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1. INTRODUCTION

In collective decision making, political alliances naturally arise and are critical to the negotiation processes
that lead to the actual implementation of decisions. In the present context, an “alliance” refers simply to
a group of political actors who share common, but not identical, interests against some adversary. In this
paper we focus on the relationship among three constructs: the structure of an alliance, the context in which
negotiations take place, and the performance of the alliance. The term “alliance structure” refers to the
configuration of alliance members’ preferences as well as to their bargaining attributes. The “context” of
nepgotiation refers to the rules of the bargaining game, including such factors as the structure of admissible
coalitions and the range of allowable policy propesals. “Alliance performance” refers to the alliance’s effec-
tiveness in furthering its members’ common objectives through the negotiation. process For example, if the
space of issues can be represented in an Edgeworth box, a natural measure of alliance performance might be
the location of the negotiated solution along the contract curve.

For the model advanced in this paper, political discourse is restricted to issues that can be classified as one
of two types: communal issues and factional issues. For communal issues, all members of the alliance have
identical objectives and these objectives are diametrically opposed to the adversary’s objectives, holding all
other variables equal. A typical communal issue is the total quantity of resources to be transferred from the
public sector to a political alliance. For factional issues, the objectives of subgroups of the alliance may not
be aligned with those of other subgroups. Moreover, the interests of the adversary may be aligned with those
of one of the subgroups, so that in this respect, holding communal issues constant, some alliance members
have more in common with the adversary than with other alliance members, For example, given a fixed
aggregate transfer level, members of a political alliance will no longer be aligned when the distribution of
the transfer among alliance members becomes an issue.

The collective decision-making framework developed in this paper is motivated by a vast array of exam-
ples. Consider, for instance, the relationship between an alliance, consisting of the members of a university
department, and an adversary, represented by their dean. In this case a natural dichotomy arises between
a transfer variable—representing the total funds allocated to the department—and a distribution variable—

which sets the allocation of funds between teaching and research, between theory and applications, etc.



Similar distinctions can be drawn in a wide variety of other negotiating contexts: the Clinton economic
proposal of 1993; the soon-to-be-announced U.S. health care reform package; the NATO alliance versus the
Soviet Union (prior to the latter’s demise); the Afghanistan tribes’ attempt to overthrow the Soviet occu-
pation; the GATT negotiations; the alliance of politically liberal groups—such as the green movement, the

labor movement, women's movement and the civil rights movement—against a conservative establishiment.

More concretely, consider the case of the current GATT negotiations. Agriculture has been the major
obstacle to a successful conclusion of the Uruguay Round. Owver the last six years the United States has
attempted to convince the European Community that the aggregate subsidy level should be reduced. It has
been difficult indeed. to determine the form that the subsidy reduction would take, e.g., internal support
versus export subsidies. Along with the issue of the total subsidy reduction—this is the transfer variable in
our terminology—there is the issue of the distribution of costs and benefits among different countries within

the Community whose interests and desires are quite different.

Another example is the negotiations between airline carriers and the Federal Aviation Administration
(FAA) regarding the assignment of property rights to landing slots. In this instance, the transfer variable
represents the disposition of the proceeds from the sale of landing rights. The FAA’s view was that these
proceeds should be transferred to the public, while the carriers were unanimously opposed to this idea. The
distribution variable represents the regulations governing the new market and landing slots, which determined
the allocation of benefits among the various carriers. In this case, the carriers who were primarily sellers of
landing rights could be viewed as one subgroup of the alliance; those who were primarily buyers could be
viewed as another. Quite obviously, the distribution variable could be sef in a way that benefits either one

subgroup or the other,

Still another example is provided by the negotiations that have occurred between agribusiness interests
and the government over export-enhancement programs. The goal of these programs is to assist US, agribusi-
ness in gaining market shares relative to the European Community in certain selected locations, Specific
targets are set, emphasizing those countries where the European Community is attempting to establish a
marke} position. In this case, the transfer variable represents the total amount that will be spent on export

enhancement. The Office of Management and Budget (the adversary} wants this total amount to be as



small as possible, while agribusiness interests (the alliance) have the opposite objective. The distribution
variable represents the allocation of expenditure among the various target countries. Different agribusiness
companies have quite distinct and variable preferences over this distribution.

This paper reports on a series of Monte Carlo experiments, designed to investigate the comparative statics
properties of the model. Simulation techniques are utilized rather than analytical calculus techniques, for a
number of reasons. First, the model is designed to address issues and problems that are far too complicated
to be analyzed by conventional techniques. Second, because of the nonconvexities and discontinuities that
are inherent in these problems, the purely local information provided by calculus techniques is of limited
usefulness. Accordingly, we are faced with two choices: either we embrace an alternative technology or we
forever limit ourselves to the relatively narrow class of political and economic problems that can be studied
using existing methodologies. Since there is a very rich class of problems that violates the typical assumptions
needed to apply conventional techniques, there is a compelling case for allowing the problem to determine

the method of analysis.

2. A REVIEW OF THE MULTILATERAL BARGAINING FRAMEWORK.

The theoretical foundations for this paper are laid out in Rausser-Simon [1991], which proposes a non-
cooperative model of multilateral bargaining. The model can be viewed as an extension of the classical
Stahl-Rubinstein bargaining game in which two players take turns proposing a division of a “pie.”! In the
classical game, one player proposes a division, which the other can accept or reject. If the division is ac-
cepted, the game ends and the division is adopted; if it is rejected, the second player then makes a proposal,
which the first player then accepts or rejects. And so on. In Stahl’s formulation, the game continues for
a finite number of rounds; in Rubinstein’s extension, the number of rounds is infinite. The Rausser-Simon

generalization of this framework incorporates multiple players and multidimensional issue spaces. The ap-

15tahl [1972, 1977} and Rubinstein [1982).



proach is to consider a sequence of games with finite bargaining horizons, and study the limit points of the
equilibrium outcomes as the horizon is extended without bound.

In a multilateral bargaining problem, there is a finite collection of players, who meet together to select a
policy from some collection of possible alternatives. In addition to these alternatives, there is a distinguished
disagreement policy, which is imposed by default if players fail to reach agreement. Each player has a utility
function defined on the set of possible policies. Players are presumed to be risk averse. (For simplicity,

players do not discount the future, though this is in no way essential to the model.)

The specification of a multilateral bargaining problem includes a list of admissible coalitions. An admissible
coalition is interpreted as a subset of the players that can impose a policy decision on the group as a whole.
For example, in majority rule decision-making, a coalition is defined to be admissible if and oniy if it contains
a majority of the group. More generally, the set of admissible coalitions may have a variety of structures.
In particular, we will sometimes impose the restriction that one or more players belongs to every admissible

coalition. In this case, we shall say that the bargaining problem has an essential player.

The core of a multilateral bargaining problem is defined in the obvious way. A policy is said to be blocked
by a coalition if there is some alternative policy that each member of the coalition strictly prefers to the

original one. The core is the set of policies that cannot be blocked by any admissible coalition.

A multilateral-bargaining game is derived from a multilateral bargaining problem by superimposing upon
it a “negotiation process.” Specifically, each bargaining game has a finite number of negotiating rounds. A
distinction is drawn between odd-numbered rounds of negotiations, called offer rounds, and even-numbered
rounds, called response rounds. In an offer round, each player chooses a proposal, consisting of a policy and
an admissible coalition. In response rounds, each player who is invited to join a coaliticn in the previous
round specifies whether or not she will accept the policy selected by the proposer in that round. We will
sometimes refer to the set of policies that player ¢ will accept in round t as player i’s acceptance region in
round . A strategy for a player is a collection of functions from past histories of the game to current round
actions, i.e., to proposals in offer rounds and to acceptance regions in even-numbered rounds.

Prior. to each response round, a proposer is chosen randomly “by nature,” according to an exogenously

specified vector of access probabilities. These i.i.d. probabilities are interpreted as measures of players’



relative political “effectiveness:” the higher a player’s access weight, the more likely it is that she will “seize
the initiative” in the negotiations. A player’s high access might reflect the extent of her political power within
the organization, or, perhaps, a talent for formulating issues in ways that can lead to workable compromises.
Together with the vector of access probabilities, each profile of strategies uniquely identifies an outeome,
which is a random variable defined on the set of policies. The outcome is defined as follows. After the
first offer round, nature selects some player to be the proposer. If the policy selected by the proposer is
approved by each member of the coalition selected by the proposer, then this policy is accepted on behalf
of the group and negotiations are concluded. If some coalition member rejects the proposed policy then
nature randomizes again to select a proposer for the following offer round and the process is repeated. If the
last round of negotiations is reached without agreement having been reached, then the game ends and the
"disagreement” policy is implemented by default. Clearly, the procedure just described defines a random

variable that assigns positive probability to a finite number of policies.

Having defined strategies and outcomes, the specification of a multilateral bargaining game is completed
by defining a solution concept. The standard solution concept for games of this kind is subgame perfection.
In the present context, however, this concept has no predictive power: for any game in which at least
two players are required for agreement, any policy that is weakly preferred by all players to the default
outcome can be implemented with certainty as the outcome of subgame perfect equilibrium. Fortunately,
almost all of these equilibria violate a natural rationality criterion and can be eliminated by a number of
equilibrium refinements. Rausser-Simon- adopt a particularly simple refinement, referred to as the SEDS
criterion (Sequential Elimination of Dominated Strategies). The criterion first eliminates strategies that
involve inadmissible (i.e., weakly dominated) play in the final response round. Next, it eliminates strategies
that involve inadmissible play in the penultimate round, considering only strategies that survive the first
round of elimination. And so on. A profile of strategies that survives this sequence of eliminations is called

an equilibrium for the game.

There is a simple characterization of the set of equilibrium strategy profiles: in each response round, a
player will accept a proposed policy if and only if it generates at least as much utility as her reservation

utility in that round, that is, the utility she expects to receive if no agreement is reached and play continues



into the following round. In each offer round, a player is faced with a two-part problem. For each admissible
coalition, she maximizes her utility over the set of policies that provide each coalition member with at least
her reservation utility in the following round.? She then selects a utility-maximal policy from among these
maximizers. It is a simple matter to verify that an equilibrium always exists. An important property of the
framework is that equilibrium outcomes are generically unique.?

A multilateral bargaining model is a sequence of multilateral bargaining games, which are all identical
except for the number of negotiating rounds, which increases without bound as the sequence progresses.
A solution to a multilateral bargaining model is any limit of a sequence of equilibrium outcomes for the
games in the sequence. The payoff that a player obtains from the solution to a model will be referred to
as the player’s solution utility for that model. A solution will be called deterministic if the elements of the
limit outcome vector are all identical. Solutions that are not deterministic will be called stochastic. When a
solution exists, it is interpreted as a proxy for the equilibrium outcome of a bargaining game in which the
number of negotiation rounds is finite but arbitrarily large.

A necessary condition for existence of a deterministic solution is that the underlying bargaining problem
has a nonempty core. For generic multilateral bargaining models, if a solution exists then it is unique.
Rausser-Simon {18917 identify two sets of sufficient conditions for existence of a deterministic solution. The
first 1s that the space of policies for the underlying problem is one-dimensional and that decisions cannot be
taken without the consent of a simple majority of the players. When the policy space is multidimensional,
it is much more difficult to guarantee convergence. One relatively straightforward way restriction is that
there is at least one essential player, i.e., a player who is a member of every admissible coalition. For every
bargaining problem satisfying this restriction, the derived bargaining mode] has a deterministic solution.

In the abstract, the latter sufficiency condition is quite restrictive. For example, it clearly conflicts with the
formal institutional procedure of decision-making by majority rule. However, in a wide variety of collective
decision-making contexts, the condition is satisfied de facto, even when it is explicitly violated de jure. For

example, it is difficult to imagine that a candidate could emerge as the White House nominee for a major

2This set is necessarily nonempty if players are risk averse, since each one strictly prefers the expected outcome of the lottery
in the following offer round to the lottery itself,

3To be precise, fix a game form and a universe of possible utility functions, endowed with the sup norm metric. For an open,
dense subset of these functions, the derived multilateral bargaining games have unique equilibrium cutcomes.



political appointment without at least the tacit approval of the President. That is, in negotiations with the
White House staff, the President would be an essential player. Similarly, in the current negotiations over
ﬁhe future of the former Soviet Union, essential status might be conferred upon Mr Yeltsin. More generally,
whenever a group of negotiators has a clearly identified “leader,” it may be appropriate to model this player

as essential,

Player #2's
Ideal point

Player #3’s
Ideal point

Player #1’s
Ideal point

FiGuRE 1. A three player, T-round game.

To provide some intuition about the internal workings of the model, we will discuss a simple example,
illustrating why a deterministic solution must exist whenever there is at least one essential player. While

the argument presented below is not a general one, it does indicate the flavor of the general proof. There are



three players who meet together to divide up the unit simplex (see figure 1). We assume that player #1 is
essential, so that the only admissible coalitions consist of either players #1 and #2, or #1! and #3. Players’
ideal points are at the vertices of the triangle shown in figure 1. We assume that the default outcome yields
all three players sufficiently low payoffs that in round T of the game, each player will accept any offer in
the simplex, rather than incur the default payoff. In this case, each player will select her own ideal point
in round T-1, if selected by nature to be the proposer. For each player 7, the line l’,—r‘"“2 is the indifference
curve corresponding to player #’s reservation utility in round T'—2: any policy in the set I;r—z yields player
i the same payoff as the lottery she would face if negotiations were to continue to round T'—1. In round
T —2, player i will accept any policy in the convex hull of this set. In round T -3, players #2 and #3
must propose, respectively, the policies :J:‘;L3 and :ng_s. FPlayer #1 has two choices: we will assume that she
proposes 3?"3. Now consider round T'—4. Since player #1 will realize at least her T'—2-reservation utility
if she reaches round T—3, and may realize a higher utility, her reservation utility in round 7 —4 must be
higher than in round T—2. It follows that the indifference curve Ifhi must be closer to #1’s ideal point
than the curve I;P_z. In round T-5, players #2 and #3 must offer, respectively, the policies zJ ~ and Eg’—s‘
Player #1’s own proposal in this round is not shown in the diagram: it depends on the locations of the
two (unspecified) curves I, * and I7*. It is clear, however, that #1 can do strictly better than the line
IT*. Applying this logic repeatedly, it follows that the sequence of indifference curves, (IT2, 174, ), must
contract towards player #1’s ideal point. It can be shown that the rate at which these indifference curves
contract is bounded away from zero. Hence, if T is sufficiently large, all of the locations proposed in the first

round of negotiations will be arbitrarily close to player #1’s ideal point. It follows that in the limit, #1%

ideal point must be implemented with probability one.

3. A PARAMETERIZED FAMILY oF BARGAINING PROBLEMS.

This section specifies the family of problems that will be analyzed in detail in the following section. We

then discuss our methodology for analyzing the model and propose some hypotheses about its properties.

3.1. The Bargaining Problem. There are six players. All but one of these comprise an alliance. The

remaining player (indexed by zero) will be referred to as the adversary. The interests of alliance members



are all similar but not identical; the adversary’s interests are partially, but not entirely, in conflict with those
3 ¥ P ¥y Y

of the alliance members.

3.1.1. The Policy Space: The space of issues over which players negotiate is called the policy space and
is denoted by X. A policy in X consists of a distribution variable, paired with a transfervariable. The
transfervariable takes values in the unit interval; the distribution variable takes values in [—1, 1]. For heuristic
purposes, it is convenient to think of the distribution variable as an indicator of political conservatism or
liberalism: values to the left (resp. right) of the origin will be interpreted as representing left-wing (resp.

right-wing) policies.

Alliance members all prefer the transfervariable to be as large as possible, while the adversary prefers
it to be as small as possible. Players have Euclidean preferences over distribution vectors. That is, each
player has an ideal distribution, and prefers distributions to be as close as possible to her ideal. The space
of distribution vectors is normalized so that the adversary's ideal distribution, denoted by ag, is the origin.
Player i's ideal distribution is denoted by o; € [—1, 1]. The alliance members are divided into left-wingers and
right-wingers. Players #1 and #2 are are referred to collectively as “the left-wingers,” because ), a3 < 0;
Similarly, players #4 and #5 are referred to as “the right-wingers,” because a4, a5 > 0. Player #3’s ideal
point is also right-of-center, though closer to the center than #4 or #:5. Thus, the right-wing faction controls
a majority of the votes within the alliance. Observe that with regard to the distribution variable, the interests

of individual alliance members may either coincide or conflict with the interests of the adversary.

This configuration admits a wide variety of interpretations. For example, consider the following stylized
scenario about agricultural policy formation. Each alliance member is a legislator representing some agri-
cultural district, while the adversary represents the Executive Branch. The transfervariable represents the
total value of fiscal iransfers to the agricultural sector. The distribution vector represents the attributes of
the government’s agricultural policy: distributions to the left of the origin could denote policies designed
to benefit small and poor farmers, while those to the right of the origin denote “coupled” policies, whose

benefits are proportional to cutput and so are favored larger agricultural producers.
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3.1.2. Preferences: Alliance members’ preferences are assumed to be (mmodified) Cobb-Douglas in the distri-
bution and transfervariables. That is, player ¢’s utility is the product of an affine function of the transfervari-
able with an affine function of #’s Euclidean preferences over distribution vectors. Precisely, for ¢ =1, ..., 5,

player i’s utility function u; : X — R is defined by:
. ~ 1— o
u(z) = m{[7-Flz1—@)F+e} *

As noted above, a; € [—1, 1] is 4’s ideal distribution. The scalar 3 is restricted to lie in the interval (0,1].
Clearly, alliance member i’s utility is increasingly sensitive to the distribution variable, the larger is A.
Hence, we refer to 3 as the (common) distribution sensitivity coefficient for the alliance. The scalar 7 is a
positive constant whose only role is to guarantee that alliance members’ utilities are always positive; it has
no particular behavioral interpretation. Player i’s risk aversion coefficient is p; € (0,1). The normalization
constant 7; is calculated so that player i's utility always attains a maximum value of 100. Observe that given

these restrictions on parameter values, u; will be strictly concave.

The adversary’s utility function is a (modified) constant elasticity of substitution function. Specifically,

ug : X — R is defined by:

uo(z) = 7m0 {Bolvo — (=1 — @)’ + (1 — Bo)lvo — zzz]e"}(l_“m" :

= % {ﬁOh’O - 1512]E° + (1 —160)[')"0 - 322}60}(1_”0)/50,

since ag = 0. The parameters g, 70 and pp are the exact counterparts of 4, 7; and p; in the expression for
ui. Like 3, the scalar By is restricted to lie in the interval (0,1]. Though the roles that Sy and 3 play in
the respective utility expressions are somewhat different, the interpretation of the twe parameters is similar.
In particular, the adversary’s utility becomes increasingly sensitive to distribution, as Oy increases. Like
¥, o is chosen to ensure that ug is always positive. The flezibility coefficient £y € {—oo, 1] determines the

adversary’s elasticity of substitution between the distribution and transfervariables.
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3.1.3. The Remaining Parameters: To complete the specification of the multilateral bargaining model, we
need to specify the set of admissible coalitions, the default option and the vector of access probahilities. We
assume that a coalition is admissible if and only if it contains the adversary, together with a strict majority
of the alliance members. As observed in Rausser-Simon [1991, Corollary 2], we can without loss of generality
restrict attention to minimal admissible coalitions. Thus, with five alliance members there are ten admissible
coalitions. We assume throughout that the default alternative yields each player a lower payoff than any
element of the policy space. Hence, in the last response round of the game, each player will agree to any
proposal rather than incur the default payoff. Conclude that in the last offer round, player i will propose

the vector {,1) while the adversary will propose the vector (0,0).

The canonical bargaining problem is represented schematically in figure 2. The distributionand trans-
fervariables are plotted on the horizontal and vertical axes, respectively. Each solid bullet represents the
indicated player’s most preferred element of the policy space. The line joining the ideal points for players
#0 and #3 denotes the core of the underlying bargaining problem. The line is the locus of mutual tangency
points of #0’s and #3’s indifference curves. Adapting conventional terminology slightly, we will refer to this

locus as the contract curve between the alliance and the adversary.

To see that any point on the line segment belongs to the core, consider the point labelled “A” in Figure
2. The lightly drawn curves through this point represent indifference curves for players #1, 2, #4 and #5.
Thus there is no point that lies below #3's indifference curve through “A” that is preferred to “A” by a strict
majority of alliance members. Moreover, by construction, there is no point that lies above #3’s indifference
curve through “A” that is preferred to “A” by the adversary. Since any admissible coalition must contain
a strict majority of alliance members plus the adversary, there is no such coalition that can block the point
“A”. To see that the line segment characterizes the core, consider the point labelled “B” in the figure. The
shaded lens to the left of point “B” is preferred to “B” by both #3 and #0. Moreover, any point in this
region is also preferred to “B” by both left-wing members of the alliance. Thus, peint “B” can be blocked

by the coalition consisting of players #0, #1, #2 and #3.
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FIGURE 2. The canonical bargaining problem.

3.2. Research Methodology. Section 4 below reports the resulis of a series of Monte Carlo experiments,
designed to investigate the comparative statics properties of the model presented above. Monte Carlo
methods are utilized because for several reasons, standard calculus techniques are inappropriate in the
present context, for several reasons. First, a solution to our bargaining model is a steady state of a relatively
complex, high-dimensional, nonlinear, nondeterministic difference equation, involving a nested sequence of
nonlinear programming problems. It is clearly impossible to obtain a closed form solution to this equation.
To analyze rigorously the comparative statics properties of the model, therefore, it is necessary to study the

properties of individual negotiation rounds, and apply a backward induction argument. But to analyze even
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a single round, a large number of special cases must be considered, taking into account each of the coalitions
chosen by each proposer, and each of the possible combinations of constraints that may be binding on the
proposer. Second, the model is sufficiently complex that even if analytic comparative statics expressions
were available, it would not be possible to sign these expressions determinately. The signs would depend on
the relative magnitudes of a multitude of competing effects. Finally, the map from parameters to solutions is
highly discontinuous: at each stage of the game, each player must propose one of a finite set of coalitions; a
discontinuity may arise whenever there is a change in some player’s optimal proposal. Thus, even if certain
comparative statics expressions could be signed, the purely local information provided by these signs would be
of limited usefulness: they could not extrapolated to yield noninfinitesimal conclusions. In short, it appears

that in the present context the cost/benefit ratio from a formal mathematical approach is prohibitively high.

In spite of its analytical intractability, our model has a number of striking properties that are rather trans-
parent at an intuitive level. These properties can readily be demonstrated with the aid of a few well-chosen
examples. Our Monte Carlo techniques provide a nonrigorous but nonetheless compelling methodology for
testing the robustness of intuitions derived from the study of specific examples. Moreover, by studying the
statistical regularities revealed by batteries of Monte Carle experiments, we are led to further insights about
the structure of the model. These insights suggest, in turn, more focused experiments, designed to test

directly specific conjectures.

Our Monte Carlo study is organized into a series of numerical comparative statics ezpertments. Each
experiment consists of twenty simulation decatuples. Each decatuple consists of ten individual simulations,
called iterations, in which one parameter (or group of parameters) of the bargaining problem is systematically
varied. The parameter being varied is referred to as the target variable. Each simulation decatuple is
initialized by randomly selecting a value for each parameter of the game. Each parameter value is drawn
from a uniform distribution over an interval that will be specified below. The initial list of parameter values
defines the base-case iteration for the decatuple. Once a solution has been computed for the base-case
iteration, the target variable is perturbed nine times. Each time, a new solution is computed. Thus, each

simulation decatuple consists of a family of ten bargaining models, all identical except for the values of the
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target variable. By considering not one but several increments in the target variable, information is acquired

that enables us to identify not just local effects but also noninfinitesimal trends.

3.3. Hypotheses. The focus of the paper is on the relationship between three constructs: the structure of
the alliance, the context in which negotiations take place and the “performance” of the alliance. By “struc-
ture” we mean the configuration of alliance members’ preferences as well as their bargaining attributes, such
as access probabilities. The “context” of negotiations refers to the rules of the bargaining game, including
such factors as the structure of the set of admissible coalitions and the range of allowable policy proposals.
Our measure of alliance “performance” varies from experiment to experiment, depending on whether or not
the core of the underlying bargaining problem is invariant to the perturbations being considered. When the
core is invariant, the natural measure of alliance performance is the location of the negotiated solution along
the fixed, one-dimensional contract curve. In general, as the solution moves northeast along this curve, the
utilities of all alliance members increase while the adversary’s utility decreases. In several of our experiments,
however, the contract curve shifts from iteration to iteration. In this case, there is no definition of “alliance
performance” that is entirely satisfactory, since in general, changes in structure and context will benefit some
alliance members at the expense of others. In these instances, we will usually take as a proxy measure of
performance the negotiated value of the transfervariable, since increases in this variable will, other things
being equal, benefit all alliance members at the expense of the adversary. In either case, it is important to
distinguish the normative measure we call “performance” from “social welfare.” For example, the adversary
might represent society as a whole while the alliance represents a group of special interests whose goals are

antithetical to soclety’s. In this case, alliance performance and social welfare will be inversely correlated.

The experiments reported in the following section were designed to test a number of specific hypotheses,
Of these, some formalize themes that are implicit in the political science literature. Others simnply reflect the
“conventional wisdom” about the nature of alliances. Still others emerged as a result of our earlier research
(reported in Rausser-Simon [1991] and Adams-Rausser-Simon [1992]). While many of the hypotheses are
quite self-evident, to our knowledge there have been no previous attempts to test them any systematic way

in the context of a formal model. One reason for this, presumably, is that except for the present model,
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there are few existing models of multilateral bargaining that predict a unique outcome. Obviocusly, the kinds

of questions considered in this paper cannot be addressed unless this property is satisfied.

The first three hypotheses listed below concern the relationship between alliance structure and perfor-

mance. The remaining two concern the relationship between context and performance.

Hypothesis A. Alliance performance will be greater, the greater the relative weight

that its members assign to communal objectives rather than factional objectives.

In general, this hypothesis is self-evident: the alliance will be more successful, the more focussed are its

members on the goals that are common to all of them and the less energy is expended on factional infighting.

Hypothesis B, If one faction of the alliance is more powerful than the other, then
a shift in power that further enhances the relative power of the first faction will increase

alliance performance.

This hypothesis is also intuitive. It seems natural that the more asymmetric is the distribution of power
within an alliance, the more effective will be its leadership and, hence, the greater will be its performance.

On the other hand, paralysis might result from an evenly balanced distribution of power.

Hypothesis C. Alliance performance will be greater, the more powerful are its more

moderate members relative to the extreme members of each faction.

The basis for this hypothesis is that extreme members will assign relatively more weight to factional goals
than will moderate members. Thus, the more highly polarized an alliance is, the less effective it is likely to

be. In this sense, hypothesis C is a corollary of hypothesis A.

Hypothesis D. Alliance performance will be greater, and the results of negotiations

less partisan, the larger the size of a minimal admissible coalition.

The first part of this hypothesis might be disputed on the grounds that the transactions costs of decision-
making will increase with the number of parties whose consent is required. In cur model, however, the
transaction cost factor is not modelled. Since agreement is invariably obtained, increasing the minimal

coalition size increases the pressure to subordinate factional conflict to communal goals. Moreover, since the
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proposals submitted by either faction must be approved by members of the other faction, there will be a

tendency towards centrist positions (i.e., distributions closer to the origin).

Hypothesis E. If the space of allowable policy proposals is restricted, then negotiators
who strongly favor the policies excluded by the restriction may benefit at the expense of

those who strongly oppose these policies.

Unlike the preceding hypotheses, this one is at least superficially counterintuitive. A related phenomenon
was first observed in experiments reported in ARS[1991]. To the extent that it can be widely validated,
the hypothesis has striking implications for practical negotiators. Protagonist often seek to manipulate the
negotiating environment prior to the commencement of actual negotiation sessiony, by excluding from the
negotiation table agenda items that they vigorously oppose. The analysis presented in the following sections

suggests that agenda-manipulation maneuvers of this kind may not always be advisable.

4. RESULTS OF THE EXPERIMENTS.

This section reports the results of the Monte Carlo experiments. Except when otherwise specified, the
parameters for the base-case iteration of each experiment will be drawn from uniform distributions over the
intervals specified in table 1. Several of the parameters are arranged in pairs, with restrictions applying
to each pair. The restrictions are imposed to demonstrate more sharply certain key relationships between

exogenous and endogenous variables. We will explain each line of the table 1 in turn.

TABLE 1. Restrictions on the Parameter Space.

Line Description of Vari | Lower | Upper | Vari | Lower | Upper
no. variable pair able | bound | bound | able | bound | bound Restriction

Utility Parameters:

Sensitivity to distribution: | 3 0.0 1.0 Ba 0.0 1.0 B =1-0

Constant term: Yo 10.0 10.0 ¥ 10.0 10.0

Substitution param: to -6.0 1.0

Alliance members’ ideal distributions:
4 Ideal pts for #1,5 oy -1.0 -0.7 ag 0.7 1.0 @] = —ap
5 Ideal pts for #2,4 g -0.7 -0.4 oy 0.4 0.7 a3 = —og
6 Ideal pts for #3 oy 0.1 0.4
Bargaining attributes:

7 Access probabilities: uyg 0.5 0.75 wy 0.05 0.1 w;'s equal

8 Risk aversion coef: Po 0.0 1.0 o 0.0 1.0 pi's equal
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The restriction on line 1 specifies that the two distribution sensitivity coeflicients are perfectly negatively
correlated. This restriction is imposed because in many of the experiments, results turn out to be highly
sensitive to the relative magnitudes of these two variables. The nature of this dependency is most starkly
demonstrated when they are negatively correlated. The restriction on line 2 states that the constants
and g are held fixed throughout. This restriction is imposed because these variables have no behavioral
interpretation: their only role is to ensure that utilities are strictly positive. The restriction on line 3 imposes
a lower bound on £;. Some such restriction is necessary if £y is to be drawn from a uniform distribution;
the choice of -6, however, is entirely arbitrary. Lines 4 and 5 specify that players #1 and #b5 are equally
extreme left- and right-wingers, while players #2 and #4 are equally moderate lefi- and right-wingers. Line
6 declares that player #3 is a right-winger, but more moderate than #4 or #5. Line 7 specifies that the
aggregate alliance access probability cannot exceed 0.5. This restriction is imposed to reduce the frequency
with which corner solutions arise. Lines 7 and 8 specify that the alliance members have identical bargaining
attributes. The symmetry restrictions in line 4 and 5, together with the equality restrictions in line 7 and 8,
are imposed to sharpen the focus on the balance of power between the left- and right-wing factions. Under
the assumptions of table 1, the only distinction between the left- and the right-wing factions is that player
#3’s orientation is right-of-center. This ensures that in a strategic sense the right-wing is unambiguously

more powerful than the left-wing.

Our comparative statics experiments are organized into several clusters, each consisting of a number of
related experiments. The clusters can in turn be classified into two groups. The first group of experiments
consists of three clusters which investigate the relationship between alliance performance and the internal
structure of the alliance. The second group consists of two clusters, which consider the relationship between

alliance performance and the context within which negotiations take place.

4.1. Experiment Cluster *“A”—Access probabilities. This cluster consists of four experiments in
which the distribution of access among alliance members is perturbed. The four experiments are referred to
as \A(5,1), A(4,2), A(2,1) and \A(4,5). In the base-case iteration of each simulation decatuple, an aggregate

alliance probability of 0.5 is split equally among the members; that is, w; = 0.1, for each i, while wy = 0.5.
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In each subsequent iteration of experiment A(j, k), player j’s access probability, wy, is incremented by 0.002,

player k's access is decremented by 0.002, and other players’ probabilities are unchanged. Thus, experiments

A(5,1) and A(4,2) transfer access from the left- to the right-wing, while experiments .A(2,1) and .A(4,5)

transfer access from extreme members of each faction to moderate members.

Since the core of the underlying bargaining problem is invariant to the distribution of access, the natural

measure of alliance performance in this experiment is the location of the solution along the fixed “contract

curve” (see figure 2 above, p. 12). Since the right-wing faction is more powerful than the left-wing, hypoth-

esis B predicts that in experiments A(5,1) and .A(4,2) alliance performance should improve from iteration

to iteration. As table 2 below demonstrates, the experimental data is consistent with this prediction. The

table reports on the qualitative effects of the access transfer on solution values and on players’ equilibrium

utilities in experiment A(5,1}. (The results for experiment ,A(4,2) are very similar, and so are not presented

here.)
TABLE 2. Simulation results for experiment A(51): ws S owg N
Simul | Change in | Change in | Changein Change in Change in Change in
ation location share #1’s utility | #3's utility | #5's utility #0's utility
1 Bl [ e e na  T BE a o e N B O e
2 B I ol [ o o B el o e
3 B L T n o o m ok T B e o
4 i ek T S S e R B oo et = = A S T B S
5 e Bl B o T B I s
& e B e e ol it o o o = N S o A [ S
7 e e B o B B e e e
8 s Tl B B R e o e o B I
g e Bt el Bt o e S s e
10 L I R B o o R B e
11 il I B et a s dl I e e
12 B e T B e g T o B el I S S e
13 m R e B e b C N T o e I e e
14 L e I o n e e I s L o o B e o
15 R I e T IR o a R o o I e e I
16 [ o o N I P i I e o
17 R o o Sl ot o o B I
18 B I B s o r mrn e I o s o I = S PP
19 e e I S e o B e FHr b+ FHttr++ | e
20 b o N e I r S Bt & S S = U I ey B

Columns two and three of table 2 report the qualitative changes in the distribution and transfervariables

as Oo is modified. For example, in the fourth row of the table the string “++++--+++" in both columns is
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interpreted as follows: the solution moves northeast up the contract curve for the first five iterations, then
moves southwest for two iterations, then continues to climb again for the remaining iterations. Columns four
through seven report the changes in selected players’ solution utilities from iteration to iteration. In this
particular experiment, northeasterly shifts in the solution policy invariably result in increases in all alliance

members’ utilities and a decrease in the adversary’s utility. Result I below summarizes the data.

Result I. The effect of an access transfer from a left-winger to her right-wing counter-
part is to shift the sclution northeast along the contract curve. Alliance members’ solution

utilities increase, while the adversary’s utility decreases.

Note in particular that left-wingers’ solution utilities increase in spite of the decline in their individual

power. While their factional objectives are compromised, their “communal gain” offsets this loss.

The general intuition underlying Result I is quite transparent. The transfer in access has a “primary”
and a “secondary” effect. In the final round of negotiation, the primary effect alone is in operation. In the
preceding rounds, the primary and secondary effects operate in conjunction. The primary effect is, simply,
that when access is transferred, more weight is assigned to a proposition that is relatively attractive to the
dominant right-wing of the party, and less weight is assigned to a less attractive proposition. The secondary
effect is a consequence of the primary effect. Because it has less to lose in later rounds of the game, the right-
wing adopts a more aggressive bargaining stance in earlier rounds. The two types of effects are mutually

reinforcing, and result ultimately in a shift northeast along the contract curve.

Table 3 below provides a concrete illustration of this general idea. The table compares the last three offer
rounds of the first two iterations of simulation #1 in experiment .A(5,1). While the example illustrates only
one of the many possible types of special cases that can arise, it will be clear that the reasoning applies
more generally. The table consists of six blocks of data. Each block is separated from the others by heavy
horizontal lines. The first six rows of each block specifies the details of the proposition that would be
proposed if the player listed in the first column were selected by nature to be the proposer. Column two lists
the alliance members who would be included in the proposed coalition. (The adversary is an essential player,

and is included in every coalition.}) Columns three and four list the proposed policy. Columns five through
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ten specify the utilities that each player would receive if the proposition were implemented. An asterisk in
a column indicates that the corresponding player’s participation constraint is binding on the proposer. The
last line of each block of data list each player’s expected utility from the lottery that is about to be played

out.

For example, consider the first row of the third block of data in table 3. If player #1 were selected by
nature in round T-3 of the base-case iteration, then she would propose the coalition consisting of players #0,
#1, #2 and #3. The first component of her proposition would be the distribution value --0.4781; the second
component would be the transfervalue 0.7245. Her proposal would be on the boundary of player #0’s and
#3’s acceptance sets (observe that for each of these players, the utility value of #1’s proposal is the same as
the player’s expected utility in the following round); for player #2, the proposal would be an interior point

of her acceptance set (i.e., its utility value strictly exceeds #2's expected utility in the following round}.

We now consider the table in detail. In the final offer round, players propose their most preferred policies,
Hence, the first two blocks of the table are identical except for their last lines. Right-wingers do better
in the second iteration, because #5’s proposal—which they favor—is weighted more heavily, while #1's
proposal is weighted less heavily. For example, #3’s expected utility increases from 94.8456 to 94.8580.
Similarly, left-wingers do worse. For the adversary, on the other hand, the proposals announced by #1 and
#5 are equidistant from her ideal distribution. Hence the adversary is unaffected by the change in access

probabilities,

The third and fourth blocks of table 3 compare round T-3 in each of the two iterations. Observe that in
this round, player #3’s participation constraint is binding both on player #1 and on the adversary. Because
#3’s participation constraint is tighter in the secon:i iteration than in the base-case, both #1's and #0’s
proposals are more favorable to the right-wing faction. For the remaining players in this round, only the
adversary’s constraint is binding. Since this constraint is unchanged, their proposals are the same in both
iterations. Once again, however, player #b5’s proposal is weighted more heavily, and #1’s less heavily in

the second iteration. Hence in this round there are three distinct effects, all of which benefit the right-wing

faction. For the adversary, the only difference between the two iterations is that she derives less utility from



TABLE 3. Simulation#1, Exp A(5,1): last three offer rounds.

Pr| Co Offers: Utilities:
sT al ry | g up —I Uy { uy | Uy ! ug ug
Round T-1 of base-case iteration: wg = w; = 0.1.
1 145 | —0.9486 | 1.0000 | 100.0000 99.0617 91.7729 89.5663 B1.9519 97.0043
2 245 | —0.5072 | 1.0000 58.0617 100.0000 96,4601 94.9568 B9.5663 97.5328
3 345 0.3473 | 1.0000 91.7729 96.4601 100.0000 99,8773 98.2566 97.6274
4 145 0.5072 | 1.0000 39.5663 94.9968 99.8773 100.0660 99.0617 97.5328
5 145 0.9486 | 1.0000 81.9519 89.5663 98.2566 99.0617 100.0000 97.0043
0 145 0.0000 | 0.0000 88.8968 91.8042 92.4167 91.8042 B8.89€8 100.0000
Expected utilities: 80.6837 93.91086 94,8450 94.2523 91.3320 98.6701
Round T-1 of second iteration: wy = 0.102; wy = 0.088.
1 145 | —-0.9486 | 1.0000 | 100.0000 99.0517 91.7729 89.5663 81.9519 97.0043
2 245 | —-0.5072 | 1.0000 §9.0617 100.0000 96.4601 94.9968 89.5663 97.5328
3 345 0.3475 | 1.0000 91.7729 96.4601 100.0000 G9.8773 98.2566 97.6274
4 145 0.5072 | 1.0000 89,5663 94,9968 99.8773 100.0000 99.0617 97,6328
5 145 0.9486 | 1.0000 81.9519 89.5663 88.2566 99.0617 100.0000 97.0043
Q 145 0.0000 | 0.0000 88.8958 91.8042 92.4167 91.8042 BB.8968 100.0200
Expected utilities: 90.6476 93.8916 94.8580 94,2713 91.3681 98.6701
Round T-3 of base-case iteration: wg = wy = 0.1,
1 123 | —0.4781 | 0.7245 97.0363 98.0784 94,8450+ 93,4563 88.2645 98.6701%
2 124 | —9.3761 | 0.7460 96.6801 98.1517 95.7460 94.5166 89.7827 98.6701*
3 135 0.2626 | 0.7625 91.2989 95.5277 98.3139 98,0649 96.1124 98.6701x=
4 245 0.3761 | 0.7460 89.7827 94,5166 98.2290 98,1517 96.6801 98.6701=
5 345 0.6420 | 0.6715 B85.4810 91.4168 97.3035 97.6259 97.2694 98.6701%
6] 345 0.1611 | 0.2872 89.3037 92.9540 94.8450% 94,4559 92.1528 99,8047
Expected utilities: 90.6797 94.2461 95.8663 95,4095 92.8873 99.2374
Round T-3 of second iteration: wg = 0.102; wy = 0.098.
1 123 | —0.4767 | 0.7248 97.0325 98.0804 94.8580=* 93.4714 88.2857 98.6701%
2 124 | —(.3761 | 0.7460 96.6801 98.1517 95.7460 94.5166 89.7827 98.6701*
3 345 0.2626 | 0.7625 91.2589 955277 98.3139 98.0549 96.1124 98.6701=
4 245 0.3761 | 0.7460 B9.7827 94.5156 98.2290 98.1517 96.6801 98.6701%
5 345 0.6420 | 0.6715 B5.4810 91.4168 97.3035 97.6259 97.2694 986701
0 345 0.1616 | 0.2889 89.3091 92.9623 94.8580=* 94,4697 92.1686 99.8025
Expected utilities: 90.6590 94.2371 95.8789 95.4262 929153 99.2363
Round T-5 of base-case iteration: wg = w; = 0.1.
1 123 | —0.1899 | 0.5871 94,2705 96.5878 95.8663= 94,9685 91.1986 99.2374%
2 123 | -0.1699 { 0.5871 94.2705 96.5878 35.8663* 94.9685 91.1586 99.2374%
3 [ 345 0,2327 | .5789 90,4507 94.4926 97.0609 96.7105 94,6582 99.2374%
4 | 345 0.3311 | 0.5600 89,1597 93.6300 96.9285 96.7851 95.1464 95,2374+
5 345 0.5512 | 0.4803 85.6806 51.1148 96.1765 $6.3598 95.6362 59.2374x%
0 345 0.1998 | 0.4234 89.7960 93.6454 05.8663% 95.5303 93.3641 59.5876
Expected utilities: 90.2812 94 0660 96,1170 95.7444 93.4658 99.4125
Round T-5 of second iteration: wg = 0.102; wy = 0.098.
1 123 | —0.1681 | Q.5877 94,2619 96.5866 95.8789% 949338 91,2212 99.2363*
2 123 | —0.1681 | 0.5877 94.2619 96.5866 95.8789% 94.9838 91,2212 99.2363*
3 345 0.2328 | 0.5794 90.4525 94.4950 97.0040 96.7137 94.66156 99.2363=*
4 345 0.3312 | 0.5605 89.1610 93.6320 96.9315 96.7883 95.1495 99.2363x*
5 345 0.5515 | 0.4808 85.6798 91.1153 96.1790 96.3628 95.6401 99,2363
1] 345 0.2001 | 0.4251 89.8028 93.6585 95.8789# 95.5435 93.3788 99.5844
Expected utilities: 90.2659 94.0598 96.1273 98.7577 93.4876 99.4103

21
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her own offer in the latter. Hence conditional on reaching round T-3, the adversary’s expected utility is

lower in the second iteration.

The fifth and sixth blocks of the table compare round T-5. As a consequence of the effects just described,
player #3's participation constraint is tighter in the second iteration, while the adversary’s is slacker. Hence
the effects in round T-5 amplify those in T-3. Proceeding backwards along the inductive chain, the primary

and secondary effects continue to accumulate, ultimately resuiting in a northeasterly shift in the solution.

For the left-wing, the effect of the access shift is less straightforward, because the primary and secondary
effects operate in opposite directions. As table 3 indicates, the primary effect of the access shift is that
left-wingers’ expected utilities conditional on reaching round T-1 are significantly lower. In round T-3,
the decline in left-wing expected utilities is smaller, because the secondary effect-—weakening the adversary
and strengthening the alliance—partially offsets the primary effect. Proceeding fﬁrther along the backward
inductive chain, the positive secondary effect eventually dominates the negative primary effect, so that in

the limit, the left-wingers actually do better in the second iteration than in the first.

As table 2 indicates, there are a few individual iterations in which the qualitative effects summarized in
Result I are all reversed. In simulation #4, for example, the solution values of both the transferand the
distribution variables are lower in the sixth iteration than in the fifth. Reversals of this kind occur because
at some It turns out that whenever a reversal of this kind occurs, there point, some player switches from one
coalition to another. For example, in round T-3 of simulation #4, the adversary selects the coalition {345}
for the first five iterations, then switches to the coalition {125}. This switch has the obvious effect: having
been bypassed in round T-2, the bargaining positions of players #3 and #4 are weakened in round T-5and

earlier. This effect has ramifications that are transmitted all the way back up the game tree.

We now consider experiments .4(2,1) and A(4,5). Table 4 reports on the outcome of experiment A(2,1).
(Once again, the results for experiment .A(4,5) are very similar, and are not reported.) Since player #2
(resp. #4) is more moderate than player #1 (resp. #5), hypothesis C predicts that alliance performance

should improve from iteration to iteration. As the table demonstrates, the experimental data is consistent



23

with the hypothesis only if 5 is large relative to Gy (recall from table 1 that S = 1— B). Result I below

summarizes the data In the table.

TABLE 4. Simulation results for experiment A(2,1): wy 75 w1 N\
Simul | Change in | Change in | Change in Change in Change in Change in Value of
ation location share #1's utility | #3's utility | #5's utility | #0's utility B
15 | ~-——-—- O e T e B bR 0.035
11 | -~ B el I B R ittt Ra 0,179
17 | - R el Tt Tttt B R el 0.197
I O il B B B e 0,201
[ e e e e g B L et Tt e 0,254
2 |- | rrmmmm | mmmrmmeee [ mmmeemee e ++dbbbid 0.314
8 b | bbb | bbb bbbt b+ +tttbtttt | e 0,412
9 e e et S S Et St B e S s = -+ L - 0,435
T bbbttt | bbb | b —++t+ —ttdd b+t - 0.484
10 +++rrt -+ | et EE LS +htrtrttd ++++ttttt | mmmmme——— 0.626
20 +rttttd- | FRbbbbd— | PRt TS e S ] B I B + 0.692
1 bttt | ARt +++++i++ ++++++E++ +++ttdrtt | mmmmm————— 0.693
16 B et I e N S e bttt -ttt | e = 0.718
12 | R | bbb +4t i+ bttt | - Q.757
4 P N T T S S R L S ey +h B Bttt 0.801
18 bbbt | kbbb | bbb ottt bttty | —mmm—— 0.808
5 B e I aa L RS S T S Fhttb -t +tdtd=ttt | - +-—- 0.814
19 db bbbk | bbbttt | bbb L thtbbbbtt | mmmmm———— 0.847
3 B N e N I e bbbt bttt | mmmmmem—— 0,899
13 | AR | +++HiH++ I 0.948

Result IT. When alliance members’ distribution sensitivity coefficient, 3, is high rel-
ative to the adversary’s coeflicient, Gg, the effect of an access transfer from an extreme
member to a moderate member of either faction is to shift the solution northeast along the
contract curve. Alliance members’ equilibrium utilities increase, while the adversary’s utility

decreases., When alliance members® distribution sensitivity coeflicient is relatively small, all

these effects are reversed.

‘While the data does not support hypothesis C, it would be consistent with a qualified statement, which took

into account the relative sensitivity of the alliance and the adversary to distribution.

Once again, the basic intuition is very straightforward. The primary effect of the shift in access benefits

both the adversary and player #3: for both players, a relatively favorable proposition is assigned more weight

at the expense of a relatively unfavorable proposition. Which party gains more from the shift depends on

their relative sensitivity to distribution, i.e., on the relative magnitudes of 8 and £;. The secondary effect
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of the shift favors whichever party gains more from the primary effect. For example, if 3 is larger than B,
then in earlier rounds, #3’s bargaining stance will be toughened relative to the adversary’s stance and the

secondary effect will benefit #3, but harm the adversary. Result II follows easily from this reasoning.

4.2. Experiment Cluster ““R”—risk aversion. Experiment cluster R consists of four experiments in
which the risk aversion coefficients of alliance members are perturbed. The four experiments will be referred
to as R(5,1), R(4,2), R(2,1) and R(4,5). The design of this cluster parallels the design of cluster .A. In the
base-case iteration of each experiment, each alliance member has the same risk aversion coefficient, randomly
drawn from the interval [0.1,0.9]. In each subsequent iteration of experiment R(J, k), alliance member j's
risk aversion coefficient, p;, is decremented by 0.01, while player k’s is incremented by an equal amount. All

other players’ coefficients remain unchanged.

Our original expectation was that the results of this cluster of experiments would would be very similar
to those of cluster “A”. It would appear that a player’s “political power” should be affected by a change in
her risk aversion coefficient in much the same way that it is affected by an change in her access probability.
It turns out, however, that there is a critical difference between the two kinds of bargaining attributes. As
we observed in the preceding subsection, when the access probability of, say, a right-winger is increased,
there is a primary effect that benefits each of the other right-wingers and hurts each of the left right-wingers.
Specifically, in the last round of bargaining, a policy favored by all right-wingers and opposed by all left-
wingers is assigned greater weight in the calculation of players’ participation constraints, stiffening right-wing
resolve—and weakening left-wing resolve—in the penultimate and prior negotiating rounds. On the other
hand, if right-winger 7 becomes less risk averse, player ¢ alone experiences a primary effect. Other players
may benefit or be hurt by the change, but only through its secondary effects. Sp.eciﬁcally, the decrease in
's risk aversion will toughen her bargaining stance in the penultimate round, but all other players will be
unaffected. There may be secondary effecta but only to the extent that i is invited to vote on other players’
proposals. In the extreme event that i is never called upon to vote, a change in #’s risk aversion coefficient

will have no effect whatsoever on the outcome of negotiations.

There is a second difference between the two experiment clusters, which is closely related to the first.
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As we have seen, a change in one player’s access probability affects other members of the player’s faction
more or less equally, while‘a. change in one player’s risk aversion coefficient affects them only indirectly.
As a consequence of this difference, perturbations in risk aversion have much sharper impacts on alliance
members' “competitiveness” relative to each other than perturbations in their access probabilities. The
principal consequence of these changes is that other players may be induced to change their coalition choices.
Specifically, suppose that in round ¢ of the base-case iteration of an experiment, player j proposes a coalition
containing player i. A relatively small decrease in #'s risk aversion coeflicient may induce j to switch to a
coalition that excludes i. This kind of affect operates in an asymmetric way, however: an increase in #’s risk

aversion coefficient would reinforce j's preference for the original coalition containing i.

Based on these remarks, we should expect qualitatively different results from experiments in this cluster,
depending on whether “key” members of “critical coalitions” becomne more or less “competitive” in the sense
described above. For the particular model studied in this paper, there are indeed two critical coalitions: in
the base-case iteration, when alliance members’ bargaining attributes are all identical, the adversary almost
invariably selects one of the following pair of coalitions: {345} or {125}. Whenever the former coalition is
chosen, player #3 is the key member: her’s is invariably the only binding constraint. Whenever the latter
coalition is chosen, players #2 and #5 are both “key” players in this sense. It turns out that the results in
this cluster are indeed qualitatively different, depending on whether either player #2 or #5 becomes more

or less risk averse.

Table III below reports the data for experiment R(5,1) and R(4,2) and result III summarizes the data.
(The data from experiments R(2,1} and R(5,1) are very similar, as are the data from R(4,5) and R{4,2).)
The table reports the adversary’s coalition choice in each of the last few offer rounds of each iteration.*
Throughout the cluster, the adversary selects from the following subset of the set of admissible coalitions
(the alphanumeric codes will be used to identify the coalitions in the table): {345} (R); {125} (2); {123}
(L); {145} (4); {124} (M). For example, in round T-3 of the third simulation of experiment R(5,1), the

adversary selects the coalition {125} for the first four iterations, then switches to the coalition {145} for the

4Her choice in the final offer round (T-1) is not reported, since in this round every coalition will accept every proposal



26
remaining six. The performance data contained in columns four through seven of tables 2 and 4 is omitted
from table 5. This information can readily be inferred, however, from the first two columns: for example,

when both distribution and transferincrease performance improves at the expense of the adversary.

Result ITI. In experiments R(5,1) and R(2,1), either player #2 or #5 becomes less
risk averse. In these experiments, alliance performance improves provided that in the last
few offer rounds the adversary continues to select the coalition {125}. After the adver-
sary switches to another coalition, however, alliance performance begins to deteriorate. In
experiments R(4,2} and R(4,5), either player #2 or #5 becomes more risk averse. The
adversary virtually never switches away from coalition { 1 2 5 } and alliance performance

almost invariably deteriorates.

These results contrast sharply with experiment cluster .Aand bear little relationship to the predictions of
hypotheses B and C. For example, hypothesis B predicted—correctly—that alliance performance would
improve in experiments .A(5,1) and .A(4,2). In experiment R(5,1), by contrast, alliance performance improves

only slightly more often than it deteriorates, while in experiment R(4,2) it almost invariably deteriorates.

It is clear from table 5 that the dominant factor in determining the comparative statics of this cluster is the
adversary’s pattern of coalition choices. In six of the simulation decatuples in experiment R(5,1}—#1, #8,
#10, #13, #16 and #20—the adversary proposes the same coalition in each iteration of each of the last few
offer rounds. In each of these simulations except #8, the adversary alternates between coalition {345} {R)
and {125} {2) and alliance performance improves monotonically. In these instances, the adversary’s initial
preference for coalition {125} is sufficiently strong that #5 is never “priced out of the market.” Whenever
coalition {125} is chosen, #b5’s constraint is binding- and this constraint becomes tighter from iteration to
iteration. The alliance as a whole benefits from the secondary effect of the change in #5’s risk aversion:
in the rounds in which {125} is chosen, the adversary’s proposal becomes more favorable to the alliance in
each iteration. Note that though player #1 is becoming increasingly risk averse from iteration to iteration,

this fact has no bearing whatsoever on the outcome of negotiations: since at no time is #1's participation

constraint binding, the fact that this constraint is becoming slacker is immaterial.



TaBLE 5. Simulationresults for experiments R{5,1) and R(4,5).

Experiment R(5,1): ps increases; py decreases.

Sim | Change in | Change in | Adv’s Coal | Adv’s Coal | Adv’s Coal | Adv’s Coal Adv’s Coal
# location share Round T-3 | Round T-5 | Round T-7 { Round T-9 Round T-11
1 +++++++++ | +++++++++ | RRRRRRARRR | RRRRRRRRRR | 2222222222 | RRRRRRRRRR 2222222222
2 +++t+++++ | +++++H++44+ | RRRRRRRRRR | 2222222224 | 2222222222 | RRRRRRRRRR 2222222222
R T — U 2222444444 | RRRRRERRRR | RRRRRRRRRR | 2222222222 2222222222
4 trtitbd— | bbbbbbbd- | 2222222244 | RRRRRRRRERR | RRRERRRRRER § 2222222222 2222222222
5 | #4--=++++ | #4-=—+++- | 20444444MN | RRRRRRRRRR | RRRRRRRRER | RRARRARRAR 2222222222
6 | +++++3——— | ++++++—— | 2222222444 | RRRRRRR444 | RRRRRRR444 | 2222222RRR RRRRRRR222
7 | ++++4———= | +3++3-—— | 2222244444 | RRRRRRRRRR | RRRERRRRRE | RRARRARRAR 2222222222
8 | +—+-++++- | +-—+-+++- | LLLLLLLLLL | LLLLLLLLEL | RRRRRRRRRR | RRRRRRRARA RRRRRRRRRR
g | +———- U [P 2444444444 | RRR4444444 | 222RRRRRRR | RRR2222222 2222222222
10 | +++++++++ | +++++++++ | RRARRRRARR | RRRRRRRRER | 2222222222 | RRRRRRRARR 2222222222
11 | 4mmmmmnme pommmmnnn 2444444444 | RRRERRR444 | 2222444RRR | 2222444444 RRRRRRR444
12 | #m=mmmtmn | dmbemi-- | 2444444444 | 2224444444 | 2222222444 | RRR2222224 222RRRRRER
13 ++t+brdd+ | bR |2222222332 | RRRRRRRRRR | RERRRRRRRR | RRRRRRRRRR 2222222222
14 Fm—— ++--——--— | 2244444444 | RRRRRRRRRR | 2222222222 | 2222222222 2222222222
i5 +———+-——— | +———+-——— | 2444444444 | 4244444444 | 2222244444 | RR22222444 22RRRRRRRR
16 e+t | A | 2222222222 | RRRRRRRRRR ¢ RRRRRRRRRR | 2222222222 2222222222
17 —ttdttrb= | —tpm———— 244AMMMMMMM | 2LLMMMMMMM | RRRRRRRRRR | RRERRRRRRRR 2223244444
i8 ++++ttt4+ | bbb+ | RRERRRRRRRR | 2222222222 | 2222292920  2222222RRR RRRRRAR222
19 Frttttem— | bbbttbe-= | 2244444444 | 2222224444 | 2222222222 | 2222222222 2222222222
20 ++4+++++++ | +++++++++ | RRRRRRRRRR ;| 2222222222 | RRRRRRRRRR | 2222222222 2222222222

Experiment R{4,2): ps4 increases; pz decreases,
1 - RRRRRRRERRR | RRRRRRRRRR | 2222222222 | RRRRRRRRRR 2222222222
2 |- - RERRRRRRRR | 2222222222 | 2222222222 | RRRRRRRRRR 2222222222
3 - 2222222222 | RRRRRRRRRR | RRRRRRRRRR | 22222222272 2222222222
L I e B 2222222222 | RRRRRRRRRR | RERRRRRRRR | 2222222222 2222222222
5 —eeettttt | mmmm e 2222222222 | RRRRRRRRRR | RRRRRRRRRR | RRRRRRRRRR 2222222222
6 | —————— | = 2222222222 | RRRRRRR222 | RRRRRRRRRR ; 2223332222 RRRRRRRRRR
7 | =] —emenaaa 2222222222 | RRRRRRRRAE | RRRRRRRRRR | RRRRRRRRRR 2222222222
8 +++-++-++ | -+--+-——+ | LLLLLLLLLL LLLLLLLLLL RRERRRRRRE | RRRRRRRRRR RRRRRRRRRR
9 | | - 2222222222 | RRRRRRRRRR | 2222222222 | RRRRRRRRRR 2222222222

i0 | -——-- Fo | mummm—— RRRREERRAR | RRRRRRRRRR ; 2222222222 | RRRRRRRRRR 2222222222
11 ]| - | e 2222222222 | RRRRRRARRR | 2222222222 | 2222222222 RRRHRARRRR
12 - 2222222222 | 222:222222 | 2222222222 | RRRRRRRRRR 2222332222
13 - 2222222222 | RRREARRRER | RRRRRRRARR { RRRRRRRRRR 2222222222
14 = - 2222222222 | RRRRRARRRR | 2222222223 | 2222222222 2222222222
15 - - 2222222222 | 4222222222 | 2222222222 | RRRRRRRRERR 22222232222
15 == - 2222222222 | RRRRRRRERR | RRRRRRARRR | 2222222222 2222222222
17 bbbt | wmdme— 2222222222 ( 2222222222 | RRRRRRRRRR | RRRERRRRRR 2222223222
18 -- RARRRRRRRR | 2222222222 | 2222222222 | 2222222222 RRERRRRRAR
19 - 2222222222 | 2222222222 | 2222222222 | 2222222222 22222223222
2 | -———————— | - RRRRRRERRR | 2222222223 | ARRRRRRRRR | 2222222222 2222222222

27
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A striking feature of the data for experiment R(5,1) is the frequency of sign reversals for the distribution
and transfervariables. Almost invariably, these changes can be linked to coalition switches by the adversary.
Simulation #7 is the cleanest example: the adversary switches coalitions exactly once, in round T-3. For the
first five iterations, she chooses coalition {125} in this round; thereafter, she switches to {145}. Before the
switch, #2’s and #5’s constraints are binding; afterwards, #1’s and #4’s are binding. Before the switch, the
adversary’s proposal becomes increasingly favorable to the alliance, for the reason discussed above. After the
switch, the trend is reversed because now, player #1 is becoming more risk averse, while #4’s risk aversion

remains unchanged.

The data from experiment R(4,2) contrasts sharply with that of experiment R(5,1). In virtually every
simulation, alliance performance declines monotonically. Moreover, the adversary virtually always chooses
either coalition {125} (2) or coalition {345} (R). By now, the explanation for the performance trend will
be clear: whenever coalition {125} is chosen, #2’s participation constraint is binding, and in this case #2
becomes increasingly risk averse with each iteration. The explanation for the regularity in the coalition data
is that with each iteration in this experiment, the adversary’s original coalition choice of {125} becomes
increasingly attractive relative to the alternatives. For example, as we observed above, in simulation #7 of
experiment R(5,1), player #5 eventually becomes too demanding in the coalition {125}, and this coalition is
replaced by {145}. In the corresponding simulation of experiment R{4,2) (apart from the p;’s, the parameters

in these simulations are identical), the adversary sticks with coalition {125} throughout.

" The discussion above highlights a point raised earlier (p. 13) regarding the limited usefulness of calculus
as a tool for analyzing our model. In simulation #7 of experiment R(5,1), for example, calculus predicts that
if the adversary were to continue to select coalition {125} in round T-3, alliance performance would continue
to improve. For sufficiently small perturbations, this caveat would have been innocuous. For our purposes,
however, it is the noninfinitesimal consequences of the perturbations in this experiment that are of greatest
interest. Qur alliance members are, effectively, engaged in competition with each other for membership in

critical coalitions. The fact that changes in relative risk aversion sharply affect the nature of this competition,

while changes in access probabilities do not, is the principle lesson from the experiment. Because the number



29

of coalitions is finite, and because coalition switches result in discontinuous changes in outcomes, this lesson

could not have been learned by exclusive reliance on analytic techniques.

4.3, Experiment Group “£”—distributions. This cluster consists of a pair of experiments, in which
alliance members’ ideal distributions are perturbed. The two experiments are labelled £(4,2) and £(5,1). As
in clusters “4" and “R,” these experiments are designed to investigate the relationship between the internal
balance of power within the alliance and alliance performance. In the base-case iteration of each experiment,
players’ ideal distributions are randomly drawn from the intervals specified in table 1. In each subsequent
iteration of experiment £(7, k), the ideal distributions for alliance members j and k are shifted to the left by

0.01.

These experiments can be interpreted as increasing the degree of extremism within the left-wing, while
reducing it in the right-wing. Hypotheses B and C together imply that changes of this kind should enhance the
performance of the alliance. The latter hypothesis predicts that as it becomes more extreme, the bargaining
power of the left-wing will become increasingly diluted.® Conversely the relative power of the right-wing
will increase. Since initially the right-wing is more powerful, the former hypothesis predicts that increasing
the asymmetry in the balance of power should increase alliance performance. In this sense, then, experiment

£(5,1) is analogous to experiments .A(5,1) and R(5,1).

It turns out that the results of these experiments depend in a delicate way on a number of factors, and so
are more complex to analyze than the preceding clusters. To focus the discussion more sharply, we divide
the simulations into three subclasses, each consisting of ten simulation decatuples. In each subclass, Ais
restricted to lie in a different subset of its admissible range. In simulations #1 through #10, 5 is restricted
to the subset [0,0.1]; in simulations #11 through #20, 8 € [0.4,0.6]; in simulations #21 through #30,
B €{0.9,1.0]. As usual, we maintain the restriction that 8o = 1 — 3. Table 6 below reports the data for

experiment £(4,2) (experiment £{5,1) yields similar results). In this table, the simulations are sorted in

ascending order of alliance members’' distribution sensitivity coefficient, 3. The values of this variable are

B Anccdotal evidence suggests that as the British Labour Party moved further to the left in the ‘eighties, its relative power was
weakened, leaving the Tories relatively unencumbered in its pursuit of its agenda,
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reported in the final column. Result IV summarizes the data,

TaBLE 6. Simulation results for experiment £(4,2): o431 and a; shift left.
Sim | Change in { Change in | Change in Change in Change in Change in Value of

# location share #1's utility | #3's utility | #5's utility | #0’s utility 8

4 +++++++—+ | 000000000 | ======= += ++++++i-+ B e e B il += 0,001
9 —4tt—t+—+ | bbbt bbb FH+ttt+ ittt | emmem e 0.018
2 +—t—t——~t § +=t+t—t—+ +—+++-+—+ s Y Akt —t—+ —+———d—f- 0,035
8 B n s Tt e B o o B i ) —++++++++ — bbbt Fomm 0.043
5 —#—++———— | === | bbb de—- ++++++-—— EE e Bt +++ 0.044
3 bbbttt | =FbFrrbEt | o bbbt —t+++titt - 0.046
6 ==ttt | —HHHH | o — bbbt =ttt - 0.047
10 ————F++—+ | bt | =+ B —+ bbbt - 0.062
7 +—++——+—+ | -t —++++++++ =4+t =4+ Frmmmmm——— 0.083
1 ~Ftt—t=t4 | =F+ttttit —+++t++tt =+ttt bbbt Fom—————— 0.089
19 ——— + -— Fm———— —_——t———— | ——= o —— ¥ttt 0.408
16 ———etummd | mmm—t———— ————tem—m | e fmmmm | —e—— - +HEd—+dr+ 0.523
17 - dmm———— ——pmm——— | ——— o b=ttt 0.533
11 | —==--- ttmt fom———— ++—— | —me—o o [ mmaea t4== [ =——me ++-+ - 0.536
20 R e s T e e L e e s & o e o Bt 0.549
15 e e B e A 4=m= [ e +-—— | ————- o R A 0.557
18 | ————=——en | —mwmmmmme | mmmemens | e e bbb+ 0.567
13 | =~ e | smvdisiian | mmmmmmame | meeee—e e ++++ 0.572
14 L] + Fm—————— Fom————— o ——— =dddbb bt 0.584
B e e B B B it kbbbt " 0.584
27 R e I S B e S 2 L ] +++Htt | o 0.909
25 L e e L N S s e i +H+HHHH EE e i B EEE Tt 0,809
23 B N I S S e o o ++++HHHHE B 0.913
25 bttt | bR | R L dbttttttt | vmmmmmnma 0,922
24 +++Htttbt | bbb | bR +HHHHHHH b | e 0.928
21 Fhhtttttt PR | R EE L R R T 0.937
30 B e e S O I S S B bttt | e 0.955
28 bbbt td | bbbt ] bbb bbbt bbbtk it rttrd | mmemeaea 0.960
22 bpmmmmdmm | mwma——— e | mm—ae— domw | mm—— I I - bbb =t 0.974
29 B e I I e+ +++++++++ | - 0.995

Result I'V. When alliance members are either highly insensitive to distribution

relative

to the adversary, or highly sensitive (i.e., 3 € [0.0,0.1]U{0.9, 1.0}), then equal leftward shifts

in the ideal points of players #2 and #4 resuitina rightward shift in the distribution variable,

an increase in the transfervariable and enhanced alliance perfermance. For intermediate

levels of sensitivity (3 € [0.4,0.6]), all these effects are reversed.

This division of the result into three parts clearly distinguishes result IV from the preceding ones. We

will briefly explain the results for low and intermediate values of 3, then discuss in some detail the most

interesting case in which § is high. Since, as usual, the fortunes of the alliance are intimately related to
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those of player #3, we will focus attention on the relative effects of the perturbations on #3 and on the

adversary.

First assume that 3 is close to zero (so that G is close to unity). As usual, each player specifies her ideal
policy in the final offer round. Because of the difference in their sensitivities to distribution, the adversary is
significantly more affected than player #3 to the shifts in #2’s and #£4's proposed distributions. Specifically,
the adversary’s utility gain as ##4’s proposal shifts towards the origin is more than offset by her utility loss
as #2’s proposal shifts away from it.° In the penultimate offer round, therefore, the adversary’s bargaining
position is weakened relative to player #3. The secondary effects of this shift in bargaining positions lead

ultimately in an improvement in alliance performance.

Next, consider the case in which player #3 and the adversary are more or less equally sensitive to
distribution. We will compare the effects of the distribution shifts on these two players in the final offer
round. Because #3's ideal distribution lies to the right of the adversary’s, the difference between (a4 — ca)
and (a3 — ay) is greater the difference between (as — ag) and {(@g — @2). Since utilities are strictly concave,
the disparity between the negative effect of the shift in @ and the positive effect of the shift in o4 is greater
for player #3 than it is for the adversary. The perturbations therefore weaken #3’s bargaining position
relative to the adversary’s, reversing the direction of the secondary effects in the penultimate offer round. It
would appear that further increases in the size of 3 relative to 85 could only amplify this trend. As table 6
demonstrates, however, this is not the case: when 3 is very large relative to Go, the perturbations result in
enhanced alliance performance. The explanation for this reversal is provided below, with the aid of table 7

and figure 3.

As the first two blocks of table 7 indicate, the effect of the perturbations in round T-1 is qualitatively
the same as effect for intermediate values of 3. Player #3’s expected utility conditional on reaching round

T-1 is lower in the second iteration than the base-case iteration (93.4919 vs 93.4938) while the adversary’s

®In the base-case iteration, #2's and #4's ideal distributions are initially equidistant from the adversary's ideal distribution.
Hence the first perturbation of their distributions has only a second-order effect on the adversary. This fact explains why in six
out of the first ten rows of Table 6, the signs associated with the first perturbation are reversed in subsequent perturbations.
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TABLE 7. Simulation #1, Experiment £(4,2); 3 = 989.

Pr | Co Offers: Utilities:
sr al i3 | T3 Uy l uz i us | ug i up up
Round T-1 of base-case iteration: —ap 1 = as, = 0.624.
1 145 | —0.9486 | 1.0000 | 100.0000 99,2745 91.4035 82.3330 73.7015 96,9112
2 245 | —0.6236 | 1.00C0 99.2745 100.0000 a5.7472 B89.0615 82,3330 96,9257
3 345 0.1601 | 1.0000 91.4035 95.7472 100.0000 98.5219 95.6951 96.9338
4 145 0.6236 | 1.C000 82.3330 89.0615 98.5219 1900.0090 99.2745 98,9257
5 145 0.9486 | 1.0000 73.7015 82.3330 95.6951 99.2745 130.0000 96.9112
0 145 0.0000 | ©.0000 87.1391 90.4630 92.7935 90.4530 B7.1391 10G.0000
Expected utilities: 87.5825 91.0305 93.4938 91,1422 87.7552 99.3805
Round T-1 of second iteration: ez = —0.634; a4, = 0.614.
1 145 | —0.9486 | 1.0000 | 100.0030 99.3185 91.4035 82.5671 73.7015 96.9112
2 245 | —0.6336 | 1.00C0 99.3185 100.6000 95.6369 89.0615 82.0971 $6.9254
3 345 0.160t | 1.0000 91.4035 95.6369 100.0000 98.5852 95,6651 96.9338
4 145 0.6136 | 1.0000 82.5671 89.0615 98.5852 100.0000 99,2291 $6.92680
5 145 0.9486 | 1.0000 73.7015 82.0671 95.6851 99.2291 100.0000 96.9112
0 145 0.000¢ | 0.0000 87.1391 90.3819 92,7935 90.5428 B7.1391 100.0000
Expected utilities: 87.5937 90,9535 93.4919 91.2161 87.7439 99,3805
Round T-3 of base-case iteration: —az 1 = agy = 0.624.
1 123 | —0.4763 | 0.4539 94.7062 96.0393 93.4938+« B8.0472 82.3359 99.3805#
2 123 | —0.4763 | 0.4539 94.7062 96.0393 93.4938+ B8.0472 82.3359 99.3805«
3 138 0.1583 | 0.4562 87.9569 92.1269 96.1987 94,7656 92,0381 99.3805+#
4 345 0.6149 | 0.4520 79.3750 85.7998 94_8006 96.1684 95.4333 99.3805+
5 345 0.7921 | 0.4484 75.0995 82.48B57 93.4938x 95.9565 95.9824 99,3805
4] 345 0.1480 | ¢.0752 85.6346 89.6410 93.4938+ 92.0399 B9.3448 99.9826
Expected utilities: 85.7824 89.8135 93.6553 92.1520 89.4012 99.86514
Round T-3 of sccond iteration: aa1 = —0.634; asy = 0.614.
1 123 | —0.4765 | 0.4539 94,7076 96.0197 93.4919x 88.1941 §2.3315 99.3805*
2 123 | —0.4765 | 0.4539 94.7076 96.0197 93.4919% 88.1941 82.3315 99.3805=
3 345 0.1583 | 0.4552 87.9569 92.0210 96.1987 94 8267 92.0381 99.3805=
4 345 0.6051 | 0.4521 79.5951 85.7973 94.8602 96.1696 95.3905 99.3805%
5 3435 0.7924 | 0.4484 75.0938 82.2817 93.4919x 95.9330 95.9828 99.3805%
0 345 0.1480 | 0.0749 85.6335 89.5381 93.4919% 92.0885 89.3426 99.9827
Expected utilities: 835.7902 897172 93.6560 92.2122 89.3974 99.8615
Round T-5 of base-case iteration: —as 1 = a4,1 = 0.624.
1 123 | —0.1994 | 0.2155 90.8262 93.3258 93.6553% 90.0582 85,7722 99.8614#
2 123 | —-0.1994 | 0.2155 60.8262 93.3258 93.6553+% 90.0582 85,7722 99 8614*
3 123 0.1558 | 0.2159 86.4377 90.5228 94.4975 93.0750 90.3851 99.8614=
4 345 0.5105 | 0.2095 80.1683 85.9475 93.6553% 94,3695 93.2058 99.8614%
5 345 0.5105 | 0.2095 80.1683 85.9475 93.6553% 94.3695 93.2058 99.8614+
0 125 (0.1424 | 0.0921 85,8275 89.8135x 93.6137 92.1242 89.4012% 99.9743
Expected utilities: B85.7989 89.8136 93.6560 92.1769 89.4550 99.9515
Round T-5 of second iteration: az; = —0.634; a4, = 0.614.
1 123 | —0.1992 ; 0.2155 90.8233 93.2679 93.6560x 50.1687 85.7755 99.8615=*
2 123 | —-0.1992 § 0.2155 90.8233 93.2679 33.6560% 20,1687 85.7755 89, 8615%
3 123 0.1558 | 0.2158 86,4372 93.4186 94,4970 53,1348 90.3846 99.8615%
4 345 0.5103 | 0.2095 80.1730 85.7970 93.5560=% 94,3327 93.2039 99.8615x
5 345 0.5103 | 0.2095 80.1730 85.7970 93.6560% 94.3827 93.2039 50.8615=%
1] 125 0.1420 | ©¢.0922 85.8338 B9.7172x 93.6141 92.1837 89,3974 95,9742
Expected utilities: 85.8040 B89.7157 93.6563 92.2368 89.4520 99.9515
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expected utility is unchanged (93.3805 vs 93.3805).7 After the perturbation, therefore, player #3 is left in

round T-3 in a weakened bargaining position relative to the adversary.

This adverse effect on the alliance is offset by events that occur in round T-3. These events are reported
in the third and fourth blocks of table 7 and represented schematically in figure 3 below. The black bullets
at the top of the figure represent alliance members’ most preferred policies in the base-case iteration. The
two heavily shaded bullets represent the perturbations of #2’s and #4’s most preferred policies. The heavily
drawn curve labelled Ig‘ ~? indicates the boundary of the adversary’s acceptance region In response round
T-2. Ig ~2 is the corresponding boundary for player #3. In fact, these boundaries are change slightly from

the base-case to the second iterations, but in the figure we treat them as the same.

The key observation is that in round T-3, player #3’s participation constraint is binding on player #2 but
not on player #4. The asymmetry arises because when § is very high, player #3’s interests are much more
closely aligned with #4 than they are with player #2. Because #4 is not constrained by #3, her proposal in
round T-3 of the second iteration moves along the boundary of #0’s acceptance region, to a position more
favorable to player #3. (In figure 3, zi'_z denotes #4's proposal in the base-case iteration; yg'_s denotes
her proposal in the second iteration. The lightly drawn curves through these two points represent #4’s
indifference curves in the two iterations.) Because #2 is constrained, her proposal in the second iteration
is the same as in the base-case. (In figure 3, m&;‘—a denotes #£2’s proposals in both iterations. In this case,
the lightly drawn curves represent #2’s indifference curves before and after the perturbation.) Thus, when
3 is sufficiently high, #3 benefits from the shift in #4's proposal without experiencing an offsetting loss
due to the shift in #2's proposal. As a result, #3’s expected payoff conditional on reaching round T-3 is
higher in the second iteration than in the base-case (93.6560 vs. 93.6553). The adversary’s expected payoff
conditional on reaching this round is essentially unchanged, so that in round 7.5, #3’s bargaining position

is strengthened relative to the adversary’s.

4.4, Experiment Cluster “C”—Minimal Coalition Size. This cluster consists of just one experiment.

It is qualitatively different from the other experiments, because the variables being perturbed is discrete

?There is a second-order decline in the adversary’s utility but it is obscured by rounding.
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FicURE 3. Round T-3 in experiment £{4,2); high value for 3

rather than continuous. In the base-case iteration, we presume, as usual, that three out of the five alliance
members must consent to any proposal. In the second iteration, the number of alliance members required for
consent is increased to four. Hypothesis D predicts that this change should enhance alliance performance,
and result in a less partisan solution. The results strongly support this hypothesis, except that the right-wing
of the alliance may be harmed by the change. Table 8 below reports the data for experiment € and result V

summearizes the data.
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TaBLE 8. Simulation results for experiment €: increasing coalition size.
Simul | Change in | Change in Change in Change in Change in Change in Value of
ation location share #LUs utility | #3's utility | #5's utility | #0's utility 8

13 + + + + + - 0.057
- + + + + + - 0.080
18 - + + + - - 0.263
16 - + + + - - 0.299
10 - + + + + - 0.360
2 - + + + - - 0.492
19 - + + + - - 0.556
11 - + + + - - 0.577
15 - + + + - - 0.644

- + + + - - 0.653
1 - + + + - - 0.633
12 - + + + - - 0.699
14 - + + + - - 0.710
4 - + + + - - 0.753
g - + + - - - 0.779
17 - + + + - - 0.786
7 - + + + + - 0.813
3 - + + + - - 0.857
20 - + + + - - 0.912
6 - + + + - - 0.921

Result V. An increase in minimal admissible coalition size results in an increase in the
traﬁsfervariable, increases in the utilities of left-wing alliance members and a decrease in the
utility of the adversary. Unless alliance members are extremely insensitive to distribution,
the distribution variable shifts to the left. The utilities for player #3 and for the left-wing

of the alliance increase, but right-wingers’ utilities tend to decline.

This experiment is more difficult to analyze than the previous ones, for several reasons. First, the difference
between the two iterations is discrete rather than local. Second, the coalitions that players propose are,
necessarily, quite different in the second iteration, and it is harder to make comparisons across coalitions
than within a given coalition. Finally, because we have only two iterations rather than ten, it is more than
usually difficult to identify general trends.® In spite of these problems, we will, as usual, explain the basic
intuition for the result with the aid of a single example, adding the caveat that in this experiment, the
detailed arguments we present may not be as robust as in other instances. The example, displayed in table 9

below, cornpares both iterations of simulation #3. Since the final offer rounds of the two iterations are

8In contrast to the other experiments, there is in this case a natural limit on the number of iteraticns we can consider.
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identical, the details for this round are suppressed.

TasLE 9. Simulation #3, Experiment C—last three offer rounds.
Pr Co Offers: Utilities:
sr al L2 I T3 Uy I uy I uy l Uy ! ug l ug
Round T-3 of base-case iteration: coalitions of three
1 123 —0.4851 } 0.5270 ] 99.3942 99,5021 99.1078+ | 98.4619 97.8489 97.3252+
2 123 —0.4851 | 0.5270 | 99.3942 99,5021 99.1078+ | 98.4619 97.8489 97,3252+
3 345 0.1672 | 0.5567 | 98.6063 99,0332 99.5430 59.3857 99.1292 97.3252%
4 345 0.4985 | 0.5249 | 97.8105 98.4321 99,4302 89,5023 99.4005 97.3252%
5 345 0.6928 | 0,4850 | 97.1886 97.9432 99.2521 994596 99,4455 a7.3252=
0 345 0.1155 | 0.1548 | 98.2753 98.6728 99.1078+« | 98.89152 98.6348 99,7789
Expected utilities: 98.3348 98.7341 99.1605 98.9558 98.6639 99.0622
Round T-3 of second iteration: coalitions of four
1 1234 | —0.295 (.548 99.2625 99.4580 99.3264 98.8321 *08.3337 97.3254
2 1234 | —0.295 0.548 99,2625 99.4580 99,3254 98.8321 «98.3337 g7.3254
3 1234 0.167 0.556 98.6065 89.0334 99.5436 99.3851 99.1293 G7.3254
4 2345 0.309 0.547 98.3012 98,8076 «39.5225 99.4648 99.2752 97.3254
5 2345 0.309 0.547 98.3012 98.8076 *99.5225 55,4648 99.2752 97.3254
Q 1245 0.011 0.167 98,4642 98.8076 *99.09388 98 8321 *98.5000 99.7631
Expected utilities: 98.5458 98.8971 99.2004 98.9382 98.6078 99.0511
Round T-5 of base-case iteration: coalitions of three
1 123 —0.2006 ; 0.3229 | 98.9218 99.1616 99.1605= | 98,7392 98.2952 99.0622%
2 123 —0.2006 | 0.3229 | 98.9218 99.1616 99,1605 | 98.7362 98.2952 99.0622#
3 345 0.1487 | 0.3274 | 98.4000 98.8159 99,2983 99.1285 98.8637 99,0622+
4 345 0.4291 | 0.2831 | 97.7389 98.3153 99,2050 99.2291 99.0959 99.0622#
[ 345 0.4867 | 0.2662 | 97.5710 98.1834 99,1605 | 99.2243 99.1174 99.0622+
8] 125 0.1031 | 0.1969 | 98.3430 98.7341= 99.1520 98.9505 98.6639% 99.6575
BExpected utilities: 98.3335 98,7322 99.1651 $8.9685 98.6842 55.4836
Round T-5 of second iteration: coalitions of four
1 1234 | —0.055 0.334 98.7450 99.0551 99.2537 58.9380 *98.5711 99.0519
2 1234 | —0.Q55 0.334 98.7450 99.0551 99,2537 58.9380 *98.5711 99.051%
3 2345 0.089 0.332 98.5123 98.8970 *39.2062 99,0859 98.7912 99.0519
4 2345 0.089 0.332 98.5123 98.8970 99,2962 99.0859 98.7912 99.0519
5 2345 0.089 0.332 98,5123 98.8970 *95.2962 99.0859 98.7912 99.0519
4] 1245 0.019 0.257 98.5489 98.8970 +99.1986 98.9380 *98.6096 99.4373
Expected utilities: 98.5655 98.9156 §5.2223 98.9639 98.6372 99.3247

The first two blocks of table 9 compare round T-3 in the two iferations. The change in coalition structure
has two implications. First, when coalitions contain four alliance members, player #4’s participation con-
straint is binding on the two left-wingers, while player #2’s is binding on the two right-wingers. In the second
iteration, consequently, right-wingers do better, and left-wingers do worse, when left-wingers make proposals.
The reverse is true when right-wingers make proposals. Second, the adversary’s propesal must appeal to
a more diverse group of alliance members. To accomplish this, the adversary proposes a larger value for

the transfervariable and a more central distribution, raising left-wingers’ payoffs but reducing right-wingers’
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payoffs. Because the first pair of effects cancel each other out, the nét result of all of them together is that
conditional on reaching round T-3, left-wingers’ expected utilities are higher, and right-wingers’ are lower,
in the second iteration than in the base-case. The adversary derives less utility when she herself proposes,
because she faces an additional constraint. The effects on the adversary of the changes in alliance members’
offers again cancel each other out, so that the adversary’s expected utility conditional on reaching round
T-3 is lower in the second iteration. In round T-5 of the second iteration, the secondary effects reinforce
the primary effects, as usual: the bargaining position of the left-wing in round T-5is enhanced relative to
that of the right-wing, and the bargaining strength of the adversary is weakened. These trends continue to
accurnulate as the backward induction proceeds, so that in the second iteration, the ultimate solution to the
model is unambiguously better for the left-wing and worse for the adversary. The right-wing does better or

worse, depending on the relative strength of the two effects.

4,5. Experiment Cluster “P”—Restricting the Policy Space. This cluster consists of two exper-
iments, in which restrictions are imposed on the set of allowable distribution proposals. To sharpen the
analysis, we assume that at the outset, the set of allowable distribution proposals is so tightly restricted
that no member of the alliance can propose her ideal distribution. Specifically, in the base-case iteration,
proposals are confined to interval [—0.1,0.1].° In each subsequent iteration of experiment P(L), the lower
bound of the allowable range is incremented by 0.01, while the lower bound remains the same. In experiment

P(U), the upper bound is successively decremented by 0.01, while the lower bound remains the same.

The two experiments have quite different properties. In experiment P(L), the incremental restrictions on
the policy space adversely affect only the left-wing of the alliance. The right-wing of the alliance benefits
from the discipline imposed on the minority; the adversary benefits also, since she prefers distributions closer
to the origin. Whether the right-wing or thg adversary benefits more depends, as usual, on their relative
gensitivities to the distribution variable. In experiment P(U), on the other hand, the dominant right-wing is
itself increasingly penalized by the restrictions on the policy space, while from the adversary's perspective,

the restrictions in the two experiments are symmetric. Intuitively, therefore, it seems improbable that the

°In all other experiments, the range of allowable distributions is [-1,1].
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restrictions in P(U) could possibly benefit the alliance. Based on results obtained elsewhere { Adams-Rausser-

Simon [ 1991]), however, we suspected that this intuition would prove invalid (cf hypothesis E).

Table 10 below reports the data for experiment P(L) and result VI summarizes the data.

TABLE 10. Experiment P(U): decreasing the maximum admissible location.
Sim | Change in | Change in | Change in Change in | Change in Change in Value of

# location share #1’s utility | #3's utility | #5's utility | #0's utility kel

4 e e el e bbbt 0.001
9 e _—— - = | A 0.018
2 | =rmee—— + | wmmmem—en -— -- = | A 0.035
8 s ol EEEE R -—- -- R 0.043
[ S, [ — -— P, 0.044
3 | - B I I el IECE LT PR P bbbt 0.046
6 | m=mmmrmmm | e | e | e | e e 0.047
10 | --——- el e Bl el [ T 0.062
- VRSOV, R | | P 0.083
1 | = - - - e el bbbt 0.089
19 | ~—----——=~ R e I T Bl P B e 0.408
16 | —----———- B n s I e Ll I T Dt 0.523
17 | ---————-- e aa el I B Tl P Fem——mmmm 0,533
11 | —-=-=-r- e I e [ I I ISR 0.536
20 | ———--=w=- R Enm el B el I ©.549
15 | ———=---u- e B e o B B B 0.557
18 | --—--=--- Bl I B B alaater ol [T EP PR 0.567
13 | ==emmmme- s B Y el Enat Tl [IEEE TS T 0.572
14 | ——weemee- B nn s el B el L EEE R (T 0.584
12 | - e n e el B I et Bttt 0.584

Result VI. When alliance members are highly insensitive to distribution, tightering
the lower bound on the set of allowable distribution proposals shifts the solution southwest
along the contract curve, benefiting the adversary at the expense of the alliance. If alliance

members are sufficiently sensitive to distribution, all these effects are reversed.

A striking aspect of this result is that if the alliance is sufficiently insensitive to distribution, the left-wing
actually benefits when its “freedom of expression” is curtailed. This is, of course, & recurring theme of this
investigation. In experiment cluster A, for example, we observed that the left-wing could gain by ceding
some of its bargaining power to the right-wing. In this experiment, the left-wing’s bargaining power is
reduced by the restrictions that are imposed on the actions that are available to it, rather than by depleting

its bargaining resources.
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We now turn to experiment P(U). As in experiment £(4,2), we divide the simulations into three subclasses,
each consisting of ten simulation decatuples. In each subclass, Fis restricted to lie in a different subset of
its admissible range. In simulations #1 through #10, B € [0.0,0.1}; in simulations #11 through #20,
B3 €[0.3,0.4]; in simulations #21 through #30, 8 € [0.9,1.0}; As usual, 8y = 1 — 3. Table 11 below reports

the data for the experiment and result VII summarizes the data.

TABLE 11. Experiment P{U): reducing the maximum admissible location.
S5im | Change in | Change in | Changein Change in | Changein Change in Value of
# location share #1's utility | #£3's utility | #5's utility | #0's utility B
4 —t = ————————— e ¢.001
g f ———-——————— | ] e | mmsmmeeen | —emdmmm—— ottt bbb+ 0.018
2 B s el e el Tl IS P S PP At 0.035
§ | e | e | e | e +HHE+bt 0.043
5 O e B I I I et bttt 0,044
b B B el B B R I bbb 0.046
6 | ———————-- I B ————————— +H++ b+t 0.047
10 | —————~-— - | -] —m—————— +++++++++ 0.062
7 | ——————-— - | e | eemee- e R 0.083
1 B el B e B el ettt +E b+t 0,089
19 B e el I a s na il e m s et B R e T +hmm—em bt 0.304
16 B e Tl I A e i I I S Y I i ++ 0.361
17 | —++ttdtt= | —drtbitit | bbbttt | cFttdbbbe | bbb Fommm———t 0.366
11 FHtt—tt-~ |ttt | - | drrbedbe— | bR | —oee - ++ 0.368
20 | +++HrEr—— | bbbt | R | 4 RRR bR | bR | e + 0.374
15 HHbtodoo= | bbbttt | odbbbbberr | brrrb—— | - ] +4— 0.378
13 -t ———— ++++——+++ +++t——5++ FHtt— - b ptm—m— Rfatutet £ .0 ) 0.383
13 Fo—d—t——= | bttt | - bt R e B - 0.386
14 | +++++++—— | +HH++t+—+ | Herbbbbd | dbbbrtde— | FEbbbrd—— | e +- 0.392
12 B et [ I = e I I B e A e +4— ¢.392
27 | ——————- B s e B e e B ©.909
26 | —memmmmem bbbt | bR | - -—— 0.909
23 | ———memee dhbkbrtbt | R - - ¢.913
25 | ~-————-- B e I - - 0.922
24 | --mmm———- +HH+brtE | b - - 0.928
21 | ——em———- e I e ——— - -- 0.937
30 f =mm—————- Eaamnns el BESS2S ST St - - 0.955
28 | —--——==— B = = o =l IS - - ¢.960
22 | mmmm————— Ftt bt -+ - - 0.974
29 f —-——————- B e I - - 0.995
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Result VII. When alliance members are highly insensitive to distribution, (8 €
[0.0,0.1]), tightening the upper bound on the set of allowable distribution proposals shifts
the solution southwest along the contract curve, benefiting the adversary at the expense
of the alliance. For intermediate levels of sensitivity (8 € [0.3,0.4]), these effects are all
reversed, at least for the first few iterations. When alliance members are highly sensitive
to distribution, (8 € [0.9,1.0}), tightening the upper bound shifts the distribution variable
to the left, increases the transfervariable and benefits the lefi-wing of the alliance, at the

expense of the remaining players.

When 8 € [0.0,0.1], the analysis is very simple. In the final offer round, all three right-wingers propose
the maximum allowable value for the distribution variable. As the upper bound is tightened, the shift to the
left in their distribution proposals benefits the adversary and weakens the alliance. In all other offer rounds,
alliance members assign so little weight to distribution that they concede almost entirely to the adversary
along this dimension: their proposals are so close to the origin that even in the final iteration, the upper
bound on distributions never binding. Thus, in this case the perturbation being considered has a direct
impact on negotiations only in the final offer round. Because the adversary’s bargaining position in round

T-3 is strengthened relative to the alliance, the solution shifts southeast zlong the contract curve.

When 8 € [0.9,1.0], the analysis is even simpler. In this case, it is the adversary that concedes almost
entirely to the right-wing along the distribution dimension. Consequently, for most policies that are in the
core of the unconstrained bargaining problem, the distribution variable exceeds 0.1. As the upper bound
on allowable distribution proposals becomes tighter, the core of the constrained bargaining problem shifts
further and further away from the unconstrained core. Potential gains to trade are sacrificed and everybody

except the left-wing of the alliance suffers.

The intermediate case is the most interesting of the three. When 8 € [0.3,0.4], decreasing the upper
bound on allowable distribution proposals can actually benefit the entire alliance at the expense of the
adversary. This is of course paradoxical since with each iteration, there is an increase in the gap between

the maximum allowable policy propesal and right-wingers’ ideal distributions. Simply pu$, the intuition for
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the result is that while player #3 is indeed negatively affected by the restriction, she benefits even more
from the discipline that it imposes on the right-wing alliance members. Indeed, the right-wingers themselves

ultimately benefit from the curtailment of their own freedom of expression!

Share

#3’s indiff curve
T

/1 IO .
L#ﬁl’s indiff curve

E é_& Initial upper bound
5 61 Tighter bound

T Location

(aoa O)

FIGURE 4. Decreasing the upper bound on allowable policies: experiment P(U)

The above intuition is developed in figure 4 above, which schematically represents player #4’s decision
problem in round T-3. The dotied and dashed vertical lines represent the upper bounds on allowable
distributions in the base.case and second iterations. 'The heavily drawn curve labelled Ig‘—z indicates the
boundary of the adversary’s acceptance region in response round T-2. In fact, these boundaries are change
slightly from the base-case {o the second iterations, but in the figure we treat them as the same, As the upper

bound on allowable distributions is tightened, player #4 in round T-3 is obliged to slide northwest along
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Ig '2, from z:'{"B to y{"a, and experiences a utility decline in the process. If player #3’s indifference curve
through mi‘_a is sufficiently flat, however, her vtility from yff_e' will exceed her utility from z7 ~3. It turns

out that except in the last few iterations of simulations #11 to #20, this factor dominates all the negative

effects of the restriction on the alliance, and leads ultimately to an improvement in alliance performance.

Table 12 provides 2 numerical illustration of the preceding argument. The table compares the first two
iterations of simulation #20 in experiment P{U). Observe that in round T-1 of the second iteration, as a
result of the leftward shifts in the three right-of-center proposals, player #3’s expected utility conditional
on reaching round T-1 declines slightly from 97.0857 to 97.0856. The adversary, on the other hand, benefits
from these leftward shifts, so that her expected utility conditional on reaching round T-1 increases from

08.8482 to 98.84096.

In round T-3 of the second iteration, there are five factors affecting player #3’s payoff relative to the
first iteration, all but one of which are negative. First, the adversary’s participation constraint is, as usual,
binding on every alliance member, and this constraint is tighter than in the first iteration. Second, the two
left-wing players, whose distribution proposals are constrained by the fixed lower bound, are obliged to reduce
the levels of their transferproposals to satisfy #0’s tighter participation constraint, Third, #3 derives less
utility from her own proposal, since the adversary’s constraint is tighter. Fourth, she derives less utility from
the adversary’s proposal, because her own constraint is slacker. In spite of all these negative effects, #3’s
expected utility conditional on reaching round T-3 nonetheless increases from 97.4085 to 97.4090. The reason
is that she gains so substantially when #4 and #5 make proposals, for the reason described above. In round
T-5 of the second iteration, player #3’s bargaining position is sufficiently enhanced relative to the adversary’s
that the latter’s expected utility conditional on reaching this round actually declines. Proceeding backwards
up the game tree, the gains to player #3 continue to cumulate, resulting ultimately in a northeasterly shift

in the solution that benefits the entire alliance.



TABLE 12. Simulation #20, Experiment P(U); 3 = 0.374.

Pr| Co Offers: Utilities:
sT al E I cq 1y uy uy | 4 | ug ug
Round T-1 of first iteration: upper bound on z; = 0.1.
1 145 | —0.1000 | 1.0000 | 99.0354 99.7460 99,9313 99,4413 958.4920 95,9560
2 245 | —0.1000 | 1.0000 | 99.0354 99.7460 59,9313 59,4413 98.4920 95,9560
3 345 0.1000 | 1.0000 | 98.4920 99.4413 99.9996 59,7460 99.0354 95,9560
4 145 (0.1000 | 1.0000 { 98.4920 99.4413 99,8995 99.7460 99.0354 95.9560
5 145 0.1000 | 1.0000 { 98.4920 99.4413 99.9996 99.7460 99,0354 95.9560
Q 145 0.0000 | 0.0000 | 94.7838 95.5796 95.9362 95 5796 94,7838 100.0000
Expected utilities: 95.8019 96.7142 97.0857 96.7315 95,9328 98.8482
Round T-1 of second iteration: upper bound on z; = 0.09.
1 145 | —0.1000 | 1.0000 | 99.0354 99.7460 99,9313 99.4413 98.4920 §5.9580
2 245 | —0.1000 | 1.0000 | 99.0354 99,7460 99.9313 99.4413 98.4920 95,9560
3 345 0.0900 | 1.0000 [ 98,5221 99.4594 99.9950 99.7336 99.0112 55.9643
4 145 0.0902 | 1.0000 | 98.5221 99.4594 99,5990 99.7336 99.0112 55.9643
5 145 0,090¢ | 1.0000 | 98.5221 99.4584 99.9580 99.7336 99.0112 55,9643
8] 145 0.000¢ | 0.0000 | 94.7838 95.5796 95.9362 95.5796 94,7838 100.0060
Expected utilities: 95.8070 96,7173 97.0856 96.7294 95.9287 98.8496
Round T-3 of fiest iteration: upper bound on =; = 0.1.
1 145 | —0.1000 | 0.55667 | 97.2916 97.9896 98.1717 97.6903 96,7577 98.8482x
2 245 | —0.1000 | 0.5567 | 97.2916 97.9896 98.1717 97.6903 96.7577 98.8482x
3 345 0.0262 | 0.5683 | 97.0147 97.8607 08,2741 97.9395 97.1551 98.8482x*
4 145 0.1000 | 0.5567 } 96.7577 97.6903 98.2387 97.9896 97.2916 98 8482x
5 145 0.1900 | (.6567 | 96.7577 97.6903 98.2387 97.9896 97.2916 98.8482x
0 345 0.0124 | 0.2767 | 95.8825 94,7023 97.0857« | 96.7392 95.9484 99,7383
Expected utilities: 96.2072 97.0275 97.4085 97.0584 96,2623 99.4848
Round T-3 of second iteration: upper bound on x; = 0.09.
1 145 { —0.1000 | 0.5564 | 97.2502 97.9882 g8.1703 97.6889 96.7563 58.8496x*
2 245 | —0.1000 | 0.5564 | 97.2902 97.9882 98.1703 97.6889 96,7563 538.8496*
3 345 0.0252 | 0.5680 | 97.0134 97.8594 98.2728 97.9381 97.1538 98.8496x*
4 145 0.0900 | 0.5588 | 96.7904 97.7163 98.2464 97.9857 97,2759 98.8496%
5 145 0.090¢ | 0.5588 | 96.7954 97.7163 98.2464 97.9857 97.2759 98.8496x*
0 345 0.0124 | 0.2767 | 95.8824 96.7022 97.0856x | 96.7391 95,9482 99,7383
Expected utilities: 96.2112 97.0302 97.4080 97.0576 96,2602 99.4852
Round T-5 of first iteration: upper bound on z; = 0.1.
1 123 | —0.0958 | 0.3677 | 96.5230 97.2204 97,4085+ | 96.9355 96,0150 99,4848«
2 123 | —0.0754 | 0.3750 | 95.5037 97.2248 97.4501 97.0006 96,1038 99.4848x
3 345 0.0174 | 0.3859 | 96.3097 97.1390 97.5332 97.1909 96,4021 09,4848
4 345 0.0754 | 0.3750 | 96,1038 97.0006 97.5003 97.2248 96.5037 99,4848
5 345 0.1000 | 0.3660 | 95.9961 96,9214 97.4655 97.2184 96.5258 99.4848x«
(4] 345 0.0160 | 0.3554 | 96.1907 97.0173 | 97.4085+ | 97.0649 96.2756 99.5647
Expected utilities: 96.2182 97.0412 97.4264 97.0789 96.2854 99.5419
Round T-5 of second iteration: upper bound on z; = 0.09.
1 123 | —0.0953 | 0.3677 | 96.5219 | 97.2199 | 97.4090+ | 96.9367 96.0169 99.4852#
2 123 | —0.0754 | 0.3748 | 965030 97.2242 97,4494 97.0001 96,1033 99.4852%
3 345 0.0174 | 0.3857 | 96.3090 97.1384 97,5325 97.1302 96.4015 99.4852x*
4 345 0.0754 | 0.3748 | 96.1033 97.0001 97.4596 97.2242 96.5030 99,4852«
5 345 0.0900 | 0.3698 | 96.0409 96.9546 97.4806 97.2219 96.5177 99,4852+
[} 345 0.0160 | 0.3555 | 96.1912 97.0179 97.4090« | 97.0655 96.2762 99.5644
Expected utilities: 96.2210 97.0434 97.4276 97.0795 96,2854 99.5418
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