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Abstract
Modeling Chronic Versus Acute Human Risk Contaminants in Food

AL, Carriquiry, H.H. Jensen, and S.M. Nusser

The development of policies and regulations to address food safety
concerns depends critically on appropriate assessment of health risk in foods.
This paper evaluates the methods for assessing the population’s exposure to a
hazardous substance or contaminant in food and some aspects of the
quantification of risk. We review current federal programmatic approaches to
risk assessment and potential problems with these approaches. After
developing procedures for estimating exposures of individuals in a population
to chronic and to acute risks, we illustrate their application by using
available food consumption data to estimate exposure and highlight issues

related to the data requirements for risk assessment,.



1. Introduction

The supply of food in the United States is abundant and varied year
round. While consumers benefit from a wide range of food products available
in the market, consumers are increasingly concerned about the safety and
quality of food they eat. Many questions have focused recently on the safety
of food additives, food production techniques, and pesticide residues in
foods. These concerns have had an impact on government policymakers and
govermnment regulators responsible for maintaining a safe and adequate food
supply, and on the food industry which has an interest in providing safe
products and in responding te consumers’ preferences for products,

The recent dialogue on the public response to food safety has made it
clear that the development of policies and regulations to address food safety
concerns depends critically on appropriate assessment of health risk in foods,
The widely varied foed supply and diverse food eating behaviors in the U.S,
require a highly integrated information base to support this assessment and
continual monitoring of safety in the food supply. Furthermore, the
divergence in consumers’ perceptions of food-borne hazards and the assessment
made by food safety experts in and outside of government (Kramer 1990)
highlight the need to use valid and appropriate methods for assessing and
menitoring the potential for hazard in the food supply.

Food producers and processors, chemical manufacturers and other input
suppliers, and government policymakers are faced with the need to address very
difficult questions with respect to risk assessment. For example, those

responsible for regulating pesticides must understand the extent and timing of
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health risks associated with the pesticide and have reliable information on
the degree of exposure of the population to residues of the pesticides in
food, water, and air. Knowledge about the assessment of risk provides
guidance for the development of government policies and regulation of
industry, information for communicating relative risk exposures to consumers
and policymakers, and indicators for monitoring changes in the quality of the
food supply.

What is the appropriate method by which to assess the health risk
associated with ingesting a particular pesticide residue in food? or consuming
a contaminated food product? In order to best address these questions, risk
assessment can be defined as a process (Barry (1987); Mauskopf (1990)). The
risk assessment process involves four steps:

(i) Identification of food constituents with potentially adverse

health effects.

(ii) Estimation of the exposure of the population or subpeopulation te
the hazard, for a certain period.

{iii) Determination of the response to different doses of the hazard
{dose-response modeling).

(iv) Characterization of the risk (providing information on probablé
health effects of the constituent combined with exposure and
dose-response estimates to produce quantitative estimates of
health hazards).

In this paper, we address the methods for assessing the population’s

exposure to a hazardous substance or contaminant in the food. To a lesser
extent, we discuss some aspects of risk quantification. This information is

essential to (1) assessing and monitoring risk exposure, (2) setting
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priorities for risk reduction, and (3) developing information and education
programs targeted to those at greatest risk.

The paper is organized as follows. 1In the second section we provide
background information for defining adverse health effects, current
programmatic approaches to risk assessment, and potential problems with these
approaches. Procedures for estimating the distributions of usual daily
exposures of individuals in a population are presented in the third section,
These distributions apply to a selected pesticide residue or contaminant in
the food supply. In the last section we discuss some issues related to the

data requirements for such assessment.

2. Background
2.1 A Brief Comment on Possible Adverse Health Effects
One possible classification of hazardous substances in foods is into
carcinogenic and noncarcinogenic agents. This distinction is relevant both
for assessing exposure and for modeling response to dose. Modeling the
response to dose is different for carcinogens and noncarcinogens because the
toxic endpoints vary. For carcinogens, only one endpoint, death from cancer
is frequently considered (Mauskopf 1990), as we do here, even though adverse
health effects may be more complex. In the case of noncarcinogens, the héalth
effects associated with a toxic substance may be multiple. Adverse health
effects from carcinogenic agents are generally recognized to be chronic, and
this implies that long-term exposure is the major concern. For
noncarcinogens, however, both acute and chronic health effects are likely, and

hence, exposure assessment concerns both long and short-term effects. 1In this
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paper, we consider both long-term and short-term exposure assessment, and

therefore, the methodology is appropriate for both types of agents.

2.2 Some Current Risk Assessment Programs

Due te continuing regulatory activities, the Envirommental Protection
Agency (EPA) and the Food and Drug Administration (FDA) have been concerned
with the problems of risk assessment and management., In 1987, the EPA
published five technical guidelines to aid agency personnel in their risk
assessment activities. The Guidelines for Estimating Exposures set forth
general principles and procedures for estimating the degree of chemical
contact with an affected population, including the steps to be followed for
exposure assessment (EPA, 1987)., These are:

(1) Source characterization

(11) Pathways and fate analyses

(iii) Estimation of environmental concentration

{iv) Demographic analysis

{(v) Integration.
The FDA has followed such an approach as well, using a representative diet to
track changes in the food supply (Pennington and Gunderson, 1987).

For exposure assessment, the general approach recommended by EPA for
obtaining exposure estimates for most chronic exposures is to estimate average

daily lifetime exposure, in mg/kg/day (EPA, 1987). That is,

Total dose (mg)
Average daily - (L
lifetime exposure Body weight (kg) * Lifetime (days)

where



Environmental Contact Exposure Fraction
Total dose = o * * P * (2)

concentration rate duration absorbed

In the case of exposure to pesticide residues or other contaminants in the

food supply, we can express the total dose as:

Concentration Amount Days Fraction
Total dose = of toxicant in * ingested * ingestion * absorbed , {3)
food supply

where fraction absorbed refers to the effective proportion of the contaminant
crossing an exchange membrane (i.e., gastrointestinal tract). The fraction
absorbed is presumably difficult to assess for each individual; it depends on
a large number of individual attributes such as age, genetic makeup, health
status, type of residue in the food, etc.

Expression {(l) or slight modifications of expression (l) are used by
exposure analysis software such as that developed by Technical Assessment
Systems (TAS) (1985). TAS, under request from the EPA, developed a
menu-driven program called Exposure-1, which allows for estimation of chronic
exposure of the population at large, and pf 22 subpopulations, to any toxicant
in the food supply. Exposure-1l outputs exposure estimates in twe different
formats: (1) as mgs of the chemical/kg body weight/day, or (2) as percentage
of acceptable daily exposure (ADE).

The TAS program draws information from two sources: food consumption
files and chemical residue files. The food consumption files are given, and
contain measures of the estimated daily intakes of each food and food forms by
individuals (based on the USDA 1977-78 Nationwide Food Consumption Survey

(NFCS)). By ﬁsing weighted means for daily food intake, the TAS Exposure
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system estimates usual daily intake of foods for each of the 22
subpopulations. Subpopulations are defined in terms of demographic variables
such as age, gender, and race. The chemical residue files are supplied by the
user and contain, for each chemical, the food or food forms in which the
chemical appears, the concentration in which it appears (either tolerance
level or anticipated residue) and appropriate adjustment factors for the
concentration of the chemical in the food or food form after different stages
of processing. Thus, the system estimates the total dose for the 22

subpopulations.

2.3 Some Problems with Current Exposure Assessment Programs
Exposure analysis methods, such as those currently in use by EPA and TAS,

do not rely on estimates of the intake distributions but summarize the whole

distribution in a point estimate of an average individual’s usual intake. 1In
an attempt to take into account the interindividual variation, methods like
TAS' Exposure-l, separate the general population into several subpopulations
according to .factors such as age and race, and estimate exposure to a food
constituent using the mean consumption in the subpopulation. A similar
approach is outlined in the EPA's Technical Guidelines for Exposure Assessment
(1987).

There are several problems with such an approach. First, the estimates
of average daily lifetime exposure assume that there is no interindividual
variation regarding total dose or body weight. Even within subpopulations of
individuals grouped by age, there exists variation in contact rate, exposure
duration and fraction absorbed. Therefore, a better method for assessing

exposure would rely on estimating expression (1) for each individual in the
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sample and using this information to estimate the distribution of "usual daily
exposure” of individuals to a certain toxicant. By using a point estimate to
quantify exposure to a food constituent for the whole subpopulation,
individual information is lost.

Furthermore, using a single average daily lifetime exposure assumes that
the total dose is constant throughout the individual’s lifetime. This is
clearly not true in the case of pesticides ingested with the food, since the
type and amount of food consumed varies with age. A simple correction for
this consists of considering average daily exposure in a certain age range,
and then computing lifetime exposure as the sum of the exposures in each
period. In this case, lifetime in expression (1) would be changed to the
number of days in each period considered. Furthermore, contact rate, exposure
duration, and absorption rate would alsoc be changed to their appropriate
values for each period.

Estimates of usual daily intakes of individuals often are based on intake
data sets, such as the 1977-78 NFCS, which contain intake data for a sample of
-individuals for a few days. However, because the observed daily intakes
measure usual daily intake with error, it is important to account for the
intraindividual variation in estimating usual daily intake in order to aveid
attributing higher reliability to the estimates than is justified by the data.
In the next section we present an approach for estimation of usual intake
distributions which takes into account inter- and intraindividual wvariation
and incorporates both into the analysis. It should be noted that assessing
chronic exposure to a food constituent can be‘viewed as the same problem as
assessing nutrient adequacy. Therefore, we adopt methodolegy developed by

Nusser et al. (1990).
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In the analysis which follows, we present a procedure for estimating
distributicns of usual daily exposures of individuals in a population to
pesticide residues or contaminants in the food supply. Total dose (mg) is
taken to be the concentration of the pollutant, contaminant (or pesticide
residue) in each food or food form times the amount of food or food forms
containing the chemical that is ingested by individuals in the population.
Exposure duration is taken toc be one day, and fraction absorbed is assumed to
be equal to 1. Clearly, the fraction absorbed could be changed to show an
appropriate alternative walue. In that case, we would be estimating the
distribution of usual daily absorption rather than that of usual daily intake.
The distributions we estimate are those of usual daily intake of a food
constituent per individual. It would be a simple matter to obtain estimates
of usual daily intake per kg of body weight by including information on

individuals' weights.

3. Statistical Methodology for Assessing Exposure
3.1 Overview of Issues

Chronic and acute exposure to pesticide residues or other agents in the
food supply can be estimated from dietary intake data and information on
residues in foods and food forms. In this paper, we refer to chronic exposure
as the low-intensity, daily intake of a pesticide residue, which accumulates
for a long period of time before any adverse health effects are evident. By
acute exposure, we mean a one-time intake of a toxic agent, in quantities
enough to produce an adverse health effect.

To assess chronic or long-term exposure to a toxic agent in the food, it

is necessary to estimate the average or usual daily intake of foods containing
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the agent by individuals in the population. This is appropriate, for example,
for carcinogenic agents. Usual daily intake of a pesticide residue (or of a
nutrient} is defined as the normal or long-run average intake., It is
explicitly recognized that intake of the toxicant on one day is not an
indicator of chronic exposure; rather, it is intake of the residue over a long
period of time that places an individual at risk of adverse health effects.

Usual intake of chemicals can be obtained from dietary data. Ideally,
the data should include information on dietary intake for a large number of
individuals, on a large number of days. Unfertunately, it is usually possible
to obtain just a few days of intake data for individuals in the sample. An
individual’s usual daily intake is often estimated by the individual's mean
daily intake of the residue under consideration. While the individual's mean
intake 1s a reasonable estimator of the individual’s usual daily intake, the
distribution of mean intakes is not a good estimator of the distribution of
usual intakes. The distribution of means has always a larger variance than
the usual intake distribution. Therefore, exposure estimates obtained from
the distribution of mean intakes could be inflated. The degree by which
exposure is overestimated depends on the shape of the distribution of usual
intakes. This is illustrated in Figure 1.

When the objective is to assess acute or short-term exposure to a food
constituent different procedures must be employed. Is it not the usual or
average consumption of the food component which is relevant, but the amount
ingested on any given day. Consider, as an example, exposure to salmonella
from contaminated eggs. Even if, on the average, an individual consumes small
amounts of eggs, it is the number of contaminated eggs consumed in one day

which will determine whether the individual gets sick or not. 1In general
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terms, the probability that a randomly chosen individual from the population
suffers acute exposure to a food constituent can be estimated from the
population’s probability distribution of consumption of the food on a given
day, times the probability that the food iIs contaminated.

Two types of assumptions are made in this assessment of acute exposure:
(1) it is assumed that unless the food looks or smells differently than usual,
the food intake distribution is independent of contamination, and (2) if an
individual consumes more than one portion or unit of food, it is assumed that
the portions are either (a) independent, or (b) not independent. The choice
of 2 (a) or 2 (b) will depend, for example, on the type of contaminant under
consideration, the foods or food forms likely to contain it, and individual
eating patterns. If portions are assumed to be independent, then whether a
portion is contaminated will not affect the status of the other portioms.
Survey-based dietary data provide Information from which to estimate the food
intake distributions. In some cases, we may be interested in a frequency
distribution, as in the hypothetical case of eggs mentioned earlier. However,
the distribution of the presence of the contaminant in each food or food form
in which it may appear is usually not known. Most often, the information
available includes only the probability of finding the contaminant in each
food or food-form at a level deemed hazardous.

Sections 3.2, 3.3, and 3.4 are organized in the following manner.
Section 3.2 contains a description of available dietary intake data. The
methodology for assessing chronic exposure to a food constituent is presented
in Section 3.3, The proposed procedure is described in some detail, since
obtaining reliable estimates of chronic exposure is very relevant from a

public policy viewpoint. 1In Section 3.4 we state the problem of estimation of
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acute exposure more precisely, and suggest estimation procedures appropriate

for different scenarios.

3.2 Dietary Intake Data

When collecting dietary intake data for the estimation of exposure to
food contaminants, it must be recognized that different data attributes are
important for chronic or acute exXposure assessment., In the case of chronic
exposure assessment, it is necessary to obtain reliable estimates of the usual
intake distribution for the food constituents of interest. Data suitable for
estimating usual intake distributions of dietary components should allow for
the estimation of between- and within-individual variances. One-day intake
data on individuals allow for the estimation of between-individual variance.
However, estimation of the within-individuwual variance requires that the data
set include more than one day of intake on each individual. Thus, using only
one day intake data is not appropriate for estimation of usual intake
distributions of food constituents, since one-day intake data sets do not
provide a means for estimating the within and the between-individual
variances.

Assessment of acute exposure, however, does not rely on the estimation of
usual daily intake distributions. It suffices to be able to estimate
between-individual variances, but it is not necessary to obtain estimates for
within-individual variation. Therefore, inferences about acute exposure can
be based on one-day dietary intake data.

The U.S. Department of Agriculture’s intake data sets provide multi-day
data from which to estimate the usual intake distribution of food

constituents, For this study, data from the Continuing Survey of Food
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Intakes by Individuals (CSFII) were used to help develop the methodology
described in Sections 3.3 and 3.4. The CSFII data were collected by the Human
Nutrition and Information Service (HNIS) of the USDA in 1985-86. Women
between 19 and 50 years of age provided data on their own daily dietary
intakes and those of their pre-school children, in addition to information on
household composition, socicdemographic information and eating behaviors
{(e.g., meal patterns) (see USDA, 1987). The sample was a nationwide,
multi-stage stratified area probability sample drawn from the 48 coterminous
states. The primary sampling units were area segments, and the probabilities
of selection of area segments were proportional teo the numbers of housing
units in the segments as estimated by the Bureau of the Census. USDA
constructed a data set on four days of data available for analysis. The days’
data, collected throughout the year, were assumed to be independent. The
analysis described below was based on a subset of the GCSFII 4-day data set
corresponding to 23-50 year old women who were not pregnant or lactating. The
dietary intake data were matched to the extensive nutrient data banks at USDA
to obtain data on nutrient intakes. These data on nutrient food components
were used to develop the methodologies for estimating usual intake

distributions.

3.3 Assessing Chronic Exposure

3.3.1 Overview

Preliminary analyses of the CSFII intake data (Jensen et al., 1989)
indicate that intake data for nutrient and other food components are not
normally distributed. Intake distributions are sometimes severely skewed,

which makes the assumption of normality untenable. In order to estimate the
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distribution of usual intakes of a food component, therefore, it is necessary
to adopt one of two possible approaches: 1) assume an appropriate parametric
model for the intake distribution, (such as a Gamma or a Weibull distribu-
tion) and derive the estimators within that parametric framework, or 2) trans-
form the data to normality. The first approach was adopted by Battese et al.
(1988) in the context of the estimation of usual nutrient intake
distributions. This parametric approach is computationally involved. The
transformation to normality approach, on the other hand, can be applied to any
food component without modifications, and estimators and predictors of usual
intakes can be derived by invoking results from normal theory. In what
follows, we describe the transformation approach to estimating usual intake
distributions.

The estimation of the distribution of usual intakes of a food component
is based on a non-parametric approach to transforming the data to normality.
The objective of this approach is to produce transformed observations that are
normally distributed and have homogeneous variances. The methodology is
developed in Nusser et al. (1990).
| The appfoach we suggest for estimating the distribution of usual intakes
of a food constituent involves the following steps: 1) observed intakes are
transformed to normality, 2) the normal data are assumed to follow a measﬁre-
ment error model that decomposes the observed daily intake of an individual
into the usual intake for that individual plus a measurement error associated
with the individual on the day the intake was observed, 3) normal theory is
then used to obtain predictors of usual intakes in normal space for each
individual, &) application of an inverse transformation to the predicted

normal usual intakes produces a set of pseudo usual intakes in the original
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scale, which can then be used to estimate the distribution of usual intakes,
The measurement error model approach requires an estimate of the
within-individual wvariation, which can be obtained only if data for each

individual are available for more than one day.

3.3.2 Transforming the Observed Data to Normality

The transformation of the observed data to normality consists of the
following steps: first, a smoothed empirical cumulative distribution function
{(c.d.f.) of the observed daily intakes_is evaluated at each of these values to
produce a set of uniform random variables. The inverse normal c¢.d.f. is then
used to transform the uniform variates into a set of standard normal random
variables. Let Y, denote the observed intake of a dietary component k for
individual i on day j, where k=l1,...,p components, i~l,...,n individuals, and
j=1,...r days. Assume that individuals, as well as daily intakes within
individuals, are independent. The empirical c.d.f. constructed from the nr
Y, values is a step function. By connecting the midpoints of the rises
Between the steps defined by the empirical c¢.d.f., a continuous piecewise
linear estimate of the true c.d.f. FYk is constructed. For this choice of
midpoints, the continuous ¢.d.f. yields approximately the same mean value of
the data as the empirical c¢.d.f.

The estimated continuous c.d.f. provides a means of generating a set of
uniform (0,1) variates, py, from the observed intakes. Therefore, given the

standard normal cumulative distribution function &(.),

Xy = °4(Pm)
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are N(0,1) variates (e.g. Lindgren, 1976). The X, represent the transformed
observed values. It may be the case that the transformed values do not have
homogeneous within-individual variances. If so, a further transformation is
required to homogenize the within-individual wvariances. The methodology
presented later in this paper relies on the assumptions of normality and of

homogeneous within-individual variances.

3.3.3 Predicting Usual Intakes in Normal Space

Normal theory and a measurement error model can be used to generate
predicted usual intakes from the transformed observed intakes. The prediction
methodology is well suited for appiication to a vector of dietary components.
The multivariate approach permits incorporation of information contained in
the relationships among intake patterns of dietary components inte the
prediction of normal usual intakes.

Assume that data are available for p dietary components on each
individual. Suppose that for each dietary compomnent k, the nr values of Y
are transformed, using the methodology in Section 3.3.2, to generate nr X,
normally distributed values. Denote the p x 1 vector of transformed
observations for individual i on day j by X,.

A measurement error model is used as a basis for predicting the usual
intakes given the observed intakes. This model recognizes that the observed
daily intake for an individual on a given day is equal to the sum of the usual.ﬂ
daily intake of the individual and a measurement error associated to the

individual on that day. Let
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X, = x +
X~ N (4 Ba) (4)
u"I]‘-'N(or Euu):

where x; is the vector of unobservable usual intakes for individual i; u; is
the unobservable measurement error for individual i on day j; the x, are
independently distributed; the u; are independent across days; and x and u,
are uncorrelated. Assume that I, and I, are positive definite. This model
implies that the X, are N(u,,I, + %,) variates, and that the sample individual

means

X =r'% X, (5)

=t

are independent random variables from a N(y,, EqF) distribution, with
XX

I =t T, . (6)
X
It should be noted that if the normal observed intakes from the initial
transformation described in Section 3.3.2 are used in this model, u, = 0.
However, p, may be non-zero if further transformations are required to obtain
homogeneous error variances for the transformed intakes.

Our objective is to produce a set of pseudo usual intakes whose
distribution is close to tﬁat of true usual intakes. That is, we want to
predict a set of pseudo usual intakes x, whose covariance matrix is Z,. The
Best Linear Unbiased Predictor of x, (BLUP) has smallest prediction error
variance among all unbiased linear predictors, and .so would he appropriate if

the objective was to predict individual x,. However, if the BLUP is used to
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predict a set of x,, the variance of the predicted x is smaller than Z_, ,
therefore, the distribution of the BLUPs of x; is not close to that of the

true x;, Predictors of x with variance I, can be obtained by using

X = + BB (X - o) (7
xx

The values of u,, Z., and %__ are unknown. Therefore, to implement the
pe!

procedure of equation (7), estimates of u,, Z,, and £__ can be substituted into
xx
(7) in the appropriate places,

Usually, inferences are made about the exposure of the target population
regarding a single food constituent (in which case, p=1). It may also be of
interest, however, to assess exposure with respect to a vector of
constituents. The methodology can be used to make simultaneous inferences
about exposure of the target population to more than one food constituent,
For example, suppose that we want to know the proportion of the population
exposed to all p constituents, where exposure is Indicated by usual intakes
above a vector k of Acceptable Daily Intakes (4DI’'s). In normal space, this
proportion is given by Pr{x > k'}, where the x| are obtained from the X;, and
k' is the transformed vector k. Alternatively, predicted normal usual intakes
can be transformed back to the original scale using the transformation
described in Section 3.3.4, and inferences can then be made from usual intake
distributions estimated in the original scale. Note, the transformation
procedure outlined in Section 3.3.2 produces a set of N(0,1) variables, but

the transformed intakes of the p food constituents are not necessarily

multivariate normal. If it is desired to estimate simultaneous exposure to a
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set of food constituents, then further transformations can be used to

approximate multivariate normality (Nusser et al., 1990).

3.3.4., The Mean Transformation

The predicted usual intakes in normal space can be transformed- to obtain
a set of pseudo usual intakes in the original space. To generate a set of
pseudo usual intakes in the original data scale from the normal usual intakes,
a transformation from the normal space to the original scale is required.
This transformation, called the mean transformation, should have the property
that the usual intake in the original scale is equal to the mean
transformation of the normal usual intake. Note that since the transformation
from observed intakes to normal observed intakes is nonlinear, the inverse of
this transformation cannot be used to transform normal predicted usual intakes
(which are like means) back to the original scale. Preliminary analyses
indicate that the mean transformation can be accomplished via the use of cubic
splines (e.g., Ahlberg et al., 1967). The methodology consists of fitting a
grafted polynomial function with linear end segments and cubic interior
segments, to (X, Yyu) pairs. The estimated function can then be used to
transform the predicted usual intakes in normal space (%) to pseudo usuai
intake in the original scale. A detailed discussion of the mean transforma-

tion is presented in a separate publication (Nusser et al., 1990,)

3.3.5. Assessing the Proportion of Individuals with Usual Daily Exposures
Above a Critical lLevel

R e ——

An example for a selected food constituent illustrates the method for

chronic exposure assessment based on the USDA dietary data. Following the

procedures described in Sections 3.3.3 and 3.3.4, the predicted normal usual
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intakes were transformed back to the original scale to obtain usual intake
distributions in the original scale. The percentage of the population with
usual daily exposure above a critical level can be estimated as the area under
the curve to the right of the critical value. This is illustrated in Figure
1. The estimated proportion is calculated using the estimated usual intake
distribution, the 4-day mean intake distribution and the one-day intake
distribution. First, note that the estimated distributions differ; the
distribution estimated from one-day dietary intake data has the largest
variance. Second, when using an example critical value of 23, the one-day
intake distribution overestimates the percentage of the population with
intakes above the critical level: the usual intake distribution shows 1.1
percent of the population to have levels in excess of 23, compared to 5.2

percent estimated using the one-day intake distribution.

3.4. Assessing Acute Exposure

1.4,1. Overview

When considering short-term exposure to a toxic agent in the food,
d¢ifferent questions may be of interest. For example, given a known No
Observed Effects Level (NOEL), of a certain food constituent, it may be
important to determine the probability that a randomly chosen individual from
some population has an intake of the constituent on any given day which
exceeds the NOEL. It may also be interesting to determine what is the
probability that an individual’'s intake of the constituent on any given day
exceeds the NOEL, given that the individual consumes a certain amount of the
food containing the toxic agent. To answer the first question, information

must be drawn from two sources: (1) the dietary intake data can be used to
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determine proportions of the population with different levels of intake of the
constituent on any given day. (2) The NOEL, as well as the probability of a
unit of food or food-form of carrying the constituent at a level above the
NOEL, are determined from the toxicological parameters of the constituent as
well as from extensive testing of the foods. The second question is, from a
statistical viewpoint, contained in the first. When the consumption of an
individual is given, it is enough to know the probability of the food consumed

being contaminated.

3.4.2. Estimating the Distribution of Daily Intake of the Population

Consider, for example, a food A which may be contaminated with a
constituent. It is known that at levels above Ng, intake of 6 causes an
adverse health effect. Further, suppose one portion is a unit of consumption
for food A. The frequency distribution for the consumption of food A in the
population can be determined from the data set described in Section 3.2. The
proportion of individuals who, on any given day consume 0,1,2,... portions of
A can be obtained in a straightforward manner.

Let Pr(x portions} = p,, x = 0,1,2,... denote the probability that a
randomly chosen individual from the population consumes x portions of A on any
given day. Probabilities p, can be estimated as frequencies, that is, p, =
n/N, where n, is the number of individuals in the sample consuming portiomns of
A on any given day, and N is the total number of intake observations in the
sample. Note that N will be larger than the number of individuals in the
sample when more than one day of intake data for each individual is

considered.
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3.4.3 Estimating the Probability of Contaminatiopn Given a Certain Food
Consumption; Independence Assumption,

When it is assumed that food units are independent with regard to the
presence of a toxic constituent, it is recognized that whenever one portion of
the food is contaminated, this does not affect the contamination of any other
portion. 1In this case, we are concerned with the probability that each
individual portion of the food be contaminated. This is a realistic
assumption when it can be assumed that different portions came from different
sources,

Let ¢ denote the probability that-one portion of food A carry amounts of
8 above Ng. Then, it is clear that given an individual who consumes on any
given day only one portion of A, the probability that this individual suffer

adverse health effects is given by c, where

Pr{adverse health effects/one portion of A}l = c.

For an individual consuming two portions of A this probability is computed as:

Pr{adverse health effects / 2 portions of A}

= 1 - Pr{none of the portions is contaminated}

=1 - (1 - e)2,

Similarly, given an individual who consumes on any given day x portions of A,

his or her probability of suffering adverse health effects due to the toxic

agent is given by:

Pr{adverse health effects / x portions of A} = 1-(1-¢)* .
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The risk of suffering adverse health effects increases as the number of

portions of A consumed increases.

3.4.4 Estimating the Probability of Contamination Given a Certain Food

Consumption: Complete Dependence Assumption

In many cases, the independence assumption on food portions is untenable.
Often, it is more appropriate to assume that whenever an individual consumes
more that one portion of a food, either none is contaminated or all of them
are. Consumption of any one portion leads to adverse health effects.
Consider, for example, a hypothetical toxicant which may show up in chicken
and eggs. If an individual consumes more than one portion of chicken on a
given day, most likely both portions came from the same chicken. Likewise,
eggs consumed on the same day came from the same carton.

Let ¢’ denote the probability that a unit of food A contains levels of 8
higher than Ng. The probability that an individual who consumes one portion

of A on any given day exceeds the NOEL intake of 6 is given by:

Pr{adverse health effects / one portion of A} = ¢,

as in the independence case. However, the probability that an individual
experience an adverse health effect when consuming more than 1 portion A is
also equal to ¢’. It does not matter how many portions the individual
consumes; if it is assumed that all portions come from the same unit, then the
risk of adverse health effects is given by the probability of the unit being
contaminated. The risk of suffering adverse health effects does not depend on

the amount of food consumed.
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It should be noted that the complete dependence assumption makes sense
only when considering portions of the same foed. In the hypothetical case of
an individual consuming 2 portions of chicken and 3 of eggs, chicken and eggs

should be considered independent regarding the chance of contamination.

3.4.5. Estimating Risks for Randomly Chosen Subjects

It is now quite a simple task to answer the following question: what is
the probability that a randomly chosen individual from some population suffer
an acute adverse health effect due to intake of a toxic agent in food A?
Recalling that p, denotes the probability that a randomly chosen individual
consumes X portions of A, and that ¢ and ¢’ represent probabilities of
contamination of independent and independent units of food, respectively, we

can write

(independence) Pr(H} = pg (x)(0) + py(x)(c) + pa(x){1-(1-c)?] + ...

or

(complete dependence) Pr{H} = po{x)(0) + (e (x)[py + P2 + P3 + ...1}.

where H = "a randomly chosen individual from the population suffers adverse

health effects due to acute exposure to 8",

3.4.6. Partial Independence Assumption.

Perhaps a more realistic assumption regarding contamination of different

portions of a food or food-form is that of partial independence. In the
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example of the carton of eggs, it may be more appropriate to assume that there
exists a dependence among the eggs, but that this dependence is not complete.
This assumption, however, cannot be entertained in a practical sense, since
the required information is not available. In the carton of eggs example, it
would be necessary to know the joint probability distribution of contamination
for all 12 eggs. Further, we would need to be able to derive appropriate
marginal distributions of contamination of 1, 2, ... eggs. This last step

would involve integrations in high dimensions, a costly procedure.

4. Tmplicatlions for Data Requirements

The methods for dietary exposure assessment have implications for the
collection and design of data which would support analysis of food risk, risk
monitoring, and economic evaluations of food hazards. For chronic exposure,
the methods for estimating usual intake or exposure distributioms require
multiple days of observed intake for individuals. Preferably, intake should
be observed on days sufficiently apart in time seo that independence of day
within individuals can be assumed. This was the case for the 1985 CSFII data
used in our initial analysis. Larger samples of individuals will contain more
information on variation between individuals, and more days per individual-
provides more information on intra-individual variation.

The data requirements for acute exposure differ. The information
required is for portions consumed in a given day. Only one day of intake data
is required for each individual in the sample, since an estimate of
intra-individual variation is not necessary. If more days are available per

individual, the entire data set can be pooled together. Additional
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information on cooking methods, food handling techniques, and eating habits
may be reguired,

It is important to recognize that the methods used for dietary exposure
assessment have implications both for the design of federal regulatory and
monitoring activities, and for the implementation of risk management
strategies. Incorrectly estimating levels of risk associated with Intake of
specific food constituents will not only lead to misallocatioms of resources to
risk-reduction activities, but may also alter governmental priorities in
reducing risk. The methods we suggest will reduce the error incurred in the
estimation of exposure of populations to hazardous food constituents. As
illustrated in Figure 1, this error can be considerable. It is not clear how
this error compares in magnitude to those that result from the other steps in
the risk assessment process. However, the use of appropriate methods of
modeling human health risk from foods will lead to improved overall
assessments and risk management strategies, and properly guide the development

of federal data collection efforts,
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Figure 1.

EsLimates of the Percent of Population Whose Lntake is Greater than 23 Units:
Comparing Usual Intake and Mean Intake Distributions
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