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SECTION 1. INTRODUCTION.

This paper proposes a noncooperative model of multilateral bargaining. The model can be
viewed as an extension of the famous Stahl-Rubinstein bargaining game.! Two players take tums
proposing a division of a "pie.” After one player has proposed a division, the other can accept or
reject the proposal. If the proposal is accepted, the game ends and the division is adopted; if it is
rejected, the second player then makes a proposal, which the first player then accepts or rejects. And
so on. An Stahl’s formulation, the game continues for a finite number of rounds; in Rubinsiein's
extension, the number of rounds i's infinite. We propose a generalization of this model to incorporate
multiple players and multidimensional issue spaces. We consider a sequence of games with finite
bargaining horizons, and study the limit points of the equilibrium outcomes as the horizon is extended
without bound. A novel feature of our model is that the proposer is chosen randomly "by nature” in
each round of bargaining, according to a prespecified vector of strictly positive "access probabilities."2

The present study departs from the Stahl-Rubinstein tradition in terms of the kinds of problems
that are addressed. In this tradition, the object of negotiations is the division of a purely privare good.
In our paper, we focus instead on problems that relate to collective dccision-making.3 There is an
enormous range of interesting and complex collective decision-making issues that, potentially, can be
viewed from a multilateral bargaining perspective.* Consider, for example, the current debate among
the formerly Soviet Republics over the fate of the Soviet Union, or the recent negotiations in Canada‘
leading up to the Meech Lake Accord.‘ Altemnatively, imagine negotiations between regional interests
within California over, say, the location of a new hydroelectric facility, or between members of an

agricultural cooperative over the location of a new processing plant.

1 Stahl [1972, 1977] and Rubinstein {1981].

2 Binmore {1987] also considers random selection as an alternative to the alternating-offer model, He
discusses a two player game in which each is selected with probability one-half.

3 It must be emphasized that there is nothing in the formalism of the model that requires us 1o restrict
our altention to one particular class of problems. Rather, our model was developed with certain collective
decision-making problems in mind, and, not coincidently, provides more insighis into such problems than
others. .

4 For an actual application of the model, see Rausser-Simon [1991c}, in which we use the framework
developed in this paper as a basis for studying the process of privatization in Eastern Europe.
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More abstractly, consider the issue of providing an indivisible public good. Suppose that the
attributes of the alternative choices are summarized by points in the horizontal plane, over which the
negotiators’ preferences are ordered. ‘Assume that the location decision will be determined by majority
rule. This problem, known as the spatial voting problem, has spawned a vast research effort, which
has been reported mainly in political science joumals.’ Certain interesting aspects of this problem
simply do not arise in the traditional pie-division problem. In particular, as in many actual multilateral
bargaining situations, the interests of the various parties are typically interrelated. What compromises
will emerge as alliances are fo@ed between parties whose interests are similar but not coincident?
How effective will these alliances be in furthering the common interests of their members? What is
the relationship between the "intemal” alignment of interests within a given alliance and its "external”
effectiveness as it negotiates with other alliances?

Our model is intended to address such issues. Indeed, it may be viewed as a-stylized
representation of the kind of unstructured "backroom” negotiations that might take place between
members of the inner circle of a complex organization. Imagine, for example, that there is an
impornant meeting scheduled for the plenary body of this organization (e.g., a parliamentary debate on
a significant bill, a shareholders’ meeting, etc.). Prior to this meeting, intense activity within the inner
circle might be expected: coalitions would be formed, deals would be struck and compromises would
be negotiated in informal, private, off-the-record meetings between influential members of the
organization,

For example, imagine the informal negoti-ations between senior members of the White House
staff over the selection of a nominee for a senior appointment (such as a Suprem-e Court judgeship).
The following scenario might unfold: a number of different staff members, including, perhaps, the
President himself, are concurrently lobbying each other, each attempting to build support for one
particular candidate; somehow, one of the candidates is singled out from the others and, in a plenary
meeting of the White House staff, attention is focussed exclusively on this candidzlltc. If sufficient

support has been generated for the candidate, then the White House will adopt him or her as its official

3 See Fiorina-Plott [1978] for a seminal contribution and Harrison [1991b] for a recent survey.
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nominee. Otherwise, the lobbying process will begin again, until agreement is finally reached.

The formalism of our model conforms rather closely to this informal negotiadng process. One
aspect of it, however, is difficult to describe analytically: how is one of the candidate singled out from
the others? In our model, this problematic issue is "black boxed:" we simply assert that nature chooses
bétween proposals in a random way. Presumably, however, there is some relationship between a
staffer's relative political power within the organization and the likelihood that his or her proposal will
be singled out for consideration. To formalize this idea, we assume that nature’s random choice is
govemned by an exogenously specified vector of access probabilities. The access probability assigned

to each participant is interpreted as a measure of his or her relative political power.

Qutline of the Paper.

Qur formal model is presented in Sections II and III. The content of these two sections is
summarized in a heuristic way below. Qur game consists of a finite number of negotiating rounds.
'I'he_ purpose of negotations is to select a policy from some set of possible alternatves. In odd-
numbered rounds, each player chooses a proposal, which is a policy, paired with an admissible
coalition. Between the odd- and even-numbered rounds, one of these proposals is selected by nature,
according to the prespecified vector of access probabiliﬁes. In the even-numbered rounds, each
member of the proposed coalition decides whether to accept or reject the proposed policy. The game
ends as soon as all coaliion members accept a policy. If one member rejects a policy, the players
proceed to the next round. If the last round of the game is reached and the players still fail to agree,
then the game ends and a disagreement outcome is implemented.

An important parameter of the model is the set of admissible coalitions. An admissible coalition
is interpreted as a subset of the players that has the authority to impose a policy choice on the whole
group. For examgle. in a majority rule bargaining game, a coalition is admissible if and only if it
contains a majority of players. More generally, the set of admissible coalitions might have a variety of
st_ructures. In particular, we will sometimes impose the restriction that at lcast one player belongs to
every admissible coalition. Any such player will be referred to as essenrial. For cxample, a unanimity

game is a special case in which every player is essential.
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We define an equilibrium concept which is a refinement of subgame perfection (Selten [1975)).
For a bargaining game with a fixed number of bargaining rounds, an equilibrium outcome is a
probability distribution over the policies that are implemented when players play equilibrium strategies.
A solution to our bargaining model is a limit of equilibrium outcomes, as the number of negotiating
rounds is increased without bound. Our main results concem the existence of a deterministic solution,
which is a limit outcome assigning probability one 1o a single policy. A necessary condition for a
policy to be a solution is that the policy belongs to the core of the underlying bargaining game. In this
case, there exists no admissible coaliion whose members all prefer some other policy. We identify
two kinds of sufficient conditions for existence. If all players are risk averse, then every majority rule
bargaining game with a oné-dimensional space of policies has a deterministic solution. Alternatively,
for general policy spaces, a deterministic solution exists if at least one player is essenti_al. This
alternative restriction is satisfied by. an important class of games that has been widely analyzed:
unanimity games. In such games, the only admissible coalition is the grand coalition, and each player
is essential. Weak conditions guarantee thatrv;hen a solution exists, it will be unique for generifc
specifications of players’ preferences. An appealing feature of the model is that even for quite
complex specifications of the bargaining problem, the equilibrium solution is relatively easy to compute
numerically.

Section IV contains examples, designed to highlight strengths and weaknesses of the model and
to motivate potential applications. Most of the examples are spatial models. The richest specifications
are thosp in which the core of the underlying game is infinite. In these cases, some quite subtle
éomparative statics issues arise, such as the sensitivity of the ﬁxodel’s solution to changes in the
bargaining attributes of the players, to changes in the alignment of players’ preferences, and to changes
in the structure of the set of admissible coalitions. We investigate some of these relationships in an
extremely simple, bipolar model of political conflict, and relate the bargaining performance of the left-
and right-wing to various factors, such as the relative cohesiveness of the two factions. Next, we
briefly explore the implicatons of introducing one or more cssential players into the analysis. Finally,

in a radical departure, we discuss muluilateral bargaining in a very simple, four-person pure exchange



economy.

Modelling Issues.

Because our sufficiency conditions appear severely restrictive, we begin with some remarks on
the question of existence. First, we have overwhelming evidence based on exhaustive numerical
simulations that deterministic solutions exist under significantly weaker conditions than the ones
identified in the paper. Second, our simulations indicate that still weaker conditions will guarantee the
existence of solutions that may not be deterministic.5 Third, the fact that not all games have solutions
need not necessarily be interpreted as a shortcoming of the model. Rather, it may be an indication that
. in certain environments, multilateral negotiation processes may be inherently unstable.

Quite apart from the existence question, there are certain multilateral bargaining problems about
which not much of interest can be leamed from the application of cur framework. This is particularly
true of the classical problem of dividing a purely private good, i.e., pie, among many players: if no
player is essential, no solution exists; if exactly one player is essental, than this player receives the
entire pie; if every player is essential then the pie is divided in the obvious way, i.e., proportional to
players’ access probabilities. It is because resuits such as these are neither surprising nor particularly
interesting that we turn our attention to collective-decision making problems in which there is a
nontrivial interaction between the interests of the various players.

A related topic concems our sufficiency condition that some player be essential. In the abstract,
this condition is quite reétricﬁve and appears difficult to motivate (although, as we have noted, it is
satisfied trivially in unanimity games). For example, it clearly conflicts with the formal institutional
procedure of decision-making by majority rule. In spite of this, we maintain that in a wide variety of
collective decision-making contexts, the condition is satisfied de facro, sometimes even when it is
explicitly violated de jure. For example, recall our earlier scenario of informal White House
negotiations. It is surely difficult to imagine that a candidate could cmerge as the White House
nominee for a major political appointment without at least the tacit approval of the President. In this

context, the President would satisfy the criterion for an cssential player. Similarly, if we were to

6 As yet, we do not have analytical results that correspond to Lhese observations.
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model the current negotiations over the demise of the Soviet Union, it would not seem unreasonable to
confer essential status on either Mr Gorbachev, Mr Yeltsin or both. More generally, whenever a group
of negotiators has a clearly identified "leader,” it will be narwral to declare this player to be essentiat.’
Moreover, a player might be granted essential status by virtue of her role in executing the decisions
resulting from the negotiations. For example, consider a faculty meeting of a university department.
Even when the Chairperson is only "one among equals,” and has no special voting privileges, there are
presumably certain certain kinds of policy decisions that will rarely be taken in the face of explicit
opposition from the Chair, if for no other reason other than that the Chaif alone will be responsible for
implementing the policy.

We conclude this discussion section with some remarks on our treatment of the time horizon.
Since Rubinstein [1981], it has become customary in bargaining models to assume that ;he time
horizon is infinite. We depart from this trend, and assume that the bargaining horizon is finite but
arbitrarily long. A pragmatic justification for this assumption is that the infinite-horizon version of our
model has no predictive power: any outcome can be supported as an caquilil-)rit.xrn.a More significantly,
however, there are circumstances in which our finite-horizon approach seems called for on modelling
grounds. These circumstances are especially likely to arise in the kinds of collective decision-making
contexts that we have described. It is commonplace that in such contexts the presence of an
impending deadline can provide a dramatic impetus to compromise: witness the frequency of last-
minute resolutions of Congressional deé&locks. and of post-midnight compromises in wage negotiations
whén strikes are threatened for the following moming. In a finite horizon model, attention is
inévitably drawn to these "eleventh hour" effects; conversely, in an infinite horizon model there is, of
course, no endgame. Now in general, the profession is justifiably skeptical of results that rely heavily
on long and intricate inductive chains. In our model, however, this skepticism may be mitigated
somewhat by the fact that in many instances, the basic "shape" of the solution is clearly determined

after only a few rounds of induction (often as few as thrce).? This fact may also rcassure

T Conversely, in the absence of leadership, one might expect certain kinds of negotiations 1o become
bogged down in vacillations; this might well be mirrored by the failure of a selution to exist in our
model.

% The method of proof is discussed briefly in the discussion of "Related Literature” below.
# This point is demonstrated quite clearly when we discuss comparative statics in Scetion [V,



experimentalists, since there is abundant evidence that experimental subjects seem unable to backward

induct much beyond three periods. 0

Related Literature.

Until very recently, the topic of multilateral bargaining has received surprisingly little attention
by noncooperative game theorists. The few papers which have been written focus almost exclusively
on various versions of the alternating-offer model. Binmore [1985] considers several altemative
extensions of Rubinstein’s analysis to the problem of "three player and three cakes:" each pair of
players exercises control over the division of a different cake, only one of which can be divided. In
unpublished work, Shaked observed that in any' 'mﬁhite:-horizon, altemating-offer, multilateral pure-
division problem, if the consent of three players is required for agreement, and if they are not
extremely impatient, then any division of the pie can be implemented by_ subgame perfect equilibrium
strategies.}! The proof follows easily from the following observation: suppose one player proposes an
off-the-cquilibﬁum—paﬁdivision that gives her a positive share of the pie. If players are not too
impatient, then at least one of the dther two players can be induced to reject this division by the
promise of the whole pie in the subgame that will follow if she does so.

An interesting variant of the alternating-offer model, called the "Proposal-Making Model," has
been advanced by Selten [1981). A player is selected by nature to make the first proposal. She
proposes a utility vector, a coalition and a "responder.” The responder either accepts or rejects. If she |
rejects, the responder then proposes a new utility vector, a new coalition and a new responder. If she
accepts, the responder designates another member of the coalition as the next- responder, and so on
until all members of a coalition have agreed to some proposal. This model has been studied
extehsively in Chatterjee et al. [1987] and in a series of papers by Bennett and coauthors.12

Chae-Yang [1988. 1989] and Krishna-Serrano [1991] investigate the possibility that an individual

player can unilaterally break off negotiations and exit, taking with her the share of the total pie that she

10 See Binmore et. al. [1985], Neelin et. al. {I1988] and Spiegel ct. al. [1990]. See, however,
Harrison-McCabe [1992] for a dissenting opinien, and Harrison [1991] for a survey,
- 11 This result is discussed in Sutton [1986] and Osbome-Rubinstein [1990],
12 Bennett [1991a, 1991b], Benneu and van Damme [1991] Rennett and Houba {1991).
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has been able to negotiate. As Krshna-Serrano argue, a natural criterion that an equilibrium should
satisfy in this context is a notion of "consistency"” due to Lensberg [1988]. We will discuss this
concept in some depth because it highlights the striking difference between our collective decision-
making context and that of the classical pie-divison problem.!3 Loosely, a system of solutions to a
faﬁily of multilateral bargaining problems is said to be consistent if the solution that players other than
i obtain when i is present at the bargaining table is the same as the solution they obtain when i is
absent and the total pie is depleted by the portion that i would receive if she were present. Essentially,
this axiom formalizes the idea that the bargaining attributes of players are pairwise orthogonal. That
is, there are no synergies between players: the relative bargaining strengths of players j and £ cannot
depend on whether or not player { is present at the bargaining table. While this condition seems
eminently reasonable in the context of a private good division problem, it is quite inappropriate in ours.
We are intensely interested in precisely the synergies and interactons between players -that are
axiomatized away by the Lensberg condition. For example, suppo.se that player { has very limited
personal bargaining resources. If the remaining major players are organized into two, equally matchezi
factions, then player i might hold the "balance of power" and so wield a great deal of influence.!* On
the other hand, suppése that the balance of power between factions is disrupted by the "exit” of a key
member of one faction, say j. If this departure leaves the second faction in a commanding position,
then the influence of our minor player might evaporate. The point here is that in many collective
decision-making contexts, the leverage that one player can exert in negotiations may depend in a

critical way on the configuration of other participants at the bargaining table.

13 Anather, less significant respect in which our orientation differs from the classical one concerns the
role of exit In private-good division models, it may sometimes be natural to allow individual participants
in multilateral negotiations to "take their money and run.” In the collective decision-making contexts that
concern us--for example, the public good location probilem--this kind of incremental resolution of the bar-
gaining problem is, obviously, not feasible.

14 An obvious example of this phenomenon is the remendous power wiclded by the tiny religious par-
ties in the Israeli parliament.



SECTION 2. THE T-ROUND BARGAINING GAME.

There is a finite set of players, denoted by / = {1, - -,i}. The representative player will be

denoted by i. The players meet together to select a policy from some set, X, of admissible policies.

Assumption Al: X is a convex, compact subset of {-dimensional Euclidean space.

If the policy vector x is selected, player i receives the payoff u;(x).

Assumption A2: For each i, u;() is continuous and strictly concave on X* and
satisfies the von-Neumann Morgenstern axioms.13

Contrary to the usual practice in the bargaining literature, players’ payoffs do not depend on the time it
takes to reach agrtaemem.l-6 Of the other assumptions we impose 'on u;, the only significant one is
strict concavity (i.e., players are globally risk averse). We avoid degenerate special cases by imposing

the condition that there is a minimal amount of diversity in players’ preferences. Specifically:

Assumption A3: Fori = j, the maximizers of 4;() and &;(-) on X are distinct.

There is in addition to X a distinguished vector, &, which is called the disagreement outcome.!’ If
players cannot reach an agreement during the negotiation process then the vector @ will be imposed by
default. Once again we avoid degenerate special cases by assuming that there exists a negotiable

settlement that Pareto dominates the disagreement qutcorne:

Assumption A4: There exists x € X such that for each i, u;(x) > u; (.

Denote by X* the set X U (D). We will refer to the vector-valued function, u = (&;);.; defined on

X* as the payoff function for the game. (Throughout the paper, we will denote vectors by boldface

15 For many applications, the requirement of strict concavity is too strong. For example, if X is the
unit simplex, representing players’ shares of a dollar, then we would narally want o allow player i to
be indifferent between any two share vectors whose i'th components are the same. To allow for such
preferences, we could assume that for each i, there is some subspace X' of X such that i is indifferent
between any two vectors that differ only on X - X, and globally risk-averse on X*. All of the resulis in
the paper go through if Assumpton A2 is weakened in this way.

18 Tt is straightforward but not particularly illuminating to incorporate time-discounting into the model.

17 It is convenient to isolate {&} from the set X. For example, we can then assign @ a payoll of
negative infinity without violating continuity.
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letters.) The main results of the paper concemn families of games generated by varying either the
payoff function or the number of negotiating rounds, while holding all other parameters constant.
Accordingly, when all other parameters of the game have already been specified we will denote by

T(u, T) a T-round bargaining game with payoff function u.

Many of the examples that are discussed in the paper belong to a class of games that we call
spatial games. In such games, the set X of admissible policies consists of altemative locations. For
example. a location could be a site for a public good. More abstractly. it could be a point in
characteristics space, representing, for example, the attributes of a candidate for some office. Each
- player has an "ideal” location in X, called her bliss point. The vector of players’ bliss points will be
denoted by o = (). Lctting'd (x, y) denote the Euclidean distance between x and y, the utility
that i derives from a policy x is a declining function of d(x, a;).18 In most of the examples

discussed below, we assume that player { has a constant relative risk aversion function of the form:
| 1-p;, " "
wi(x) = pi (Y —d@x, o) T w(@) = — 2.1

where v; is a constant and p; € (0, 1) is player i 's risk aversion coefficient.

"As part of the specification of a multilateral bargaining game, there is a list of admissible
coalitions, €, with representative element C. An admissible coalition is interpreted as a subset of the
piayers that can impose a policy decision on the whole group. For example, to model decision-making
by majority rule, we would define a coalition to be admissible if and only if it contained a majority of
the group. More generally, the set of admissible coalitions might have a varety of structures. In
. particular, we will sometimes impose the restriction that one or more players belongs to.every

admissibie coalition. Any such player will be referred to as essential.

We now describe the formal structure of a T-round game, beginning with the specification of

players’ strategies. We distinguish between the odd-numbered rounds of the game, which are called

1 "
B IfX R, thend(x,y)= [Z(x. -y.)z] .
k=1
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offer rounds, and the even-numbered rounds, which are called response rounds. In an offer round,
each player chooses a proposal, consisting of a policy from X and a coalition from €. In a response
round, each player specifies an acceptance set, indicating which vectors i will accept if invited to join
a coaliion in that round. We impose the restriction that acceptance sets must be closed. For
t e {1,3,..,T-1}, let {x;,, C;,) denote player i’s proposal in offer round ¢, and A;,,; represent her

acceptance set in the following response round.

A srrategy for player i is a collecion of proposals and acceptance  sets,
5= [(x,-.l, Ci.l)' A,"z, ey, (X;J. C"J). A".H_}, e, (x,-,r_.l, Ci,T—l)- Ai,T]' Let S,‘ denote the set of

strategies available to player i. Note that we have restricted strategies to be history independent. That
is, players’ decisions in round ¢ are required to be independent of the history of moves by nature, and
of the history of proposals offered and rejected in previous rounds. We will explain below that this
assumption is innocuous for "generic" games.!? Moreover, acceptance sets can be conditioned neit.her.

-

on the identity of the proposer nor on the composition of the proposed coalition.2?

A strategy profile is a list of strategies, one for each player. Let § denote the set of strategy

profiles. A list of strategies for all but one player will be called a subprofile. Denote by §; = []S;
j#i

the set of subprofiles that omit player i, with representative element s ;.

We now explain how strategies are mapped to outcomes, which are random variabies defined on
X* =X U (D). This mapping will be referred to as the outcome function for the game. In our
heur_istic description of the model in section I, we attributed the randomness in the model to moves

taken by nature between each offer and response round. From a formal standpoint, however, there is

19 Qbviously, this assumption is tenable only because players in our game have complete information.

W This last assumption is uniikely to cause serious concern to economists, who tend to insist that the
variables in question should not matter. To other social scientists and the world at large, however, they
may be regarded as seriously restrictive. In a model of Middle East negotiations, for example, it would
be unfortunate if [sraclis were obliged to respond in the same way to any given proposal, regardless of
whether it was issued by, say, the U.S. or the P.L.O. Both conditions can be rclaxed without affecting the
main results of the paper. Certain properties of equilibrium will be affected, however,
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no need to specify an actual sequencing for nature’s moves, since we have defined players’ strategies
to be independent of these moves, We simply define the outcome function to be a map ¥ from
strategy profiles and "proposer scquences” 1o policies. A proposer sequence is a list of players, one
for each offer round, denoted by 1= (1), 13), , - -, W(T-1) € /T, The heuristic interpretation of
1 is that for r € {1, 3 ..... T—1}, if negotiations have not already been concluded by the time round ¢
is reached, "nature” declares that plajrer 1(t)’s round ¢ proposal will be \.'roted upon in round ¢t+1 by the
coalition she specifies. For each ¢, 1(t) is an ii.d. random variable, distributed according to the
exogenously specified vector of access probabilities, w = (w;);e; > 0. (Recall that the magnitude of
w; is interpreted as a measure of player i’'s relative "political” or "bargaining power.") Thus, the

proposal sequence 1 is selected with probability (1) = wyXw3)X - -+ XWyr_y.

Now fix a strategy profile s, where §; = (x;;» Ci . 4is41)im13, - 7-1- For each 1€ 177, a
unique policy x(1, s) is defined as follows. If the policy x,q), is an element of A; 5, for every j in
Cur thcp this vector is accepted and negotiations do not proceed beyond round 2. Now suppose
that fort e (3,5 ..., T-1}, the policfes proposed in previous offer rounds have all been rejected. If
Xy is an element of A; ., for every j in the coalition C\yy,, then this vector is accepted and
negotiations do not proceed beyond round ¢+1. If agreement is not reached by round T, then the

vector @ is selected by default.

The procedure just described defines a finite-support random variable on X *. Given a profile s,
we denote by Eu;(s) player i's expected payoff from the random profile generated by s. That is,

Eu;(s) = Y, o@)u;(x(, s). Similarly, for r € {3, ..., T+1}, Ey;(s| t) denotes player i's expected

1e/T?
payoff if the profile s is played out starting from round ¢. We will refer to Eu; (sl t) as player s

reservation utility in round t—1, since this is indeed her expected utility conditional on failure to reach

agreement in round ¢-1.

The standard solution concept for games of this kind is subgame perfection. Informally, a

strategy profile is subgame perfect if starting from each round of the game, the remaining portion of
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each player’s strategy is optimal given remaining portions of the strategies chosen by the other players.
In the present context, this concept has no predictive power: for any game in which at least two
players are required for agreement, any policy that is weakly preferred by all players to the default
outcormne can be implemented with certainty as a subgame perfect equilibrium outcome. For example,
the following strategies implement the policy x with certainty. In each offer round, each player
proposes x and an arbitrary coalition; in each response round, each player accepts x and no other
policy. If x is preferred by all players to O, then these strategies are clearly subgame perfect and

implement x with probability one.

Equilibria of the kind just described violate a natural rationality criterion and can be eliminated
by any one of a number of equilibrium refinements. The best known of these is Myerson's [1978]
propemness criterion. Because strategy sets in the present game are infinite, this criterion involves some
technicalities (see Simon and Stinchcombe [1991]). To avoid these, we will use a simpler refinement,

which we will call the SEDS criterion (Sequential Elimination of Dominated Strategies).21 -

Informally, the procedure begins by eliminating strategies that involve inadmissible (i.e., weakly
dominated) play in the final response round. Next, considering only strategies that survive the first
round of elimination, we ¢liminate strategies that involve inadmissible play in the penultimate round,
which is the final offer round. And so on. To define the criterion formally, we need some more
definitions. First, every strategy for i is declared to be admissible from round T+1. Now fix t < T
and assume that there is an identified set consisting of strategies that are admissible from round t+1.
Define s; to be admissible from round t if (i) it is admissible from round r+1 and if there exists no
alternative strategy o; such that: (fi) c,-r agrees with s; before ¢, (iii) o; does at least as well as s;
against any subprofile 5_; that is admissible from round £+1; and (iv) o; does strictly better than s,

against some such subprofile. Finally, say that a profile s satisfies the SEDS crizerion if for each i, s;

2l This criterion is a natural extension to sequential games of the criterion known as Dominance Sol-

vability (Moulin [1979]). Binmore-Osbome [1990] use a similar criterion in a two-person bargaining
game. Also, Salant-Goldstein [1990] eliminate dominated strategics to deal with a problem closely related
to ours. For a rather different application of the same criterion, sce Simon-Stinchcombe [1989].
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is admissible from round one. If s satisfies the SEDS criterion for some bargaining game, we say that
s is an equilibrium for that game. We will refer to the outcome generated by s as an equilibrium

outcome for the game.

Proposition I below characterizes the set of strategy profiles that satisfy the SEDS criterion.
Indeed, the characterization theorem provides the basis for our computer algorithm for solving
bargaining games numerically. In each round of the game, after strategies that are inadmissible from
later rounds have been eliminated, each player is left with a straightforward single-person decision
prob_lem. In a response round, a player will accept a proposed policy if and only if it generates at Ieast
as much utility as her reservation utility in that round.Z2 In an offer round, a player is faced with a
. two-part problem. For each admissible coalition, she maximizes her utility on the constraint set
defined by other coalition members’ reservation utilities in the following round. She then selects the

maximizer of these maximizers.

Proposition I: A profile s is an equilibrium for a game I'(u, T') satisfying
Assumptions Al-A4 if and only if for each i and eacht € {1, 3,...., T-1}:

(@) Aj e = {x € X:u;(x) 2 Eu; (sl 1+2)}.

(i) x;, e Aj,, for all je ¢, and x;, maximizes u;() on the set

U N xe Xiux) ZEuj(sl t+2)}.
CeC jeC

The proposition is proved in the Appendix. The proof depends on two independently useful
properties of equilibria, stated in the Lemma below. First, af least two distinct offers are proposed in
every offer round. Second, in every offer round there is some policy that yields each player strictly

more utility than her reservation utility in the following round.

2 Qur assumption that acceptance sets are closed resolves the indeterminacy that arises when players
are indifferent between accepting and rejecting a proposal.
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Lemma I: Let s be an equilibrium for a game [(u, T) satisfying Assumptions Al-A4,
$i = (Xis Cigy Aigat)i=13,--- 7-1- Thenfort € 1=1,3,---,T-1,

(a) There exist distinct players { and j such that x; , # x; .

(b) There exists x e X such that for all {, u;(x) > Eu; (sl t+2).

An obvious corollary of Proposition [ (indeed, of Lemma I(b)), is that in every game, agreement
is reached immediately with probability one. We will exploit this fact to obtain a convenient,
simplified representation of equilibrium outcomes. Given an equilibrium strategy profile s, we will
denote by x(s) = (x;(s));; the vector consisting of the policies proposed by each player in the first
round of negotiations. As we have noted, each of these proposals is necessarily accepted. Therefore,
- x(s) is an enumeration of the support of the outcome generated by s. For this reason, we will refer to
x(8) as an equilibrium outcome vector. By combining x(s) with the access probability vector, w, in the

obvious way, we can recover the original outcome: for each i, x;(s) is realized with probability

2o Wi

Another corollary of Proposition I is that we can without loss of generality restrict attention to
games in which the set of coalitions is minimal in the following sense. Say that a coalition C is
minimal with respect to player i if there exists no strict subset, C° of C such that the coalition
C o litis admissible.2® Corollary I below shows that that player i’s opportunity set is unaffected
by the restriction that she must choose only coalitions which are minimal with respect to /. In other
words, we lose no genefality by assuming that / always chooses coalitions that (i) include herself
whenever possible, and (ii) exclude as many other players as possible, This fact is of considerable
practical importance, because when we use numerical methods to study games, it is obviously

important to minimize the the number of coalitions for which calculations must be made.

2 Note that our criterion is strictly more stringent than the simpler criterion of (unqualified) minimali-
ty, which would be satisfied by any coalition rendered inadmissible by the ommission of any player, For
example, in a majority rule game with five players, the coalition {2, 3, 4] is admissible, but is ot admis-
sible with respect to player #1, since {1, 3, 4} is admissible.
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Corollary to Proposition I: Let s be an equilibnum for a game I'(u, 7) satisfying
Assumptions Al-Ad4, where s; = (x;,, Ci;s Aisei)i=13, - 7-1- Then there is an

equilibrium profile, o, for this game which is identical to s with the (possible)
exception that in each round, each player { specifies a coalition that is minimal with
respect to i,

We can now state the main result of this section. An immediate implicadon of Proposition I is
that an equilibrium always exists. Moreover, for generic games the equilibrium outcome is unique.
Specifically, let W denote the set of payoff functions on X satisfying Assumptions A2-A4 and endow

W with the sup norm metric.2* We now have:

Theorem II: Every T-round bargaining game satisfying assumptions Al-A4 has an
equilibrium, Moreover, there is an open, dense subset, W ’, of W such that for each
u' e W’ and every T, the equilibrium outcome for I'(u’, T) is unique.

The arguments we use {0 prove uniqueness also show that except in exceptional games, history-
independence is an innocuous assumption. The argument is very straightforward. In each round of the
game, players’ payoffs and opportunity sets are independent of anything that has happened in previous
rounds. Also, because there is no uncertainty about players’ types in the medel, the unfolding of
history cannot reveal any payoff relevant information. Obviously, whenever a player has a unique
optimal choice; and this choice is independent of history, the player must act in the same way,
regardless of the past history. Finally, in the present context it is generically the case that players’

optimal choices are indeed unique inevery round.

2 1In the sup norm metric, the distance between twe functions is the supremum, taken over all points
x in the domain, of the absolute value of the difference between the functions evaluated at x,
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SECTION 3. THE MULTILATERAL BARGAINING MODEL.

A multilateral bargaining modei consists of a sequence of T-round bargaining games,
{T(u, T)}r<z4,--- in which T increases without bound. The games in the sequence are all variants
of the same underlying game; the only thing that changes is the number of negotiating rounds.
Modifying traditional notation somewhat, we will denote the underlying game by I'(u, -}, without
specifying the number of rounds. We will then consider the multilateral bargaining model that is

derived from this game.

 The equilibrium outcomes for games in the sequence are probability measures on the set of
admissible policies. We define a solution 10 our model to be a limit of a sequence of equilibrium
outcomes for the games in the sequence. Since the outcomes are random variables, the natural
topology in which to take limits is the weak-star topology.Z Because equilibium outcomes have a
special structure, however, we can simplify matters considerably: it is sufficient simply to identify thE
pointwise limits of sequences of equilibrium outcome vectors. Specifically, suppose that for
t={2,4,---.}, s*is an equilibrium strategy profile for the game ['(u, 7) and that X =(X;);; Is 2
pointwise limit of the sequence (x(s‘)).;z,‘t ... . We will refer to X as a limit outcome vector. Then
from our earlier discussion, it will immediately be clear that the ouzcomes generated by (894 ...
have a weak-star limit, which is defined by combining X with w as before: for each i, X; is realized

with probability 3 ; - ) W;.
1

We say that a solution is deterministic if the limit outcome has singleton support, or,
equivalently, if the elements of the the limit outcome vector are all identical We say that a
deterministic solution implements the vector to which it assigns probability one. Solutions that are not
deterministic will be called stochastic. 'When a solution exists, it is interpreted in the usual way, as a
proxy for the equilibrium outcome of the underlying game when the number of negotiation rounds is

arbitrarily large,

25 See, for example, Parthasarathy [1967].
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It is of primary importance to identify conditions under which a solution exists. In a model that
has no solution, the outcome of negotiations depends in a nontrivial way on the number of negotiation
rounds. In such instances, the model can have little predictive power or positive prescriptive interest.
Existence failures are nonetheless interesting in a negative sense: they can be interpreted as evidence of

inherent instabilities in the negotiating environment.

The main results of this paper identify conditions under which deterministic solutions exist. A
necessary but not sufficient condition for existence of a deterministic solution is that the underlying
game has a nonempty core. The core of a multilateral bargaining game is defined in the obvious way.
A policy x rcan be blocked by coalition C if there exists an alternative policy y such that each member
of C strictly prefers y to x. The core consists of policies that cannot be blocked by any admissible
coalition. The necessity resuit is presented as Proposition III below. Since the proof is both simple

and instructive, we include it in the texth

Proposition III:  Let I'(u, -} be a multilateral bargaining game satisfying assumptions
Al-A4, If the muitilateral bargaining model derived from this game,
{Tu, T))r=34, --- . has a deterministic solution, then the policy implemented by this
solution belongs to the core of T'(u, -).

Proof of Propesition I1I: Assume that x is implemented but that there is some policy y and.
some admissible coalition C such that each member of C strictly prefers y to x. Then there exists
€>0 such that all mémbers of € stictly prefer ¥y *o any policy in the ball B(x,&). For
T=2,4, --,let s be an equilibrium profile for T(u, ). For T sufficiently large, each component of
the - equilibrium outcome vector x(s*) must be contained in B(x,&). Thus we have
u;(y) > u;(x;(s") > Eu;(s*l 3), for every j e C. (The second inequality follows from combining

Proposition I(ii) and Lemma I{b).) But this is a contradiction, since by Proposition I(ii), x;(s*) must a

maximizer of 4;(") on the set M {x € X: u;(x) 2 Eu,(s°1 3)}. 1
jeC

The following three-player spatial game I'(u, -). illustrates what can happen when the core of

the game is empty. The three players' utility functions are as defined in cquation (2.1) above, with
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bliss points that form a triangle in R% o, =(=10), o;=(+1,0) and a3 = (0.1). For each i, set
p; =0.5 and w; = 1I/73. Assume majority rule, so that any coalition containing two players is
admissible. To see that the core of this game is empty, pick any point, x = (x, x5), in the convex hull
of the o;’s (see Figure 3.1(a)). (Note that in this context, the subscripts on x dcnote components of
the policy rather than player indices.) Assume without loss of generality that x; > 0. Clearly, players
#1 and #3 strictly prefer the projection of x onto the horizontal axis to x. Therefore, the coalition

consisting of these two players can block x.

The sequence of outcomes for I'-round games has a limit cycle, illustrated in Figure 3.1(b).
There exists T sufficiently large such that for Tt e {T+2, T46, - - - ].’each player includes player #1 in
. the coalition she proposes in the first round of I'(ue, ©) and, consequently, the outcome of this game
generates a slightly higher expected utility for player #1 than for #3. For T e {T+4, T+8, - : - }, the
sitﬁation is reversed: each player includes player #3 in the coalition she proposes in the first round of
I'(u, t) and, consequently, the outcome of this game generates a slightly higher expected udlity for
ﬁlayer #3 than for #1. The explanation for this oscillatory pattern readily becomes apparent by
comparing the (T+2)-round and (T+4)-round games. The proposals made in the first round of Line
former game are the same as the proposals made in the third round of the latter, In the (T+4)-round
game, player #1 has a higher expec;cd utility than #3 conditional on reaching the third round. In
round #1 of this game, therefore, player #1 takes a tougher bargaining stance than #3, and because of
this is a relatively unattractive coalition parmer. (Alternatively, her reservation utility is too high.)
But in round #1 of the (T+6)-round game, the positions are reversed and it is player #3 whose

reservation utility is too high.

Our next example establishes that nonemptiness of the core is not sufficient to guarantee
existence of a deterministic solution. Consider a four-person spatial game in which players’ bliss
points form a square; ¢ = (+1,+1), 0 = (+1,-1), 03 = (~1,~1) and &y = (=1,+1). In this example,
players’ utilities are construct explicily. They do not belong to the class of utilitics characterized by

cquation (2.1). Construct «,(-) so that its level scts are circles centered at o, with (o) = 4,
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uy(0 = u(0g) =0, u(xty) = -8, while u,() < —8. Define the other players’ utilities symmetrically.

For each i, set w; = 0.25 and assume that any Lh_r:e-person coalition is admissible,

It is straightforward to verify that the core of this game is the singleton set consisting of the
origin. On the other hand, the bargaining model that corresponds to this game has a unique, stochastic
solution, in which the limit outcome vector is X, with X; = «; for each {. To see this, observe that in
the last offer round, each player proposes her bliss point; if selected by nature, this proposal will be
accepted in the next round. Now consider a nenterminal response round and assume that in the offer
round that follows, each player will proposes her bliss point. Thus, each player’s reservation utility in

- this round must be -1. Therefore, players #2 and #4 will accept o if it is proposed, and #1 will
indeed propose « in the preceding offer round. Since the game is symmetric, we have established that

in each round, each player proposes her bliss point and all proposals are accepted.

Theorems IV and V below identify two sets of sufficient conditions for existence of a

deterministic solution. The first condition is that the space of policies X is one dimensional and that

decisions are made by majority rule.

" Theorem IV: Let I'(u, -) be a multilateral bargaining game satisfying assumptions
Al-A4, If (i) the space of admissible policies, X, is a subset of R! and (ii) a coalition
is admissible if and only if it contains strictly more than half of the players in /, then
the multilateral bargaining model derived from I(u, -) has a deterministic solution

When the policy space, X, is multidimensional, the problem of establishing convergence is much
more difficult. One way to guaraniee convergence is to assume that the game has at least one
“essential player,” i.e., a player who is a member of every admissibie coalition. The interpretation of

this assumption was discussed in detail above (pp. 5-6).

=
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Theorem V: Let I'(u, ') be a multilateral bargaining game satisfying assumptions
Al-A4. If there is at least one essential player, then the multilateral bargaining model
derived from T'(u, -) has a deterministic solution,

An immediate corollary of Theorem V is that every unanimity game has a deterministic solution. In

such games, there is only one admissible coalition, and all players are essential.

Our final result is an immediate consequence of Theorem II: solutions, when they =xist, are
generically unique. Once again, let W denotes the set of payoff functions on X satisfying

Assumptions A2-A4.

Corollaty to Theorem II: Let I'(, ) be a family of multilateral bargaining games
satisfying assumptions Al-A4, in which the payoff function is drawn from W . There
is an open, dense subset, W', of W such that for each u" e W', if the model
derived from ['(u’, -) has a solution, then this solution is unique. '

Proof of the Corollary: Suppose that for some ue W, the model derived from I'(u, -) has
more than one solution. Then necessarily there exists T (in fact, infinitely many 7T 's) such that the
bargaining game I'(u, T) has at least two distinct equilibrium outcomes. But from Theorem II, it

follows that the set of all such u’s is contained in the complement of an open, dense subset of

v. O

SECTION 4. EXAMPLES AND APPLICATONS

The main purpose of the section is to illustrate properties of the model and to suggest contexts in
which our model might be usefully applied. In some of the examples, the core of the underlying game
contains a single element. In these cases, the solution to the bargaining model is obtained immediately
and is insensitive to changes in the conﬁguration of negotiators” bargaining attributes. In the other
examples, our model provides a procedure for selecting from among the multiple elements of the core.
In these cases, the selection procedure is sensitive to players’ bargaining attributes, and it is instructive

to study the comparative statics properties of the model. In our discussions of comparative statics, we
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will consistently refer to the original parameter set as the base-case scenario; once a parameter has
been changed, we will refer to the modified scenario. Throughout this section, our discussion will be
heuristic and informal. For a more formal presentation of these and related comparative statics results,

see Rausser-Simon {1991c¢].

Examples #1-#4 are spatial models. In each case, we assume that the space of policies, X, is a
subset of two.-dimensional Euclidean space. Players’ preferences belong to the family defined in
equation (2.1). In our base-case scenarios, we always assume strict majority rule. One possible
interpretation, applicable to all four examples, is that the players comprise the executive commmittee of
a political party, who are negotiating over the details of the party’s official political platform. The first
component of a player’s blis;s point indicates whether the player is a radical or a conservative. Players
whose bliss points are to the left (resp. right) of the origin represent the "left-wing” (resp. right-wing)
of the party. Bliss points located further from the origin represent more extreme political orientations.
The vector of access probabilities can be thought of as reflecting the distribution of political influence
among committee members, Agents’ risk aversion coefficients can be interpreted either literally, or

more metaphorically as a measure of the extent to which the agent is a "tough™ negotiator.

Example 1: Trlateral bargaining when one or more players are essental.

For our first example, we revisit the three-person, majority rule game introduced on p. . Recall
that this game had three players, whose bliss points, respectively, were: o, = (-1,0), oy = (+1,0) and
oz = (0,1). Though this game is extremely simple, it can be varied in severeﬁ ways to illustrate a

variety of important facets of our framework.

As we have already seen, without at least one essential player, this game has no solution. Now
consider the effect of declaring one or more players to be essential. First assume the minimal
admissible player coalitions are (1, 2) and (1, 3), so that player #1 is esscntial.26 From Theorem V,

there is in this case a deterministic solution.” Unfortunaiely, however, the solution is not very

"2 The grand coalition is admissible but is not minimal with respect to any player.
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interesting: it simply implements player #1's bliss point, o) = (—1, 0). To verify that this is the unique
solution, observe first that ¢, is contained in the core of the underlying game. Indeed, in any game,
any essential player’s bliss point is contained in the core. In this particular game, the core contains no

other policy. It therefore follows from Theorem II that the unique solution must implement o,

Next, consider the unanimity version of this game, in which all three players are essential. In
this case, the core of the underlying game consists of the convex hull of the three bliss points. The
solution now depends entirely on the distribution of bargaining attributes among the three players. The
comparative statics properties are predictable: in response t0 an increase in one player’s access
probability or a reduction in her risk aversion coefficient, the solution will shift in the direction of her

bliss point.

From a heuristic perspective, the most revealing version of the game has two essential players.
For example, suppose that the admissible coalitions are (1, 2} and (1, 2, 3), so that #1 and #2 are
essential, while #3 is not. In this case, clearly, the core of the underlying game is the "contract curve”
between players #1 and #2, which in this case is the line segment joining their bliss points. If both
players have equal access, the solution of the model will implement the midpoint of this line, i.e., the

origin,

It is instructive to investigate the role of player #3 in this version of the problem. Clearly,
players #1 and #2 will each propose the coalition (1, 2), so that #3 will participate in a coalition only if
she herself is the proposer. Provided her access probability is positive, however, her presence at the
bargaining table will still have an impact on the negotiations.. To see this, we will consider the
comparative statics effects of a shift in her bliss point from 5 to, say, &3 = (¢, 1). In the simulation,
we set p; = 0.2, for each i and assume each player has equal access. The constant ¥; in equation (2.1)
is set equal to IOO. Table 4.1 summarizes a numerical simulation of the effect of this change, for
€ = 0.05. We display the proposals made in the last three offer rounds, in both the base-case and
modified scenarios. The first three lines in each block list the policies proposed by each player,

followed by the utilities derived by cach of the players from these offer.  An asterisk beside a utility
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level indicates that this level is equal to the player's reservation utility in the following response round,
so that meeting this reservation utility is a binding constraint on the proposer. The fourth line displays
each player’s expected utility conditional on reaching the round; these numbers are also the reservation

utilities of the players in the preceding response rounds.

Consider the modified scenario. In the final offer round (i.e. T—1), #3 will now propose o, a
change that will benefit #1 and ht.m #2. In the preceding response round, therefore, #1's reservation
utility will be higher than before, while #2’s will be lower. Now consider the penultimate offer round.
Relative to the base-case scenario, there are three changes in this round, all of which benefit #1 at the
exp-énse of #2. Player #1’s proposal will be closer to @, because #2's reservation utility is lower.
. Player #2's proposal will be further from o, because #1°s reservation utility is higher. Finally, player
#3's proposal will be closer to o and further from o, both because & is closer to o than ¢y, and
because of the changes in the reservation utilities of #1 and #2. In this penultimate offer round, then,
all of the individual efféct.s are mutually reinforcing, so that relative to the base-case scenario, playet
#l’s expected utility conditional on entering this round will unambiguously increase, while #2's will
decrease. Now proceed by backward induction to the first round of negotiations, and conclude that the

solution to the model shifts to the left along the horizontal axis.

Example 2: One-dimensional set of bliss points, an odd number of players.

In this and the remaining examples, we assume that the coalition structure is symmetric. In
particular, there will be no essential players. Assume that there are 2n + 1 players and that a coalition
is admissible only if it contains at least n+1 players. Let (c;;, o ) denote player i's bliss point. For
each i, assume that the second component of i's bliss point, ¢ 5, is zero, and that players are ordered
so that for i < j, o < o, With 0,5y = 0. In this case, the core of the underlying game contains

exactly one point: the on‘gin.27 From theorems II and IV, any game of this kind has a unique,

21 To see this, observe that players #1 to #n+1 strictly prefer the origin to any policy x with x; nega-
tve. Similarly, players #n+1 to #2n+1 swicty prefer the origin to any policy x with x, positive. Note
that the solution to the model is completely invariant to any of the parameters of the model, except the lo-
cation of &t,,;;. >
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deterministic solution, which implements the origin. Thus, our multilateral bargaining framework

provides a formal foundation for the familiar "median voter" model.

Example 3: Oﬁe-dimensional policy space and an even number of players.

This example is identical to the preceding one except that there are 2n players instead of 2n+1.
As before, assume that a coalition must contain at least n+1 players to be admissible. When there is
an even number of players, the core of the underlying game is the interval, [a, {, &, ], &long the
horizontal axis between the two median players’ bliss points. In contrast to example 2, the solution in
this case depends on all of the parameters of the model, so that the comparative statics analysis is
much richer. To illustrate some of the model’s properities, we will discuss rather informally two of the

more subtle comparative statics results,

We begin by examining the effect of an outward shift in the bliss point of the extreme left-wing
or right-wing player (i.e., a reduction in @, or an increase in 0y, ). Intuitively, such a change can be
interpreted as reflecting a polarization of the party or an increase in political extremism. A change of
this kind has two effects, which we will refer to as the risk aversion effect and the access effect. The
risk aversion effect benefits the wing of the party whose member’s bliss point has changed; the access
effect benefits the wing that. has greater aggregate power. Whenever players’ utilities are defined by
equation (2.1), the former effect is very weak relative to the latter. Hence, if the distribution of access
is vinually uniform, the solution will shift in the direction of the original bliss point change. If the
distribution is only slightly skewed to the right or left, however, then the more péwerful wing of the

~ party will benefit at the expense of the other wing.

To simplify the analysis, we assume that in the base-case scenario, all players are identical, and
that bliss pointS are distributed symmetrically about the origin (ie., for each k <n,
O k| = ~Oy414+k,1). Table 4.3a summarizes a numerical simulation of this case, with p; = 0.2, for
each i. Now consider the effect of an increase in o, ;. Because player #2a proposes her bliss point

in the last offer round (round T-1), the cffect of this shift is to reduce all other players’ expected
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utilities, conditonal on reaching this round. Because players are all equally risk-averse, however, the
lefi-wing will be more serously affected by the change than the right-wing.2  Now consider the
penultimate offer round (round T-3). Because admissible coalitions contain at least n+1 members,
each left-winger (resp. right-winger) must induce some right-winger (resp. left-wingef) to accept her
proposal. But as we have observed, the decrease in left-wingers’ reservation utilities in round 7-2
exceeds the corresponding decrease for right-wingers. Thus, while each left-wing proposal in this
round will shift to the lefi, the corresponding shifts in the right-wing proposals will be larger.
Conditional on reaching the penultimate offer round, the expected utilities of left-wing players will fall
reladve to the base-case scenario, while those of the right-wing players will fall by a lesser amount, or
possibly even iﬁcrcase. Proceeding by backward induction to the first round, it follows that when
players’ attributes are all identical, an increase in right-wing extremism results in a shift in the solution

to the right.

A variant of the base-case scenario is obtained by transferring some access from the right-wing
to the left-wing.2® Table 4.3b summarizes a numerical simulation of the variant, in which the access
probabilities of each of the leftwingers is increased from 0.166 to roughly 0.188. The effect of this
modification first becomes apparent in the penultimate offer round. As before, the left-wing proposals
shift to the left, and the right-wing proposals shift to the right by a greater amount. However, if the
asymmetry in access is sufficiently great, the smaller, but more heavily weighted leftward shift may
dominate the larger but less heavily weighted rightward shift, reversing the relative fortunes of the left-
and right-wing. Conditional on reaching the penuitimate offer round, the expected utilities of the
right-wingers will fall relative 10 the base-case scenario, while those of the left-wing players will fall
by a lesser amount, or possibly even increase. The reversal in this round will be transmitted back to
the first round. Thus in this case, if the left-wing is more powerful than the right, an increase in

right-wing extremism may result in a shift in the solution to the left.

28 That is, the second derivatives of the u;'s with respect to distance are ail equal and negative.

2% The argument we present below does not depend on the way in which access is ransferred.
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Another set of comparative statics results focus on the effect of increasing the minimal size of
admissible coalitions, assuming Lhzﬁ one wing of the party is more powerful than the other. Once
again, some restrictions are needed in order to obtain a determinate result. Assume, as before, that
bliss points are distributed symmetrically relative to the origin, and that all players are equally risk
averse. Moreover, assume that one wing of the party is uniformily more powerful than the other, ie.,
the access probabilities of each member of one wing exceeds the access probability of every member
of the other wing. Under these restrictions, an increase in the size of a minimal coalition

unambiguously benefits the more powerful wing of the party.

Example 4: Two-dimensional policy space and an even number of players.

This example is closely related to the preceding one, except that we relax slightly the restriction
that players’ bliss points lie along the horizontal axis. When .the space of policies is two-dimensional,
we cannot guarantee in general that a solution exists. To finesse this problem, we confine agents’ bliss

points to a’set that is "nearly” one-dimensional. Players’ bliss points are defined in Table 4.2 below.

Table 4.4: Configuration of players’ bliss points in Example 4.

Player: #1 #2 #3 #4 #5 #6
Uiy —6 -0 -0 +9 +4 +6
;2 —& 0 +€&; —€, 0 +&,

Initially, we set € =€, =€ > 0. A deterministic solution exists whenever 8 is sufficiently large

relative to €. We will consider the effect of an increase in €, which is interpreted as a reduction in

the intemnal cohesiveness of the right-wing of the party. Not surprisingly, this change results in a shift

to the left in the solution.3? Intuitively, the loss of cohesion within the right-wing weakens its

3 To be pedantic, we should add that if the left-wing's access is of order o(g)), the shilt could be in
the reverse direction.
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bargaining power relative to the left-wing and this translates into a deterioration in the right-wing's
performance. Table 4a summarizes a numerical simulation of this case, with 9 =9. [nitially,
& =& = 1. In the modified scenario, &, is increased t0 1.5. In this simulation, players have equal

access and p; is set equal to 0.5, for each i.

Clearly, there is a striking difference between this result and the consequence of one-dimensional
dispersion that emerges from Example 3. The source of the difference is that in Example 3, the
dispersion within the right-wing also affected the left-wing, In the present case, dispersing the right-
wing in the "vertical direction” scarcely affects the left-wing ar all (assuming that 0 is sufficiently large
relative to e). 'fhe logic of the argument is quite straightforward. In the last round of proposals, each
right-wing player proposes her bliss point. When these points are dispersed, the increase in the
variance of the outcome is significant for each of the right-wingers, but insignificant for the left-
wingers, 5o that in the penultimate round of voting, the right-wingers’ participaton constraints are
relaxed relative to those of the left-wingers. The left-wingers' advantage is now transmitted backwards

through the game tree in the usual way.

Example 5: A two-good pure exchange economy wi[ﬁ four playe}'s.

In this final example our framework is applied to a pure exchange economy. While the example
is extremely simple, it suggests that the domain of applications is much wider than the previous
examples might suggesﬁ Moreover, it represents a departure from the preceding analysis in two
notable respects. First, we obtain a deterministic solution even though there is no essential player and
the space of policy vectors is of high dimension. This implies that results much more general than
theorems IV and V can eventually be obtained. Second, we extend one of the basic assumptions of the
underlying rnodel,;by allowing players’ admissible policy sets to vary, depending on which coalitions

they select.

There are two commoditics and four players. Assumec hat each player has equal access. There

are no restrictions on the sct of admissible coalitions: any combination of players is admissible.
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Players #1 and #2 are each endowed with 2 units of the first commodity while players 43 and #4 are

each endowed with 2 units of the second. A policy vector is an allocation X = {x;,, x;);-, such that

4
fork =1,2, ¥ x; =4. An allocation is admissible for a coalition C if each player who is excluded

i=1
from C is assigned her initial endowment. The default outcome is defined to be the autarky allocation,

i.e., each player is assigned her initial endowment. Let z; denote player i's net trade. Player i’s

utility function is »;(z) = (z”z”)p". where p; must be less than %4 to ensure concavity.

This game has a unique deterministic solution. Not surprisingly, the equilibrium outcome is the
equal division allocation: each player receives one unit of each commodity. The proof is briefly
sketched below. If player { is selected by nature in round T-1 of the T -round game, she will propose
the grand coalition and the allocation assigning her the economy-wide endowment, i.e., (4, 4). This
allocation is accepted in round 7. Assuming equal access, then, each player’s expected utility
conditional on entering round T-1 is 4. Now consider plgyer #1’s choice of coalition in round T-3,
‘Obviously, she will not form a two-person coalition with player #2. Moreover, her opportunities in a
two-person coalition with either #3 or #4 are dominated by her opportunities in the grand coalition:
whatever she can obtain in the two-person coalition, she can do better by including the other two
players, offering them each the vector (Y4, %) and kecbing the remainder of their joint endowment. A
similar argument shows that she préfers the grand coalition to any coalition of three players. It
follows, then, that if player | is seIeckd by nature in round .T—3, she will propose the grand coalition
and the allocation which assign (%, %) to each of the other players and the remainder to herself. Now

proceed by induction in the obvious way.

The comparative statics of this example are extremely straightforward. Player i's utility from
the equilibrium outcome increases as her access probability increases and as p; increases. Note that
while the solution implemented the competitive equilibium allocation in the initial symmetric example,
this is no longer the case when symmetry is abandoned. A striking feature of this example is that
unlike our earlicr examples, there are no synergies between agents, Other things being equal, player

i’s utility from the solution depends cntirely on her own access probability and on p;, and not the
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distribution of these parameters among the other players.
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Table 4.1:  Comparative Statics of shifting o, to the left in Example 1.

Round o3, =0 X X3 #1's udlity #2's utility #3’s utility
#1's offer -1.000 0.000 66.289 66.056 66.124
T-1 #2's offer 1.000 0.000 66.056 66.239 66.124
#3’s offer 0.000 1.000 66.124 66.124 66.289
Exp utility 66.156 66.156 66.179
#1's offer | -0.138 0.000 66.189 66.156* 66.171
T-3 #2’s offer 0.138 0.000 66.156* 66.189 66.171
#3_'3 offer 0.000 0.543 66.156* 66.156* 66.236
Exp utility 66.167 66.167 66.193
#1's offer -0.046 0.000 66.178 66.167* 66.172
T-5 #2’s offer 0.046 0.000 66.167* 66.178 66.172
‘ #3’s offer 0.000 0.307 66.167* 66.167* 66.208
Exp utility 66.171 66.171 66.184

Round | of;=-0.05 X Xq #1's utility #2's utility #3's utility

H_

#1°s offer -1.000 0.000 66.289 66.056 66.128
T-1 #2's offer 1.000 0.000 66.056 66.289 66.120
#3’s offer -0.050 1.000 66.128 66.120 66.289
Exp utility 66.158 66.155 66.179
‘ #1's offer -0.150 0.000 66.190 66.155* -66.172
T-3 #2's offer 0.126 0.000 66.158* 66.187 66.171
#3’s offer -0.013 0.544 66.158+* 66.155* 66.236
Exp utility 66.169 66.166 66.193
#1's offer -0.057 0.000 66.179 66.166* 66.173
T-5 #2’s offer 0.034 - 0.000 66.165+ 66.177 66.172
#3's offer -0.012 0.307 66.165* 66.166* 66.208
Exp utlity 66.172 66.169 66.184
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Table 4.3b: Comparative Statics of shifting &s; to the right in Example 3: Left-wing has more access.

Rnd ag,=4 xy uy() uy() uy(-) uaf) us(-) ugl)
#1's offer -4.000 6.310 5.800 5.278 3.031 2.408 1.741
#2’s offer -3.000 5.800 6.310 5.800 3.624 3.031 2.408
#3's offer -2.000 5278 5,800 6310 4,193 3.624 3.031
T-1 #4’s offer 2.000 3.031 3.624 4,193 6310 5.800 5.278
#5's offer 3.000 2.408 3.031 3.624 5.800 6.310 5.800
#6's offer 4,000 1.741 2.408 3.031 5.278 5.800 6310
Exp utility 4317 4,688 4,848 4.564 4.303 3873
#1’s offer -1.330 4921 5.451 5.969 4.564* 4.008 3.432
#2's offer -1.330 4921 5451 5.969 4.564* 4.008 3.432
#3's offer -1.330 4921 5.451 5.969 4.564% 4.008 3.432
T-3 #4's offer 0.806 3.736 4,301 4.848* 5.699 5175 4.638
#5’s offer 0.806 3.736 4301 4.848* 5.699 5.175 4.638
#6's offer 0.806 3.736 4301 4.848* 5.699 5.175 4.638
Exp urility 4.406 4,851 5.482 5.058 4.515 3956
#1's offer -0421 4,427 4.970 5.459 5.055 4.514 3.956%
#2's offer -0.421 4.427 4.970 5.499 5.055 4.514 3.956*
#3's offer -0.421 4.427 4970 5.499 5.055 4.514 3956*
T-5 #4’s offer -0383 4,406* 4950 5479 5.075 4.534 3.977
#5's offer -0383 4.406* 4.950 - 5.479 5.075 4.534 3977
i #6's offer -0.383 - 4.406* 4.950 5.479 5.075 4.534 3.977
Exp utility 4.418 4.961 5.490 5.064 4.523 3.965
Rnd 0g,=4.4 xy uy() ux*) ua(’) ual) us(-) ug(’)
#1’s offer -4.000 6.310 5.800 5278 3.031 2,408 1.456
#2's offer -3.000 5.800 6.310 5.800 3.624 3.031 2.148
#3’s offer -2.000 5.278 5.800 6.310 4,193 3.624 2,786
T-1 #4°'s offer 2.000 3.031 3.624 4.193 6.310 5.800 5.066
#5's offer 3.000 2.408 3.031 3.624 5.800 6.310 5.592
#6's offer 4.4w 1.456 .2.148 2.786 5.066 5.592 6310
Exp utility 4.275 4.650 4.813 4.533 4.273 3.663
#1's offer -1386 4.951 5.481 5.998 4.533* 3.976 3.161
#2's offer -1.386 4,951 5.481 5,998 4.533+ 3.976 3.161
#3's offer -1.386 4,951 5.481 5998 4,533+ 3976 3161
T-3 #4’s offer 0.872 3.698 4.264 4.813* 5.733 5210 4.455
#5’s offer 0.872 3.698 4.264 4813 5.733 5.210 4.455
#6's offer 0.872 3.698 4.264 4.813* 5.733 5.210 4,455
Exg utility 4.406 4952 5.482 5.055 4.513 3723
#1's offer -0.428 4.431 4,974 5.503 5.051 4.510 3723
#2's offer -0.428 4.431 4.974 5.503 5.051 4.510 3,723*
#3's offer -0.428 4.431 4.974 5.503 5.051 4.510 3.723*
T-5 #4’s offer -0.384 4.406* 4,950 5.480 5.074 4.534 3.739
#5s offer -0.384 4.406* 4.950 5.480 5.074 4,534 3,749
#6’s offer -0.384 4.406* 4.950 5.480 5.074 4.534 3.749
Exp utility 4.420 4.964 5.493 5.061 4.520 31734
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Table 4.4: Comparative Statics of dispersing the right-wing in Example 4.

Rnd | agr=0u=1 X 2 u(:} uy() us(°) uqa() us(’) ug()
#1's offer -9.000 -1.000 10.000 9.950 9.899 9.055 9.054 9.049

#2's offer -9.000 0.000 9.950 10.000 9.950 9.054 9.055 9.054

#3's offer -9.000 1.000 9.899 9.950 10.000 9,049 9.054 9.055

T-1 #4's offer 9.000 -1.000 9.055 9.054 9.049 10.000 9.950 9.899
#5's offer 9.000 0.000 9.054 9.055 9.054 9.950 10.000 9.950

#6"s offer 9.000 1.000 9.049 9.054 9.055 9.899 9.950 10.000

Exp udlity 9.501 9.510 9.501 9.501 9.510 9.501

#1's offer 0.725 -1.000 9.577 9.574 9.565 9.501* 9.499 9,491
#2's offer -0.710 0.461 9.570 9.576 9.576 9.496 9.502 9.501*
#3's offer -0.725 1.000 9.565 9.574 9.577 9.491 9.499 9.501*

T-3 #4’s offer 0725 -1.000 9.501* 9.499 9.491 9.577 9.574 9.565
#5's offer 0.710 0.461 9.496 9.502 9.501* 9.570 9.576 9.576

#6's offer 0.725 1.000 9.491 9.499 9,501 9.565 9.574 9.577

Exp utility 9.533 9.537 9.535 9.533 9.537 9.535

#1's offer -0.114 -0.867 9.545 9.543 3.535+* 9,533 9.531 9.524

#2's offer 0.100 -0.494 9544 9.544 9.538 9,533+ 9.533 9.528

#3's offer -0.080 0.871 9.533* 9.541 9.544 9.525 9.533 9.535*

T-5 #4's offer [ 0.114 -0.867 9.533* 9.531 9.524 9.545 9.543 9.535*

#5's offer 0.100 0494 9.533* 9.533 9.528 9.544 9.544 9.538

#8's offer 0.080 0.871 9.525 9.533 9.535* 0.533* 9541 9.544

Exp udlity 9.536 9.538 9.534 9.536 9.538 9.534

Rnd | ds=—0t4=1.5 xy x; u() wal-) t3() ui) us(-) ug(')

#1’s offer -9.000 -1.000 10.000 9.950 9.899 9.055 9.054 9.046

#2's offer -9.000 0.000 9.950 10.000 9.950 9.052 9.055 9.052

#3's offer -9.000 1.000 9.899 9.950 10.000 9.046 9.054 9.055

T-1 #4's offer 9.600 -1.500 9.055 9.052 9.046 10.000 9.925 9.849
#5's offer 9.000 0.000 9.054 9.055 9.054 9.925 10.000 9.625

#6's offer 9.000 1.500 9,046 9.052 9.055 9.849 9925 10.000

Exp utility 9501 | 9510 | 9501 | 9488 | 9502 | 9.488

#1's offer 0.979 -1.223 9.590 9.586 9.575 9.488* 9.484 9.469
#2's offer -0.949 0.671 9.580 9.588 9.589 9.477 9.438 9,488+
#3’s offer 0979 1223 9.575 9.586 9.590 9.469 5.484 0.488*

T-3 #4's offer 0,733 -1.270 9.501* 9,497 9.487 9.578 9573 9.554
#5's offer 0.722 0.460 9,496 9.501 9.501* 9.565 9.577 9.574

#6's offer 0,733 1.270 9.487 9.497 9.501* 9.554 9.573 9.578

Exp u[ﬂiEy 9.538 9.542 9.540 9.522 9.530 9.525

#1's offer -0.333 -1.241 9.557 9.552 9.542 9.522* 9.518 9.501

#2's offer -0.304 -0.725 9555 9.554 9.546 0.522= 9522 9.510
#3's offer -0.272 1.242 9.539 9.549 9.553 9.504 9.521 9,525+
| T-5 #4’s offer 0023 -0.833 9.538* 9.536 9.529 9539 9.539 Q.525+
#5's offer 0.010 -0.499 9.518* 9.538 9.532 9.537 9.539 9.528

#8’s alfer -0.019 0911 9.530 9.538 9.540* 9.522* 9.536 9.537

Exp utility 9.543 9.545 §.541 $.524 9.529 9.521




.35 -

APPENDIX: PROOFS.

Proof of Proposition I and Lemma I: The proofs of Proposition I and Lemma [ are interwoven. We
first establish part (i) of the proposition for + = T. Consider a policy vector ¥ € X such that (X)) < u, (©@).
Clearly, if (1) round T-1 is reached, (2) some player proposes ¥ and (3) { has the deciding vote, then i does
strictly worse if she accepts X than if she rejects it. Similarly, for x such that u;(x) > &; (@), | does swictly
worse if she rejects x than if she accepts it. Moreover, in either case, conditions (1)-(3) are indeed satisfied if
each j =i plays as follows: A;r =X; x; 7, = X; and for each ¢ € (2,4,..., T-2], A;, =@. This establishes
that if §; € §; 7, then i’s acceptance set in the last period must contain the set (x € X: u;(x) > 4;(D)) and
exclude the set {x € X: i;(x) < u;{&)}. To complete the proof of part (i}, observe that acceptance sets are
required to be closed.

We now prove parts (a) and (b) of the Lemma, for ¢t =T-1. LetJ = (j € [: %7, € 9A;7,). If J is
empty, then % 7y € interior( [y jj_z'_l) and part (i) follows immediately from Assumption A3, Assume

jelir .
therefore, that J is nomempty. We will show that for all j € J, %; 7 = %; 7. It follows from part (i) of
Proposition I that for all j e/, u;j(%; r-1) = u; (). From assumption A4, however, there exists ¥ such that
uy (%) > uy (D), for all ;/ € I. Since any coalition of players must accept X if it is proposed, any player j € J
it follows that u;(%; r_1) 2 4; (X} 2 u; (%; r.1), verifying that as claimed, % 7.4 # %; 71,

For t = T—1, part (b) of the Lemma is an immediate implication of Assumption A4. As noted above, for
every player i, the vector X identified by Assumption A4 will be accepted by all players and yields { a sirictly
higher payoff than Eu; (3! T). _ -

We now return to the proposition, to prove part (ii) for r = T—-1. After elimination of weakly dominated
strategies in round 7T, player j is left with a unique admissible choice in round T: the acceptance set
{r € X:u;(x)2u;(2)}). Part (i) now follows immediately from this fact and part (b) of the Lemma with
t =T-1,

Now fix ¢t = (2,4, -+, T-2) and assume that part (i) of the Proposition has been proved for round ¢+2
while part (i) of the Proposition and parts (2) and (b) of the Lemma have been proved for round ¢+1. Part (i)
of the Proposition can now be proved for ¢, using exactly the same argument as we used for t = T. Now
consider parts (a) and (b) of the Lemma, for round ¢—1. If round ¢+1 of the game is reached, then the vector of
offers (%; ;1)ier will be proposed and accepted. Let Ex,, | = ¥ w; ¥ ,.,. Because the offers in this round are not

ief
all identical, it follows from the strict concavity payoffs that uy(Ex,y) > Euy (3} 3), for every // € I. Now
repeat the argument proving parts (a) and (b) for ¢t = T—1, but replace X with with Ex,,,. Finally, pan (ii) of
the proposition for round ¢-1 can be proved by exactly the same argument that was used to prove part (i) for

ound T-1. D.
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Proof of the Corollary to Thecrem I: Suppose that for some i and ¢ € {1,3,---,T-1}, C;, is not
minimal with respect to i. Then there exists ¢' <= C;,, C" # C;,, such that €’ w (i} is admissible. Thus,

I zi,-'m c mi&j';+1. while by Proposition I, max{y;():x e M f’-u.m 2max(u; () x e ("\ﬂ;_,,,]].
i€y, ieC jel;, jeC

Since u; (-} is strictly concave, the maximizers on the two constraint sets must coincide. Moreover, from Lemma

I(b) and Proposition I, u;(%;,) € interior (A;,,1), so that %, is also a maximizer on  (~ A4;,,.. Thus the
JeC (i}

profile 3 remains an equilibrium after substituting the coalition ¢ for Ciy- D

Proof of Theorem II: Define the set U" as follows
U'=({ue W: there exists T and an equilibrivm s for T(u, T),

together withi € I, 1<t <T, ¢t odd,and x # x° s.L

both x and X' maximize w4 on \ M [y € X: 6y} 2 Eu}G| 1+2)).
Cel jeC

To prove Theorem II, it is sufficient to show that the closure of U has a nonempty interior. Pick T e c/(U")
and a sequence (u®) in " that converges to il. We will construct a sequence (v*) converging to @ such that for
all n, v* is not contained in U". Pick < n’! such that every v € B (u*, €} is a strictly concabold ve function.

We need some additional notation, For each i, if u7(") has a global maximum on X, let x| denote this
point. For each pair of sets (Y, 8) = (y;, {8; j},es}ies» where y; € X and the 9; ;s are scalars, define m; (Y, €)
by: (¥, ©) = 3 w;(u'(y;) + 8, )-

jaf
For each j, let B; r = (u,’-‘)"([u}'(@). oo}]). For each i, let Z; y_; = X denote the set of maximizers of (")

on the constraint set \_) ¢~ B;r. Since for every C € €, u/(-) has a unique maximizer on B, 1, Z; 7, can
Cel j=C jeC

have only finitely many members. Pick y;r_, arbitrarily from Z; r_;. Define the sets Zr_, = U.Z‘-‘T_[ and
Yro =\ i} From Lemma I{a), Yr_, contains at least two distinct elements. Also, for each i, j, choose

9; jr-1 € (£, ) to satisfy: .

(8-i):  9;;7-4 20, with equality if and only if y; 7_, = x";

(8-ii):  y;r- =yy -1 implies that forall {, 8; j7_y = 8; y .15

(6-iii):  for j =i, if y; 7y # y; 71, then 8; ; 7, < 0, with strict inequality only if y; r_; # x/.

(8-iv): for every i,J and z e Ziry, T (Yro1, ©i7-1) 2 uz) + 6, j 11, where

Q1= [ei.j.‘f—l}i.jel- . .
" Because Yr.; contains at least two distinct points, while Z; 7, contains only finitely many distinct points,
conditions (8-i.i,iii} imply that condition (8-iv) will be satisfied for all but finitely many sets of 8; ; 7_,’s.
Now fix ¢+ odd and assume that for each i, the sets Y,,; and ©,,, have been defined. For each j, let

B 1oy = (Y ((mi (¥e12. ©142), =]). For each i, let Z;, denote the set of maximizers of u(-) on the constraint set

W M8y Pick y;, arbimarily from Z;,. Define the sets Z, =\ Z;, and ¥, =1 (y:,]. Also, for cach
Cel jel i i

i, j,choose 8;;, € (-E, E) to satisfy:
(8-i):  6;;, 20, with equality if and only if y; , = x":
(8-ii):  y;, =y, implics that forall i, 8; ;, = 6; ;.
(8-iity for j =i, ify;, =¥, then 8, ;, <0, with strict incquality only if y;, # x;7.
(8-iv): forevery i, j,cvery Te {t,t+2, --- -1}, and every z e Ziz rr;(Y,, Q) #uMz)+ 8 ;,,



-37 -

where 6;; = (0 ;)i jer-
Once again, because Y, contains at least two distinct points, while Z;, conwins only finitely many distinct
points, conditions (8-i,ii,iii) imply that condition (8-iv) will be satisfied for all but finitely many sets of 8; ;,’s.
Observe that since utilities are strictly concave, u/(-) is locally nonsatiated at every x # x;’. It follows that
foreachi andeachr € (1,3,5, ---,T-1}):
(z-i): ifz € Z;,, then either z = x" orelse z € (B8, ,). 3!

i
Condition (z -1) together with (8-iv) imply that for every i, j and ¢, Tt € (1,3, - - -, T-1}:
(z-ii): ¢ =timpliesZ, n2Z, < \{x}.

We now construct a payoff function v* close to u* which has a unique equilibrium in which player {

proposes y;, in period ¢. First, pick § > 0 sufficiently small that for any two distinct elements z, 2" € ) Z,,
Todd

& cAdBE, N ncdB(,8)=0
Condition (3-i) can be satisfied because the set (_j Z. is finite.
- T

Next, construct a function W as follows. For each i, j and each odd ¢:
(y-iy  if9;;, >0, then y;(x) £ 6; ;,, for all x € B(y;,, 8), with equality iff x = y;,;
(y-ii)  if 6;;, <O, then y;(x) 2 8; ;,, for all x € B (y;,, 8), with equality iff x = y; ,;
(y-it): if §; ;, =0, then y;(x) =0, for all x € B(yj,, &)

(y-iv): ;") = 0 on the complement of {8 (x, 8): x € 1y ¥.].
t odd

Clearly, there will exist a continuous function satisfying conditions (y-i) and (y-ii) if and only if y;, =y, 7
implies 6; ;, = 6; 7 .. Now by construction, we know y;, =y, » only if either ¢ = ¢ or y;, = x;, for some j.
By (8-iii), 0;;, = 6;,, in the first case; by (0-iii), 9;;, = 0 in the second case. This verifies that there is
indeed a continuous function satisfying conditions (y-i) and (y-ii).
Finally let v* = u” + y. Note that since the norm of y does not exceed €, v* is strictly concave. Also,
since £ < n’l, applying the construction above for every n yields a sequence (v*)} that converges to U.
We now define a strategy profile as follows. For each i, define:
(s Air = O (i(@), =1
(s-ii):  for each even r < T, define A; , = (v/'(Im; (Yra1s ©rar)s oo);
(s-ii): foreachodd:, letx;, = y;,;
(s-iv):  choose C;, from € such that y;, maximizes u()yon [y A;,.
JieCy,
Now let 57 = (x;,, Ci s, Ai ys1hr=13, - .. 71 We will show that s = (5;);¢; is the unique equilibrium for the game
v, T
Proposition [ states that in any equilibrium for the game I'(v", T), player i must play according to (s-i) in
round T, Now fix ¢ odd and assume that in round :+1, players’ acceptance sets are as specified either in (s -i)
or {s-ii). We will argue that in round ¢ of any equilibrivm for I'(v*, T), player { must propose the vector y;,

First suppose that y;; € interior(/™ 8; ), for some C. From (z-i), y;, = x; in this case; (by 8-i) §; ir=0s0
18C
that uf()=v?() on B(y:,,8). Hence for this C, y;, € interior(;~A;,). Moreover, since y;, globally
jeC
maximizes u(-), it must be a local maximum on 8 (¥, ,, 0), and hence a local maximum for v()). Since v () is

3l Given a set X, the symbol "ax " denotes the boundary of X,
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strictly concave, a local maximum on an open set is a global maximum, so that in this case, i must indeed
specify y; ,. Now suppose that y; , # x;. In this case, we need to show that the set of local maximizers of v7(-)

on U (\Aj, is a subset of Z;,. It will follow immediately from this and {rom the definition of y; that y; ,
CeC jaC

yields a swrictly higher payoff than any other z € Z;;, hence y;, is player i s unique best proposal in round ¢.
FixreZ,. T #x;,. From (z-i), 7 is a strict local maximum on d((~ A;,), for for some coalition C.
JE€C
We claim that in this case, it is also true that

7 is a strict local maximum of vf'(-} on d((\4;,) ™)
jeC

and hence, by concavity, a global maximum on the set (~ A;,. First, recall from the proof of Lemma (i) that
jecC

if y;, =%, for some j #i, then 7 ¢ dA;;. Moreover, by (z-ii), for T#¢. 7 ¢ Y. < Z,. These observations,
together with (y-iv), establish that for all j such that 7 € d4;,, v/(:) = 4/() on B(7, 8). Consequently, on
B (7, 3) the sets d((A;,) and d(y~ B,,) coincide. Since both y; (") and 4(") are both locally maximized on

jecC jeC
a( B;,) at 7, v{(-) must be locally maximized on d(~\ 4, ) at 7.
jeC jeC ] . :
To complete the proof of Theorem II, fix ¢+ € {2,4,---, T-2}, and assume that in any equilibrium for

[(v*, T), player i must propose y;,,;. The preceding paragraph established that this assumption holds for
t=T-2. From Lemma I(ii), each proposal will be accepted in the next round. If follows from the definition of
v*() that Ev(s*! t+1) = m; (Y141, ©141), SO that from Proposition 1, in any equilibrium for ['(v*, T), player i

must specify the acceptance set 4;; in round ¢. [ 1

Proof of Theorem IV: Throughout the proof, we will assume that the space of policy vectors X < R,
the payoff vector, u, and the vector of access probabiliies w are all given. A coalidon C belongs to the
admissible setC if and only if it contains a strict majority of the players.

We begin by introducing some further notaton. Define the mappings G;() and U;(}) on R by:
Gix)=(ye R: ui(y)zmjinu;(xj)] and U;(x)={y € R: u;(y) Ziju,-(xj)]. For each { and proposal '

i

profile x, let B;(x) and Bi(x) denote, respectively, the smallest and largest elements of G;(x). Finally, given a
closed set ¥ < R, let {(Y) and k(Y denote, respectively, the lowest and highest clements of x.
Moreover, the concavity of u; implies that u,(Ex) > > w;u; (x;), for every i, so that for every X, ( U;(x)
i ief
is nonempty. It follows immediately that {_y (\ Ui(x) is a convex set.
Cel iegC

Lemma [V.1: For each £ > 0, there exists 8 € (0, 1) such that for every C € € and x < X such that
hx)i(x) > e
if either (@) o; =x; or (B) o ¢ (I(x), h(x)), for every i € C, then

AU e (NG +8, A(Gi(x) -3l

ieC isC ielC
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Proof of Lemma [V.1: If the Lemma were false, we could find € > 0, a sequence of vectors, {x*) in
X, and a sequence of coalitions C" such that for each n, A( M G ~1{ G(x")) 2 ¢ and either

ieC" 1EC*
condition (a) or (1)) above 15 satisfied for some reC", while

U™ cf HANGE N+ 0" (N Gi(X™) - n7'], Pick a convergent subsequence, again indexed by n,
ieC ieC ieC

such that for some fixed coalidon C and each { € C, either condition (a) is satisfied for every n or condition
(b) is satisfied for every a. Let X be the limit of the subsequence. Clearly diam(G;(®) =z,

k(M Gi®) - 1( G;(X)) 2 & while there exisis y € ('}U(_)such that for some i € C, (y’)<mmu (x)-
i«C* ieC™ L€

First assume that for this i, condition (b) holds for every n. We can assume without loss of generality
that for every n, o; > h(x®) so that o; = h(X). Because u; is strictly concave, &;(A(X)) > 1;({(X)}. But in this
case, ui()T)Su,-(lCi))<ijui(§), contradicting the fact that ¥ € U;(®). Next, assume that for this i,

condition (a) holds for every n, so that o; = 5. If u;(A(X)) # &;{{(X)). then we can apply the argument above
to obtain a contradiction. Assume therefore that u; (A (X)) = w;{I1(X)). By strict concavity, 1;{{ (X)) < u; (y), for
each y e (I(X), h(X)). Moreover, by assumption o; =X € ({(X), #(X)). Therefore, once again,

;) S w; (I (X)) < Yw; (%)), contradicting the fact that 7 € U;(®). L1
f

Fix a particular equilibriym profile s, and for ¢ € {1, 3, ---,T-1}, let x, denote the profile of policy
vectors proposed in rmound (. Note that from Theorem II, player i's acceptance set in round
t e {2,4,--- T-2) must be U;{x,,)). Thus, in round ¢ € (1,3, - - T-3}, the set of policy vectors that will

be acceptable 1o some coalition in round ¢ is given by \J /™ Ui(X,42). Since this set is convex, it follows that
CeC ieC

if o; € ({(x;42), h(X,,2)), for some I, then if i proposes ¢, it will be accepted by some coaliion. We have
established, then, that for each i,

if 0y € ([(Xes2), B (Xeyp)) them xis42=0y.

so that the hypothesis of Lemma IV.1 is satisfied.
Let t(z, -) and T(¢, -) be alternative enumerations of / such that for 1 £ & <1, By, 1y(xe) < Bug, keny(xc ),
while Bm_,‘)(x,) 2 By, peny(X0). Next, define { to be the smallest integer strictly largcr than i/2 and define
=, D), L, D) and I = (We, 1)), - - -, T, 1)} Observe that for each ¢, 1, N I, =@ and for each
T2, [, NnI,#D SetB = Biw. n(x:) and B = ﬁm. 5(x:). Thus, a policy vector y is contained in {f,, B,] if
and only if for a strict majority of the players in /7, y is weakly preferred to the least preferred element of x,.
Specifically, every y € [B,, Ex,], is weakly preferred to A(x,) by every i € /,, while every y e [Ex,, B,], is
weakly preferred to {(x,) by every i € I,.
We are now ready to proceed with the proof of the theorem. For t € {1,3, - T-3} and any admissible
coalition C, it is clearly the case that
5‘: < U ' Ui(xw?) < U ﬁG:(Xm) < [QH-Zv 6:4—2]- (A.IV.])

Cel ieC Ce€ ieC

The first and second inclusions are obvious., The third follows from the fact that each admissible coalition
contains exactly { members.
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Now, fix € > 0 and choose & > 0 for which the conclusion of Lemma IV.1 applies. We will show that if
T is sufficiently large, then for T > T, the solution for the T-round game will be contained in an interval of
length no greater than g, Specifically, we have shown (A.IV.1) that for each ¢, x, < [B.s, Bri2l. We will show
that when A(x,.2) — {(X,4+2) exceeds &, the interval (B,, B,]1 will be contained in Brsze ﬂ_,,,z}. but its length will be
shorter by at least 8. This fact will establish the theorem.

1t follows from Lemma IV.]1 and A IV.1 that foreach t € {1,3, - - ,T-3}

if A(Xp) = 1(X4) > €, then X, < [ﬁwz + 9, B:+2 - §]. (AIV.2)

The next step in the proof is to show that for each ¢ € {1, 3,-- -, T-1},

either B, =1(x,) or B, = A(x,). (AIV.3)

To see this, observe that for each i, B;(x,) € I(x,) while B:(x,) = h(x,). Moreover, because payoffs are
concave, at most one of these inequalities can be strict for any i. Thus if 8;(x,) £ B, <{(x,), foreach i € [,

then f§;(x,) =B, = h(x,), fori € I, n I;. Since I, N I, is nonempty, this establishes that (A.IV3) is true. We
' will now assume (without loss of generality) that B, = h(x, ), and rewrite A.IV.2 as

B e Braz + 8 Bz - 8 ' (AIV2)

To complete the proof of the theorem, we need to show that B, = B,,,. To see this, observe first that for
eachi € [,

4B 2 w (B (x,)) 2w, @) > wi (Brao). (AIV.4)

The second inequality holds because B, = A(x,); the third because B,,,>J,. We now have two cases 10
consider. First assume that E,,,z = i (X;43)- In this case, AlV4 implies that B, € G,(X,42), for i € [;,3, so that,
immediately, B, 2 B,,,. Second assume that B,,, € I(x,,2). In this case, 4 (Braz) = (B (%142)) 2 4; By4o) for
i € I;,5. But from AIV4, u;(B,) > u;(Bi42), for each i € I;, Since I, M [,4 is nonempty, there exists { such
that

% B) > 1B = 1 Bra).

Since u; is concave and B.; > B;+2, it now follows that §, > B,.,,. Ol

Proof of Theorem V:  The proof uses the following lemma repeatedly.

Lemma V.1: Fix £€> 0, an integer k, and a strictly positive probability vector p € A*~\. There exists
3 > O such that foreach i and y = (y )&y = X, diam(y) 2 € implies ;(py) - Ypau{yo = 8.
X

Proof of Lemma V.1: If the Lemma were false, then we could find £> 0, i = / and a scquence of
vectors, {¥*} in X, such that for cach n, diam(y") 2 € and 4 {p-y") — Ypu;(y%) < n~'. Since X is compact
x

the sequence {y"} has a convergent subsequence. Let ¥ be the limit of this subsequence. Since w; is
continuous, 4, {p¥) < X pu;(¥o. Momever, the diameier of ¥ is at least e. However, since the vector p is
LY
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strictly positive, p'¥ is contained in the relative interior of the convex hull of ¥. But this contradicts the

assumption that u; is strictly concave, l

We now proceed with the proof of the theorem. Let (x7) denote the sequence of outcomes corresponding
to a nested sequence of equilibrium strategy profiles for the T-round games. Assume that player #1 is an
essantial player. For each T, let 87 = Eu,(x7).

Step #1: The sequence (87) is a strictly increasing, Cauchy sequence.

Proof of Step #1: Fix an even integer T. Since player #1 is essential, each player’s policy proposal in
round #1 of the T+2-round game must yield player #1 a payoff of at least §7. Moreover, from Lemma I(a)
player #1°s own proposal yields a payoff strictly exceeding 87. This establishes that the sequence is strictly
increasing. Because u; is continuous and X is compact, 4; () is bounded on X. Hence the sequence is Cauchy,

Step #2: For all positive ¢, there exists a T such that for each T > T, diam(x") < e.
Proof of Step #2: Suppose o the contrary that there exists a subsequence, (x"), of (x7) such that for
each n, diam(x")2e. From Lemma V.1, there exists & >0 such that for each n, and each i
w(wx®) = ¥ wiu(x) 2 8. It follows that for each n, player #1's own proposal in round #1 of the n+2-
@jini@

round game must yield a payoff that exceeds 6” by at least 8. Thus, for each n, 0 6**2 > 0* + w,5. But this
contradicts Step #1.

Step #3: The limit of any convergent subsequence of (xT) is a singleton profile (¥} such that
u(y)=86= li][n 67. Moreover, a convergent subsequence exists.

Proof of Step #3: The first statement follows immediately from Steps #1 and #2. The second follows
from the fact that X is compact.

Step #4: If {y] is the limit of a convergent subsequence of (x7), then y belongs to the core of the
underlying game. Moreover, there are at most : distinct limits of convergent subsequences.

Proof of Step #4: The first sentence follows from an argument identical to the proof of Theorem II.
Assume that there are & distinct limits of convergent subsequences, {y!, - - ,y"_ }. From Step #3, u;(y" =8,
for each x, so that for any k = x, %y" + ¥y* vields player #1 a strictly higher payoff than either. Moreover,
for each x, since y* belongs to the core, it cannot be Pareto dominated; thus, there must exist { (x) > 1 such that
Uiggy™ n U1 () has an empty interior. Suppose that i(x) = i(k) =i, for x # k. Since ; and u, are both
stricily concave, then 4y™ + Yy* must yield player i a higher payoff than either y* or y*. But this means that
either U;(y™ n U1 (y") or U;(y*) n U (y*) has a nonempty interior. We have established, then, that k # &
implies i () # i (k) and hence that k S i.

Step #5: For every £ >0 there exists T such that for T > T, diam(x™? u x") < ¢,

Proof of Step #5: Suppose to the contrary that there exists € > 0 and a subsequence (x7 )7, such that
for each n, diam(x”"*2u x”") > 3e. From Step #2, we can pick # sufficiently large that for T > 7%, the
diameter of x7 is less than €. Clearly, for such T, the distance between any point in the convex hull of x7 and
any point in the convex hull of x7*? must be at least €. Pick 3 > 0 such that the conclusion of Lemma V.1
holds for this g, with k =2, p = (%, '4) and § = 3§; Thus, for T > 17, we have for each player i,
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u (aw (e + 17 = B W (x] + o (] ) 2 38 (AV.1)
i

Next, using Step 1 and, once again, Step 2, pick # > & sufficiently large that for each i 87 *2 — 67" < delta2
and for each T 2 T™, diam{u;(x7)) < 5. Let £ = %w-(xT" + x7"*2). Now, in the first round of the (T"+2)-round
game, player #1 proposes x] *2 1o some coalition C. We claim that £ will be accepted by each player in C
and is strictly preferred by player #1 to x7 *2. This contradicts the hypothesis that x] *2 is player #1’s best
alternative at this point of the game, and hence establishes Step #5. Fori € C, we have

ZWJ u; (1}..*'2) = u; (X{"ﬂ) -8 2 wa u; (X}m) -8 (sz)
¥ i

The first inequality follows from our choice of T*; the second uses the condition for acceptance by i of xT *2,
Combining (A.V.1) and (A.V.2) yields y (%) >iju.-(x}") + 25, for cach { € €. On the other hand for player
) J

#1, we have

g (xT™) < TwimG D +8 2 672+5 < 07 +28 = Twiu(x7) +28 (A.V.3)
i ' i

Both inequalities follow from our choice of 7". Combining (A.V.1) and (A.V.3) ylelds u;(2) > u;(x] ")+ §
which establishes the claim above.

Step #6: The sequence (x7) has a {unique) limit point

Proof of Step #6: Let Y denote the intersection of uj' (8) and the core. From Step #4, Y is a finite set.
If Y is a singleton set, then Step #6 follows immediately. Assume, therefore, that ¥ contains two distinct
elements and choose e > 0 such that any two elements of ¥ are separated by at least 3e. From Step #4, we can
pick T such that for every T 2 T, x™ € B(Y, ¢). Thus, there is a unique policy ¥ € Y such that x’ ¢ B(F, ¢).
Moreover, from Step #5, there exists T > T such that for every T > T, xT*2 c B(x7, €). It now follows from
the two previous sentences that for every T> I=‘ x7 € B(¥.¢). This establishes Step #6 and completes the

proof of the Theorem. D.
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