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OPTIMAL HEDGING UNDER
FORWARD-LOOKING BEHAVIOR

Abstract
The study focuses on the production and hedging behavior of forward-looking risk-averse
competitive firms. It 1s shown that there is separation between production and hedging. Optimal '
preduction for a forward-looking firm is identical to that of an otherwise equivalent myopic firm.
However, the optimal forward-looking hedge differs from the optimal myopic hedge. If forward
prices are unbiased, full hedging is suboptimal when the firm is forward-looking and output and
material input prices are contemporaneously related. Furthermore, under certain conditions, the

optimal forward-looking hedge under unbiased forward prices is strictly smaller than the full

hedge.
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OPTIMAL HEDGING UNDER FORWARD-LOOKING BEHAVIOR

Introduction

With rare exceptions, previous work on hedging behavior has assumed a single production
cycle. This implicitly assumes that the firm is myopic because such a firm is not concerned about
events that occur after the end of the current production cycle. This assumption has been carried
over from the risk and uncertainty literature and can be justified on the basis of simplicity.
Danthine (1978), Holthausen (1979), and Feder, Just, and Schmitz (1980) applied Sandmo's
(1971) model of the myopic firm under uncertainty to analyze the behavior of the firm in the
presence of a forward market for output. They showed that the compettive risk-averse firm
separates production from hedging decisions. They also proved that it is optimal to place a full
hedge (i.e., to short hedge the entire production) if the forward price is unbiased. Otherwise, it is
optimal to short hedge more (less) than total output when the forward price is greater than (less
than) the expected cash price.

A straightforward consequence of full-hedge optimality under unbiased forward prices is
that most farmers should place full hedges most of the time based on empirical evidence that
futures prices are not significantly biased [Telser (1958), Gray (1961), Just and Rausser (1981),
Martin and Garcia (1981)]. But not all farmers hedge all of their output. Extensions to the myopic
hedging model have been proposed that wbuld explain this behavior. These studies include the
introduction of production risk [Chavas and Pope (1982), Losq (1982), Honda (1983), Grant
(1985)], basis risk [Batlin (1983), Paroush and Wolf (1989)], hedging costs [Chavas and Pope
(1982)], hedging restrictions [Antonovitz and Roe (1986), Antonovitz and Nelson (1988)], and
imperfect markets [Katz (1984)].

There are instances, however, for which the myopic assumption may lead to faulty
conclusions about optimal hedging behavior. An example will help make this observation clear.
Consider a firm only involved in speculative storage. Because no physical transformation of the

commodity occurs, the price of ending inventories at one period will equal the input price for the
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following period. Low output prices will then imply low input prices for subsequent storage. The
positive (negative) effect of low (high) input prices for next period storage offsets the negative
(positive) effect of low (high) output prices for this period storage, thereby reducing the need to
hedge this period storage.

Forward-looking hedging behavior was analyzed theoretically by Anderson and Danthine
(1983) and Hey (1987). Anderson and Danthine allowed the firm to revise its hedging decisions
during the production cycle but assumed a single production cycle. They showed that forward-
looking producers should separate production and hedging decisions but that producers should not
hedge all of their output if the futures price is unbiased. Hey allowed for more than one production
cycle and found that separation and suboptimality of full hedging hold. Hey's model was different
from the one developed here because he assumed that (2) intertemporal utility is additive, (b) output
cash prices are independently distributed and follow a constant distribution, and (c) sales decisions
are taken after production and hedging decisions rather than simultaneously. Hey's results depend
crucially on the sequential timing he imposed on sales, production, and hedging decisions.

The purpose of this study is to formally demonstrate that the forward-looking optimal
hedge is different from the myopic optimal hedge. We postulate a risk-averse firm that maximizes
expected utility of terminal wealth and derive some propositions regarding optimal hedging
behavior under both myopic and forward-looking hypotheses. Because the correlation between
output and input prices is mosi obvious for speculative storage, we first present results for the
speculative firm that only stores and then for the firm that is involved in production and does not

store. The last section reports the main conclusions from the analysis.

A Theoretical Model of a Speculative Storing Competitive Firm
Consider a competitive firm with a twice continuously differentiable von Neumann-
Morgenstern utility function and assume that utility is strictly concave in its argument terminal

wealth [UW.p), U'(W) > 0, U"(Wq) <0]. Terminal wealth is
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where W, denotes monetary wealth at the end of trading date t, 7, is cash flow at time t, and r,
equals one plus the one-period interest rate prevailing at t. The interest rate need not be constant
over time, but it is not random. At each trading date 0 <t < T, the firm can borrow and lend
unlimited amounts of money for one period at the prevailing interest rate.

Input price randomness plays a key role in the model. But because of the mathematical
complexity, little can be accomplished when we allow all prices to vary. We address this issue in
two ways. First, we examine optimal behavior for a firm whose only productive activity is
speculative storage. Because this firm sells the same product that it buys, the model is greatly
simplified, allowing us to develop the intuition required for the second approach in which we
introduce production. We solve the second approach by imposing some realistic restrictions on the
technology set.

Consider the case of the firm whose activities are storing a certain commodity to profit from
its resale and trading in a forward market for this product.! At any date t there are only two
forward positions that can be negotiated: one for delivery at t+1 and the other for immediate
delivery (i.e., delivery at t).2 We use F, to denote the net short forward position for delivery at
time t+1 open at date t. There are no restrictions on the amount or sign of the forward position
held by the firm, except that the firmn cannot have an open position for delivery at date T+1 at the
end of the terminal trading date (Fy = 0), and that the firm cannot hold an open position for
delivery at time t at the end of trading date t (F,,=- Fy.;,» where the first subscript denotes the

opening date and the second denotes the delivery date).3 The cash flow from opening a forward

1Employing a forward instead of a futures market allows us to isolate the effect of forward-looking behavior
from that of basis risk.

2We do not require actual delivery, but we still use this term for clarity of exposition. Forward
commitments may be canceled either by delivering the good or by undertaking an opposite transaction in the forward
market.

3This means that at any date 0 < t < T firms have only one free choice regarding the two tradable positions
in the forward market. This choice is how much to commit for delivery {or receipt) at t+1.
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contract lags by one period because forward trades do not create cash flows until open positions
are liquidated. The forward price prevailing at t for immediate delivery is identical to the current
cash price (p). The forward price at t for delivery at the following date t+1 (denoted by f),
however, will be generally different from the current cash price p,.

Under the above specifications, the firm's cash flow at any date t < T is represented by
(1.2) =, =pP-i(I-Py+{ ;-p) F, st. L,,=1-P 20,

where P, represents product sales at date t, i(-) is a strictly convex storage cost function such that
I'(-) >0, and I, is beginning inventory at date t. Positive sales means that the firm sells from
beginning stocks, whereas negative sales means that the firm buys to store and sell at a later date.
Sales cannot exceed beginning inventory (i.e., P, <1). The amount (I, - P)) is the unsold
beginning inventory at date t, which is carried over at nonrandom storage cost i(, - P,) to become
beginning inventory at time t+1 (I, ,).

We hypothesize that at any date 0 <t < T the firm selects the levels of sales (P,) and
hedging (F,) that maximize expected utility of terminal wealth, given the available information.

Optimal decisions at the current date t = 0 solve the following set of recursive equations
(1.3)  Mylry Wy + (15 - Pp) Frop Ips Byl
= max d.rU[rT-l Wi+ ppPp-illp- Pp) + (fp - pp) Byl
(1.4) M{r, ...ep [y W+ -p) Fyl. L nd
= maxdlEt{MHl[IHl e Tp G W+ (- ) Fs L B} =0, 1,000, T-,

where: d, = (P, F)if0<t<T,d;=(Pp, 0),
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E (-) denotes the expectation operator based on information available at t, the vector d, contains the
firm's decision variables corresponding to date t, and the matrix p, comprises the cash and futures
prices up to (and including) time t. Terminal wealth is as defined in (1.1), and cash flows are
given by (1.2). The solution to the problem summarized by expressions (1.3) and (1.4) can be

obtained by recursively solving the Lagrangian functions
(1.5)  £p=Ulrp; Wr +pp Pp-illp- Py + (fry - pp) Fp gl + Mg (- Py,
(1.6) £ =E{M_ [r ;... 0p; W+ -1 ) F) L1} +0, 0, -P,t=0,1,..., T-1,

where 7, is the Lagrangtan multiplier.

The first-order conditions (FOCs) corresponding to the terminal date (t = T) are?

(1.7) %

oPy

g X =TIp-Pr20,Mp 20,0y %r o,
My Ny

=(pr+i)Mp'-np =0,

where M;' denotes U' evaluated at the optimum. Condition (1.7) requires that the Lagrangian
multiplier (1) be strictly positive because (py +i") M > 0. Hence, (I3 - Pr) must equal zero to
satisfy the Kuhn-Tucker condition (1.8), i.e., the optimal sales policy at the terminal date is to sell
all beginning inventories (P = I). Therefore, dy = (I, 0), the optimal cash flow for the terminal

date reduces to Tty = pp It + (f1, - pp) Fr; and the maximum value function is

4Recall that F. = 0 by assumption.



(1.9) Mqlrry Wy + (fry - pp) Froyo Ip Rpd = Ut Wy + prly + (- pp) Fryl.
The FOCs for dates previous to the terminal time (0 <t < T) are (see Appendix A)

a£ 2 1 ]
(1.10) B_Pt =Ty - b 1 @+ ) MY - Bi(pyyy My 01-m, =0,
t

of
(L) =2 =1y -ty I M- By, My, 0] =0,
t

(1.12) % =L-P,20,n,20,7, % =0,

on, om,
where M, =E (M, ,,') evaluated at the optimum corresponding to date t (note that M,' > 0). The
solution to expressions (1.10) through (1.12) is a unique absolute constrained maximum because
the objective function is strictly concave, and the constraint set is convex.3 Expressions (1.9)
through (1.12) provide the framework needed to analyze the behavior of the forward-looking risk-
averse firm,

Before proceeding with the analysis, it is helpful to better define myopic and forward-
looking behavior. A myopic decision maker cares only about two dates: the present and one date
in the future. Such an agent neglects the possibility of updating and/or taking decisions at all other
times. Hence, in our notation the myopic firm is one making decisions at date T-1. Myopic
behavior is inconsistent if the decision maker stays in the market for more than two trading dates.
At the first trading date (T,-1), the myopic agent behaves as if the next trading date (T,) is the last
one. But when date T, arrives and the agent decides to stay in the market for one more trading

time (denoted as T,), T; becomes the trading date preceding the (new) terminal time T, i.e., T, is

SWe will assume for the remainder of the analysis that the solution to {1.3) and (1.4) exists. The
conditions for this are given in Bertsekas (1976, p. 375).
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now T,-1. In other words, T, is the terminal date from the perspective of T,-1, but it is not
terminal when the firmis at T,.

The inconsistency of myopic behavior arises as follows. By FOCs (1.7) and (1.8), we
know that ETI_I(PTI) = IT1’ and by FOCs (1.10) through (1.12) we know that there is a positive
probability of PT2'1 < IT?:I and that it is impossible to have PT2-1 > IT2_1. But decision dates T,
and T,-1 correspond to the same calendar date, hence the expectation of next-period sales is always
upwardly biased. The bias occurs because the firm expects next-date sales to match beginning
inventories, but when the next date actually arrives the firm sometimes finds it optimal not to sell
the entire beginning stock. In contrast, a forward-looking (or nonmyopic) firm is any firm making
decisions at t < T-1 and that cares about at least two dates in the future at which time it will revise
decisions.

To summarize, a myopic firm can be defined as one whose planning horizon is the same as
its decision horizon [Merton (1982, p. 656)].% A forward-looking firm, in contrast, is one whose
planning horizon comprises at least two decision horizons. There are striking differences in the
qualitative behavior of forward-looking firms compared to myopic firms, and this is the issue
addressed in most of what follows.

It is necessary to know the determinants of the optimal physical decisions (1.e., the
variables that affect optimal storage I, or, equivalently, optimal sales P,). The main results

regarding this issue are summarized in Proposition 1.

PROPOSITION 1: STORAGE AND SALES BEHAVIOR. In the presence of a forward market,
optimal storage (or sales) for a risk-averse firm is determined independently from the subjective
Jjoint distribution of random variables, from the decision maker's degree of risk aversion, and from

the optimal hedging decision. If positive, optimal storage is such that discounted current forward

6 According to Merton, the planning horizon "is the maximum length of time for which the investor gives
any weight in his utility function,” and decision horizon is "the length of time between which the investor makes
successive decisions, and it is the minimum time between which he would take any action.”
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price equals current cash price plus marginal storage cost. These results hold for both myopic and

Jorward-looking firms.

Proof. According to FOC (1.11), at the optimum the equality

(1.13) Ey(p; M,) = f, M,

holds. Substituting (1.13) into FOC (1.10) and rearranging yields

(1.14) £, - 1y [Py + iA1= - Ny ... 1y M)

Hence:
a. If fy <r, [pg + #'(0)], then Ny > 0, and therefore [, =0.
b. If fy =14 [p, + ()], then n, =1, = 0.

c. Iffy >ry[p, +i'(0)], then Ny = 0, and therefore I, > 0 satisfying f, =1, [p, + 'I1;)]. Q.E.D.

Proposition 1 shows that separation between physical and hedging decisions is a robust
result because it holds for both myopic and forward-looking decision makers. Our findings extend
those by Danthine (1978), Holthausen (1979), and Feder, Just, and Schmitz (1980) to the
forward-looking scenario, relaxing the simplifying assumptions used by Hey (1987). Optimal
storage (and sales) behavior is completely characterized in the proof to Proposition 1, and

comparative statics follow easily from total differentiation of f,, - r, [p, + I'T;)] = 0.7

7Note that in the forward-looking scenario we cannot use jointly normally distributed prices to justify
mean-variance analysis. The quantities stored after the current date (i.¢., I,,..., I} are random but cannot follow a

nonmnal distribution because firms do not store if f<r, [pt + ().
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We turn now to the focus of this paper, i.e., the characterization of the optimal hedge. To
this end, it is useful to rewrite one of the components of FOC (1.11) in an alternative way,

namely:8
(1.15) Eo(p; M) = Eglp; Eo(M;'Ip))]
=Ey(p)) Eg(M;") + COV[pl, EO(M1'|P1)],

where: E(M,'lp,) = fj' M, ' fi(f,Ipy. p,) df, > 0,
1
fifipy py) = conditional density function of f;, given (p,, p).

Employing (1.15) and E(M,,,") = M;, we can state FOC (1.11) as follows:

t+1
(1.16) [f, - Eop] My = Covip,, E,(M,'Ip)].

Inspection of the sign of the covariance term in expression (1.16) will allow us to prove the results
summarized in Propositions 2 and 3. To show Proposition 6, we will use the following model of

cash price behavior:
(1.17) p,=o+Pp , +e,0<P <1, e, iid. zero-mean random variable.
Expression (1.17) nests the cases of serially independent prices (B = 0), random walk (§ = 1), and

autoregressive process of order 1 (0 <P < 1). In addition, by unbiased forward prices we will

mean that forward prices are always unbiased, i.e., E(p,,,) =f,t=0,.., T-1.

8Recall that for any pair of random variables x and y, E(x v) = E(x) E(y} + Cov(x., y).
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PROPOSITION 2: MYOPIC STORAGE HEDGE. The optimal hedge for a myopic risk-averse
firm that perceives the forward price to be unbiased is to (short) sell forward the total amount

stored. This hedge is independent from the myopic firm's degree of risk aversion.

Proof. According to (1.16), at the optimum, [f;, - E,(p,)] and Cov[p,, E4(M, Ip;)] must bear
equal signs because M,' > 0. In particular, Cov[p;, E,(M,'lp;)] = O if f; = E(p,). For the
myopic firm date 0 is T-1, and from (1.9) we have E. ,(Mlpp) = M. Then,

(1 . 18) aET-l(MT'IPT)

=(;-Er )M["20asF 21,
because My" < 0. But py is monotonically increasing in py and E1 ;(My'p7) is monotonically
increasing (decreasing) in py if Fp; > (<) I. Hence, applying Theorem 43 in Hardy, Littlewood,

and Pélya (1967) we obtain
(1.19) Covlpy, E;(M{lp1R0asFp, 2 1.
In particular, if fr ; = E;_ (py), it must be true that Fy; =1I. Q.E.D.

PROPOSITION 3: FORWARD-LOOKING STORAGE HEDGE. (1) The optimal hedge for a
forward-looking risk-averse firm that perceives the forward price to be unbiased is not necessarily
to sell forward the entire quantity stored. Furthermore, the optimal forward-looking hedge
depends upon the firm's degree of risk aversion.

(2) If the firm is constant absolute risk averse (CARA) and cash prices behave as in
expression (1.17), then the optimal forward-looking hedge under unbiased forward prices is

strictly smaller than the entire amount stored.
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Proof. We show only part (2) of Proposition 3 because it implies part (1). For a forward-looking

CARA firm with cash prices behaving as in (1.17) and unbiased forward prices, we get

dE(M,'Ip,)

(1.20)
ap,

=1, oo Ty (- B EgM,"Ip)) - 1y ... Try (54 - B) Eg(l, M, "Ip,)
1"t t'l n
Iy Ty (- B BEI; My Ip) - -1 o T (- B B Eg(T, M{"Ipy)
T-2 t
st -BYB T E Iy My "Ipy),

where M;" equals U" < 0 evaluated at the optimum and M,” denotes E(M, ") evaluated at the
optimum. Expression (1.20") follows from (1.20) because the other terms in the right-hand side
of (1.20) vanish (see Appendix B).

Assume that I; £F,;. Then i'}(Ml'Ipl)/ap1 >0 because E;(M,"Ip,} <0, (r, - ) >0, and
E,(,,; M,"Ip;) <0.8 Butif 9(M, 'Ip,)/dp; > 0 then Cov{p,, Ei(M,'lp,)] > 0, which violates FOC

(1.16) under unbiased forward prices. Therefore, it must be true that I, > F,, Q.E.D.

The results reported in Proposition 2 are analogous to those obtained by Holthausen (1979)
and Feder, Just, and Schmitz (1980) and demonstrate that our model is consistent with the
standard literature. Qur findings about the optimal forward-looking hedge (Proposition 3) reveal

that full-hedge optimality under unbiased forward price is not a robust result. From Propositions 2

9The proof of Eq(1, M, " p;) <0 follows from the fact that 1, = 0if f; <1, [p; +{(0)], and I, >0
otherwise (see proof of Proposition 1). Hence,

Eqg(I; M;"I p)) = Egll, My "I p; 2 £ /1) - (0), ] Proby[p, 2 f/r; - /(0)]
+ Egll, M, "I p; < ffr; - #(0)] Probglp, <f/ry - i(0)]
= Egll, M, " p; <f,/r; - £(0)] Probg[p; < fy/r; - i(0)],

where Prob(-) is the probability of (-), given the information at date t. Therefore, Eq(I, M, "l p;) > 0 {unless
Probo[p1 < f1/r1 - {'(0)] = 0}. The proof of EO(IHI Mt"I pl) <{) for 1 <t< T-1 is analogous.
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and 3, it is clear that the simplicity of the optimal myopic hedge under unbiased forward price is
attributable to the myopic firm assuming with certainty that whatever it stores now will be
completely sold in the next trading time and that it will store nothing at the next date (i.e.,

Ir_1,1 =0). Also, the myopic firm does not plan to hedge at the next trading time (i.e., F;_+ = 0).
In contrast, the forward-looking firm assigns a positive probability to storing and/or trading
forward at the next trading date. But next-date optimal siorage and hedge are correlated with next-
date cash price, and therefore they serve as parttal substitutes for current hedging. It is this
substitution effect that leads to full-hedge suboptimality in the forward-looking scenario.

An alternative interpretation of the full-hedge suboptimality result is that we have
formalized a common behavioral pattern known as anticipatory hedging. The firm may operate in
the forward market to speculate and/or to place two types of hedges, namely risk-avoidance and
anticipatory hedges.!? If the forward price is unbiased, the firm does not speculate and trades
forward only to hedge. The risk-avoidance hedge consists of selling current storage forward 1o
reduce its price risk, whereas the anticipatory hedge is placed to avoid the price risk of next-date
storage. Therefore, the risk-avoidance hedge is identical to current storage. In contrast, the size of
the anticipatory hedge depends, among other factors, on the distribution of the random quantities
stored and hedged at next-date, the agent's degree of risk aversion, and the joint distribution of
random prices. Hence, the sum of risk-avoidance and anticipatory hedges generally differs from
current storage and depends on the degree of risk aversion. This is true unless the firm currently
knows exactly how much it will store and hedge at next-date, so next-date storage and hedge are
nonrandom. The myopic case is an example of the latter situation in which next-date storage and
hedge are known to be exactly zero (I,_p,; =F,_r=0).

In Figure 1, we show the magnitudes of the optimal storage and hedging positions for a
forward-looking firm at decision date T-2 (which corresponds to calendar time t,). In this

example, it is assumed that prices at calendar times t; and t, (1.e., decision dates T-1 and T,

10Risk-avoidance and anticipatory hedges are defined in Marshall (1989, p. 198).
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respectively) have the discrete distributions reported in Table 1. Optimal decisions are then found
by numerical maximization of the expected value of utility, where the utility function is
[- exp(- L W.)I. To simplify the analysis, it is assumed that the storage cost function is quadratic

[i(,,) =0.001L +12] and that the interest rate is zero (i.e.,r, = I, = 1). Figure 1 illustrates the

t
case of Py, = 9 and unbiased forward price (i.e., f, = 10). For this reasonable scenario, the
magnitude of the optimal forward-looking hedge lies between 78 percent and 93 percent of the
optimal storage for slightly and severely risk-averse decision makers (A = 0.0001 and A = 0.01,
respectively).1! This result contrasts with that of the optimal myopic hedge, which equals 100
percent of the optimal storage, irrespective of the degree of absolute risk aversion.

The general suboptimality of the full hedge under unbiased forward prices is an important
result. Itis widely accepted that full hedging is optimal when the forward price is unbiased. The
full hedge is appealing because of its simplicity. Also, its normative content is easy and broadly
applicable because it makes complete abstraction of the agent's degree of risk aversion. Our model
shows that, despite these appealing characteristics, full-hedge optimality depends crucially upon
assuming myopic behavior and/or independence of output and material input prices.

Given the previous discussion, it is easier to understand why the full hedge overestimates
the optimal forward-looking hedge under unbiased forward prices when the firm is CARA and
cash prices behave as in (1.17). The value of ending inventories is negatively associated with
input costs for next period storage; therefore, next-date storage reduces the cash price risk
associated with current storage: revenue from current storage will be low if p, is low, but then the
firm will be able to buy material input to store at a low price, thereby partly offsetting the lower
revenue. This means that next-date storage is an imperfect substitute for current hedging (when
viewed in the context of multiperiod profitability}, so that the hedge required to achieve a certain
level of reduction in next-date cash price risk is smaller than it would be if next-date storage did not

contribute to risk reduction.

11A5 A~sco, the optimal hedge converges asymptotically to 489.58 from below.
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In general, for CARA firms we can express 0E (M, 'Ip,)/dp, as

oE. (M. 'l
(1.21) _—073—522 =1, .oty (0 - Fp) ByM,"Ip)) - 14 ... 7y Eg(L, M, "Ip,)
1
, df;(f,Ipy, py) , 0h,(p,Ipy)
- M : la 0P dft; - [ [ M, 2271 dp,] f1(f;Ipg. py) df,
fy P1 f, Py 1
, Oh (PR )
e T L] () My TTRIREL gy
fi Py P; Pp, Pp apl

hT_l(PT_NnT_z) de-I h3 (P3|nz) dp3] hg(Pz'nl) dpz} fl(f1|p0, Pl) dfp

where A, ,(p,,,/B,) is the conditional density function of p, , and f,

r+1+ Blven p,. Expression

(1.21) is helpful in that it allows us to separate clearly the two main components of the optimal
forward-looking hedge. The first term in the right-hand side of (1.21) is the risk-avoidance
component, whereas the other terms are the anticipatory component. The risk-avoidance term
vanishes if F, = I,. The anticipatory component can be further divided into direct and indirect
anticipation terms (i.e., the second and the remaining terms in the right-hand side of (1.21),
respectively). The direct anticipation component is due to the effect of next-date storage (1,). The
direct anticipation term is strictly positive, irrespective of risk attitudes or price distributions, and
requires a long hedge (F, < 0) to equal zero. Finally, the indirect anticipation component involves
the impact on current hedging attributable to the interaction between the risk attitude and the price
distribution, and it has an ambiguous sign.

The indirect anticipation component vanishes when forward prices are unbiased and cash
prices behave as in expression (1.17). If forward prices at future decision dates are allowed to be
biased, the optimal forward-looking CARA hedge may be larger than the amount stored, even if
the current forward price is unbiased. This may happen because next-date cash price indirectly

affects the current hedge through its relationship with next-date forward price. The sign and
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magnitude of this indirect effect depends on the size of the next-date hedge, which in turn may be
positive or negative and large enough to cause the current hedge to exceed the amount stored.

It is interesting to note that when cash prices behave as in (1.17), the optimal forward-
looking hedge under unbiased forward prices is strictly negative if nothing is stored (e.g.,
F, <1, =0), and the forward-looking firm establishes a long forward position. In contrast, the
optimal myopic hedge in the same situation is F, = 0. This is an interesting result because it
explains the existence of anticipatory hedging under unbiased forward prices without resorting to
any ad-hoc assumptions. In the standard myopic framework, anticipatory hedging is modeled by
assuming that the firm currently knows exactly how much it will store and hedge at the next date.
This assumption is clearly inconsistent. If the firm is myopic, we have shown that it is suboptimal
to expect next-date sales to be anything less than beginning stocks. If the firm is forward-looking
but knows next-date storage and hedge with certainty, then either prices are nonstochastic or the

firm does not behave optimally.

A Productive Competitive Firm

The main results discussed in the preceding section were obtained by assuming the cash
flow presented in expression (1.2) and are attributable to the contemporaneous relationship
between revenue and input cost at each date. In this section, we will show that similar conclusions
apply to firms characterized by less restrictive cash flows. The complications that arise from
allowing for random input prices in a forward-looking context are attributable to the possibilities of
stochastic production and/or input substitution. Hence, we can apply our basic model to other
types of cash flows by constraining the production function to be nonstochastic and such that
inputs with random prices cannot be substituted.

It is straightforward to extend the analysis performed in the previous section to competitive

firms with the Leontief-type short-run production function
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2.1) Q=min[Q/d, g(V,)I,

where Q, denotes production of final good at date t, Q, 2 0, Qts represents material input use, @ is a
fixed input-output coefficient (@ > 0), V, is a vector of nonmaterial inputs, and g(-) is a strictly
concave production function. Output Q, cannot be sold before date t+1; in other words, the firm
starts production at time t and finishes output right before date t+1.

According to (2.1), adding & units of material input increases production by one unit over
the range in which the vector of nonrnaterial inputs does not constrain production. If enough units
of material input are added, the set of nonmaterial inputs eventually becomes binding and
production cannot increase. The fact that there is no substitutability between material input and
q(-) does not mean that substitution ameng the nonmaterial inputs in vector V, is prevented. For
example, it may be feasible to substitute capital for labor in wheat milling, even though
substitutability of wheat for either of these other two inputs combined or alone is negligible for all
practical purposes. Note also that material input becomes nonbinding as @ tends to zero, resulting
in a standard production function g(-). In other words, the standard production function is nested
in (2.1). Storage, transportation, refining and/or purifying of raw materials (e.g., oil, sugar, and
metals), grain milling (e.g., wheat and rice), oilseed crushing, alloy preparation, energy
generation, meat packing, and livestock production are examples of processes that comply with
this Leontief function. In the farm sector, feedlot, hog, and poultry production are but some of the
production processes that can be modeled by this function with reasonable accuracy.

Diewert (1971) has shown that the cost function dual to (2.1) is
(2'2) C =@ St Qt - C(Qt; vt)’
where C is variable cost, 8¢ is material input price, (') is a strictly convex nonmaterial cost

function such that ¢'(:) > 0, and v, is a vector of nonmaterial input prices. We will assume that
¢ putp

nonmaterial input prices are constant, and we will simply write ¢(Q,) instead of ¢(Q,; v,} because
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we are not concerned with nonmaterial input prices. Assuming that material input price is
stochastic whereas that nonmaterial input prices are constar;t is not unrealistic because in many
situations material input constitutes the largest share of variable cost. Also, nonmaterial input
prices are generally less volatile, and substitutability among nonmaterial inputs should cause
variable cost changes far less pronounced than those caused by material input price changes.
Because output and material input prices are different from each other in this scenario, to
make the analysis more interesting we will hypothesize that forward markets exist for both output
and material input. We will denote the forward price and forward position corresponding to
material input by £ and F}, respectively. Then, the cash flow for a firm with the Leontief

production function (2.1) can be represented by
(23) m=p, Q. -Ps5Q-cQ)+( -p)F +E,-s)F, st Q=20
and the optimal dectisions at the current date satisfy
(2.4) Mqlry, Wy +p7 Qpy + (. - pp) Fry + (f - s7) Frps byl
= max &, UlPr Qg - @ 57 Qp- c(Qp) + (B - Pp) Fry + (B - 57) Fyl,
(2.5) M1, ... 15 [, W +P, Qo+ & -P) Foy + (€ -8) Fi 4l 0}
= maxtht{MHl[rHl e Ty @ W+ Py Q+ (f - ) Fo+ (6 - 50,) B B0
t=0,1,..., T-1,

where: d, = (Q, F, F)if 0<t < T, d; =(Qg, 0, 0), Q, 20,

P, = (P S fo £)
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D, = (Pgo-e-» PY-

Terminal wealth and cash flows are given by expressions (1.1) and (2.3), respectively.

To distinguish the firm represented by cash flow (1.2) from the firm represented by cash
flow (2.3), we will refer to the latter as a manufacturing firm. The analysis of optimal production
and hedging for the manufacturing firm can be performed by using similar procedures as those
used for the speculative storing firm. To avoid repetition, we outline the main results here and
focus on the major behavioral differences between speculative storing and manufacturing firms.

It can be shown that optimal production at the terminal date is zero, yielding the maxirmum

value function

(2.6) Mylry Wo +ppQqy + (g -pp) Fry + (7. - sp) Frps Byl

=Ulry; Wey + prQpy + (fpy - pp) By + (B - sp) Fp 1.

The FOC:s for any date preceding the terminal time are

of of

2.7) —L =1, .1 [E M., )-1,(®s +c)MT<0,Q,20,Q — =0,
) aQt t+1 Tl[ t(pt+1 t+1) t( t t] Qt Qt aQt

of, : .

(2.8) 3F. =Tpyp oo I [ My - Efpyy M, 101=0,
t

a£t ' 1

(2.9) 3 =Tpyq oo T [ M - E(syy M, 01 =6,

where: £ =E (M, [r,,; .00 (0, Wy +p, Q+(f-p, P F + (tf ), Fts); Realh

The most important results regarding this type of firm are obtained by means of

expressions (2.6) through (2.9). These results are summarized as Propositions 4, 5, and 6, which
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are the respective counterparts of Propositions 1, 2, and 3. To prove Proposition 6, we will use

the following expression regarding the relationship between output and material input cash prices:
(2.10) s,=y+dp, +u, u, iid. random variable.

PROPOSITION 4: PRODUCTION BEHAVIOR. [n the presence of an output forward market,
optimal production for a risk-averse manufacturing firm is independent from the subjective joint
distribution of random variables, from the decision maker's degree of risk aversion, and from the
optimal hedging decision. If positive, optimal production is such that discounted current output
forward price equals (weighted) current material input cash price plus marginal production cost.

These results hold for both myopic and forward-looking firms.
Proof. By substituting FOC (2.8) into FOC (2.7) and rearranging, we obtain

2.11) £y -1y [® 5, + QI £0,Qy 2 0, Qg {fy -1 [P 5, + Q) = 0.

Therefore,
a, If f5 <1y [P sy + '(0)], then Q, = 0.
b. If fy>1, [P sy + c'(O)]__,l then Q, > 0 and fy =1, [D 5, + c'(Qy)]. Q.E.D.

PROPOSITION 5: MYOPIC PRODUCTION HEDGE. The optimal hedge for a myopic
mdnufactuﬁng risk-averse firm that perceives output and material input forward prices to be
simultaneously unbiased is to sell the entire production in the output forward market and to sell
nothing in the material input forward market. This hedge is independent from the myopic firm's

degree of risk aversion.

Proof. Rewrite FOCs (2.8) and (2.9) as
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(2.12) [fy - Eg(p))] My' = Covipy, Ey(M,'Ip,)],
(2.13) [£} - E4(s,)] My = Cov[s,, E,(M,ls,)],

where: E4(M,'lp,) = | fj fj; M," k,(s;, £, fsllpo, py) df; df, ds, >0,
5 hoa

E,M,'s)) = Pj f; | M, [,(p,, f,, f1Ipy. s)) dff dfy dp; > 0.
1 1 1
k (s, £, f: Int_l, p,) is the conditional density function of s, f, and f: , given p. , and p,, and
1(p,. £, £Ip, , s, is the conditional density function of p,, f, and £, given p, , and s,.
If the firm is myopic and both forward prices are simultaneously unbiased, we need
Covlpy, Ep ;MyIpp] = Covlsy, Er ;(My'lsp)] = 0. This is satisfied if Fj. ; = Qr; and F}_l =0

because such a hedge yields My’ independent from both py and sq. Q.E.D.

PROPOSITION 6: FORWARD-LOOKING PRODUCTION HEDGE. (1) The optimal hedge for
a manufacturing forward-looking risk-averse firm is generally different from the optimal myopic
hedge. Furthermore, the optimal forward-looking hedge depends on the firm's degree of risk
aversion.

(2) If the manufacturing forward-looking firm is CARA and output and material input cash
prices behave as in (1.17) and (2.10), then the optimal hedge under unbiased forward prices
consists of buying forward contracts of material input and, if cash prices are unrelated (6 = 0) and

serially uncorrelated (B = 0), selling the entire production in the forward market.

Proof. See Appendix B.
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Proposition 4 confirms the robustness of the separation result, showing that it applies to a
cost function that characterizes many production processes, even when the firm is forward-
looking. It is also important to note that separation holds irrespective of the existence of a forward
market for material input. Propositions 5 and 6 highlight the differences between myopic and
forward-looking hedging behavior and confirm the weakness of the full-hedge optimality result.

Even for the myopic case, it will generally be true that F, # Q, and FS # () simultaneously
if output or material input forward prices (or both) are biased. This can be seen from

ad M-
@1a) ZoMPY o r B My

, akT(ST, fT; f'srlpT_l’ pT)

+[ ] [M dfy df dsy,
S fJT fr T apT T
oE. (M.l Alr(pp, iy P71, S)
(2.15) __E%_ﬂ =- F:sl”-l ET-I(MT”IS'T)"' [ éMTI T\P1s Is ITPT. 15 S df'sI‘ dfT de.
pr fp aST

For example, if the output forward price is unbiased but the material input forward price is biased,
FOCs require that dE | ;(MIs1)/dsy # 0 and 0E ,(Mr'lpp)/0pr = 0. This will generally mean a
nonzero forward position in the input market (Fy.; # 0) and an output hedge different from total
production (Fr; # Qq ). In fact, a full output hedge (F; ; = Qp_) does not yield

0E (M7 'Ip)/opy = O if Fy,; # O unless py and sy are independently distributed.

Proposition 6 clarifies our previous discussion about the storage case. With unbiased
forward prices, and independent and serially uncorrelated cash prices (8 =0 and = 0), the
optimum hedge consists of the risk-avoidance hedge (F; = Q) and the anticipatory hedge (Fy <0).
In terms of payoff with respect to alternative forward prices, the net effect of both forward
positions (F, P‘SO) is similar to a less than fully hedged output position. In the real world,
however, having forward markets for both output and material input is the exception rather than the
rule. Proposition 7 summarizes some important results concerning the situation in which either the

output forward market or the material input forward market is missing.
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PROPOSITION 7: FORWARD-LOOKING PRODUCTION HEDGE IN THE ABSENCE OF
FORWARD MARKETS. Assume that the manufacturing firm is CARA, that material input and
output cash prices behave as in (1.17) and (2.10) with 0 < & 2 B/®, and that forward prices are
unbiased. Then:

(1) The optimal forward-looking hedge in the absence of a forward market for material input is
strictly less than the entire current production.

(2) The optimal forward-looking hedge in the absence of a forward market for output is strictly less

than the amount of material input imbedded in the entire current production.

Proof. See Appendix C.

Proposition 7 reminds us that the standard full hedge optimality result depends crucially on
(1) the firm being myopic, or on (ii} output cash prices being serially uncorrelated and output and
material input cash prices being independent from each other. Full-hedge suboptimality under
forward-looking behavior and unbiased forward prices is important and especially relevant for
empirical work. Many studies have been conducted to obtain empirical estimates of the "optimal
hedge" when there is a futures rather than a forward market [e.g., Ederington (1979), Anderson
and Danthine (1980), Cecchetti, Cumby, and Figlewski (1988), Myers and Thompson (1989)].
The normative content of these studies is usually emphasized on the basis that the optimal hedge
under unbiased futures prices is independent of the decision maker's degree of risk aversion
fBatlin (1983), Benninga, Eldor, and Zilcha (1984)]. Our results suggest that this would be the
case only if (i) the agent is myopic or if (i) output cash prices are serially uncorrelated and output

and material input cash prices are unrelated to each other.
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Conclusions

In this study, we have shown that separation between production (or speculative storage)
and hedging is a robust result because it holds even if firms are forward-looking. In the presence
of forward markets, optimal production (storage) for a forward-looking firm is identical to an
otherwise equivalent myopic firm. Optimal production (storage) is determined solely by
nonrandom factors and is independent from the agent's price expectations and degree of risk
aversion.

In contrast, full-hedge optimality under unbiased forward prices holds only if (i) the
decision maker is myopic or if (ii) output cash prices are serially uncorrelated and output and
material input cash prices are independent from each other, Full hedging is suboptimal when the
firm is forward-looking and (i) output cash prices are serially correlated or (ii) output and material
input prices are contemporaneously related. In this instance, suboptimality arises because the firm
foresees that at next decision date it will stay in the market and it will take decisions based on the
observed values of the relevant random variables. Hence, next-date decisions are random and
affect the current risks faced by the firm and therefore will have an impact on the optimal current
hedge.

Most real-world situations are characterized by the absence of either a forward market for
(a) output or (b) material input. If the forward-looking firm exhibits constant absolute risk
aversion, forward prices are unbiased, and some realistic conditions hold regarding the behavior of
cash prices, the firm will hedge less than its entire current production under case (b), and will
hedge less than the material input embedded in its entire current production under case (a).

Our results may help explain why firms do not fully hedge, even when there is empirical
evidence that futures prices are generally unbiased. Also, full-hedge suboptimality under forward-
looking behavior and unbiased forward prices raises questions about the normative properties of
studies concerned with the empirical estimation of optimal myopic hedges in the presence of

futures rather than forward markets.



24

References

Anderson, Ronald W. and Jean-Pierre Danthine, 1983, The time pattern of hedging and the
volatility of futures prices, Review of Economic Studies 50, 249-266,

Anderson, Ronald W. and Jean-Pierre Danthine, 1980, Hedging and Joint production: Theory and
Iliustrations, Journal of Finance 35, 487-498.

Antonovitz, Frances and Ray D. Nelson, 1988, Forward and futures markets and the compctitive
firm under price uncertainty, Southern Economic Journal 55, 182-195.

Antonovitz, Frances and Terry Roe, 1986, Effects of expected cash and futures prices on hedging
and production, Journal of Futures Markets 6, 187-205.

Batlin, Carl A., 1983, Production under price uncertainty and imperfect time hedging opportunities
in futures markets, Southern Economic Journal 49, 682-692.

Benninga, S., R. Eldor, and L. Zilcha, 1984, The optimal hedge ratio in unbiased futures markets,
Journal of Futures Markets 4, 155-159.

Bertsekas, Dimitri P., 1976, Dynamic programming and stochastic control (Academic Press, New
York).

Cecchetti, S. G., R. E. Cumby, and S. Figlewski, 1988, Estimation of optimal futures hedge,
Review of Economics and Statistics 70, 623-630.

Chavas, Jean-Paul and Rulon Pope, 1982, Hedging and production decisions under a lincaf mean-
variance preference function, Western Journal of Agricultural Economics 7, 99-110.

Danthine, Jean-Pierre, 1978, Information, futures prices, and stabilizing speculation, Journal of
Economic Theory 17, 79-98.

Diewert, Walter E., 1971, An application of the Shephard duality theorem: A generalized Leontief
production function, Journal of Political Economy 79, 481-507.

Ederington, Louis H., 1979, The hedging performance of the new futures markets, Journal of
Finance 34, 157-170.

Feder, G., R. E. Just, and A. Schmitz, 1980, Futures markets and the theory of the firm under

price uncertainty, Quarterly Journal of Economics 94, 317-328.



25

Grant, Dwight, 1985, Theory of the firm with joint price and output risk and a forward market,
American Journal of Agricultural Economics 67, 630-635.

Gray, Roger W, 1961, The search for a risk premium, Journal of Political Economy 69, 250-260.

Hardy, G. H,, 1. E. Littlewood, and G. Pélya, 1967, Inequalities (Cambridge University Press,
London).

Hey, John D., 1987, The dynamic competitive firm under spot price uncertainty, Manchester
School of Economics and Social Studies 55, 1-12,

Holthausen, Duncan M., 1979, Hedging and the competitive firm under price uncertainty,
American Economic Review 69, 989-995,

Honda, Yuzo, 1983, Production uncertainty and the input decision of the competitive firm facing
the futures market, Economics Letters 11, §7-92.

Just, Richard and Gordon Rausser, 1981, Commodity price forecasting with large-scale
econometric models and the futures market, American Journal of Agricultural Economics
56, 197-208. |

Katz, Eliakim, 1984, The firm and price hedging in an imperfect market, International Economic
Review 25, 215-219,

Losq, Edenne, 1982, Hedging with price and output uncertainty, Economics Letters 10, 65-70.

Marshall, John F., 1989, Futures and option contracting--Theory and practice (South-Western,
Cincinnati).

Martin, Larry and Philip Garcia, 1981, The price-forecasting performance of futures markets for
live cattle and hogs: A disaggregated analysis, American Journal of Agricultural Economics
63, 209-215.

Merton, Robert C., 1982, On the microeconomic theory of investment under uncertainty, in;
Kenneth J. Arrow and Michael D. Intriligator, eds., Handbook of mathematical economics,
Vol. 2 (North-Holland, Amsterdam).

Myers, Robert J. and Stanley R. Thompson, 1989, Generalized optimal hedge ratio estimation,

American Journal of Agricultural Economics 71, 858-868.



26

Paroush, Jacob and Avner Wolf, 1989, Production and hedging decisions in the presence of basis
risk, Journal of Futures Markets 9, 547-563.

Sandmo, Agnar, 1971, On the theory of the competitive firm under price uncertainty, American
Economic Review 61, 65-73.

Telser, Lester G., 1958, Futures trading and the storage of cotton and wheat, Journal of Political

Economy 66, 233-255.



27

Appendix A. Derivation of FOC (1.10)

The FOCs corresponding to the Lagrangian for 0 <t < T are (A1) plus (1.11) and (1.12).

(A1) % =E OM,y{ryy oo T I, Wot (£ -0 y) Bl Ly By b 9L
aIt+1 aPt

t

T T Iy P+ Y M oy [y Wy + (6 -P) Fgl e et - M = 0.

But note that
dl
(A2) t+1 =-1,
BPt
ol
(AS) t+1 - 1,
aIt
oM aM, ., d1
(A%) LR £ L S S} B SRINIRE SRR L A8 ¥ (L
aIt aIt+1 aIt t o+l T-2°T-1 t nt
(A4) ST Tiyp - Trp Ty P MY

where (A4') is obtained by using expressions (A1) through (A3). It follows from (A4') that

aMt+1{rt+1 e Iy [It wt + (ft B pt+1) I:.t]; It+1; nt+1}

A5
(A3) =

t+l

=Ty Tpeg oo Frp Ty Py My g o 1 [ Wi+ (- ) Bl L Bey )

Substitution of (A2) and (A5) into FOC (A1) and rearrangement yields expression (1.10).



28

Appendix B. Proof of Proposition 6
If the firm is CARA, forward prices are unbiased, and output and material input prices
behave as in (1.17) and (2.10), we have

(B1) Covls,, E;(M,'ls,)] = Cov[y + 8 p, +u;, ExM, 'ty + 8 p; +u))]

=8 Cov[p,;, Es(M,'Ip;)] + Cov[u,, E(M,lu,)],

(M, . )
(B2) T;pl_) =1y oo Ty (Qq - Fy - 8 E) Eo(M,"Ip))
1
Ty tpy @ @8- B E(Q M,"Ip) - 1y ... Troy (6, @ 8- B) B Eg(Q, M,"Ip)
Ty e Tpy (1, D 8- B) BT E(Q M,"Ipy) - oo - (tpy @8- B) B Ey(Qpy My, "D
a(Ml'Iul) S " t
B3) Ll =ory oy FyBM, ) -ry oy  Bo(Q) My
1

Under unbiased forward prices, FOCs (2.12) and (2.13) require Cov[p,, E;(M,Ip,)] =
Cov[sl, Ey(M,'Is))] = 0. Therefore, from (B1) it must also be true that Cov[u,, EO(MI'Iul)] =0.
Assume that 0 € FS. Then o(M, 'lu,)/0u, > 0 because Ej(M,"lu;) <0 and
Ey(Q, M;"lu,) <0, thus implying that Cov[u,, Ey(M,'lu)] > 0. But this contradicts the
requirement that Cov[u,, E;(M,'lu;)] = 0. Hence, it must be true that 0 > F;.
Assume that Q) < (>) F,. If p =8 =0, dM, 'Ip;)/dp, > (<) 0 and therefore
Cov[pl, EqM,'Ip)] > (<) 0, which contradicts the necessary condition that Cov[p,, Ey(M, 'Ip,)]

= (. Hence, it must be true that Q,=F,
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Appendix C. Proof of Proposition 7
In the absence of a forward market for material input, the analysis can be performed by

setting FtS = 0, in which case only FOCs (2.7) and (2.12) apply. Then, we have

I(M,'l
b —E_a;il) =1 ... I (Qq - Fo) EgM,"Ipy) - 15 .. 1y (1 @8- B) Ep(Q; My "Ipy)
1 |

" -1 1]
Ty tpy (6, ® 8- B) BEGQy M, Ip)) - e Ty oo Ty ([, @8- B) BT Ey(Q, M,"Ip)
T'2 t
-ty @ o-B) B Ey(Qpy My, "Ip))-
Following the arguments in the proof of Proposition 6, we must have Q; > F,, if 0 < 6 > }/®.

Similarly, if there is no forward market for output, F, must be set equal to zero and only

FOCs (2.7) and (2.13) apply. In this instance,

(C2) Covlsy, Ej(M,'ls)] =5 Cov[p;, E¢(M;'IpP] + Cov[u, E(M;'lu}] = 0,

(C3) g(rg;# =1y . Tpg (Qy- SE) E(M,"Ip) - 1, ... 17, (r; ® 8- B) B,(Q, M,"Ip,)
STy e Ty (G, @ 8- B) BE(Qy My Ip,) - - Ty, o Tpy (5, @ 8- B) B Eg(Q, M,"Ip))
- (i © 8- B) BT Ey(Qpy My"Ipy),
(C4) %_1\;;'1'_“1) =-1, ... Ip By EgM, "lu)) - 1y .. 1 @ EG(Q) M ")

Assume Q, <9 Ff). Then o(M, 'Ip,)/dp, > 0 and d(M, 'lu,)/du, > 0, which implies that Cov([s,,
E,(M,'s,)] > 0. But if Cov[s;, E,(M,'Is,)] >0, then FOC (2.12) cannot hold. Hence, Q, > 5 F;
> B/® F, = F/®, implying that ® Q, = Q; > F,.
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Figure 1. Optimal storage and forward-looking hedge under unbiased forward prices
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Table 1. Probability distribution of prices at dates t, and t,

Date t, Date t,
Event Py, fi N Probability Event Py, Egﬁ?ggﬁg
on event at t1
1 13 12.5 0.0625 1 14.5 0.25
1 13 12.5 0.0625 2 11.5 0.50
1 13 12.5 0.0625 3 9.5 0.25
2 13 11.5 0.1250 4 14.5 0.25
2 13 11.5 0.1250 5 11.5 0.50
2 13 11.5 0.1250 6 9.5 0.25
3 13 10.5 0.0625 7 14.5 0.25
3 13 10.5 0.0625 8 11.5 0.50
3 13 10.5 0.0625 9 9.5 0.25
4 10 11 0.1250 10 13 0.25
4 10 11 0.1250 11 10 0.50
4 10 11 0.1250 12 7 0.25
5 10 10 0.2500 13 13 0.25
5 10 10 0.2500 14 10 0.50
5 10 10 0.2500 15 7 0.25
6 10 9 0.1250 16 13 0.25
6 10 9 0.1250 17 10 0.50
6 10 9 0.1250 18 7 0.25
7 7 9.5 0.0625 19 11.5 0.25
7 7 9.5 0.0625 20 8.5 .50
7 7 9.5 0.0625 21 5.5 0.25
8 7 8.5 0.1250 22 11.5 0.25
8 7 8.5 0.1250 23 8.5 0.50
8 7 8.5 0.1250 24 5.5 0.25
9 7 1.5 0.0625 25 11.5 0.25
9 7 7.5 0.0625 26 8.5 0.50
9 7 7.5 0.0625 27 5.5 0.25




