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YIELD ESTIMATION THROUGHOUT THE GROWING SEASON

The.1993 adverse weather and floods in the midwestern United States caused enormous damage.
Apart from the impacts to urban areas, most of the ponding and flood damage in the Upper Midwest
occurred on farmland with significant effects on agricultural yields and production. _

Although public officials and policy makers knew that the agricultural damage was extensive
during the summer of 1993, information was imprecise. Because the setting of policy parameters,
such as those relating to disaster assistance, emergency wetlands reserve, and the emergency
conservation program, depended directly on expectations of harvested yields, intraseason
quantification of weather-induced impacts was required. Given this need, the Food and Agricultural
'Policy Research Institute (FAPRI) of Iowa State University was asked to estimate the extent of the
flood damage in Iowa, detailing the impacts on acreage, yields, prices, and farm income (Smith et al.
1993). This experience of 1993 induced FAPRI to examine alternative procedures for estimating
yields throughout the growing season. One of the more promising alternatives, in terms of parsimony
and data availability, is presented in this paper.

The exploratory procedure iliustrated in the study utilizes pooling of data and a maximum
likelihood approach to incorporate crop condition information into state-level yield estimates as the
growing season progresses. Initially, a weighting procedure was employed to create a crop condition
index based on USDA’s condition classification. The index then was used as an additional
explanatory variable in pooled yield regressions. Using this technique, FAPRI estimated yields for
corn in Iowa to average 111.9 bushels per acre, 3.1 bushels below USDA’s yield estimate in their
August crop production report. Similar results were obtained for the remainder of the growing
season. But FAPRI estimates were consistently closer to actual average yields for Jowa corn that
were ultimately under 90 bushels per acre. Because the results were encouraging, further evaluation
of crop condition information use was warranted. This study describes the present phase of that
research.

Many previous studies of yield estimation have concentrated on estimating yield as a function of
biological constraints such as fertilizer, pesticides, plant population, and other factors. However, it is
difficult for these models to explain extreme weather events (Wendland 1987). In addition,

considerable data maintenance is required to support these models. This study attempts to combine a

parsimonious approach with explanatory variables that are better able to reflect extreme conditions.
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Other studies have tried to estimate the relationship between yields and weather (Willimack et al.
1985). The principal limitations of such techniques are that they provide only one estimate of yield in

time, are not parsimonious, and require site-specific temperature and precipitation observations.

Theoretical Development
In general, the approach to estimating average ending yields based on crop conditions proceeds
from the notion that there is one unique yield associated with each condition classification. This study
uses crop conditions reported by USDA. USDA breaks crop conditions into five classifications: very
poor, poor, fair, good, and excellent.. Thus, theoretically, there exists some set of yields associated

with each crop condition such that the following is true:
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This approach can easily be extended to reflect average yield for any region. In this study,
state-level yields are evaluated, so a subscript s is added to denote the yield and set of weights or

propertions for a particular state:
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Since the appropriate sets of yields corresponding to the crop conditions in each state are
unknown, they must be estimated. Ordinarily, it would be a simpie matter to estimate the set of

yields for each state by regressing state average yields on the percent of crop in each category.
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However, with only eight years of annual observations on crop conditions, there are not enough
degrees of freedom for accurate estimation. Given that data on yields and crop conditions are
available for major producing states, pooling cross-sectional and time-series data solves the degrees of
freedom problem.'

The pooled set of data consists of yields and crop conditions for each state. Since actual yield
levels vary by state due to different soil types, fertilizer rates, pesticide rates, weather deviations, and
other factors, the weights assigned to each crop condition category may also vary by state. For
example, a corn crop in very poor condition in Iowa may yield an average of 80 bushels per acre,
whereas a corn crop in very poor condition in Georgia may yield an average of 30 bushels per acre.
The fact that yield levels vary by state forces the inclusion of yield shifters unique to each state.
However, if yield shifters for all five crop condition categories for each state are included, significant
degrees of freedom are lost. An alternative is to estimate an average yield, conditional upon a
particular set of classification yields (y;;) for each crop condition type and the percent of crop in each
crop condition type, thus regressing actual yield on the calculated conditional yields for each state.
Since the appropriate set of classification yields is unknown, the yields must be estimated. In order to
let the sets of yields vary by state, dummy variables for n—1 states must aiso be included.

One other problem arises with the pooled set of data. In addition to yield levels varying across
states, the variance of yields among states is also different. This suggests that some method to
account for the unequal variance among states must be used. A form of weighted least squares for
pooled data is used to correct this problem.

Note that the yield's are also being estimated across time. With increases in technology—such as
new hybrids, better weed and pest control, and a wide variety of other factors—some yield growth is
to be expected. In addition, since some technologies are region-specific, yields may grow at different
rates in different states. To account for this varying change in technology, trend variables for each
state should also be included in the regression.

The functional form for estimating final average yield is then described by:

5
-Fn = Bsz YJ' ci.r.r + A.r T+ a.se:r’

i=1
where

= Percent of crop in condition i,
T = Time trend,
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v,s = Estimated yield associated with each crop condition classification, and
e, = White noise error term.

This model is nonlinear in parameters but, conditional on the v;, it can be estimated using
weighted least squares. Estimates of the y; were found using a grid search technique that identifies
the set of classification yields associated with the maximum value of the log likelihood function. An
iterative programming procedure systematically varied the yields, regression parameters were
estimated, and the likelihood function was calculated at each iteration. A grid search then locates the
value of classification yield estimates that maximizes the likelihood, which in this case reduces to

minimization of squared errors. The pooled parameter estimator is given by:
- Q' Xt x Qg

where the X matrix is:

T 7TD! TD2 - TDI6 CI CIDI CID2 - CIDI6
[1 o o 0 C,. O 0 0|
2 0 0 0 C, O 0 0
7 0 0 6 C, O 0 0
11 0 0 C., C, O 0
2 2 0 0 ¢, C. O 0
x- |7 1 0 0o C, C, 0 0
1 0 1 C O 0 Cpi
2 2 ¢, O 0 i
7 0 0 7 C, O 0 o
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and {1 is a diagonal matrix to correct for group heteroskedasticity by state, TD1-TD16 is trend times
dummy, CI is the calculated crop index for the appropriate year, week, and condition classification

yield estimates, and CID1-CID16 is crop index times dummy.

Estimation Procedure
The Data
The crop condition data used in this study were taken from Weekly Weather and Crop Bulletin
reports for 1986 through 1993. This included state-level data on the percentage of crop in each of
five conditions: very poor, poor, fair, good, and excellent. The data on conditions were collected for
corn and soybeans on a weekly basis. Data on state-level corn and soybean yields were taken from

monthly Crop Production reports and the Janhuary annual summary of Crop Production.

Estimation

-Weekly models for soybean and corn yields were estimated using weighted maximum likelihood
estimation via the SAS Interactive Matrix Language. The equations for soybeans and corn were
estimated according to specifications presented earlier. The key to the estimation process was the
construction of the X matrix. As mentioned earlier, the X matrix consisted of 38 (34) columns with
the first 19 (17) columns associated with trend and trend shifters and the last 19 (17) columns
associated with conditional yield and conditional yield shifters for soybeans (corn). The X matrix
included 7 rows for each state and 19 in the case of soybeans and 17 states in the case of corn,
Conditional yields were determined by the percentage of the crop in each condition category and the
associated yield estimate for each category. Thus, conditional yields were calculated by multiplying a
matrix of crop conditions for each year and each state by a column vector of estimated yield weights
for each crop condition. This created a column vector of conditional yields by year and by state.

Since the appropriate yield weights for the amount of crop in each condition type were
unknown, numerous trials were performed in order to determine the appropriate yield weight. A
nested do loop was programmed in SAS to vary the yield weights for each class. The only restriction
placed on yield weights for each condition category was to insure that as yield weights varied from
very poor to excellent, they increased in value. That is, the yield weight for the percentage of crop

in poor condition should be greater than or equal to the yield weight for very poor condition, and the
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yield weight for the percentage of crop in fair condition should be greater than or equal to the yield
weight for poor condition, and so on.

For each set of yield weights a unique “regression” was performed. The value of the weighted
maximum likelihood estimator was stored in a matrix along with the yield weights corresponding to
that value for each yield weight interaction. Because the number of alternative yield weight
combinations was infinitely large, yield intervals were first used to narrow the set of yield weight
classifications. Once the appropriate set of yield ranges for each class of crop conditions was
determined, the ranges were narrowed until a combined set of unique yields for each condition
category was determined. For example, initiall_y thé range of weights for corn in very poor condition
may be 0 to 80 in increments of 10, for the poor condition 40 to 120, for the fair condition 60 to
150, for the good condition 80 to 180, and for the excellent 100 to 200. The model procedure
utilizes all possible combinations of weights from th'esé ranges. The first such combination would be
0, 40, 60, 80, and 100 for each respective condition category. This set of yield weights would be
used to construct the conditional yield vector in the X matrix. The model for this set of weights is
then estimated and the value of the weighted maximum likelihood estimator is calculated. This value
and the set of weights is placed in a matrix. We then proceed to the next increment: 0, 40, 60, 80,
and 120. The process continues until all combinations of weights are tried. SAS then performs a
grid search on the matrix of maximum likelihood estimators. The maximum value of the likelihood
estimate (in this case equivalent to sum of square error minimization) is selected along with the set of .
yield weights and parameter estimates corresponding to that value. If the yield weights are at any of
the limits on the weight' ranges, these ranges are expanded and the process is started over. Once the
yields are narrowed to within a set of ranges, the increment is lowered. So, in this example, the
increment for corn may be lowered from 10 to 5. The process then begins again with the lower
increment. The increments are narrowed uatil yield weights are within one bushel.

The complete process of determining the yield weights was performed for six specific weeks in
the growing season for soybeans and corn. The six different weeks were selected on the basis of data
availability for all states considered. The weeks shown were in two-week intervals from the week of
July 3-9 to the week of September 11-17. Note that these weeks are neither the beginning of crop
condition observations nor the final crop condition observations but do represent the set of weeks
where conditions for all states for 1986-92 are present. The results of the search for appropriate

weights are presented in Tables 1 and 2.
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Table 1. Estimated average soybean yields for each condition category by week

Mean Mean
Very Square Absolute

Week Poor Poor Fair Good  Excellent R? Error  Percent Error
July 3-9 18 22 24 31 46 80.0% 9.97 T77%
July 17-23 15 22 24 29 49 84.9% 7.52 6.8%
July 31-Aug. 6 11 19 20 25 38 84.6% 7.71 6.7%
Aug. 14-21 16 19 20 28 35 86.3% 6.82 6.6%
Aug. 28-Sept. 3 12 15 21 26 36 88.7% 5.65 6.0%
Sept. 11-17 8 18 23 30 338 91.9% 4.03 4.8%

Table 2. Estimated average corn yields for each condition category by week

Mean Mean
Very : Square Absolute

Week Poor Poor Fair Good Excellent R? Error Percent Error
Tuly 3-9 5 68 80 109 126 77.5% 137.48 7.1%
July 17-23 60 65 72 121 124 %0.3% 59.29 4.8%
July 31-Aug. 6 50 58 73 114 115 93.8% 37.95 4.1%
Aug. 14-21 41 64 89 120 139 94.1% 35.87 3.9%
Aug. 28-Sept. 3 55 55 94 126 143 93.7% 38.32 3.9%
Sept. 11-17 32 72 90 133 157 94.6% 33.08 3.5%

Results

Tables 1 and 2 indicate that, as expected, both corn and soybean models do a better job of
explaining final yield the closer crop conditions observations are to harvest as evidenced by
consistently higher R?, lower mean square errors, and lower mean absolute percent errors for weeks
progressively closer to harvest (convergence in distribution). For the last week considered in this
study, September 11-17, 91.9 percent of the variation in soybeans yields for all states is explained by
the model and 94.6 percent of the variation in corn yields for all states is explained by the model.
Note the remarkable jump in explanatory power of the corn model in going from the week of July 3-9
to the week of July 17-23 where R? increases from 77.5 percent to 90.3 percent and mean square
error drops by more than one-half from 137.48 to 59.29. The increase in explanatory power for
soybeans is more gradual. It is also interesting to note in Table I the tendency for soybean yield
weights on the poor and very poor condition categories to be larger for weeks earlier in the growing
season. This may reflect the greater ability of soybeans to recover from these conditions early in the

season as opposed to late in the season. A similar pattern was not observable for corn.
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Tables 1 and 2 also suggest the possibility of another factor not considered in the study—
maturity. It can be argued that, because soybeans are planted later in the year, they are typically less
mature for any given week than corn. Thus, the explanatory power of the soybean model naturally
would be less than the corn model for any given week until soybean maturity catches up with corn.
This is what the data appear to reflect in Tables 1 and 2. This suggests the possibility of increasing
model performance further by adding a maturity indicator.

Tables 3 and 4 present the results of holding yield weights at their September 11-17 values.
Note that the performance statistics worsen slightly with the imposed yield, but because the final yield
weights are similar to the yields in previous weeks there is only a small loss in explanatory power.
This demonstrates the robustness of the final yield weights and explains final yields throughout the

season.

Table 3. Soybean regression performance imposing final week’s estimated yields

Mean Mean
Very Square Absolute

Week Poor Poor  Fair Good  Excellent R? Error Percent Error
July 3-9 8 18 23 30 38 77.5% 11.24 8.1%
July 17-23 8 18 23 30 38 82.6% 8.71 7.5%
July 31-Aug. 6 8 18 23 30 38 83.0% 8.51 7.3%
Aug, 14-21 8 18 23 30 38 85.1% 7.44 6.9%
Aug. 28-Sept. 3 8 18 23 30 38 88.5% 5.77 6.0%
Sept, 11-17 8 18 23 30 38 91.9% 4.03 4.8%

Table 4. Corn regression performance imposing final week’s estimated yields

Mean Mean
Very Square Absolute

Week Poor Poor Fair Good  Excellent R? Error Percent Error
July 3-9 32 72 90 133 157 77.0% 140.25 7.2%
July 17-23 32 72 90 133 157 88.3% 71.47 5.2%
July 31-Aug. 6 32 72 90 133 157 92.6% 45.20 4.4%
Aug. 14-21 32 72 90 133 157 93.6% 39.26 3.8%
Aug. 28-Sept. 3 32 72 90 133 157 93.4% 40.42 4.0%
Sept. 11-17 32 T2 90 133 157 94.6% 33.08 35%




Table 5. Soybean parameter estimates, final week

Parameter  Standard
Variable Estimate Error T-Ratio
TREND -0.057 0.420 0.136
DUMTDAR 1.840 0.624 1.346
DUMTDGA 0.392 0.583 0.673
DUMTDIA 0.599 0.559 1.072
DUMTDIL 0.936 0.555 1.687
DUMTDIN 1.193 0.560 2.129
DUMTDKS 0.919 0.522 1.760
DUMTDKY 0.829 0.583 1.422
DUMTDLA 1.297 0.558 2.322
DUMTDMI 0.508 0.570 0.891
DUMTDMN 0.655 0.544" 1.204
DUMTDMO 0.638 0.563 1.133
DUMTDMS 1.447 0.619 2.337
DUMTDNC 0.085 0.589 0.144
DUMTDNE 1.445 0.535 2.699
DUMTDOH 0.550 0.555 0.991
DUMTDSC 0.258 0.575 0.448
DUMTDSD 0.314 0.559 -0.561
DUMTDTN 0.650 0.617 1.052
CcY 0.915 0.076 12.108
DUMCYAR -0.000 0.112 -0.001
DUMCYGA -0.053 0.403 -0.508
DUMCYIA 0.431 0.095 4.525
DUMCYIL 0.325 0.095 3.405
DUMCYIN 1.326 0.098 3.341
DUMCYKS 0.037 0.089 0.417
DUMCYKY 0.186 0.103 1.802
DUMCYLA -0.096 0.100 -0.961
DUMCYMI 0.227 0.097 2.352
DUMCYMN 0.344 0.096 3.582
DUMCYMO 0.235 0.101 2.329
DUMCYMS -0.157 0.116 -1.352
DUMCYNC 0.047 0.102 0.466
DUMCYNE 0.222 0.094 2.350
DUMCYOCH 0.389 0.098 3.983
DUMCYSC 0.157 0.101 -1.563
DUMCYSD 0.133 0.095 1.395
DUMCYTN 0,089 0.111 0.804
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Tables 5 and 6 present the parameter
estimates for soybeans and corn given the
yield weights in Tables 1 and 2. A priori,
we expected that the coefficient on condition
yield index should be close to 1. For
soybeans this coefficient is .915 and for corn
it is 1.2. The dummy shifters for soybean

conditional yields by state are significant at

"the o = .01 level of significance for all

states except Arkansas, Georgia, Kansas,
Louisiana, North Carolina, and Tennessee
(generally the more marginal soybean
producing states), In addition, soybean trend
yield shifters are significant at the @ = .05
level of significance for all states except
Colorado, Georgia, Michigan, North
Carolina, Ohio, South'Carolina, and South
Dakota. The dummy shifters for corn
conditional yields are all significant at the o
= .01 level of significance, reflecting the
diversity of corn yield weights among states.
Only the corn trend yield shifters for
Colorado, Michigan, North Carolina, and
South Dakota are insignificant at the & =
.01 level.

Tables 7 and 8 present the results of

model simuiation over 1993 for soybeans

and corn by week and compare them with USDA estimations for the same weeks, where available,

and final yields. The performance of the model compared with USDA estimates is mixed for both

soybeans and corn. The model performs slightly better in predicting final yields than USDA in some
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Table 6. Corn parameter estimates, final week states, but not as well as others. For
Parameter  Standard example, in early September USDA
Variable Estimate Error T-Ratio estimated Indiana soybean
EFI{JEB?'I]?DG A ;232 1_1,(2)2 '}zzg yields to be 47 bushels per acre; this model
DUMTDIA 3.170 1.511 2.098 suggested final soybean yields would be 45.8
DUMTDIL 3.900 1.474 2.647 .
DUMTDIN 3.614 1.473 2.454 bushels per acre. The actual yields for
DUMTDKS 5.236 1.494 3.504 Indiana soybeans were 44 bushels per acre,
DUMTDKY 2.599 1.590 1.634
DUMTDMI 1.533 1.584 0.968 suggesting that the model performed better
DUMTDMN 3.528 1.470 2.401 . .
DUMTDMO 3183 1,503 2 118 than USDA estimates for this state.
DUMTDNC 0.135 1.756 0.007 However, for other states, USDA estimates
DUMTDNE 4.840 1.474 3.283 . .
DUMTDOH 3.157 1.491 2118 were closer to actual yields. Overall, for
ggﬁg‘s’g iiﬁi }‘5‘33 20 soybeans, USDA in the second week of
DUMTDTX 2.375 1.545 1.538 September was closer in 12 of the 19 states
DUMTDWI] 2.701 1.484 1.824 )
cY 1.206 0.000 31.234 than the model estimates. For corn, USDA
DUMCYGA  -0.523 0.001 -8.020 estimates in the second week of September
DUMCYIA 0.277 0.001 -5.159
DUMCYIL -0.289 0.001 -5.477 was closer in I3 of the 17 states. However,
DUMCYIN -0.255 0.001 4.7 . . .
DUMCYKS 0.346 0.001 5.709 when comparing yield estimates for the week
DUMCYKY  -1.374 0.001 -6.349 of July 31st to August 6th, model estimates
DUMCYMI -1.366 0.001 -6.386 .
DUMCYMN  -0.263 0.001 -4.837 were better than those of USDA in 8 of the
DUMCYMO -0.340 0.001 -6.084
7 states.
DUMCYNC 0.414 0.001 -6.013 17 states
DUMCYNE  -0.295 0.001 -5.628 The simulation of the model over 1993
DUMCYOH -0.246 0.004 -4.445 . . o
DUMCYPA 0.455 0.001 8.354 is somewhat misleading in the respect that
DUMCYSD 0.579 0.001 -10.450 the model was not estimated over a period
DUMCYTX -0.442 0.001 -8.307
DUMCYWI -0.388 0.001 7.424 that contained a flood of any kind, not to

mention a flood to the extent of 1993’s.
Simulation of the model through 1994 should prove an interesting check of model performance. The

incorporation of 1993 data into the estimation period may also improve predictability in future floods.

Conclusions
This paper presents an exploratory procedure for estimating state-level crop yields throughout

the growing season. The procedure utilizes pooling of data and a maximum likelihood approach



Table 7. Comparison of actual soybean yields and model yield estimates for 1993 by state

July 3-9 July 17-23 July 31-Aug. 6 Aug. 14-20 Aug. 28-Sept. 3 Sept. 11-17
State Model USDA Model USDA Model usba Model USDA Model USDA Model USDA \lr:il:ladls
Alabama 23.2 NA 22.1 NA 20.0 24.0 20.7 24.0 21.7 24.0 21.6 24.0 24.0
Arkansas 34.6 NA 33.0 NA 31.8 21.0 30.6 27.0 30.4 26.0 29.2 26.0 25.0
Georgia 24.8 NA 22.0 NA 18.3 19.0 18.9 19.0 17.2 17.0 18.5 17.0 17.0
lowa 38.6 NA 35.1 NA 37.2 35.0 36.5 35.0 38.9 35.0 36.7 35.0 30.0
Hlinois 44.1 NA 43.1 NA 44.6 42.0 43.8 42.0 45.0 44.0 44.0 44.0 43.0
Indiana 44.3 NA 43.4 NA 45.4 45.0 46.1 45.0 44.3 47.0 45.8 47.0 44.0
Kansas 31.3 NA 30.7 NA 28.7 29.0 315 29.0 31.4 29.0 32.5 29.0 28.0
Kentucky 36.1 NA 34.7 NA 35.8 32.0 31.0 32.0 36.5 33.0 34.8 33.0 33.0
Louisiana 326 NA 30.7 NA 31.1 28.0 30.8 28.0 30.2 25.0 28.9 25.0 23.0
Michigan 36.3 NA 35.6 NA 37.0 36.0 36.8 36.0 37.1 36.0 37.3 36.0 38.0
Minnesota 28.9 NA 28.8 NA 28.9 27.0 30.2 27.0 29.3 25.0 29.8 25.0 22.0
Missouri 35.3 NA 32.0 NA 31.2 33.0 33.2 33.0 33.5 35.0 333 35.0 33.0
Mississippi 306  NA 31.1 NA 287 25.0 28.6 25.0 27.4 25.0 21.9 25.0 22.0
N. Carolina 23.7 NA 24.6 NA 24.9 24.0 23.9 24.0 21.5 24.0 22.4 24.0 24.0
Nebraska 36.3 NA 35.5 NA 34.6 35.0 39.3 35.0 44.5 36.0 45.2 36.0 35.0
Ohio 39.2 NA 41.2 NA 42.8 41.0 41.3 41.0 37.8 39.0 38.2 39.0 28.0
S. Carolina 20.2 NA 18.1 NA 17.4 17.0 16.0 17.0 14.5 15.0 16.5 15.0 15.0
S. Dakota 21.4 NA 19.9 NA 20.3 22.0 21.4 22.0 24.3 22.0 22.4 22.0 21.0
Tennessee 35.7 NA 34.1 NA 30.3 28.0 30.5 28.0 31.2 28.0 29.1 28.0 31.0




Table 8. Comparison of corn yields estimated by the model with USDA estimates and final yields for 1993 by state

July 3-9 July 17-23 July 31-Aug. 6 Aug. 14-20 Aug. 28-Sept. 3 Sept. 11-17
State Model USDA Model USDA Model USDA Model USDA  Model USDA  Model USDA 5:;’::5
Colorado 1650 NA 1633 NA 1582 140.0 1475  140.0  149.9  140.0 1381  140.0  120.0
Georgia 847 NA 732 NA 70.1 350 7.1 65.0 71.9 65.0 69.8 65.0 70.0
lowa 121.3  NA 103.0 NA 1050 1150  109.4 _ 1150  112.8 1120 1053 1120 80.0
Ilinois 141.7  NA 1348 NA 1407 1400 1417  140.0 1423  140.0 1439  140.0  130.0
Indiana 140.4 NA 1383 NA 1431 1400  140.4 1400  142.7  136.0 1432 1360  132.0
Kansas 1554 NA 1452 NA 1502 140.0  149.0  140.0  150.4  135.0 1487 1350  120.0
Kentucky 1205 NA 1.1 NA 1113 1020  107.3 10200 1107  100.0 1063  100.0  104.0
Michigan 1103  NA 1139 NA 1106 1100 1133 110.0 1131 110.1 11202 110.0 1100
Minnesota 869 NA 853 NA 87.4  90.0 92.4 90.0 93.1 85.0 93.7 85.0 70.0
Missouri 121.0  NA 1123 NA 1078 1120 1123 1120  107.8 1050  106.2  105.0 90.0
N. Carolina 773 NA 772 NA 66.8  55.0 63.1 55.0 59.8 55.0 54.9 55.0 65.0
Nebraska 140.1 NA 131.4 NA 1290 1240 1369 1240 1456  122.0  146.1 1220  104.0
Ohio 133.5 NA 1379 NA 1388 1280 1349 1280 1235 1150 1215 1150  110.0
Pennsylvania 1142 NA 109.7 NA 1068  98.0  104.8 98.0  103.6 94.0  104.3 94.0 96.0
S. Dakota 66.6 NA 659 NA 68.8 . 69.0 69.3 69.0 75.6 67.0 70.6 67.0 63.0
Texas 119.4 NA 1148 NA 1145 1210 1033 121.0 1097 1150  108.6 1150  115.0
Wisconsin 97.7 NA 946 NA 99.4  105.0 98.2  105.0  108.5 1050  106.8  105.0 92.0
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incorporating information from USDA’s crop condition reports. An iterative process was employed
that systematically varied the implicit yield estimates associated with each condition classification,
parameters were then re-estimated, and the value of the likelihood function was calculated at each
iteration. A subsequent grid search was performed that located the maximum value of the likelihood
function and identified the estimated condition classification yields and parameter estimates associated
with the maximum value of the likelihood function. The results were comparable to those provided
by USDA and indicate that incorporation of crop condition information improves precision of yield

estimates during the growing season and that gains to precision increase as the season progresses.
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