluation approach for assessing parametric uncertainty during extreme peak and low flow conditions over snow glaciated and inland catchments. Journal of Hydrologic Engineering. 21(1). DOI: 10.1061/(ASCE)HE.1943-5584.0001217 .

4940. Singh, V., S.K. Jain and M.K. Goyal. 2021. An assessment of snow-glacier melt runoff under climate change scenarios in the Himalayan basin. Stochastic Environmental Research and Risk Assessment. 35: 2067-2092. DOI: 10.1007/s00477-021-01987-1 .

4941. Singh, V., S.K. Karan, C. Singh and S.R. Samadder. 2023. Assessment of the capability of SWAT model to predict surface runoff in open cast coal mining areas. Environmental Science and Pollution Research. DOI: 10.1007/s11356-022-25032-y .

4942. Singh, V.P. and D.A. Woolhiser. 2002. Mathematical modeling of watershed hydrology. Journal of Hydrologic Engineering. 7(4): 270-292. DOI: 10.1061/(ASCE)1084-0699(2002)7:4(270) .

4943. Singha, A., M. Imtiyaz, R.K. Isaac and D.M. Denis. 2014. Assessing the performance and uncertainty analysis of the SWAT and RBNN models for simulation of sediment yield in the Nagwa watershed, India. Hydrological Sciences Journal. 59(2): 351-364. DOI: 10.1080/02626667.2013.872787 .

4944. Singkran, N., J. Tosang, D. Waijaroen, N. Intharawichian, O. Vannarart, P. Anuntawong, K. Kunta, P. Wisetsopa, T. Tipvong, N. Janjirawuttikul, F. Masthawee, S. Anornpatanawat and S. Kirtsaeng. 2015. Influences of land use and climate changes on hydrologic system in the northeastern river basin of Thailand. Journal of Water and Climate Change. 6(2): 325-340. DOI: 10.2166/wcc.2014.127 .

4945. Singkran, N., N. Intharawichian and P. Anantawong. 2021. Determining land use influences on the hydrologic regime of the Chao Phraya River Basin, Thailand. Physics and Chemistry of the Earth, Parts A/B/C. 121: 102978. DOI: 10.1016/j.pce.2021.102978 .

4946. Sinha, R.K. and T.I. Eldho. 2018. Effects of historical and projected land use/cover change on runoff and sediment yield in the Netravati River Basin, Western Ghats, India. Environmental Earth Sciences. 77: 111. DOI: 10.1007/s12665-018-7317-6 .

4947. Sinha, R.K., T.I. Eldho and G. Subimal. 2020. Assessing the impacts of land use/land cover and climate change on surface runoff of a humid tropical river basin in Western Ghats, India. International Journal of River Basin Management. DOI: 10.1080/15715124.2020.1809434 .

4948. Sinnathambya, S., K.R. Douglas-Mankina and C. Craige. 2016. Field-scale calibration of crop-yield parameters in the Soil and Water Assessment Tool (SWAT). Agricultural Water Management. 180: 61-69. DOI: 10.1016/j.agwat.2016.10.024 .

4949. Šipek, V. and M. Tesař. 2016. Validation of a mesoscale hydrological model in a small-scale forested catchment. Hydrology Research. 47(1): 27-41. DOI: 10.2166/nh.2015.220 .

4950. Siqueira, M.S. da S., C.E.M. da S.H.M. de Alcântara, G. do N. Ribeiro, P. da C. Medeiros, J.P.S.D. Afonso, A.C. de Medeiros and P.B. Maracajá. 2016. Influence of the scale effect on the sediment yield in not instrumented basins in the semiarid zone. Revista Brasileira de Gestão Ambiental. 10(1): 99-105. URL: http://www.gvaa.com.br/revista/index.php/RBGA/article/view/5273.

4951. Siqueira, M.S. da S., C.E.M. da S.H.M. de Alcântara, G. do N. Ribeiro, P. da C. Medeiros, J.P.S.D. Afonso, A.C. de Medeiros and P.B. Maracajá. 2017. Impacts of land use change considering hydrologic and climate variability in the semiarid zone. Revista Brasileira de Gestão Ambiental. 11(1): 139-149. URL: http://www.gvaa.com.br/revista/index.php/RBGA/article/view/5272.

4952. Siqueira, P.P., P.T.S. Oliveira, D. Bressiani, A.A.M. Neto and D.B.B. Rodrigues. 2021. Effects of climate and land cover changes on water availability in a Brazilian Cerrado basin. Journal of Hydrology: Regional Studies. 37: 100931. DOI: 10.1016/j.ejrh.2021.100931 .

4953. Sirabahenda, Z., A. St-Hilaire, S.C. Courtenay and M.R. van der Heuvel. 2020. Assessment of the effective width of riparian buffer strips to reduce suspended sediment in an agricultural landscape using ANFIS and SWAT models. Catena. 195: 104762. DOI: 10.1016/j.catena.2020.104762 .

4954. Sirisena, T.A.J.G., S. Maskey and R. Ranasinghe. 2020. Hydrological model calibration with streamflow and remote sensing based evapotranspiration data in a data poor basin. Remote Sensing. 12(22): 3768. DOI: 10.3390/rs12223768 .

4955. Sirisena, T.A.J.G., S. Maskey, R. Ranasinghe and M.S. Babel. 2018. Effects of different precipitation inputs on streamflow simulation in the Irrawaddy River Basin, Myanmar. Journal of Hydrology: Regional Studies. 19: 265-278. DOI: 10.1016/j.ejrh.2018.10.005 .

4956. Sîrodoev, I., R. Corobov, G. Sîrodoev and I. Trombitsky. 2022. Modelling runoff within a small river basin under the changing climate: A case study of using SWAT in the Bălțata River Basin (The Republic of Moldova). Land. 11(2): 167. DOI: 10.3390/land11020167 .

4957. Sisay, E., A. Halefom, D. Khare, L. Singh and T. Worku. 2017. Hydrological modelling of ungauged urban watershed using SWAT model. Modeling Earth Systems and Environment. 3: 693–702. DOI: 10.1007/s40808-017-0328-6 .

4958. Sisay, L., A. Halefom, D. Khare, L. Singh and T. Worku. 2017. Hydrological modelling of ungauged urban watershed using SWAT model. Modeling Earth Systems and Environment. 3(2): 693–702. DOI: 10.1007/s40808-017-0328-6 .

4959. Sith, R. and K. Nadoaka. 2017. Comparison of SWAT and GSSHA for high time resolution prediction of stream flow and sediment concentration in a small agricultural watershed. Hydrology. 4(2): 27. DOI: 10.3390/hydrology4020027 .

4960. Sith, R., A. Watanabe, T. Nakamura, T. Yamamoto and K. Nadaoka. 2019. Assessment of water quality and evaluation of best management practices in a small agricultural watershed adjacent to coral reef area in Japan. Agricultural Water Management. 213: 659-673. DOI: 10.1016/j.agwat.2018.11.014 .

4961. Sittichok, K., A.G. Djibo, O. Seidou, H.M. Saley, H. Karambiri and J.-E. Paturel. 2016. Statistical seasonal rainfall and streamflow forecasting for the Sirba watershed, West Africa, using sea surface temperatures. Hydrological Sciences Journal. 61(5): 805-815. DOI: 10.1080/02626667.2014.944526 .

4962. Sittichok, K., O. Seidou, A.G. Djibo and N.K. Rakangthong. 2018. Estimation of the added value of using rainfall–runoff transformation and statistical models for seasonal streamflow forecasting. Hydrological Sciences Journal. 63(4): 630-645. DOI: 10.1080/02626667.2018.1445854 .

4963. Skardi, M.J.E, A. Afshar, M. Saadatpour and S.S. Solis. 2015. Hybrid ACO-ANN-based multi-objective simulation-optimization model for pollutant load control at basin scale. Environmental Modeling & Assessment. 20(1): 29-39. DOI: 10.1007/s10666-014-9413-7 .

4964. Skardi, M.J.E., A. Afshar and S.S. Solis. 2013. Simulation-optimization model for non-point source pollution management in watersheds: Application of cooperative game theory. KSCE Journal of Civil Engineering. 17(6): 1232-1240. DOI: 10.1007/s12205-013-0077-7 .

4965. Sloboda, M. and D.A. Swayne. 2013. Autocalibration experiments using machine learning and high performance computing. Environmental Modelling & Software. 40: 302-315. DOI: 10.1016/j.envsoft.2012.10.007 .

4966. Smarzyńska, K. and Z. Miatkowski. 2016. Calibration and validation of SWAT model for estimating water balance and nitrogen losses in a small agricultural watershed in central Poland. Journal of Water and Land Development. 29(4-6): 31-47. DOI: 10.1515/jwld-2016-0010 .

4967. Śmietanka, M. 2014. The influence of permanent grasslands on nitrate nitrogen loads in modelling approach. Journal of Water and Land Development. 21(1): 63-70. DOI: 10.2478/jwld-2014-0015 .

4968. Smietanka, M. and A. Szeptycki. 2014. Modeling the impact of changes in the depth of plowing on nitrogen load in surface waters. Problems of Agricultural Engineering. 22(1): 43-46. URL: http://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-fe611d07-c29e-42c5-8dd4-a6a2ff49c16b.

4969. Smietanka, M., D. Sliwinski and J. Brzozowski. 2009. Computer supported creation of the buffer zones and calculation of their effectiveness. Problems of Agricultural Engineering. 17(1): 61-72. URL: http://www.cabdirect.org/abstracts/20093242189.html?freeview=true.

4970. Smietanka, M., J. Brzozowski, D. Sliwinski, K. Smarzynska, A. Miatkowski and M. Kalarus. 2009. Pilot implementation of WFD and creation of a tool for catchment management using SWAT: River Zglowiaczka Catchment, Poland. Frontiers of Earth Science in China. 3(2): 175-181. DOI: 10.1007/s11707-009-0033-5 .

4971. Smit, E. and J. van Tol. 2022. Impacts of soil information on process-based hydrological modelling in the Upper Goukou Catchment, South Africa. Water. 14(3): 407. DOI: 10.3390/w14030407 .

4972. Smit, E., G. van Zijl, E. Riddell and J. van Tol. 2023. Examining the value of hydropedological information on hydrological modeling at different scales in the Sabie Catchment, South Africa. Vadose Zone Journal. : e20280. DOI: 10.1002/vzj2.20280 .

4973. Smith, C., J. Williams, A.P. Nejadhashemi, S. Woznicki and J. Leatherman. 2013. Cropland management versus dredging: An economic analysis of reservoir sediment management. Lake and Reservoir Management. 29(3): 151-164. DOI: 10.1080/10402381.2013.814184 .

4974. Smith, C.M., A.P. Nejadhashemi and J.C. Leatherman. 2009. Using a BMP auction as a tool for the implementation of conservation practices. Journal of Extension. 47(4): 1-16. URL: http://lshs.tamu.edu/docs/lshs/end-notes/using%20a%20bmp%20auction%20as%20a%20tool%20for%20the%20implementation%20of%20bmps-0628255052/using%20a%20bmp%20auction%20as%20a%20tool%20for%20the%20implementation%20of%20bmps.pdf.

4975. Smith, C.M., J.R. Williams, A. Nejadhashemi, S.A. Woznicki and J.C. Leatherman. 2014. Cost-effective targeting for reducing soil erosion in a large agricultural watershed. Journal of Agricultural and Applied Economics. 46(4): 509-526. URL: http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CCAQFjAA&url=http%3A%2F%2Fageconsearch.umn.edu%2Fbitstream%2F189140%2F2%2Fjaae712.pdf&ei=1yB2VKztINDIsQT60IHQCQ&usg=AFQjCNGZK9plFPQE4joTJMrM1LwQiKFC4g&sig2=sIZlsRYdkMvuCV3U1x0fJg.

4976. Smith, M., V. Koren, S. Reed, Z. Zhang, Y. Zhang, F. Moreda, Z. Cui, N. Mizukami, E.A. Anderson and B.A. Cosgrove. 2012. The distributed model intercomparison project - Phase 2: Motivation and design of the Oklahoma experiments. Journal of Hydrology. 418-419: 3-16. DOI: 10.1016/j.jhydrol.2011.08.055 .

4977. Smith, M.B., V. Koren, Z. Zhang, Y. Zhang, S.M. Reed, Z. Cui, F. Moreda, B.A. Cosgrove, N. Mizukami, E.A. Anderson and DMIP 2 Participants. 2012. Results of the DMIP 2 Oklahoma experiments. Journal of Hydrology. 418-419: 17-48. DOI: 10.1016/j.jhydrol.2011.08.056 .

4978. Smitha, P.S., B. Narasimhan, K.P. Sudheer and H. Annamalai. 2018. An improved bias correction method of daily rainfall data using a sliding window technique for climate change impact assessment. Journal of Hydrology. 556: 100-118. DOI: 10.1016/j.jhydrol.2017.11.010 .

4979. Snija, V.S., A. Sherring and S. Suryavanshi. 2018. Hydrological modeling of Amaravila Watershed in Neyyar River Basin using Soil and Water Assessment Tool (SWAT). Journal of Soil and Water Conservation (India). 17(3): 259-266. DOI: 10.5958/2455-7145.2018.00038.3 .

4980. Sofiyuddin, H.A., T. Kato and R. Tsuchiya. 2016. Uncertainties of SWAT model in irrigated paddy field watershed. Jurnal Irigasi. 11(1): 11-22. URL: http://jurnalirigasi_pusair.pu.go.id/index.php/jurnal_irigasi/article/view/97.

4981. Sohoulande, C.D.D., A.A. Szogi, J.M. Novak, K.C. Stone, J.H. Martin and D.W. Watts. 2022. Long-term nitrogen and phosphorus outflow from an instream constructed wetland under precipitation variability. Sustainability. 14(24): 16500. DOI: 10.3390/su142416500 .

4982. Sohrabi, T.M., A. Shirmohammadi, T.W. Chu, H. Montas, and A.P. Nejadhashemi. 2003. Uncertainty analysis of hydrologic and water quality predictions for a small watershed using SWAT2000. Environmental Forensics. 4(4): 229-238. DOI: 10.1080/714044368 .

4983. Sok, T., C. Oeurng, I. Ich, S. Sauvage and J.M. Sánchez-Pérez. 2020. Assessment of hydrology and sediment yield in the Mekong River Basin using SWAT model. Water. 12(12): 3503. DOI: 10.3390/w12123503 .

4984. Sok, T., I. Ich, D. Tes, R. Chan, S. Try, L. Song, P. Ket, S. Khem and C. Oeurng. 2022. Change in hydrological regimes and extremes from the impact of climate change in the largest tributary of the Tonle Sap Lake Basin. Water. 14(9): 1426. DOI: 10.3390/w14091426 .

4985. Solaymani, H.R. and A.K. Gosain. 2015. Assessment of climate change impacts in a semi-arid watershed in Iran using regional climate models. Journal of Water and Climate Change. 6(1): 161-180. DOI: 10.2166/wcc.2014.076 .

4986. Soleimanian, E., A. Afshar and A. Molajou. 2022. A review on water simulation models for the WEF Nexus: Development perspective. Environmental Science and Pollution Research. 29(53): 79769–79785. DOI: 10.1007/s11356-022-19849-w .

4987. Sommerlot, A.R. and Z.M. Easton. 2017. A web based interface for distributed short-term soil moisture forecasts. Water. 9(8): 604. DOI: 10.3390/w9080604 .

4988. Sommerlot, A.R., A.P. Nejadhashemi, S.A. Woznicki, S. Giri and M.D. Prohaska. 2013. Evaluating the capabilities of watershed-scale models in estimating sediment yield at field-scale. Journal of Environmental Management. 127: 228-236. DOI: 10.1016/j.jenvman.2013.05.018 .

4989. Sommerlot, A.R., A.P. Nejadhashemi and S.A. Woznicki. 2013. Evaluating the impact of field-scale management strategies on sediment transport to the watershed outlet. Journal of Environmental Management. 128: 735-748. DOI: 10.1016/j.jenvman.2013.06.019 .

4990. Sommerlot, A.R., M.B. Wagena, D.R. Fuka and Z.M. Easton. 2016. Coupling the short-term global forecast system weather data with a variable source area hydrologic model. Environmental Modelling & Software. 85: 68-80. DOI: 10.1016/j.envsoft.2016.09.008 .

4991. Somura, H., H. Kunii, Y. Yone, Y., I. Takeda and H. Sato. 2018. Importance of considering nutrient loadings from small watersheds to a lake – A case study of the Lake Shinji Watershed, Shimane Prefecture, Japan. International Journal of Agricultural and Biological Engineering. 11(5): 124-130. DOI: 10.25165/j.ijabe.20181105.4351 .

4992. Somura, H., I. Takeda and Y. Mori. 2009. Sensitivity analyses of hydrologic and suspended sediment discharge in the Abashiri River basin, Hokkaido region, Japan. International Agricultural Engineering Journal. 18(1-2): 27-39. URL: https://www.researchgate.net/publication/288120361_Sensitivity_analyses_of_hydrologic_and_suspended_sediment_discharge_in_the_abashiri_river_basin_hokkaido_region_Japan.

4993. Somura, H., I. Takeda, J.G. Arnold, Y. Mori, J. Jeong, N. Kannan and D. Hoffman. 2012. Impact of suspended sediment and nutrient loading from land uses against water quality in the Hii River basin, Japan. Journal of Hydrology. 450-451: 25-35. DOI: 10.1016/j.jhydrol.2012.05.032 .

4994. Somura, H., J. Arnold, D. Hoffman, I. Takeda, Y. Mori, and M. Di Luzio. 2009. Impact of climate change on the Hii River basin and salinity in Lake Shinji: a case study using the SWAT model and a regression curve. Hydrological Processes. 23(13): 1887–1900. DOI: 10.1002/hyp.7321 .

4995. Son, K. and J. Kim. 2008. Application of proxy-basin differential split-sampling and blind-validation tests for evaluating hydrological impact of climate change using SWAT. Journal of the Korean Water Resources Association. 41(10): 969-982. DOI: 10.3741/JKWRA.2008.41.10.969 .

4996. Son, N.T. and N.Y Nhu. 2009. Applying SWAT model to simulate streamflow in Ben Hai River Basin in response to climate change scenarios. VNU Journal of Science: Earth and Environmental Sciences. 25(3): 161-167. URL: https://js.vnu.edu.vn/EES/article/view/1873.

4997. Son, N.T., H.L. Huong, N.D. Loc and T.T. Phuong. 2022. Application of SWAT model to assess land use change and climate variability impacts on hydrology of Nam Rom Catchment in northwestern Vietnam. Environment, Development, and Sustainability. 24(3): 3091-3109. DOI: 10.1007/s10668-021-01295-2 .

4998. Son, N.T., N.D. Binh and R.P. Shrestha. 2015. Effect of land use change on runoff and sediment yield in Da River Basin of Hoa Binh Province, northwest Vietnam. Journal of Mountain Science. 12(4): 1051-1064. DOI: 10.1007/s11629-013-2925-9 .

4999. Sone, J.S., T.F. Araujo, G.C. Gesualdo, A.S. Ballarin, G.A. Carvalho, P.T.S. Oliveira and E.C. Wendland. 2022. Water security in an uncertain future: Contrasting realities from an availability-demand perspective. Water Resources Management. 36(8): 2571–2587. DOI: 10.15576/ASP.FC/2022.21.1.85 .

5000. Song X.F., Z. Duan, Y. Kono and M.Y. Wang. 2011. Integration of remotely sensed C factor into SWAT for modelling sediment yield. Hydrological Processes. 25(22): 3387–3398. DOI: 10.1002/hyp.8066 .

5001. Song, J., B.M. Gramig, R. Cibin and I. Chaubey. 2017. Integrated economic and environmental assessment of cellulosic biofuel production in an agricultural watershed. Bioenergy Research. 10(2): 509–524. DOI: 10.1007/s12155-017-9817-8 .

5002. Song, S., B. Schmalz and N. Fohrer. 2014. Simulation and comparison of stream power in-channel and on the floodplain in a German lowland area. Journal of Hydrology and Hydromechanics. 62(2): 133-144. DOI: 10.2478/johh-2014-0018 .

5003. Song, S., B. Schmalz and N. Fohrer. 2015. Simulation, quantification and comparison of in-channel and floodplain sediment processes in a lowland area – A case study of the Upper Stör catchment in northern Germany. Ecological Indicators. 57: 118-127. DOI: 10.1016/j.ecolind.2015.03.030 .

5004. Song, X., Y. Liu, F. Zhong, X. Deng, Y. Qi, J. Zhang, R. Zhang and Y. Zhang. 2020. Payment criteria and mode for watershed ecosystem services: A case study of the Heihe River Basin, northwest China. Sustainability. 12(15): 6177. DOI: 10.3390/su12156177 .

5005. Song, Y., J. Zhang and Y. Lai. 2021. Influence of multisite calibration on streamflow estimation based on the hydrological model with CMADS inputs. Journal of Water and Climate Change. 12(7): 3264–3281. DOI: 10.2166/wcc.2021.115 .

5006. Song, Y., J. Zhang, X. Meng, Y. Zhou, Y. Lai and Y. Cao. 2020. Comparison study of multiple precipitation forcing data on hydrological modeling and projection in the Qujiang River Basin. Water. 12(9): 2626. DOI: 10.3390/w12092626 .

5007. Song, Y., Y. Wu, C. Sun, F. Zhao, J. Hu, J. Chen, L. Qiu and Y. Lian. 2022. Spatiotemporal features of pollutant loads in the Yan River Basin, a typical loess hilly and gully watershed in the Chinese Loess Plateau. Geoscience Letters. 9(1): 10. DOI: 10.1186/s40562-022-00220-3 .

5008. Song,, Y.H., E. Chung and S. Shahid. 2022. Differences in extremes and uncertainties in future runoff simulations using SWAT and LSTM for SSP scenarios. Science of the Total Environment. 838(Part3): 156162. DOI: 10.3390/su142416363 .

5009. Soni, P., S. Tripathi and R. Srivastava. 2021. A comparison of regionalization methods in monsoon dominated tropical river basins. Journal of Water and Climate Change. 12(5): 1975–1996. DOI: 10.2166/wcc.2021.298 .

5010. Soni, P., S. Tripathi and R. Srivastava. 2022. Impact of renewed solar dimming on streamflow generation in monsoon dominated tropical river basins. Journal of Hydro-environment Research. 41: 12-24. DOI: 10.1016/j.jher.2022.02.002 .

5011. Sood, A., L. Muthuwatta and M. McCartney. 2013. A SWAT evaluation of the effect of climate change on the hydrology of the Volta River basin. Water International. 38(3): 297-311. DOI: 10.1080/02508060.2013.792404 .

5012. Sood, C. and R. M. Bhagat. 2005. Interfacing geographical information systems and pesticide models. Current Science. 89(8): 1362-1370. URL: http://www.currentscience.ac.in/php/toc.php?vol=089&issue=08.

5013. Sophocleous, M.A., J.K. Koelliker, R.S. Govindaraju, T. Birdie, S.R. Ramireddygari and S.P. Perkins. 1999. Integrated numerical modeling for basin-wide water management: The case of the Rattlesnake Creek basin in south-central Kansas. Journal of Hydrology. 214(1-4): 179-196. DOI: 10.1016/S0022-1694(98)00289-3 .

5014. Sophocleous, M. and S.P. Perkins. 2000. Methodology and application of combined watershed and ground-water models in Kansas. Journal of Hydrology. 236(3-4): 185-201. DOI: 10.1016/S0022-1694(00)00293-6 .

5015. Sorando, R., F.A. Comin, J.J. Jiménez, J.M. Sánchez-Pérez and S. Sauvage. 2019. Water resources and nitrate discharges in relation to agricultural land uses in an intensively irrigated watershed. Science of the Total Environment. 659: 1293-1306. DOI: 10.1016/j.scitotenv.2018.12.023 .

5016. Sorey, T.D., M. Bisri and D. Sisinggih. 2016. Kajian penanganan sedimentasi danau Tondano. Jurnal Teknik Pengairan. 7(2): 259-267. URL: http://jurnalpengairan.ub.ac.id/index.php/jtp/article/view/318.

5017. Soulis, K.X., K.A. Generali, C. Papadaki, C. Theodoropoulos and E. Psomiadis. 2021. Hydrological response of natural mediterranean watersheds to forest fires. Hydrology. 8(1): 15. DOI: 10.3390/hydrology8010015 .

5018. Sousa, W. dos S., J.F. de Souza Viana, R.R. da Silva and R.A. Irmão. 2018. Estimate water balance of a sub-basin of the Ipanema River Hydrographic Basin with the SWAT model. Journal of Environmental Analysis and Progress. 3(1): 146-154. DOI: 10.24221/jeap.3.1.2018.1708.146-154 .

5019. Sowa, S.P., M Herbert, S. Mysorekar, G.M. Annis, K. Hall, A.P. Nejadhashemi, S.A. Woznicki, L. Wang and P.J. Doran. 2016. How much conservation is enough? Defining implementation goals for healthy fish communities in agricultural rivers. Journal of Great Lakes Research. 42(6): 1302-1321. DOI: 10.1016/j.jglr.2016.09.011 .

5020. Sowah, R.A., K. Bradshaw, B. Snyder, D. Spidle and M. Molina. 2020. Evaluation of the Soil and Water Assessment Tool (SWAT) for simulating E. coli concentrations at the watershed-scale. Science of the Total Environment. 746: 140669. DOI: 10.1016/j.scitotenv.2020.140669 .

5021. Sowjanya, N.P., K.V. Reddy and M. Shashi. 2020. Intra- and interannual streamflow variations of Wardha Watershed under changing climate. ISH Journal of Hydraulic Engineering. 26(2): 197-208. DOI: 10.1080/09715010.2018.1473057 .

5022. Spellman, P., V. Webster and D. Watkins. 2018. Bias correcting instantaneous peak flows generated using a continuous, semi-distributed hydrologic model. Journal of Flood Risk Management. DOI: 10.1111/jfr3.12342 .

5023. Sperotto, A., J.L. Molina, S. Torresan, A. Critto, M. Pulido-Velazquez and Marcomini. 2019. A Bayesian Networks approach for the assessment of climate change impacts on nutrients loading. Environmental Science and Policy. 100: 21-36. DOI: 10.1016/j.envsci.2019.06.004 .

5024. Sperotto, A., J.L. Molina, S. Torresan, A. Critto, M. Pulido-Velazquez and A. Marcomini. 2019. Water quality sustainability evaluation under uncertainty: A multi-scenario analysis based on Bayesian networks. Sustainability. 11(17): 4764.

5025. Spruce, J., J. Bolten, I.N. Mohammed, R. Srinivasan and V. Lakshmi. 2020. Mapping Land Use Land Cover Change in the Lower Mekong Basin From 1997 to 2010. Frontiers in Environmental Science. 8: 21. DOI: 10.3389/fenvs.2020.00021 .

5026. Spruce, J., J. Bolten, R. Srinivasan and C. Lakshmi. 2018. Developing land use land cover maps for the Lower Mekong Basin to aid hydrologic molding and basin planning. Remote Sensing. 10(12): 1910. DOI: 10.3390/rs10121910 .

5027. Spruill, C.A., S.R. Workman and J.L. Taraba. 2000. Simulation of daily and monthly stream discharge from small watersheds using the SWAT model. Transactions of the ASAE. 43(6): 1431-1439. DOI: 10.13031/2013.3041 .

5028. Sridhar, P., K.K. Padma and S. Ganapuram. 2018. Assessment and planning for integrated river basin management using remote sensing, SWAT model and morphometric analysis (Case study: Kaddam river basin, India). Geocarto International. DOI: 10.1080/10106049.2018.1489420 .

5029. Sridhar, V., H. Kang and S.A. Ali. 2019. Human-induced alterations to land use and climate and their responses for hydrology and water management in the Mekong River Basin. Water. 11(6): 1307. DOI: 10.3390/w11061307 .

5030. Srinivas, R., B. Das and A. Singhal. 2022. Integrated watershed modeling using interval valued fuzzy computations to enhance watershed restoration and protection at field-scale. Stochastic Environmental Research and Risk Assessment. 36: 1429–1445. DOI: 10.1007/s00477-021-02151-5 .

5031. Srinivasan, M.S., P. Gerald-Marchant, T.L. Veith, W.J. Gburek and T.S. Steenhuis. 2005. Watershed scale modeling of critical source areas of runoff generation and phosphorus transport. Journal of the American Water Resources Association. 41(2): 361-375. DOI: 10.1111/j.1752-1688.2005.tb03741.x .

5032. Srinivasan, R. and J.G. Arnold. 1994. Integration of a basin‑scale water quality model with GIS. Water Resources Bulletin. 30(3): 453‑462. DOI: 10.1111/j.1752-1688.1994.tb03304.x .

5033. Srinivasan, R., J.G. Arnold and R.S. Muttiah. 1995. Plant and hydrologic simulation at the continental scale using SWAT and GIS. Hydrological Science and Technology. 11(1‑4): 160‑168.

5034. Srinivasan, R., T.S. Ramanarayanan, J.G. Arnold and S.T. Bednarz. 1998. Large area hydrologic modeling and assessment part II: Model application. Journal of the American Water Resources Association. 34(1): 91-101. DOI: 10.1111/j.1752-1688.1998.tb05962.x .

5035. Srinivasan, R., X. Zhang and J. Arnold. 2010. SWAT ungauged: Hydrological budget and crop yield predictions in the Upper Mississippi River Basin. Transactions of the ASABE. 53(5): 1533-1546. DOI: 10.13031/2013.34903 .

5036. Srinivasan, R.S., J.G. Arnold and C.A. Jones. 1998. Hydrologic modeling of the United States with the Soil and Water Assessment Tool. International Journal of Water Resources Development. 14(3): 315‑325. DOI: 10.1080/07900629849231 .

5037. Srivastava, P., A.K. Gupta and L. Kalin. 2010. An ecologically-sustainable surface water withdrawal framework for cropland irigation: A case study in Alabama. Environmental Management. 46(2): 302-313. DOI: 10.1007/s00267-010-9537-8 .

5038. Srivastava, P., J.N. McNair and T.E. Johnson. 2006. Comparison of process-based and artificial neural network approaches for streamflow modeling in an agricultural watershed. Journal of the American Water Resources Association. 42(3): 545-563. DOI: 10.1111/j.1752-1688.2006.tb04475.x .

5039. Srivastava, P., K.W. Migliaccio and J. Šimůnek. 2007. Landscape models for simulating water quality at point, field, and watershed scales. Transactions of the ASABE. 50(5): 1683-1693. DOI: 10.13031/2013.23961 .

5040. Sriworamas, K., H. Prasanchum and J. Supakosol. 2020. The effect of forest rehabilitation on runoff and hydrological factors in the upstream area of the Ubolratana Reservoir in Thailand. Journal of Water and Climate Change. 11(4): 1009-1020. DOI: 10.2166/wcc.2019.039 .

5041. Ssegane, H. and M.C. Negri. 2016. An Integrated landscape designed for commodity and bioenergy crops for a tile-drained agricultural watershed. Journal of Environmental Quality. 45(5): 1588-1596. DOI: 10.2134/jeq2015.10.0518 .

5042. Starks, P.J. and D.N. Moriasi. 2009. Spatial Resolution Effect of Precipitation Data on SWAT Calibration and Performance: Implications for CEAP. Transactions of the ASABE. 52(4): 1171-1180. DOI: 10.13031/2013.27792 .

5043. Starks, P.J. and D.N. Moriasi. 2017. Impact of Eastern redcedar encroachment on stream discharge in the North Canadian River basin. Journal of Soil and Water Conservation. 72(1): 12-25. DOI: 10.2489/jswc.72.1.12 .

5044. Steenhuis, T.S., E.M. Schneiderman, R. Mukundan, L. Hoang, M. Moges and E.M. Owens. 2019. Revisiting SWAT as a saturation-excess runoff model. Water. 11(7): 1427. DOI: 10.3390/w11071427 .

5045. Stefanidis, K., Y. Panagopoulos, A. Psomas and M. Mimikou. 2016. Assessment of the natural flow regime in a Mediterranean river impacted from irrigated agriculture. Science of the Total Environment. 573: 1492–1502. DOI: 10.1016/j.scitotenv.2016.08.046 .

5046. Stefanidis, K., Y. Panagopoulos and M. Mimikou. 2016. Impact assessment of agricultural driven stressors on benthic macroinvertebrates using simulated data. Science of the Total Environment. 540: 32-42. DOI: 10.1016/j.scitotenv.2015.08.015 .

5047. Stefanidis, K., Y. Panagopoulos and M. Mimikou. 2018. Response of a multi-stressed Mediterranean river to future climate and socio-economic scenarios. Science of the Total Environment. 627: 756-769. DOI: 10.1016/j.scitotenv.2018.01.282 .

5048. Stefanova, A., C. Hesse, V. Krysanova and M. Volk. 2019. Assessment of socio-economic and climate change impacts on water resources in four European lagoon catchments. Environmental Management. DOI: 10.1007/s00267-019-01188-1 .

5049. Stefanova, A., V. Krysanova, C. Hesse and A.I. Lillebo. 2015. Climate change impact assessment on water inflow to a coastal lagoon: The Ria de Aveiro watershed, Portugal. Hydrological Sciences Journal. 60(5): 929-948. DOI: 10.1080/02626667.2014.983518 .

5050. Stehr, A., M. Aguayo, O. Link, O. Parra, F. Romero and H. Alcayaga. 2010. Modelling the hydrologic response of a mesoscale Andean watershed to changes in land use patterns for environmental planning. Hydrology and Earth System Sciences. 14: 1963-1977. DOI: 10.5194/hess-14-1963-2010 .

5051. Stehr, A., P. Debels, F. Romero and H. Alcayaga. 2008. Hydrological modelling with SWAT under conditions of limited data availability: evaluation of results from a Chilean case study. Hydrological Sciences Journal. 53(3): 588-601. DOI: 10.1623/hysj.53.3.588 .

5052. Stehr, A., P. Debels, J.L. Arumi, F. Romero and H. Alcayaga. 2009. Combining the Soil and Water Assessment Tool (SWAT) and MODIS imagery to estimate monthly flows in a data-scarce Chilean Andean basin. Hydrological Sciences Journal. 54(6): 1053-1067. DOI: 10.1623/hysj.54.6.1053 .

5053. Steinhardt, U. and M. Volk. 2003. Meso-scale landscape analysis based on landscape balance investigations: problems and hierarchical approaches for their resolution. Ecological Modelling. 168(3): 251-265. DOI: 10.1016/S0304-3800(03)00140-6 .

5054. Sterl, S., D. Fadly, S. Liersch, H. Koch and W. Thiery. 2021. Linking solar and wind power in eastern Africa with operation of the Grand Ethiopian Renaissance Dam. Nature Energy. DOI: 10.1038/s41560-021-00799-5 .

5055. Sterl, S., I. Vanderkelen, C.J. Chawanda, D. Russo, R.J. Brecha, A. van Griensven, N.P.M. van Lipzig and W. Thiery. 2020. Smart renewable electricity portfolios in West Africa. Nature Sustainability. 3: 710–719. DOI: 10.1038/s41893-020-0539-0 .

5056. Stewart, G.R., C.L. Munster, D.M. Vietor, J.G. Arnold, A.M.S. McFarland, R. White and T. Provin. 2006. Simulating water quality improvements in the Upper North Bosque River Watershed due to phosphorus export through turfgrass sod. Transactions of the ASABE. 49(2): 357-366. DOI: 10.13031/2013.20410 .

5057. Stewart, I.T., D.L. Ficklin, C.A. Carrillo and R. McIntosh. 2015. 21st century increases in the likelihood of extreme hydrologic conditions for the mountainous basins of the southwestern United States. Journal of Hydrology. 529(Part 1): 340–353. DOI: 10.1016/j.jhydrol.2015.07.043 .

5058. Stone, M.C., R.C. Hotchkiss and L.O. Mearnes. 2003. Water yield responses to high and low spatial resolution climate change scenarios in the Missouri River Basin. Geophysical Research Letters. 30(4), 1186: 35-1 - 35-4. DOI: 10.1029/2002GL016122 .

5059. Stone, M.C., R.H. Hotchkiss, C.M. Hubbard, T.A. Fontaine, L.O. Mearns and J.G. Arnold. 2001. Impacts of climate change on Missouri river basin water yield. Journal of the American Water Resources Association. 37(5): 1119-1130. DOI: 10.1111/j.1752-1688.2001.tb03626.x .

5060. Stonefelt, M. D., T.A. Fontaine and R.H. Hotchkiss. 2000. Impacts of climate change on water yield in the Upper Wind River Basin. Journal of the American Water Resources Association. 36(2): 321-336. DOI: 10.1111/j.1752-1688.2000.tb04271.x .

5061. St-Pierre, F., F. Tardif, M.J. Rodriguez and G. Pelletier. 2021. Comparison of hydrological model-based and geographical-based approaches for estimating water travel times for source water protection. Environmental Processes. 8(1): 99-117. DOI: 10.1007/s40710-020-00473-0 .

5062. Stratton, B.T., V. Sridhar, M.M. Gribb, J.P. McNamara, and B. Narasimhan. 2009. Modeling the spatially varying water balance processes in a semiarid mountainous watershed of Idaho. Journal of the American Water Resources Association. 45(6): 1390-1408. DOI: 10.1111/j.1752-1688.2009.00371.x .

5063. Strauch, M. and M. Volk. 2013. SWAT plant growth modification for improved modeling of perennial vegetation in the tropics. Ecological Modelling. 269: 98–112. DOI: 10.1016/j.ecolmodel.2013.08.013 .

5064. Strauch, M., C. Bernhofer, S. Koide, M. Volk, C. Lorz and F. Makeschin. 2012. Using precipitation data ensemble for uncertainty analysis in SWAT streamflow simulation. Journal of Hydrology. 414-415: 413-424. DOI: 10.1016/j.jhydrol.2011.11.014 .

5065. Strauch, M., J.E.F.W. Lima, M. Volk, C. Lorz and F. Makeschin. 2013. The impact of Best Management Practices on simulated streamflow and sediment load in a central Brazilian catchment. Journal of Environmental Management. 127 Supplement: S24–S36. DOI: 10.1016/j.jenvman.2013.01.014 .

5066. Strauch, M., R. Kumar, S. Eisner, M. Mulligan, J. Reinhardt, W. Santini, T. Vetter and J. Friesen. 2017. Adjustment of global precipitation data for enhanced hydrologic modeling of tropical Andean watersheds. Climatic Change. 141(3): 547-560. DOI: 10.1007/s10584-016-1706-1 .

5067. Strehmel, A., A. Jewett, R. Schuldt, B. Schmalz and N. Fohrer. 2016. Field data-based implementation of land management and terraces on the catchment scale for an eco-hydrological modelling approach in the Three Gorges Region, China. Agricultural Water Management. 175: 43-60. DOI: 10.1016/j.agwat.2015.10.007 .

5068. Strehmel, A., B. Schmalz and N. Fohrer. 2016. Evaluation of land use, land management and soil conservation strategies to reduce non-point source pollution loads in the Three Gorges Region, China. Environmental Management. 58(5): 906–921. DOI: 10.1007/s00267-016-0758-3 .

5069. Strehmel, A., S. Schonbrodt-Stitt, G. Buzzo, C. Dumperth, F. Stumpf, K. Zimmermann, K. Bieger, T. Behrens, K. Schmidt, R. Bi, J. Rohn, J. Hill, T. Udelhoven, W. Xiang, X. Shi, Q. Cai, T. Jiang , N. Fohrer and T. Scholten. 2015. Assessment of geo-hazards in a rapidly changing landscape: The three Gorges Reservoir Region in China. Environmental Earth Sciences. 74(6): 4939-4960. DOI: 10.1007/s12665-015-4503-7 .

5070. Strohmeier S., P.L. López, M. Haddad, V. Nangia, M. Karrou, G. Montanaro, A. Boudhar, C. Linés, T. Veldkamp and G. Sterk. 2020. Surface runoff and drought assessment using global water resources datasets - from Oum Er Rbia Basin to the Moroccan country scale. Water Resources Management. 34: 2117–2133. DOI: 10.1007/s11269-019-02251-6 .

5071. Su, B. and Y. Luo. 2019. Modelling hydrological processes and nutrient retention in plain polders. Hydrological Sciences Journal. 64(7): 835-844. DOI: 10.1080/02626667.2019.1601728 .

5072. Su, B., J. Huang, X. Zeng, C. Gao and T. Jiang. 2017. Impacts of climate change on streamflow in the upper Yangtze River basin. Climatic Change. 141(3): 533-546. DOI: 10.1007/s10584-016-1852-5 .

5073. Sudheer, K.P., G. Lakshmi and I. Chaubey. 2010. Application of a pseudo simulator to evaluate the sensitivity of parameters in complex watershed models. Environmental Modelling & Software. 26(2): 135-143. DOI: 10.1016/j.envsoft.2010.07.007 .

5074. Sudheer, K.P., I. Chaubey, V. Garg and K.W. Migliaccio. 2007. Impact of time-scale of the calibration objective function on the performance of watershed models. Hydrological Processes. 21(25): 3409-3419. DOI: 10.1002/hyp.6555 .

5075. Suen, J.-P. and J.W. Eheart. 2003. Evaluation of neural networks for modeling nitrate concentrations in rivers. Journal of Water Resources Planning and Management. R9(6): 505-510. DOI: 10.1061/(ASCE)0733-9496(2003)129:6(505) .

5076. Suhaila, M.R.N., A. Zuhairi, A.N.S. Azlyn and M.M. Zaini. 2021. Soil data definition for hydrologic response unit analysis in SWAT model of Langkawi Island, Malaysia. Eurasian Journal of Soil Science. 10(1): 68-76. DOI: 10.18393/ejss.816417 .

5077. Sui, Y. and J.R. Frankenberger. 2008. Nitrate loss from subsurface drains in an agricultural watershed using SWAT2005. Transactions of the ASABE. 51(4): 1263-1272. DOI: 10.13031/2013.25243 .

5078. Sujarwo, M.W., I. Indarto and M. Mandala. 2020. Pemodelan erosi dan sedimentasi di DAS Bajulmati : Aplikasi Soil dan Water Assesment Tool (SWAT). Jurnal Ilmu Lingkungan. 18(2): 218-227. DOI: 10.14710/jil.18.2.218-227 .

5079. Sujarwo, M.W., I. Indarto and dan M. Mandala. 2020. Pemodelan erosi dan sedimentasi di DAS Bajulmati: Aplikasi Soil & Water Assesment Tool (SWAT). Jurnal Ilmu Lingkungan. 18(2): 218-227. DOI: 10.14710/jil.18.2.218-227 .

5080. Sujarwo, M.W., I. Indarto and M. Mandala. 2021. Modelling erosion and sedimentation in a small watershed, East Java, Indonesia. Journal of Water and Land Development. 50(VI–IX): 265–273. DOI: 10.24425/jwld.2021.138182 .

5081. Sujarwo, M.W., I. Indarto and M. Mandala. 2022. The impact of land use and land cover change on hydrological processes in Brantas Watershed, East Java, Indonesia. Kuwait Journal of Science. 49(4). DOI: 10.48129/kjs.12711 .

5082. Sukhbaatar, C., R.U. Sajjad, J. Lunten, S.-H. Yu and C.-H. Lee. 2017. Climate change impact on the Tuul River flow in a semiarid region in Mongolia. Water Environment Research. 89(6): 527-538. DOI: 10.2175/106143016X14798353399223 .

5083. Sukumaran, H. and S.N. Sahoo. 2020. A methodological framework for identification of baseline scenario and assessing the impact of DEM scenarios on SWAT model outputs. Water Resources Management. 34(13): 4795–4814. DOI: 10.1007/s11269-020-02691-5 .

5084. Sulaeman, D., Y. Hidayat, L.M. Rachman and D.S.D. Tarigan. 2016. Best management practice to reduce flow discharge and sediment yield in Ciujung Watershed using SWAT model. Jurnal Ilmu Tanah Dan Lingkungan. 18(1): 8-14. URL: http://journal.ipb.ac.id/index.php/jtanah/article/view/12817.

5085. Sulaiman, A.H.A., M. Jajarmizadeh, S. Harun and I.Z.M. Darus. 2015. Comparison of Semi-Distributed, GIS-Based Hydrological Models for the Prediction of Streamflow in a Large Catchment. Water Resources Management. 29(9): 3095-3110. DOI: 10.1007/s11269-015-0984-0 .

5086. Sulaiman, S.O., N.S. Mahmood, A.H. Kamel and N. Al-Ansari. 2021. The evaluation of the SWAT model performance to predict the runoff values in the Iraqi Western Desert. Environment and Ecology Research. 9(6): 330-339. DOI: 10.13189/eer.2021.090602 .

5087. Sulis, M., M. Marrocu, and C. Paniconi. 2008. Conjunctive Use of a Hydrological Model and a Multicriteria Decision Support System for a Case Study on the Caia Catchment, Portugal. Journal of Hydrologic Engineering. 14(2): 141-152. DOI: 10.1061/(ASCE)1084-0699(2009)14:2(141) .

5088. Sullivan, T.P. and Y. Gao. 2016. Assessment of nitrogen inputs and yields in the Cibolo and Dry Comal Creek watersheds using the SWAT model, Texas, USA 1996–2010. Environmental Earth Sciences. 75(9): 725. DOI: 10.1007/s12665-016-5546-0 .

5089. Sultan, M. S. Metwally, A. Milewski, D. Becker, M. Ahmed, W. Sauck, F. Soliman, Nl. Struchio, E. Yan, M. Rashed, A. Wagdy, R. Becker and B. Welton. 2011. Modern recharge to fossil aquifers: Geochemical, geophysical, and modeling constraints. Journal of Hydrology. 403(1-2): 14-24. DOI: 10.1016/j.jhydrol.2011.03.036 .

5090. Sultana, J., F. Recknagel and H.H. Nguyen. 2020. Species-specific macroinvertebrate responses to climate and land use scenarios in a Mediterranean catchment revealed by an integrated modelling approach. Ecological Indicators. 118: 106766. DOI: 10.1016/j.ecolind.2020.106766 .

5091. Sultana, R. and M. Choi. 2018. Sensitivity of streamflow response in the snow-dominated Sierra Nevada Watershed using projected CMIP5 data. Journal of Hydrologic Engineering. 23(8): 05018015. DOI: 10.1061/(ASCE)HE.1943-5584.0001640 .

5092. Sun, A. 2014. Enabling collaborative decision-making in watershed management using cloud-computing services. Environmental Modelling & Software. 41: 93-97. DOI: 10.1016/j.envsoft.2012.11.008 .

5093. Sun, A.Y., R.M. Miranda and X. Xu. 2015. Development of multi-metamodels to support surface water quality management and decision making. Environmental Earth Sciences. 73(1): 423-434. DOI: 10.1007/s12665-014-3448-6 .

5094. Sun, C. and L Ren. 2014. Assessing crop yield and crop water productivity and optimizing irrigation scheduling of winter wheat and summer maize in the Haihe plain using SWAT model. Hydrological Processes. 28(4): 2478–2498. DOI: 10.1002/hyp.9759 .

5095. Sun, C. and L. Ren. 2013. Assessment of surface water resources and evapotranspiration in the Haihe River basin of China using SWAT model. Hydrological Processes. 27(8): 1-23. DOI: 10.1002/hyp.9213 .

5096. Sun, F., A. Mejia and Y. Che. 2019. Disentangling the contributions of climate and basin characteristics to water yield across spatial and temporal scales in the Yangtze River Basin: A combined hydrological model and boosted regression approach. Water Resources Management. 33: 3449-3468. DOI: 10.1007/s11269-019-02310-y .

5097. Sun, F., A. Mejia, P. Zeng and Y. Che. 2019. Projecting meteorological, hydrological and agricultural droughts for the Yangtze River Basin. Science of the Total Environment. 696: 134076. DOI: 10.1016/j.scitotenv.2019.134076 .

5098. Sun, F., W. Kuang, W. Xiang and Y. Che. 2016. Mapping water vulnerability of the Yangtze River Basin: 1994–2013. Environmental Management. 58(5): 857–872. DOI: 10.1007/s00267-016-0756-5 .

5099. Sun, G., X. Wei, L. Hao, M.G. Sanchis, Y. Hou, R. Yousefpour, R. Tang and Z. Zhang. 2023. Forest hydrology modeling tools for watershed management: A review. Forest Ecology and Management. 530: 120755. DOI: 10.1016/j.foreco.2022.120755 .

5100. Sun, H. and P.S. Cornish. 2005. Estimating shallow groundwater recharge in the headwaters of the Liverpool Plains using SWAT. Hydrological Processes. 19(3): 795-807. DOI: 10.1002/hyp.5617 .

5101. Sun, H. and P.S. Cornish. 2006. A catchment-based approach to recharge estimation in the Liverpool Plains, NSW, Australia. Australian Journal of Agricultural Research. 57(3): 309-320. DOI: 10.1071/AR04015 .

5102. Sun, J., H. Yan, Z. Bao and G. Wang. 2022. Investigating impacts of climate change on runoff from the Qinhuai River by using the SWAT model and CMIP6 scenarios. Water. 14(11): 1778. DOI: 10.3390/w14111778 .

5103. Sun, J.-Q., H-Y. Li, X-J. Wang and S. Shahid. 2021. Water resources response and prediction under climate change in Tao'er River Basin, Northeast China. Journal of Mountain Science. 18(10): 2635-2645. DOI: 10.1007/s11629-020-6635-9 .

5104. Sun, L., L. Yang, L. Hao, D. Fang, K. Jin and X. Huang. 2017. Hydrological effects of vegetation cover degradation and environmental implications in a semiarid temperate Steppe, China. Sustainability. 9(2): 281. DOI: 10.3390/su9020281 .

5105. Sun, L., O. Seidou and I. Nistor. 2016. Data assimilation for streamflow forecasting: State–parameter assimilation versus output assimilation. Journal of Hydrologic Engineering. 22(3). DOI: 10.1061/(ASCE)HE.1943-5584.0001475 .

5106. Sun, L., O. Seidou, I. Nistor, K. Goïta and R. Magagi. 2016. Simultaneous assimilation of in situ soil moisture and streamflow in the SWAT model using the Extended Kalman Filter. Journal of Hydrology. 543: 671-685. DOI: 10.1016/j.jhydrol.2016.10.040 .

5107. Sun, L., W. Lu, Q. Yang, J.D. Martin and D. Li. 2013. Ecological compensation estimation of soil and water conservation based on cost-benefit analysis. Water Resources Management. 27(8): 2709-2727. DOI: 10.1007/s11269-013-0268-5 .

5108. Sun, P. and Y. Wu. 2022. Dynamic modeling framework of sediment trapped by check-dam networks: A case study of a typical watershed on the Chinese Loess Plateau. Engineering. DOI: 10.1016/j.eng.2021.12.015 .

5109. Sun, P., Y. Wu, X. Wei, B. Sivakumar, L. Qiu, X. Mu, J. Chen and J. Gao. 2020. Quantifying the contributions of climate variation, land use change, and engineering measures for dramatic reduction in streamflow and sediment in a typical loess watershed, China. Ecological Engineering. 142: 105611. DOI: 10.1016/j.ecoleng.2019.105611 .

5110. Sun, R., X.Q zhang, Y. Sun, D. Zheng and K. Fraedrich. 2013. SWAT-based streamflow estimation and its responses to climate change in the Kadongjia River Watershed, southern Tibet. Journal of Hydrometeorology. 14(5): 1571–1586. DOI: 10.1175/JHM-D-12-0159.1 .

5111. Sun, S., C. Haishan, J. Weimin, H. Wenjian, Y. Miao and Y. Yixing. 2014. Assessing the future hydrological cycle in the Xinjiang Basin, China, using a multi-model ensemble and SWAT model. International Journal of Climatology. 34(9): 2972–2987. DOI: 10.1002/joc.3890 .

5112. Sun, S., H. Chen, W. Ju, M. Yu, W. Hua and Y. Yin. 2014. On the attribution of the changing hydrological cycle in Poyang Lake basin. Journal of Hydrology. 514: 214-225. DOI: 10.1016/j.jhydrol.2014.04.013 .

5113. Sun, W., X. Yao, N. Cao, Z. Xu and J. Yu. 2016. Integration of soil hydraulic characteristics derived from pedotransfer functions into hydrological models: Evaluation of its effects on simulation uncertainty. Hydrology Research. 47(5): 964-978. DOI: 10.2166/nh.2016.150 .

5114. Sun, W., Y. Wang, G. Wang, X. Cui, J. Yu, D. Zuo and Z. Xu. 2017. Physically based distributed hydrological model calibration based on a short period of streamflow data: Case studies in four Chinese basins. Hydrology and Earth System Sciences. 21(1): 251-265. DOI: 10.5194/hess-21-251-2017 .

5115. Sun, X., L. Bernard-Jannin, C. Garneau, M. Volk, J.G. Arnold, R. Srinivasan, S. Sauvage and J.M. Sánchez-Pérez. 2016. Improved simulation of river water and groundwater exchange in an alluvial plain using the SWAT model. Hydrological Processes. 30(2): 187-202. DOI: 10.1002/hyp.10575 .

5116. Sun, X., L. Bernard-Jannin, Y. Grusson, S. Sauvage, J. Arnold, R. Srinivasan and J.M.S. Perez. 2018. Using SWAT-LUD to estimate the influence of water exchange and shallow aquifer denitrification on water and nitrate flux. Water. 10(4): 528. DOI: 10.3390/w10040528 .

5117. Sun, X., L.B. -Jannin, S. Sauvage, C. Garneau, J.G. Arnold, R. Srinivasan and J.M. Sánchez-Pérez. 2017. Assessment of the denitrification process in alluvial wetlands at floodplain scale using the SWAT model. Ecological Engineering. 103(Part B): 344–358. DOI: 10.1016/j.ecoleng.2016.06.098 .

5118. Sun, Z., T. Lotz and N.-B. Chang. 2017. Assessing the long-term effects of land use changes on runoff patterns and food production in a large lake watershed with policy implications. Journal of Environmental Management. 204(Part 1): 92-101. DOI: 10.1016/j.jenvman.2017.08.043 .

5119. Sun, Z., T. Lotz and Q. Huang. 2021. An ET-Based two-phase method for the calibration and application of distributed hydrological models. Water Resources Management. 35(3): 1065-1077. DOI: 10.1007/s11269-021-02774-x .

5120. Sunandar, A.D., E. Suhendang, Hendrayanto, I.N.S. Jaya, Marimin. 2014. Land use optimization in Asahan watershed with linear programming and SWAT model. International Journal of Sciences: Basic and Applied Research. 18(1): 63-78. URL: http://gssrr.org/index.php?journal=JournalOfBasicAndApplied&page=issue&op=view&path[]=94.

5121. Sunandar, A.D., E. Suhendang, Hendrayanto, I.N.S.Jaya and d./a. Marimin. 2016. Landuse change impact on hydrologic responses in Asahan Watershed. Jurnal Penelitian Hutan Tanaman. 13(1): 49-60. URL: http://ejournal.forda-mof.org/ejournal-litbang/index.php/JPHT/article/view/4104.

5122. Sunde, M.G., H.S. He, J.A. Hubbart and C. Scroggins. 2016. Forecasting streamflow response to increased imperviousness in an urbanizing Midwestern watershed using a coupled modeling approach. Applied Geography. 72: 14-25. DOI: 10.1016/j.apgeog.2016.05.002 .

5123. Sunde, M.G., H.S. He, J.A. Hubbart and M.A. Urban. 2017. Integrating downscaled CMIP5 data with a physically-based hydrologic model to estimate potential climate change impacts on streamflow processes in a mixed-use watershed. Hydrological Processes. 31(9): 1790–1803. DOI: 10.1002/hyp.11150 .

5124. Sunde, M.G., H.S. He, J.A. Hubbart and M.A. Urban. 2018. An integrated modeling approach for estimating hydrologic responses to future urbanization and climate changes in a mixed-use midwestern watershed. Journal of Environmental Management. 220: 149-162. DOI: 10.1016/j.jenvman.2018.05.025 .

5125. Supakosol, J. and K. Boonrawd. 2020. Hydrologic evaluation and effects of climate change on the Nong Han Lake Basin, northeastern Thailand. Journal of Water and Climate Change. 11(4): 992-1000. DOI: 10.2166/wcc.2019.040 .

5126. Supatmanto, B.D. and S.M. Yusuf. 2015. Studi hidrologi berdasarkan climate changes menggunakan model SWAT di daerah tangkapan air waduk jatiluhur. Jurnal Sains dan Teknologi Modifikasi Cuaca. 16(2): 55-60. URL: http://ejurnal.bppt.go.id/index.php/JSTMC/article/view/1047.

5127. Surinaidu, L. 2022. Quantifying stream flows and groundwater response under the climate and land use change through integrated hydrological modelling in a South Indian river basin. Water Security. 17: 100129. DOI: 10.1016/j.wasec.2022.100129 .

5128. Surinaidu, L., L. Muthuwatta, U.A. Amarasinghe, S.K. Jain, N.C. Ghosh, S. Kumar and S. Singh. 2016. Reviving the Ganges water machine: Accelerating surface water and groundwater interactions in the Ramganga Sub-basin. Journal of Hydrology. 540: 207-219. DOI: 10.1016/j.jhydrol.2016.06.025 .

5129. Suryavanshi, S., A. Pandey and U.C. Chaube. 2016. Hydrological simulation of the Betwa River basin (India) using the SWAT model. Hydrological Sciences Journal. 62(6). DOI: 10.1080/02626667.2016.1271420 .

5130. Suttles, K.M., N.K. Singh, J.M. Vose, K.L. Martin, R.E. Emanuel, J.W. Coulston, S.M. Saia and M.T. Crump. 2018. Assessment of hydrologic vulnerability to urbanization and climate change in a rapidly changing watershed in the Southeast U.S. Science of the Total Environment. 645: 806-816. DOI: 10.1016/j.scitotenv.2018.06.287 .

5131. Swain, J.B. and K.C. Patra. 2017. Streamflow estimation in ungauged catchments using regionalization techniques. Journal of Hydrology. 554: 420-433. DOI: 10.1016/j.jhydrol.2017.08.054 .

5132. Swain, J.B. and K.C. Patra. 2019. Impact assessment of land use/land cover and climate change on streamflow regionalization in an ungauged catchment. Journal of Water and Climate Change. 10(3): 554–568. DOI: 10.2166/wcc.2018.161 .

5133. Swain, J.B. and K.C. Patra. 2019. Impact of catchment classification on streamflow regionalization in ungauged catchments. SN Applied Sciences. 1: 456. DOI: 10.1007/s42452-019-0476-6 .

5134. Swain, S., S.K. Mishra, A. Pandey, A.C. Pandey, A. Jain, S.K. Chauhan and A.K. Badoni. 2022. Hydrological modelling through SWAT over a Himalayan catchment using high-resolution geospatial inputs. Environmental Challenges. 8: 100579. DOI: 10.1016/j.envc.2022.100579 .

5135. Swain, S.S., A. Mishra, B. Sahoo and C. Chatterjee. 2020. Water scarcity-risk assessment in data-scarce river basins under decadal climate change using a hydrological modelling approach. Journal of Hydrology. 590: 125260. DOI: 10.1016/j.jhydrol.2020.125260 .

5136. Swain, S.S., A. Mishra, C. Chatterjee and B. Sahoo. 2021. Climate-changed versus land-use altered streamflow: A relative contribution assessment using three complementary approaches at a decadal time-spell. Journal of Hydrology. 596: 126064. DOI: 10.1016/j.jhydrol.2021.126064 .

5137. Swalih, S.A. and E. Kahya. 2021. Hydrological model optimization using multi-gauge calibration (MGC) in a mountainous region. Journal of Hydroinformatics. 23(2): 340-351. DOI: 10.2166/hydro.2020.034 .

5138. Swallow, B.M., J.K. Sang, M. Nyabenge, D.K. Bundotich, A.K. Duraiappah and T.B. Yatich. 2009. Tradeoffs, synergies and traps among ecosystem services in the Lake Victoria basin of East Africa. Environmental Science and Policy. 12(4): 504-519. DOI: 10.1016/j.envsci.2008.11.003 .

5139. Szalińska, E. and P. Wilk. 2018. Sediment quantity management in Polish catchment-river-sea systems – should we care? Ekonomia i Środowisko . 3(66): 25-37. URL: https://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-9f9f439f-bbff-46e1-8f44-0128b8b8ad61.

5140. Szalińska, E., G. Zemełka, M. Kryłów, P. Orlińska-Woźniak, E. Jakusik and P. Wilk. 2021. Climate change impacts on contaminant loads delivered with sediment yields from different land use types in a Carpathian Basin. Science of the Total Environment. 755: 142898. DOI: 10.1016/j.scitotenv.2020.142898 .

5141. Szalińska, E., P. Orlińska-Woźniak and P. Wilk. 2020. Sediment load variability in response to climate and land use changes in a Carpathian catchment (Raba River, Poland). Journal of Soils and Sediments. 20(6): 2641–2652. DOI: 10.1007/s11368-020-02600-8 .

5142. Szcześniak M. and M. Piniewski. 2015. Improvement of Hydrological Simulations by Applying Daily Precipitation Interpolation Schemes in Meso-Scale Catchments. Water. 7(2): 747-779. DOI: 10.3390/w7020747 .

5143. Szporak-Wasilewska, S., M. Piniewski, J. Kubrak and T. Okruszko. 2015. What we can learn from a wetland water balance? Narew Nathional Park case study. Ecohydrology & Hydrobiology. 15(3): 136-149. DOI: 10.1016/j.ecohyd.2015.02.003 .

5144. T.A., Woldesenbet. 2022. Impact of land use and land cover dynamics on ecologically-relevant flows and blue-green water resources. Ecohydrology & Hydrobiology. 22(3): 420-434. DOI: 10.1016/j.ecohyd.2022.03.002 .

5145. Tadesse, A. and W. Dai. 2018. Prediction of sedimentation in reservoirs by combining catchment based model and stream based model with limited data. International Journal of Sediment Research. DOI: 10.1016/j.ijsrc.2018.08.001 .

5146. Taffarello, D., R. Srinivasan, G.S. Mohor, J.L.B. Guimarães, M. do Carmo Calijuri and E.M. Mendiondo. 2018. Modeling freshwater quality scenarios with ecosystem-based adaptation in the headwaters of the Cantareira system, Brazil. Hydrology and Earth System Sciences. 22(9): 4699-4723. DOI: 10.5194/hess-22-4699-2018 .

5147. Taheriyoun, M., M. Karamouz, A. Baghvand, F. Emami and H. Tavakolifar. 2009. Optimal selection and placement of point and nonpoint source pollution control strategies using a genetic algorithm. International Agricultural Engineering Journal. 18(3-4): 1-13. URL: https://www.researchgate.net/publication/287762310_Optimal_selection_and_placement_of_point_and_nonpoint_source_pollution_control_strategies_using_a_genetic_algorithm.

5148. Takele, G.S., G.S. Gebre, A.G. Gebremariam and A.N. Engida. 2022. Hydrological modeling in the Upper Blue Nile Basin using soil and water analysis tool (SWAT). Modeling Earth Systems and Environment. 8(1): 277-292. DOI: 10.1007/s40808-021-01085-9 .

5149. Takele, G.S., G.S. Gebrie, A.G. Gebremariam and A.N. Engida. 2022. Future climate change and impacts on water resources in the Upper Blue Nile Basin. Journal of Water and Climate Change. 13(2): 908-925. DOI: 10.2166/wcc.2021.235 .

5150. Takle, E.S., M. Jha and C.J. Anderson. 2005. Hydrological cycle in the Upper Mississippi River basin: 20th century simulations by multiple GCMs. Geophysical Research Letters. 32(18): L18407. DOI: 10.1029/2005GL023630 .

5151. Takle, E.S., M. Jha, E. Lu, R.W. Arritt, W.J. Gutowski and the NARCCAP Team. 2010. Streamflow in the upper Mississippi river basin as simulated by SWAT driven by 20th Century contemporary results of global climate models and NARCCAP regional climate models. Meteorologische Zeitschrift. 19(4): 341-346. DOI: 10.1127/0941-2948/2010/0464 .

5152. Talchabhadel, R., A. Aryal, K. Kawaike, K. Yamanoi, H. Nakagawa, B. Bhatta, S. Karki and B.R. Thapa. 2021. Evaluation of precipitation elasticity using precipitation data from ground and satellite-based estimates and watershed modeling in Western Nepal. Journal of Hydrology: Regional Studies. 33: 100768. DOI: 10.1016/j.ejrh.2020.100768 .

5153. Talebi, A., E. Zahedi, M.A. Hassan and M.T. Lesani. 2019. Locating suitable sites for the construction of underground dams using the subsurface flow simulation (SWAT model) and analytical network process (ANP) (case study: Daroongar Watershed, Iran). Sustainable Water Resources Management. 5(3): 1369–1378. DOI: 10.1007/s40899-019-00314-5 .

5154. Talebizadeh, M., S. Morid, S.A. Ayyoubzadeh and M. Ghasemzadeh. 2010. Uncertainty analysis in sediment load modeling using ANN and SWAT model. Water Resources Management. 24(9): 892-903. DOI: 10.1007/s11269-009-9522-2 .

5155. Talkouyee, A.K., M. Jourgholami, K. Abbaspour and J. Feghhi. 2019. Simulation runoff and sediment yield in a harvested forest (Case study: Zailakirood Basin, northern Iran). Iranian Journal of Forest. 11(1): 29-41. URL: http://www.ijf-isaforestry.ir/article_89235.html?lang=en.

5156. Tal-maon, M., D. Broitman, M.E. Portman and M. Housh. 2024. Combining a hydrological model with ecological planning for optimal placement of water-sensitive solu. Journal of Hydrology. 628: 130457. DOI: 10.1016/j.jhydrol.2023.130457 .

5157. Tamene, L., W. Abera, B. Demissie, G. Desta, K. Woldearegay and K. Mekonnen. 2022. Soil erosion assessment in Ethiopia: A review. Journal of Soil and Water Conservation. 77(2): 144-157. DOI: 10.2489/jswc.2022.00002 .

5158. Tamm, O., A. Luhamaa and T. Tamm. 2016. Modeling future changes in the North-Estonian hydropower production by using SWAT. Hydrology Research. 47(4): 835-846. DOI: 10.2166/nh.2015.018 .

5159. Tamm, O., S. Maasikamäe, A. Padari and T. Tamm. 2018. Modelling the effects of land use and climate change on the water resources in the eastern Baltic Sea region using the SWAT model. Catena. 167: 78-89. DOI: 10.1016/j.catena.2018.04.029 .

5160. Tan, L., Y. Zhang, G.W. Marek, S. Ale, D.K. Brauer and Y. Chen. 2022. Modeling basin-scale impacts of cultivation practices on cotton yield and water conservation under various hydroclimatic regimes. Agriculture. 12(1): 17. DOI: 10.3390/agriculture12010017 .

5161. Tan, M.L. and X. Yang. 2020. Effect of rainfall station density, distribution and missing values on SWAT outputs in tropical region. Journal of Hydrology. 584: 124660. DOI: 10.1016/j.jhydrol.2020.124660 .

5162. Tan, M.L., A.L. Ibrahim, Z. Yusop, Z. Duan and L. Ling. 2015. Impacts of land-use and climate variability on hydrological components in the Johor River Basin, Malaysia. Hydrological Sciences Journal. 60(5): 873-889. DOI: 10.1080/02626667.2014.967246 .

5163. Tan, M.L., A.L. Ibrahim, Z. Yusop, V.P. Chua and N.W. Chan. 2017. Climate change impacts under CMIP5 RCP scenarios on water resources of the Kelantan River Basin, Malaysia. Atmospheric Research. 189: 1-10. DOI: 10.1016/j.atmosres.2017.01.008 .

5164. Tan, M.L., D.L. Ficklin, A.L. Ibrahim and Z. Yusop. 2014. Impacts and uncertainties of climate change on streamflow of the Johor River Basin, Malaysia using a CMIP5 General Circulation Model ensemble. Journal of Water and Climate Change. 5(4): 676-695. DOI: 10.2166/wcc.2014.020 .

5165. Tan, M.L., D.L. Ficklin, B. Dixon, A.L. Ibrahim, Z. Yusop and V. Chaplot. 2015. Impacts of DEM resolution, source, and resampling technique on SWAT-simulated streamflow. Applied Geography. 63: 357-368. DOI: 10.1016/j.apgeog.2015.07.014 .

5166. Tan, M.L., H.P. Ramli and T.H. Tam. 2018. Effect of DEM resolution, source, resampling technique and area threshold on SWAT outputs. Water Resources Management. 32(14): 4591–4606. DOI: 10.1007/s11269-018-2072-8 .

5167. Tan, M.L., J. Liang, M. Hawcroft, J.M. Haywood, F. Zhang, R. Rainis and W.R. Ismail. 2021. Resolution dependence of regional hydro-climatic projection: A case-study for the Johor River Basin, Malaysia. Water. 13(22): 3158. DOI: 10.3390/w13223158 .

5168. Tan, M.L., J. Liang, N. Samat, N.W. Chan, J.M. Haywood and K. Hodges. 2021. Hydrological extremes and responses to climate change in the Kelantan River Basin, Malaysia, based on the CMIP6 HighResMIP Experiments. Water. 13(11): 1472. DOI: 10.3390/w13111472 .

5169. Tan, M.L., l. Juneng, F.T. Tangang, N.W. Chan and S.T. Ngai. 2019. Future hydro-meteorological drought of the Johor River Basin, Malaysia, based on CORDEX-SEA projections. Hydrological Sciences Journal. 64(8): 921–933. DOI: 10.1080/02626667.2019.1612901 .

5170. Tan, M.L., L. Juneng, F.T. Tangang, N. Samat, N.W. Chan, Z. Yusop and S.T. Ngai. 2020. SouthEast Asia HydrO-meteorological droughT (SEA-HOT) framework: A case study in the Kelantan River Basin, Malaysia. Atmospheric Research. 246: 105155. DOI: 10.1016/j.atmosres.2020.105155 .

5171. Tan, M.L., L. Juneng, H. Kuswanto, H.X. Do and F. Zhang. 2023. Impacts of solar radiation management on hydro-climatic extremes in Southeast Asia. Water. 15(6): 1089. DOI: 10.3390/w15061089 .

5172. Tan, M.L., N. Samat, N.W. Chan and R. Roy. 2018. Hydro-meteorological assessment of three GPM satellite precipitation products in the Kelantan river basin, Malaysia. Remote Sensing. 10(7): 1011. DOI: 10.3390/rs10071011 .

5173. Tan, M.L., P. Gassman, X. Yang and J. Haywood. 2020. A review of SWAT applications, performance and future needs for simulation of hydro-climatic extremes. Advances in Water Resources. DOI: 10.1016/j.advwatres.2020.103662 .

5174. Tan, M.L., P.W. Gassman and A.P. Cracknell. 2017. Assessment of three long-term gridded climate products for hydro-climatic simulations in tropical river basins. Water. 9(3): 229. DOI: 10.3390/w9030229 .

5175. Tan, M.L., P.W. Gassman, J. Liang and J.M. Haywood. 2021. A review of alternative climate products for SWAT modelling: Sources, assessment and future directions. Science of the Total Environment. 795: 148915. DOI: 10.1016/j.scitotenv.2021.148915 .

5176. Tan, M.L., P.W. Gassman, R. Srinivasan, J.G. Arnold and X. Yang. 2019. A review of SWAT studies in Southeast Asia: Applications, challenges and future directions. Water. 11(5): 914. DOI: 10.3390/w11050914 .

5177. Tan, M.L., Y.L. Tew, K.P. Chun, N. Samat, S.M. Shaharudin, M.A. Mahamud and F.T. Tangang. 2021. Improvement of the ESA CCI Land cover maps for water balance analysis in tropical regions: A case study in the Muda River Basin, Malaysia. Journal of Hydrology: Regional Studies. 36: 100837. DOI: 10.1016/j.ejrh.2021.100837 .

5178. Tan, X., S. Liu, Y. Tian, Z. Zhou, Y. Wang, J. Jiang and H. Shi. 2022. Impacts of climate change and land use/cover change on regional hydrological processes: Case of the Guangdong-Hong Kong-Macao Greater Bay Area. Frontiers in Environmental Science. 9: 783324. DOI: 10.3389/fenvs.2021.783324 .

5179. Tan, Y., M. Chen, L. Zhang, J. Li, S. Nan and T. Peng. 2022. Flux and spatial pattern of phosphorus in the Shigatse Section of the Yarlung Zangbo River, China. Ecological Indicators. 135: 108552. DOI: 10.1016/j.ecolind.2022.108552 .

5180. Tan, Y., S.M. Guzman, Z. Dong and L. Tan. 2020. Selection of effective GCM bias correction methods and evaluation of hydrological response under future climate scenarios. Climate. 8(10): 108. DOI: 10.3390/cli8100108 .

5181. Tang C., J. Li, Z. Zhou, L. Zeng, C. Zhang and H. Ran. 2019. How to optimize ecosystem services based on a Bayesian model: A case study of Jinghe River Basin. Sustainability. 11(15): 4149. DOI: 10.3390/su11154149 .

5182. Tang T., M. Strokal, M.T.H. van Vliet, P. Seuntjens, P. Burek, C. Kroeze, S. Langan and Y. Wada. 2019. Bridging global, basin and local-scale water quality modeling towards enhancing water quality management worldwide. Current Opinion in Environmental Sustainability. 36: 39-48. DOI: 10.1016/j.cosust.2018.10.004 .

5183. Tang, J., C. Liu, W. Yang, Z.-y. Li and J.-x. Wu. 2012. Spatial distribution of non-point source pollution in Dahuofang Reservoir Catchment based on SWAT Model. Scientia Geographica Sinica. 32(10): 1247-1253. URL: http://www.progressingeography.com/EN/abstract/abstract17635.shtml.

5184. Tang, J., S. McDonald, X. Peng, S.R. Samadder, T.M. Murphy and N.M. Holden. 2011. Modelling Cryptosporidium oocysts transport in small ungauged agricultural catchments. Water Research. 45(12): 3665-3680. DOI: 10.1016/j.watres.2011.04.013 .

5185. Tang, J., W. Yang, Z.-Y. Li, J.-M. Bian and C. Liu. 2012. Simulation on the inflow of agricultural non-point sources pollution in Dahuofang Reservoir Catchment of Liao River. Journal of Jiln University (Earth Science Edition). 42(5). URL: http://xuebao.jlu.edu.cn/dxb/EN/volumn/volumn_1182.shtml.

5186. Tang, X., G. Fu, S. Zhang, C. Gao, G. Wang, Z. Bao, Y. Liu, C. Liu and J. Jin. 2022. Attribution of climate change and human activities to streamflow variations with a posterior distribution of hydrological simulations. Hydrology and Earth System Sciences. 26(20): 5315-5339. DOI: 10.5194/hess-26-5315-2022 .

5187. Tang, X., J. Zhang, C. Gao, G.B. Ruben and G. Wang. 2019. Assessing the uncertainties of four precipitation products for SWAT modeling in Mekong River Basin. Remote Sensing. 11(3): 304. DOI: 10.3390/rs11030304 .

5188. Tang, X., J. Zhang, G. Wang, J. Jin, C. Liu, Y. Liu, R. He and Z. Bao. 2021. Uncertainty analysis of SWAT modeling in the Lancang River Basin using four different algorithms. Water. 13(3): 341. DOI: 10.3390/w13030341 .

5189. Tang, Y., Q. Tang, F. Tian, Z. Zhang and G. Liu. 2013. Responses of natural runoff to recent climatic variations in the Yellow River basin, China. Hydrology and Earth System Sciences. 17: 4471-4480. DOI: 10.5194/hess-17-4471-2013 .

5190. Tang, Z., Z. Zhou, D. Wang, F. Luo, J. Bai and Y. Fu. 2022. Impact of vegetation restoration on ecosystem services in the Loess plateau, a case study in the Jinghe Watershed, China. Ecological Indicators. 142: 109183. DOI: 10.1016/j.ecolind.2022.109183 .

5191. Tankpa, V., L. Wang, A. Awotwi, L. Singh, S. Thapa, R.A. Atanga and X. Guo. 2021. Modeling the efects of historical and future land use/land cover change dynamics on the hydrological response of Ashi Watershed, northeastern China. Environment, Development, and Sustainability. 23(5): 7883-7912. DOI: 10.1007/s10668-020-00952-2 .

5192. Tanksali, A. and V.S. Soraganvi. 2020. Assessment of impacts of land use/land cover changes upstream of a dam in a semi‑arid watershed using QSWAT. Modeling Earth Systems and Environment. DOI: 10.1007/s40808-020-00978-5 .

5193. Tanteliniaina, M.F.R., H. Rahaman and J. Zhai. 2021. Assessment of the future impact of climate change on the hydrology of the Mangoky River, Madagascar using ANN and SWAT. Water. 13(9): 1239. DOI: 10.3390/w13091239 .

5194. Tao, C., C. Xiaoling, L. Jianzhong, P. Gassman, S. Sabine and S.P. José-Miguel. 2015. Assessing impacts of different land use scenarios on water budget of Fuhe River, China using SWAT model. International Journal of Agricultural and Biological Engineering. 8(3): 95-109. DOI: 10.3965/j.ijabe.20150803.1132 .

5195. Tao, W., J. Wei and N. Wang. 2023. The characteristics of non-point source nitrogen pollution in the lower reaches of Huangshui Basin in Western China based on SWAT model. Water, Air, and Soil Pollution. 234(8): 491. DOI: 10.1007/s11270-023-06480-9 .

5196. Tao, Y., A. Zhan, Z. Wang, W. Fan, Y. Yao, S. Yang and T. Kang. 2023. Dynamic analysis of risk to water quality in the Baimei Reservoir Conservation Area, Fujian Province, China. Ecosystem Health and Sustainability. 9: 0003. DOI: 10.34133/ehs.0003 .

5197. Taraky, Y.M., E. McBean, Y. Liu, P. Daggupati, N.K. Shrestha, A. Jiang and B. Gharabaghi. 2021. The role of large dams in a transboundary drought management co-operation framework - Case study of the Kabul River Basin. Water. 13(19): 2628. DOI: 10.3390/w13192628 .

5198. Taraky, Y.M., Y. Liu, B. Gharabaghi, E. McBean, P. Daggupati and N.K. Shrestha. 2022. Influence of headwater reservoirs on climate change impacts and flood frequency in the Kabul River Basin. Canadian Journal of Civil Engineering. 49(7): 1300–1309. DOI: 10.1139/cjce-2020-0840 .

5199. Taraky, Y.M., Y. Liu, E. McBean, P. Daggupati and B. Gharabaghi. 2021. Flood risk management with transboundary conflict and cooperation dynamics in the Kabul River Basin. Water. 13(11): 1513. DOI: 10.3390/w13111513 .

5200. Tarawneh E., J. Bridge, and N. Macdonald. 2016. A pre-calibration approach to select optimum inputs for hydrological models in data-scarce regions. Hydrology and Earth System Sciences. 70: 4391-4407. DOI: 10.5194/hess-20-4391-2016 .

5201. Tarekegn, N., B. Abate, A. Muluneh and Y. Dile. 2021. Modeling the impact of climate change on the hydrology of Andasa watershed. Modeling Earth Systems and Environment. DOI: 10.1007/s40808-020-01063-7 .

5202. Tarigan, S., K. Wiegand, Sunarti and B. Slamet. 2018. Minimum forest cover required for sustainable water flow regulation of a watershed: A case study in Jambi Province, Indonesia. Hydrology and Earth System Sciences. 22(1): 581-594. DOI: 10.5194/hess-22-581-2018 .

5203. Tarigan, S.D., Sunarti, K. Wiegand, C. Dislich, D. Slamet, J. Heinonen and K. Meyer. 2016. Mitigation options for improving the ecosystem function of water flow regulation in a watershed with rapid expansion of oil palm plantations. Sustainability of Water Quality and Ecology. 8: 4-13. DOI: 10.1016/j.swaqe.2016.05.001 .

5204. Tasdighi, A., M. Arabi and D. Harmel. 2018. A Bayesian total uncertainty analysis framework for assessment of management practices using watershed models. Environmental Modelling & Software. 108: 240-252. DOI: 10.1016/j.envsoft.2018.08.006 .

5205. Tasdighi, A., M. Arabi and D. Harmel. 2018. A probabilistic appraisal of rainfall-runoff modeling approaches within SWAT in mixed land use watersheds. Journal of Hydrology. 564: 476-489. DOI: 10.1016/j.jhydrol.2018.07.035 .

5206. Tasdighi, A., M. Arabi and D.L. Osmond. 2017. The relationship between land use and vulnerability to nitrogen and phosphorus pollution in an urban watershed. Journal of Environmental Quality. 46(1): 113-122. DOI: 10.2134/jeq2016.06.0239 .

5207. Tattart, S., J. Koskiaho, H. Barlund and E. Jaakkola. 2009. Testing a river basin model with sensitivity analysis and autocalibration for an agricultural catchment in SW Finland. Agricultural and Food Science. 18(3-4): 428-439. URL: http://www.mtt.fi/afs/pdf/mtt-afs-v18n3-4p428.pdf.

5208. Taufiq, M., U. Andawayanti and E. Purwati. 2016. Upaya konservasi lahan berdasarkan indikator erosi dan sedimen di das Jragung. Jurnal Teknik Pengairan. 7(2): 289-294. URL: http://jurnalpengairan.ub.ac.id/index.php/jtp/article/view/300.

5209. Tavangar, Sh., H. Moradi, A.M. Bavani and M. Gholamalifard. 2019. A futuristic survey of the effects of LU/LC change on stream flow by CA–Markov model: A case of the Nekarood Watershed, Iran. Geocarto International. DOI: 10.1080/10106049.2019.1633419 .

5210. Tavares Wahren, F., B. Helm, F. Schumacher, T. Pluntke, K.-H. Feger and K. Schwarzel. 2013. A modeling framework to assess water and nitrate balances in the Western Bug River Basin, Ukraine. Advances in Geosciences. 32: 85-92. DOI: 10.5194/adgeo-32-85-2012 .

5211. Taylor, P., J. Rahman, J. O'Sullivan, G. Podger, C. Rosello, A. Parashar, A. Sengupta, J.-M. Perraud, C. Pollino and M. Coombe. 2021. Basin futures, a novel cloud-based system for preliminary river basin modelling and planning. Environmental Modeling & Assessment. 141: 105049. DOI: 10.1016/j.envsoft.2021.105049 .

5212. Taylor, R.A.J., J. Jeong, M. White and J.G. Arnold. 2015. Code modernization and modularization of APEX and SWAT watershed simulation models. International Journal of Agricultural and Biological Engineering. 8(1): 50-56. DOI: 10.3965/j.ijabe.20150803.1081 .

5213. Taylor, S.D., Y. He and K.M. Hiscock. 2016. Modelling the impacts of agricultural management practices on river water quality in eastern England. Journal of Environmental Management. 180: 147-163. DOI: 10.1016/j.jenvman.2016.05.002 .

5214. Teague, A., R. Karthikeyan, M. Babbar-Sebens, R. Srinivasan and R.A. Persyn. 2009. Spatially explicit load enrichment calculation tool to identify potential E. Coli sources in watersheds. Transactions of the ASABE. 52(4): 1109-1120. DOI: 10.13031/2013.27788 .

5215. Tefera, G.W., Y.T. Dile, R. Srinivasan, T. Baker and R.L. Ray. 2023. Hydrological modeling and scenario analysis for water supply and water demand assessment of Addis Ababa City, Ethiopia. Journal of Hydrology: Regional Studies. 46: 101341. DOI: 10.1016/j.ejrh.2023.101341 .

5216. Tegegne, G. and A.M. Melesse. 2020. Multimodel ensemble projection of hydro-climatic extremes for climate change impact assessment on water resources. Water Resources Management. 34(9): 3019-3035. DOI: 10.1007/s11269-020-02601-9 .

5217. Tegegne, G. and Y.O. Kim. 2018. Modelling unguaged catchments using the catchment runoff response similarity. Journal of Hydrology. 564: 452-466. DOI: 10.1016/j.jhydrol.2018.07.042 .

5218. Tegegne, G., D.K. Park and Y.-O. Kim. 2017. Comparison of hydrological models for the assessment of water resources in a data-scarce region, the Upper Blue Nile River Basin. Journal of Hydrology: Regional Studies. 14: 49-66. DOI: 10.1016/j.ejrh.2017.10.002 .

5219. Tegegne, G., Y.-O. Kim, S.B. Seo and Y. Kim. 2019. Hydrological modelling uncertainty analysis for different flow quantiles: A case study in two hydro-geographically different watersheds. Hydrological Sciences Journal. 64 (4): 473-489. DOI: 10.1080/02626667.2019.1587562 .

5220. Teklay, A., Y.T. Dile, D.H. Asfaw, H.K. Bayabil and K. Sisay. 2021. Impacts of climate and land use change on hydrological response in Gumara Watershed, Ethiopia. Ecohydrology & Hydrobiology. 21(2): 315-332. DOI: 10.1016/j.ecohyd.2020.12.001 .

5221. Teklay, A., Y.T. Dile, S.G. Setegn, S.S. Demissie and D.H. Asfaw. 2019. Evaluation of static and dynamic land use data for watershed hydrologic process simulation: A case study in Gummara watershed, Ethiopia. Catena. 172: 65-75. DOI: 10.1016/j.catena.2018.08.013 .

5222. Teklesadik, A.D., T. Alemayehu, A. van Griensven, R. Kumar, S. Liersch, S. Eisner, J. Tecklenburg, S. Ewunte and X. Wang. 2017. Inter-model comparison of hydrological impacts of climate change on the Upper Blue Nile basin using ensemble of hydrological models and global climate models. Climatic Change. 141(3): 517-532. DOI: 10.1007/s10584-017-1913-4 .

5223. Tenagashaw, D.Y., M. Muluneh, G. Metaferia and Y.A. Mekonnen. 2022. Land use and climate change impacts on streamflow using SWAT model, Middle Awash Sub Basin, Ethiopia. Water Conservation Science and Engineering. 7(3): 183–196. DOI: 10.1007/s41101-022-00135-2 .

5224. Teo, F.Y., M.F. Chow and C.K. Chang. 2023. Editorial: Sustainable urban stormwater management under a changing climate. Frontiers in Water. 5: 1304646. DOI: 10.3389/frwa.2023.1304646 .

5225. Terskii, P., A. Kuleshov, S. Chalov, A. Terskaia, P. Belyakova, D. Karthe and T. Pluntke. 2019. Assessment of water balance for Russian Subcatchment of Western Dvina River using SWAT model. Frontiers in Earth Science. 7: 241. DOI: 10.3389/feart.2019.00241 .

5226. Tesema, T.A. and O.T. Leta. 2020. Sediment yield estimation and effect of management options on sediment yield of Kesem Dam Watershed, Awash Basin, Ethiopia. Scientific African. 9: e00425. DOI: 10.1016/j.sciaf.2020.e00425 .

5227. Tesfahunegn, G.B., P.L.G. Vlek and L. Tamene. 2012. Management strategies for reducing soil degradation through modeling in a GIS environment in northern Ethiopia catchment. Nutrient Cycling in Agroecosystems. 92(3): 255-272. DOI: 10.1007/s10705-012-9488-y .

5228. Teshager, A.D., P.W. Gassman, J.T. Schoof and S. Secchi. 2016. Assessment of impacts of agricultural and climate change scenarios on watershed water quantity and quality, and crop production. Hydrology and Earth System Sciences. 20(8): 3325-3342. DOI: 10.5194/hess-20-3325-2016 .

5229. Teshager, A.D., P.W. Gassman, S. Secchi, J.T. Schoof and G. Misgna. 2016. Modeling agricultural watersheds with the Soil and Water Assessment Tool (SWAT): Calibration and validation with a novel procedure for spatially explicit HRUs. Environmental Management. 57(4): 894–911. DOI: 10.1007/s00267-015-0636-4 .

5230. Teshager, A.D., P.W. Gassman, S. Secchi and J.T. Schoof. 2017. Simulation of targeted pollutant-mitigation-strategies to reduce nitrate and sediment hotspots in agricultural watershed. Science of the Total Environment. 607-608: 1188-1200. DOI: 10.1016/j.scitotenv.2017.07.048 .

5231. Tessema, N., A. Kebede and D. Yadeta. 2020. Modelling the effects of climate change on streamflow using climate and hydrological models: The case of the Kesem Sub-basin of the Awash River Basin, Ethiopia. International Journal of River Basin Management. DOI: 10.1080/15715124.2020.1755301 .

5232. Tessema, S.M., S.W. Lyon, S.G. Setegn and U. Mortberg. 2014. Effects of different retention parameter estimation methods on the prediction of surface runoff using the SCS curve number method. Water Resources Management. 28(10): 3241-3254. DOI: 10.1007/s11269-014-0674-3 .

5233. Thai, T.H., N.P. Thao and B.T. Dieu. 2017. Assessment and simulation of impacts of climate change on erosion and water flow by using the Soil and Water Assessment Tool and GIS: Case study in Upper Cau River basin in Vietnam. Vietnam Journal of Earth Sciences. 39(4): 362-375. DOI: 10.15625/0866-7187/39/4/10741 .

5234. Thakur, A., A. Sharma, L.N. Thakural and P. Chandra. 2021. Application of Soil Water Assessment Tool (SWAT) for hilly region of Tons River Basin. Journal of Indian Water Resources Society. 41(3-4): 1-4. URL: http://iwrs.org.in/41-3/.

5235. Thakur, J.K, K. Khanal and K. Poudyal. 2019. Land cover changes for enhancing water availability in watersheds of Tanahun and Kaski, Nepal. Journal of Water and Climate Change. 10(2): 431-448. DOI: 10.2166/wcc.2017.001 .

5236. Thang, L.V., D.N. Khoi and H.L. Phi. 2018. Impact of climate change on streamflow and water quality in the upper Dong Nai River Basin, Vietnam. La Houille Blanche. 1: 70-79. DOI: 10.1051/lhb/2018010 .

5237. Thapa, B.R., H. Ishidaira, M. Gusyev, V.P. Pandey, P. Udmale, M. Hayashi and N.M. Shakya. 2019. Implications of the Melamchi water supply project for the Kathmandu Valley groundwater system. Water Policy. 21(S1): 120-137. DOI: 10.2166/wp.2019.084 .

5238. Thavhana, M.P., M.J. Savage and M.E. Moeletsi. 2018. SWAT model uncertainty analysis, calibration and validation for runoff simulation in the Luvuvhu River catchment, South Africa. Physics and Chemistry of the Earth. DOI: 10.1016/j.pce.2018.03.012 .

5239. Theara, T., C. Sarit and O. Chantha. 2020. Integrated modeling to assess flow changes due to future dam development and operation in Stung Sen River of Tonle Sap Lake Basin, Cambodia. Journal of Water and Climate Change. 11(4): 1123-1133. DOI: 10.2166/wcc.2019.115 .

5240. Theron, S.N., H.L. Weepener, J.J. Le Roux and C.J. Engelbrecht. 2021. Modelling potential climate change impacts on sediment yield in the Tsitsa River Catchment, South Africa. Water SA. 47(1): 67-75. DOI: 10.17159/wsa/2021.v47.i1.9446 .

5241. Thilakarathne, M., V. Sridhar and K. Raghupathy. 2018. Spatially explicit pollutant load-integrated in-stream E. coli concentration modeling in a mixed land-use catchment. Water Research. 144: 87-103. DOI: 10.1016/j.watres.2018.07.021 .

5242. Thodsen, H., C. Farkas, J. Chormanski, D. Trolle, G. Blicher-Mathiesen, R. Grant, A. Engebretsen, I. Kardel and H.E. Andersen. 2017. Modeling nutrient load changes from fertilizer application scenarios in six catchments around the Baltic Sea. Agriculture. 7(5): 41. DOI: 10.3390/agriculture7050041 .

5243. Thodsen, H., H.E. Andersen, G. Blicher-Mathiesen and D. Trolle. 2015. The combined effects of fertilizer reduction on high risk areas and increased fertilization on low risk areas, investigated using the SWAT model for a Danish catchment. Acta Agriculturae Scandinavica, Section B — Soil & Plant Science. 65(2): 217-227. DOI: 10.1080/09064710.2015.1010564 .

5244. Thoeun, H.C., M. Sivakumar and O.P. Dube. 2015. Observed and projected changes in tempertature and rainfall in Cambodia. Weather and Climate Extremes. 7: 36-42. DOI: 10.1016/j.wace.2014.11.001 .

5245. Thokal, R.T., S.D. Gorantiwar, M. Kothari, S.R. Bhakar and B.P. Nandwana. 2015. Spatial mapping of agricultural water productivity using the SWAT Model. Journal of the Institution of Engineers (India) Series A. 96(1): 85-98. DOI: 10.1007/s40030-015-0113-3 .

5246. Thom, V.T., D.N. Khoi and D.Q. Linh. 2017. Using gridded rainfall products in simulating streamflow in a tropical catchment – A case study of the Srepok River Catchment, Vietnam. Journal of Hydrology and Hydromechanics. 65: 18-25. DOI: 10.1515/johh-2016-0047 .

5247. Thomas, T., N.C. Ghosh and K.P. Sudheer. 2021. Optimal reservoir operation – A climate change adaptation strategy for Narmada Basin in central India. Journal of Hydrology. 598: 126238. DOI: 10.1016/j.jhydrol.2021.126238 .

5248. Thompson, A.L., C. Baffaut, S. Lohani, L.F. Duriancik, M.L. Norfleet and K. Ingram. 2020. Purpose, development, and synthesis of the Soil Vulnerability Index for inherent vulnerability classification of cropland soils. Journal of Soil and Water Conservation. 75(1): 1-11. DOI: 10.2489/jswc.75.1.1 .

5249. Thompson, J., B. Ganapathysubramanian, W. Chen, M. Dorneich, P. Gassman, C. Krejci, M. Liebman, A. Nair, U. Passe, N. Schwab, K. Rosentrater, T. Stone, Y. Wang and Y. Zhou. 2021. Iowa urban FEWS: Integrating social and biophysical models for exploration of urban food, energy, and water systems. Frontiers in Big Data. 4: 662186. DOI: 10.3389/fdata.2021.662186 .

5250. Thomson, A., R.A. Brown, N.J. Rosenberg, R. Srinivasan and R.C. Izaurralde. 2005. Climate change impacts for the conterminous USA: An integrated assessment Part 4: Water resources. Climatic Change. 69(1): 67-88. DOI: 10.1007/1-4020-3876-3_5 .

5251. Thomson, A.M., N.J. Rosenberg, R.C. Izaurralde and R.A. Brown. 2005. Climate change impacts for the conterminous USA: An integrated assessment Part 2: Models and validation. Climatic Change. 69(1): 27-41. DOI: 10.1007/s10584-005-3609-4 .

5252. Thomson, A.M., N.J. Rosenberg, R.C. Izaurralde and R.A. Brown. 2005. Climate change impacts for the conterminous USA: An integrated assessment Part 5: Irrigated agriculture and national grain crop production. Climatic Change. 69(1): 89-105. DOI: 10.1007/s10584-005-3611-x .

5253. Thomson, A.M., R.A. Brown, N.J. Rosenberg, R.C. Izaurralde, D.M. Legler and R. Srinivasan. 2003. Simulated impacts of El Nino/Southern Oscillation on United States water resources. Journal of the American Water Resources Association. 39(1): 137-148. DOI: 10.1111/j.1752-1688.2003.tb01567.x .

5254. Tian, F., Y.H. Lü, B.J. Fu, L. Zhang, C. Zang, Y.H. Yang and G. Qiu. 2017. Challenge of vegetation greening on water resources sustainability: Insights from a modeling-based analysis in northwest China. Hydrological Processes. 31(7): 1469-1478. DOI: 10.1002/hyp.11118 .

5255. Tian, F., Y.H. Lu, B.J. Fu, Y.H. Yang, G. Qiu, C. Zang and L. Zhang. 2016. Effects of ecological engineering on water balance under two different vegetation scenarios in the Qilian Mountain, northwestern China. Journal of Hydrology: Regional Studies. 5: 324-335. DOI: 10.1016/j.ejrh.2015.11.015 .

5256. Tian, J., S. Guo, D. Liu, Q. Chen, Q. Wang, J. Yin, X. Wu and S. He. 2021. Impacts of climate and land use/cover changes on runoff in the Hanjiang River basin. Acta Geographica Sinica. 75(11): 2307-2318. URL: http://www.geog.com.cn/EN/10.11821/dlxb202011003.

5257. Tian, J., S. Guo, J. Yin, Z. Pan, F. Xiong and S. He. 2022. Quantifying both climate and land use/cover changes on runoff variation in Han River Basin, China. Frontiers in Earth Science. 16(3): 711-733. DOI: 10.1007/s11707-021-0918-5 .

5258. Tian, J., S. Guo, L. Deng, J. Yin, Z. Pan, S. He and Q. Li. 2021. Adaptive optimal allocation of water resources response to future water availability and water demand in the Han River Basin, China. Scientific Reports. 11: 7879. DOI: 10.1038/s41598-021-86961-1 .

5259. Tian, P., H. Lu, W. Feng, Y. Guan and Y. Xue. 2020. Large decrease in streamflow and sediment load of Qinghai–Tibetan Plateau driven by future climate change: A case study in Lhasa River Basin. Catena. 187: 104340. DOI: 10.1016/j.catena.2019.104340 .

5260. Tian, Y. Q., D. Wang, R.F. Chen and W. Huang. 2012. Using modeled runoff to study DOC dynamics in steam and river flow: A case study of an urban watershed southeast of Boston, Massachusetts. Ecological Engineering. 42: 212-222. DOI: 10.1016/j.ecoleng.2012.01.017 .

5261. Tian, Y., K. Zhang, Y.-P. Xu, X. Gao and J. Wang. 2018. Evaluation of potential evapotranspiration based on CMADS reanalysis dataset over China. Water. 10(9): 1126. DOI: 10.3390/w10091126 .

5262. Tian, Y., S. Wang, X. Bai, G. Luo and Y. Xu. 2016. Trade-offs among ecosystem services in a typical Karst watershed, SW China. Science of the Total Environment. 566–567: 1297-1308. DOI: 10.1016/j.scitotenv.2016.05.190 .

5263. Tibebe, D. and W. Bewket. 2010. Surface runoff and soil erosion estimation using the SWAT model in the Keleta watershed, Ethiopia. Land Degradation & Development. 22(6): 551-564. DOI: 10.1002/ldr.1034 .

5264. Tichenor, N.E., C.J. Peters, G.A. Norris, G. Thoma and T.S. Griffin. 2017. Life cycle environmental consequences of grass-fed and dairy beef production systems in the northeastern United States. Journal of Cleaner Production. 142: 1619-1628. DOI: 10.1016/j.jclepro.2016.11.138 .

5265. Tiepolo, M., S. Braccio, E. Fiorillo, A. Galligari, G.L. Katiellou, G. Massazza, A.A. Sitta, A.M. Tankari and V. Tarchiani. 2021. Method for pluvial flood risk assessment in rural settlements characterised by scant information availability. MethodsX. 8: 101532. DOI: 10.1016/j.mex.2021.101532 .

5266. Tigabu, T.B., P.D. Wagner, B. Narasimhan and N. Fohrer. 2023. Pitfalls in hydrologic model calibration in a data scarce environment with a strong seasonality: Experience from the Adyar catchment, India. Environmental Earth Sciences. 82: 367. DOI: 10.1007/s12665-023-11047-2 .

5267. Tigabu, T.B., P.D. Wagner, G. Hörmann and N. Fohrer. 2019. Modeling the impact of agricultural crops on the spatial and seasonal variability of water balance components in the Lake Tana Basin, Ethiopia. Hydrology Research. 50(5): 1376–1396. DOI: 10.2166/nh.2019.170 .

5268. Tigabu, T.B., P.D. Wagner, G. Hörmann and N. Fohrer. 2020. Modeling spatio-temporal flow dynamics of groundwater-surface water interactions of the Lake Tana Basin, Upper Blue Nile, Ethiopia. Hydrology Research. 51(6): 1537–1559. DOI: 10.2166/nh.2020.046 .

5269. Tigabu, T.B., P.D. Wagner, G. Hörmann, J. Kiesel and N. Fohrer. 2021. Climate change impacts on the water and groundwater resources of the Lake Tana Basin, Ethiopia. Journal of Water and Climate Change. 12(5): 1544–1563. DOI: 10.2166/wcc.2020.126 .

5270. Tijjani, S.B., S. Giri and S.A. Woznicki. 2022. Quantifying the potential impacts of climate change on irrigation demand, crop yields, and green water scarcity in the New Jersey Coastal Plain. Science of the Total Environment. 838(Part 4): 156538. DOI: 10.1016/j.scitotenv.2022.156538 .

5271. Tirupathi, C. and T. Shashidhar. 2020. Investigating the impact of climate and land-use land cover changes on hydrological predictions over the Krishna River Basin under present and future scenarios. Science of the Total Environment. 721: 137736. DOI: 10.1016/j.scitotenv.2020.137736 .

5272. Tirupathia, C., T. Shashidhara and R. Srinivasan. 2019. Analysis of rainfall extremes and water yield of Krishna River Basin under future climate scenarios. Journal of Hydrology: Regional Studies. 19: 287-306. DOI: 10.1016/j.ejrh.2018.10.004 .

5273. Tiwari, P. and M.P. Tripathi. 2014. Calibration and validation of ArcSWAT model for estimation of surface runoff and sediment yield from Dhangaon watershed. Journal of Agricultural Issues. 19(2): 23-34.

5274. Tiwari, S., S.C. Kar and R. Bhatla. 2018. Mid-21st century projections of hydroclimate in Western Himalayas and Satluj River basin. Global and Planetary Change. 161: 10-27. DOI: 10.1016/j.gloplacha.2017.10.013 .

5275. Tiwari, S., S.C. Kar, R. Bhatla and R. Bansal. 2018. Temperature index based snowmelt runoff modelling for the Satluj River Basin in the western Himalayas. Meteorological Applications. 25(2): 302-313. DOI: 10.1002/met.1692 .

5276. Tobin, K. and M. Bennet. 2014. Satellite precipitation products and hydrologic applications. Water International. 39(3): 360-380. DOI: 10.1080/02508060.2013.870423 .

5277. Tobin, K.J. and M.E. Bennet. 2009. Using SWAT to model streamflow in two river basins with ground and satellite precipitation data. Journal of the American Water Resources Association. 45(1): 1-19. DOI: 10.1111/j.1752-1688.2008.00276.x .

5278. Tobin, K.J. and M.E. Bennett. 2010. Adjusting satellite precipitation data to facilitate hydrologic modeling. Journal of Hydrometeorology. 11(4): 966–978. DOI: 10.1175/2010JHM1206.1 .

5279. Tobin, K.J. and M.E. Bennett. 2012. Validation of satellite precipitation adjustment methodology from seven basins in the continental United States. Journal of the American Water Resources Association. 48(2): 221-234. DOI: 10.1111/j.1752-1688.2011.00604.x .

5280. Tobin, K.J. and M.E. Bennett. 2013. Temporal analysis of Soil and Water Assessment Tool (SWAT) performance based on remotely sensed precipitation products. Hydrological Processes. 27(4): 505-514. DOI: 10.1002/hyp.9252 .

5281. Tobin, K.J. and M.E. Bennett. 2014. Impact of model complexity and precipitation data products on modeled streamflow. Journal of Hydroinformatics. 16(3): 588-599. DOI: 10.2166/hydro.2013.056 .

5282. Tobin, K.J. and M.E. Bennett. 2017. Constraining SWAT calibration with remotely sensed evapotranspiration data. Journal of the American Water Resources Association. 53(3): 593–604. DOI: 10.1111/1752-1688.12516 .

5283. Tobin, K.J. and M.E. Bennett. 2019. Improving alpine summertime streamflow simulations by the incorporation of evapotranspiration data. Water. 11(1). DOI: 10.3390/w11010112 .

5284. Tobin, K.J. and M.E. Bennett. 2020. Improving SWAT model calibration using Soil MERGE (SMERGE). Water. 12(7): 2039. DOI: 10.3390/w12072039 .

5285. Todd, M.C., R.G. Taylor, T.J. Osborn, D.G. Kingston, N.W. Arnell and S.N. Gosling. 2011. Uncertainty in climate change impacts on basin-scale freshwater resources – preface to the special issue: the QUEST-GSI methodology and synthesis of results. Hydrology and Earth System Sciences. 15: 1035-1046. DOI: 10.5194/hess-15-1035-2011 .

5286. Togbévi, Q.F., A.Y. Bossa, Y. Yira, K. Preko, L.O. Sintondji and M. van der Ploeg. 2020. A multi-model approach for analysing water balance and water-related ecosystem services in the Ouriyori Catchment (Benin). Hydrological Sciences Journal. 65(14): 2453-2465. DOI: 10.1080/02626667.2020.1811286 .

5287. Tola, S.Y. and A. Shetty. 2023. Quantification of change in land cover and rainfall variability impact on flood hydrology using a hydrological model in the Ethiopian river basin. Environmental Earth Sciences. 82(10): 254. DOI: 10.1007/s12665-023-10929-9 .

5288. Tolera, M.B. and I.-M. Chung. 2021. Integrated hydrological analysis of Little Akaki Watershed using SWAT-MODFLOW, Ethiopia. Applied Sciences. 11(13): 6011. DOI: 10.3390/app11136011 .

5289. Tolera, M.B., I.M. Chung and S.W. Chang. 2018. Evaluation of the climate forecast system reanalysis weather data for watershed modeling in upper Awash Basin, Ethiopia. Water. 10(6): 725. DOI: 10.3390/w10060725 .

5290. Tolson, B.A. and C.A. Shoemaker. 2007. Cannonsville Reservoir Watershed SWAT2000 model development, calibration and validation. Journal of Hydrology. 337(1-2): 68-86. DOI: 10.1016/j.jhydrol.2007.01.017 .

5291. Tolson, B.A. and C.A. Shoemaker. 2007. Dynamically dimensioned search algorithm for computationally efficient watershed model calibration. Water Resources Research. 43(1): W12603. DOI: 10.1029/2005WR004723 .

5292. Tolson, B.A. and C.A. Shoemaker. 2008. Efficient prediction uncertainty approximation in the calibration of environmental simulation models. Water Resources Research. 44: 1-19. DOI: 10.1029/2007WR005869 .

5293. Tomer, M.D., P. C. Beeson, D. W. Meek, D. N. Moriasi, C. G. Rossi,and A. M. Sadeghi. 2013. Evaluating simulations of daily discharge from large watersheds using autoregression and an index of flashiness. Transactions of the ASABE. 56(4): 1317-1326. URL: http://elibrary.asabe.org/abstract.asp?aid=43984&t=3&dabs=Y&redir=&redirType=.

5294. Tong, S.T.Y. and S. Naramngam. 2007. Modeling the impacts of farming practices on water quality in the Little Miami River Basin. Environmental Management. 39(6): 853-866. DOI: 10.1007/s00267-006-0307-6 .

5295. Tong, S.T.Y., A.J. Liu and J.A. Goodrich. 2007. Climate Change Impacts on Nutrient and Sediment Loads in a Midwestern Agricultural Watershed. Journal of Environmental Informatics. 9(1): 18-28. DOI: 10.3808/jei.200700084 .

5296. Tong, S.T.Y., A.J. Liu and J.A. Goodrich. 2009. Assessing the water quality impacts of future land-use changes in an urbanising watershed. Civil Engineering and Environmental Systems. 26(1): 3-18. DOI: 10.1080/10286600802003393 .

5297. Tong, S.T.Y., T. Liu, S. Wan and R. Beck. 2020. Harmful cyanobacterial blooms: A case study of a cool lake. Water and Environment Journal. 34(S1): 490-502. DOI: 10.1111/wej.12550 .

5298. Tong, X.X, Y.C. Zhou, W.S. Xu and L.Y. Dong. 2019. Runoff and sediment yield variations under different precipitation condition and land-use type: A case study of Fangxi Watershed in the Poyang Lake basin, China. Applied Ecology and Environmental Research. 17(6): 15669-15685. DOI: 10.15666/aeer/1706_1566915685 .

5299. Tong, X.X., Y.C. Zhou, W.S. Xu and L.Y. Dong. 2019. Runoff and sediment yield variations under different precipitation condition and land-use type: A case study of Fangxi Watershed in the Poyang Lake Basin, China. Applied Ecology and Environmental Research. 17(6): 15669-15685. DOI: 10.15666/aeer/1706_1566915685 .

5300. Toosi, A.S., G.H. Calbimonte, H. Nouri and S. Alaghmand. 2019. River basin-scale flood hazard assessment using a modified multi-criteria decision analysis approach: A case study. Journal of Hydrology. 574: 660-671. DOI: 10.1016/j.jhydrol.2019.04.072 .

5301. Toosi, A.S., S. Doulabian, E.G. Tousi, G.H. Calbimonte and S. Alaghmand. 2020. Large-scale flood hazard assessment under climate change: A case study. Ecological Engineering. 147: 105765. DOI: 10.1016/j.ecoleng.2020.105765 .

5302. Torabi Haghighi, A., H. Darabi, K. Shahedi, K. Solaimani and B. Kløve. 2020. A scenario-based approach for assessing the hydrological impacts of land use and climate change in the Marboreh Watershed, Iran. Environmental Monitoring and Assessment. 25: 41-57. DOI: 10.1007/s10666-019-09665-x .

5303. Torres-Benites, E., D.S. Fernandez-Reynoso, J.L. Oropeza-Mota, and E. Mejia-Saenz. 2004. Calibration of the hydrologic model SWAT in the watershed “El Tejocote”, Atlacomulco, State of Mexico. Terra Latinoamericana. 22(4): 437-444. URL: http://www.redalyc.org/articulo.oa?id=57311096007.

5304. Torres-Benites, E., E. Mejía-Sáenz, J. Cortés-Becerra, E. Palacios-Vélez and A. Exebio-García. 2005. Adaptation of a hydrological simulation model to the Rio Laja watershed, Guanajuato, México. Agrociencia. 39(5): 481-490. URL: http://www.colpos.mx/agrocien/Bimestral/2005/sep-oct/sep-oct-05.html.

5305. Touch, T., C. Oeurng, Y. Jiang and A. Mokhtar. 2020. Integrated modeling of water supply and demand under climate change impacts and management options in tributary basin of Tonle Sap Lake, Cambodia. Water. 12(9): 2462. DOI: 10.3390/w12092462 .

5306. Touseef, M., L. Chen and W. Yang. 2021. Assessment of surface water availability under climate change using coupled SWAT-WEAP in Hongshui River Basin, China. ISPRS International Journal of Geo-Information. 10(5): 298. DOI: 10.3390/ijgi10050298 .

5307. Touseef, M., L. Chen, T. Masud, A. Khan, K. Yang, A. Shahzad, M.W. Ijaz and Y. Wang. 2020. Assessment of the future climate change projections on streamflow hydrology and water availability over Upper Xijiang River Basin, China. Applied Sciences. 10(11): 3671. DOI: 10.3390/app10113671 .

5308. Tram, V. N. Q., N. D. Liem and N. K. Loi. 2014. Assessing Water Availability in PoKo Catchment using SWAT model. Khon Kaen Agricultural Journal. 42(suppl.2): 73-84. URL: http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&ved=0CCoQFjAB&url=http%3A%2F%2Fwww.mcc.cmu.ac.th%2FSeminar%2Fpdf%2Fp255709009.pdf&ei=J8xTVObnL8mfyATcpYGIBw&usg=AFQjCNERYMevbB3Iy4G-qlhkhSS96MujPg&sig2=hMwi8j-aCXjtyJisEcMx3Q.

5309. Tram, V.N.Q., H. Somura and T. Moroizumi. 2021. The impacts of land-use input conditions on flow and sediment discharge in the Dakbla Watershed, Central Highlands of Vietnam. Water. 13(5): 627. DOI: 10.3390/w13050627 .

5310. Tram, V.N.Q., H. Somura, T. Moroizumi and M. Maeda. 2022. Effects of local land-use policies and anthropogenic activities on water quality in the upstream Sesan River Basin, Vietnam. Journal of Hydrology: Regional Studies. 44: 101225. DOI: 10.1016/j.ejrh.2022.101225 .

5311. Trambauer, P., S. Maskey, H Winsemius, M. Werner and S. Uhlenbrook. 2013. A review of continental scale hydrological models and their suitability for drought forecasting in (sub-Saharan) Africa. Physics and Chemistry of the Earth. 66: 16–26. DOI: 10.1016/j.pce.2013.07.003 .

5312. Tran, C.N. and C. Yossapol. 2019. Hydrological and nitrate loading modeling in Lam Takong Watershed, Thailand. International Journal of GEOMATE. 17(60): 43-48. DOI: 10.21660/2019.60.4687 .

5313. Tran, V.-B., H. Ishidaira, T. Nakamura, T.-N. Do and K. Nishida. 2017. Estimation of nitrogen load with multi-pollution sources using the SWAT Model: A case study in the Cau River Basin in northern Vietnam. Journal of Water and Environment Technology. 15(3): 106-119. DOI: 10.2965/jwet.16-052 .

5314. Trancoso, A.R., F. Braunschweig, P.C. Leitao, M. Obermann and R. Neves. 2009. An advanced modelling tool for simulating complex river systems. Science of the Total Environment. 407(8): 3004-3016. DOI: 10.1016/j.scitotenv.2009.01.015 .

5315. Trang, N.T.T. and. 2016. Modelling the hydrology and water quality of 3S river system (Sekong, Sesan and Srepok). Science and Technology Development Journal. 19(2): 107-117. DOI: 10.32508/stdj.v19i2.808 .

5316. Trang, N.T.T., S. Shrestha, M. Shrestha, A. Datta and A. Kawasaki. 2017. Evaluating the impacts of climate and land-use change on the hydrology and nutrient yield in a transboundary river basin: A case study in the 3S River Basin (Sekong, Sesan, and Srepok). Science of the Total Environment. 576: 586-598. DOI: 10.1016/j.scitotenv.2016.10.138 .

5317. Trang, N.T.T., S. Shrestha, S. Ishidaira and P.T.T. Nhi. 2020. Evaluating the impacts of climate change on the hydrology and water resource availability in the 3S River Basin of Cambodia, Laos, and Vietnam. Environmental Science. 62(4): 77-86. DOI: 10.31276/VJSTE.62(4).77-86 .

5318. Trentin, R., L.E. de S. Robaina and F. Laurent. 2021. Definition of hydrological response units in the hydrographic basin of Rio Santa Maria-RS. Revista Caminhos de Geografia. 22(84): 269-284. DOI: 10.14393/RCG228457131 .

5319. Tri, D.Q., T.T. Dat and D.D. Truong. 2019. Application of meteorological and hydrological drought indices to establish drought classification maps of the Ba River Basin in Vietnam. Hydrology. 6(2): 49. DOI: 10.3390/hydrology6020049 .

5320. Triana, J.S.A., M.L. Chu and J.A. Stein. 2021. Assessing the impacts of agricultural conservation practices on freshwater biodiversity under changing climate. Ecological Modelling. 453: 109604. DOI: 10.1016/j.ecolmodel.2021.109604 .

5321. Triana, J.S.A., M.L. Chu, N.J. Shipley, C.J. van Riper, W.P. Stewart and C.D. Suski. 2022. A decision-making framework for evaluating environmental tradeoffs in enhancing ecosystem services across complex agricultural landscapes. Journal of Environmental Management. 314: 115077. DOI: 10.1016/j.jenvman.2022.115077 .

5322. Trianto, R., U. Andawayanti and R. Asmaranto. 2016. Analisis laju sedimentasi terhadap ketersediaan air irigasi dan arahan konservasi pada bendung lakitan. Jurnal Teknik Pengairan. 7(1): 95-106. URL: http://jurnalpengairan.ub.ac.id/index.php/jtp/article/view/255.

5323. Triasary, K., M.Y.J. Purwanto and S.D. Tarigan. 2021. Land use scenarios for hydrological conditions improvement in Cidurian Watershed. Journal of Watershed Management Research . 5(1): 121-140. DOI: 10.24850/j-tyca-2021-02-04 .

5324. Tripathi, M.P., N.S. Raguwanshi, and G.P. Rao. 2006. Effect of watershed subdivision on simulation of water balance components. Hydrological Processes. 20(5): 1137-1156. DOI: 10.1002/hyp.5927 .

5325. Tripathi, M.P., R.K. Panda and N.S. Raghuwanshi. 2003. Calibration and validation of SWAT model for predicting runoff and sediment yield of a small watershed in India. International Agricultural Engineering Journal. 12(1&2): 95-118. URL: https://www.researchgate.net/publication/287735819_Calibration_and_validation_of_SWAT_model_for_predicting_runoff_and_sediment_yield_of_a_small_watershed_in_India.

5326. Tripathi, M.P., R.K. Panda and N.S. Raghuwanshi. 2003. Identification and prioritisation of critical sub-watersheds for soil conservation management using the SWAT model. Biosystems Engineering. 85(3): 365-379. DOI: 10.1016/S1537-5110(03)00066-7 .

5327. Tripathi, M.P., R.K. Panda and N.S. Raghuwanshi. 2005. Development of effective management plan for critical subwatersheds using SWAT model. Hydrological Processes. 19(3): 809-826. DOI: 10.1002/hyp.5618 .

5328. Tripathi, M.P., R.K. Panda, N.S. Raghuwanshi and R. Singh. 2004. Hydrological modelling of a small watershed using generated rainfall in the Soil and Water Assessment Tool. Hydrological Processes. 18(10): 1811-1821. DOI: 10.1002/hyp.1448 .

5329. Trirahadi, A., N. Bafdal, K. Amaru and I. Ridwansyah. 2022. Perubahan tata guna lahan terhadap limpasan permukaan di Sub DAS Cimanuk hulu menggunakan model Soil and Water Assesment Tool (SWAT). Seminar Nasional II LPPM UMMAT. 1: 599-615. URL: https://journal.ummat.ac.id/index.php/semnaslppm/article/ view/9845.

5330. Troin, M. and D. Caya. 2014. Evaluating the SWAT’s snow hydrology over a Northern Quebec watershed. Hydrological Processes. 28(4): 1858–1873. DOI: 10.1002/hyp.9730 .

5331. Troin, M., C. Vallet-Coulomb, E. Piovano and F. Sylvestre. 2012. Rainfall-runoff modeling of recent hydroclimatic change in a subtropical lake catchment: Laguna Mar Chiquita, Argentina. Journal of Hydrology. 475: 1-52. DOI: 10.1016/j.jhydrol.2012.10.010 .

5332. Troin, M., J.A. Velázquez, D. Caya and F. Brissette. 2015. Comparing statistical post-processing of regional and global climate scenarios for hydrological impacts assessment: A case study of two Canadian catchments. Journal of Hydrology. 520: 268–288. DOI: 10.1016/j.jhydrol.2014.11.047 .

5333. Trolle, D., A. Nielsen, H.E. Andersen, H. Thodsen, J.E. Olesen, C.D. Børgesen, J.C. Refsgaard, T.O. Sonnenborg, I.B. Karlsson, J.P. Christensen, S. Markager and E. Jeppesen. 2019. Effects of changes in land use and climate on aquatic ecosystems: Coupling of models and decomposition of uncertainties. Science of the Total Environment. 657: 627-633. DOI: 10.1016/j.scitotenv.2018.12.055 .

5334. Trolle, D., A. Nielsen, J. Rolighed, H. Thodsen, H.E. Andersen, I.B. Karlsson, J.C. Refsgaard, J.E. Olesen, K. Bolding, B. Kronvang, M. Søndergaard and E. Jeppesen. 2015. Projecting the future ecological state of lakes in Denmark in a 6 degree warming scenario. Climate Research. 64: 55-72. DOI: 10.3354/cr01278 .

5335. Trotochaud, J., D.C. Flanagam and B.A. Engel. 2016. A simple technique for obtaining future climate data inputs for natural resource models. Applied Engineering in Agriculture. 32(3): 371-381. DOI: 10.13031/aea.32.10993 .

5336. Trucios Caciano, R., J.G. Martínez Rodríguez, J.L. Blando Navarrete and I. Sánchez Cohen. 2007. SWAT: Calibration and validation on Sextin River Watershed in Durango, Mexico. Revista Chapingo Serie Zonas Aridas. 6: 91-101. URL: https://chapingo.mx/revistas/zonas_aridas/contenido.php?id_articulo=993&doi=0000.

5337. Trudel, M., P.L. Doucet-Généreux and R. Leconte. 2017. Assessing river low-flow uncertainties related to hydrological model calibration and structure under climate change conditions. Climate. 5: 19. DOI: 10.3390/cli5010019 .

5338. Trung, L.D., N.A. Duc, L.T. Nguyen, T.H.Thai, A. Khan, K. Rautenstrauch and C. Schmidt. 2020. Assessing cumulative impacts of the proposed Lower Mekong Basin hydropower cascade on the Mekong River floodplains and Delta – Overview of integrated modeling methods and results. Journal of Hydrology. 581: 122511. DOI: 10.1016/j.jhydrol.2018.01.029 .

5339. Truong, N.C.Q., D.N. Khoi, H.W., Nguyen and A. Kondoh. 2022. Impact of forest conservation to agriculture on hydrological regime in the large basin in Vietnam. Water. 14(6): 854. DOI: 10.3390/w14060854 .

5340. Trybula, E.M., R. Cibin, J.L. Burks, I. Chaubey, S.M. Brouder and J.J. Volenec. 2015. Perennial rhizomatous grasses as bioenergy feedstock in SWAT: Parameter development and model improvement. Global Change Biology. 7(6): 1185-1202. DOI: 10.1111/gcbb.12210 .

5341. Tsegaye, L. and R. Bharti. 2022. The impacts of LULC and climate change scenarios on the hydrology and sediment yield of Rib Watershed, Ethiopia. Environmental Monitoring and Assessment. 194(10): 717. DOI: 10.1007/s10661-022-10391-3 .

5342. Tsuchiya, R., T. Kato, J. Jeong and J.G. Arnold. 2018. Development of SWAT-Paddy for Simulating Lowland Paddy Fields. Sustainability. 10(9): 3246. DOI: doi:10.3390/su10093246 .

5343. Tsvetkova, O. and T.O. Randhir. 2019. Spatial and temporal uncertainty in climatic impacts on watershed systems. Science of the Total Environment. 687: 618-633. DOI: 10.1016/j.scitotenv.2019.06.141 .

5344. Tu, L.H., J. Boulange, T. Iwafune, I.C. Yadav and H. Watanabe. 2018. Improvement and application of the PCPF-1@SWAT2012 model for predicting pesticide transport: A case study of the Sakura River watershed. Pest Management Science. 74: 2520–2529. DOI: 10.1002/ps.4934 .

5345. Tu, L.H., M.L. Grieneisen, R. Wang, H. Watanabe and M. Zhang. 2023. Assessment of agricultural pesticide inert ingredient transport following modeling approach: Case study of two formulation agents in Sacramento River Watershed. Journal of Environmental Management. 330: 117123. DOI: 10.1016/j.jenvman.2022.117123 .

5346. Tu, Z., Z. Chen, H. Ye, S. Chen and J. Huang. 2022. Integrating water quality restoration cost with ecosystem service flow to quantify an ecological compensation standard: A case study of the Taoxi Creek Watershed. Water. 14(9): 1459. DOI: 10.3390/w14091459 .

5347. Tudose, N.C., M. Marin, S. Cheval, C. Ungurean, S.O. Davidescu, O.N. Tudose, A.L. Mihalache and A.A. Davidescu. 2021. SWAT model adaptability to a small mountainous forested watershed in central Romania. Forests. 12(7): 860. DOI: 10.3390/f12070860 .

5348. Tudose, N.C., S. Cheval, C. Ungurean, A. Broekman, A. Sanchez-Plaza, R. Cremades, H. Mitter, B. Kropf, S.O. Davidescu, L. Dinca, H. Cacovean, M. Marin, K. Miksa and P. Pereira. 2022. Climate services for sustainable resource management: The water-energy-land nexus in the Tărlung River Basin (Romania). Land Use Policy. 119: 106221. DOI: 10.1016/j.landusepol.2022.106221 .

5349. Tufekcioglu, M., M. Yavuz, G.N. Zaimes, M. Dinc, P. Koutalakis and A. Tufekcioglu. 2017. Application of Soil Water Assessment Tool (SWAT) to suppress wildfire at Bayam Forest, Turkey. Journal of Environmental Biology. 38: 719-726. DOI: 10.22438/jeb/38/5/MRN-331 .

5350. Tumsa, B.C. 2023. The response of sensitive LULC changes to runoff and sediment yield in a semihumid urban watershed of the Upper Awash Subbasin using the SWAT+ model, Oromia, Ethiopia. Applied and Environmental Soil Science. : 6856144. DOI: 10.1155/2023/6856144 .

5351. Tumsa, B.C., F.F. Feyessa, K.T. Tullu and A.C. Guder. 2023. Spatiotemporal changes of land use in response to runoff and sediment yield for environmental sustainability in the upper Blue Nile Basin, Oromiyaa, Ethiopia. H2Open Journal. 6(4): 551-575. DOI: 10.2166/h2oj.2023.072 .

5352. Tumsa, B.C., G. Kenea and B. Tola. 2022. The application of SWAT+ model to quantify the impacts of sensitive LULC changes on water balance in Guder Catchment, Oromia, Ethiopia. Heliyon. 8(12): 162396. DOI: 10.1016/j.heliyon.2022.e12569 .

5353. Tuo, Y., G. Chiogna and M. Disse. 2015. A Multi-Criteria model selection protocol for practical applications to nutrient transport at the catchment scale. Water. 7(6): 2851-2880. DOI: 10.3390/w7062851 .

5354. Tuo, Y., G. Marcolini, M. Disse and G. Chiogna. 2018. A multi-objective approach to improve SWAT model calibration in alpine catchments. Journal of Hydrology. 559: 347-360. DOI: 10.1016/j.jhydrol.2018.02.055 .

5355. Tuo, Y., G. Marcolini, M. Disse and G. Chiogna. 2018. Calibration of snow parameters in SWAT: Comparison of three approaches in the Upper Adige River basin (Italy). Hydrological Sciences Journal. 63(4): 657-678. DOI: 10.1080/02626667.2018.1439172 .

5356. Tuo, Y., Z. Duan, M. Disse and G. Chiogna. 2016. Evaluation of precipitation input for SWAT modeling in Alpine catchment: A case study in the Adige River basin (Italy). Science of the Total Environment. 573: 66-82. DOI: 10.1016/j.scitotenv.2016.08.034 .

5357. Tuppad, P., K.R. Douglas-Mankin, J.K. Koelliker, J.M.S. Hutchinson and M.C. Knapp. 2010. NEXRAD stage III precipitation local bias adjustment for streamflow prediction. Transactions of the ASABE. 53(5): 1511-1520. URL: http://cat.inist.fr/?aModele=afficheN&cpsidt=23463976.

5358. Tuppad, P., K.R. Douglas-Mankin and K.A. McVay. 2010. Strategic targeting of cropland management using watershed modeling. Agricultural Engineering International: CIGR Journal. 12(3): 12-24. URL: http://cigrjournal.org/index.php/Ejounral/article/view/1505.

5359. Tuppad, P., K.R. Douglas-Mankin, J.K. Koelliker and J.M.S. Hutchinson. 2010. SWAT discharge response to spatial rainfall variability in a Kansas watershed. Transactions of the ASABE. 53(1): 65-74. URL: https://elibrary.asabe.org/abstract.asp?aid=29503&t=1.

5360. Tuppad, P., K.R. Douglas-Mankin, T. Lee, R. Srinivasan and J.G. Arnold. 2011. Soil and Water Assessment Tool (SWAT) hydrologic/water quality model: Extended capability and wider adoption. Transactions of the ASABE. 54(5): 1677-1684. URL: http://cat.inist.fr/?aModele=afficheN&cpsidt=24771136.

5361. Tuppad, P., M.F. Winchell, X.Wang, R. Srinivasan and J.R. Williams. 2009. ARCAPEX: ARCGIS interface for Agricultural Policy Environmental Extender (APEX) hydrology/water quality model. International Agricultural Engineering Journal. 18(1-2): 59-71. URL: https://ssl.tamu.edu/media/15005/tuppad-2009-arcapex-%20arcgis%20interface%20for%20apex.pdf.

5362. Tuppad, P., N. Kannan, R. Srinivasan, C.G. Rossi and J.G. Arnold. 2010. Simulation of agricultural management alternatives for watershed protection. Water Resources Management. 24(12): 3115-3144. DOI: 10.1007/s11269-010-9598-8 .

5363. Turpin, N., P. Bontems, G. Rotillon, I. Bärlund, M. Kaljonen, S. Tattari, F. Feichtinger, P. Strauss, R. Haverkamp, M. Garnier, A. Lo Porto, G. Benigni, A. Leone, M. Nicoletta Ripa, O.M. Eklo, E. Romstad, T. Bioteau, F. Birgand, P. Bordenave, R. Laplana, J.M. Lescot, L. Piet and F. Zahm. 2005. AgriBMPWater: Systems approach to environmentally acceptable farming. Environmental Modelling & Software. 20(2): 187-196. DOI: 10.1016/j.envsoft.2003.09.004 .

5364. Tusingwiire, M.A., M.D. Tumutungire, J.I. Sempewo and S. Semiyaga. 2023. Impacts of climate and land use/cover change on mini-hydropower generation in River Kyambura Watershed in south western part of Uganda. Water Practice and Technology. 18(6): 1576-1597. DOI: 10.2166/wpt.2023.079 .

5365. Twisa, S., S. Kazumba, M. Kurian and M. E. Buchroithner. 2020. Evaluating and predicting the effects of land use changes on hydrology in Wami River Basin, Tanzania. Hydrology. 7(1): 17. DOI: 10.3390/hydrology7010017 .

5366. Twombly, C.R., J.W. Faulkner, A.S. Collick and Z.M. Easton. 2021. Identification of phosphorus index improvements through model comparisons across topographic regions in a small agricultural watershed in Vermont (USA). Soil Science Society of America Journal . 85(4): 1226-1241. DOI: 10.1002/saj2.20254 .

5367. Tzoraki, O., A.-M. De Girolamo, C. Gamvroudis and N. Skoulikidis. 2016. Assessing the flow alteration of temporary streams under current conditions and changing climate by Soil and Water Assessment Tool model. International Journal of River Basin Management. 14(1): 9-18. DOI: 10.1080/15715124.2015.1049182 .

5368. Tzoraki, O., D. Cooper, T. Kjeldsen, N.P. Nikolaidis, C. Gamvroudis, J. Froebrich, E. Querner, F. Gallart and N. Karalemas. 2013. Flood generation and classification of a semi-arid intermittent flow watershed: Evrotas river. International Journal of River Basin Management. 11(1): 77-92. DOI: 10.1080/15715124.2013.768623 .

5369. Tzoraki, O., N.P. Nikolaidis, D. Cooper and E. Kassotaki. 2014. Nutrient mitigation in a temporary river basin. Environmental Modeling & Assessment. 186(4): 2243-2257. DOI: 10.1007/s10661-013-3533-4 .

5370. Uchida, E., S.K. Swallow, A.J. Gold, J. Opaluch, A. Kafle, N.H. Merrill, C. Michaud and C.A. Gill. 2018. Integrating watershed hydrology and economics to establish a local market for water quality improvement: A field experiment. Ecological Economics. 146: 17-25. DOI: 10.1016/j.ecolecon.2017.09.003 .

5371. Udias, A., A. Malagò, M. Pastori, O. Vigiak, A. Reynaud, F.J. Elorza and F. Bouraoui. 2016. Identifying efficient nitrate reduction strategies in the Upper Danube. Water. 8(9): 371. DOI: 10.3390/w8090371 .

5372. Udias, A., M. Pastori, A. Malago, O. Vigiak, N.P. Nikolaos and F. Bouraoui. 2018. Identifying efficient agricultural irrigation strategies in Crete. Science of the Total Environment. 633: 271-284. DOI: 10.1016/j.scitotenv.2018.03.152 .

5373. Uhan, J., G. Vizintin and J. Pezdic. 2011. Groundwater nitrate vulnerability assessment in alluvial aquifer using process-based models and weights-of-evidence method: Lower Savinja Valley case study (Slovenia). Environmental Earth Sciences. 64(1): 97-105. DOI: 10.1007/s12665-010-0821-y .

5374. Ullrich, A. and M. Volk. 2010. Influence of different nitrate-N monitoring strategies on load estimation as a base for model calibration and evaluation. Environmental Monitoring and Assessment. 171(1-4): 513-527. DOI: 10.1007/s10661-009-1296-8 .

5375. Ullrich, A., M. Volk. 2009. Application of the Soil and Water Assessment Tool (SWAT) to predict the impact of alternative management practices on water quality and quantity. Agricultural Water Management. 96(8): 1207-1217. DOI: 10.1016/j.agwat.2009.03.010 .

5376. Umar, M., S.N. Khan, A. Arshad, R.A. Aslam, H.M.S. Khan, H. Rashid, Q.B. Pham, A. Nasir, R. Noor, K.M. Khedher and D.T. Anh. 2022. A modifed approach to quantify aquifer vulnerability to pollution towards sustainable groundwater management in irrigated Indus Basin. Environmental Science and Pollution Research. 29: 27257-27278. DOI: 10.1007/s11356-021-17882-9 .

5377. Umugwaneza, A., X. Chen, T. Liu, Z. Li, S. Uwamahoro, R. Mind’je, E.D. Umwali, R. Ingabire and A. Uwineza. 2021. Future climate change impact on the Nyabugogo Catchment water balance in Rwanda. Water. 13(24): 3636. DOI: 10.3390/w13243636 .

5378. Umugwaneza, A., X. Chen, T. Liu, R. Mind'je, A. Uwineza, P.M. Kayumba, S. Uwamahoro, J. Umuhoza, A. Gasirabo and A.P. Maniraho. 2022. Integrating a GIS-based approach and a SWAT model to identify potential suitable sites for rainwater harvesting in Rwanda. AQUA Water Infrastructure,, Ecosystems and Society. 71(3): 415. DOI: 10.2166/aqua.2022.111 .

5379. Uniyal, B. and J. Dietrich. 2019. Modifying automatic irrigation in SWAT for plant water stress scheduling. Agricultural Water Management. 223: 105714. DOI: 10.1016/j.agwat.2019.105714 .

5380. Uniyal, B. and J. Dietrich. 2021. Simulation of irrigation demand and control in catchments – A review of methods and case studies. Water Resources Research. 57: e2020WR029263. DOI: 10.1029/2020WR029263 .

5381. Uniyal, B., J. Dietrich, C. Vasilakos and O. Tzoraki. 2017. Evaluation of SWAT simulated soil moisture at catchment scale by field measurements and Landsat derived indices. Agricultural Water Management. 193: 55-70. DOI: 10.1016/j.agwat.2017.08.002 .

5382. Uniyal, B., J. Dietrich, N.Q. Vu, M.K. Jha and J.L. Arumí. 2018. Simulation of regional irrigation requirement with SWAT in different agro-climatic zones driven by observed climate and two reanalysis datasets. Science of the Total Environment. 649: 846-865. DOI: 10.1016/j.scitotenv.2018.08.248 .

5383. Uniyal, B., M.K. Jha and A.K. Verma. 2015. Assessing climate change impact on water balance components of Upper Baitarni River Basin using SWAT model. Water Resources Management. 29(13): 4767-4785. DOI: 10.1007/s11269-015-1089-5 .

5384. Uniyal, B., M.K. Jha and A.K. Verma. 2015. Parameter identification and uncertainty analysis for simulating streamflow in a river basin of Eastern India. Hydrological Processes. 29(17): 3744-3766. DOI: 10.1002/hyp.10446 .

5385. Uniyal, B., M.K. Jha, A.K. Verma and P.K. Anebagilu. 2020. Identification of critical areas and evaluation of best management practices using SWAT for sustainable watershed management. Science of the Total Environment. 744: 140737. DOI: 10.1016/j.scitotenv.2020.140737 .

5386. Upadhyay, P., A. Linhoss, C. Kelble, S. Ashby, N. Murphy and P.B. Parajuli. 2022. Applications of the SWAT model for coastal watersheds: Review and recommendations. Journal of the ASABE. 65(2): 453-469. DOI: 10.13031/ja.14848 .

5387. Urama, K.C., C.F. Dilks, S.M. Dunn and R.C. Ferrier. 2006. Socio-economic and bio-physical modelling of diffuse pollution: Closing the gaps. Archiv für Hydrobiologie Supplement. 17(1-2): 175-199. DOI: 10.1127/lr/17/2006/175 .

5388. Uribe, N., G. Corzo, M. Quuintero, A. van Griensven and D. Solomatine. 2018. Impact of conservation tillage on nitrogen and phosphorus runoff losses in a potato crop system in Fuquene watershed, Colombia. Agricultural Water Management. 209: 62-72. DOI: 10.1016/j.agwat.2018.07.006 .

5389. Usha, K. 2021. SWAT as a tool for water management at river basin level - A case study on Tungabhadra Basin. NDCWWC Journal. 10(1): 3-8. URL: https://www.indianjournals.com/ijor.aspx?target=ijor:ndcwwc&volume=10&issue=1&article=001.

5390. Usman, H.S., A.B. Kasim and A. Rabi'u. 2021. Streamflow simulation: Comparison between Soil Water Assessment Tool and artificial neutral network models. FUDMA Journal of Sciences. 5(2): 173-182. DOI: 10.33003/fjs-2021-0502-638 .

5391. Utami, W.U., E.D. Wahjunie and S.D. Tarigan. 2020. Hydrological characteristics and management based on hydrologic modeling Soil and Water Assessment Tool in Cisadane Hulu Watershed. Jurnal Ilmu Pertanian Indonesia. 25(3): 344-350. URL: https://journal.ipb.ac.id/index.php/JIPI/article/view/28643.

5392. Utomo, D.P., I. Suprayogi and M. Fauzi. 2020. Kalibrasi model Soil & Water Assesment Tool (SWAT) untuk pengelolaan sub DAS Tapung Kiri. Jurnal APTEK. 12(2): 147-155. URL: https://journal.upp.ac.id/index.php/aptek/article/view/388.

5393. Uwamahoro, S., T. Liu, V. Nzabarinda, J.M. Habumugisha, T. Habumugisha, B. Harerimana and A. Bao. 2021. Modifications to snow-melting and flooding processes in the hydrological model—A case study in Issyk-Kul, Kyrgyzstan. Atmosphere. 12(12): 1580. DOI: 10.3390/atmos12121580 .

5394. Uzbekov, U., B. Pulatov, B. Alikhanov and A. Pulatov. 2021. Predicting the impact of future climate change on streamflow in the Ugam River watershed. GeoScape. 15(2): 159—172. DOI: 10.2478/geosc-2021-0013 .

5395. Uzeika, T., G.H. Merten, J.P.G. Minella and M. Moro. 2012. Use of the Swat Model for Hydro-Sedimentologic Simulation in a Small Rural Watershed. Revista Brasileira de Ciência do Solo. 36(2): 557-565. URL: http://www.scielo.br/scielo.php?pid=S0100-06832012000200025&script=sci_arttext.

5396. Uzor-Totty, A.E. and C.U. Oyegun. 2020. Spatio-Temporal dynamics of sediment yield across the Imo River Basin SE Nigeria. International Journal of Environment and Geoinformatics . 7(2): 184-190. DOI: 10.30897/ijegeo.645611 .

5397. Vache, K., M.B. Meles, N.A. Griffiths and C.R. Jackson. 2021. Ensemble modeling of watershed scale hydrologic effects of short rotation woody crop production. Biofuels, Bioproducts and Biorefining. 15(5): 1345-1359. DOI: 10.1002/bbb.2247 .

5398. Vaché, K.B., J.M. Eilers and M.V. Santelman. 2002. Water quality modeling of alternative agricultural scenarios in the U.S. Corn Belt. Journal of the American Water Resources Association. 38(3): 773-787. DOI: 10.1111/j.1752-1688.2002.tb00996.x .

5399. Vadas, P.A. and M.J. White. 2010. Validating soil phosphorus routines in the SWAT model. Transactions of the ASABE. 53(5): 1469-1476. DOI: 10.13031/2013.34897 .

5400. Vadas, P.A., C.H. Bolster and L.W. Good. 2013. Critical evaluation of models used to study agricultural phosphorus and water quality. Soil Use and Management. 29(suppl. 1): 36-44. DOI: 10.1111/j.1475-2743.2012.00431.x .

5401. Vafakhah, M. and H. Noor. 2021. Optimal prioritization of best management practices through a simulation-optimization model to sediment load reduction. ECOPERSIA. 9(4): 299-311. URL: https://ecopersia.modares.ac.ir/article-24-51168-en.html.

5402. Vagheei , H., A. Laini, P. Vezza, G. Palau-Salvador and F. Boano. 2022. Ecohydrologic modeling using nitrate, ammonium, phosphorus, and macroinvertebrates as aquatic ecosystem health indicators of Albaida Valley (Spain). Journal of Hydrology: Regional Studies. 42: 101155. DOI: 10.1016/j.ejrh.2022.101155 .

5403. Vagheei, H., A. Laini, P. Vezza, G. Palau-Salvador, and F. Boano. 2023. Climate change impact on the ecological status of rivers: The case of Albaida Valley (SE Spain). Science of the Total Environment. 893: 164645. DOI: 10.1016/j.scitotenv.2023.164645 .

5404. Vaghefi, S. A., S. J. Mousavi, K. C. Abbaspour, R. Srinivasan and J. R. Arnold. 2015. Integration of hydrologic and water allocation models in basin-scale water resources management considering crop pattern and climate change: Karkheh River Basin in Iran. Regional Environmental Change. 15(3): 475-484. DOI: 10.1007/s10113-013-0573-9 .

5405. Vaghefi, S.A., K.C. Abbaspour, M. Faramarzi, R. Srinivasan and J.G. Arnold. 2017. Modeling crop water productivity using a coupled SWAT–MODSIM model. Water. 9(3): 157. DOI: 10.3390/w9030157 .

5406. Vaghefi, S.A., M. Iravani, D. Sauchyn, Y. Andreichuk, G. Goss and M. Faramarzi. 2019. Regionalization and parameterization of a hydrologic model significantly affect the cascade of uncertainty in climate-impact projections. Climate Dynamics. DOI: 10.1007/s00382-019-04664-w .

5407. Vaghefi, S.A., N. Abbaspour, B. Kamali and K.C. Abbaspour. 2017. A toolkit for climate change analysis and pattern recognition for extreme weather conditions - case study: California-Baja California Peninsula. Environmental Modelling & Software. 96: 181-198. DOI: 10.1016/j.envsoft.2017.06.033 .

5408. Vaghefi, S.A., S.J. Mousavi, K.C. Abbaspour, R. Srinivasan, and H. Yang. 2014. Analyses of the impact of climate change on water resources components, drought, and wheat yield in semi-arid regions: Karkheh River Basin in Iran. Hydrological Processes. 28(4): 2018–2032. DOI: 10.1002/hyp.9747 .

5409. Vagstad, N., H.K.French, H.E. Andersen, H. Behrendt, B. Grizzetti, P. Groenendijk, A. Lo Porto, H. Reisser, C. Siderius, J. Hejzlar and J. Deelstra. 2009. Comparative study of model prediction of diffuse nutrient losses in response to changes in agricultural practices. Journal of Environmental Monitoring. 11(3): 594-601. DOI: 10.1039/b823112e .

5410. Valcu-Lisman, A.M., C.L. Kling and P.W. Gassman. 2016. The optimality of using marginal land for Bioenergy crops: Tradeoffs between food, fuel, and environmental services. Agricultural and Resource Economics Review. 45(2): 217-245. DOI: 10.1017/age.2016.20 .

5411. Valcu-Lisman, A.M., P.W. Gassman, R. Arritt, T. Campbell and D.E. Herzmann. 2017. Cost-effectiveness of reverse auctions for watershed nutrient reductions in the presence of climate variability: An empirical approach for the Boone River watershed. Journal of Soil and Water Conservation. 72(5): 280-295. DOI: 10.2489/jswc.72.3.280 .

5412. Vale, M. and I.P. Holman. 2009. Understanding the hydrological functioning of a shallow lake system within a coastal karstic aquifer in Wales, UK. Journal of Hydrology. 376(1-2): 285-294. DOI: 10.1016/j.jhydrol.2009.07.041 .

5413. Valeh, S., B. Motamedvairi, H. Kiadaliri and H. Ahmadi. 2021. Hydrological simulation of Ammameh Basin by artificial neural network and SWAT models. Physics and Chemistry of the Earth, Parts A/B/C. 123: 103014. DOI: 10.1016/j.pce.2021.103014 .

5414. van de Sand, I., J.K. Mwangi and S. Namirebe. 2014. Can payments for ecosystem services contribute to adaptation to adaptation to climate change? Insights from a watershed in Kenya. Ecology and Society. 19(1): 47. DOI: 10.5751/ES-06199-190147 .

5415. van der Heijden, S. and U. Haberlandt. 2010. Influence of spatial interpolation methods for climate variables on the simulation of discharge and nitrate fate with SWAT. Advances in Geosciences. 27: 91-98. DOI: 10.5194/adgeo-27-91-2010 .

5416. van der Heijden, S. and U. Haberlandt. 2015. A fuzzy rule based metamodel for monthly catchment nitrate fate simulations. Journal of Hydrology. 531: 863-876. DOI: 10.1016/j.jhydrol.2015.10.039 .

5417. van Griensven A., A. Francos and W. Bauwens. 2002. Sensitivity analysis and auto-calibration of an integral dynamic model for river water quality. Water Science and Technology. 45(9): 325-332. DOI: 10.2166/wst.2002.0271 .

5418. van Griensven A., P. Ndomba, S. Yalew and F. Kilonzo. 2012. Critical review of SWAT applications in the upper Nile basin countries. Hydrology and Earth System Sciences. 16: 3371-3381. DOI: 10.5194/hess-16-3371-2012 .

5419. van Griensven, A. and T. Meixner. 2006. Methods to quantify and identify the sources of uncertainty for river basin water quality models. Water Science and Technology. 53(1): 51-59. DOI: 10.2166/wst.2006.007 .

5420. van Griensven, A. and T. Meixner. 2007. A global and efficient multi-objective auto-calibration and uncertainty estimation method for water quality catchment models. Journal of Hydroinformatics. 9(4): 277-291. DOI: 10.2166/hydro.2007.104 .

5421. van Griensven, A. and W. Bauwens. 2001. Integral water quality modeling of catchments. Water Science and Technology. 43(7): 321-328. DOI: 10.2166/wst.2001.0441 .

5422. van Griensven, A. and W. Bauwens. 2003. Multiobjective autocalibration for semidistributed water quality models. Water Resources Research. 39(12): 1348. DOI: 10.1029/2003WR002284 .

5423. van Griensven, A. and W. Bauwens. 2005. Application and evaluation of ESWAT on the Dender Basin and Wister Lake Basin. Hydrological Processes. 19(3): 827-838. DOI: 10.1002/hyp.5614 .

5424. van Griensven, A., I. Popescu, M.R. Abdelhamid, P.M. Ndomba, L. Beevers and G.D. Betrie. 2013. Comparison of sediment transport computations using hydrodynamic versus hydrologic models in the Simiyu River in Tanzania. Physics and Chemistry of the Earth. 61-62: 12-21. DOI: 10.1016/j.pce.2013.02.003 .

5425. van Griensven, A., L. Breuer, M. Di Luzio, V. Vandenberghe, P. Goethals, T. Meixner, J. Arnold and R. Srinivasan. 2006. Environmental and ecological hydroinformatics to support the implementation of the European Water Framework Directive for river basin management. Journal of Hydroinformatics. 8(4): 239-252. DOI: 10.2166/hydro.2006.010 .

5426. van Griensven, A., T. Meixner, S. Grunwald, T. Bishop, M. Di Luzio and R. Srinivasan. 2006. A global sensitivity analysis tool for the parameters of multi-variable catchment models. Journal of Hydrology. 324(1-4): 10-23. DOI: 10.1016/j.jhydrol.2005.09.008 .

5427. Van Griensven, A., T. Meixner, R. Srinivasan, and S. Grunwald. 2008. Fit-for-purpose analysis of uncertainty using split-sampling evaluations. Hydrological Sciences Journal. 53(5): 1090-1103. DOI: 10.1623/hysj.53.5.1090 .

5428. Van Liew, M.W. and A.R. Mittelstet. 2018. Comparison of three regionalization techniques for predicting streamflow in ungaged watersheds in Nebraska, USA using SWAT model. International Journal of Agricultural and Biological Engineering. 11(3): 110-119. DOI: 10.25165/j.ijabe.20181103.3528 .

5429. Van Liew, M.W. and J. Garbrecht. 2003. Hydrologic simulation of the Little Washita River experimental watershed using SWAT. Journal of the American Water Resources Association. 39(2): 413-426. DOI: 10.1111/j.1752-1688.2003.tb04395.x .

5430. Van Liew, M.W., C.H. Green, and P.I. Starks. 2008. Unit source area data: Can it make a difference in calibrating the hydrologic reponse for watershed-scale modeling? Journal of Soil and Water Conservation. 62(3): 162-170. URL: http://www.jswconline.org/content/62/3/162.short.

5431. Van Liew, M.W., J.D. Garbrecht and J.G. Arnold. 2003. Simulation of the impacts of flood retarding structures on streamflow for a watershed in southwestern Oklahoma under dry, average, and wet climatic conditions. Journal of Soil and Water Conservation. 58(6): 340-348. URL: http://www.jswconline.org/content/58/6/340.short.

5432. Van Liew, M.W., J.G. Arnold and J.D. Garbrecht. 2003. Hydrologic simulation on agricultural watersheds: choosing between two models. Transactions of the ASAE. 46(6): 1539-1551. DOI: 10.13031/2013.15643 .

5433. Van Liew, M.W., J.G. Arnold and D.D. Bosch. 2005. Problems and potential of autocalibrating a hydrologic model. Transactions of the ASABE. 48(3): 1025-1040. URL: https://naldc.nal.usda.gov/download/5506/PDF.

5434. Van Liew, M.W., S. Feng and T.B. Pathak. 2012. Climate change impacts on streamflow, water quality, and best management practices for the shell and logan creek watersheds in Nebraska. International Journal of Agricultural and Biological Engineering. 5(1): 13-34. DOI: 10.3965/j.ijabe.20120501.003 .

5435. Van Liew, M.W., S. Feng and T.B. Pathak. 2013. Assessing climate change impacts on water balance, runoff, and water quality at the field scale for four locations in the heartland. Transactions of the ASABE. 56(3): 883-900. DOI: 10.13031/trans.56.9134 .

5436. Van Liew, M.W., T.L. Veith, D.D. Bosch and J.G. Arnold. 2007. Suitability of SWAT for the Conservation Effects Assessment Project: Comparison on USDA Agricultural Research Service watersheds. Journal of Hydrologic Engineering. 12(2): 173-189. DOI: 10.1061/(ASCE)1084-0699(2007)12:2(173) .

5437. van Tol, J., K. Bieger and J.G. Arnold. 2021. A hydropedological approach to simulate streamflow and soil water contents with SWAT+. Hydrological Processes. 35(6): e14242. DOI: 10.1002/hyp.14242 .

5438. van Tol, J.J. and G.M. van Zijl. 2022. South Africa needs a hydrological soil map: A case study from the Upper uMngeni Catchment. Water SA. 48(4): 335–347. DOI: 10.17159/wsa/2022.v48.i4.3977 .

5439. van Tol, J.J., G.M. van Zijl and S. Julich. 2020. Importance of Detailed Soil Information for Hydrological Modelling in an Urbanized Environment. Hydrology. 7: 34. DOI: 10.3390/hydrology7020034 .

5440. VanCompernolle, M., J.H. Knouft and D.L. Ficklin. 2019. Hydrologic and thermal conditions occupied by a species within a single watershed predict the geographic extent of occurrence of freshwater fishes. Ecohydrology. 12(3): e2071. DOI: 10.1002/eco.2071 .

5441. VanCompernolle, M., J.H. Knouft and D.L. Ficklin. 2019. Multispecies conservation of freshwater fish assemblages in response to climate change in the southeastern United States. Diversity and Distributions. 25: 1388-1398. DOI: 10.1111/ddi.12948 .

5442. Vandenberghe V., A. van Griensven and W. Bauwens. 2001. Sensitivity analysis and calibration of the parameters of ESWAT: Application to the river Dender. Water Science and Technology. 43(7): 295-301. DOI: 10.2166/wst.2001.0438 .

5443. Vandenberghe, V., A. van Griensven and W. Bauwens. 2002. Detection of the most optimal measuring points for water quality variables: Application to the river water quality model of the River Dender in ESWAT. Water Science and Technology. 46(3): 1-7. DOI: 10.2166/wst.2002.0042 .

5444. Vandenberghe, V., A. van Griensven, W. Bauwens and P.A. Vanrolleghem. 2005. Propagation of uncertainty in diffuse pollution into water quality predictions: Application to the River Dender in Flanders, Belgium. Water Science and Technology. 51(3): 347-354. DOI: 10.2166/wst.2005.0609 .

5445. Vandenberghe, V., A. van Griensven, W. Bauwens and P.A. Vanrolleghem. 2006. Effect of different river water quality model concepts used for river basin management decisions. Water Science and Technology. 53(10): 277-284. DOI: 10.2166/wst.2006.322 .

5446. Vandenberghe, V., W. Bauwens and P.A. Vanrolleghem. 2007. Evaluation of uncertainty propagation into river water quality predictions to guide future monitoring campaigns. Environmental Modelling & Software. 22(5): 725-732. DOI: 10.1016/j.envsoft.2005.12.019 .

5447. Vanna, C., T. Yamamoto and T. Inoue. 2020. Evaluation of water shortages in agricultural water use in the Sangker River Basin, Cambodia. International Journal of Environmental and Rural Development. 11(1): 32-39. DOI: 10.32115/ijerd.11.1_32 .

5448. Vara, P.A.B.K., A. Mani, U.M. Devi and D.M. Reddy. 2013. Blue and green water quantification for sustainable water resources management in Kothakunta sub-watershed, Andhra Pradesh. Indian Journal of Soil Conservation. 41(3): 241-247. URL: http://www.indianjournals.com/ijor.aspx?target=ijor:ijsc&volume=41&issue=3&article=006.

5449. Varadarajan, S., J. Fabrega and B. Leung. 2022. Precipitation interpolation, autocorrelation, and predicting spatiotemporal variation in runoff in data sparse regions: Application to Panama. Journal of Hydrology: Regional Studies. 44: 101252. DOI: 10.1016/j.ejrh.2022.101252 .

5450. Varanou, E, E. Gkouvatsou, E. Baltas and M. Mimikou. 2002. Quantity and quality integrated catchment modeling under climate change with use of Soil and Water Assessment Tool model. Journal of Hydrologic Engineering. 7(3): 228-244. DOI: 10.1061/(ASCE)1084-0699(2002)7:3(228) .

5451. Vargas-Castaneda, G., L.A. Ibáñez-Castillo and R. Arteaga-Ramirez. 2015. Development, classification and trends in rainfall-runoff modeling. Ingenieria Agricola y Biosistemas. 7(1): 5-21. DOI: 10.5154/r.inagbi.2015.03.002 .

5452. Varughese, A. and M.S. Hajilal. 2020. Impact of climate change on the hydrology of Bharathappuzha River in Kerala, India. Climate Change and Environmental Sustainability . 8(2): 181-190. DOI: 10.5958/2320-642X.2020.00018.6 .

5453. Varughese, A., K.K. Praveena, P. Sruthakeerthi, V.V. Rachana and C.V. Anjali. 2022. Runoff prediction of Bharathapuzha River Basin using artificial neural network and SWAT model. Journal of Agricultural Engineering (India). 59(4): 404-416. URL: https://pub.isae.in/index.php/jae/article/view/10.

5454. Vathananukij, H. 2006. Geoinformatic public domain system model “ SWAT “ in Thailand. Kasetsart Journal Natural Sciences. 40(1): 264-272. URL: http://kasetsartjournal.ku.ac.th/abstractShow.aspx?param=YXJ0aWNsZUlEPTI4OHxtZWRpYUlEPTg5.

5455. Vazquez-Amabile, G. and B.A. Engel. 2008. Fitting of Time Series Models to Forecast Streamflow and Groundwater Using Simulated Data from SWAT. Journal of Hydrologic Engineering. Vol. 13, No. 7: 554–562. DOI: 10.1061/(ASCE)1084-0699(2008)13:7(554) .

5456. Vazquez-Amabile, G.G. and B. A. Engel. 2005. Use of SWAT to compute groundwater table depth and streamflow in the Muscatatuck River Watershed. Transactions of the ASAE. 48(3): 991-1003. URL: https://engineering.purdue.edu/ABE/People/Papers/bernard.a.engel.1/swat.pdf.

5457. Vazquez-Amabile, G.G., B.A. Engel. and D.C. Flanagan. 2006. Modeling and risk analysis of nonpoint-source pollution caused by atrazine using SWAT. Transactions of the ASABE. 49(3): 667-678. URL: https://engineering.purdue.edu/ABE/People/Papers/bernard.a.engel.1/modeling_risk.pdf.

5458. Veettil, A.V. and A.K. Mishra. 2016. Water security assessment using blue and green water footprint concepts. Journal of Hydrology. 542: 589–602. DOI: 10.1016/j.jhydrol.2016.09.032 .

5459. Veettil, A.V. and A.K. Mishra. 2018. Potential influence of climate and anthropogenic variables on water security using blue and green water scarcity, Falkenmark index, and freshwater provision indicator. Journal of Environmental Management. 228: 346-362. DOI: 10.1016/j.jenvman.2018.09.012 .

5460. Veettil, A.V. and A.K. Mishra. 2020. Multiscale hydrological drought analysis: Role of climate, catchment and morphological variables and associated thresholds. Journal of Hydrology. 582: 124533. DOI: 10.1016/j.jhydrol.2019.124533 .

5461. Veettil, A.V., A.K. Mishra and T.R. Green. 2022. Explaining water security indicators using hydrologic and agricultural systems models. Journal of Hydrology. 607: 127463. DOI: 10.1016/j.jhydrol.2022.127463 .

5462. Veettil, A.V., T.R. Green, H. Kipka, M. Arabi, N. Lighthart, K. Mankin and J. Clary. 2021. Fully distributed versus semi-distributed process simulation of a highly managed watershed with mixed land use and irrigation return flow. Environmental Modelling & Software. 140: 105000. DOI: 10.1016/j.envsoft.2021.105000 .

5463. Veintimilla-Reyes, J., A. De Meyer, D. Cattrysse, E. Tacuri, P. Vanegas, F. Cisneros and J. Van Orshoven. 2019. MILP for optimizing water allocation and reservoir location: A case study for the Machángara River Basin, Ecuador. Water. 11(5): 1011. DOI: 10.3390/w11051011 .

5464. Veith, T.L., A.N. Sharpley, and J. G. Arnold. 2008. Modeling a small, northeastern watershed with detailed, field-level data. Transactions of the ASABE. 51(2): 471-483. DOI: 10.13031/2013.24389 .

5465. Veith, T.L., A.N. Sharpley, J.L. Weld, and W.J. Giburek. 2005. Comparison of measured and simulated phosphorus losses with indexed site vulnerability. Transactions of the ASAE. 48(2): 557-565. URL: http://cat.inist.fr/?aModele=afficheN&cpsidt=16771746.

5466. Veith, T.L., M.W. Van Liew, D.D. Bosch and J.G. Arnold. 2010. Parameter sensitivity and uncertainty in SWAT: A comparison across five USDA-ARS watersheds. Transactions of the ASABE. 53(5): 1477-1485. DOI: 10.13031/2013.34906 .

5467. Velasco, P.P. and W. Bauwens. 2013. Climate change analysis of Lake Victoria outflows (Africa) using Soil and Water Assessment Tool (SWAT) and General Circulation Models (GCMs). Asia Life Sciences. 22(2): 659-675. URL: http://www.journals.uplb.edu.ph/index.php/ALS/article/view/953/0.

5468. Velazquez, J.A., M. Troin, D. Caya and F. Brissette. 2015. Evaluating the time-invariance hypothesis of climate model bias correction: Implications for hydrological impact studies. Journal of Hydrometeorology. 16(5): 2013-2026. DOI: 10.1175/JHM-D-14-0159.1 .

5469. Vema, V.K. and K.P. Sudheer. 2020. Towards quick parameter estimation of hydrological models with large number of computational units. Journal of Hydrology. 587: 124983. DOI: 10.1016/j.jhydrol.2020.124983 .

5470. Venetsanou, P., C. Anagnostopoulou, A. Loukas and K. Voudouris. 2020. Hydrological impacts of climate change on a data-scarce Greek catchment. Theoretical and Applied Climatology. 140(3-4): 1017–1030. DOI: 10.1007/s00704-020-03130-6 .

5471. Venishetty, V. and P.B. Parajuli. 2022. Assessment of BMPs by estimating hydrologic and water quality outputs using SWAT in Yazoo River Watershed. Agriculture. 12(4): 477. DOI: 10.3390/agriculture12040477 .

5472. Venkatesh, K., K. Preethi and H. Ramesh. 2020. Evaluating the effects of forest fire on water balance using fire susceptibility maps. Ecological Indicators. 110: 105856. DOI: 10.1016/j.ecolind.2019.105856 .

5473. Venkatesh, K., N.Y. Krakauer, E. Sharifi and H. Ramesh. 2020. Evaluating the performance of secondary precipitation products through statistical and hydrological modeling in a mountainous tropical basin of India. Advances in Meteorology. : 8859185. DOI: 10.1155/2020/8859185 .

5474. Venzon, P.T., A. Pinheiro and V. Kaufmann. 2018. Hydrological simulation uncertainties in small basins through the SWAT model. Revista Brasileira de Recursos Hidricos. 23: e49. DOI: 10.1590/2318-0331.231820180014 .

5475. Verdhen, A., B.R. Chahar and O.P. Sharma. 2014. Snowmelt modelling approaches in watershed models: Computation and comparison of efficiencies under varying climatic conditions. Water Resources Management. 28(11): 3439-3453. DOI: 10.1007/s11269-014-0662-7 .

5476. Vergara, F., F. Noda, D. Souza, G.F. Maciel and R. Oliveria. 2021. Application of the Soil and Water Assessment Tool (SWAT) model in the Watershed of Ribeirão Taquaruçu. Revista de Geografia e Ordenamento do Território. 21: 159-187. DOI: 10.17127/got/2021.21.007 .

5477. Verma, A.K. and M.K. Jha. 2015. Evaluation of a GIS-based watershed model for streamflow and sediment-yield simulation in the upper Baitarani River basin of eastern India. Journal of Hydrologic Engineering. 20. DOI: 10.1061/(ASCE)HE.1943-5584.0001134 .

5478. Verma, M.K. and M.K. Verma. 2019. Calibration of a hydrological model and sensitivity analysis of its parameters: A case study of Seonath River Basin. International Journal of Hydrology Science and Technology. 9(6): 640-656. DOI: 10.1504/IJHST.2019.103444 .

5479. Verma, N. and P. Dash. 2018. Hydrologic response to land use change and climate variability in an ungauged basin, north-western Himalaya, India. Scientific Annals Of Alexandru Ioan Cuza University Of Iasi. 63(1): 54-82. URL: https://core.ac.uk/reader/268087230.

5480. Verma,⃰ R., M.K. Nema, A.K. Nema and D.R. Sena. 2020. Hydrological modeling of a sub-basin of Mahanadi River Basin using SWAT model. Indian Journal of Soil Conservation. 48(1): 1-10. URL: https://www.iaswc.com/ijsc.html.

5481. Verma, S., M.K. Verma, A.D. Prasad, D. Mehta, H. Md Azamathulla, N. Muttil and U. Rathnayake. 2023. Simulating the hydrological processes under multiple land use/land cover and climate change scenarios in the Mahanadi Reservoir Complex, Chhattisgarh, India. Water. 15(17): 3068. DOI: 10.3390/w15173068 .

5482. Verma, S., R. Bhattaral, N.S. Bosch, R.C. Cooke, P.K. Kalita and M. Markus. 2015. Climate change impacts on flow, sediment and nutrient export in a Great Lakes watershed using SWAT. Clean - Soil, Air, Water. 43(11): 1464–1474. DOI: 10.1002/clen.201400724 .

5483. Verma, S.K., A.D. Prasad and M.K. Verma. 2022. An assessment of ongoing developments in water resources management incorporating SWAT model: Overview and perspectives. Nature Environment and Pollution Technology. 21(4): 1963-1970. DOI: 10.46488/NEPT.2022.v21i04.051 .

5484. Vernier, F., O. Leccia-Phelpin, J.-M. Lescot, S. Minette, A. Miralles, D. Barberis, C. Scordia, V. Kuentz-Simonet and J.-P. Tonneau. 2017. Integrated modeling of agricultural scenarios (IMAS) to support pesticide action plans: The case of the Coulonge drinking water catchment area (SW France). Environmental Science and Pollution Research. 24(8): 6923-6950. DOI: 10.1007/s11356-016-7657-2 .

5485. Vetter, T., J.Reinhardt, M. Flörke, A. van Griensven, F. Hattermann, S. Huang, H. Koch, I. G. Pechlivanidis, S. Plötner, O. Seidou, B. Su, R.W. Vervoort and V. Krysanova. 2017. Evaluation of sources of uncertainty in projected hydrological changes under climate change in 12 large-scale river basins. Climatic Change. 141(3): 419-433. DOI: 10.1007/s10584-016-1794-y .

5486. Vigerstol, K.L. and J.E. Aukema. 2011. A comparison of tools for modeling freshwater ecosystem services. Journal of Environmental Management. 92(10): 2403-2409. DOI: 10.1016/j.jenvman.2011.06.040 .

5487. Vigiak, O., A. Malagó, F. Bouraoui, M. Vanmaercke and J. Poesen. 2015. Adapting SWAT hillslope erosion model to predict sediment concentrations and yields in large Basins. Science of the Total Environment. 538: 855-875. DOI: 10.1016/j.scitotenv.2015.08.095 .

5488. Vigiak, O., A. Malagó, F. Bouraoui, B. Grizzetti, C.J. Weissteiner and M. Pastori. 2016. Impact of current riparian land on sediment retention in the Danube River Basin. Sustainability of Water Quality and Ecology. 8: 30–49. DOI: 10.1016/j.swaqe.2016.08.001 .

5489. Vigiak, O., A. Malagó, F. Bouraoui, M. Vanmaercke, F. Obreja, J. Poesen, H. Habersack, J. Fehér and S. Grošelj. 2017. Modelling sediment fluxes in the Danube River Basin with SWAT. Science of the Total Environment. 599-600: 992-1012. DOI: 10.1016/j.scitotenv.2017.04.236 .

5490. Vigiak, O., S. Lutz, A. Mentzafou, G. Chiogna, Y. Tuo, B. Majone, H. Beck, A. de Roo, A. Malago, F. Bouraoui, R. Kumar, L. Samaniego, R. Merz, C. Gamvroudis, N. Skoulikidis, N.P. Nikolaidis, A. Bellin, V. Acuña, N. Mori, R. Ludwig and A. Pistocchi. 2018. Uncertainty of modelled flow regime for flow-ecological assessment in Southern Europe. Science of the Total Environment. 615: 1028-1047. DOI: 10.1016/j.scitotenv.2017.09.295 .

5491. Villagra-Mendoza, K., D. Carvajal-Vanegas, S. Beck-Broichsitter and R. Horn. 2020. A simulated effect of wetting and drying periods for two textural soils amended with biochar at a catchment scale. Agricultural Engineering International: CIGR Journal. 22(1): 9-21. URL: https://cigrjournal.org/index.php/Ejounral/article/view/5562.

5492. Villamizar, M.L., C. Stoate, J. Biggs, C. Morris, J. Szczur and C.D. Brown. 2020. Comparison of technical and systems-based approaches to managing pesticide contamination in surface water catchments. Journal of Environmental Management. 260: 110027. DOI: 10.1016/j.jenvman.2019.110027 .

5493. Villamizar, S.R., S.M. Pineda and G.A. Carrillo. 2019. The effects of land use and climate change on the water yield of a watershed in Colombia. Water. 11(2): 285. DOI: 10.3390/w11020285 .

5494. Villani, L., G. Castelli, E.A. Yimer, A. Nkwasa, D. Penna, A. van Griensven and E. Bresci. 2024. Exploring adaptive capacities in Mediterranean agriculture: Insights from central Italy's Ombrone Catchment. Agricultural Systems. 216: 103903. DOI: 10.1016/j.agsy.2024.103903 .

5495. Viloria, M.I. and J.E. Cañón. 2016. Advances and perspectives for pathogen fate models in rivers and basins. Revista Científica en Ciencias Ambientales y Sostenibilidad CAS. 3(2): 1-15. URL: https://revistas.udea.edu.co/index.php/CAA/article/view/323242/20780448.

5496. Vilvert, E., M. Lana, P. Zander and S. Sieber. 2018. Multi-model approach for assessing the sunflower food value chain in Tanzania. Agricultural Systems. 159: 103-110. DOI: 10.1016/j.agsy.2017.10.014 .

5497. Viney, N.R., H. Bormann, L. Breuer, A. Bronsert, B.F.W. Croke, H. Frede, T. Graff, L. Hubrechts, J.A. Huisman, A.J. Jakeman, G.W. Kite, J. Lanini, G. Leavesley, D.P. Lettenmaier, G. Lindstrom, J. Seibert, M. Sivapalan and P. Willems. 2008. Assessing the impact of land use change on hydrology by ensemble modelling (LUCHEM) II: Ensemble conbinations and predictions. Advances in Water Resources. 32(2): 147-158. DOI: 10.1016/j.advwatres.2008.05.006 .

5498. Visakh, S., P.V. Raju, S.S. Kulkarni and P.G. Diwakar. 2019. Inter-comparison of water balance components of river basins draining into selected delta districts of Eastern India. Science of the Total Environment. 654: 1258-1269. DOI: 10.1016/j.scitotenv.2018.11.162 .

5499. Vogl, A.L., B.P. Bryant, J.E. Hunink, S. Wolny, C. Apse and P. Droogers. 2017. Valuing investments in sustainable land management in the Upper Tana River Basin, Kenya. Journal of Environmental Management. 195(Part 1): 78–91. DOI: 10.1016/j.jenvman.2016.10.013 .

5500. Volk, M., D. Bosch, V. Nagia and Balaji Narasimhan. 2017. SWAT: Agricultural water and nonpoint source pollution management at a watershed scale—Part II. Agricultural Water Management. 180(Part B): 191-193. DOI: 10.1016/j.agwat.2016.09.029 .

5501. Volk, M., D. Bosch, V. Nangia and B. Narasimhan. 2016. SWAT: Agricultural water and nonpoint source pollution management at a watershed scale. Agricultural Water Management. 175: 1-3. DOI: 10.1016/j.agwat.2016.06.013 .

5502. Volk, M., J. Hirschfeld, A. Dehnhardt G. Schmidt, C. Bohn, S. Liersch, and P.W. Gassman. 2008. Integrated Ecological-Economic Modelling of Water Pollution Abatement Management Options in the Upper Ems River. Ecological Economics. 66: 66-76. DOI: 10.1016/j.ecolecon.2008.01.016 .

5503. Volk, M., J. Hirschfeld, G. Schmidt, C. Bohn, A. Dehnhardt, S. Liersch and L. Lymburner. 2007. A SDSS-based ecological-economic modelling approach for integrated river basin management on different scale levels - The project FLUMAGIS. Water Resources Management. 21(12): 2049-2061. DOI: 10.1007/s11269-007-9158-z .

5504. Volk, M., S. Lautenbach, H. van Delden, L.T.H. Newham, and R. Seppelt. 2009. How Can We Make Progress with Decision Support Systems in Landscape and River Basin Management? Lessons Learned from a Comparative Analysis of Four Different Decision Support Systems. Environmental Management. Online first: 1-16. DOI: 10.1007/s00267-009-9417-2 .

5505. Volk, M., S. Liersch and G. Schmidt. 2009. Towards the implementation of the European Water Framework Directive? Lessons learned from water quality simulations in an agricultural watershed. Land Use Policy. 26(3): 580-588. DOI: 10.1016/j.landusepol.2008.08.005 .

5506. Volker, M. and N. Lienhoop. 2016. Exploring group dynamics in deliberative choice experiments. Ecological Economics. 123: 57-67. DOI: 10.1016/j.ecolecon.2016.01.006 .

5507. von Stackelberg, N.O., G.M. Chescheir, R.W. Skaggs and D.K. Amatya. 2007. Simulation of the hydrologic effects of afforestation in the Tacuarembó River basin, Uruguay. Transactions of the ASABE. 50(2): 455-468. URL: http://repository.lib.ncsu.edu/ir/handle/1840.16/295.

5508. Vu, M.T., S.V. Raghavan and S.Y. Liong. 2012. SWAT use of gridded observations for simulating runoff - a Vietnam river basin study. Hydrology and Earth System Sciences. 16: 2801-2811. DOI: 10.5194/hess-16-2801-2012 .

5509. Vu, M.T., S.V. Raghavan and S.-Y. Liong. 2016. Use of regional climate models for proxy data over transboundary regions. Journal of Hydrologic Engineering. 21(6): 05016010. DOI: 10.1061/(ASCE)HE.1943-5584.0001342 .

5510. Vu, M.T., V.S. Rghavan and S.Y. Liong. 2015. Ensemble climate projection for hydro-meteorological drought over a river basin in Central Highland, Vietnam. KSCE Journal of Civil Engineering. 19(2): 427-433. DOI: 10.1007/s12205-015-0506-x .

5511. Vu, T.T., L. Li and K.S. Jun. 2018. Evaluation of multi-satellite precipitation products for streamflow simulations: A case study for the Han River Basin in the Korean Peninsula, East Asia. Water. 10(5): 642. DOI: 10.3390/w10050642 .

5512. Wabela, K., A. Hammani, T. Abdelilah, S. Tekleab and M. El-Ayachi. 2022. Optimization of Irrigation scheduling for improved irrigation water management in Bilate Watershed, Rift Valley, Ethiopia. Water. 14(23): 3960. DOI: 10.3390/w14233960 .

5513. Wagena M.B., G. Bhatt, E. Buell, A.R. Sommerlot, D.R. Fuka and Z.M. Easton. 2019. Quantifying model uncertainty using Bayesian multi-model ensembles. Environmental Modelling & Software. 117: 89-99. DOI: 10.1016/j.envsoft.2019.03.013 .

5514. Wagena, M.B. and Z.M. Easton. 2018. Agricultural conservation practices can help mitigate the impact of climate change. Science of the Total Environment. 635: 132-143. DOI: 10.1016/j.scitotenv.2018.04.110 .

5515. Wagena, M.B., A. Sommerlot, A.Z. Abiy, A.S. Collick, S. Langan, D.R. Fuka and Z.M. Easton. 2016. Climate change in the Blue Nile Basin Ethiopia: Implications for water resources and sediment transport. Climatic Change. 139(2): 229–243. DOI: 10.1007/s10584-016-1785-z .

5516. Wagena, M.B., A.S. Collick, A.C. Ross, R.G. Najjar, B. Rau, A.R. Sommerlot, D.R. Fuka, P.J.A. Kleinman and Z.M. Easton. 2018. Impact of climate change and climate anomalies on hydrologic and biogeochemical processes in an agricultural catchment of the Chesapeake Bay Watershed, USA. Science of the Total Environment. 637-638: 1443-1454. DOI: 10.1016/j.scitotenv.2018.05.116 .

5517. Wagena, M.B., D. Goering, A.S. Collick, E. Bock, D.R. Fuka, A. Buda and Z.M. Easton. 2020. Comparison of short-term streamflow forecasting using stochastic time series, neural networks, process-based, and Bayesian models. Environmental Modelling & Software. 126: 104669. DOI: 10.1016/j.envsoft.2020.104669 .

5518. Wagena, M.B., E.M. Bock, A.R. Sommerlot, D.R. Fuka and Z.M. Easton. 2017. Development of a nitrous oxide routine for the SWAT model to assess greenhouse gas emissions from agroecosystems. Environmental Modelling & Software. 84: 131-143. DOI: 10.1016/j.envsoft.2016.11.013 .

5519. Wagner, P.D. and B. Waske. 2016. Importance of spatially distributed hydrologic variables for land use change modeling. Environmental Modelling & Software. 83: 245-254. DOI: 10.1016/j.envsoft.2016.06.005 .

5520. Wagner, P.D. and N. Fohrer. 2019. Gaining prediction accuracy in land use modeling by integrating modeled hydrologic variables. Environmental Modelling & Software. 115: 155-163. DOI: 10.1016/j.envsoft.2019.02.011 .

5521. Wagner, P.D., P. Fiener, F. Wilken, S. Kumar and K. Schneider. 2012. Comparison and evaluation of spatial interpolation schemes for daily rainfall in data scarce regions. Journal of Hydrology. 464-465: 388-400. DOI: 10.1016/j.jhydrol.2012.07.026 .

5522. Wagner, P.D., S.M. Bhallamudi, B. Narasimhan, S. Kumar, N. Fohrer and P. Fiener. 2017. Comparing the effects of dynamic versus static representations of land use change in hydrologic impact assessments. Environmental Modelling & Software. DOI: 10.1016/j.envsoft.2017.06.023 .

5523. Wagner, P.D., K. Bieger, J.G. Arnold and N. Fohrer. 2022. Representation of hydrological processes in a rural lowland catchment in Northern Germany using SWAT and SWAT+. Hydrological Processes. 36(5): e14589. DOI: 10.1002/hyp.14589 .

5524. Wagner, P.D., S. Kumar and K. Schneider. 2013. An assessment of land use change impacts on the water resources of the Mula and Mutha Rivers catchment upstream of Pune, India. Hydrology and Earth System Sciences. 17: 2233-2246. DOI: 10.5194/hess-17-2233-2013 .

5525. Wagner, P.D., S. Kumar, P. Fiener and K. Schneider. 2011. Hydrological modeling with SWAT in a monsoon-driven environment: Experience from the Western Ghats, India. Transactions of the ASABE. 54(5): 1783-1790. DOI: 10.13031/2013.39846 .

5526. Wagner, P.D., S.M. Bhallamudi, B. Narasimhan, L.N. Kantakumar, K.P. Sudheer, S. Kumar, K. Schneider and P. Fiener. 2016. Dynamic integration of land use changes in a hydrologic assessment of a rapidly developing Indian catchment. Science of the Total Environment. 539: 153-164. DOI: 10.1016/j.scitotenv.2015.08.148 .

5527. Wagner, P.D., T.G. Reichenau, S. Kumar and K. Schneider. 2015. Development of a new downscaling method for hydrologic assessment of climate change impacts in data scarce regions and its application in the Western Ghats, India. Regional Environmental Change. 15(3): 435-447. DOI: 10.1007/s10113-013-0481-z .

5528. Wagner, R.C., T.A. Dillaha and G. Yagow. 2007. An assessment of the reference watershed approach for TMDLs with biological impairments. Water, Air, and Soil Pollution. 181(1-4): 341-354. DOI: 10.1007/s11270-006-9306-8 .

5529. Wahren, F.T., S. Julich, J.P. Nunes, O Gonzalez-Pelayo, D. Hawtree, K.-H. Feger and J.J. Keizer. 2016. Combining digital soil mapping and hydrological modeling in a data scarce watershed in north-central Portugal. Geoderma. 264 (Part B): 350-362. DOI: 10.1016/j.geoderma.2015.08.023 .

5530. Wallace, C.W., D.C. Flanagan and B.A. Engel. 2017. Quantifying the effects of conservation practice implementation on predicted runoff and chemical losses under climate change. Agricultural Water Management. 1185: 51-65. DOI: 10.1016/j.agwat.2017.02.014 .

5531. Wallace, C.W., D.C. Flanagan and B.A. Engel. 2017. Quantifying the effects of future climate conditions on runoff, sediment, and chemical losses at different watershed sizes. Transactions of the ASABE. 60(3): 915-929. DOI: 10.13031/trans.12094 .

5532. Wallace, C.W., D.C. Flanagan and B.A. Engel. 2018. Evaluating the effects of watershed size on SWAT calibration. Water. 10(7): 898. DOI: 10.3390/w10070898 .

5533. Wallington, K. and X. Cai. 2023. Updating SWAT+ to clarify understanding of in-stream phosphorus retention and remobilization: SWAT+P.R&R. Water Resources Research. 59(3): e2022WR033283. DOI: 10.1029/2022WR033283 .

5534. Wallington, K., X. Cai and M. Kalcic. 2024. Evaluating the longevity of in-stream phosphorus legacies: A downstream cascade of recovery following point source remediation. Science of the Total Environment. 912: 168711. DOI: 10.1016/j.scitotenv.2023.168711 .

5535. Walters, K.M. and M. Babbar-Sebens. 2016. Using climate change scenarios to evaluate future effectiveness of potential wetlands in mitigating high flows in a Midwestern U.S. watershed. Ecological Engineering. 89: 80-102. DOI: 10.1016/j.ecoleng.2016.01.014 .

5536. Wambura, F.J. 2020. Uncertainty of drought information in a data-scarce tropical river basin. Journal of Hydrology: Regional Studies. 32: 100760. DOI: 10.1016/j.ejrh.2020.100760 .

5537. Wambura, F.J., O. Dietrich and F. Graef. 2018. Analysis of infield rainwater harvesting and land use change impacts on the hydrologic cycle in the Wami River basin. Agricultural Water Management. 203: 124-137. DOI: 10.1016/j.agwat.2018.02.035 .

5538. Wambura, F.J., O. Dietrich and G. Lischeid. 2018. Improving a distributed hydrological model using evapotranspiration‐related boundary conditions as additional constraints in a data‐scarce river basin. Hydrological Processes. 32(6): 759-775. DOI: 10.1002/hyp.11453 .

5539. Wambura, F.J., P.M. Ndomba, V. Kongo and S.D. Tumbo. 2015. Uncertainty of runoff projections under changing climate in Wami River sub-basin. Journal of Hydrology: Regional Studies. 4: 333-348. DOI: 10.1016/j.ejrh.2015.05.013 .

5540. Wan, J., Y. Wang, M. Cheng, B.A. Engel, W. Zhang and H. Peng. 2018. Assessment of debris inputs from land into the river in the Three Gorges Reservoir Area, China. Environmental Science and Pollution Research. 25(6): 5539–5549. DOI: 10.1007/s11356-017-0881-6 .

5541. Wan, R., D Liu, D.K. Munroe and S. Cai. 2013. Modelling potential hydrological impact of abandoned underground mines in the Monday Creek Watershed, Ohio. Hydrological Processes. 27(25): 3607–3616. DOI: 10.1002/hyp.9476 .

5542. Wan, W., H. Zheng, Y. Liu, J. Zhao, Y. Fan and H. Fan. 2022. Ecological compensation mechanism in a trans-provincial river basin: A hydrological/water-quality modeling-based analysis. Water. 14(16): 2542. DOI: 10.3390/w14162542 .

5543. Wang M., D. Liu, J. Jia and X. Zhang. 2015. Global trends in soil monitoring research from 1999–2013: A bibliometric analysis. Acta Agriculturae Scandinavica, Section B — Soil & Plant Science. 65(6): 483-495. URL: http://www.tandfonline.com/doi/full/10.1080/09064710.2015.1030443.

5544. Wang X., L. Sun, Y. Zhang and Y. Luo. 2015. Runoff generation in the headwater of Amu Darya, Central Asia. Progress in Geography. 34(3): 364-372. DOI: 10.11820/dlkxjz.2015.03.011 .

5545. Wang, B., J. Li and P. Feng. 2018. Impacts of land use change on runoff in Panjiakou Reservoir Watershed. Journal of Hydraulic Engineering. 49(3): 379-386. URL: http://jhe.ches.org.cn/jhe/ch/reader/view_abstract.aspx?flag=1&file_no=20180312&journal_id=jhe.

5546. Wang, C. R. Jiang, X. Mao, S. Sauvage, J.M. Sanchez-Perez, K. P. Woli, K. Kuramochi, A. Hayakawa and R. Hatano. 2015. Estimating sediment and particulate organic nitrogen and particulate organic phosphorous yields from a volcanic watershed characterized by forest and agriculture using SWAT model. International Journal of Limnology. 51(1): 23-35. DOI: 10.1051/limn/2014031 .

5547. Wang, C., B. Amon, K. Schulz and B. Mehdi. 2021. Factors that influence nitrous oxide emissions from agricultural soils as well as their representation in simulation models: A review. Agronomy. 11(4): 770. DOI: 10.3390/agronomy11040770 .

5548. Wang, C., C. Schürz, O. Zoboli, M. Zessner, K. Schulz, A. Watzinger, G. Bodner and B. Mehdi-Schulz. 2022. N2O emissions from two Austrian agricultural catchments simulated with an N2O submodule developed for the SWAT model. Atmosphere. 13(1): 50. DOI: 10.3390/atmos13010050 .

5549. Wang, C., L. Boithias, Z. Ning, Y. Han, S. Sauvage, J.-M Sánchez-Pérez, K. Kuramochi and R. Hatano. 2017. Comparison of Langmuir and Freundlich adsorption equations within the SWAT-K model for assessing potassium environmental losses at basin scale. Agricultural Water Management. 180(Part B): 205–211. DOI: 10.1016/j.agwat.2016.08.001 .

5550. Wang, C., R. Jiang, L. Boithias, S. Sauvage, J.M. Sánchez-Pérez, X. Mao, Y. Han, A. Hayakawa, K. Kuramochi and R. Hatano. 2016. Assessing potassium environmental losses from a dairy farming watershed with the modified SWAT model. Agricultural Water Management. 175: 91-104. DOI: 10.1016/j.agwat.2016.02.007 .

5551. Wang, D., M. Hejazi, X. Cai and A.J. Valocchi. 2011. Climate change impact on meteorological, agricultural, and hydrological drought in central Illinois. Water Resources Research. 47(W09527): 1-13. DOI: 10.1029/2010WR009845 .

5552. Wang, G., H. Yang, L. Wang, Z. Xu and B. Xue. 2014. Using the SWAT model to assess impacts of land use changes on runoff generation in headwaters. Hydrological Processes. 28(3): 1032–1042. DOI: 10.1002/hyp.9645 .

5553. Wang, G., H.I. Jager, L.M. Baskaran and C.C. Brandt. 2018. Hydrologic and water quality responses to biomass production in the Tennessee River Basin. Global Change Biology Bioenergy. DOI: 10.1111/gcbb.12537 .

5554. Wang, G., K. Yang, Y. Yang and S. Zhang. 2017. Coupling natural and human processes to simulate changes in the water environment in the Dianchi Lake basin, China. Geosystem Engineering. 20(4): 207-215. DOI: 10.1080/12269328.2016.1270777 .

5555. Wang, G., L. Chen, Q. Huang, Y. Xiao and Z. Shen. 2016. The influence of watershed subdivision level on model assessment and identification of non-point source priority management areas. Ecological Engineering. 87: 110-119. DOI: 10.1016/j.ecoleng.2015.11.041 .

5556. Wang, G.S. and J. Xia. 2010. Improvement of SWAT2000 modelling to assess the impact of dams and sluices on streamflow in the Huai River Basin of China. Hydrological Processes. 24(11): 1455-1471. DOI: 10.1002/hyp.7606 .

5557. Wang, H., F. Sun, J. Xia and W. Liu. 2017. Impact of LUCC on streamflow based on the SWAT model over the Wei River basin on the Loess Plateau in China. Hydrology and Earth System Sciences. 21: 1929-1945. DOI: 10.5194/hess-21-1929-2017 .

5558. Wang, H., H. Zhong, J. Lu, Q. Yan, S. Li and Y. Zhou. 2020. Understanding the river-lake relationship after the operation of TGR based on SWAT model. Journal of Coastal Research. 104(SI): 593-600. DOI: 10.2112/JCR-SI104-100.1 .

5559. Wang, H., K. Lu, Y. Zhao, J. Zhang, J. Hua and X. Lin. 2020. Multi-model ensemble simulated non-point source pollution based on Bayesian model averaging method and model uncertainty analysis. Environmental Science and Pollution Research. 27(35): 44482–44493. DOI: 10.1007/s11356-020-10336-8 .

5560. Wang, H., M. Khayatnezhad and N. Youssefi. 2022. Using an optimized Soil and Water Assessment Tool by deep belief networks to evaluate the impact of land use and climate change on water resources. Concurrency and Computation: Practice and Experience. 34(3): e6807. DOI: 10.1002/cpe.6807 .

5561. Wang, H., S.R. Stephenson and S. Qu. 2020. Quantifying the relationship between streamflow and climate change in a small basin under future scenarios. Ecological Indicators. 113: 106257. DOI: 10.1016/j.ecolind.2020.106251 .

5562. Wang, H., T. Xie, X. Yu and C. Zhang. 2021. Simulation of soil loss under different climatic conditions and agricultural farming economic benefits: The example of Yulin City on Loess Plateau. Agricultural Water Management. 244: 106462. DOI: 10.1016/j.agwat.2020.106462 .

5563. Wang, H., W. Zhao and L. Jia. 2021. Progress and prospect of soil water erosion research over past decade based on the bibliometrics analysis. Science of Soil and Water Conservation. 19(1): 142-151. URL: http://journal12.magtechjournal.com/Jweb_stbc/EN/abstract/abstract10753.shtml.

5564. Wang, J. and H. Ishidaira. 2012. Effects of climate change and human activites on streamflow and sediment flow into the Hoa Binh reservoir. Journal of Japan Society of Civil Engineers, Ser. B1 (Hydraulic Engineering). 68(4): I_91 - I_96. URL: https://www.jstage.jst.go.jp/article/jscejhe/68/4/68_16/_pdf.

5565. Wang, J., A. Huo, X. Zhang and Y. Lu. 2020. Prediction of the response of groundwater recharge to climate changes in Heihe River Basin, China. Environmental Earth Sciences. 79(1): 13. DOI: 10.1007/s12665-019-8752-8 .

5566. Wang, J., G. Liu and C. Zhu. 2020. Evaluating precipitation products for hydrologic modeling over a large river basin in the Midwestern USA. Hydrological Sciences Journal. 65(7): 1221-1238. DOI: 10.1080/02626667.2020.1737868 .

5567. Wang, J., H. Ishidaira, W. Sun and S. Ning. 2014. Development and interpretation of new sediment rating curve considering the effect of vegetation cover for Asian basins. The Scientific World Journal. 2013(2013): 59375. DOI: 10.1155/2013/154375 .

5568. Wang, J., N.K. Shrestha, M.A. Delavar, T.W. Meshesha and S.N. Bhanja. 2021. Modelling watershed and river basin processes in cold climate regions: A review. Water. 13(4): 518. DOI: 10.3390/w13040518 .

5569. Wang, J., T. Wu, Q. Li and S. Wang. 2021. Quantifying the effect of environmental drivers on water conservation variation in the eastern Loess Plateau, China. Ecological Indicators. 125: 107493. DOI: 10.1016/j.ecolind.2021.107493 .

5570. Wang, J., X. Sang, Z. Zhai, Y. Liu and Z. Zhou. 2014. An integrated model for simulating regional water resources based on total evapotranspiration control approach. Advances in Meteorology. : 345671. DOI: 10.1155/2014/345671 .

5571. Wang, J., X.-H. Zhang, C.Y. Xu, H. Wang, X.-H. Lei, X. Wang and S.Y. Li. 2019. Development of load duration curve system in data-scarce watersheds based on a distributed hydrological model. Hydrology Research. 50(3): 886-900. DOI: 10.2166/nh.2019.117 .

5572. Wang, J., Y. Gao and S. Wang. 2018. Assessing the response of runoff to climate change and human activities for a typical basin in the Northern Taihang Mountain, China. Journal of Earth System Science. 127: 37. DOI: 10.1007/s12040-018-0932-5 .

5573. Wang, J., Y. Li, E.W. Bork, G.M. Richter, H.-I. Eum, C. Chen, S.H.H. Shah and S. Mezbahuddin. 2020. Modelling spatio-temporal patterns of soil carbon and greenhouse gas emissions in grazing lands: Current status and prospects. Science of the Total Environment. 739: 139092. DOI: 10.1016/j.scitotenv.2020.139092 .

5574. Wang, K., S.I. Onodera and M. Saito. 2022. Evaluation of nitrogen loading in the last 80 years in an urbanized Asian coastal catchment through the reconstruction of severe contamination period. Environmental Research Letters. 17(1): 014010. DOI: 10.1088/1748-9326/ac3ced .

5575. Wang, K., S.-I. Onodera, M. Saito, N. Okuda and T. Okubo. 2021. Estimation of phosphorus transport influenced by climate change in a rice paddy catchment using SWAT. International Journal of Environmental Research. 15: 759–772. DOI: 10.1007/s41742-021-00350-0 .

5576. Wang, K., S.-i. Onodera, M. Saito and Y. Shimizu. 2021. Long-term variations in water balance by increase in percent imperviousness of urban regions. Journal of Hydrology. 602: 126767. DOI: 10.1016/j.jhydrol.2021.126767 .

5577. Wang, K., S.I. Onodera, M. Saito and T. Ishida. 2022. Assessment of long-term phosphorus budget changes influenced by anthropogenic factors in a coastal catchment of Osaka Bay. Science of the Total Environment. 843: 156833. DOI: 10.1016/j.scitotenv.2022.156833 .

5578. Wang, K., S.I. Onodera, M. Saito, Y. Shimizu and T. Iwata. 2022. Effects of forest growth in different vegetation communities on forest catchment water balance. Science of the Total Environment. 809: 151159. DOI: 10.1016/j.scitotenv.2021.151159 .

5579. Wang, L. and X. Chen. 2007. Runoff simulation with calibration and validation of three stations in Jinjiang River Basin. Science of Soil and Water Conservation. 5(6): 21-26. URL: http://www.sswcc.com.cn/EN/volumn/volumn_1174.shtml.

5580. Wang, L., Y. Li, H. Zheng, T. Xu, Z. Ouyang, Z. Wang, Z. Ji and Y. Liu. 2012. Evaluating the effects of climate changes and LUCC on the hydrological processes using Soil and Water Assessment Tool models in Wangkuai Reservoir Watershed in China. Sensor Letters. 10: 405-414. DOI: 10.1166/sl.2012.1853 .

5581. Wang, L., Z. Wang, C. Liu, P. Bai and X. Liu. 2018. A flexible framework HydroInformatic Modeling System—HIMS. Water. 10(7): 962. DOI: 10.3390/w10070962 .

5582. Wang, M., D. Qin, C. Lu and Y. Li. 2010. Modeling anthropogenic impacts and hydrological processes on a wetland in China. Water Resources Management. 24(11): 2743-2757. DOI: 10.1007/s11269-010-9577-0 .

5583. Wang, M., D. Qin, Y. Li, H. Wei and Y. Shen. 2010. A study of the impact of wetlands on regional water cycle: The Qingdianwa Wetland example. Fresenius Environmental Bulletin. 19(1): 9-19.

5584. Wang, M., L. Chen, L. Wu, L. Zhang, H. Xie and Z Shen. 2022. Review of nonpoint source pollution models: Current status and future direction. Water. 14(20): 3217. DOI: 10.3390/w14203217 .

5585. Wang, M., Y. Shao, Q. Jiang, L. Xiao, H. Yan, X. Gao, L. Wang and P. Liu. 2020. Impacts of climate change and human activity on the runoff changes in the Guishui River Basin. Land. 9(9): 291. DOI: 10.3390/land9090291 .

5586. Wang, N., W. Liu, F. Sun, Z. Yao, H. Wang and W. Liu. 2020. Evaluating satellite-based and reanalysis precipitation datasets with gauge-observed data and hydrological modeling in the Xihe River Basin, China. Atmospheric Research. 234: 104746. DOI: 10.1016/j.atmosres.2019.104746 .

5587. Wang, N., Z. Yao, W. Liu, X. Lv and M. Ma. 2019. Spatial variabilities of runoff erosion and different underlying surfaces in the Xihe River Basin. Water. 11(2): 352. DOI: 10.3390/w11020352 .

5588. Wang, P., W. Ouyang, Z. Wu, X. Cui, W. Zhu, R. Jin and C. Lin. 2020. Diffuse nitrogen pollution in a forest-dominated watershed: Source, transport and removal. Journal of Hydrology. 585: 124833. DOI: 10.1016/j.jhydrol.2020.124833 .

5589. Wang, Q., J. Huang, R. Liu, C. Men, L. Guo, Y. Miao, L. Jiao, Y. Wang, M. Shoaib and X. Xia. 2020. Sequence-based statistical downscaling and its application to hydrologic simulations based on machine learning and big data. Journal of Hydrology. 586: 124875. DOI: 10.1016/j.jhydrol.2020.124875 .

5590. Wang, Q., J. Qi, H. Qiu, J. Li, J. Cole, S. Waldhoff and X. Zhang. 2021. Pronounced increases in Future soil erosion and sediment deposition as influenced by freeze−thaw cycles in the Upper Mississippi River Basin. Environmental Science & Technology. 55(14): 9905–9915. DOI: 10.1021/acs.est.1c02692 .

5591. Wang, Q., J. Qi, H. Wu, Y. Zeng, W. Shui, J. Zeng and X. Zhang. 2020. Freeze-Thaw cycle representation alters response of watershed hydrology to future climate change. Catena. 195: 104767. DOI: 10.1016/j.catena.2020.104767 .

5592. Wang, Q., J. Qi, J. Li, J. Cole, S.T. Waldhoff and X. Zhang. 2020. Nitrate loading projection is sensitive to freeze-thaw cycle representation. Water Research. 185: 116335. DOI: 10.1016/j.watres.2020.116355 .

5593. Wang, Q., J. Xia, D. She, X. Zhang, J. Liu and Y. Zhang. 2021. Assessment of four latest long-term satellite-based precipitation products in capturing the extreme precipitation and streamflow across a humid region of southern China. Atmospheric Research. 257: 105554. DOI: 10.1016/j.atmosres.2021.105554 .

5594. Wang, Q., J. Xia, X. Zhang, D. She, J. Liu and P. Li. 2020. Multi-scenario integration comparison of CMADS and TMPA datasets for hydro-climatic simulation over Ganjiang River Basin, China. Water. 12(11): 3243. DOI: 10.3390/w12113243 .

5595. Wang, Q., R. Liu, C. Men and L. Guo. 2018. Application of genetic algorithm to land use optimization for non-point source pollution control based on CLUE-S and SWAT. Journal of Hydrology. 560: 86-96. DOI: 10.1016/j.jhydrol.2018.03.022 .

5596. Wang, Q., R. Liu, C. Men, L. Guo and Y. Miao. 2018. Effects of dynamic land use inputs on improvement of SWAT model performance and uncertainty analysis of outputs. Journal of Hydrology. 563: 874-886. DOI: 10.1016/j.jhydrol.2018.06.063 .

5597. Wang, Q., R. Liu, C. Men, L. Guo and Y. Miao. 2019. Temporal-spatial analysis of water environmental capacity based on the couple of SWAT model and differential evolution algorithm. Journal of Hydrology. 569: 155-166. DOI: 10.1016/j.jhydrol.2018.12.003 .

5598. Wang, Q., R. Liu, L. Jiao, L. Li, Y. Wang and L. Cao. 2022. Significance of using dynamic land‑use data and its threshold in hydrology and water quality simulation models. Environmental Monitoring and Assessment. 194: 108. DOI: 10.1007/s10661-022-09761-8 .

5599. Wang, Q., Y. Xu, Y. Wang, Y. Zhang, J. Xiang, Y. Xu and J. Wang. 2020. Individual and combined impacts of future land-use and climate conditions on extreme hydrological events in a representative basin of the Yangtze River Delta, China. Atmospheric Research. 236: 104805. DOI: 10.1016/j.atmosres.2019.104805 .

5600. Wang, Q., Y. Xu, Y. Xu, L. Wu, Y. Wang and L. Han. 2018. Spatial hydrological responses to land use and land cover changes in a typical catchment of the Yangtze River Delta region. Catena. 170: 305-315. DOI: 10.1016/j.catena.2018.06.022 .

5601. Wang, Q-X, Q-A Xiao, C. Liu, K-L Wang, M. Ye, A-L Lei, X-F Song, and K. Kohata. 2011. Effect of reforestation on nitrogen and phosphorus dynamics in the catchment ecosystems of subtropical China: the example of the Hanjiang River basin. Journal of the Science of Food and Agriculture. 92(5): 1119-1129. DOI: 10.1002/jsfa.4607 .

5602. Wang, R. and L. Kalin. 2011. Modelling effects of land use/cover changes under limited data. Ecohydrology. 4(2): 265-276. DOI: 10.1002/eco.174 .

5603. Wang, R. and L. Kalin. 2018. Combined and synergistic effects of climate change and urbanization on water quality in the Wolf Bay watershed, southern Alabama. Journal of Environmental Sciences. 64: 107-121. DOI: 10.1016/j.jes.2016.11.021 .

5604. Wang, R., H. Chen, D. Bubenheim, P. Moran and M. Zhang. 2021. Modeling nitrogen runoff from Sacramento and San Joaquin River basins to Bay Delta Estuary: Current status and ecological implications. Journal of Aquatic Plant Management. 59s: 107-111. URL: https://apms.org/journal/.

5605. Wang, R., H. Chen, Y. Luo, P. Moran, M. Grieneisen and M. Zhang. 2019. Nitrate runoff contributing from the agriculturally intensive San Joaquin River Watershed to Bay-Delta in California. Sustainability. 11(10): 2845. DOI: 10.3390/su11102845 .

5606. Wang, R., L. C. Bowling, K.A. Cherkauer, R. Cibin, Y. Her and I. Chaubey. 2017. Biophysical and hydrological effects of future climate change including trends in CO2, in the St. Joseph River watershed, eastern Corn Belt. Agricultural Water Management. 180: 280-296. DOI: 10.1016/j.agwat.2016.09.017 .

5607. Wang, R., L. Kalin, W. Kuang, and T. Hanqin. 2014. Individual and combined effects of land use/cover and climate change on Wolf Bay watershed streamflow in southern Alabama. Hydrological Processes. 28(22): 5530–5546. DOI: 10.1002/hyp.10057 .

5608. Wang, R., L.C. Bowling and K.A. Cherkauer. 2015. Estimation of the effects of climate variability on crop yield in the Midwest USA. Agricultural and Forest Meteorology. 216: 141-156. DOI: 10.1016/j.agrformet.2015.10.001 .

5609. Wang, R., X. Liu, Z. Yao and Y. Lei. 2014. Modeling the risk of nitrate leaching and nitrate runoff loss from intensive farmland in the Baiyangdian Basin of the North China Plain. Environmental Earth Sciences. 72: 3143–3157. DOI: 10.1007/s12665-014-3219-4 .

5610. Wang, R., Y. Yuan, H. Yen, M. Grieneisen, J. Arnold, D. Wang, C. Wang and M. Zhang. 2019. A review of pesticide fate and transport simulation at watershed level using SWAT: Current status and research concerns. Science of the Total Environment. 669: 512-526. DOI: 10.1016/j.scitotenv.2019.03.141 .

5611. Wang, R., Z. Yao and Y. Lei. 2019. Modeling of soil available phosphorus surplus in an intensive wheat–maize rotation production area of the North China Plain. Agriculture Ecosystems and Environment. 269: 22-29. DOI: 10.1016/j.agee.2018.09.023 .

5612. Wang, S., H. Peng, Q. Hu and M. Jiang. 2022. Analysis of runoff generation driving factors based on hydrological model and interpretable machine learning method. Journal of Hydrology: Regional Studies. 42: 101139. DOI: 10.1016/j.ejrh.2022.101139 .

5613. Wang, S., Q. Li and J. Wang. 2021. Quantifying the contributions of climate change and human activities to the dramatic reduction in runoff in the Taihang Mountain Region, China. Applied Ecology and Environmental Research. 19(1): 119-131. DOI: 10.15666/aeer/1901_119131 .

5614. Wang, S., S. Kang, L. Zhang, and F. Li. 2008. Modelling hydrological response to different land-use and climate change scenarios in the Zamu River basin of northwest China. Hydrological Processes. 22(14): 2502-2510. DOI: 10.1002/hyp.6846 .

5615. Wang, T., X. Tu, V.P. Singh, X. Chen, K. Lin, R. Lai and Z. Zhou. 2022. Socioeconomic drought analysis by standardized water supply and demand index under changing environment. Journal of Cleaner Production. 347: 131248. DOI: 10.1016/j.jclepro.2022.131248 .

5616. Wang, W., L. Chan, Y. Zhu, K. Wang, S. Chen and Z. Shen. 2019. Is returning farmland to forest an effective measure to reduce phosphorus delivery across distinct spatial scales? Environmental Management. 252: 109663. DOI: 10.1016/j.jenvman.2019.109663 .

5617. Wang, W., L. Chen and Z. Shen. 2020. Dynamic export coefficient model for evaluating the effects of environmental changes on non-point source pollution. Science of the Total Environment. 747: 141164. DOI: 10.1016/j.scitotenv.2020.141164 .

5618. Wang, W., L. Sunn, Y. Wang, Y. Wang, P. Yu, W. Xiong, M. Shafeeque and Y. Luo. 2020. A convex distribution of vegetation along a stony soil slope due to subsurface flow in the semiarid Loess Plateau, northwest China. Journal of Hydrology. 586: 124861. DOI: 10.1016/j.jhydrol.2020.124861 .

5619. Wang, W., Y. Xie, M. Bi, X. Wang, Y. Lu and Z. Fan. 2018. Effects of best management practices on nitrogen load reduction in tea fields with different slope gradients using the SWAT model. Applied Geography. 90: 200-213. DOI: 10.1016/j.apgeog.2017.08.020 .

5620. Wang, W., Z. Li, P. Shi, Y. Zhang, B. Pan, P. Li, S. Ding, J. Li, Z. Bi and X. Wang. 2021. Vegetation restoration and agricultural management to mitigate nitrogen pollution in the surface waters of the Dan River, China. Environmental Science and Pollution Research. 28(34): 47136-47148. DOI: 10.1007/s11356-021-13905-7 .

5621. Wang, X. and A.M. Melesse. 2005. Evaluation of the SWAT model’s snowmelt hydrology in a northwestern Minnesota watershed. Transactions of the ASAE. 48(4): 1359-1376. DOI: 10.13031/2013.19194 .

5622. Wang, X. and A.M. Melesse. 2006. Effects of STATSGO and SSURGO as inputs on SWAT model’s snowmelt simulation. Journal of the American Water Resources Association. 42(5): 1217-1236. DOI: 10.1111/j.1752-1688.2006.tb05296.x .

5623. Wang, X., A.M. Melesse and W. Yang. 2006. Influences of potential evapotranspiration estimation methods on SWAT’s hydrologic simulation in a northwestern Minnesota watershed. Transactions of the ASABE. 49(6): 1755-1771. DOI: 10.13031/2013.22297 .

5624. Wang, X., F. Hao and X. Zhang. 2013. Optimization of best management practices for non-point source pollution in Danjiangkou Reservoir basin. China Environmental Science. 33(7): 1335-1343. URL: http://118.145.16.227/Jweb_zghjkx/EN/article/showTenYearVolumnDetail.do?nian=2013.

5625. Wang, X., L. Sun, Y. Zhang and Y. Luo. 2016. Rationalization of altitudinal precipitation profiles in a data-scarce glacierized watershed simulation in the Karakoram. Water. 8: 186. DOI: 10.3390/w8050186 .

5626. Wang, X., M. White, P. Tuppad, T. Lee, R. Srinivasan, T. Zhai, D. Andrews, and B. Narasimhan. 2013. Simulating sediment loading into the major reservoirs in Trinity River Basin. Journal of Soil and Water Conservation. 68(5): 372-383. DOI: 10.2489/jswc.68.5.372 .

5627. Wang, X., N. Kannan, C. Santhi, S.R. Potter, J.R. Williams and J.G. Arnold. 2011. Integrating APEX output for cultivated cropland with SWAT simulation for regional modeling. Transactions of the ASABE. 54(4): 1281-1298. DOI: 10.13031/2013.39031 .

5628. Wang, X., P. Zhang, L Liu, D. Li and Y. Wang. 2019. Correction: Wang, X., et al. effects of human activities on hydrological components in the Yiluo River Basin in Middle Yellow River. Water, 2019, 11, 689. Water. 11(8): 1609. DOI: 10.3390/w11081609 .

5629. Wang, X., P. Zhang, L. Liu, D. Li and Y. Wang. 2019. Effects of human activities on hydrological components in the Yiluo River Basin in Middle Yellow River. Water. 11(4): 689. DOI: 10.3390/w11040689 .

5630. Wang, X., Q. Wang, C. Wu, T. Liang, D. Zheng and X. Wei. 2012. A method coupled with remote sensing data to evalutate non-point source pollution in the Xin'anjiang catchment of China. Science of the Total Environment. 430: 132-143. DOI: 10.1016/j.scitotenv.2012.04.052 .

5631. Wang, X., S Shang, W. Yang and A.M. Melesse. 2008. Simulation of an agricultural watershed using an improved curve number method in SWAT. Transactions of the ASABE. 51(4): 1323-1339. URL: http://elibrary.asabe.org/abstract.asp?aid=25248&t=3&dabs=Y&redir=&redirType=.

5632. Wang, X., S. Shang, W. Yang, C.R. Clary and D. Yang. 2010. Simulation of land use-soil interactive effects on water and sediment yields at watershed scale. Ecological Engineering. 38(3): 328-344. DOI: 10.1016/j.ecoleng.2008.11.011 .

5633. Wang, X., S. Shang, Z. Qu, T. Liu, A.M. Melesse and W. Yang. 2010. Simulated wetland conservation-restoration effects on water quantity and quality at watershed scale. Journal of Environmental Management. 91(7): 1511-1525. DOI: 10.1016/j.jenvman.2010.02.023 .

5634. Wang, X., T. Liu, D. Yang, Z. Qu, C.R. Clary and C. Wunneburger. 2011. Simulating hydrologic effects of raised roads within a low-relief watershed. Journal of Hydrologic Engineering. 16(7): 585-597. DOI: 10.1061/(ASCE)HE.1943-5584.0000351 .

5635. Wang, X., T. Liu, S. Shang, D. Yang and A.M. Melesse. 2010. Estimation of design discharge for an ungauged overflow-receiving watershed using one-dimensional hydrodynamic model. International Journal of River Basin Management. 8(1): 79-92. DOI: 10.1080/15715121003714886 .

5636. Wang, X., W. Yang, and A. M. Melesse. 2008. Using hydrologic equivalent wetland concept within SWAT to estimate streamflow in watersheds with numerous wetlands. Transactions of the ASABE. 51(1): 55-72. URL: http://cat.inist.fr/?aModele=afficheN&cpsidt=20235194.

5637. Wang, X., X. Chu, T. Liu, X. Cheng and R. Whittecar. 2017. Water-soil-vegetation-dynamic interactions in changing climate. Water. 9(10): 740. DOI: 10.3390/w9100740 .

5638. Wang, X., Y. Luo, L. Sun and M. Shafeeque. 2021. Different climate factors contributing for runoff increases in the high glacierized tributaries of Tarim River Basin, China. Journal of Hydrology: Regional Studies. 36: 100845. DOI: 10.1016/j.ejrh.2021.100845 .

5639. Wang, X., Y. Luo, L. Sun and Y. Zhang. 2015. Assessing the effects of precipitation and temperature on hydrological processes in a glacier-dominated catchment. Hydrological Processes. 29(23): 4830-4845. DOI: 10.1002/hyp.10538 .

5640. Wang, X., Y. Luo, L. Sun, C. He, Y. Zhang and S. Liu. 2016. Attribution of runoff decline in the Amu Darya River in Central Asia during 1951–2007. Journal of Hydrometeorology. 17: 1543-1560. DOI: 10.1175/JHM-D-15-0114.1 .

5641. Wang, X., Y. Zhang, Y. Luo, L. Sun and M. Shafeeque. 2018. Combined use of volume-area and volume-length scaling relationships in glacio-hydrological simulation. Hydrology Research. 49(6): 1753-1772. DOI: 10.2166/nh.2018.137 .

5642. Wang, X., Z. Li and M. Li. 2018. Impacts of climate change on stream flow and water quality in a drinking water source area, northern China. Environmental Earth Sciences. 77: 410. DOI: 10.1007/s12665-018-7581-5 .

5643. Wang, X., Z. Zhang and J. Ning. 2013. Runoff response to land use change in Baimahe basin of China based on SWAT model. Shengtaixue Zazhi. 32(1): 186-194.

5644. Wang, Y. and K. Brubaker. 2014. Implementing a nonlinear groundwater module in the soil and water assessment tool (SWAT). Hydrological Processes. 28(9): 3388-3403. DOI: 10.1002/hyp.9893 .

5645. Wang, Y. and K. Brubaker. 2015. Multi-objective model auto-calibration and reduced parameterization: Exploiting gradient-based optimization tool for a hydrologic model. Environmental Modelling & Software. 70: 1-15. DOI: 10.1016/j.envsoft.2015.04.001 .

5646. Wang, Y. and N. Chen. 2021. Recent progress in coupled surface–ground water models and their potential in watershed hydro-biogeochemical studies: A review. Watershed Ecology and the Environment. 3: 17-29. DOI: 10.1016/j.wsee.2021.04.001 .

5647. Wang, Y., C. Xiang, P. Zhao, G. Mao and H. Du. 2016. A bibliometric analysis for the research on river water quality assessment and simulation during 2000–2014. Scientometrics. 108: 1333. DOI: 10.1007/s11192-016-2014-2 .

5648. Wang, Y., G. Yang, X. Gu, X. He, Y. Gao, L. Tian and N. Liao. 2021. Application of SWAT model with CMADS data for hydrological simulation in western China. Journal of Water and Climate Change. 12(4): 1154-1167. DOI: 10.2166/wcc.2020.040 .

5649. Wang, Y., H.J. Montas, K.L. Brubaker, P.T. Leisnham, A. Shirmohammadi, V. Chanse and A.K. Rockler. 2016. Impact of spatial discretization of hydrologic models on spatial distribution of nonpoint source pollution hotspots. Journal of Hydrologic Engineering. 21(12): 04016047. DOI: 10.1061/(ASCE)HE.1943-5584.0001455 .

5650. Wang, Y., H.J. Montas, K.L. Brubaker, P.T. Leisnham, A. Shirmohammadi, V. Chanse and A.K. Rockler. 2017. A diagnostic decision support system for BMP selection in a small urban watershed. Water Resources Management. 31(5): 1649-1664. DOI: 10.1007/s11269-017-1605-x .

5651. Wang, Y., J. Bian, S. Wang, J. Tang and F. Ding. 2016. Evaluating SWAT snowmelt parameters and simulating spring snowmelt nonpoint source pollution in the source area of the Liao River. Polish Journal of Environmental studies. 25(5): 2177-2185. DOI: 10.15244/pjoes/63174 .

5652. Wang, Y., J. Bian, W. Lao, Y. Zhao, Z. Hou and X. Sun. 2019. Assessing the impacts of best management practices on nonpoint source pollution considering cost-effectiveness in the source area of the Liao River, China. Water. 11(6): 1241. DOI: 10.3390/w11061241 .

5653. Wang, Y., J. Li, T. Zhang and B. Wang. 2019. Changes in drought propagation under the regulation of reservoirs and water diversion. Theoretical and Applied Climatology. 138: 701-711. DOI: 10.1007/s00704-019-02839-3 .

5654. Wang, Y., J. Shao, C. Su, Y. Cui and Q. Zhang. 2019. The application of improved SWAT model to hydrological cycle study in karst area of south China. Sustainability. 11(18): 5024. DOI: 10.3390/su11185024 .

5655. Wang, Y., J.M. Bian, S.N. Wang and S.Y. Nie. 2016. Predicting precipitation on nonpoint source pollutant exports in the source area of the Liao River, China. Water Science and Technology. 74(4): 876-887. DOI: 10.2166/wst.2016.268 .

5656. Wang, Y., N. Zhang, D. Wang and J. Wu. 2020. Impacts of cascade reservoirs on Yangtze River water temperature: Assessment and ecological implications. Journal of Hydrology. 590: 125240. DOI: 10.1016/j.jhydrol.2020.125240 .

5657. Wang, Y., N. Zhang, D. Wang, J. Wu and X. Jiang. 2018. Investigating the impacts of cascade hydropower development on the natural flow regime in the Yangtze River, China. Science of the Total Environment. 624: 1187-1194. DOI: 10.1016/j.scitotenv.2017.12.212 .

5658. Wang, Y., Q. Li, W. Zhang, S. Hu and H. Peng. 2021. The architecture and application of an automatic operational model system for basin scale water environment management and design making supporting. Journal of Environmental Management. 290: 112577. DOI: 10.1016/j.jenvman.2021.112577 .

5659. Wang, Y., R. Jiang, J. Xie, Y. Zhao, D. Yan and S. Yang. 2019. Soil and Water Assessment Tool (SWAT) model: A systemic review. Journal of Coastal Research. 93(SI): 22-30. DOI: 10.2112/SI93-004.1 .

5660. Wang, Y., S. Zhu, L. Yuan and R. Deng. 2020. An automatic parameter calibration method for the SWAT model in runoff simulation. River Research and Applications. 36(7): 1321-1333. DOI: 10.1002/rra.3655 .

5661. Wang, Y., X. Lei, X. Wen, G. Fang, Q. Tan, Y. Tian, C. Wang and H. Wang. 2019. Effects of damming and climatic change on the eco-hydrological system: A case study in the Yalong River, southwest China. Ecological Indicators. 105: 663-674. DOI: 10.1016/j.ecolind.2018.07.039 .

5662. Wang, Y., X. Liu, and Y. Shen. 2022. Applicability of the random forest model in quantifying the attribution of runoff changes. Chinese Journal of Eco-Agriculture. 30(5): 864-674. DOI: 10.12357/cjea.20210652 .

5663. Wang, Y., X. Liu, J. Li, Y. Wang, J. Bai and Z. Zhou. 2022. Quantifying the spatial flow of soil conservation service to optimize land-use pattern under ecological protection scenarios. Frontiers in Earth Science. 10: 957520. DOI: 10.3389/feart.2022.957520 .

5664. Wang, Y., Y. Wang and H. Xu. 2020. Impacts of 1.5°C and 2.0°C global warming on runoff of ihree inland rivers in the Hexi Corridor, northwest China. Journal of Meteorological Research . 34(5): 1082–1095. DOI: 10.1007/s13351-020-9152-4 .

5665. Wang, Y., Y. Zhou, K.J. Franz, X. Zhang, J. Qi, G. Jia and Y. Yang. 2022. Irrigation plays significantly different roles in influencing hydrological processes in two breadbasket regions. Science of the Total Environment. 844: 157253. DOI: 10.1016/j.scitotenv.2022.157253 .

5666. Wang, Z., and J. Cao. 2021. Spatial-temporal pattern study on water conservation function using the SWAT model. Water Supply. 21(7): 3629-3642. DOI: 10.2166/ws.2021.127 .

5667. Wang, Z., D.L. Ficklin, Y. Zhang and M. Zhang. 2012. Impact of climate change on streamflow in the arid Shiyang River Basin of northwest China. Hydrological Processes. 26(18): 2733–2744. DOI: 10.1002/hyp.8378 .

5668. Wang, Z., J. Cao and H. Yang. 2021. Multi‐time scale evaluation of forest water conservation function in the semiarid mountains area. Forests. 12(2): 116. DOI: 10.3390/f12020116 .

5669. Wang, Z., J. Tian and K. Feng. 2019. Research on runoff simulation in Ningxia section of the Yellow River Basin based on improved SWAT model. Applied Ecology and Environmental Research. 17(2): 3483-3497. DOI: 10.15666/aeer/1702_34833497 .

5670. Wang, Z., J. Tian and K. Feng. 2022. Response of runoff towards land use changes in the Yellow River Basin in Ningxia, China. PLoS ONE. 17(4): e0265931. DOI: 10.1371/journal.pone.0265931 .

5671. Wang, Z., T. Zhang, C.S. Tan and Z. Qi. 2020. Modeling of phosphorus loss from field to watershed: A review. Journal of Environmental Quality. 49(5): 1203-1224. DOI: 10.1002/jeq2.20109 .

5672. Wang, Z.P., J.C. Tian and K.P. Feng. 2019. Response of runoff in Ningxia section of Yellow River basin of China to climate changes. Applied Ecology and Environmental Research. 17(4): 7855-7863. DOI: 10.15666/aeer/1704_78557863 .

5673. Wangpimool, W., K. Pongput, C. Sukvibool, S. Sombatpanit and P.W. Gassman. 2013. The effect of reforestation on stream flow in Upper Nan river basin using Soil and Water Assessment Tool (SWAT) model. International Soil and Water Conservation Research. 1(2): 53-63. DOI: 10.1016/S2095-6339(15)30039-3 .

5674. Wangpimool, W., K. Pongput, N. Tangtham, S. Prachansri and P.W. Gassman. 2017. The impact of Para rubber expansion on streamflow and other water balance components of the Nam Loei River Basin, Thailand. Water. 9(1): 1. DOI: 10.3390/w9010001 .

5675. Wardropper, C. B., C. Chang and A. R. Rissman. 2015. Fragmented water quality governance: Constraints to spatial targeting for nutrient reduction in a Midwestern USA watershed. Landscape and Urban Planning. 137: 64-75. DOI: 10.1016/j.landurbplan.2014.12.011 .

5676. Ware, H.H., T.D. Mengistu, B.A. Yifru, S.W. Chang And I.-M. Chung. 2023. Assessment of spatiotemporal groundwater recharge distribution using SWAT-MODFLOW model and transient water table fluctuation method. Water. 15(11): 2112. DOI: 10.3390/w15112112 .

5677. Warusavitharana, E., P.K.S. Mahanama, M. Cannata, R. Ratnayake, B.H. Sudantha and D. Strigaro. 2022. Evaluating the potential of an open sensor network to support reservoir pre-release decision making. Journal of the National Science Foundation of Sri Lanka. 50(3): 577–587. DOI: 10.4038/jnsfsr.v50i3.10536 .

5678. Warusavitharana, E.J. 2020. Semi-distributed parameter optimization and uncertainty assessment for an ungauged catchment of Deduru Oya Basin in Sri Lanka. International Journal of River Basin Management. 18(1): 95-105. DOI: 10.1080/15715124.2019.1656221 .

5679. Waseem, M., K. Kachholz and J. Träncker. 2018. Suitability of common models to estimate hydrology and diffuse water pollution in north-eastern German lowland catchments with intensive agricultural land use. Frontiers of Agricultural Science and Engineering. 5(4): 420-431. DOI: 10.15302/J-FASE-2018243 .

5680. Watson, B.M. and G. Putz. 2014. Comparison of temperature-index snowmelt models for use within an operational water quality model. Journal of Environmental Quality. 43(1): 199-207. DOI: 10.2134/jeq2011.0369 .

5681. Watson, B.M., R. Srikanthan, S. Selvalingam and M. Ghafouri. 2005. Evaluation of three daily rainfall generation models for SWAT. Transactions of the ASAE. 48(5): 1697-1711. DOI: 10.13031/2013.20004 .

5682. Watson, B.M., R.A. McKeown, G. Putz and J.D. MacDonald. 2008. Modification of SWAT for modelling streamflow from forested watersheds on the Canadian Boreal Plain. Journal of Environmental Engineering and Science. 7(S1): S145-S159. DOI: 10.1139/S09-003 .

5683. Wattenbach, M., F. Hatterman, R. Weng, F. Wechsung, V. Krysanova and F. Badeck. 2005. A simplified approach to implement forest eco-hydrological properties in regional hydrological modelling. Ecological Modelling. 187(1): 40-59. DOI: 10.1016/j.ecolmodel.2005.01.026 .

5684. Wattenbach, M., M. Zebisch, F. Hattermann, P. Gottschalk, H. Goemann, P. Kreins, F. Badeck, P. Lasch, F. Suckow and F. Wechsung. 2008. Hydrological impact assessment of afforestation and change in tree-species compostion - A regional case study for the Federal State of Brandenburg (Germany). Journal of Hydrology. 346: 1-17. DOI: 10.1016/j.jhydrol.2007.08.005 .

5685. Wauchope, R.D., L.R. Ahuja, J.G. Arnold, R. Bingner, R. Lowrance, M.T. Van Genuchten and L.D. Adams. 2003. Software for pest management science: computer models and databases from the U.S. Department of Agriculture – Agricultural Research Service. Pest Management Science. 59(6-7): 691-698. DOI: 10.1002/ps.682 .

5686. Weber, A., N. Fohrer and D. Moller. 2001. Long-term land use changes in a mesoscale watershed due to socio-economic factors – effects on landscape structures and functions. Ecological Modelling. 140(1-2): 125-140. DOI: 10.1016/S0304-3800(01)00261-7 .

5687. Wechsung, F., V. Krysanova, M. Flechsig and S. Schaphoff. 2000. May land use change reduce the water deficiency problem caused by reduced brown coal mining in the State of Brandenburg? Landscape and Urban Planning. 51: 177-189. DOI: 10.1016/S0169-2046(00)00108-0 .

5688. Wedajo, G.K., M.K. Muleta and B.G. Awoke. 2021. Performance evaluation of multiple satellite rainfall products for Dhidhessa River Basin (DRB), Ethiopia. Atmospheric Measurement. 14(3): 2299-2316. DOI: 10.5194/amt-14-2299-2021 .

5689. Wedajo, G.K., M.K. Muleta and B.G. Awoke. 2022. Impacts of combined and separate land cover and climate changes on hydrologic responses of Dhidhessa River Basin, Ethiopia. International Journal of River Basin Management. DOI: 10.1080/15715124.2022.2101464 .

5690. Wei, C., C. Hu, J. Chen and X. Song. 2014. Application of SWAT model and realization of hydrological adjusting function of forests on different slopes. Journal of Hydroelectric Engineering. 33(3): 98-105. URL: http://caod.oriprobe.com/articles/42642467/The_Runoff_Simulation_of_SWAT_Model_in_Yaoxiang_Small_Watershed.htm.

5691. Wei, C., L.-J. Zhang, Q. Wu, L.-H. Cao, L. Zhang, L.-G. Yao, Y.-X. Zhu and F. Yang. 2021. Estimation of landscape pattern change on stream flow using SWAT-VRR. European Journal of Remote Sensing. 54(2): 356-362. DOI: 10.1080/22797254.2020.1790994 .

5692. Wei, C., X. Dong, D. Yu, J. Liu, G. Reta, W. Zhao, A. Kuriqi and B. Su. 2022. An alternative to the Grain for Green Program for soil and water conservation in the Upper Huaihe River Basin, China. Journal of Hydrology: Regional Studies. 43: 101180. DOI: 10.1016/j.ejrh.2022.101180 .

5693. Wei, C., X. Dong, Y. Ma, W. Zhao, D. Yu, M. Tayyab and H. Bo. 2023. Impacts of land use types, soil properties, and topography on baseflow recharge and prediction in an agricultural watershed. Land. 12(1): 109. DOI: 10.3390/land12010109 .

5694. Wei, C., X. Song and J. Chen. 2014. Sensitivity analysis of swat model on changes of landscape pattern: A case study from Lao Guanhe Watershed in Danjiangkou Reservoir Area. Acta Ecologica Sinica. 34(2): 517-528. DOI: 10.5846/stxb201303070366 .

5695. Wei, C., Z. Zhang, Z. Wang, L. Cao, Y. Wei, X. Zhang, R. Zhao, L. Xiao and Q. Wu. 2022. Response of variation of water and sediment to landscape pattern in the Dapoling Watershed. Sustainability. 14(2): 678. DOI: 10.3390/su14020678 .

5696. Wei, F., T.H. Grubesic and B.W. Bishop. 2015. Exploring the GIS knowledge domain using CiteSpace. The Professional Geographer. 67(3): 374-384. DOI: 10.1080/00330124.2014.983588 .

5697. Wei, G., Z. Rao, J. Dong, N. Yue, H. Dang and Y. Dong. 2016. Late Quaternary climatic influences on megalake Jilantai– Hetao, North China, inferred from a water balance model. Journal of Paleolimnology. 55(3): 223-240. DOI: 10.1007/s10933-015-9876-9 .

5698. Wei, P., W. Ouyang, F. Hao, X. Gao and Y. Yu. 2016. Combined impacts of precipitation and temperature on diffuse phosphorus pollution loading and critical source area identification in a freeze-thaw area. Science of the Total Environment. 553: 607-616. DOI: 10.1016/j.scitotenv.2016.02.138 .

5699. Wei, P., W. Ouyang, X. Gao, F. Hao, Z. Hao and H. Liu. 2017. Modified control strategies for critical source area of nitrogen (CSAN) in a typical freeze-thaw watershed. Journal of Hydrology. 551: 518-531. DOI: 10.1016/j.jhydrol.2017.06.026 .

5700. Wei, X. and R.T. Bailey. 2019. Assessment of system responses in intensively irrigated stream–aquifer systems using SWAT-MODFLOW. Water. 11(8): 1576. DOI: 10.3390/w11081576 .

5701. Wei, X. and R.T. Bailey. 2021. Evaluating nitrate and phosphorus remediation in intensively irrigated stream-aquifer systems using a coupled flow and reactive transport model. Journal of Hydrology. 598: 126304. DOI: 10.1016/j.jhydrol.2021.126304 .

5702. Wei, X., P. Garcia-Chevesich, F. Alejo, V. García, G. Martínez, F. Daneshvar, L.C. Bowling, E. Gonzáles, R. Krahenbuhl and J.E. McCray. 2021. Hydrologic analysis of an intensively irrigated area in Southern Peru using a crop-field scale framework. Water. 13(3): 318. DOI: 10.3390/w13030318 .

5703. Wei, X., R.T. Bailey and A. Tasdighi. 2018. Using the SWAT model in intensively managed irrigated watersheds: Model modification and application. Journal of Hydrologic Engineering. 23(10): 04018044. DOI: 10.1061/(ASCE)HE.1943-5584.0001696 .

5704. Wei, X., R.T. Bailey, R.M. Records, T.C. Wible and M. Arabi. 2019. Comprehensive simulation of nitrate transport in coupled surface-subsurface hydrologic systems using the linked SWAT-MODFLOW-RT3D model. Environmental Modelling & Software. 122: 104242. DOI: 10.1016/j.envsoft.2018.06.012 .

5705. Wei, X., S. Sauvage, S. Ouillon, T.P.Q. Le, D. Orange, M. Herrmann and J.M. Sanchez-Perez. 2021. A modelling-based assessment of suspended sediment transport related to new damming in the Red River Basin from 2000 to 2013. Catena. 197: 104958. DOI: 10.1016/j.catena.2020.104958 .

5706. Wei, Z., B. Zhang, Y. Liu and D. Xu. 2018. The application of a modified version of the SWAT model at the daily temporal scale and the hydrological response unit spatial scale: A case study covering an irrigation district in the Hei River Basin. Water. 10(8): 1064. DOI: 10.3390/w10081064 .

5707. Weikel, J., R. Karki and R. Cibin. 2022. Evaluating the hydrologic and water quality impacts of the revised SCS CN Method and its implications on decision-making. Journal of the ASABE. 65(6): 1451-1464. DOI: 10.13031/ja.15132 .

5708. Welde, K. and B. Gebremariam. 2017. Effect of land use land cover dynamics on hydrological response of watershed: Case study of Tekeze Dam watershed, northern Ethiopia. International Soil and Water Conservation Research. 5(1): 1-16. DOI: 10.1016/j.iswcr.2017.03.002 .

5709. Welderufael, W.A., Y.E. Woyessa and D.C. Edossa. 2013. Impact of rainwater harvesting on water resources of the modder river basin, central region of South Africa. Agricultural Water Management. 116: 218–227. DOI: 10.1016/j.agwat.2012.07.012 .

5710. Wellen, C., A.R. Kamran-Disfani and G.B. Arhonditsis. 2015. Evaluation of the current state of distributed nutrient watershed-water quality modeling. Environmental Science & Technology. 49(6): 3278–3290. DOI: 10.1021/es5049557 .

5711. Wellen, C., G.B. Arhonditsis, T. Long and D. Boyd. 2014. Quantifying the uncertainty of nonpoint source attribution in distributed water quality models: A Bayesian assessment of SWAT's sediment export predictions. Journal of Hydrology. 519(Part D): 3353-3368. DOI: 10.1016/j.jhydrol.2014.10.007 .

5712. Weltz, M.A., L. Jolley, D. Goodrich, K. Boykin, M. Nearing, J. Stone, P. Guertin, M. Hernandez, K. Spaeth, F. Pierson, C. Morris and B. Kepner. 2011. Techniques for assessing the environmental outcomes of conservation practices applied to rangeland watersheds. Journal of Soil and Water Conservation. 66(5): 154A-162A. DOI: 10.2489/jswc.66.5.154A .

5713. Wen, S., B. Su, Y. Wang, J. Zhai, H. Sun, Z. Chen, J. Huang, A. Wang and T. Jiang. 2020. Comprehensive evaluation of hydrological models for climate change impact assessment in the Upper Yangtze River Basin, China. Climatic Change. 163(3): 1207-1226. DOI: 10.1007/s10584-020-02929-6 .

5714. Wen, X., Z. Liu, X. Lei, R. Lin, G. Fang, Q. Tan, C. Wang, Y. Tian and J. Quan. 2018. Future changes in Yuan River ecohydrology: Individual and cumulative impacts of climates change and cascade hydropower development on runoff and aquatic habitat quality. Science of the Total Environment. 633: 1403-1417. DOI: 10.1016/j.scitotenv.2018.03.309 .

5715. Wen, Y., M. Chen, S. Yue, P. Zheng, G. Peng and G. Lu. 2017. A model-service deployment strategy for collaboratively sharing geo-analysis models in an open web environment. International Journal of Digital Earth. 10(4): 405-425. DOI: 10.1080/17538947.2015.1131340 .

5716. Werner, A.D., Q. Zhang, L. Xue, B.D. Smerdon, X. Li, X. Zhu, L. Yu and L. Li. 2013. An initial inventory and indexation of groundwater mega-depletion cases. Water Resources Management. 27(2): 507-533. DOI: 10.1007/s11269-012-0199-6 .

5717. White, E.D., G.W. Feyereisen, T.L. Veith and D.D. Bosch. 2008. Improving daily water yield estimates in the Little River Watershed: SWAT adjustments. Transactions of the ASABE. 52(1): 69-79. DOI: 10.13031/2013.25948 .

5718. White, E.D., Z.M. Easton, D.R. Fuka, A.S. Collick, E. Adgo, M. McCartney, S.B. Awulachew, Y.G. Selassie and T.S. Steenhuis. 2011. Development and application of a physically based landscape water balance in the SWAT model. Hydrological Processes. 25(6): 915-925. DOI: 10.1002/hyp.7876 .

5719. White, K.L. and I. Chaubey. 2005. Sensitivity analysis, calibration, and validations for a multisite and multivariable SWAT model. Journal of the American Water Resources Association. 41(5): 1077-1089. DOI: 10.1111/j.1752-1688.2005.tb03786.x .

5720. White, M., D. Harmel, H. Yen, J. Arnold, M. Gambone and R. Haney. 2015. Development of sediment and nutreint export coefficients for U.S. ecoregions. Journal of the American Water Resources Association. 51(3): 758–775. DOI: 10.1111/jawr.12270 .

5721. White, M., M. DiLuzio, M. Gambone, D. Smith, E. McLellan, K. Bieger, J. Arnold, R. Haney and J. Gao. 2019. Development of Agricultural Conservation Reduction Estimator (ACRE), a simple field-scale conservation planning and evaluation tool. Journal of Soil and Water Conservation. 74 (6): 537-544. DOI: 10.2489/jswc.74.6.537 .

5722. White, M., M. Gambone, H. Yen, J. Arnold, D. Harmel, C. Santhi and R. Haney. 2015. Regional blue and green water balances and use by selected crops in the U.S. Journal of the American Water Resources Association. 51(6): 1626-1642. DOI: 10.1111/1752-1688.12344 .

5723. White, M., M. Gambone, H. Yen, P. Daggupati, K. Bieger, D. Deb and J. Arnold. 2016. Development of a cropland management dataset to support U.S. SWAT assessment. Journal of the American Water Resources Association. 52(1): 269–274. DOI: 10.1111/1752-1688.12384 .

5724. White, M.J. and J.G. Arnold. 2009. Development of a simplistic vegetative filter strip model for sediment and nutrient retention at the field scale. Hydrological Processes. 23(11): 1602-1616. DOI: 10.1002/hyp.7291 .

5725. White, M.J., C. Santhi, N. Kannan, J.G. Arnold, D. Harmel, L. Norfleet, P. Allen, M. DiLuzio, X. Wang, J. Atwood, E. Haney and M. Vaughn Johnson. 2014. Nutrient delivery from the Mississippi River to the Gulf of Mexico and effects of cropland conservation. Journal of Soil and Water Conservation. 69(1): 26-40. DOI: 10.2489/jswc.69.1.26 .

5726. White, M.J., D.E. Storm, A. Mittelstet, P.R. Busteed, B.E. Haggard and C. Rossi. 2014. Development and testing of an in-stream phosphorus cycling model for the Soil and Water Assessment Tool. Journal of Environmental Quality. 43(1): 215-223. DOI: 10.2134/jeq2011.0348 .

5727. White, M.J., D.E. Storm, M.D. Smolen, and H. Zhang. 2009. Development of a quantitative pasture phosphorus management tool using the SWAT model. Journal of the American Water Resources Association. 45(2): 397-406. DOI: 10.1111/j.1752-1688.2008.00295.x .

5728. White, M.J., D.E. Storm, M.D. Smolen, P.R. Busteed, H. Zhang and G.A. Fox. 2014. Validation of a quantitative phosphorus loss assessment tool. Journal of Environmental Quality. 43(1): 224-234. DOI: 10.2134/jeq2011.0434 .

5729. White, M.J., D.E. Storm, P. Busteed, S. Stoodley and S.J. Phillips. 2010. Evaluating Conservation Program Success with Landsat and SWAT. Environmental Management. 45(5): 1164-1174. DOI: 10.1007/s00267-010-9458-6 .

5730. White, M.J., D.E. Storm, P.R. Busteed, S.H. Stoodley, and S.J. Phillips. 2009. Evaluating Nonpoint-Source Critical Source Area Contributions at the Watershed Scale. Journal of Environmental Quality. 38: 1654-1663. DOI: 10.2134/jeq2008.0375 .

5731. White, M.J., D.E. Storm, P.R. Busteed, M.D. Smolen, H. Zhang and G.A. Fox. 2010. A quantitative phosphorus loss assessment tool for agricultural fields. Environmental Modelling & Software. 25(10): 1121-1129. DOI: 10.1016/j.envsoft.2010.03.017 .

5732. White, M.J., D.E. Storm, P.R. Busteed, M.D. Matlock and R.R. West. 2011. Evaluating potential phosphorus management impacts in the Lake Eucha Basin. Transactions of the ASABE. 54(3): 827-835. DOI: 10.13031/2013.37107 .

5733. White, M.J., J.G. Arnold, K. Bieger, P.M. Allen, J. Gao, N. Čerkasova, M. Gambone, S. Park, D.D. Bosch, H. Yen and J.M. Osorio. 2022. Development of a field scale SWAT+ modeling framework for the contiguous U.S. Journal of the American Water Resources Association. DOI: 10.1111/1752-1688.13056 .

5734. White, M.J., K. Beiger, M. Gambone, E. Haney, J. Arnold and J. Gao. 2017. Development of a hydrologic connectivity dataset for SWAT assessments in the US. Water. 9: 892. DOI: 10.3390/w9110892 .

5735. White, M.J., M. Gambone, E. Haney, J. Arnold and J. Gao. 2017. Development of a Station Based Climate Database for SWAT and APEX Assessments in the US. Water. 9(6): 437. DOI: 10.3390/w9060437 .

5736. White, M.J., R.D. Harmel, J.G. Arnold and J.R. Williams. 2014. SWAT check: A screening tool to assist users in the identification of potential model application problems. Journal of Environmental Quality. 43(1): 208-214. DOI: 10.2134/jeq2012.0039 .

5737. White, M.W., R.D. Harmel and R.L. Haney. 2012. Development and validation of the Texas Best Management Practice Evaluation Tool (TBET). Journal of Soil and Water Conservation. 67(6): 525-535. DOI: 10.2489/jswc.67.6.525 .

5738. Whitehurst, D., B. Friedman, K. Kochersberger, V. Sridhar and J. Weeks. 2021. Drone-based community assessment, planning, and disaster risk management for sustainable development. Remote Sensing. 13(9): 1739. DOI: 10.3390/rs13091739 .

5739. Whittaker, G. 2005. Application of SWAT in the evaluation of salmon habitat remediation policy. Hydrological Processes. 19(3): 839-848. DOI: 10.1002/hyp.5615 .

5740. Whittaker, G., R. Confessor, Jr., S. M. Griffith, R. Fare, S. Grosskopf, J. J. Steiner, G. W. Mueller-Warrant and G. M. Banowetz. 2007. A hybrid genetic algorithm for multiobjective problems with activity analysis-based local search. European Journal of Operational Research. 193(1): 195-203. DOI: 10.1016/j.ejor.2007.10.050 .

5741. Whittaker, G., B. L. Barnhart, R. Srinivasan and J. G. Arnold. 2015. Cost of areal reduction of gulf hypoxia through agricultural practice. Science of the Total Environment. 505: 149-153. DOI: 10.1016/j.scitotenv.2014.09.101 .

5742. Whittaker, G., R. Confesor Jr., M. Di Luzio and J.G. Arnold. 2010. Detection of overparameterization and overfitting in an automatic calibration of SWAT. Transactions of the ASABE. 53(5): 1487-1499. URL: http://ddr.nal.usda.gov/handle/10113/46708.

5743. Whittaker, G., R. Fare, R. Srinivasan and D.W. Scott. 2003. Spatial evaluation of alternative nonpoint nutrient regulatory instruments. Water Resources Research. 39(4): 1079. DOI: 10.1029/2001WR001119 .

5744. Whittaker, G., R. Färe, S. Grosskopf, B. Barnhart, M. Bostian, G. Mueller-Warrant and S. Griffith. 2017. Spatial targeting of agri-environmental policy using bilevel evolutionary optimization. Omega-International Journal of Management Science. 66(Part A): 15-27. DOI: 10.1016/j.omega.2016.01.007 .

5745. Whittaker, G.R. 2004. Use of a Beowulf cluster for estimation of risk using SWAT. Agronomy Journal. 96(5): 1495-1497. DOI: 10.2134/agronj2004.1495 .

5746. Widiatmoko, N., S.D. Tarigan and E.D. Wahjunie. 2020. Analysis of hydrological response to support management planning for Opak Hulu Watershed, Daerah Istimewa Yogyakarta. Jurnal Ilmu Pertanian Indonesia. 25(4): 503-514. DOI: 10.18343/jipi.25.4.503 .

5747. Wie, X., S. Sauvage, T.P.Q. Le, S. Ouillon, D. Orange, V.D. Vinh and J.-M. Sanchez-Perez. 2019. A modeling approach to diagnose the impacts of global changes on discharge and suspended sediment concentration within the Red River Basin. Water. 11(5): 958. DOI: 10.3390/w11050958 .

5748. Wielgat, P., D. Kalinowska, A. Szymkiewicz, P. Zima, B. Jaworska-Szulc, E. Wojciechowska, N. Nawrot, K. Matej-Lukowicz and L.A. Dzierzbicka-Glowacka. 2021. Towards a multi-basin SWAT model for the migration of nutrients and pesticides to Puck Bay (Southern Baltic Sea). PeerJ. : 9:e10938. DOI: 10.7717/peerj.10938 .

5749. Wigington, P.J. 2015. Large-scale journal articles addressing pressing issues. Journal of the American Water Resources Association. 51(5): 1165-1166. DOI: 10.1111/1752-1688.12356 .

5750. Wild, T.B. and D.P. Loucks. 2014. Managing flow, sediment, and hydropower regimes in the Sre Pok, Se San and Se Kong Rivers of the Mekong Basin. Water Resources Research. 50(6): 5141–5157. DOI: 10.1002/2014WR015457 .

5751. Wild, T.B., D.P. Loucks, G.W. Annandale and P. Kaini. 2016. Maintaining sediment flows through hydropower dams in the Mekong River Basin. Journal of Water Resources Planning and Management. 142(1): 05015004. DOI: 10.1061/(ASCE)WR.1943-5452.0000560 .

5752. Wilk, P. 2022. Expanding the sediment transport tracking possibilities in a river basin through the development of a digital platform - DNS/SWAT. Applied Sciences. 12(8): 3848. DOI: 10.3390/app12083848 .

5753. Wilk, P. and A. Grabarczyk. 2018. The effect of selected inviolable flow characteristics on the results of environmental analysis using the example of river absorption capacity. Archives of Environmental Protection. 44(2): 14-25. DOI: 10.24425/119702 .

5754. Wilk, P. and P. Orlińska-Woźniak. 2019. Use of the macromodel DNS/SWAT to calculate background of TN and TP in surface waters for the RAC parameter. Architecture Civil Engineering Environment. 12(1): 171-179. DOI: 10.21307/ACEE-2019-017 .

5755. Wilk, P., M. Szlapa, P.S. Hachaj, P. Orlińska-Woźniak, E. Jakusik and E. Szalińska. 2022. From the source to the reservoir and beyond-tracking sediment particles with modeling tools under climate change predictions (Carpathian Mts.). Journal of Soils and Sediments. DOI: 10.1007/s11368-022-03287-9 .

5756. Wilk, P., P. Orlińska-Woźniak and J. Gębala. 2018. The river absorption capacity determination as a tool to evaluate state of surface water. Hydrology and Earth System Sciences. 22(2): 1033-1050. DOI: 10.5194/hess-22-1033-2018 .

5757. Wilkinson, T.J., J.H. Christiansen, J. Ur, M. Widell and M. Altaweel. 2007. Urbanization within a dynamic environment: Modeling bronze age communities in Upper Mesopotamia. American Anthropologist. 109(1): 52-68. DOI: 10.1525/AA.2007.109.1.52 .

5758. Willems, P. 2009. A time series tool to support the multi-criteria performance evaluation of rainfall-runoff models. Environmental Modelling & Software. 24(3): 311-321. DOI: 10.1016/j.envsoft.2008.09.005 .

5759. Williams, A.S., J.R. Kiniry, D. Mushet, L.M. Smith, S. McMurry, K. Attebury, M. Lang, G.W. McCarthy, J.A. Shaffer, W.R. Effland and M.V. Johnson. 2017. Model parameters for representative wetland plant functional groups. Ecosphere. 8(10): 1-14. DOI: 10.1002/ecs2.1958 .

5760. Williams, J.R. 1990. The Erosion Productivity Impact Calculator (EPIC) model: A case history. Philosophical Transactions of the Royal Society B: Biological Sciences. 329(1255): 421-428. DOI: 10.1098/rstb.1990.0184 .

5761. Williams, J.R. and J.G. Arnold. 1997. A system of erosion-sediment yield models. Soil Technology. 11(1): 43-55. DOI: 10.1016/S0933-3630(96)00114-6 .

5762. Williams, J.R., A.D. Nicks and J.G. Arnold. 1985. Simulator for water resources in rural Basins. Journal of Hydraulic Engineering. 111(6): 970-986. DOI: 10.1061/(ASCE)0733-9429(1985)111:6(970) .

5763. Williams, J.R., C.A. Jones and P.T. Dyke. 1984. A modeling approach to determining the relationship between erosion and soil productivity. Transactions of the ASAE. 27(1): 129-144. DOI: 10.13031/2013.32748 .

5764. Williams, J.R., C.A. Jones, J.R. Kiniry and D.A. Spanel. 1989. The EPIC crop growth model. Transactions of the ASAE. 32(2): 497-511. DOI: 10.13031/2013.31032 .

5765. Williams, J.R., J.G. Arnold, J.R. Kiniry, P.W. Gassman and C.H. Green. 2008. History of model development at Temple, Texas. Hydrological Sciences Journal. 53(5): 948-960. DOI: 10.1623/hysj.53.5.948 .

5766. Williams, J.R., N. Kannan, X. Wang, C. Santhi and J. G. Arnold. 2012. Evolution of the SCS runoff curve number method and its application to continuous runoff simulation. Journal of Hydrologic Engineering. 17(11): 1221-1229. DOI: 10.1061/(ASCE)HE.1943-5584.0000529 .

5767. Williams, M.R., S.J. Livingston, L.F. Duriancik, D.C. Flanagan, J. Frankenberger, R.B. Gillespie, J.M. Gonzalez, C.-H. Huang, C.J. Penn, D.R. Smith and C.S. Renschler. 2023. Twenty years of conservation effects assessment in the St. Joseph River Watershed, Indiana. Journal of Soil and Water Conservation. 78(1): 12A-19A. DOI: 10.2489/jswc.2023.1204A .

5768. Williams, T.M., D.M. Amatya, D.R. Hitchcock and A.E. Edwards. 2014. Streamflow and nutrients from Karst Watershed with downstream embayment: Chapel Branch Creek. Journal of Hydrologic Engineering. 19(2): 428-438. DOI: 10.1061/(ASCE)HE.1943-5584.0000794 .

5769. Willmott, C.J., S.M. Robeson, K. Matsuura and D.L. Ficklin. 2015. Assessment of three dimensionless measures of model performance. Environmental Modelling & Software. 73: 167-174. DOI: 10.1016/j.envsoft.2015.08.012 .

5770. Wilson, C.O. 2015. Land use/land cover water quality nexus: Quantifying anthropogenic influences on surface water quality. Environmental Monitoring and Assessment. 187(6). DOI: 10.1007/s10661-015-4666-4 .

5771. Wilson, C.O. and Q. Weng. 2011. Simulating the impacts of future land use and climate changes on surface water quality in the Des Plaines River watershed, Chicago Metropolitan Statistical Area, Illinois. Science of the Total Environment. 409(20): 4387-4405. DOI: 10.1016/j.scitotenv.2011.07.001 .

5772. Wilson, G.L., B.J. Dalzell, D.J. Mulla, T. Dogwiler and P.M. Porter. 2014. Estimating water quality effects of conservation practices and grazing land use scenarios. Journal of Soil and Water Conservation. 69(4): 330-342. DOI: 10.2489/jswc.69.4.330 .

5773. Wilson, G.L., D.J. Mulla, N.R. Jordan, J.M. Jungers and B.A. Gordo. 2023. Simulating the effect of perennialized cropping systems on nitrate-N losses using the SWAT model. Frontiers in Agronomy. 5: 1180232. DOI: 10.3389/fagro.2023.1180232 .

5774. Winchell, M.F., N. Pai, B.H. Brayden, C. Stone, P. Whatling, J.P. Hanzas and J.J. Stryker. 2018. Evaluation of watershed-scale simulations of in-stream pesticide concentrations from off-target spray drift. Journal of Environmental Quality. 47: 79-87. DOI: 10.2134/jeq2017.06.0238 .

5775. Winchell, M.F., N. Peranginangin, R. Srinivasan and W. Chen. 2018. Soil and Water Assessment Tool model predication of annual maximum pesticide concentrations in high vulnerability watersheds. Integrated Environmental Assessment and Management. 14(3): 358-368. DOI: 10.1002/ieam.2014 .

5776. Winchell, M.F., S. Folle, D. Meals, J. Moore, R. Srinivasan and E.A. Howe. 2015. Using SWAT for sub-field identification of phosphorus critical source areas in a saturation excess runoff region. Hydrological Sciences Journal. 60(5): 844-862. DOI: 10.1080/02626667.2014.980262 .

5777. Woldegiorgis, B.T., A. van Griensven, F. Pereira and W. Bauwens. 2017. A new unconditionally stable and consistent quasi-analytical in-stream water quality solution scheme for CSTR-based water quality simulators. Water Resources Research. 53(6): 4668-4690. DOI: 10.1002/2016WR019558 .

5778. Woldesenbet, T.A., N.A. Elagib, L. Ribbe and J. Heinrich. 2017. Hydrological responses to land use/cover changes in the source region of the Upper Blue Nile Basin, Ethiopia. Science of the Total Environment. 575: 724–741. DOI: 10.1016/j.scitotenv.2016.09.124 .

5779. Woldesenbet, T.A., N.A. Elagib, L. Ribbe and J. Heinrich. 2018. Catchment response to climate and land use changes in the Upper Blue Nile sub-basins, Ethiopia. Science of the Total Environment. 644: 193-206. DOI: 10.1016/j.scitotenv.2018.06.198 .

5780. Wolfe, J., J. Jeong, K. Paulk and A. Farley. 2021. Agricultural and watershed modeling with EPIC, APEX, and SWAT: Computational tools for investigating, planning, and understanding the future. Journal of Environmental Science for Sustainable Society. 10(MR06): 23-26. DOI: 10.3107/jesss.10.MR06 .

5781. Wollmuth, J.C. and J. W. Eheart. 2000. Surface water withdrawal allocation and trading systems for traditionally riparlan areas. Journal of the American Water Resources Association. 36(2): 293-303. DOI: 10.1111/j.1752-1688.2000.tb04268.x .

5782. Wolok, E., E. Suhartanto and D. Harisuseno. 2014. Studi tingkat kekritisan lahan sebagai dasar arahan rehabilitasi hutan dan lahan das marisa di kabupaten pohu wato provinsi gorontalo. Jurnal Teknik Pengairan. 5(1): 119-129. URL: http://jurnalpengairan.ub.ac.id/index.php/jtp/article/view/211.

5783. Won, K., E.-S. Chung and S.-U. Choi. 2015. Parametric assessment of water use vulnerability variations using SWAT and fuzzy TOPSIS coupled with entropy. Sustainability. 7: 12052-12070. DOI: 10.3390/su70912052 .

5784. Wongmun, A., S. Chuenchooklin, S. Choosumrong and J. Boonyanuphap. 2019. Assessment of soil water content in landslide-damaged upstream ecosystems using Soil and Water Assessment Tool (SWAT) model. Thai Journal of Forestry . 38(1): 96-111. URL: https://li01.tci-thaijo.org/index.php/tjf/article/view/245586.

5785. Woo, S. Y., C.G. Jung, J.W. Lee and S.J. Kim. 2019. Evaluation of watershed scale aquatic ecosystem health by SWAT modeling and random forest technique. Sustainability. 11(12): 3397. DOI: 10.3390/su11123397 .

5786. Woo, S., Y. Kim, W. Kim, S. Kim and S. Kim. 2021. Development of water quality and aquatic ecosystem model for Andong Lake using SWAT-WET. Journal of Korea Water Resources Association. 54(9): 719-730. DOI: 10.3741/JKWRA.2021.54.9.719 .

5787. Woo, S.Y., C.G. Jung, J.U. Kim and S.J. Kim. 2018. Assessment of climate change impact on aquatic ecology health indices in Han River Basin using SWAT and random forest. Journal of Korea Water Resources Association. 51(10): 863-874. DOI: 10.3741/JKWRA.2018.51.10.863 .

5788. Woo, S.-Y., J.-W. Lee, Y.-W. Kim and S.J. Kim. 2020. Assessment of future stream flow and water quality of Man-gyeong River Watershed based on extreme climate change scenarios and inter-basin water transfer change using SWAT. Journal of Korea Water Resources Association. 53(8): 605-616. DOI: 10.3741/JKWRA.2020.53.8.605 .

5789. Woo, S.-Y., S.-J. Kim, J.-W. Lee, S.-H. Kim and Y.-W. Kim. 2021. Evaluating the impact of interbasin water transfer on water quality in the recipient river basin with SWAT. Science of the Total Environment. 776: 145984. DOI: 10.1016/j.scitotenv.2021.145984 .

5790. Woo, S.Y., S.J. Kim, S.J. Hwang and C.G. Jung. 2019. Assessment of changes on water quality and aquatic ecosystem health in Han River Basin by additional dam release of stream maintenance flow. Journal of Korea Water Resources Association. 52(S-2): 777-789. DOI: 10.3741/JKWRA.2019.52.S-2.777 .

5791. Woodbury, J. and C.A. Shoemaker. 2013. Stochastic assessment of long-term impacts of phosphorous management options on sustainablility with and without climate change. Journal of Water Resources Planning and Management. 139(5): 1-40. DOI: 10.1061/(ASCE)WR.1943-5452.0000319 .

5792. Woodbury, J.D., C.A. Shoemaker, Z.M. Easton and D.M. Cowan. 2014. Application of SWAT with and without variable source area hydrology to a large watershed. Journal of the American Water Resources Association. 50(1): 46-56. DOI: 10.1111/jawr.12116 .

5793. Worku, G., E. Teferi, A. Bantider and Y.T. Dile. 2020. Prioritization of watershed management scenarios under climate change in the Jemma Sub-basin of the Upper Blue Nile Basin, Ethiopia. Journal of Hydrology: Regional Studies. 31: 100714. DOI: 10.1016/j.ejrh.2020.100714 .

5794. Worku, G., E. Teferi, A. Bantider and Y.T. Dile. 2021. Modelling hydrological processes under climate change scenarios in the Jemma Sub-basin of Upper Blue Nile Basin, Ethiopia. Climate Risk Management. 31: 100272. DOI: 10.1016/j.crm.2021.100272 .

5795. Worku, T., D. Khare and S.K. Tripathi. 2017. Modeling runoff–sediment response to land use/land cover changes using integrated GIS and SWAT model in the Beressa watershed. Environmental Earth Sciences. 76: 550. DOI: 10.1007/s12665-017-6883-3 .

5796. Worqlul, A.W., E.K. Ayana, H. Yen, J. Jeong, C. MacAllister, R. Taylor, T.J. Gerik and T.S. Steenhuis. 2018. Evaluating hydrologic responses to soil characteristics using SWAT model in a paired-watersheds in the Upper Blue Nile Basin. Catena. 163: 332-341. DOI: 10.1016/j.catena.2017.12.040 .

5797. Worqlul, A.W., Y.T. Dile, J.-C. Bizimana, J. Jeong, T.J. Gerik, R. Srinivasan, J.W. Richardson and N. Clarke. 2018. Multi-dimensional evaluation of simulated small-scale irrigation intervention: A case study in Dimbasinia Watershed, Ghana. Sustainability. 10(5): 1531. DOI: 10.3390/su10051531 .

5798. Worqlul, A.W., Y.T. Dile, P. Schmitter, J. Jeong, M.N. Meki, T.J. Gerik, R. Srinivasan, N. Lefore and N. Clarke. 2019. Water resource assessment, gaps, and constraints of vegetable production in Robit and Dangishta Watersheds, Upper Blue Nile Basin, Ethiopia. Agricultural Water Management. 226: 105767. DOI: 10.1016/j.agwat.2019.105767 .

5799. Worqlul, A.W., Y.T. Dile, P. Schmitter, M. Bezabih, A. Adie, J.C. Bizimana, R. Srinivasan, N. Lefore and N. Clarke. 2021. Constraints of small-scale irrigated fodder production and nutrition assessment for livestock feed, a case study in Ethiopia. Agricultural Water Management. 254: 106973. DOI: 10.1016/j.agwat.2021.106973 .

5800. Wortmann, M., V. Krysanova, Z.W. Kundzewicz, B. Su and X. Li. 2014. Assessing the influence of the Merzbacher Lake outburst floods on discharge using the hydrological model SWIM in the Aksu headwaters, Kyrgyzstan/NW China. Hydrological Processes. 28(26): 6337–6350. DOI: 10.1002/hyp.10118 .

5801. Woyessa, Y.E. and W.A. Welderufael. 2021. Impact of land-use change on catchment water balance: A case study in the central region of South Africa. Geoscience Letters. 8: 34. DOI: 10.1186/s40562-021-00204-9 .

5802. Woznicki S.A. and A.P. Nejadhashemi. 2013. Spatial and temporal variabilities of sediment delivery ratio. Water Resources Management. 27(7): 2483-2499. DOI: 10.1007/s11269-013-0298-z .

5803. Woznicki, S and P. Nejadhashemi. 2014. Assessing uncertainty in best management practice effectiveness under future climate scenarios. Hydrological Processes. 28(4): 2550–2566. DOI: 10.1002/hyp.9804 .

5804. Woznicki, S. A., A. P. Nejadhashemi and M. Parsinejad. 2015. Climate change and irrigation demand: Uncertainty and adaptation. Journal of Hydrology: Regional Studies. 3: 247–264. DOI: 10.1016/j.ejrh.2014.12.003 .

5805. Woznicki, S.A. and A.P. Nejadhashemi. 2012. Sensitivity analysis of best management practices under climate change scenarios. Journal of the American Water Resources Association. 48(1): 90-112. DOI: 10.1111/j.1752-1688.2011.00598.x .

5806. Woznicki, S.A., A.P. Nejadhashemi and C.M. Smith. 2011. Assessing best management practice implementation strategies under climate change scenarios. Transactions of the ASABE. 54(1): 171-190. URL: http://cat.inist.fr/?aModele=afficheN&cpsidt=23931395.

5807. Woznicki, S.A., A.P. Nejadhashemi, D.M. Ross, Z. Zhang, L. Wang and A.-H. Esfahanian. 2015. Ecohydrological model parameter selection for stream health evaluation. Science of the Total Environment. 511: 341-353. DOI: 10.1016/j.scitotenv.2014.12.066 .

5808. Woznicki, S.A., A.P. Nejadhashemi, M. Abouali, M.R. Herman, E. Esfahanian, Y.A. Hamaamin and Z. Zhang. 2016. Ecohydrological modeling for large-scale environmental impact assessment. Science of the Total Environment. 543(Part A): 274-286. DOI: 10.1016/j.scitotenv.2015.11.044 .

5809. Woznicki, S.A., A.P. Nejadhashemi, Y. Tang and L. Wang. 2016. Large-scale climate change vulnerability assessment of stream health. Ecological Indicators. 69: 578-594. DOI: 10.1016/j.ecolind.2016.04.002 .

5810. Wu H., B. Chen, K. Snelgrove and L.M. Lye. 2019. Quantification of uncertainty propagation effects during statistical downscaling of precipitation and temperature to hydrological modeling. Environmental Informatics. 34(2): 139-148. DOI: 10.3808/jei.201600347 .

5811. Wu J., X. Chen, Z. Yu, H. Yao, W. Li and D. Zhang. 2019. Assessing the impact of human regulations on hydrological drought development and recovery based on a ‘simulated-observed’ comparison of the SWAT model. Journal of Hydrology. 577: 123990. DOI: 10.1016/j.jhydrol.2019.123990 .

5812. Wu L., X. Su, X. Ma, Y. Kang and Y. Jiang. 2018. Integrated modeling framework for evaluating and predicting the water resources carrying capacity in a continental river basin of Northwest China. Journal of Cleaner Production. 204: 366-379. DOI: 10.1016/j.jclepro.2018.08.319 .

5813. Wu, C.-L., S.J. Herrington, B. Charry, M.L. Chu and J.H. Knouft. 2021. Assessing the potential of riparian reforestation to facilitate watershed climate adaptation. Journal of Environmental Management. 277: 111431. DOI: 10.1016/j.jenvman.2020.111431 .

5814. Wu, D., X. Xie, J. Tong, S. Meng and Y. Wang. 2020. Sensitivity of vegetation growth to precipitation in a typical afforestation area in the loess plateau: Plant-water coupled modelling. Ecological Modelling. 430: 109128. DOI: 10.1016/j.ecolmodel.2020.109128 .

5815. Wu, D., Y. Cui and Y. Luo. 2019. Irrigation efficiency and water-saving potential considering reuse of return flow. Agricultural Water Management. 221: 519-527. DOI: 10.1016/j.agwat.2019.05.021 .

5816. Wu, D., Y. Cui, D. Li, M. Chen, X. Ye, G. Fan and L. Gong. 2021. Calculation framework for agricultural irrigation water consumption in multi-source irrigation systems. Agricultural Water Management. 244: 106603. DOI: 10.1016/j.agwat.2020.106603 .

5817. Wu, D., Y. Cui, X. Xie and Y. Luo. 2019. Improvement and testing of SWAT for multi-source irrigation systems with paddy rice. Journal of Hydrology. 568: 1031-1041. DOI: 10.1016/j.jhydrol.2018.11.057 .

5818. Wu, D., Y. Cui, Y. Wang, M. Chen, Y. Luo and L. Zhang. 2019. Reuse of return flows and its scale effect in irrigation systems based on modified SWAT model. Agricultural Water Management. 213: 280-288. DOI: 10.1016/j.agwat.2018.10.025 .

5819. Wu, F., J. Zhan and I. Guneralp. 2015. Present and future of urban water balance in the rapidly urbanizing Heihe River Basin, Northwest China. Ecological Modelling. 318: 254-264. DOI: 10.1016/j.ecolmodel.2014.11.032 .

5820. Wu, F., J. Zhan, H. Su, H. Yan and E. Ma. 2015. Scenario-based impact assessment of land use/cover and climate changes on watershed hydrology in Heihe River Basin of northwest China. Advances in Meteorology. : 1-11. DOI: 10.1155/2015/410198 .

5821. Wu, F., J. Zhan, J. Chen, C. He and Q. Zhang. 2015. Water yield variation due to forestry change in the head-water area of Heihe River Basin, Northwest China. Advances in Meteorology. : 1-8. DOI: 10.1155/2015/786764 .

5822. Wu, H. and B. Chen. 2015. Evaluating uncertainty estimates in distributed hydrological modeling for the Wenjing River watershed in China by GLUE, SUFI-2, and ParaSol methods. Ecological Engineering. 76: 110–121. DOI: 10.1016/j.ecoleng.2014.05.014 .

5823. Wu, H., B. Chen, X. Ye, H. Guo, X. Meng and B. Zhang. 2021. An improved calibration and uncertainty analysis approach using a multicriteria sequential algorithm for hydrological modeling. Scientific Reports. 11: 16954. DOI: 10.1038/s41598-021-96250-6 .

5824. Wu, H., J. Zhang, Z. Bao, G. Wang, W. Wang, Y. Yang and J. Wang. 2022. Runoff modeling in ungauged catchments using machine learning algorithm-based model parameters regionalization methodology. Engineering. DOI: 10.1016/j.eng.2021.12.014 .

5825. Wu, H., J.P. Bolte, D. Hulse and B.R. Johnson. 2015. A scenario-based approach to integrating flow-ecology research with watershed development planning. Landscape and Urban Planning. 144: 74-89. DOI: 10.1016/j.landurbplan.2015.08.012 .

5826. Wu, J. and K. Tanaka. 2005. Reducing nitrogen runoff from the Upper Mississippi River Basin to control hypoxia in the Gulf of Mexico: Easements or taxes? Marine Resource Economics. 20(2): 121-144. URL: https://www.jstor.org/stable/42629465.

5827. Wu, J., C. Miao, T. Yang, Q. Duan and X. Zhang. 2018. Modeling streamflow and sediment responses to climate change and human activities in the Yanhe River, China. Hydrology Research. 49(1): 150-162. DOI: 10.2166/nh.2017.168 .

5828. Wu, J., C. Miao, X. Zhang, T. Yang and Q. Duan. 2017. Detecting the quantitative hydrological response to changes in climate and human activities. Science of the Total Environment. 586: 328-337. DOI: 10.1016/j.scitotenv.2017.02.010 .

5829. Wu, J., G. Deng, D. Zhou, X. Zhu, J. Ma, G. Cen, Y. Jin and J. Zhang. 2021. Effects of climate change and land-use changes on spatiotemporal distributions of blue water and green water in Ningxia, northwest China. Journal of Arid Land. 13(7): 674-687. DOI: 10.1007/s40333-021-0074-5 .

5830. Wu, J., H. Yen, J.G. Arnold, Y.C.E. Yang, X. Cai, M.J. White, C. Santhi, C. Miao and R. Srinivasan. 2020. Development of reservoir operation functions in SWAT+ for national environmental assessments. Journal of Hydrology. 583: 124556. DOI: 10.1016/j.jhydrol.2020.124556 .

5831. Wu, J., H. Zheng and Y. Xi. 2019. SWAT-based runoff simulation and runoff responses to climate change in the headwaters of the Yellow River, China. Atmosphere. 10(9): 509. DOI: 10.3390/atmos10090509 .

5832. Wu, J.S., Y.P. Li, J. Sun, P.P. Gao, G.H. Huang and J. Liu. 2022. Identifying the runoff variation in the Naryn River Basin under multiple climate and land-use change scenarios. Journal of Water and Climate Change. 13(2): 574-592. DOI: 10.2166/wcc.2021.422 .

5833. Wu, K. and C. Johnston. 2007. Hydrologic response to climatic variability in a Great Lakes watershed: A case study with the SWAT model. Journal of Hydrology. 337(1-2): 187-199. DOI: 10.1016/j.jhydrol.2007.01.030 .

5834. Wu, K. and C.A. Johnston. 2007. Hydrologic comparison between a forested and a wetland/lake dominated watershed using SWAT. Hydrological Processes. 22(10): 1431-1442. DOI: 10.1002/hyp.6695 .

5835. Wu, K. and J.Y. Xu. 2006. Evaluation of the applicability of the SWAT model for coastal watersheds in southeastern Louisiana. Journal of the American Water Resources Association. 42(5): 1247-1260. DOI: 10.1111/j.1752-1688.2006.tb05298.x .

5836. Wu, L., H. Yen, J.G. Arnold and X. Ma. 2020. Is the correlation between hydro-environmental variables consistent with their own time variability degrees in a large-scale loessial watershed? Science of the Total Environment. 722: 137737. DOI: 10.1016/j.scitotenv.2020.137737 .

5837. Wu, L., X. Liu, J. Chen, J. Li, Y. Yu and X. Ma. 2022. Efficiency assessment of best management practices in sediment reduction by investigating cost-effective tradeoffs. Agricultural Water Management. 265: 107546. DOI: 10.1016/j.agwat.2022.107546 .

5838. Wu, L., X. Liu, J. Chen, Y. Yu and X. Ma. 2022. Overcoming equifnality: Time‑varying analysis of sensitivity and identifability of SWAT runoff and sediment parameters in an arid and semiarid watershed. Environmental Science and Pollution Research. 29(21): 31631-31645. DOI: 10.1007/s11356-022-18573-9 .

5839. Wu, L., X. Liu, Z. Yang, Y. Yu and X. Ma. 2022. Effects of single- and multi-site calibration strategies on hydrological model performance and parameter sensitivity of large-scale semi-arid and semi-humid watersheds. Hydrological Processes. 36(6): e14616. DOI: 10.1002/hyp.14616 .

5840. Wu, L., Z. Chen, X. Ding, H.-Y. Liu and D. Wang. 2022. Research on water environmental capacity accounting of the Yongzhou Section of Xiangjiang River Basin based on the SWAT-EFDC coupling model. Journal of Water and Climate Change. 13(2): 1106-1122. DOI: 10.2166/wcc.2021.319 .

5841. Wu, M., P. Shi, A. Chen, C. Shen and P. Wang. 2017. Impacts of DEM resolution and area threshold value uncertainty on the drainage network derived using SWAT. Water SA. 43(3): 450-462. DOI: 10.4314/wsa.v43i3.10 .

5842. Wu, M., Y. Chiu and Y. Demissie. 2012. Quantifying the regional water footprint of biofuel production by incorporating hydrologic modeling. Water Resources Research. 48(w10518): 1-11. DOI: 10.1029/2011WR011809 .

5843. Wu, M., Y. Demissie and E. Yan. 2012. Simulated impact of future biofuel production on water quality and water cycle dynamics in the Upper Mississippi river basin. Biomass & Bioenergy. 41: 44-56. DOI: 10.1016/j.biombioe.2012.01.030 .

5844. Wu, M., Z. Zhang and Y. Chiu. 2014. Life-cycle water quantity and water quality implications of biofuels. Current Sustainable Renewable Energy Report. 1: 3-10. DOI: 10.1007/s40518-013-0001-2 .

5845. Wu, N., Y. Qu, B. Guse, K. Makarevičiūtė, S. To, T. Riis and N. Fohrer. 2018. Hydrological and environmental variables outperform spatial factors in structuring species, trait composition, and beta diversity of pelagic algae. Ecology and Evolution. DOI: 10.1002/ece3.3903 .

5846. Wu, Q. and H. Yu. 2021. Identifying critical source areas of nonpoint source pollution in a watershed with SWAT–ECM and AHP methods. Hydrology Research. 52(6): 1184-1199. DOI: 10.2166/nh.2021.010 .

5847. Wu, T., L.-J. Zhu, S. Shen, A.-X. Zhu, M. Shi and C.-Z. Qin. 2023. Identification of watershed priority management areas based on landscape positions: An implementation using SWAT+. Journal of Hydrology. 619: 129281. DOI: 10.1016/j.jhydrol.2023.129281 .

5848. Wu, Y, and J. Chen. 2012. Modeling of soil erosion and sediment transport in the East River Basin in southern China. Science of the Total Environment. 441: 159-168. DOI: 10.1016/j.scitotenv.2012.09.057 .

5849. Wu, Y. and J. Chen. 2009. Simulation of nitrogen and phosphorus loads in the Dongjiang River Basin in South China using SWAT. Frontiers of Earth Science in China. 3(3): 273–278. DOI: 10.1007/s11707-009-0032-6 .

5850. Wu, Y. and J. Chen. 2012. An operation-based scheme for a multiyear and multipurpose reservoir to enhance macroscale hydrologic models. Journal of Hydrometeorology. 13(1): 270–283. DOI: 10.1175/JHM-D-10-05028.1 .

5851. Wu, Y. and J. Chen. 2013. Analyzing the water budget and hydrological characteristics and responses to land use in a monsoonal climate river basin in south China. Environmental Management. 51(6): 1174-1186. DOI: 10.1007/s00267-013-0045-5 .

5852. Wu, Y. and J. Chen. 2013. Estimating irrigation water demand using an improved method and optimizing reservoir operation for water supply and hydropower generation: A case study of the Xinfengjiang Reservoir in southern China. Agricultural Water Management. 116: 110-121. DOI: 10.1016/j.agwat.2012.10.016 .

5853. Wu, Y. and J. Chen. 2013. Investigating the effects of point source and nonpoint source pollution on the water quality of the East River (Dongjiang) in South China. Ecological Indicators. 32: 294-304. DOI: 10.1016/j.ecolind.2013.04.002 .

5854. Wu, Y. and S. Liu. 2012. Automating calibration, sensitivity and uncertainty analysis of complex models using the R package Flexible Modeling Environment (FME): SWAT as an example. Environmental Modelling & Software. 31: 99-109. DOI: 10.1016/j.envsoft.2011.11.013 .

5855. Wu, Y. and S. Liu. 2012. Impacts of biofuels production alternatives on water quantity and quality in the Iowa River Basin. Biomass & Bioenergy. 36: 182-191. DOI: 10.1016/j.Biombioe.2011.10.030 .

5856. Wu, Y. and S. Liu. 2012. Modeling of land use and reservoir effects on nonpoint source pollution in a highly agricultural basin. Journal of Environmental Monitoring. 14: 2350-2361. DOI: 10.1039/c2em30278k .

5857. Wu, Y. and S. Liu. 2014. A suggestion for computing objective function in model calibration. Ecological Informatics. 24: 107–111. DOI: 10.1016/j.ecoinf.2014.08.002 .

5858. Wu, Y. and S. Liu. 2014. Improvement of the R-SWAT-FME framework to support multiple variables and multi-objective functions. Science of the Total Environment. 466-467: 455-466. DOI: 10.1016/j.scitotenv.2013.07.048 .

5859. Wu, Y., C. Li, C. Zhang, X. Shi, C.P.-A. Bourque and S. Zhao. 2016. Evaluation of the applicability of the SWAT model in an arid piedmont-plain Oasis. Water Science and Technology. 73(6): 1341-1348. DOI: 10.2166/wst.2015.609 .

5860. Wu, Y., D. Cheng, W. Yan, S. Liu, W. Xiang, J. Chen, Y. Hu and Q. Wu. 2014. Diagnosing climate chage and hydrological responses in the past decades for a minimally-disturbed headwater basin in South China. Water Resources Management. 28(12): 4385-4400. DOI: 10.1007/s11269-014-0758-0 .

5861. Wu, Y., G. He, W. Ouyang and L. Huang. 2020. Differences in soil water content and movement drivers of runoff under climate variations in a high-altitude catchment. Journal of Hydrology. 587: 125024. DOI: 10.1016/j.jhydrol.2020.125024 .

5862. Wu, Y., L. Huang, C. Zhao, M. Chen and W. Ouyang. 2021. Integrating hydrological, landscape ecological, and economic assessment during hydropower exploitation in the Upper Yangtze River. Science of the Total Environment. 767: 145496. DOI: 10.1016/j.agwat.2021.106766 .

5863. Wu, Y., S. Liu and A.L. Gallant. 2012. Predicting impacts of increased CO2 and climate change on the water cycle and water quality in the semiarid James River Basin of the Midwestern USA. Science of the Total Environment. 430: 150-160. DOI: 10.1016/j.scitotenv.2012.04.058 .

5864. Wu, Y., S. Liu and O.I. Abdul-Aziz. 2012. Hydrological effects of the increased CO2 and climate change in the Upper Mississippi River Basin using a modified SWAT. Climatic Change. 110(3-4): 977-1003. DOI: 10.1007/s10584-011-0087-8 .

5865. Wu, Y., S. Liu and W. Yan. 2014. A universal Model-R Coupler to facilitate the use of R functions for model calibration and analysis. Environmental Modelling & Software. 62: 65-69. DOI: 10.1016/j.envsoft.2014.08.012 .

5866. Wu, Y., S. Liu and Z. Li. 2012. Identifying potential areas for biofuel production and evaluating the environmental effects: A case study of the James River Basin in the midwestern United States. Global Change Biology Bioenergy. 4(6): 1-14. DOI: 10.1111/j.1757-1707.2012.01164.x .

5867. Wu, Y., S. Liu, L. Qiu and Y. Sun. 2016. SWAT-DayCent coupler: An integration tool for simultaneous hydro-biogeochemical modeling using SWAT and DayCent. Environmental Modelling & Software. 86: 81-90. DOI: 10.1016/j.envsoft.2016.09.015 .

5868. Wu, Y., S. Liu, T.L. Sohl and C.J. Young. 2013. Projecting the land cover change and its environmental impacts in the Cedar River Basin in the Midwestern United States. Environmental Research Letters. 8: 024025 (1-13). DOI: 10.1088/1748-9326/8/2/024025 .

5869. Wu, Y., T. Li, L. Sun and J. Chen. 2013. Parallelization of a hydrological model using the message passing interface. Environmental Modelling & Software. 43: 124–132. DOI: 10.1016/j.envsoft.2013.02.002 .

5870. Wu, Y., W. Ouyang, Z. Hao, B. Yang and L. Wang. 2018. Snowmelt water drives higher soil erosion than rainfall water in a mid-high latitude upland watershed. Journal of Hydrology. 556: 438-448. DOI: 10.1016/j.jhydrol.2017.11.037 .

5871. Wu, Y., W. Ouyang, Z. Hao, C. Lin, H. Liu and Y. Wang. 2018. Assessment of soil erosion characteristics in response to temperature and precipitation in a freeze-thaw watershed. Geoderma. 328: 56-65. DOI: 10.1016/j.geoderma.2018.05.007 .

5872. Wu, Y., X. Shi, C. Li, S. Zhao, F. Pen and T.R. Green. 2017. Simulation of hydrology and nutrient transport in the Hetao Irrigation District, Inner Mongolia, China. Water. 9(3): 169. DOI: 10.3390/w9030169 .

5873. Wu, Y., Y. Xu, G. Yin, X. Zhang, C. Li, L. Wu, X. Wang, Q. Hu and F. Hao. 2021. A collaborated framework to improve hydrologic ecosystem services management with sparse data in a semi-arid basin. Hydrology Research. 52(5): 1159-1172. DOI: 10.2166/nh.2021.146 .

5874. Wudineh, F.A. 2023. Land-use and land-cover change and its impact on flood hazard occurrence in Wabi Shebele River Basin of Ethiopia. Hydrology Research. 54(6): 756. DOI: 10.2166/nh.2023.121 .

5875. Wurbs, R.A. 2021. Monthly river flows in Texas for natural and developed conditions. Water Cycle. 2: 1-14. DOI: 10.1016/j.watcyc.2020.10.001 .

5876. Wurbs, R.A. and R.J. Hoffpauir. 2016. Environmental flow requirements in a water availability modeling system. Sustainability of Water Quality and Ecology. 9-10: 9-21. DOI: 10.1016/j.swaqe.2016.05.003 .

5877. Wurbs, R.A., R.S. Muttiah and F. Felden. 2005. Incorporation of climate change in water availability modeling. Journal of Hydrologic Engineering. 10(5): 375-385. DOI: 10.1061/(ASCE)1084-0699(2005)10:5(375) .

5878. Xe, K., H. Chen, Y. Qui, J.-S. Kim, S-.K. Yoon, Y. Lin, B. Liu, J. Wang, J. Chen and S. Zhang. 2021. Exploring and predicting the individual, combined, and synergistic impact of land-use change and climate change on streamflow, sediment, and total phosphorus loads. Frontiers in Environmental Science. 9: 726793. DOI: 10.3389/fenvs.2021.726793 .

5879. Xia, J., B. Qiu and Y. Li. 2012. Water resources vulnerability and adaptive management in the Huang, Huai and Hai river basins of China. Water International. 37(5): 523-536. DOI: 10.1080/02508060.2012.724649 .

5880. Xia, J., L. Wang, J. Yu, C. Zhan, Y. Zhang, Y. Qiao and Y. Wang. 2018. Impact of environmental factors on water quality at multiple spatial scales and its spatial variation in Huai River Basin, China. Science China Earth Sciences. 61(1): 82-92. DOI: 10.1007/s11430-017-9126-3 .

5881. Xia, J., S. Zeng, L. Zhang and H. Du. 2013. Hydrological responses to climate change in the water receiving area of the middle route project for south-to-north water transfer. Bulletin of the Chinese Academy of Sciences. 26(1): 17-31. URL: http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CCwQFjAA&url=http%3A%2F%2Fetemp.cas.cn%2Fbcas%2F20121%2F201311%2FP020131112384786766396.pdf&ei=hvrTUrG2Iqfl2QWr24CoBQ&usg=AFQjCNEZyNrzNcMlmp7WGddhtMWBSk4dWw&bvm=bv.59026428,d.aWM.

5882. Xiang, C., Y. Wang and H. Liu. 2017. A scientometrics review on nonpoint source pollution research. Ecological Engineering. 99: 400-408. DOI: 10.1016/j.ecoleng.2016.11.028 .

5883. Xiang, X., T. Ao, Q. Xiao, X. Li, L. Zhou, Y. Chen, Y. Bi and J. Guo. 2022. Parameter sensitivity analysis of SWAT modeling in the Upper Heihe River Basin using four typical approaches. Applied Sciences. 12(19): 9862. DOI: 10.3390/app12199862 .

5884. Xiangyi, C., X. Wenfa, H. Zhilin and Z. Lixiong. 2016. Impact of spatial data on the accuracy of watershed hydrological simulation of SWAT model. Science of Soil and Water Conservation. 14(1): 138-143. URL: http://journal12.magtechjournal.com/Jweb_stbc/EN/abstract/abstract10204.shtml.

5885. Xiao, F., X. Wang and C. Fu. 2023. Impacts of land use/land cover and climate change on hydrological cycle in the Xiaoxingkai Lake Basin. Journal of Hydrology: Regional Studies. 47: 101422. DOI: 10.1016/j.ejrh.2023.101422 .

5886. Xiaoyu, S., Y. Liu, X. Deng and Z. Xu. 2013. Spatial targeting of payments for ecosystem services Based on SWAT Model and cost-benefit analysis. Acta Ecologica Sinica. 32(24): 7722-7729.

5887. Xie, H. and Y. Lian. 2013. Uncertainty-based evaluation and comparison of SWAT and HSPF applications to the Illinois River Basin. Journal of Hydrology. 481: 119–131. DOI: 10.1016/j.jhydrol.2012.12.027 .

5888. Xie, H., E. Nkonya and B. Wielgosz. 2011. Assessing the risks of soil erosion and small reservoir siltation in a tropical river basin in Mali using the SWAT model under limited data condition. Applied Engineering in Agriculture. 27(6): 895-904. DOI: 10.13031/2013.40628 .

5889. Xie, H., J. W. Eheart and H. An. 2008. Hydrologic and economic implications of climate change for typical River Basins of the agricultural Midwestern United States. Journal of Water Resources Planning and Management. 134(3): 205-213. DOI: 10.1061/(ASCE)0733-9496(2008)134:3(205) .

5890. Xie, H., J.W. Eheart, Y. Chen and B.A. Bailey. 2009. An approach for improving the sampling efficiency in the Bayesian calibration of computationally expensive simulation models. Water Resources Research. 45: 1-14. DOI: 10.1029/2007WR006773 .

5891. Xie, H., L. Chen and Z. Shen. 2015. Assessment of agricultural best management practices using models: current issues and future perspectives. Water. 7(3): 1088-1108. DOI: 10.3390/w7031088 .

5892. Xie, H., L. Longuevergne, C. Ringler and B.R. Scanlon. 2020. Integrating groundwater irrigation into hydrological simulation of India: Case of improving model representation of anthropogenic water use impact using GRACE. Journal of Hydrology: Regional Studies. 29: 100681. DOI: 10.1016/j.ejrh.2020.100681 .

5893. Xie, H., L. You and H. Takeshima. 2017. Invest in small-scale irrigated agriculture: A national assessment on potential to expand small-scale irrigation in Nigeria. Agricultural Water Management. 193: 251-264. DOI: 10.1016/j.agwat.2017.08.020 .

5894. Xie, H., L. You, B. Wielgosz and C. Ringler. 2014. Estimating the potential for expanding smallholder irrigation in Sub-Saharan Africa. Agricultural Water Management. 131: 183-193. DOI: 10.1016/j.agwat.2013.08.011 .

5895. Xie, H., L. You, Y.T. Dile, A.W. Worqlul, J.-C. Bizimana, R. Srinivasan, J.W. Richardson, T. Gerik and N. Clark. 2021. Mapping development potential of dry-season small-scale irrigation in Sub-Saharan African countries under joint biophysical and economic constraints - An agent-based modeling approach with an application to Ethiopia. Agricultural Systems. 186: 102987. DOI: 10.1016/j.agsy.2020.102987 .

5896. Xie, K., P. Liu, J. Zhang, D.A. Libera, G. Wang, Z. Li and D. Wang. 2020. Verification of a new spatial distribution function of soil water storage capacity using conceptual and SWAT models. Journal of Hydrologic Engineering. 25(3): 04020001. DOI: 10.1061/(ASCE)HE.1943-5584.0001887 .

5897. Xie, P., L. Zhuo, X. Yang, H. Huang, X. Gao and P. Wu. 2020. Spatial-temporal variations in blue and green water resources, water footprints and water scarcities in a large river basin: A case for the Yellow River Basin. Journal of Hydrology. 590: 125222. DOI: 10.1016/j.jhydrol.2020.125222 .

5898. Xie, S. and Y. Zhu. 2022. Prediction of discharge flow in a small hydropower station without hydrological data based on SWAT model. Water. 14(13): 2011. DOI: 10.3390/w14132011 .

5899. Xie, S., F. Yang, H. Feng, Z. Yu, X. Wei, C. Liu and C. Wei. 2022. Potential to reduce chemical fertilizer application in tea plantations at various spatial scales. International Journal of Environmental Research and Public Health. 19(9): 5243. DOI: 10.3390/ijerph19095243 .

5900. Xie, X. and D. Zhang. 2010. Data assimilation for distributed bydrological catchment modeling via ensenble Kalman filter. Advances in Water Resources. 33(6): 678-690. DOI: 10.1016/j.advwatres.2010.03.012 .

5901. Xie, X. and D. Zhang. 2013. A partitioned update scheme for state-parameter estimation of distributed hydrologic models based on the ensemble Kalman filter. Water Resources Research. 49(11): 7350–7365. DOI: 10.1002/2012WR012853 .

5902. Xie, X. and Y. Cui. 2011. Development and test of SWAT for modeling hydrological processes in irrigation districts with paddy rice. Journal of Hydrology. 396(1-2): 61-71. DOI: 10.1016/j.jhydrol.2010.10.032 .

5903. Xie, X., S. Meng, S. Liang and Y. Yao. 2014. Improving streamflow predictions at ungauged locations with real-time updating: Application of an EnKF-based state-parameter estimation strategy. Hydrology and Earth System Sciences. 18(10): 3293-3936. DOI: 10.5194/hess-18-3923-2014 .

5904. Xie, Y., B.C. Runck, S. Shekhar, L. Kne, D. Mulla, N. Jordan and P. Wiringa. 2017. Collaborative geodesign and spatial optimization for fragmentation-free land allocation. International Journal of Geo-Information. 6(7): 226. DOI: 10.3390/ijgi6070226 .

5905. Xie, Y., F. Kong, J. Zhang, Y. Li, G. Huang and W. Zhang. 2022. Medium- and long-term planning of an integrated eco-compensation system considering ecological water demand under uncertainty: a case study of Daguhe Watershed in China. Journal of Water Resources Planning and Management. 148(10): 04022049. DOI: 10.1061/(ASCE)WR.1943-5452.0001594 .

5906. Xie, Z.-J., C. Ye, C.‑H. Li, X.‑G. Shi, Y. Shao and W. Qi. 2022. The global progress on the non‑point source pollution research from 2012 to 2021: A bibliometric analysis. Environmental Sciences Europe. 34(1): 121. DOI: 10.1186/s12302-022-00699-9 .

5907. Xijun, W. and D. Ying. 2018. Quantifying factors influencing runoff in mining areas using the SWAT model - a case of the Kuye River in northern Shaanxi, China. Water Science and Technology. DOI: 10.2166/ws.2018.119 .

5908. Xijun, W. and D. Ying. 2019. Quantifying factors influencing runoff in mining areas using the SWAT model – A case of the Kuye River in Northern Shaanxi, China. Water Supply. 19: 753-761. DOI: 10.2166/ws.2018.119 .

5909. Xin, C., C. Xu, Q. HuaJiao, Z. WanBin and L. GuoBin. 2003. Case study of using computerized simulation model in land-use research on Loess Plateau. Transactions of the Chinese Society of Agricultural Engineering. 19(4): 295-298. URL: http://caod.oriprobe.com/articles/6118563/Case_study_of_using_computerized_simulation_model_in_land_use_research.htm.

5910. Xin, H. 2008. A green fervor sweeps the Qinghai-Tibetan Plateau. Science. 321(5889): 633-635. DOI: 10.1126/science.321.5889.633 .

5911. Xin, Z., L. Ye and C. Zhang. 2019. Application of export coefficient model and QUAL2K for water environmental management in a rural watershed. Sustainability. 11(21): 6022. DOI: 10.3390/su11216022 .

5912. Xiong, L., X. Xu, B. Engel, Y. Xiong, Q. Huang and G. Huang. 2021. Predicting agroecosystem responses to identify appropriate water-saving management in arid irrigated regions with shallow groundwater: Realization on a regional scale. Agricultural Water Management. 247: 106713. DOI: 10.1016/j.agwat.2020.106713 .

5913. Xiong, L., X. Xu, D. Ren, Q. Huang and G. Huang. 2019. Enhancing the capability of hydrological models to simulate the regional agro-hydrological processes in watersheds with shallow groundwater: Based on the SWAT framework. Journal of Hydrology. 572: 1-16. DOI: 10.1016/j.jhydrol.2019.02.043 .

5914. Xiong, M., Z. Lin and G. Padmanabhan. 2018. Impact of bioenergy policy induced land use change on water quality under changing climate in the Northern Great Plains of the USA. International Journal of Global Environmental Issues. 17(4): 364-390. DOI: 10.1504/IJGENVI.2018.095164 .

5915. Xu, B., Y. Li, F. Han, Y. Zheng, W. Ding, C. Zhang, K. Wallington and Z. Zhang. 2020. The transborder flux of phosphorus in the Lancang-Mekong River Basin: Magnitude, patterns and impacts from the cascade hydropower dams in China. Journal of Hydrology. 590: 125201. DOI: 10.1016/j.jhydrol.2020.125201 .

5916. Xu, B., Z. Lu, S. Liu, J. Li, J. Xie, A. Long, Z. Yin and S. Zou. 2015. Glacier changes and their impacts on the discharge in the past half-century in Tekes watershed, Central Asia. Physics and Chemistry of the Earth. 89-90: 96-103. DOI: 10.1016/j.pce.2015.03.003 .

5917. Xu, C., J. Zhao, H. Deng, G. Fang, J. Tan, D. He, Y. Chen, Y. Chen and A. Fu. 2016. Scenario-based runoff prediction for the Kaidu River basin of the Tianshan Mountains, Northwest China. Environmental Earth Sciences. 75: 1126. DOI: 10.1007/s12665-016-5930-9 .

5918. Xu, C., Y Wang, H. Fu and J. Yang. 2023. Comprehensive analysis for long-term hydrological simulation by deep learning techniques and remote sensing. Frontiers in Earth Science. 10: 875145. DOI: 10.3389/feart.2022.875145 .

5919. Xu, F., G. Dong, Q. Wang, L. Liu, W. Yu, C. Men and R. Liu. 2016. Impacts of DEM uncertainties on critical source areas identification for nonpoint source pollution control based on SWAT model. Journal of Hydrology. 540: 355–367. DOI: 10.1016/j.jhydrol.2016.06.019 .

5920. Xu, H. and S. Peng. 2013. Distinct effects of temperature change on discharge and non-point pollution in subtropical southern China by SWAT simulation. Hydrological Sciences Journal. 58(5): 1032-1046. DOI: 10.1080/02626667.2013.797579 .

5921. Xu, H. and Y. Luo. 2015. Climate change and its impacts on river discharge in two climate regions in China. Hydrology and Earth System Sciences. 19(11): 4609-4618. DOI: 10.5194/hess-19-4609-2015 .

5922. Xu, H., C.-Y. Xu, N.R. Saelthun, B. Zhou and Y. Xu. 2015. Evaluation of reanalysis and satellite-based precipitation datasets in driving hydrological models in a humid region of southern China. Stochastic Environmental Research and Risk Assessment. 29(8): 2003-2020. DOI: 10.1007/s00477-014-1007-z .

5923. Xu, H., C.-Y. Xu, N.R. Sælthun, Y. Xu, B. Zhou and H. Chen. 2015. Entropy theory based multi-criteria resampling of rain gauge networks for hydrological modelling – A case study of humid area in southern China. Journal of Hydrology. 525: 138-151. DOI: 10.1016/j.jhydrol.2015.03.034 .

5924. Xu, H., C.-Y. Xu, S. Chen and H. Chen. 2016. Similarity and difference of global reanalysis datasets (WFD and APHRODITE) in driving lumped and distributed hydrological models in a humid region of China. Journal of Hydrology. 542: 343–356. DOI: 10.1016/j.jhydrol.2016.09.011 .

5925. Xu, H., D.G. Brown, M.R. Moore and W.S. Currie. 2018. Optimizing spatial land management to balance water quality and economic returns in a Lake Erie watershed. Ecological Economics. 145: 104-114. DOI: 10.1016/j.ecolecon.2017.08.015 .

5926. Xu, H., L. Liu, Y. Wang, S. Wang, Y. Hao, J. Ma and T. Jiang. 2019. Assessment of climate change impact and difference on the river runoff in four basins in China under 1.5 and 2.0∘ C global warming. Hydrology and Earth System Sciences. 23(10): 4219-4231. DOI: 10.5194/hess-23-4219-2019 .

5927. Xu, H., M. Wu and M.Ha. 2019. Recognizing economic value in multifunctional buffers in the Lower Mississippi River Basin. Biofuels, Bioproducts and Biorefining. 13(1): 55-73. DOI: 10.1002/bbb.1930 .

5928. Xu, H., R.G. Taylor and Y.Xu. 2011. Quantifying uncertainty in the impacts of climate change on river discharge in sub-catchments of the Yangtze and Yellow River Basins, China. Hydrology and Earth System Sciences. 15(1): 333-344. DOI: 10.5194/hess-15-333-2011 .

5929. Xu, H., R.G. Taylor, D.G. Kingston T. Jiang, J.R. Thompson and M.C. Todd. 2010. Hydrological modeling of River Xiangxi using SWAT2005: A comparison of model parameterizations using station and gridded meterological observations. Quaternary International. 226(1-2): 54-59. DOI: 10.1016/j.quaint.2009.11.037 .

5930. Xu, Hui, D.G. Brown and A.L. Steiner. 2018. Sensitivity to climate change of land use and management patterns optimized for efficient mitigation of nutrient pollution. Climatic Change. 147: 647-662. DOI: 10.1007/s10584-018-2159-5 .

5931. Xu, K., M. Chen, A.J. Kettner, C.M. Barton, B.F.W. Croke, A.J. Jakeman, D.P. Ames, H.-H. Wang, S.M. Cuddy, S. Yue, Y. Wen, F. Zhang, Y. Zhang and G. Lü. 2022. A new academic impact metric for evaluating geographic simulation models. International Journal of Digital Earth. 15(1): 1856–1881. DOI: 10.1080/17538947.2022.2138589 .

5932. Xu, M. and V.P. Chua. 2017. A numerical study on land-based pollutant transport in Singapore coastal waters with a coupled hydrologic-hydrodynamic model. Journal of Hydro-environment Research. 14: 119-142. DOI: 10.1016/j.jher.2016.09.002 .

5933. Xu, Q.-G., H.-L. Liu, Z.-Y. Shen and Y.-M. Mao. 2006. Simulation of nonpoint source pollution load in Maoping river watershed. Environment Science. 27(11): 2176-2181. URL: https://www.researchgate.net/publication/6480915_Simulation_of_nonpoint_source_pollution_load_in_Maoping_River_watershed.

5934. Xu, X., Y.-C. Wang, M. Kalcic, R.L. Muenich, Y.C.E. Yang and D. Scavia. 2017. Evaluating the impact of climate change on fluvial flood risk in a mixed-used watershed. Environmental Modelling & Software. : 1-11. DOI: 10.1016/j.envsoft.2017.07.013 .

5935. Xu, X., Y.-C. Wang, M. Kalcic, R.L. Muenich, Y.C.E. Yang and D. Scavia. 2019. Evaluating the impact of climate change on fluvial flood risk in a mixed-use watershed. Environmental Modelling & Software. 122: 104031. DOI: 10.1016/j.envsoft.2017.07.013 .

5936. Xu, Y. L. Elbakidze, H. Yen, J.G. Arnold, P.W. Gassman, J. Hubbart and M.P. Strager. 2022. Integrated assessment of nitrogen runoff to the Gulf of Mexico. Resource and Energy Economics. 67: 101279. DOI: 10.1016/j.reseneeco.2021.101279 .

5937. Xu, Y., D.J. Bosch, M.B. Wagena, A.S. Collick and Z.M. Easton. 2019. Meeting water quality goals by spatial targeting of best management practices under climate change. Environmental Management. 63: 173-184. DOI: 10.1007/s00267-018-01133-8 .

5938. Xu, Y., X. Zhang, Z. Hao, F. Hao and C. Li. 2022. Systematic assessment of the development and recovery characteristics of hydrological drought in a semi-arid area. Science of the Total Environment. 836: 155472. DOI: 10.1016/j.scitotenv.2022.155472 .

5939. Xu, Y.D., B.J. Fu and C.S. He. 2013. Assessing the hydrological effect of the check dams in the Loess Plateau, China, by model simulations. Hydrology and Earth System Sciences. 17: 2185-2193. DOI: 10.5194/hess-17-2185-2013 .

5940. Xu, Y.D., B.J. Fu, C.S. He and G.Y. Gao. 2012. Watershed discretization based on multiple factors and its application in the Chinese Loess Plateau. Hydrology and Earth System Sciences. 16: 59-68. DOI: 10.5194/hess-16-59-2012 .

5941. Xu, Z., S. Zhang and X. Yang. 2021. Water and sediment yield response to extreme rainfall events in a complex large river basin: A case study of the Yellow River Basin, China. Journal of Hydrology. 597: 126183. DOI: 10.1016/j.jhydrol.2021.126183 .

5942. Xu, Z.P., Y.P. Li, G.H. Huang, S.G. Wang and Y.R. Liu. 2021. A multi-scenario ensemble streamflow forecast method for Amu Darya River Basin under considering climate and land-use changes. Journal of Hydrology. 598: 126276. DOI: 10.1016/j.jhydrol.2021.126276 .

5943. Xu, Z.X., F.F. Zhao and J.Y. Li. 2009. Response of streamflow to climate change in the headwater catchment of the Yellow River Basin. Quaternary International. 208(1-2): 62-75. DOI: 10.1016/j.quaint.2008.09.001 .

5944. Xu, Z.X., J.P. Pang, C.M. Liu and J.Y. Li. 2009. Assessment of runoff and sediment yield in the Miyun Reservoir catchment by using SWAT model. Hydrological Processes. 23(25): 3619-3630. DOI: 10.1002/hyp.7475 .

5945. Xuan, W., Q. Fu, G. Qin, C. Zhu, S. Pan and Y.-P. Xu. 2018. Hydrological simulation and runoff component analysis over a cold mountainous river basin in southwest China. Water. 10(11): 1705. DOI: 10.3390/w10111705 .

5946. Xuan, W., Y.-P. Xu, Q. Fu, M.J. Booij, X. Zhang and S. Pan. 2021. Hydrological responses to climate change in Yarlung Zangbo River Basin, southwest China. Journal of Hydrology. 597: 125761. DOI: 10.1016/j.jhydrol.2020.125761 .

5947. Xue, B., H. Zhang, G. Wang and W. Sun. 2022. Evaluating the risks of spatial and temporal changes in nonpoint source pollution in a Chinese river basin. Science of the Total Environment. 807(Part 2): 151726. DOI: 10.1016/j.scitotenv.2021.151726 .

5948. Xue, B., H. Zhang, Y. Wang, Z. Tan, Y. Zhu and S. Shrestha. 2021. Modeling water quantity and quality for a typical agricultural plain basin of northern China by a coupled model. Science of the Total Environment. 790: 148139. DOI: 10.1016/j.scitotenv.2021.148139 .

5949. Xue, F., P. Shi, S. Qu, J. Wang and Y. Zhou. 2019. Evaluating the impact of spatial variability of precipitation on streamflow simulation using a SWAT model. Water Policy. 21: 178-196. DOI: 10.2166/wp.2018.118 .

5950. Xue, J., Q. Wang and M. Zhang. 2022. A review of non-point source water pollution modeling for the urban–rural transitional areas of China: Research status and prospect. Science of the Total Environment. 826: 154146. DOI: 10.1016/j.scitotenv.2022.154146 .

5951. Xue, J., Z. Huo and I. Kisekka. 2021. Assessing impacts of climate variability and changing cropping patterns on regional evapotranspiration, yield and water productivity in California’s San Joaquin Watershed. Agricultural Water Management. 250: 106852. DOI: 10.1016/j.agwat.2021.106852 .

5952. Xueman, Y., L. Wenxi, A. Yongkai and D. Weihong. 2020. Assessment of parameter uncertainty for non-point source pollution mechanism modeling: A Bayesian-based approach. Environmental Pollution. 263: 114570. DOI: 10.1016/j.envpol.2020.114570 .

5953. Yacoub, C. and A.P. Foguet. 2013. Slope effects on SWAT modeling in a mountainous basin. Journal of Hydrologic Engineering. 18(12): 1663–1673. DOI: 10.1061/(ASCE)HE.1943-5584.0000756 .

5954. Yaduvanshi, A., P. Srivastava, A.W. Worqlul and A.K. Sinha. 2018. Uncertainty in a lumped and a semi-distributed model for discharge prediction in Ghatchila Catchment. Water. 10(4): 381. DOI: 10.3390/w10040381 .

5955. Yaduvanshi, A., R.K. Sharma, S.C. Kar and A.K. Sinha. 2018. Rainfall–runoff simulations of extreme monsoon rainfall events in a tropical river basin of India. Natural Hazards. 90(2): 843-861. DOI: 10.1007/s11069-017-3075-0 .

5956. Yaeger, M.A., M. Housh, X. Cai and M. Sivapalan. 2014. An integrated modeling framework for exploring flow regime and water quality changes with increasing biofuel crop production in the US Corn Belt. Water Resources Research. 50(12): 9385-9404. DOI: 10.1002/2014WR015700 .

5957. Yalcin, E. 2019. Estimation of irrigation return flow on monthly time resolution using SWAT model under limited data availability. Hydrological Sciences Journal. 64(13): 1588-1604. DOI: 10.1080/02626667.2019.1662025 .

5958. Yalew, S., A. van Griensven, N. Ray, L. Kokoszkiewicz and G.D. Betrie. 2013. Distributed computation of large scale SWAT models on the Grid. Environmental Modelling & Software. 41: 223–230. DOI: 10.1016/j.envsoft.2012.08.002 .

5959. Yamamoto, T., M.A.C.L. Malingin, M.M. Pepino, M. Yoshikai, W. Campos, T. Miyajima, A. Watanabe, Y. Tanaka, N. Morimoto, R. Ramos, H. Pagkalinawan and K. Nadaoka. 2019. Assessment of coastal turbidity improvement potential by terrigenous sediment load reduction and its implications on seagrass inhabitable area in Banate Bay, central Philippines. Science of the Total Environment. 656: 1386-1400. DOI: 10.1016/j.scitotenv.2018.11.243 .

5960. Yamauchi, K. 2015. Climate change impacts on agriculture and irrigation in the Lower Mekong Basin. Paddy and Water Environment. 12(Supp. 2): S227-S240. DOI: 10.1007/s10333-013-0388-9 .

5961. Yan, B., N.F. Fang, P. Zhang and Z.H. Shi. 2013. Impacts of land use change on watershed streamflow and sediment yield: An assessment using hydrologic modelling and partial least squares regression. Journal of Hydrology. 484: 26-37. DOI: 10.1016/j.jhydrol.2013.01.008 .

5962. Yan, D., X. Shi, Z. Yang, Y. Li, K.Zhao and Y. Yuan. 2013. Modified Palmer drought severity index based on distributed hydrological simulation. Mathematical Problems in Engineering. : 327374. DOI: 10.1155/2013/327374 .

5963. Yan, R., X. Zhang, S. Yan, J. Zhang and H. Chen. 2018. Spatial patterns of hydrological responses to land use/cover change in a catchment on the Loess Plateau, China. Ecological Indicators. 92: 151-160. DOI: 10.1016/j.ecolind.2017.04.013 .

5964. Yan, T., J. Bai, A. Toloza, J. Liu and Z. Shen. 2019. Future climate change impacts on streamflow and nitrogen exports based on CMIP5 projection in the Miyun Reservoir Basin, China. Ecohydrology & Hydrobiology. 19(2): 266-278. DOI: 10.1016/j.ecohyd.2018.09.001 .

5965. Yan, T., J. Bai, A.L.Z. Yi and Z. Shen. 2018. SWAT-simulated streamflow responses to climate variability and human activities in the Miyun Reservoir Basin by considering streamflow components. Sustainability. 10(4): 941. DOI: 10.3390/su10040941 .

5966. Yan, W., F. Li and Y. Zhao. 2022. Integrating reasonable proportion of blue and green water into land use planning—A new ecological perspective. Ecohydrology. 15(7): e2459. DOI: 10.1002/eco.2459 .

5967. Yan, X., Lu, W., An, Y. and Chang, Z. 2019. Uncertainty analysis of parameters in non-point source pollution simulation: Case study of the application of the Soil and Water Assessment Tool model to Yitong River Watershed in northeast China. Water and Environment Journal. 33(30: 390-400. DOI: 10.1111/wej.12411 .

5968. Yan, X-T., Y.-Q. Zhai, Y.-y. Cai, Z. Guo, Q.-Q. Zhang and G.-G. Ying. 2022. Hypothetical scenarios estimating and simulating the fate of antibiotics: Implications for antibiotic environmental pollution caused by manure application. Science of the Total Environment. 822: 153177. DOI: 10.1016/j.scitotenv.2022.153177 .

5969. Yan, Y., B. Xue, Y. A, W. Sun and H. Zhang. 2020. Quantification of climate change and land cover/use transition impacts on runoff variations in the Upper Hailar Basin, NE China. Hydrology Research. 51(5): 976–993. DOI: 10.2166/nh.2020.022 .

5970. Yang, B. and M.-H. Li. 2011. Assessing planning approaches by watershed streamflow modeling: Case study of The Woodlands; Texas. Landscape and Urban Planning. 99(1): 9-22. DOI: 10.1016/j.landurbplan.2010.08.007 .

5971. Yang, B., K. Huang, D. Sun and Y. Zhang. 2016. Mapping the scientific research on non-point source pollution: A bibliometric analysis. Environmental Science and Pollution Research. 24(5): 4352-4366. DOI: 10.1007/s11356-016-8130-y .

5972. Yang, C., M. Xu, C. Fu, S. Kang and Y. Luo. 2022. The coupling of glacier melt module in SWAT+ model based on multi-source remote sensing data: A case study in the Upper Yarkant River Basin. Remote Sensing. 14(23): 6080. DOI: 10.3390/rs14236080 .

5973. Yang, C., M. Xu, S. Kang, C. Fu and D. Hu. 2023. Improvement of streamflow simulation by combining physically hydrological model with deep learning methods in data-scarce glacial river basin. Journal of Hydrology. 625(Part A): 129990. DOI: 10.1016/j.jhydrol.2023.129990 .

5974. Yang, D., W. Liu, P. Huang, Z. Li, G. Xu, W. Tang and X. Xu. 2020. Hydrologic responses to rapid urbanization for small and medium sized cities: A case study of Yiwu, China. Environmental Earth Sciences. 79(22): 511. DOI: 10.1007/s12665-020-09225-7 .

5975. Yang, D.Y. and D.M. Frangopol. 2019. Physics-based assessment of climate change impact on long-term regional bridge scour risk using hydrologic modeling: Application to Lehigh River Watershed. Journal of Bridge Engineering. 24(11): 04019099. DOI: 10.1061/(ASCE)BE.1943-5592.0001462 .

5976. Yang, G., G. Benoy, Z. Zhao, T.L. Chow, C.P.-A. Bourque and F.-R. Meng. 2011. Watershed-level analysis of exceedance frequencies for different management strategies. Water Quality Research Journal of Canada. 46(1): 64-73. DOI: 10.2166/wqrjc.2011.020 .

5977. Yang, G., M. Zhang, Z. Xie, J. Li, M. Ma, P. Li and J. Wang. 2022. Quantifying the contributions of climate change and human activities to water volume in Lake Qinghai, China. Remote Sensing. 14(1): 99. DOI: 10.3390/rs14010099 .

5978. Yang, H., G. Wang, L. Wang and B. Zheng. 2016. Impact of land use changes on water quality in headwaters of the Three Gorges Reservoir. Environmental Science and Pollution Research. 23(12): 11448–11460. DOI: 10.1007/s11356-015-5922-4 .

5979. Yang, H., G. Wang, Y. Yang, B. Xue and B. Wu. 2014. Assessment of the impacts of land use changes on nonpoint source pollution inpluts upstream of the Three Gorges Reservoir. The Scientific World Journal. : 526240. DOI: 10.1155/2014/526240 .

5980. Yang, J., P. Reichert and K.C. Abbaspour. 2007. Bayesian uncertainty analysis in distributed hydrologic modeling: A case study in the Thur River Basin (Switzerland). Water Resources Research. 43: W10401. DOI: 10.1029/2006WR005497 .

5981. Yang, J., A. Jakeman, G. Fang and X. Chen. 2018. Uncertainty analysis of a semi-distributed hydrologic model based on a Gaussian Process emulator. Environmental Modelling & Software. 101: 289-300. DOI: 10.1016/j.envsoft.2017.11.037 .

5982. Yang, J., P. Reichert, K.C. Abbaspour and H. Yang. 2007. Hydrological modelling of the Chaohe Basin in China: Statistical model formulation and bayesian inference. Journal of Hydrology. 340(3-4): 167-182. DOI: 10.1016/j.jhydrol.2007.04.006 .

5983. Yang, K., T. Chen, T. Ao, X. Zhang, L. Zhou and D. Gao. 2022. Response of runoff in the upper reaches of the Minjiang River to climate change. Journal of Water and Climate Change. 13(1): 260-273. DOI: 10.2166/wcc.2021.038 .

5984. Yang, L., Q. Feng, Z. Yin, X. Wen, J. Si, C. Li and R.C. Deo. 2016. Identifying separate impacts of climate and land use/cover change on hydrological processes in upper stream of Heihe River, northwest China. Hydrological Processes. 31(5): 1100-1112. DOI: 10.1002/hyp.11098 .

5985. Yang, L., Q. Feng, Z. Yin, R.C. Deo, X. Wen, J. Si and C. Li. 2017. Separation of the climatic and land cover impacts on the flow regime changes in two watersheds of northeastern Tibetan Plateau. Advances in Meteorology. : ID: 6310401. DOI: 10.1155/2017/6310401 .

5986. Yang, L., Q. Feng, Z. Yin, R.C. Deo, X. Wen, J. Si and W. Liu. 2020. Regional hydrology heterogeneity and the response to climate and land surface changes in arid alpine basin, northwest China. Catena. 187: 104345. DOI: 10.1016/j.catena.2019.104345 .

5987. Yang, L., S. Pang, X. Wang, Y. Du, J. Huang and C.S. Melching. 2021. Optimal allocation of best management practices based on receiving water capacity constraints. Agricultural Water Management. 258: 107179. DOI: 10.1016/j.agwat.2021.107179 .

5988. Yang, M., W. Xiao, Y. Zhao, X. Li, Y. Huang, F. Lu, B. Hou and B. Li. 2018. Assessment of potential climate change effects of the rice yield and water footprint in the Nanliujiang Catchment, China. Sustainability. 10: 242. DOI: 10.3390/su10020242 .

5989. Yang, N., L. Chen, W. Wang and Z. Shen. 2021. The land carrying capacity and environmental risk assessment of livestock and poultry breeding considering crop planting. Environmental Science and Pollution Research. 28(37): 51356-51368. DOI: 10.1007/s11356-021-14310-w .

5990. Yang, Q. and X. Zhang. 2016. Improving SWAT for simulating water and carbon fluxes of forest ecosystems. Science of the Total Environment. 569–570: 1478–1488. DOI: 10.1016/j.scitotenv.2016.06.238 .

5991. Yang, Q., X. Zhang, M. Abraha, S. Del Grosso, G.P. Robertson and J. Chen. 2017. Enhancing the Soil and Water Assessment Tool model for simulating N2O emissions of three agricultural systems. Ecosystem Health and Sustainability. 3(2): Article ID: e01259. DOI: 10.1002/ehs2.1259 .

5992. Yang, Q., F.A. Benoy, T.L. Chow, L.-L. Daigle, C.P.-A. Bourque and F.-R. Meng. 2012. Using the Soil and Water Assessment Tool to estimate achievable water quality targets through implementation of beneficial management practices in an agricultural watershed. Journal of Environmental Quality. 41(1): 64-72. DOI: 10.2134/jeq2010.0250 .

5993. Yang, Q., F.-R. Meng, Z. Zhao, T.L. Chow, G. Benoy, H.W. Rees and C.P.-A Bourque. 2009. Assessing the impacts of flow diversion terraces on stream water and sediment yields at a watershed level using SWAT model. Agriculture Ecosystems and Environment. 132(1-2): 23-31. DOI: 10.1016/j.agee.2009.02.012 .

5994. Yang, Q., H. Zhang, G. Wang, S. Luo, D. Chen, W. Peng and J. Shao. 2020. Dynamic runoff simulation in a changing environment: A data stream approach. Environmental Modelling & Software. 112: 157-165. DOI: 10.1016/j.envsoft.2018.11.007 .

5995. Yang, Q., J.E. Almendinger, X. Zhang, M. Huang, X. Chen, G. Leng, Y. Zhou, K. Zhao, G.R. Asrar, R. Srinivasan and X. Li. 2018. Enhancing SWAT simulation of forest ecosystems for water resource assessment: A case study in the St. Croix River basin. Ecological Engineering. 120: 422-431. DOI: 10.1016/j.ecoleng.2018.06.020 .

5996. Yang, Q., L.F. Leon, W.G. Booty, I.W. Wong, C. McCrimmon, P. Fong, P. Michiels, J. Vanrobaeys and G. Benoy. 2014. Land use change impacts on water quality in three Lake Winnipeg watersheds. Journal of Environmental Quality. 43(5): 1690-1701. DOI: 10.2134/jeq2013.06.0234 .

5997. Yang, Q., S. Luo, H. Wu, G. Wang, W. Han, H. Lu and J. Shao. 2019. Attribution analysis for runoff change on multiple scales in a humid subtropical basin dominated by forest, east China. Forests. 10: 184. DOI: 10.3390/f10020184 .

5998. Yang, Q., X. Zhang, J.E. Almendinger, M. Huang, G. Leng, Y. Zhou, G.R. Asrar, X. Li and J. Qui. 2019. Improving the SWAT forest module for enhancing water resource projections: A case study in the St. Croix River Basin. Hydrological Processes. 33(5): 864-875. DOI: 10.1002/hyp.13370 .

5999. Yang, Q., Z. Zhao, G. Benoy, T.L. Chow, H.W. Rees, C.P.-A. Bourque and F.-R. Meng. 2010. A Watershed-scale assessment of cost-effectiveness of sediment abatement with flow diversion terraces. Journal of Environmental Quality. 39: 220-227. DOI: 10.2134/jeq2009.0157 .

6000. Yang, Q., Z. Zhao, T.L. Chow, H.W. Rees, C.P.-A. Bourque and F.-R. Meng. 2009. Using GIS and a digital elevation model to assess the effectiveness of variable grade flow diversion terraces in reducing soil erosion in northerwestern New Brunswick, Canada. Hydrological Processes. 23(3): 3271-3280. DOI: 10.1002/HYP.7436 .

6001. Yang, S., G. Dong, D. Zheng, H. Xiao, Y. Gao and Y. Lang. 2011. Coupling Xinanjiang model and SWAT to simulate agricultural non-point source polllution in Songtao watershed of Hainan, China. Ecological Modelling. 222(20-22): 3701-3717. DOI: 10.1016/j.ecolmodel.2011.09.004 .

6002. Yang, T., M.L. Tan, Q. Song, J. He, N. Yao, X. Li and X. Yang. 2023. Coupling SWAT and Bi-LSTM for improving daily-scale hydro-climatic simulation and climate change impact assessment in a tropical river basin. Journal of Environmental Management. 330: 117244. DOI: 10.1016/j.jenvman.2023.117244 .

6003. Yang, W. 2011. Developing open access in conservation research. Journal of Soil and Water Conservation. 66(1): 6A-8A. DOI: 10.2489/jswc.66.1.6A .

6004. Yang, W., A.N. Rousseau and P. Boxall. 2008. An integrated economic-hydrologic modeling framework for the watershed evaluation of beneficial management practices. Journal of Soil and Water Conservation. 62(6): 423-432. URL: http://www.jswconline.org/content/62/6/423.short.

6005. Yang, W., C. Sheng and P. Voroney. 2005. Spatial targeting of conservation tillage to improve water quality and carbon retention benefits. Canadian Journal of Agricultural Economics. 53(4): 477-500. DOI: 10.1111/j.1744-7976.2005.00031.x .

6006. Yang, W., D. Long and P. Bai. 2019. Impacts of future land cover and climate changes on runoff in the mostly afforested river basin in North China. Journal of Hydrology. 570: 201-214. DOI: 10.1016/j.jhydrol.2018.12.055 .

6007. Yang, W., X. Wang, Y. Liu, S. Gabor, L. Boychuk and P. Badiou. 2010. Simulated environmental effects of wetland restoration scenarios in a typical Canadian prairie watershed. Wetlands Ecology and Management. 18(3): 269-279. DOI: 10.1007/s11273-009-9168-0 .

6008. Yang, W., Y. Liu, C. Ou and S. Gabor. 2016. Examining water quality effects of riparian wetland loss and restoration scenarios in a southern Ontario watershed. Journal of Environmental Management. 174: 26-34. DOI: 10.1016/j.jenvman.2016.03.001 .

6009. Yang, W., Y. Liu, M. Cutlac, P. Boxall, M. Weber, A. Bonnycastle and S. Gabor. 2016. Integrated economic-hydrologic modeling for examining cost-effectiveness of wetland restoration scenarios in a Canadian Prairie watershed. Wetlands. 36(3): 577–589. DOI: 10.1007/s13157-016-0768-1 .

6010. Yang, X. W. Sun, P. Li, X. Mu, P. Gao and G. Zhao. 2019. Integrating agricultural land, water yield and soil conservation trade-offs into spatial land use planning. Ecological Indicators. 109: 219-228. DOI: 10.1016/j.ecolind.2019.04.082 .

6011. Yang, X., L. Tan, R. He, G. Fu, J. Ye, Q. Liu and G. Wang. 2017. Stochastic sensitivity analysis of nitrogen pollution to climate change in a river basin with complex pollution sources. Environmental Science and Pollution Research. 24(34): 26545–26561. DOI: 10.1007/s11356-017-0257-y .

6012. Yang, X., Q. Liu, G. Fu, Y. He, X. Luo and Z. Zheng. 2016. Spatiotemporal patterns and source attribution of nitrogen load in a river basin with complex pollution sources. Water Research. 94: 187–199. DOI: 10.1016/j.watres.2016.02.040 .

6013. Yang, X., Q. Liu, Y. He, X. Luo and X. Zhang. 2016. Comparison of daily and sub-daily SWAT models for daily streamflow simulation in the Upper Huai River Basin of China. Stochastic Environmental Research and Risk Assessment. 30(3): 959-972. DOI: 10.1007/s00477-015-1099-0 .

6014. Yang, X., R. He, J. Ye, M.L. Tan, X. Ji, L. Tan and G. Wang. 2020. Integrating an hourly weather generator with an hourly rainfall SWAT model for climate change impact assessment in the Ru River Basin, China. Atmospheric Research. 244: 105062. DOI: 10.1016/j.atmosres.2020.105062 .

6015. Yang, X., R. Warren, Y. He, J. Ye, Q. Li and G. Wang. 2018. Impacts of climate change on TN load and its control in a River Basin with complex pollution sources. Science of the Total Environment. 615: 1155-1163. DOI: 10.1016/j.scitotenv.2017.09.288 .

6016. Yang, Y., B. Weng, W. Bi, T. Xu, D. Yan and J. Ma. 2019. Climate change impacts on drought-flood abrupt alternation and water quality in the Hetao Area, China. Water. 11: 652. DOI: 10.3390/w11040652 .

6017. Yang, Y., G. Wang, L. Wang, J. Yu and Z. Xu. 2014. Evaluation of gridded precipitation data for driving SWAT Model in area upstream of Three Gorges Reservoir. PLoS ONE. 9(11): 1-15. DOI: 10.1371/journal.pone.0112725 .

6018. Yang, Y., T. Onishi and K. Hiramatsu. 2014. Improving the performance of temperature index snowmelt model of SWAT by using MODIS land surface temperature data. The Scientific World Journal. : 823424. DOI: 10.1155/2014/823424 .

6019. Yang, Y., T. Onishi and K. Hiramatsu. 2015. Impacts of different spatial temperature interpolation methods on snowmelt simulations. Hydrological Research Letters. 9(2): 27-34. DOI: 10.3178/hrl.9.27 .

6020. Yao, X., J. Yu, H. Jiang, W. Sun and Z. Li. 2016. Roles of soil erodibility, rainfall erosivity and land use in affecting soil erosion at the basin scale. Agricultural Water Management. 174: 82–92. DOI: 10.1016/j.agwat.2016.04.001 .

6021. Yasarer, L.M.W., S. Sinnathamby and B.S.M. Sturm. 2016. Impacts of biofuel-based land-use change on water quality and sustainability in a Kansas watershed. Agricultural Water Management. 175: 4-14. DOI: 10.1016/j.agwat.2016.05.002 .

6022. Yaseen, M., M. Waseem, Y. Latif, M.I. Azam, I. Ahmad, S. Abbas, M.K. Sarwar and G. Nabi. 2020. Statistical downscaling and hydrological modeling-based runoff simulation in trans-boundary Mangla Watershed Pakistan. Water. 12(11): 3254. DOI: 10.3390/w12113254 .

6023. Yasin, H.Q. and R.S. Clemente. 2014. Application of SWAT model for hydrologic and water quality modeling in Thachin River basin, Thailand. Arabian Journal for Science and Engineering. 39(3): 1671-1684. DOI: 10.1007/s13369-013-0770-3 .

6024. Yasir, M., T. Hu and S.A. Hakeem. 2020. Simulating reservoir induced Lhasa streamflow variability using ArcSWAT. Water. 12(5): 1370. DOI: 10.3390/w12051370 .

6025. Yasir, M., T. Hu and S.A. Hakeem. 2021. Impending hydrological regime of Lhasa River as subjected to hydraulic interventions—a SWAT model manifestation. Remote Sensing. 13(7): 1382. DOI: 10.3390/rs13071382 .

6026. Yazdi, J.and A. Moridi. 2017. Interactive reservoir-watershed modeling framework for integrated water quality management. Water Resources Management. 31(7): 2105-2125. DOI: 10.1007/s11269-017-1627-4 .

6027. Ye, L. and N.B. Grimm. 2013. Modelling potential impacts of climate change on water and nitrate export from a mid-sized, semiarid watershed in the US Southwest. Climatic Change. 120(1-2): 419-431. DOI: 10.1007/s10584-013-0827-z .

6028. Ye, L., S.-W. Yoon and S.-W. Chung. 2008. Application of SWAT for the estimation of soil loss in the Daecheong Dam Basin. Journal of the Korean Water Resources Association. 41(2): 149-162. DOI: 10.3741/JKWRA.2008.41.2.149 .

6029. Ye, X, Q. Zhang, J. Liu, L. Li and H. Zuo. 2009. Effects of spatial resolution of soil data on hydrological processes modeling. Progress in Geography. 28(4): 575-583. DOI: 10.11820/dlkxjz.2009.04.013 .

6030. Ye, X., Q. Zhang and N.R. Viney. 2011. The effect of soil data resolution on hydrological processes modelling in a large humid watershed. Hydrological Processes. 25(1): 130-140. DOI: 10.1002/hyp.7823 .

6031. Yen, H., A. Sharifi, L. Kalin, G. Mirhosseini, J. G. Arnold. 2015. Assessment of Model Predictions and Parameter Transferability by Alternative Land Use Data on Watershed Modeling. Journal of Hydrology. 527: 458–470. DOI: doi:10.1016/j.jhydrol.2015.04.076 .

6032. Yen, H., J. Jeong and D.R. Smith. 2016. Evaluation of dynamically dimensioned search algorithm for optimizing SWAT by altering sampling distributions and searching range. Journal of the American Water Resources Association. 52(2): 443-455. DOI: 10.1111/1752-1688.12394 .

6033. Yen, H., J. Jeong, Q. Feng and D. Deb. 2015. Assessment of input uncertainty in SWAT using latent variables. Water Resources Management. 29(4): 1137-1153. DOI: 10.1007/s11269-014-0865-y .

6034. Yen, H., J. Jeong, W-H. Tseng, M-K. Kim, R. M. Records, M. Arabi. 2015. Computational procedure for evaluating sampling techniques on watershed model calibration. Journal of Hydrologic Engineering. 20(7). DOI: 10.1061/(ASCE)HE.1943-5584.0001095 .

6035. Yen, H., J. Jeong, X. Wang, S. Lu, M. Kim and Y-W. Su. 2015. Assessment of model configuration effect by alternative evapotranspiration, runoff, and water routing functions on watershed modeling using SWAT. Transactions of the ASABE. 58(2): 393-404. DOI: 10.13031/trans.58.10901 .

6036. Yen, H., M. Ahmadi, M. J. White, X. Wang and J. G. Arnold. 2014. C-SWAT: The Soil and Water Assessment Tool with consolidated input files in alleviating computational burden of recursive simulations. Computers & Geosciences. 72: 221-232. DOI: 10.1016/j.cageo.2014.07.017 .

6037. Yen, H., M.J. White, J. Jeong, M. Arabi and J.G. Arnold. 2015. Evaluation of alternative surface runoff accounting procedures using the SWAT model. International Journal of Agricultural and Biological Engineering. 8(1): 54-68. DOI: 10.3965/j.ijabe.20150803.833 .

6038. Yen, H., M.J. White, J.G. Arnold, S.C. Keitzer, M.-V.V. Johnson, J.D. Atwood, P. Daggupati, M.E. Herbert, S.P. Sowa, S.A. Ludsin, D.M. Robertson, R. Srinivasan and C.A. Rewa. 2016. Western lake Erie Basin: Soft-data-constrained, NHDPlus resolution watershed modeling and exploration of applicable conservation scenarios. Science of the Total Environment. 569–570: 1265-1281. DOI: 10.1016/j.scitotenv.2016.06.202 .

6039. Yen, H., P. Daggupati, M.J. White, R. Srinivasan, A. Gossel, D. Wells and J.G. Arnold. 2016. Application of large-scale, multi-resolution watershed modeling framework using the Hydrologic and Water Quality System (HAWQS). Water. 8(4): 164. DOI: 10.3390/w8040164 .

6040. Yen, H., R. Wang, Q. Feng, C.C. Young, S.T. Chen, W.H. Tseng, J.E Wolfe III, M.J. White J.G. and Arnold. 2018. Input uncertainty on watershed modeling: Evaluation of precipitation and air temperature data by latent variables using SWAT. Ecological Engineering. 122: 16-26. DOI: 10.1016/j.ecoleng.2018.07.014 .

6041. Yen, H., R.T. Bailey, M. Arabi, M. Ahmadi, M.J. White and J.G. Arnold. 2014. The role of interior watershed processes in improving parameter estimation and performance of watershed models. Journal of Environmental Quality. 43(5): 1601-1613. DOI: 10.2134/jeq2013.03.0110 .

6042. Yen, H., S. Lu, Q. Feng, R. Wang, J. Gao, D.M. Brady, A. Sharifi, J. Ahn, S.T. Chen, J. Jeong, M. J. White and J.G. Arnold. 2017. Assessment of optional sediment transport functions via the complex watershed simulation model SWAT. Water. 9(2): 76. DOI: 10.3390/w9020076 .

6043. Yen, H., S. Park, J.G. Arnold, R. Srinivasan, C.J. Chawanda, R. Wang, Q. Feng, J. Wu, C. Miao, K. Bieger, P. Daggupati, A. van Griensven, L. Kalin, S. Lee, A.Y. Sheshukov, M.J. White, Y. Yuan, I.-Y. Yeo, M. Zhang and X. Zhang. 2019. IPEAT+: A built-in optimization and automatic calibration tool of SWAT+. Water. 11(8): 1681. DOI: 10.3390/w11081681 .

6044. Yen, H., X. Wang, D. G. Fontane, R. D. Harmel and M. Arabi. 2014. A framework for propagation of uncertainty contributed by parameterization, input data, model structure, and calibration/validation data in watershed modeling. Environmental Modelling & Software. 54: 211-221. DOI: 10.1016/j.envsoft.2014.01.004 .

6045. Yen, H., Y. Hoque, R.D. Harmel and J. Jeong. 2015. The impact of considering uncertainty in measured calibration/validation data during auto-calibration of hydrologic and water quality models. Stochastic Environmental Research and Risk Assessment. 29(7): 1891-1901. DOI: 10.1007/s00477-015-1047-z .

6046. Yen, H., Y.M. Hoque, X. Wang and R.D. Harmel. 2016. Applications of explicitly incorporated/post-processing measurement uncertainty in watershed modeling. Journal of the American Water Resources Association. 52(2): 523–540. DOI: 10.1111/1752-1688.12401 .

6047. Yen, H., Y.-W. Su, J. E. Wolfe III, S.-T. Chen, Y.-C. Tseng, D. M. Brady, J. Jeong and J. G. Arnold. 2015. Assessment of input uncertainty by seasonally categorized latent variables using SWAT. Journal of Hydrology. 531(Part 3): 685–695. DOI: 10.1016/j.jhydrol.2015.10.058 .

6048. Yeo, I.-Y., S. Lee, A.M. Sadeghi, P.C. Beeson, W.D. Hively, G.W. McCarty and M.W. Lang. 2014. Assessing winter cover crop nutrient uptake efficiency using a water quality simulation model. Hydrology and Earth System Sciences. 18: 5239-5253. DOI: 10.5194/hess-18-5239-2014 .

6049. Yeo, I.-Y., S. Lee, M.W. Lang, O. Yetemen, G.W. McCarty, A.M. Sadeghi and G. Evenson. 2019. Mapping landscape-level hydrological connectivity of headwater wetlands to downstream waters: A catchment modeling approach - Part 2. Science of the Total Environment. 653: 1557-1570. DOI: 10.1016/j.scitotenv.2018.11.237 .

6050. Yesuf, H.M., A.M. Melesse, G. Zeleke and T. Alamirew. 2016. Streamflow prediction uncertainty analysis and verification of SWAT model in a tropical watershed. Environmental Earth Sciences. 75: 806. DOI: 10.1007/s12665-016-5636-z .

6051. Yesuf, H.M., M. Assen, T. Alamirew and A.M. Melesse. 2015. Modeling of sediment yield in Maybar gauged watershed using SWAT, northeast Ethiopia. Catena. 127: 191-205. DOI: 10.1016/j.catena.2014.12.032 .

6052. Yevenes, M.A. and C.M. Mannaerts. 2011. Seasonal and land use impacts on the nitrate budget and export of a mesoscale catchment in southern Portugal. Agricultural Water Management. 102(1): 54-65. DOI: 10.1016/j.agwat.2011.10.006 .

6053. Yifru, B.A. I.-M. Chung, M.-G. Kim and S.W. Chang. 2022. Augmenting freshwater availability in mountain headwater streams: Assessing the sustainability under baseline and future climate change scenarios. International Soil and Water Conservation Research. 10: 293-307. DOI: https://doi.org/10.1016/j.iswcr.2021.08.002 .

6054. Yifru, B.A., D.B. Mitiku, M.B. Tolera, S.W. Chang and I.-M. Chung. 2020. Groundwater potential mapping using SWAT and GIS-based multi-criteria decision analysis. KSCE Journal of Civil Engineering. 24(8): 2546-2559. DOI: 10.1007/s12205-020-0168-1 .

6055. Yifru, B.A., I.-M. Chung, M.-G. Kim and S.W. Chang. 2020. Assessment of groundwater recharge in agro-urban watersheds using integrated SWAT-MODFLOW model. Sustainability. 12(16): 6593. DOI: 10.3390/su12166593 .

6056. Yifru, B.A., I.-M. Chung, M.-G. Kim and S.W. Chang. 2021. Assessing the effect of land/use land cover and climate change on water yield and groundwater recharge in East African Rift Valley using integrated model. Journal of Hydrology: Regional Studies. 37: 100926. DOI: 10.1016/j.ejrh.2021.100926 .

6057. Yifru, B.A., I.-M. Chung, M.-G Kim and S.W. Chang. 2022. Assessing the effect of urbanization on regional-scale surface water-groundwater interaction and nitrate transport. Scientific Reports. 12(1): 12520. DOI: 10.1038/s41598-022-16134-1 .

6058. Yifru, B.A., S. Lee and K.J. Lim. 2023. Calibration and uncertainty analysis of integrated SWAT‑MODFLOW model based on iterative ensemble smoother method for watershed scale river‑aquifer interactions assessment. Earth Science Informatics. 16(4): 3545–3561. DOI: 10.1007/s12145-023-01071-y .

6059. Yilmaz, M., H. Alp, F. Tosunoğlu, O.L. Aşikoğlu and E. Eriş. 2022. Impact of climate change on meteorological and hydrological droughts for Upper Coruh Basin, Turkey. Natural Hazards. 112(2): 1039-1063. DOI: 10.1007/s11069-022-05217-x .

6060. Yimam, Y.D., T.E. Ochsner and G.A. Fox. 2017. Hydrologic cost-effectiveness ratio favors switchgrass production on marginal croplands over existing grasslands. PLoS ONE. 12(8): e0181924. DOI: 10.1371/journal.pone.0181924 .

6061. Yimer, E.A., F.-E. Riakhi, R.T. Bailey, J. Nossent and A. van Griensven. 2023. The impact of extensive agricultural water drainage on the hydrology of the Kleine Nete Watershed, Belgium. Science of the Total Environment. 885: 163903. DOI: 10.1016/j.scitotenv.2023.163903 .

6062. Yimer, E.A., R.T. Bailey, B.V. Schaeybroeck, H.V.D. Vyver, L. Villani, J. Nossent and A. van Griensven. 2023. Regional evaluation of groundwater-surface water interactions using a coupled geohydrological model (SWAT+gwflow). Journal of Hydrology: Regional Studies. 50: 101532. DOI: 10.3390/w15183249 .

6063. Yimer, E.A., R.T. Bailey, L.L. Piepers, J. Nossent and A. van Griensven. 2023. Improved representation of groundwater-surface water interactions using SWAT+gwflow and modifications to the gwflow module. Water. 15(18): 3249. DOI: 10.3390/w15183249 .

6064. Yin, J., F. He, Y.J. Xiong and G.Y. Qiu. 2017. Effects of land use/land cover and climate changes on surface runoff in a semi-humid and semi-arid transition zone in northwest China. Hydrology and Earth System Sciences. 21(1): 183-196. DOI: 10.5194/hess-21-183-2017 .

6065. Yin, J., Z. Yuan and T. Li. 2021. The spatial-temporal variation characteristics of natural vegetation drought in the Yangtze River Source Region, China. International Journal of Environmental Research and Public Health. : 1613. DOI: 10.3390/ijerph18041613 .

6066. Yin, Z., H.L. Xiao, S.B. Zou, R. Zhu, Z. Lu, Y.C. Lan and Y.P. Shen. 2014. Simulation of hydrological processes of mountainous watersheds in inland river basins: Taking the Heihe Mainstream River as an example. Journal of Arid Land. 6(1): 16-26. DOI: 10.1007/s40333-013-0197-4 .

6067. Yin, Z., Q. Feng, L. Yang, X. Wen, J. Si and S. Zou. 2017. Long term quantification of climate and land cover change impacts on streamflow in an Alpine River catchment, northwestern China. Sustainability. 9(7): 1278. DOI: 10.3390/su9071278 .

6068. Yin, Z., Q. Feng, S. Liu, S. Zou, J. Li, L. Yang and R.C. Deo. 2017. The spatial and temporal contribution of glacier runoff to watershed discharge in the Yarkant River Basin, Northwest China. Water. 9(3): 159. DOI: 10.3390/w9030159 .

6069. Yin, Z., Q. Feng, S. Zou and L. Yang. 2016. Assessing variation in water balance components in mountainous inland river basin experiencing climate change. Water. 8(10): 472. DOI: 10.3390/w8100472 .

6070. Yiridoe, E.K., F. Amon-Armah, D. Hebb and R. Jamieson. 2017. Eco-efficient choice of cropping system for reducing nitrate-N leaching in an agricultural watershed. Journal of Bioeconomics. 19(2): 201-221. DOI: 10.1007/s10818-016-9242-7 .

6071. Yodsa-nga, P., S. Bualert and N. Tangtham. 2020. Assessment of flow timing in the Upper Prachin Buri Watershed by using SWAT model. Burapha Science Journal. 25(3): 1105-1119. URL: http://science.buu.ac.th/ojs246/index.php/sci/article/view/3183.

6072. Yonaba, O.R., A.C. Biaou, M. Koïta, F. Tazen, L.A. Mounirou, C.O. Zouré, P. Queloz, H. Karambiri and H. Yacouba. 2021. A dynamic land use/land cover input helps in picturing the Sahelian paradox: Assessing variability and attribution of changes in surface runoff in a Sahelian watershed. Science of the Total Environment. 757: 143792. DOI: 10.1016/j.scitotenv.2020.143792 .

6073. Yonce, H.N., S. Sarkar, J.B. Butcher, T.E. Johnson, S.H. Julius and S.D. LeDuc. 2021. Forest riparian buffers reduce timber harvesting effects on stream temperature, but additional climate adaptation strategies are likely needed under future conditions. Journal of Water and Climate Change. 12(5): 1404-1419. DOI: 10.2166/wcc.2020.031 .

6074. Yongbo, L., Y. Wanhong, Y. Zhiquiang, L. Ivana, J. Yarotski, J. Elliott and K. Tiessen. 2014. Assessing the effects of small dams on stream flow and water quality in an agricultural watershed. Journal of Hydrologic Engineering. 19(10). DOI: 10.1061/(ASCE)HE.1943-5584.0001005 .

6075. Yongyong, Z., Z. Shifeng, Z. Xiaoyan and X. Jun. 2012. Runoff variation in the three rivers source region and its response to climate change. Acta Geographica Sinica. 67(1): 71-82. URL: http://caod.oriprobe.com/articles/29173312/Runoff_Variation_in_the_Three_Rivers_Source_Region_and_Its_Response_to.htm.

6076. Yoo, C., K. Kim and N.-W. Kim. 2005. Optimal Rain Gauge Density and Sub-basin Size for SWAT Model Application. Journal of Korea Water Resources Association. 38(5): 415-425. DOI: 10.3741/JKWRA.2005.38.5.415 .

6077. Yoon, J., C. Klassert, P. Selby, T. Lachaut, S. Knox, N. Avisse, J. Harou, A. Tilmant, B. Klauer, D. Mustafa, K. Sigel, S. Talozi, E. Gawel, J. Medellín-Azuara, B. Bataineh, H. Zhang and S.M. Gorelick. 2021. A coupled human–natural system analysis of freshwater security under climate and population change. Proceedings of the National Academy of Sciences. 118(14): e2020431118. DOI: 10.1073/pnas.2020431118 .

6078. Yousedi, H. and A. Moridi. 2022. Multiobjective optimization of agricultural planning considering climate change impacts: Minab Reservior Upstream Watershed in Iran. Journal of Irrigation and Drainage Engineering. 148(4): 04022007. DOI: 10.1061/(ASCE)IR.1943-4774.0001675 .

6079. Yousefi, H. and A. Moridi. 2022. Multiobjective optimization of agricultural planning considering climate change impacts: Minab Reservoir Upstream Watershed in Iran. Journal of Irrigation and Drainage Engineering. 148(4): 04022007. DOI: 10.1061/(ASCE)IR.1943-4774.0001675 .

6080. Yu, C.-H. and B.A. McCarl. 2018. The water implications of greenhouse gas mitigation: Effects on land use, land use change, and forestry. Sustainability. 10(7): 2367. DOI: 10.3390/su10072367 .

6081. Yu, D., L. Sun, J. Yu and Z. Wang. 2014. Simulation on soil erosion and streamflow in Maotiaohe Watershed of Guizhou Province based on SWAT model. Chinese Agricultural Science Bulletin. 28(17): 256-261.

6082. Yu, D., P. Xie, X. Dong, B. Su, X. Hu, K. Wang and S. Xu. 2018. The development of land use planning scenarios based on land suitability and its influences on eco-hydrological responses in the upstream of the Huaihe River basin. Ecological Modelling. 373: 53-67. DOI: 10.1016/j.ecolmodel.2018.01.010 .

6083. Yu, D., P. Xie, X. Dong, X. Hu, J. Liu, Y. Li, T. Peng, H. Ma, K. Wang and S. Xu. 2018. Improvement of the SWAT model for event-based flood simulation on a sub-daily timescale. Hydrology and Earth System Sciences. 22(9): 5001-5019. DOI: 10.5194/hess-22-5001-2018 .

6084. Yu, D., X. Dong, P. Xie, C. Wei, J. Liu, X. Hu, K. Wang, S. Xu, H. Wan and Z. Su. 2021. Prioritization of critical source areas for soil and water conservation by using a one-at-a-time removal approach in the Upper Huaihe River Basin. Land Degradation & Development. 32(3): 1513-1524. DOI: 10.1002/ldr.3814 .

6085. Yu, G., B. Xue, G. Lai, F. Gui and X. Liu. 2007. A 200-year historical modeling of catchment nutrient changes in Taihu Basin, China. Hydrobiologia. 581(1): 79-87. DOI: 10.1007/s10750-006-0514-4 .

6086. Yu, M., X. Chen, L. Li, A. Bao and M.J. de la Paix. 2011. Streamflow simulation by SWAT using different precipitation sources in large arid basins with scarce raingauges. Water Resources Management. 25(11): 2669-2681. DOI: 10.1007/s11269-011-9832-z .

6087. Yu, W., Z. Nan, S. Li and C. Li. 2014. Average slope length calculation and runoff simulation. Journal of Geo-Information Science. 14(1): 41-48. DOI: 10.3724/SP.J.1047.2012.00041 .

6088. Yu, W., Z. Nan,Y. Zhao and S. Li. 2014. Improvement of snowmelt implementation in the SWAT hydrologic model. Acta Ecologica Sinica. 33(21): 6992-7001. DOI: 10.5846/stxb201207110977 .

6089. Yu, X., X. Xie and S. Meng. 2017. Modeling the responses of water and sediment discharge to climate change in the Upper Yellow River Basin, China. Journal of Hydrologic Engineering. 22(12): 05017026. DOI: 10.1061/(ASCE)HE.1943-5584.0001590 .

6090. Yu, Y., J. Li, Z. Zhou and C. Tang. 2022. Spatial pattern optimization of ecosystem services based on Bayesian networks: A case of the Jing River Basin. Arid Land Geography. 45(4): 1268-1280. DOI: 10.12118/j.issn.1000-6060.2021.465 .

6091. Yu, Y., J. Liu, Z. Yang, Y. Cao, J. Chang and C. Mei. 2018. Effect of climate change on water resources in the Yuanshui River Basin: A SWAT model assessment. Arabian Journal of Geosciences. 11: 270. DOI: 10.1007/s12517-018-3619-y .

6092. Yu, Z., J. Wu and X. Chen. 2019. An approach to revising the climate forecast system reanalysis rainfall data in a sparsely-gauged mountain basin. Atmospheric Research. 220: 194-205. DOI: 10.1016/j.atmosres.2019.01.014 .

6093. Yu, Z., X. Chen and J. Wu. 2022. Calibrating a hydrological model in an ungauged mountain basin with the Budyko Framework. Water. 14(19): 3112. DOI: 10.3390/w14193112 .

6094. Yu, Z., X. Man, L. Duan and T. Cai. 2020. Assessments of impacts of climate and forest change on water resources using SWAT model in a subboreal watershed in northern Da Hinggan Mountains. Water. 12(6): 1565. DOI: 10.3390/w12061565 .

6095. Yuan, J., R. Li and K. Huang. 2022. Driving factors of the variation of ecosystem service and the trade-off and synergistic relationships in typical karst basin. Ecological Indicators. 142: 109253. DOI: 10.1016/j.ecolind.2022.109253 .

6096. Yuan, L. and K.J. Forshay. 2020. Using SWAT to evaluate streamflow and lake sediment loading in the Xinjiang River Basin with limited data. Water. 12(1): 39. DOI: 10.3390/w12010039 .

6097. Yuan, L. and K.J. Forshay. 2021. Enhanced streamflow prediction with SWAT using support vector regression for spatial calibration: A case study in the Illinois River Watershed, U.S. PLoS ONE. 16(4): e0248489. DOI: 10.1371/journal.pone.0248489 .

6098. Yuan, L., T. Sinshaw and K.J. Forshay. 2020. Review of watershed-scale water quality and nonpoint source pollution models. Geosciences. 10: 25. DOI: 10.3390/geosciences10010025 .

6099. Yuan, S., S.M. Quiring, M.M. Kalcic, A.M. Apostel, G.R. Evenson and H.A. Kujawa. 2020. Optimizing climate model selection for hydrological modeling: A case study in the Maumee River Basin using the SWAT. Journal of Hydrology. 588: 125064. DOI: 10.1016/j.jhydrol.2020.125064 .

6100. Yuan, Y. and L. Koropeckyj-Cox. 2022. SWAT model application for evaluating agricultural conservation practice effectiveness in reducing phosphorous loss from the Western Lake Erie Basin. Journal of Environmental Management. 302(Part A): 114000. DOI: 10.1016/j.jenvman.2021.114000 .

6101. Yuan, Y., P. Mao, X. Zan, D. Huang, H. Zhou, Y. Wang and H Wang. 2018. Mapping the trends and knowledge of research using the SWAT model of agricultural non-point source pollution. Chinese Journal of Applied & Environmental Biology. 24(5): 1050-1057. DOI: 10.19675/j.cnki.1006-687x.2017.12002 .

6102. Yuan, Y., R. Wang, E. Cooter, L. Ran, P. Daggupati, D. Yang, R. Srinivasan and A. Jalowska. 2018. Integrating multimedia models to assess nitrogen losses from the Mississippi River Basin to the Gulf of Mexico. Biogeosciences. 15(23): 7059-7076. DOI: 10.5194/bg-15-7059-2018 .

6103. Yuan, Y., W. Hu and G. Li. 2016. Evaluation of soil erosion and sediment yield From Ridge watersheds leading to Guánica Bay, Puerto Rico, using the Soil and Water Assessment Tool Model. Soil Science. 181(7): 315–325. DOI: 10.1097/SS.0000000000000166 .

6104. Yuan, Y., Y. Khare, X. Wang, P.B. Parajuli, I. Kisekka and S. Finsterle. 2015. Hydrologic and water quality models: Sensitivity. Transactions of the ASABE. 58(6): 1721-1744. DOI: 10.13031/trans.58.10611 .

6105. Yuan, Z., J. Xu and Y. Wang. 2019. Historical and future changes of blue water and green water resources in the Yangtze River source region, China. Theoretical and Applied Climatology. DOI: 10.1007/s00704-019-02883-z .

6106. Yuan, Z., J. Xu, X. Meng, Y. Wang, B. Yan and X. Hong. 2019. Impact of climate variability on blue and green water flows in the Erhai Lake Basin of southwest China. Water. 11(3): 424. DOI: 10.3390/w11030424 .

6107. Yuan. L and K.J. Forshay. 2022. Evaluating monthly flow prediction based on SWAT and support vector regression coupled with discrete wavelet transform. Water. 14(17): 2649. DOI: 10.3390/w14172649 .

6108. Yudiarso, R. A., E. Suhartanto and W. Soetopo. 2014. Upaya konservasi waduk selorejo berdasarkan perkembangan peta penggunaan lahan dalam kurun waktu tahun. Jurnal Teknik Pengairan. 5(1): 1-8. URL: http://jurnalpengairan.ub.ac.id/index.php/jtp/article/view/199.

6109. Yun, D., A. Abbas, J. Jeon, M. Ligaray, S.-S. Baek and K.H. Cho. 2021. Developing a deep learning model for the simulation of micro-pollutants in a watershed. Journal of Cleaner Production. 300: 126858. DOI: 10.1016/j.jclepro.2021.126858 .

6110. Yun, Y., H. Park and S. Chung. 2019. Projection of water temperature and stratification strength with climate change in Soyanggang Reservoir in South Korea. Journal of Korean Society on Water Environment. 35(3): 234-247. DOI: 10.15681/KSWE.2019.35.3.234 .

6111. Yustika, R.D., S.D. Tarigan, Y. Hidayat and U. Sudadi. 2012. Simulation of land management in Hulu Ciliwung use SWAT model. Jurnal Informatika Pertanian. 21(2): 71-79. URL: http://ejurnal.litbang.pertanian.go.id/index.php/IP/article/view/569.

6112. Yustika, R.D., S.D. Tarigan, Y. Hidayat and D.U. Sudadi. 2015. Use of hydrology model in upstream Ciliwung watershed. Informatika Pertanian. 23(2): 197-204.

6113. Zabaleta, A. and I. Antiguedad. 2013. Hydrologic signs of climate in the trends of discharge in Basque watersheds: Future hydrologic projections. EKAIA Euskal Herriko Unibertsitateko Zientzi eta Teknologi Aldizkaria. 25: 33-59. URL: http://www.ehu.es/ojs/index.php/ekaia/article/view/5257/6366.

6114. Zabaleta, A., M. Meaurio, E. Ruiz and I. Antigüedad. 2014. Simulation climate change impact on runoff and sediment yield in a small watershed in the Basque Country, northern Spain. Journal of Environmental Quality. 43(1): 235-245. DOI: 10.2134/jeq2012.0209 .

6115. Zadeh, K.Z., J. Nossent, F. Sarrazin, F. Pianosi, A. van Griensven, T. Wagener and W. Bauwens. 2017. Comparison of variance-based and moment-independent global sensitivity analysis approaches by application to the SWAT model. Environmental Modeling & Assessment. 91: 210-222. DOI: 10.1016/j.envsoft.2017.02.001 .

6116. Zadsar, M. and M. Azimi. 2016. Using SWAT model to investigate the impact of rangeland management practices on water conservation (Case study: Gorganroud Watershed, Golestan, Iran). Journal of Rangeland Science. 6(4): 309-319. URL: http://www.rangeland.ir/article_524075.html.

6117. Zahabiyoun, B., M.R. Goodarzi, A.R. Massah Bavani and H.M. Azamathulla. 2013. Assessment of climate change impact on the Gharesou River Basin using SWAT hydrological model. Clean - Soil, Air, Water. 41(6): 601–609. DOI: 10.1002/clen.201100652 .

6118. Zaibak, I. and M. Meddi. 2022. Simulating streamflow in the Cheliff Basin of west northern Algeria using the SWAT model. Journal of Earth System Science. 131(1): 25. DOI: 10.1007/s12040-021-01777-x .

6119. Zaimes, G.N., M. Tufekcioglu, A. Tufekcioglu, S. Zibtsev, R. Corobov, D. Emmanouloudis, R. Uratu, A. Ghulijanyan, A. Borsuk and I. Trombitsky. 2016. Transboundary collaborations to enhance wildfire suppression in protected areas of the Black Sea Region. Journal of Engineering Science and Technology Review. 9(2): 108-114. URL: http://www.jestr.org/index.php?option=com_content&view=article&id=45&Itemid=91.

6120. Zakizadeh, H., H. Ahmadi, G. Zehtabian, A. Moeini and A. Moghaddamnia. 2020. A novel study of SWAT and ANN models for runoff simulation with application on dataset of metrological stations. Physics and Chemistry of the Earth. 120: 102899. DOI: 10.1016/j.pce.2020.102899 .

6121. Zakizadeh, H.R., H. Ahmadi, G.R. Zehtabiyan, A. Moeini and A. Moghaddamnia. 2021. Impact of climate change on surface runoff: A case study of the Darabad River, northeast of Iran. Journal of Water and Climate Change. 12(1): 82-100. DOI: 10.2166/wcc.2020.089 .

6122. Zam, P., S. Shrestha and A. Budhathoki. 2021. Assessment of climate change impact on hydrology of a transboundary river of Bhutan and India. Journal of Water and Climate Change. 12(7): 3224-3239. DOI: 10.2166/wcc.2021.338 .

6123. Zaman, M., M.N. Anjum, M. Usman, I. Ahmad, M. Saifullah, S. Yuan and S. Liu. 2018. Enumerating the effects of climate change on water resources using GCM scenarios at the Xin'anjiang Watershed, China. Water. 10(10): 1296. DOI: 10.3390/w10101296 .

6124. Zaman, M., S. Yuan, J. Liu, I. Ahmad, M. Sultan, M.U. Qamar, M. Saifullah, M. Adnan, M.N. Anjum, M.I. Nawaz and I. Ali. 2018. Investigating hydrological responses and adaptive operation of a hydropower station under a climate change scenario. Polish Journal of Environmental studies. 27(5): 2337-2348. DOI: 10.15244/pjoes/78678 .

6125. Zaman, M.R., S. Morid and M. Delavar. 2016. Evaluating climate adaptation strategies on agricultural production in the Siminehrud catchment and inflow into Lake Urmia, Iran using SWAT within an OECD framework. Agricultural Systems. 147: 98-110. DOI: 10.1016/j.agsy.2016.06.001 .

6126. Zamani, M., N.K. Shrestha, T. Akhtar, T. Boston and P. Daggupati. 2021. Advancing model calibration and uncertainty analysis of SWAT models using cloud computing infrastructure: LCC-SWAT. Journal of Hydroinformatics. 23(1): 1–15. DOI: 10.2166/hydro.2020.066 .

6127. Zambrano-Bigiarini, M. and R. Rojas. 2013. A model-independent Particle Swarm Optimisation software for model calibration. Environmental Modelling & Software. 43: 5-25. DOI: 10.1016/j.envsoft.2013.01.004 .

6128. Zang, C. 2017. Spatial and temporal variability of blue/green water flows in typical meteorological years in an inland river basin in China. Journal of Water and Climate Change. 8(1): 165-176. DOI: 10.2166/wcc.2016.036 .

6129. Zang, C. and G. Mao. 2019. A spatial and temporal study of the green and blue water flow distribution in typical ecosystems and its ecosystem services function in an arid basin. Water. 11: 97. DOI: 10.3390/w11010097 .

6130. Zang, C. and J. Liu. 2013. Trend analysis for the flows of green and blue water in the Heihe River basin, northwestern China. Journal of Hydrology. 502: 27-36. DOI: 10.1016/j.jhydrol.2013.08.022 .

6131. Zang, C., J. Liu, D. Gerten and L. Jiang. 2015. Influence of human activities and climate variability on green and blue water provision in the Heihe River Basin, NW China. Journal of Water and Climate Change. 6(4): 800-815. DOI: 10.2166/wcc.2015.194 .

6132. Zang, C.F., J. Liu, M. van der Velde and F. Kraxner. 2012. Assessment of spatial and temporal patterns of green and blue water flows under natural conditions in inland river basins in Northwest China. Hydrology and Earth System Sciences. 16: 2859-2870. DOI: 10.5194/hess-16-2859-2012 .

6133. Zang, W., S. Liu, S. Huang, J. Li, Y. Fu, Y. Sun and J. Zheng. 2019. Impact of urbanization on hydrological processes under different precipitation scenarios. Natural Hazards. 99: 1233-1257. DOI: 10.1007/s11069-018-3534-2 .

6134. Zango, B.-S., O. Seidou, M. Sartaj, N. Nakhael and K. Stiles. 2022. Impacts of urbanization and climate change on water quantity and quality in the Carp River Watershed. Journal of Water and Climate Change. 13(2): 786-816. DOI: 10.2166/wcc.2021.158 .

6135. Zare, M., S. Azam and D. Sauchyn. 2022. A modified SWAT model to simulate soil water content and soil temperature in cold regions: A case study of the South Saskatchewan River Basin in Canada. Sustainability. 14(17): 10804. DOI: 10.3390/su141710804 .

6136. Zare, M., S. Azam and D. Sauchyn. 2022. Evaluation of soil water content using SWAT for southern Saskatchewan, Canada. Water. 14(2): 249. DOI: 10.3390/w14020249 .

6137. Zare, M., S. Azam and D. Sauchyn. 2022. Impact of climate change on soil water content in southern Saskatchewan, Canada. Water. 14(12): 1920. DOI: 10.3390/w14121920 .

6138. Zaremehrjardy, M., J. Victor, S. Park, B. Smerdon, D.S. Alessi and M. Faramarzi. 2022. Assessment of snowmelt and groundwater-surface water dynamics in mountains, foothills, and plains regions in northern latitudes. Journal of Hydrology. 606: 127449. DOI: 10.1016/j.jhydrol.2022.127449 .

6139. Zaremehrjardy, M., S. Razavi and M. Faramarzi. 2021. Assessment of the cascade of uncertainty in future snow depth projections across watersheds of mountainous, foothill, and plain areas in northern latitudes. Journal of Hydrology. 598: 125735. DOI: 10.1016/j.jhydrol.2020.125735 .

6140. Zarrineh, N., K.C. Abbaspour and A. Holzkämper. 2020. Integrated assessment of climate change impacts on multiple ecosystem services in western Switzerland. Science of the Total Environment. 708: 135212. DOI: 10.1016/j.scitotenv.2019.135212 .

6141. Zarrineh, N., K.C. Abbaspour, A. van Griensven, B. Jeangros and A. Holzkämper. 2018. Model-based evaluation of land management strategies with regard to multiple ecosystem services. Sustainability. 10(11): 3844. DOI: 10.3390/su10113844 .

6142. Zeckoski, R.W., M.D. Smolen, D.N. Moriasi, J.R. Frankenberger and G.W. Feyereisen. 2015. Hydrologic and water quality terminology as applied to modeling. Transactions of the ASABE. 58(6): 1619-1635. DOI: 10.13031/trans.58.10713 .

6143. Zeiaei, K., A. Esmali, R. Mostafazadeh and M. Golshan. 2021. Assessing the effects of various land use change scenarios on runoff using SWAT model in the Ahl Iman Watershed. Hydrogeomorphology . 8(27): 123-138. URL: https://hyd.tabrizu.ac.ir/article_13070.html.

6144. Zeiger, A. and J. Hubbart. 2017. An assessment of mean areal precipitation methods of simulated stream flow: A SWAT Model performance assessment. Water. 9(7): 459. DOI: 10.3390/w9070459 .

6145. Zeiger, S., J.A. Hubbart, S.H. Anderson and M.C. Stambaugh. 2016. Quantifying and modelling urban stream temperature: A central US watershed study. Hydrological Processes. 30(4): 503-514. DOI: 10.1002/hyp.10617 .

6146. Zeiger, S.J. and J.A. Hubbart. 2016. A SWAT model validation of nested-scale contemporaneous streamflow, suspended sediment and nutrients from a multiple-land-use watershed of the central USA. Science of the Total Environment. 572: 232-243. DOI: 10.1016/j.scitotenv.2016.07.178 .

6147. Zeiger, S.J. and J.A. Hubbart. 2018. Assessing environmental flow targets using pre-settlement land cover: A SWAT modeling application. Water. 10(6): 791. DOI: 10.3390/w10060791 .

6148. Zeiger, S.J. and J.A. Hubbart. 2018. Assessing the difference between Soil and Water Assessment Tool (SWAT) simulated pre-development and observed developed loading regimes. Hydrology. 5(2): 29. DOI: 10.3390/hydrology5020029 .

6149. Zeng, L., H. Shen, Y. Cui, X. Chu and J. Shao. 2022. Incorporating the filling-spilling feature of depressions into hydrologic modeling. Water. 14(4): 652. DOI: 10.3390/w14040652 .

6150. Zeng, L., J. Shao and X. Chu. 2020. Improved hydrologic modeling for depression-dominated areas. Journal of Hydrology. 590: 125269. DOI: 10.1016/j.jhydrol.2020.125269 .

6151. Zeng, R. and X. Cai. 2014. Analyzing streamflow changes: Irrigation-enhanced interaction between aquifer and streamflow in the Republican River Basin. Hydrology and Earth System Sciences. 18(2): 493-502. DOI: 10.5194/hess-18-493-2014 .

6152. Zeng, S., C. Zhan, F. Sun, H. Du and F. Wang. 2015. Effects of climate change and human activities on surface runoff in the Luan River basin. Advances in Meteorology. : 1-12. DOI: 10.1155/2015/740239 .

6153. Zeng, S., J. Xia, D. She, H. Du and L. Zhang. 2012. Impacts of climate change on water resources in the Luan River basin in North China. Water International. 37(5): 552–563. DOI: 10.1080/02508060.2012.709424 .

6154. Zeng, X.T., J.L. Zhang, L. Yu, J.X. Zhu, Z. Li and L. Tang. 2019. A sustainable water-food-energy plan to confront climatic and socioeconomic changes using simulation-optimization approach. Applied Energy. 236: 743-759. DOI: 10.1016/j.apenergy.2018.11.086 .

6155. Zeng, Y., D. Liu, S. Guo, L. Xiong, P. Liu, J. Yin, J. Tian, L. Deng and J. Zhang. 2021. Impacts of water resources allocation on water environmental capacity under climate change. Water. 13(9): 1187. DOI: 10.3390/w13091187 .

6156. Zeng, Z., G. Tang, Y. Hong, C. Zeng and Y. Yang. 2017. Development of an NRCS curve number global dataset using the latest geospatial remote sensing data for worldwide hydrologic applications. Remote Sensing Letters. 8(6): 528-536. DOI: 10.1080/2150704X.2017.1297544 .

6157. Zeraebruk, K.N., A.O. Mayabi and J.M. Gathenya. 2017. Assessment of water resources and analysis of safe yield and reliability of surface water reservoirs of Asmara water supply system. Environment and Natural Resources Research. 7(1): 45-59. DOI: 10.5539/enrr.v7n1p45 .

6158. Zettam, A., A. Taleb, S. Sauvage, L. Boithias, N. Belaidi and J.M. Sánchez-Pérez. 2017. Modelling hydrology and sediment transport in a semi-arid and anthropized catchment using the SWAT model: The case of the Tafna River (Northwest Algeria). Water. 9(3): 216. DOI: 10.3390/w9030216 .

6159. Zettam, A., A. Taleb, S. Sauvage, L. Boithias, N. Belaidi and J.M. Sanchez-Perez. 2020. Applications of a SWAT model to evaluate the contribution of the Tafna Catchment (north-west Africa) to the nitrate load entering the Mediterranean Sea. Environmental Monitoring and Assessment. 192: 510. DOI: 10.1007/s10661-020-08482-0 .

6160. Zettam, A., H. Briak, F. Kebede, A. Ouallali, F. Hallouz and A. Taleb. 2022. Efficiencies of best management practices in reducing nitrate pollution of the Sebdou River, a semi‐arid Mediterranean agricultural catchment (North Africa). River Research and Applications. 38(3): 613-624. DOI: https://doi.org/10.1002/rra.3924 .

6161. Zhai, X, Y. Zhang, X. Wang, J. Xia and T. Liang. 2014. Non-point source pollution modelling using Soil and Water Assessment Tool and its parameter sensitivity analysis in Xin’anjiang catchment, China. Hydrological Processes. 28(4): 1627–1640. DOI: 10.1002/hyp.9688 .

6162. Zhai, X. and Y. Zhang. 2018. Impact assessment of projected climate change on diffuse phosphorous loss in Xin’anjiang catchment, China. Environmental Science and Pollution Research. 25(5): 4570–4583. DOI: 10.1007/s11356-017-0790-8 .

6163. Zhan, C., Z. Xu, A. Ye and H. Su. 2011. LUCC and its impact on run-off yield in the Bai River catchment--upstream of the Miyun Reservoir basin. Journal of Plant Ecology. 4(1-2): 61-66. DOI: 10.1093/jpe/rtr003 .

6164. Zhan, Y.-y., J. Tang, X.-j. Gao, Y.-w. Yangand F.-f. Li. 2022. Attribution analysis of blue-green water change in Jinghe River Basin driven by duality. China Rural Water and Hydropower. 12: 93-100, 106. DOI: 10.12396/znsd.220356 .

6165. Zhang, A., C. Zhang, G. Fu, B. Wang, Z. Bao and H. Zheng. 2012. Assessments of impacts of climate change and human activities on runoff with SWAT for the Huifa River Basin, northeast China. Water Resources Management. 26(8): 2199-2217. DOI: 10.1007/s11269-012-0010-8 .

6166. Zhang, A., C. Zhang, J. Chu and G. Fu. 2015. Human-induced runoff change in northeast China. Journal of Hydrologic Engineering. 20(5). DOI: 10.1061/(ASCE)HE.1943-5584.0001078 .

6167. Zhang, A., W. Liu, Z. Yin, G. Fu and C. Zheng. 2016. How will climate change affect the water availability in the Heihe River Basin, Northwest China? Journal of Hydrometeorology. 17(5): 1517-1542. DOI: 10.1175/JHM-D-15-0058.1 .

6168. Zhang, B., H. Guo, Y. Zhang, Z. Li, Y. Liu, S. Wang and Z. Fu. 2022. A coupling simulation and optimization method developed for environmental-economic management of lake watershed. Journal of Environmental Management. 318: 115546. DOI: 10.1016/j.jenvman.2022.115546 .

6169. Zhang, B., N.K. Shrestha, P. Daggupati, R. Rudra, R. Shukla, B. Kaur and J.Hou. 2018. Quantifying the impacts of climate change on streamflow dynamics of two major rivers of the northern Lake Erie Basin in Canada. Sustainability. 10(8): 2897. DOI: 10.3390/su10082897 .

6170. Zhang, B., Q.-Q. Zhang, S.-X. Zhang, C. Xing and G.-G. Ying. 2020. Emission estimation and fate modelling of three typical pesticides in Dongjiang River Basin, China. Environmental Pollution. 258: 113660. DOI: 10.1016/j.envpol.2019.113660 .

6171. Zhang, C., C.A. Shoemaker, J.D. Woodbury, M. Cao and X. Zhu. 2013. Impact of human activities on stream flow in the Biliu River basin, China. Hydrological Processes. 27(17): 2509–2523. DOI: 10.1002/hyp.9389 .

6172. Zhang, C., F. Sun, S. Sharma, P. Zeng, A. Mejia, Y. Lyu, J. Gao, R. Zhou and Y. Che. 2023. Projecting multi-attribute flood regime changes for the Yangtze River Basin. Journal of Hydrology. 617(Part A): 128846. DOI: 10.1016/j.jhydrol.2022.128846 .

6173. Zhang, C., J. Chu and G. Fu. 2013. Sobol′’s sensitivity analysis for a distributed hydrological model of Yichun River Basin, China. Journal of Hydrology. 480: 58-68. DOI: 10.1016/j.jhydrol.2012.12.005 .

6174. Zhang, C., S. Li, J. Qi, Z. Xing and F. Meng. 2016. Assessing impacts of riparian buffer zones on sediment and nutrients loading into streams at watershed scale using an integrated REMM-SWAT model. Hydrological Processes. 31(4): 916-924. DOI: 10.1002/hyp.11073 .

6175. Zhang, C., S. Li, R.C. Jamieson and F.R. Meng. 2017. Segment-based assessment of riparian buffers on stream water quality improvement by applying an integrated model. Ecological Modelling. 345: 1-9. DOI: 10.1016/j.ecolmodel.2016.12.005 .

6176. Zhang, C., Y. Huang, A. Javed and G.B. Arhonditsis. 2019. An ensemble modeling framework to study the effects of climate change on the trophic state of shallow reservoirs. Science of the Total Environment. 697: 134078. DOI: 10.1016/j.scitotenv.2019.134078 .

6177. Zhang, C.-S., X.-G. Hu and N. Zafetti. 2021. Optimised power generation system by the SWAT and artificial neural network based on improved farmland fertility optimisation (IFFO) algorithm. International Journal of Ambient Energy. DOI: 10.1080/01430750.2021.1918244 .

6178. Zhang, D., B. Lin, J. Wu and Q. Lin. 2021. GP-SWAT (v1.0): A two-level graph-based parallel simulation tool for the SWAT model. Geoscientific Model Development. 14(10): 5915-5925. DOI: 10.5194/gmd-14-5915-2021 .

6179. Zhang, D., H. Yao, A. James, Q. Lin and W. Fu. 2020. Modifying SWAT-CS for simulating chloride dynamics in a Boreal Shield headwater catchment in south-central Ontario, Canada. Science of the Total Environment. 717: 137213. DOI: 10.1016/j.scitotenv.2020.137213 .

6180. Zhang, D., M.L. Tan, S.R.S. Dawood, N. Samat, C.K. Chang, R. Roy, Y.L. Tew and M.A. Mahamud. 2020. Comparison of NCEP-CFSR and CMADS for hydrological modelling using SWAT in the Muda River Basin, Malaysia. Water. 12(11): 3288. DOI: 10.3390/w12113288 .

6181. Zhang, D., W. Fu, Q. Lin and X. Chen. 2019. WOF-SWAT: A web-based open-source framework for investigating the hydrological impacts of climate change and human activities through online simulation and visualization of SWAT models. ISPRS International Journal of Geo-Information. 8(9): 368. DOI: 10.3390/ijgi8090368 .

6182. Zhang, D., W.-c. Zhang, L. Zhu and Q.-a. Zhu. 2005. Improvement and application of SWAT - A physically based, distributed hydrological model. Scientia Geographica Sinica. 25(4): 434-440. URL: http://geoscien.neigae.ac.cn/EN/volumn/volumn_3340.shtml.

6183. Zhang, D., X. Chen and H. Yao. 2015. Development of a prototype web-based decision support system for watershed management. Water. 7(2): 780-793. DOI: 10.3390/w7020780 .

6184. Zhang, D., X. Chen and H. Yao. 2016. SWAT-CSenm: Enhancing SWAT nitrate module for a Canadian Shield catchment. Science of the Total Environment. 550: 598-610. DOI: 10.1016/j.scitotenv.2016.01.109 .

6185. Zhang, D., X. Chen, H. Yao and B. Lin. 2015. Improved calibration scheme of SWAT by separating wet and dry seasons. Ecological Modelling. 301: 54-61. DOI: 10.1016/j.ecolmodel.2015.01.018 .

6186. Zhang, D., X. Chen, H. Yao and A. James. 2016. Moving SWAT model calibration and uncertainty analysis to an enterprise Hadoop-based cloud. Environmental Modelling & Software. 84: 140-148. DOI: 10.1016/j.envsoft.2016.06.024 .

6187. Zhang, D.J., Q.Y. Lin, H.X. Yao, Y.R. He, J. Deng and X.X. Zhang. 2021. Accelerating SWAT simulations using an in-memory NoSQL database. Journal of Environmental Informatics. 37(2): 142-152. DOI: 10.3808/jei.201900425 .

6188. Zhang, F., M. Chen, D.P. Ames, C. Shen, S. Yue, Y. Wen and G. Lü. 2019. Design and development of a service-oriented wrapper system for sharing and reusing distributed geoanalysis models on the web. Environmental Modelling & Software. 111: 498-509. DOI: 10.1016/j.envsoft.2018.11.002 .

6189. Zhang, G., X. Su, O.O. Ayantobo, K. Feng and J. Guo. 2020. Remote-sensing precipitation and temperature evaluation using Soil and Water Assessment Tool with multiobjective calibration in the Shiyang River Basin, northwest China. Journal of Hydrology. 590: 125416. DOI: 10.1016/j.jhydrol.2020.125416 .

6190. Zhang, G., Y. Wu, H. Li, W. Zhao, F. Wang, J. Chen, B. Sivakumar, S. Liu, L. Qiu and W. Wang. 2022. Assessment of water retention variation and risk warning under climate change in an inner headwater basin in the 21st century. Journal of Hydrology. 615(PartB): 128717. DOI: 10.3390/su14095262 .

6191. Zhang, H., B. Wang, D.L. Liu, M. Zhang, L.M. Leslie and Q. Yu. 2020. Using an improved SWAT model to simulate hydrological responses to land use change: A case study of a catchment in tropical Australia. Journal of Hydrology. 585: 124822. DOI: 10.1016/j.jhydrol.2020.124822 .

6192. Zhang, H., B. Wang, D.L. Liu, L.M. Leslie, L. Shi, M. Zhang and Q. Yu. 2022. Individual and coupled effects of future climate and land use scenarios on water balance components in an Australian catchment. Atmosphere. 13(9): 1428. DOI: 10.3390/atmos13091428 .

6193. Zhang, H., G.H. Huang, D. Wang and X. Zhang. 2011. Multi-period calibration of a semi-distributed hydrological model based on hydroclimatic clustering. Advances in Water Resources. 34(10): 1292-1303. DOI: 10.1016/j.advwatres.2011.06.005 .

6194. Zhang, H., G.H. Huang, D. Wang and X. Zhang. 2011. Uncertainty assessment of climate change impacts on the hydrology of small prairie wetlands. Journal of Hydrology. 396(1-2): 94-103. DOI: 10.1016/j.jhydrol.2010.10.037 .

6195. Zhang, H., G.H. Huang, D. Wang, X. Zhang, G. Li, C. An, Z. Cui, R. Liao and X. Nie. 2012. An integrated multi-level watershed-reservoir modeling system for examining hydrological and biogeochemical processes in small prairie watersheds. Water Research. 46(4): 1207-1224. DOI: 10.1016/j.watres.2011.12.021 .

6196. Zhang, H., J. Chang, L. Zhang, Y. Wang, Y. Li and X. Wang. 2018. NDVI dynamic changes and their relationship with meteorological factors and soil moisture. Environmental Earth Sciences. 77(16): 582. DOI: 10.1007/s12665-018-7759-x .

6197. Zhang, H., S.M. Gorelick, N. Avisse, A. Tilmant, D. Rajsekhar and J. Yoon. 2017. A new temperature-vegetation triangle algorithm with variable edges (TAVE) for satellite-based actual evapotranspiration estimation. Remote Sensing. 8(9): 735. DOI: 10.3390/rs8090735 .

6198. Zhang, J. and Y. Wang. 2022. Runoff prediction under different precipitation scenarios based on SWAT model and stochastic simulation of precipitation. Journal of Hydrologic Engineering. 27(5): 05022003. DOI: 10.1061/(ASCE)HE.1943-5584.0002173 .

6199. Zhang, J., B. Guo and Y. Liu. 2016. Anthropogenic influence on hydrological response in Beijing over nearly 20 years. International Journal of Water. 10(1): 87-107. DOI: 10.1504/IJW.2016.073745 .

6200. Zhang, J., D. Wang, Y. Wang, H. Xiao and M. Zeng. 2023. Runoff prediction under extreme precipitation and corresponding meteorological conditions. Water Resources Management. 37(9): 3377-3394. DOI: 10.1007/s11269-023-03506-z .

6201. Zhang, J., J. Gao, Q. Zhu, R. Qian, Q. Zhang and J. Huang. 2022. Coupling mountain and lowland watershed models to characterize nutrient loading: An eight-year investigation in Lake Chaohu Basin. Journal of Hydrology. 612(Part C): 128258. DOI: 10.1016/j.jhydrol.2022.128258 .

6202. Zhang, J., M. Liu and Y. Song. 2022. Human-dominated land use change in a phosphate mining area and its impact on the water environment. Water. 14(7): 1074. DOI: 10.3390/w14071074 .

6203. Zhang, J., P. Zhang and Y. Song. 2022. Comparative water environment simulation study of two typical models with BMPs in a Karst Basin. Agriculture. 12(1): 69. DOI: 10.3390/agriculture12010069 .

6204. Zhang, J., P. Zhao, Y. Zhang, L. Cheng, J. Song, G. Fu, Y. Wang, Q. Liu, S. Lyu, S. Qi, C. Huang, M. Ma and G. Zhang. 2022. Long-term baseflow responses to projected climate change in the Weihe River Basin, Loess Plateau, China. Remote Sensing. 14(20): 5097. DOI: 10.3390/rs14205097 .

6205. Zhang, J., Q. Li and B. Guo. 2014. The comparative study of multi-site uncertainty evaluation method based on SWAT model. Hydrological Processes. 29(13): 2994-3009. DOI: 10.1002/hyp.10380 .

6206. Zhang, J., S. Ma and Y. Song. 2022. Hydrological and water quality simulation and future runoff prediction under CMIP6 scenario in the upstream basin of Miyun Reservoir. Journal of Water and Climate Change. 13(7): 2505. DOI: 10.2166/wcc.2022.389 .

6207. Zhang, J., S. Ni, W. Wu, X. Huang, H. Jiang, Q. Li, J. Wang, G. Wu, C. Zorn and C. Yu. 2019. Evaluating the effectiveness of the pollutant discharge permit program in China: A case study of the Nenjiang River Basin. Environmental Management. 251: 109501. DOI: 10.1016/j.jenvman.2019.109501 .

6208. Zhang, J., X. Lei and Q. Li. 2018. Two model performance comparisons with multisite observations based on uncertainty methods for modeling hydrologic dynamics. Journal of Irrigation and Drainage Engineering. 144(1): 04017060. DOI: 10.1061/(ASCE)IR.1943-4774.0001284 .

6209. Zhang, J., Y. Li, G. Huang, X. Chen and A. Bao. 2016. Assessment of parameter uncertainty in hydrological model using a Markov-Chain-Monte-Carlo-based multilevel-factorial-analysis method. Journal of Hydrology. 538: 471-486. DOI: 10.1016/j.jhydrol.2016.04.044 .

6210. Zhang, J.L., Y.P. Li , G.H. Huang, B.W. Baetz, and J. Liu. 2017. Uncertainty analysis for effluent trading planning using a Bayesian estimation-based simulation-optimization modeling approach. Water Research. 116: 159-181. DOI: 10.1016/j.watres.2017.03.013 .

6211. Zhang, J.L., Y.P. Li and G.H. Huang. 2014. A robust simulation–optimization modeling system for effluent trading—a case study of nonpoint source pollution control. Environmental Science and Pollution Research. 21(7): 5036-5053. DOI: 10.1007/s11356-013-2437-8 .

6212. Zhang, J.L., Y.P. Li, C.X. Wang and G.H. Huang. 2015. An inexact simulation-based stochastic optimization method foridentifying effluent trading strategies of agricultural nonpoint sources. Agricultural Water Management. 152: 72-90. DOI: 10.1016/j.agwat.2014.12.014 .

6213. Zhang, J.L., Y.P. Li, G.H. Huang, C.X. Wang and G. H. Cheng. 2016. Evaluation of uncertainties in input data and parameters of a hydrological model using a bayesian framework: A case study of a snowmelt–precipitation-driven watershed. Journal of Hydrometeorology. 17(8): 2333–2350. DOI: 10.1175/JHM-D-15-0236.1 .

6214. Zhang, J.L., Y.P. Li, X.T. Zeng, G.H. Huang, Y. Li, Y. Zhu, F.L. Kong, M. Xi and J. Liu. 2019. Effluent trading planning and its application in water quality management: A factor-interaction perspective. Environmental Research. 168: 286-305. DOI: 10.1016/j.envres.2018.09.029 .

6215. Zhang, L., B. Xue, Y. Yan, G. Wang, W. Sun, Z. Li, J. Yu, G. Xie and H. Shi. 2019. Model uncertainty analysis methods for semi-arid watersheds with different characteristics: A comparative SWAT case study. Water. 11(6): 1177. DOI: 10.3390/w11061177 .

6216. Zhang, L., C. Wang, G. Liang, Y. Cui and Q. Zhang. 2020. Influence of land use change on hydrological cycle: Application of SWAT to Su-Mi-Huai Area in Beijing, China. Water. 12(11): 3164. DOI: 10.3390/w12113164 .

6217. Zhang, L., J. Lu, X. Chen, D. Liang, X. Fu, S. Sauvage and J.-M. S. Perez. 2017. Stream flow simulation and verification in ungauged zones by coupling hydrological and hydrodynamic models: A case study of the Poyang Lake ungauged zone. Hydrology and Earth System Sciences. 21(11): 5842-5861. DOI: 10.5194/hess-21-5847-2017 .

6218. Zhang, L., L. Qin, Z. Yang, J. Xia and S. Zeng. 2012. Climate change impacts on hydrological processes in the water source area of the Middle Route of the South-to-North Water Diversion Project. Water International. 37(5): 1-21. URL: http://dx.doi.org/10.1080/02508060.2012.692108.

6219. Zhang, L., L.-C. Li, X. Jun and W. Ren-chao. 2015. Quantitative Assessment of the Impact of Climate Variability and Human Activities on Runoff Change in the Luanhe River Catchment. Journal of Natural Resources. 30(4): 664-672. DOI: 10.11849/zrzyxb.2015.04.012 .

6220. Zhang, L., R. Karthikeyan, H. Zhang and Y. Tang. 2017. Estimation of sediment yield change in a Loess Plateau basin, China. Water. 9(9): 693. DOI: 10.3390/w9090683 .

6221. Zhang, L., R. Karthikeyan, Z. Bai and R. Srinivasan. 2017. Analysis of streamflow responses to climate variability and land use change in the Loess Plateau region of China. Catena. 154: 1-11. DOI: 10.1016/j.catena.2017.02.012 .

6222. Zhang, L., W. Lu, Q. Yang, Y. An., D. Li and L. Gong. 2012. Hydrological Impacts of Climate Change on Streamflow of Dongliao River Watershed in Jilin Province, China. Chinese Geographical Science. 22(5): 522-530. DOI: 10.1007/s11769-012-0559-4 .

6223. Zhang, L., W. Lu, Y. An, D. Li and L. Gong. 2012. Response of non-point source pollutant loads to climate change in the Shitoukoumen reservoir catchment. Environmental Monitoring and Assessment. 184(1): 581-594. DOI: 10.1007/s10661-011-2353-7 .

6224. Zhang, L., X. Jin, C. He, B. Zhang, X. Zhang, J. Li, C. Zhao, J. Tian and C. DeMarchi. 2016. Comparison of SWAT and DLBRM for hydrological modeling of a mountainous watershed in arid Northwest China. Journal of Hydraulic Engineering. 21(5): 04016007. DOI: 10.1061/(ASCE)HE.1943-5584.0001313 .

6225. Zhang, L., X. Meng, H. Wang and M. Yang. 2019. Simulated runoff and sediment yield responses to land-use change using the SWAT Model in northeast China. Water. 11: 915. DOI: 10.3390/w11050915 .

6226. Zhang, L., X. Meng, H. Wang, M. Yang and S. Cai. 2020. Investigate the applicability of CMADS and CFSR reanalysis in northeast China. Water. 12(4): 996. DOI: 10.3390/w12040996 .

6227. Zhang, L., Y. Jiang, M. Yang, H. Wang, N. Dong, H. Wang, X. Liu, L. Chen and K. Liu. 2022. Quantifying the impacts of land use and cover change (LUCC) and climate change on discharge and sediment load in the Hunhe River Basin, Liaoning Province, northeast China. Water. 14(5): 737. DOI: 10.3390/w14050737 .

6228. Zhang, L., Y. Liu, L. Wu, D.-d. Cai and X.-y. Ma. 2016. Impact of land-use scenarios on monthly runoff modeled by SWAT. Fresenius Environmental Bulletin. 25(9): 3595-3605. URL: http://www.prt-parlar.de/download_feb_2016/.

6229. Zhang, L., Y. Zhao, Q. Ma, P. Wang, Y. Ge and W. Yu. 2021. A parallel computing-based and spatially stepwise strategy for constraining a semi-distributed hydrological model with streamflow observations and satellite-based evapotranspiration. Journal of Hydrology. 599: 126359. DOI: 10.1016/j.jhydrol.2021.126359 .

6230. Zhang, L., Z. Nan, W. Yu and Y. Ge. 2015. Modeling land-use and land-cover change and hydrological responses under consistent climate change scenarios in the Heihe River Basin, China. Water Resources Management. 29(13): 4701-4717. DOI: 10.1007/s11269-015-1085-9 .

6231. Zhang, L., Z. Nan, W. Yu and Y. Ge. 2016. Hydrological responses to land-use change scenarios under constant and changed climatic conditions. Environmental Management. 57(2): 412-431. DOI: 10.1007/s00267-015-0620-z .

6232. Zhang, L., Z. Nan, W. Yu, Y. Zhao and Y. Xu. 2018. Comparison of baseline period choices for separating climate and land use/land cover change impacts on watershed hydrology using distributed hydrological models. Science of the Total Environment. 622-623: 1016-1028. DOI: 10.1016/j.scitotenv.2017.12.055 .

6233. Zhang, L., Z. Nan, Y. Xu and S. Li. 2016. Hydrological impacts of land use change and climate variability in the headwater region of the Heihe River Basin, northwest China. PLoS ONE. 11(6): 00158394. DOI: 10.1371/journal.pone.0158394 .

6234. Zhang, L., Z. Xin and H. Zhou. 2020. Assessment of TMPA 3B42V7 and PERSIANN-CDR in driving hydrological modeling in a semi-humid watershed in northeastern China. Remote Sensing. 12(19): 3133. DOI: 10.3390/rs12193133 .

6235. Zhang, M., R. Stodolak and J. Xia. 2021. The impact of the changes in climate, land use and direct human activity on the discharge in Qinshui River Basin, China. Water. 13(21): 3147. DOI: 10.3390/w13213147 .

6236. Zhang, M., X. Wang and W. Zhou. 2021. Effects of water-saving irrigation on hydrological cycle in an irrigation district of Northern China. Sustainability. 13(15): 1913. DOI: 10.3390/su13158488 .

6237. Zhang, N., He, H.M., S.F. Zhang, X.H.Jiang, Z.Q. Xia and F. Huang. 2012. Influence of reservoir operation in the upper reaches of the Yangtze River (China) on the inflow and outflow regime of the TGR-based on the improved SWAT model. Water Resources Management. 26(3): 691-705. DOI: 10.1007/s11269-011-9939-2 .

6238. Zhang, P., R. Liu, Y. Bao, J. Wang, W. Yu and Z. Shen. 2014. Uncertainty of SWAT model at different DEM resolutions in a large mountainous watershed. Water Research. 53: 132–144. DOI: 10.1016/j.watres.2014.01.018 .

6239. Zhang, P., Y. Liu, Y. Pan and Z. Yu. 2013. Land use pattern optimization based on CLUE-S and SWAT models for agricultural non-point source pollution control. Mathematical and Computer Modelling. 58(3-4): 588–595. DOI: 10.1016/j.mcm.2011.10.061 .

6240. Zhang, Q.-L., Y.-X. Chen, G. Jilani, I.H. Shamsi, and Q.-G. Yu. 2010. Model AVSWAT apropos of simulating non-point source pollution in Taihu Lake Basin. Journal of Hazardous Materials. 174(1-3): 824-830. DOI: 10.1016/j.jhazmat.2009.09.127 .

6241. Zhang, S., W. Fan, Y. Li and Y. Yi. 2016. The influence of changes in land use and landscape patterns on soil erosion in a watershed. Science of the Total Environment. 574: 34-45. DOI: 10.1016/j.scitotenv.2016.09.024 .

6242. Zhang, S., Y. Lang, F. Yang, X. Qiao, X. Li, Y. Gu, Q. Yi, L. Luo and Q. Duan. 2023. Hydrological modeling in the Upper Lancang-Mekong River Basin using global and regional gridded meteorological re-analyses. Water. 15(12): 2209. DOI: 10.3390/w15122209 .

6243. Zhang, S., Y. Li, W. Fan and Y. Yi. 2017. Impacts of rainfall, soil type, and land-use change on soil erosion in the Liusha River watershed. Journal of Hydrologic Engineering. 22(4): 04016062. DOI: 10.1061/(ASCE)HE.1943-5584.0001479 .

6244. Zhang, S., Y. Liu and T. Wang. 2014. How land use change contributes to reducing soil erosion in the Jialing River Basin, China. Agricultural Water Management. 133: 65-73. DOI: 10.1016/j.agwat.2013.10.016 .

6245. Zhang, S., Y. Wu, B. Sivakumar, X. Mu, F. Zhao, P. Sun, Y. Sun, L. Qiu, J. Chen, X. Meng and J. Han. 2019. Climate change-induced drought evolution over the past 50 years in the southern Chinese Loess Plateau. Environmental Modelling & Software. 122: 104519. DOI: 10.1016/j.envsoft.2019.104519 .

6246. Zhang, S., Z. Li, X. Hou and Y. Yi. 2019. Impacts on watershed-scale runoff and sediment yield resulting from synergetic changes in climate and vegetation. Catena. 179: 129-138. DOI: 10.1016/j.catena.2019.04.007 .

6247. Zhang, S., Z. Li, X. Lin and C. Zhang. 2019. Assessment of climate change and associated vegetation cover change on watershed-scale runoff and sediment yield. Water. 11(7): 1373. DOI: 10.3390/w11071373 .

6248. Zhang, S-X., Q-Q. Zhang, Y-S. Liu, X-T. Yan, B. Zhang, C. Xing, J-L. Zhao and G-G. Ying. 2020. Emission and fate of antibiotics in the Dongjiang River Basin, China: Implication for antibiotic resistance risk. Science of the Total Environment. 712: 136518. DOI: 10.1016/j.scitotenv.2020.136518 .

6249. Zhang, T., J. Yang, A. Winrich, R.E. Will and C.B. Zou. 2024. Trade-off of ecosystem productivity and water use related to afforestation in southcentral USA under climate change. Science of the Total Environment. 915: 170255. DOI: 10.1016/j.scitotenv.2024.170255 .

6250. Zhang, T., Y. Wang, B. Wang and P. Feng. 2018. Understanding the main causes of runoff change by hydrological modeling: A case study in Luanhe River Basin, north China. Water. 10(8): 1028. DOI: 10.3390/w10081028 .

6251. Zhang, W., F.-Y. Sun, M. Liu and C.-L. Li. 2017. Quantifying the relationships of impact factors on non-point source pollution using the Boosted Regression Tree Algorithm. Polish Journal of Environmental studies. 26(1): 403-411. DOI: 10.15244/pjoes/64381 .

6252. Zhang, W., X. Zha, J. Li, W. Liang, Y. Ma, D. Fan and S. Li. 2014. Spatiotemporal change of blue water and green water resources in the headwater of Yellow River Basin, China. Water Resources Management. 28(13): 4715-4732. DOI: 10.1007/s11269-014-0769-x .

6253. Zhang, X. 2017. Simulating eroded soil organic carbon with the SWAT-C model. Environmental Modelling & Software. 102: 39-48. DOI: 10.1016/j.envsoft.2018.01.005 .

6254. Zhang, X. and J. Xia. 2009. Coupling the hydrological and ecological process to implement the sustainable water resources management in Hanjiang River Basin. Science in China Series E: Technological Sciences. 52(11): 3240-3248. DOI: 10.1007/s11431-009-0363-2 .

6255. Zhang, X. and L. Ren. 2021. Simulating and assessing the effects of seasonal fallow schemes on the water-food-energy nexus in a shallow groundwater-fed plain of the Haihe River Basin of China. Journal of Hydrology. 595: 125992. DOI: 10.1016/j.jhydrol.2021.125992 .

6256. Zhang, X. and M. Zhang. 2011. Modeling effectiveness of agricultural BMPs to reduce sediment load and organophosphate pesticides in surface runoff. Science of the Total Environment. 409(10): 1949-1958. DOI: 10.1016/j.scitotenv.2011.02.012 .

6257. Zhang, X. and R. Srinivasan. 2009. GIS-Based Spatial Precipitation Estimation: A Comparison of Geostatistical Approaches. Journal of the American Water Resources Association. 45(4): 894-906. DOI: 10.1111/j.1752-1688.2009.00335.x .

6258. Zhang, X. and R. Srinivasan. 2010. GIS-based spatial precipitation estimation using next generation radar and raingauge data. Environmental Modelling & Software. 25(12): 1781-1788. DOI: 10.1016/j.envsoft.2010.05.012 .

6259. Zhang, X. L., L. Ren and X.B. Kong. 2016. Estimating spatiotemporal variability and sustainability of shallow groundwater in a well-irrigated plain of the Haihe River basin using SWAT model. Journal of Hydrology. 541(Part B): 1221-1240. DOI: 10.1016/j.jhydrol.2016.08.030 .

6260. Zhang, X., C. Jiang, J. Huang, Z. Ni, J. Sun, Z. Li and T. Wen. 2022. Spatiotemporal evaluation of blue and green water in Xinjiang River Basin based on SWAT model. Water. 14(15): 2459. DOI: 10.3390/w14152429 .

6261. Zhang, X., F. Hao, H. Cheng and D. Li. 2015. Application of SWAT Model in the upstream watershed of the Luohe River. Chinese Geographical Science. 13(4): 334-339. DOI: 10.1007/s11769-003-0039-y .

6262. Zhang, X., F. Li and X. Yuan. 2022. Assessment model of rainwater resource utilization and influencing factors in arid and semiarid areas. Natural Resource Modeling. : e12366. DOI: 10.3390/rs14020400 .

6263. Zhang, X., H. Yang, H. Zhang, F. Fenicia, H. Peng and G. Xu. 2022. Hydrologic impacts of cascading reservoirs in the middle and lower Hanjiang River Basin under climate variability and land use change. Journal of Hydrology: Regional Studies. 44: 101253. DOI: 10.1016/j.ejrh.2022.101253 .

6264. Zhang, X., L. Chen and Z. Shen. 2021. Impacts of rapid urbanization on characteristics, sources and variation of fecal coliform at watershed scale. Journal of Environmental Management. 286: 112195. DOI: 10.1016/j.jenvman.2021.112195 .

6265. Zhang, X., L. Ren and L. Wan. 2018. Assessing the trade-off between shallow groundwater conservation and crop production under limited exploitation in a well-irrigated plain of the Haihe River basin using the SWAT model. Journal of Hydrology. 567: 253-266. DOI: 10.1016/j.jhydrol.2018.09.041 .

6266. Zhang, X., L. Ren and W. Feng. 2022. Comparison of the shallow groundwater storage change estimated by a distributed hydrological model and GRACE satellite gravimetry in a well-irrigated plain of the Haihe River Basin, China. Journal of Hydrology. 610: 127799. DOI: 10.1016/j.jhydrol.2022.127799 .

6267. Zhang, X., M.J. Booij and Y.P. Xu. 2015. Improved simulation of peak flows under climate change: Post-processing or composite objective calibration? Journal of Hydrometeorology. 16(5): 2187-2208. DOI: 10.1175/JHM-D-14-0218.1 .

6268. Zhang, X., P. Beeson, R. Link, D. Manowitz, R.C. Izaurralde, A. Sadeghi, A.M. Thomson, R. Sahajpal, R. Srinivasan and J.G. Arnold. 2013. Efficient multi-objective calibration of a computationally intensive hydrologic model with parallel computing software in Python. Environmental Modelling & Software. 46: 208–218. DOI: 10.1016/j.envsoft.2013.03.013 .

6269. Zhang, X., P. Chen, S. Dai and Y. Han. 2022. Assessment of the value of regional water conservation services based on SWAT model. Environmental Monitoring and Assessment. 194(8): 559. DOI: 10.1007/s10661-022-10247-w .

6270. Zhang, X., R. C. Izaurralde, Z. Zong, K. Zhao and A. M. Thomson. 2012. Evaluating the efficiency of a multi-core aware multi-objective optimization tool for calibrating the SWAT model. Transactions of the ASABE. 55(5): 1723-1731. DOI: 10.13031/2013.42363 .

6271. Zhang, X., R. Srinivasan and D. Bosch. 2009. Calibration and uncertainty analysis of the SWAT model using Genetic Algorithms and Bayesian Model Averaging. Journal of Hydrology. 374(3-4): 307-317. DOI: 10.1016/j.jhydrol.2009.06.023 .

6272. Zhang, X., R. Srinivasan and F. Hao. 2007. Predicting hydrologic response to climate change in the Luohe River Basin using the SWAT model. Transactions of the ASABE. 50(3): 901-910. DOI: 10.13031/2013.23154 .

6273. Zhang, X., R. Srinivasan and M. Van Liew. 2008. Multi-site calibration of the SWAT model for hydrologic modeling. Transactions of the ASABE. 51(6): 2039-2049. URL: http://www.brc.tamus.edu/SWAT/publications/sw7442.pdf.

6274. Zhang, X., R. Srinivasan and M. Van Liew. 2010. On the use of multi-algorithm, genetically adaptive multi-objective method for multi-site calibration of the SWAT model. Hydrological Processes. 24(15): 955-969. DOI: 10.1002/hyp.7528 .

6275. Zhang, X., R. Srinivasan, and M. Van Liew. 2009. Approximating SWAT model using artificial, neural network and support vector machine. Journal of the American Water Resources Association. 45(2): 460-474. DOI: 10.1111/j.1752-1688.2009.00302.x .

6276. Zhang, X., R. Srinivasan, B. Debele, and F. Hao. 2008. Runoff simulation of the headwaters of the Yellow River using the SWAT model with three snowmelt algorithms. Journal of the American Water Resources Association. 44(1): 48-61. DOI: 10.1111/j.1752-1688.2007.00137.x .

6277. Zhang, X., R. Srinivasan, J. Arnold, R.C. Izaurralde and D. Bosch. 2011. Simultaneous calibration of surface flow and baseflow simulations: A revisit of the SWAT model calibration framework. Hydrological Processes. 25(14): 2313-2320. DOI: 10.1002/hyp.8058 .

6278. Zhang, X., R. Srinivasan, K. Zhao and M. Van Liew. 2008. Evaluation of global optimization algorithms for parameter calibration of a computationally intensive hydrologic model. Hydrological Processes. 23(3): 430-441. DOI: 10.1002/hyp.7152 .

6279. Zhang, X., R.C. Izaurralde, J.G. Arnold, N.B. Sammons, D.H. Manowitz, A.M. Thomson and J.R. Williams. 2011. Comment on “Modeling Miscanthus in the Soil and Water Assessment Tool (SWAT) to Simulate Its Water Quality Effects As a Bioenergy Crop”. Environmental Science & Technology. 45(14): 6211-6212. DOI: 10.1021/es201463x .

6280. Zhang, X., R.C. Izaurralde, J.G. Arnold, J.R. Williams and R. Srinivasan. 2013. Modifying the Soil and Water Assessment Tool to simulate cropland carbon flux: Model development and initial evaluation. Science of the Total Environment. 463-464: 810-832. DOI: 10.1016/j.scitotenv.2013.06.056 .

6281. Zhang, X., X. Liu, Y. Luo and M. Zhang. 2008. Evaluation of water quality in an agricultural watershed as affected by almond pest management proctices. Water Research. 42(14): 1-26. DOI: 10.1016/j.watres.2008.05.018 .

6282. Zhang, X., Y. Luo and K.S. Goh. 2018. Modeling spray drift and runoff-related inputs of pesticides to receiving water. Environmental Pollution. 234: 48-58. DOI: 10.1016/j.envpol.2017.11.032 .

6283. Zhang, X., Y. Wang, H. Li, X. Sun and Z. Liu. 2022. Temporal and spatial distribution of non-point source pollutants in Sihe River Basin based on SWAT. Journal of Shandong University (Engineering Science). 52(3): 134-140. DOI: 10.6040/j.issn.1672-3961.0.2021.473 .

6284. Zhang, X., Y. Xu, F. Hao, C. Li and X. Wang. 2019. Hydrological components variability under the impact of climate change in a semi-arid river basin. Water. 11(6): 1122. DOI: 10.3390/w11061122 .

6285. Zhang, X., Y.-P. Xu and G. Fu. 2014. Uncertainties in SWAT extreme flow simulation under climate change. Journal of Hydrology. 515: 205-222. DOI: 10.1016/j.jhydrol.2014.04.064 .

6286. Zhang, X.-Y., J. Li, Y.-Z. Yang and Z. You. 2012. Runoff simulation of the catchment of the headwaters of the Yangtze River based on SWAT model. Journal of Northwest Forestry University. 27(5): 38-44. URL: http://ir.igsnrr.ac.cn/bitstream/311030/27422/2/%E5%9F%BA%E4%BA%8ESWAT%E6%A8%A1%E5%9E%8B%E7%9A%84%E9%95%BF%E6%B1%9F%E6%BA%90%E5%8C%BA%E5%BE%84%E6%B5%81%E6%A8%A1%E6%8B%9F.pdf.

6287. Zhang, Y. 2005. Development of study on model-SWAT and its application. Progress in Geography. 24(5): 121-130. DOI: 10.11820/dlkxjz.2005.05.014 .

6288. Zhang, Y. J. Xia, T. Liang and Q. Shao. 2010. Impact of water projects on river flow regimes and water quality in Huai River Basin. Water Resources Management. 24(5): 889-908. DOI: 10.1007/s11269-009-9477-3 .

6289. Zhang, Y., A.H. Arthington, S.E. Bunn, S. Mackay, J. Xia and M. Kennard. 2011. Classification of flow regimes for the environmental flow assessment in regulated rivers: The Huai River Basin, China. River Research and Applications. 28(7): 1-17. DOI: 10.1002/rra.1483 .

6290. Zhang, Y., B. Ren, A.S. Hursthouse, R. Deng and B. Hou. 2018. An improved SWAT for predicting manganese pollution load at the soil-water interface in a manganese mine area. Polish Journal of Environmental studies. 27(5): 2357-2365. DOI: 10.15244/pjoes/78618 .

6291. Zhang, Y., C. Tang, A. Ye, T. Zheng, X. Nie, A. Tu, H. Zhu and S. Zhang. 2020. Impacts of climate and land-use change on blue and green water: A case study of the Upper Ganjiang River Basin, China. Water. 12(10): 2661. DOI: 10.3390/w12102661 .

6292. Zhang, Y., F. Su, Z. Hao, C. Xu, Z. Yu, L. Wang and K. Tong. 2015. Impact of projected climate change on the hydrology in the headwaters of the Yellow River Basin. Hydrological Processes. 29(20): 4379-4397. DOI: 10.1002/hyp.10497 .

6293. Zhang, Y., H. Liu, J. Qi, P. Feng, X. Zhang, D.L. Liu, G.W. Marek, R. Srinivasan and Y. Chen. 2023. Assessing impacts of global climate change on water and food security in the black soil region of northeast China using an improved SWAT-CO2 model. Science of the Total Environment. 85(Part 2): 159482. DOI: 10.1016/j.scitotenv.2022.159482 .

6294. Zhang, Y., J. Hou, J. Gu, C. Huang and X. Li. 2017. SWAT-Based hydrological data assimilation system (SWAT-HDAS): Description and case application to river basin-scale hydrological predictions. Journal of Advances in Modeling Earth Systems. 9: 2863-2882. DOI: 10.1002/2017MS001144 .

6295. Zhang, Y., J. Hou, Y. Cao, J. Gu and C. Huang. 2017. OpenMP parallelization of a gridded SWAT (SWATG). Computers & Geosciences. 109: 228-237. DOI: 10.1016/j.cageo.2017.08.002 .

6296. Zhang, Y., J. Xia, J. Chen and M. Zhang. 2011. Water quantity and quality optimization modeling of dams operation based on SWAT in Wenyu River Catchment, China. Environmental Monitoring and Assessment. 173(1-4): 409-430. DOI: 10.1007/s10661-010-1396-5 .

6297. Zhang, Y., J. Xia, Q. Shao and Z. Zhai. 2013. Water quantity and quality simulation by improved SWAT in highly regulated Huai River Basin of China. Stochastic Environmental Research and Risk Assessment. 27(1): 11-27. DOI: 10.1007/s00477-011-0546-9 .

6298. Zhang, Y., L. Zhang, J. Hou, J. Gu and C. Huang. 2017. Development of an evapotranspiration data assimilation technique for streamflow estimates: A case study in semi-arid region. Sustainability. 9(10): 1658. DOI: 10.3390/su9101658 .

6299. Zhang, Y., M. Wang, J. Chen, P.-A. Zhong, X. Wu and S. Wu. 2021. Multiscale attribution analysis for assessing effects of changing environment on runoff: Case study of the Upstream Yangtze River in China. Journal of Water and Climate Change. 12(2): 627-646. DOI: 10.2166/wcc.2020.155 .

6300. Zhang, Y., P.-a. Zhong, J. Chen, J. Bing, D. Xu and M. Wang. 2017. Impacts of climate change and human activities on the Three Gorges Reservoir inflow. Water. 9(12): 957. DOI: 10.3390/w9120957 .

6301. Zhang, Y., Q. You, C. Chen and J. Ge. 2016. Impacts of climate change on streamflows under RCP scenarios: A case study in Xin River Basin, China. Atmospheric Research. 178-179: 521-534. DOI: 10.1016/j.atmosres.2016.04.018 .

6302. Zhang, Y., S. Zhang, J. Xia and D. Hua. 2013. Temporal and spatial variation of the main water balance components in the three rivers source region, China from 1960 to 2000. Environmental Earth Sciences. 68(4): 973–983. DOI: 10.1007/s12665-012-1800-2 .

6303. Zhang, Y., S. Zhang, X. Zhai and J. Xia. 2012. Runoff variation and its response to climate change in the Three Rivers Source Region. Journal of Geographical Sciences. 22(5): 781-794. DOI: 10.1007/s11442-012-0963-9 .

6304. Zhang, Y., Y. Hirabayashi, Q. Liu and S. Liu. 2015. Glacier runoff and its impact in a highly glacierized catchment in the southeastern Tibetan Plateau: Past and future trends. Journal of Glaciology. 61(228): 713-730. DOI: 10.3189/2015JoG14J188 .

6305. Zhang, Y., Y. Luo and L. Sun. 2016. Quantifying future changes in glacier melt and river runoff in the headwaters of the Urumqi River, China. Environmental Earth Sciences. 75: 770. DOI: 10.1007/s12665-016-5563-z .

6306. Zhang, Y., Y. Luo, L. Sun, S. Liu, X. Chen and X. Wang. 2016. Using glacier area ratio to quantify effects of melt water on runoff. Journal of Hydrology. 538: 269–277. DOI: 10.1016/j.jhydrol.2016.04.026 .

6307. Zhang, Y., Y. Zhao, Q. Wang, J. Wang, H. Li, J. Zhai, Y. Zhu and J. Li. 2016. Impact of land use on frequency of floods in Yongding River Basin, China. Water. 8(9): 401. DOI: 10.3390/w8090401 .

6308. Zhang, Y.X., Y. Li, X.Z. Zhang, C.Q. Zhang, W.T. Ye and Y. Li. 2019. A paleo-hydrological simulation experiment and its verification in an inland basin. Sciences in Cold and Arid Regions. 11(4): 267-282. URL: http://www.scar.ac.cn/EN/10.3724/SP.J.1226.2019.00267..

6309. Zhang, Y.-y., R.-x. Hua and R. Xia. 2017. Impact analysis of climate change on water quantity and quality on the Huaihe River Basin. Journal of Natural Resources. 32(1): 114-126. URL: http://www.jnr.ac.cn/EN/10.11849/zrzyxb.20160184.

6310. Zhang, Y-s., D-c. Shu, R. Li, Y-x. Wang, K. Huang and L-q. Zhang. 2022. Responses of ecohydrological processes to land use/cover change in the Chishui River Basin. Chinese Journal of Soil Science. 53(1): 56-65. DOI: 10.19336/j.cnki.trtb.2021072003 .

6311. Zhang, Z. and M. Wu. 2015. Progress and challenges in quantifying water quality and ecosystem responses from agricultural, forestry, and bioenergy landscapes. Current Sustainable Renewable Energy Report. 2(4): 128-135. DOI: 10.1007/s40518-015-0041-x .

6312. Zhang, Z., E. Getahun, M. Mu. and S. Chandrasekaran. 2021. Water supply planning considering uncertainties in future water demand and climate: A case study in an Illinois watershed. Journal of the American Water Resources Association. DOI: 10.1111/1752-1688.12948 .

6313. Zhang, Z., H. Si and L. Kong. 2013. Migration of non-point source nitrogen and phosphorus in small watershed based on SWAT model. Transactions of the Chinese Society of Agricultural Engineering. 29(2): 93-100. DOI: 10.3969/j.issn.1002-6819.2013.2.014 .

6314. Zhang, Z., J. Liu and J. Huang. 2020. Hydrologic impacts of cascade dams in a small headwater watershed under climate variability. Journal of Hydrology. 590: 125426. DOI: 10.1016/j.jhydrol.2020.125426 .

6315. Zhang, Z., Q. Wang, Q. Guan, X. Xiao, J. Mi and S. Lv. 2023. Research on the optimal allocation of agricultural water and soil resources in the Heihe River Basin based on SWAT and intelligent optimization. Agricultural Water Management. 279: 108177. DOI: 10.1016/j.agwat.2023.108177 .

6316. Zhang, Z., S. Chen, L. Wan, J. Cao, Q. Zhang and C. Yang. 2021. The effects of landscape pattern evolution on runoff and sediment based on SWAT model. Environmental Earth Sciences. 80(1): 2. DOI: 10.1007/s12665-020-09315-6 .

6317. Zhang, Z., W. LU, H. Chu, W. Cheng and Y. Zhao. 2014. Uncertainty analysis of hydrological model parameters based on the bootstrap method: A case study of the SWAT model applied to the Dongliao River Watershed, Jilin Province, northeastern China. Science China Technological Sciences. 57(1): 219-229. DOI: 10.1007/s11431-013-5385-0 .

6318. Zhang. D., Q. Lin, X. Chen and T. Chai. 2019. Improved curve number estimation in SWAT by reflecting the effect of rainfall intensity on runoff generation. Water. 11(1): 163. DOI: 10.3390/w11010163 .

6319. Zhao, A. 2016. Effect of different soil data on hydrological process modeling in Weihe River basin of northwest China. Arabian Journal of Geosciences. 9: 664. DOI: 10.1007/s12517-016-2695-0 .

6320. Zhao, A. Y. Zhao, X. Liu, X. Zhu, Y. Pan and S. Chen. 2016. Impact of human activities and climate variability on green and blue water resources in the Weihe River Basin of northwest China. Scientia Geographica Sinica. 36(4): 571-579. URL: http://geoscien.neigae.ac.cn/EN/10.13249/j.cnki.sgs.2016.04.011.

6321. Zhao, A., X. Liu, X. Zhu, Y. Pan and Y. Li. 2015. Spatiotemporal patterns of droughts based on SWAT model for the Weihe River Basin. Progress in Geography. 34(9): 1156-1166. DOI: 10.18306/dlkxjz.2015.09.008 .

6322. Zhao, A., X. Zhu, X. Liu, Y. Pan and D. Zuo. 2016. Impacts of land use change and climate variability on green and blue water resources in the Weihe River Basin of northwest China. Catena. 137: 318-327. DOI: 10.1016/j.catena.2015.09.018 .

6323. Zhao, A.-Z., X.-F. Zhu, Y.-Z. Pan and X. Liu. 2016. Spatiotemporal variation of blue-green water under typical reference years in the Weihe River basin. Chinese Journal of Agrometeorology. 37(2): 149-157. URL: https://zgnyqx.ieda.org.cn/EN/abstract/abstract3389.shtml.

6324. Zhao, C.S., C.L. Sun, J. Xia, X.P. Hao, G.F. Li, K. Rebensburg and C.M. Liu. 2010. An impact assessment method of dam/sluice on instream ecosystem and its application to the Bengbu Sluice of China. Water Resources Management. 24(15): 4551-4565. DOI: 10.1007/s11269-010-9675-z .

6325. Zhao, F., Y. Wu, B. Sivakumar, A. Long, L. Qiu, J. Chen, L. Wang, S. Liu and H. Hu. 2019. Climatic and hydrologic controls on net primary production in a semiarid loess watershed. Journal of Hydrology. 568: 803-815. DOI: 10.1016/j.jhydrol.2018.11.031 .

6326. Zhao, F., Y. Wu, J. Hui, B. Sivakumar, X. Meng and S. Liu. 2021. Projected soil organic carbon loss in response to climate warming and soil water content in a loess watershed. Carbon Balance and Management. 16: 24. DOI: 10.1186/s13021-021-00187-2 .

6327. Zhao, F., Y. Wu, L. Qiu, B. Sivakumar, F. Zhang, Y. Sun, L. Sun, Q. Li and A. Voinov. 2018. Spatiotemporal features of the hydro-biogeochemical cycles in a typical loess gully watershed. Ecological Indicators. 91: 542-554. DOI: 10.1016/j.ecolind.2018.04.027 .

6328. Zhao, F., Y. Wu, L. Qiu, Y. Sun, L. Sun, Q. Li, J. Niu and G. Wang. 2018. Parameter uncertainty analysis of the SWAT model in a Mountain-Loess transitional watershed on the Chinese Loess Plateau. Water. 10(6): 690. DOI: 10.3390/w10060690 .

6329. Zhao, F., Y. Wu, L. Wang, S. Liu, X. Wei, J. Xiao, L. Qiu and P. Sun. 2020. Multi-environmental impacts of biofuel production in the U.S. Corn Belt: A coupled hydro-biogeochemical modeling approach. Journal of Cleaner Production. 251: 119561. DOI: 10.1016/j.jclepro.2019.119561 .

6330. Zhao, F., Y. Wu, X. Yin, G. Alexandrov and L. Qiu. 2021. Toward sustainable revegetation in the loess plateau using coupled water and carbon management. Engineering. DOI: 10.1016/j.eng.2020.12.017 .

6331. Zhao, F., Y. Wu, Y. Yao, K. Sun, X. Zhang, L. Winowiecki, T.-G. Vågen, J. Xu, L. Qiu, P. Sun and Y. Sun. 2020. Predicting the climate change impacts on water-carbon coupling cycles for a loess hilly-gully watershed. Journal of Hydrology. 581: 124388. DOI: 10.1016/j.jhydrol.2019.124388 .

6332. Zhao, G., X. Mu, J. Jiao, P. Gao, W. Sun, E. Li, Y. Wei and J. Huang. 2018. Assessing response of sediment load variation to climate change and human activities with six different approaches. Science of the Total Environment. 639: 773-784. DOI: 10.1016/j.scitotenv.2018.05.154 .

6333. Zhao, J., C.-C. Xu, S.-T. Gao and J.-X. Li. 2015. Hydrological modeling in the Urumqi River basin based on SWAT. Arid Land Geography. 38(4): 666-674. URL: http://alg.xjegi.com/EN/Y2015/V38/I4/666.

6334. Zhao, K., J. Li, X. Ma and C. Deng. 2022. The effects of land-use and climatic changes on the hydrological environment in the Qinling Mountains of Shaanxi Province. Forests. 13(11): 1776. DOI: 10.3390/f13111776 .

6335. Zhao, P., B. Xia, Y. Hu and Y. Yang. 2013. A spatial multi-criteria planning scheme for evaluating riparian buffer restoration priorities. Ecological Engineering. 54: 155-164. DOI: 10.1016/j.ecoleng.2013.01.037 .

6336. Zhao, P., Lü, H., Yang, H., Wang, W. and Fu, G. 2019. Impacts of climate change on hydrological droughts at basin scale: A case study of the Weihe River Basin, China. Quaternary International. 513: 37-46. DOI: 10.1016/j.quaint.2019.02.022 .

6337. Zhao, Y., M.A. Nearing and D.P. Guertin. 2022. Modeling hydrologic responses using multi-site and single-site rainfall generators in a semi-arid watershed. International Soil and Water Conservation Research. 10(2): 177-187. DOI: 10.1016/j.iswcr.2021.09.003 .

6338. Zhao, Z., H. Wang, Q. Bai, Y. Wu and C. Wang. 2020. Quantitative analysis of the effects of natural and human factors on a hydrological system in Zhangweinan Canal Basin. Water. 12(7): 1864. DOI: 10.3390/w12071864 .

6339. Zhao,H., H. Li, Y. Xuan, C. Li and H. Ni. 2022. Improvement of the SWAT model for snowmelt runoff simulation in seasonal snowmelt area using remote sensing data. Remote Sensing. 14(22): 5823. DOI: 10.3390/rs14225823 .

6340. Zheng, M., Y. Sheng, R. Sun, C. Tian, H. Zhang, J. Ning, Q. Sun, Z. Li, S.H. Bottrell and R.J.G. Mortimer. 2017. Identification and quantification of nitrogen in a reservoir, Jiaodong Peninsula, China. Water Environment Research. 89: 369-377. DOI: 10.2175/106143017X14839994523226 .

6341. Zheng, S., F. Wang, J. Yu and Q. Dong. 2019. Effect of hydrologic response unit delineation on the SWAT model results of total nitrogen simulation. Journal of Agro-Environment Science. 38(6): 1305-1311. URL: http://www.aes.org.cn/nyhjkxxben/ch/reader/view_abstract.aspx?file_no=20190615&flag=1.

6342. Zheng, Y. and F. Han. 2016. Markov Chain Monte Carlo (MCMC) uncertainty analysis for watershed water quality modeling and management. Stochastic Environmental Research and Risk Assessment. 30(1): 293-308. DOI: 10.1007/s00477-015-1091-8 .

6343. Zheng, Y., G. Lei and P. Yu. 2021. Eco-compensation schemes for controlling agricultural non-point source pollution in Maoli Lake Watershed. Water. 13(11): 1536. DOI: 10.3390/w13111536 .

6344. Zheng, Y., J. Li, T. Zhang, Y. Rong and P. Feng. 2021. Exploring the application of flood scaling property in hydrological model calibration. Journal of Hydrometeorology. 22(12): 3255-3274. DOI: 10.1175/JHM-D-21-0123.1 .

6345. Zhenyao, S., C. Lei and C. Tao. 2013. The influence of parameter distribution uncertainty on hydrological and sediment modeling: A case study of SWAT model applied to the Daning watershed of the Three Gorges Reservoir Region, China. Stochastic Environmental Research and Risk Assessment. 27(1): 235-251. DOI: 10.1007/s00477-012-0579-8 .

6346. Zhenyao, S., C. Lei, L. Qian, L. Ruimin and H. Qian. 2012. Impact of spatial rainfall variability on hydrology and nonpoint source pollution modeling. Journal of Hydrology. 472-473: 205-215. DOI: 10.1016/j.jhydrol.2012.09.019 .

6347. Zhi, L., L. Wen-zhao, Z. Xun-chang and Z. Fen-li. 2009. Impacts of land use change and climate variablility on hydrology in an agricultural catchment on the Loess Plateau of China. Journal of Hydrology. 377(1-2): 35-42. DOI: 10.1016/j.jhydrol.2009.08.007 .

6348. Zhou S., Y. Wang, J. Chang, A. Guo and Z. Li. 2018. Investigating the dynamic influence of hydrological model parameters on runoff simulation using sequential uncertainty fitting-2-based multilevel-factorial-analysis method. Water. 10(9): 1177. DOI: 10.3390/w10091177 .

6349. Zhou, F., Y. Xu, Y. Chen, C.-Y. Xu, Y. Gao and J. Du. 2013. Hydrological Response to Urbanization at Different Spatio-temporal Scales simulated by coupling of CLUE-S and the SWAT model in the Yangtze River Delta region. Journal of Hydrology. 485: 113–125. DOI: 10.1016/j.jhydrol.2012.12.040 .

6350. Zhou, G., M. Cui, J. Wan and S. Zhang. 2021. A review on snowmelt models: Progress and prospect. Sustainability. 13(20): 11485. DOI: 10.3390/su132011485 .

6351. Zhou, G., X. Wei, Y. Wu, S. Liu, Y. Huang, J. Yan, D. Zhang, Q. Zhang, J. Liu, Z. Meng, C. Wang, G. Chu, S. Liu, X. Tang and X. Liu. 2011. Quantifying the hydrological reponses to climate change in an intact forested small watershed in Southern China. Global Change Biology. 17(12): 3736–3746. DOI: 10.1111/j.1365-2486.2011.02499.x .

6352. Zhou, J., D. He, Y. Xie, Y. Liu, Y. Yang, H. Sheng, H. Guo, L. Zhao and R. Zou. 2015. Integrated SWAT model and statistical downscaling for estimating streamflow response to climate change in the Lake Dianchi watershed, China. Stochastic Environmental Research and Risk Assessment. 29(4): 1193-1210. DOI: 10.1007/s00477-015-1037-1 .

6353. Zhou, J., Y. Liu, H. Guo and D. He. 2014. Combining the SWAT model with sequential uncertainty fitting algorithm for streamflow prediction and uncertainty analysis for the Lake Dianchi Basin, China. Hydrological Processes. 28(3): 521–533. DOI: 10.1002/hyp.9605 .

6354. Zhou, L., Y. Meng, S.A. Vaghefi, P.A. Marras, C. Sui, C. Lu and K.C. Abbaspour. 2020. Uncertainty-based metal budget assessment at the watershed scale: Implications for environmental management practices. Journal of Hydrology. 584: 124699. DOI: 10.1016/j.jhydrol.2020.124699 .

6355. Zhou, S., W. Zhang and Y. Guo. 2020. Impacts of climate and land-use changes on the hydrological processes in the Amur River basin. Water. 12(1): 76. DOI: 10.3390/w12010076 .

6356. Zhou, W., Z. Zhu, Y. Xie and Y. Cai. 2021. Impacts of rainfall spatial and temporal variabilities on runoff quality and quantity at the watershed scale. Journal of Hydrology. 603(Part C): 127057. DOI: 10.1016/j.jhydrol.2021.127057 .

6357. Zhou, X.V., C.D. Clark, D.M. Lambert, B.C. English, J.A. Larson and C.N. Boyer. 2015. Biomass supply and nutrient runoff abatement under alternative biofuel feedstock production subsidies. Agricultural Systems. 139: 250-259. DOI: 10.1016/j.agsy.2015.08.002 .

6358. Zhou, X.V., C.D. Clark, S.S. Nair, S.A. Hawkins and D.M. Lambert. 2015. Environmental and economic analysis of using SWAT to simulate the effects of switchgrass production on water quality in an impaired watershed. Agricultural Water Management. 160: 1-13. DOI: 10.1016/j.agwat.2015.06.018 .

6359. Zhou, Y., C. Lai, Z. Wang, X. Chen, Z. Zeng, J. Chen and X. Bai. 2018. Quantitative evaluation of the impact of climate change and human activity on runoff change in the Dongjiang River Basin, China. Water. 10: 571. DOI: 10.3390/w10050571 .

6360. Zhou, Y., L. Zhao, J. Cao and Y. Wang. 2022. Using an improved SWAT model to simulate karst sinkholes: A case study in southwest China. Frontiers in Environmental Science. 10: 950098. DOI: 10.3389/fenvs.2022.950098 .

6361. Zhou, Y., Y.J. Xu, W. Xiao, J. Wang, Y. Huang and H. Yang. 2017. Climate change impacts of flow and suspended yield in headwaters of high-latitude regions - A case study in China's far northeast. Water. 9(12): 966. DOI: 10.3390/w9120966 .

6362. Zhou, Z.X. and J. Li. 2015. The correlation analysis on the landscape pattern index and hydrological processes in the Yanhe watershed, China. Journal of Hydrology. 524: 417–426. DOI: 10.1016/j.jhydrol.2015.02.028 .

6363. Zhu, C. and Y. Li. 2014. Long-term hydrological impacts of land use/land cover change from 1984 to 2010 in the Little River Watershed, Tennessee. International Soil and Water Conservation Research. 2(2): 11-22. DOI: 10.1016/S2095-6339(15)30002-2 .

6364. Zhu, H. Y. Li, Z. Liu, X. Shi, B. Fu and Z. Xing. 2015. Using SWAT to simulate streamflow in Huifa River basin with ground and Fengyun precipitation data. Journal of Hydroinformatics. 17(5): 834-844. URL: http://www.iwaponline.com/jh/up/jh2015104.htm.

6365. Zhu, H., Y. Li, Y. Huang, Y. Li, C. Hou and X. Shi. 2018. Evaluation and hydrological application of satellite-based precipitation datasets in driving hydrological models over the Huifa River Basin in Northeast China. Atmospheric Research. 207: 28-41. DOI: 10.1016/j.atmosres.2018.02.022 .

6366. Zhu, K., L. Chen, S. Chen, C. Sun, W. Wang and Z. Shen. 2021. New framework for managing the water environmental capacity integrating the watershed model and stochastic algorithm. Science of the Total Environment. 816: 151659. DOI: 10.1016/j.scitotenv.2021.151659 .

6367. Zhu, K., X. Qiu, Y. Luo, M. Dai, X. Lu, C. Zang, W. Zhang, X. Gan and W. Zhula. 2022. Spatial and temporal dynamics of water resources in typical ecosystems of the Dongjiang River Basin, China. Journal of Hydrology. 614(Part B): 128617. DOI: 10.1016/j.jhydrol.2022.128617 .

6368. Zhu, K., Z. Xie, Y. Zhao, F. Lu, X. Song, L. Li and X. Song. 2018. The assessment of green water based on the SWAT model: A case study in the Hai River Basin, China. Water. 10: 798. DOI: 10.3390/w10060798 .

6369. Zhu, L., C.-Z. Qin, A.-X. Zhu, J. Liu and H. Wu. 2019. Effects of different spatial configuration units for the spatial optimization of watershed best management practice scenarios. Water. 11(2): 262. DOI: 10.3390/w11020262 .

6370. Zhu, Li, L. WenZhao, Z. XunChang and Z. FenLi. 2010. Assessing and regulating the impacts of climate change on water resources in the Heihe watershed on the Loess Plateau of China. Science China Earth Sciences. 53(5): 710-720. DOI: 10.1007/s11430-009-0186-9 .

6371. Zhu, N., C. Ma, Y. Wang, H. Zhnag and J. Zhu. 2016. Effects of varied land use structures on runoff-sediment yield based on SWAT model. Science of Soil and Water Conservation. 14(4): 105-112. URL: http://journal12.magtechjournal.com/Jweb_stbc/EN/abstract/abstract10257.shtml.

6372. Zhu, Q., K.-l. Hsu, Y.-P. Xu and T. Yang. 2017. Evaluation of a new satellite-based precipitation data set for climate studies in the Xiang River basin, southern China. International Journal of Climatology. 37(13): 4561-4575. DOI: 10.1002/joc.5105 .

6373. Zhu, Q., W. Xuan, L. Liu and Y-P. Xu. 2016. Evaluation and hydrological application of precipitation estimates derived from PERSIANN-CDR, TRMM 3B42V7, and NCEP-CFSR over humid regions in China. Hydrological Processes. 30(17): 3061–3083. DOI: 10.1002/hyp.10846 .

6374. Zhu, Q., X. Gao, Y.-P. Xu and Y. Tian. 2019. Merging multi-source precipitation products or merging their simulated hydrological flows to improve streamflow simulation. Hydrological Sciences Journal. 64(8): 910-920. DOI: 10.1080/02626667.2019.1612522 .

6375. Zhu, Q., X. Zhang, C. Ma, C. Gao and Y. P. Xu. 2016. Investigating the uncertainty and transferability of parameters in SWAT model under climate change. Hydrological Sciences Journal. 61(5): 914-930. DOI: 10.1080/02626667.2014.1000915 .

6376. Zhu, X., A. Zhang, P. Wu, W. Qi, G. Fu, G. Yue and X. Liu. 2019. Uncertainty impacts of climate change and downscaling methods on future runoff projections in the Biliu River Basin. Water. 11(10): 2130. DOI: 10.3390/w11102130 .

6377. Zhu, X., K. Chang, W. Cai, A. Zhang, G. Yue and X. Zhao. 2022. Response of runoff and nitrogen loadings to climate and land use changes in the Middle Fenhe River Basin in northern China. Journal of Water and Climate Change. 13(7): 2817-2836. DOI: 10.2166/wcc.2022.121 .

6378. Zhu, Y., B. Li, L Lian, T. Wu, J. Wang, F. Dong and Y. Wang. 2022. Quantifying the effects of climate variability, land-use changes, and human activities on drought based on the SWAT-PDSI model. Remote Sensing. 14(16): 3895. DOI: 10.3390/rs14163895 .

6379. Zhu, Y., L. Chen, G. Wei, S. Li and Z. Shen. 2019. Uncertainty assessment in baseflow nonpoint source pollution prediction: The impacts of hydrographic separation methods, data sources and baseflow period assumptions. Journal of Hydrology. 574: 915-925. DOI: 10.1016/j.jhydrol.2019.05.010 .

6380. Zhu, Y., L. Chen, K. Wang, W. Wang, C. Wang and Z. Shen. 2019. Evaluating the spatial scaling effect of baseflow and baseflow nonpoint source pollution in a nested watershed. Journal of Hydrology. 579: 124221. DOI: 10.1016/j.jhydrol.2019.124221 .

6381. Zhu, Y., Z.-W. Liang, W. Li, Y. Yang, M.-Y. Yang, W. Mao, H.-L. Xu and W.-X. Wu. 2013. Watershed water environment pollution models and their applications: A review. Chinese Journal of Applied Ecology. 24(10): 3012-3018. URL: http://www.cjae.net/EN/Y2013/V24/I10/3012.

6382. Zhu, Z., C. Fu, H. Wu, H. Wu, Y. Cao and Y. Xia. 2023. Decoding the hundred-year water level changes of the largest saline lake in China: A joint lake-basin modeling study based on a revised SWAT+. Journal of Hydrology: Regional Studies. 49: 101521. DOI: 10.1016/j.ejrh.2023.101521 .

6383. Zhu, Z., K. Wang, M. Lei, X. Li, X. Li, L. Jiang, X. Gao, S. Li and J. Liang. 2022. Identification of priority areas for water ecosystem services by a techno-economic, social and climate change modeling framework. Water Research. 221: 118766. DOI: 10.1016/j.watres.2022.118766 .

6384. Zhu, Z., X. Li, Q. Bu, Q. Yan, L. Wen, X. Chen, X. Li, M. Yan, L. Jiang, G. Chen, S. Li, X. Gao, G. Zeng and J. Liang. 2023. Land-water transport and sources of nitrogen pollution affecting the structure and function of riverine microbial communitities. Environmental Science & Technology. 57(7): 2726-2738. DOI: 10.1021/acs.est.2c04705 .

6385. Zhuang, X.W., Y.P. Li, G.H. Huang and X.Q. Wang. 2016. A hybrid factorial stepwise-cluster analysis method for streamflow simulation - a case study in northwestern China. Hydrological Sciences Journal. 61(15): 2775–2788. DOI: 10.1080/02626667.2015.1125482 .

6386. Zhuang, Y., L. Zhang, Y. Du and G. Chen. 2016. Current patterns and future perspectives of best management practices research: A bibliometric analysis. Journal of Soil and Water Conservation. 71(4): 98A-104A. DOI: 10.2489/jswc.71.4.98A .

6387. Ziadat, F.M., Y. Dhanesh, D. Shoemate, R. Srinivasan, B. Narasimhan and J. Tech. 2015. Soil–Landscape Estimation and Evaluation Program (SLEEP) to predict spatial distribution of soil attributes for environmental modeling. International Journal of Agricultural and Biological Engineering. 8(3): 158-172. DOI: 10.3965/j.ijabe.20150803.1270 .

6388. Zion, M.S., S.M. Pradhanang, D.C. Pierson, A. Anandhi, D.G. Lounsbury, A.H. Matonse and E.M. Schneiderman. 2011. Investigation and modeling of winter streamflow timing and magnitude under changing climate conditions for the Catskill Mountain region, New York, USA. Hydrological Processes. 25(21): 3289-3301. DOI: 10.1002/hyp.8174 .

6389. Zolghadr-Asli, B. 2017. Discussion of “Multiscale assessment of the impacts of climate change on water resources in Tanzania” by Umesh Adhikari A. Pouyan Nejadhashemi, Matthew R. Herman, and Joseph P. Messina. Journal of Hydrologic Engineering. 22(8): 07017010. DOI: 10.1061/(ASCE)HE.1943-5584.0001553 .

6390. Zomorodian, S.M.A. and S. Dowlatabadi. 2019. Modeling of river discharge in the Firoozabad watershed using Soil and Water Assessment Tool model. International Journal of Energy and Water Resources. 3: 13-21. DOI: 10.1007/s42108-018-0007-y .

6391. Zong, M., Y. Hu, M. Liu, C. Li, C. Wang and X. Ping. 2020. Effects of landscape pattern change on water yield and nonpoint source pollution in the Hun-Taizi River Watershed, China. International Journal of Environmental Research and Public Health. 17: 3060. DOI: 10.3390/ijerph17093060 .

6392. Zong, M., Y. Hu, M. Liu, C. Li, C. Wang and J. Liu. 2021. Quantifying the contribution of agricultural and urban non-point source pollutant loads in watershed with urban agglomeration. Water. 13(10): 1385. DOI: 10.3390/w13101385 .

6393. Zoratipour, M., H. Zarei, M.R. Sharifi and F. Radmanesh. 2021. Hydrological simulation of Bakhtegan Basin in Iran using the SWAT model. Irrigation Science. 44(2): 39-51. DOI: 10.22055/jise.2021.36821.1964 .

6394. Zou S., H. Ruan, Z. Lu, D. Yang, Z. Xiong and Z. Yin. 2016. Runoff simulation in the upper reaches of Heihe River Basin based on the RIEMS–SWAT model. Water. 8(10): 455. DOI: 10.3390/w8100455 .

6395. Zou, C.B., L. Qiao and B.P. Wilcox. 2016. Woodland expansion in central Oklahoma will significantly reduce streamflows—A modeling analysis. Ecohydrology. 9(5): 807–816. DOI: 10.1002/eco.1684 .

6396. Zou, L., J. Xia and D. She. 2017. Drought characteristic analysis based on an improved PDSI in the Wei River Basin of China. Water. 9: 178. DOI: 10.3390/w9030178 .

6397. Zou, M., J. Niu, S. Kang, X. Li and H. Lu. 2017. The contribution of human agricultural activities to increasing evapotranspiration is significantly greater than climate change effect over Heihe agricultural region. Scientific Reports. 7: 8805. DOI: 10.1038/s41598-017-08952-5 .

6398. Zou, M., S. Kang, J. Niu and H. Lu. 2018. A new technique to estimate regional irrigation water demand and driving factor effects using an improved SWAT model with LMDI factor decomposition in an arid basin. Journal of Cleaner Production. 185: 814-828. DOI: 10.1016/j.jclepro.2018.03.056 .

6399. Zou, M., S. Kang, J. Niu and H. Lu. 2020. Untangling the effects of future climate change and human activity on evapotranspiration in the Heihe agricultural region, Northwest China. Journal of Hydrology. 585: 124323. DOI: 10.1016/j.jhydrol.2019.124323 .

6400. Zu, X., C. Zhang, W. Qi, W. Cai, X. Zhao and X. Wang. 2018. Multiple climate change scenarios and runoff response in Biliu River. Water. 10(2): 126. DOI: 10.3390/w10020126 .

6401. Zuma, D.S., K. Murtilaksono and Y. Suharnoto. 2017. Analysis of rainfall and discharge with SWAT model using the moving average method in Ciliwung Hulu Watershed. Jurnal Teknik Pengairan. 7(2): 98-106. URL: http://journal.ipb.ac.id/index.php/jpsl/article/view/13348.

6402. Zuo, D., Y. Han, X. Gao, G. Ma, Z. Xu, Y. Bi, K.C. Abbaspour and H. Yang. 2022. Identification of priority management areas for non-point source pollution based on critical source areas in an agricultural watershed of northeast China. Environmental Research. 214(Part 2): 113892. DOI: 10.1016/j.envres.2022.113892 .

6403. Zuo, D., Z. Xu, D. Peng, J. Song, L. Cheng, S. Wei, K.C. Abbaspour and H. Yang. 2014. Simulating spatiotemporal variability of blue and green water resources availability with uncertainty analysis. Hydrological Processes. 29(8): 1942-1955. DOI: 10.1002/hyp.10307 .

6404. Zuo, D., Z. Xu, J. Zhao, K.C. Abbaspour and H. Yang. 2014. Response of runoff to climate change in the Wei River basin, China. Hydrological Sciences Journal. 60(3): 508-522. DOI: 10.1080/02626667.2014.943668 .

6405. Zuo, D., Z. Xu, W. Yao, S. Jin, P. Xiao and D. Ran. 2016. Assessing the effects of changes in land use and climate on runoff and sediment yields from a watershed in the Loess Plateau of China. Science of the Total Environment. 544: 238-250. DOI: 10.1016/j.scitotenv.2015.11.060 .

6406. Zy, Z., H. Si, B. Feng, Y. Wang, M. Lv, and B. Wagan. 2014. Research of hydrological responses to land-use variability in a semiarid watershed based on SWAT Model. Fresenius Environmental Bulletin. 23(5): 1190-1197. DOI: 10.1080/02626667.2014.943668 .