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Abstract

Climate change will likely increase the intensity of rainfall and therefore the probability

of nitrogen leaching in agriculture. The more nitrogen leached through soils, the less

nitrogen available for plant growth and the higher the likelihood of polluted water

streams. We combine the effect of excessive rainfall on crop productivity and on water

pollution in a simple economic model for nitrogen management and then estimate

the model using experimental data from the Iowa Soybean Association. We find that

the productivity effect is three times higher than the pollution effect. An increase in

excessive rainfall induced by climate change would increase both water pollution and

the cost of controlling nitrogen pollution because nitrogen becomes more productive.

There is potential for adaptation as the probability of N leaching under excessive

rainfall increases from 32% to 77% depending on the farmer’s choice of crop rotation

and the timing and form of N fertilization.
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1 Introduction

Excessive rainfall intensifies nitrogen (N) leaching in agriculture reducing crop yields and

polluting water streams. The more N leached through soils the less N available for plant

growth. We refer to the yield loss induced by inadequate N fertilization as the yield penalty.

Farmers “insure” against yield penalty by overapplying N. 1 Also, the more N leached, the

higher the chance that the N will reach water streams and impact human health, ecological

habitats, and recreational activities. The effect of excessive rainfall is thus two-fold: an

increase in the yield penalty and an increase in the probability of water pollution. In this

article, we combine this double effect into a simple framework to assess the efficient level of

N under excessive rainfall. We show how the relative magnitude of these two effects deter-

mine the efficient level of N, and we use on-farm experimental data from the Iowa Soybean

Association (ISA) to estimate the yield penalty and the pollution effects. We find that the

yield penalty effect is three times higher than the pollution effect. The counterintuitive

implication of this result is that an increase in excessive rainfall induced by climate change

would increase both water pollution and the cost of managing pollution. The intuition for

this result is that N, the fertilizer as well as the pollutant, becomes more productive under

excessive rainfall and so it becomes more efficient to use more N fertilizer. However, we also

find that some combinations of management practices could help farmers avoid this double

impact of excessive rainfall.

To estimate the effect of excessive rainfall on yield penalty and on water pollution, we

need to overcome three empirical challenges: (a) the endogeneity of N fertilization; (b) the

measurement of excessive rainfall; and, (c) the measurement of the probability of leaching

that damages the environment. To address these three challenges, we use a set of ISA on-

farm field experiments conducted over nine years across the state of Iowa. First, the farmer

chooses the N fertilization rate based on a variety of factors that affect yield, such as soil

and climate characteristics, the farmer’s experience and financial resources, and production

technology. As a result, production function estimates based on observational data will

tend to overestimate the N effect to the extent that more N fertilizers are applied on higher

quality land. ISA uses on-farm field experiments to randomize N application across farms,

soil and climate characteristics, and management practices. We use two ISA experiments in

our empirical analysis, the first of which covers 36 fields and 586 strips from 2017 to 2021

with five N rates randomized at the strip level. The second experiment covers 107 fields and

2,305 strips from 2007 to 2010 with two N rates also randomized at the strip level. We use

the experimental variation in N rates to estimate an unbiased production function.

The second empirical challenge is the measurement of a low-frequency event such as

excessive rainfall. Ideally, we would randomize excessive rainfall across farms, but with the

exception of small, localized experiments, it is impractical to randomize extreme weather.

1Babcock (1992) shows how weather uncertainty can explain N overapplication in crop production.
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Instead, we use the variability in early-season excessive rainfall across time and space in

the ISA experiments to estimate the effects of excessive rainfall. Our preferred measure

of excessive weather is a binary variable identifying early-season rainfall above the 80th

percentile of the historical distribution. We show that the experimental data is balanced

across wet and dry weather, and we control for observed climate and soil characteristics and

unobserved field characteristics using field fixed-effects in our regressions.

The third empirical challenge is the measure of potential environmental damage from N

leaching. It is difficult to link N leached in one corn field to a pollution measure in a water

stream in a large region. However, agronomists have completed small-scale experiments

to measure water pollution and have established a robust relationship between N content

in the soil and the plant stalk at the end of the season and N pollution in water streams

(Balkcom et al. 2003; Anderson and Kyveryga 2016; Lawlor et al. 2008). In their second

experiment with 107 fields, ISA conducted cornstalk nitrate tests (CSNT) at the end of the

season. We use the measures of N concentration at the cornstalk to determine N deficiency

and to estimate the probability of N leaching following the agronomic literature. We test

the robustness of our estimates with an analysis of the Guided Stalk Nitrate Survey (GSS),

which also contains CSNT for 3,917 fields tested from 2006 to 2014.

We have three main empirical results. First, N becomes significantly more productive

with excessive rainfall. An increase in N application from 150 lbs/acre to 175 lbs/acre

increases corn yield by 3% under normal weather conditions, 6% under excessive rainfall

above the 80th percentile, and 9% under excessive weather above the 90th percentile. This

increase in the marginal product of N is partially a result of N losses and the increase in the

yield penalty. We find that the yield penalty doubles with excessive rainfall. Under normal

weather, the yield penalty is approximately 0.9, implying that a 25 lbs/acre error in the N

rate would reduce yield by 0.6%. With excessive rainfall, the yield loss doubles to 1.2%.

Errors in N application are more costly with excessive rainfall, and it is therefore efficient

for both a farmer and a social planner to increase N application as an insurance against

productivity losses.

The effect of excessive rainfall on N leaching is large but it is only one-third of the

magnitude of the effect of excessive rainfall on the yield penalty. The risk of N leaching

increases by 41% and 59% with excessive rainfall above the 80th and the 90th percentile,

respectively. We estimate that the marginal damage (MD)—the economic cost of one addi-

tional unit of N application—increases under excessive rainfall from 0.09 to 0.13 $ per lb of

N as the probability of leaching increases. This estimate for the MD assumes a social cost

of N (SCN) of 0.20 $ per lb of N. A higher SCN, which would include the impact on coastal

eutrophication, would result in an increase in the MD of N leaching of 2.78 $ per lb of N

under excessive rainfall, or about six times the average cost of the N fertilizer. Normally,

such a large increase in environmental damages would lead to a reduction in the efficient
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level of N application. However, this would only occur if the effect of excessive rainfall on N

productivity remained constant. In fact, we find that the productivity effect is three times

larger than the environmental effect, implying that excessive rainfall would simultaneously

increase environmental damages and the efficient level of N fertilization.

Finally, we estimate the effect of excessive rainfall across farm management practices

to identify potential adaptation strategies. ISA experimental data and the GSS survey

cover different N forms, timings of N application, and crop rotations. We look at two types

of crop rotation—corn after soybeans (C-S) and corn after corn (C-C); three N forms—

anhydrous ammonia (AA), urea ammonium nitrate (UAN), and manure; and, three timings

of N application—fall, spring, and side-dressing (SD). We find that the practices most re-

silient to the effects of excessive rainfall are C-S rotation, SD or split N application, and the

use of UAN. Excessive rainfall affects these practices least; however, they are not necessarily

the most environmentally friendly. For example, UAN causes the highest enviromental MD

under any weather conditions because it has a higher nitrate content, which is more prone

to leaching. However, the probability of AA leaching increases significantly with excessive

rainfall, more so than for UAN. We then further examine combinations of management prac-

tices. We find that the combination of fall application of manure N with C-C rotation has the

highest increase in the probability of leaching under excessive rainfall—77%. By contrast,

the probability of leaching increases by 33% with the combination of SD N application with

C-S rotation.

We test the robustness of our empirical results using alternative definitions of exces-

sive rainfall, regression specifications, and datasets and experiments. We test field-specific

and field-agnostic definitions of excessive rainfall as well as different absolute and relative

thresholds with datasets covering different time periods. We find a consistent and significant

excessive rainfall effect in recent decades and a smaller effect in the historical data. We

test specifications with multiple control variables for soil and farm characteristics as well as

different combinations of fixed effects. We highlight the importance of field and block fixed

effects to control for variation in the effectiveness of N absorption by the plant across fields,

even when N application is randomized in on-farm experiments. We also test our empirical

model using historical experiments from ISA and a variety of subsamples from survey data.

We confirm the significant effect of excessive rainfall on the yield penalty and the probability

of leaching.

This article contributes to the literature on weather effects on crop production, to the

analysis of agricultural non-point source pollution, and to a small but growing literature on

the resiliency of N management practices. First, our analysis contributes to establishing the

causal effect of excessive rainfall on corn yield response function by utilizing experimental

data. Although there has been progress in estimating the yield response function to de-

termine the optimal N rate, the current literature does not directly estimate the effect of
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weather on the efficient level of N fertilization. Instead, past studies focus on a stochastic

production function to study uncertainty in the supply of N for crop growth and to explain

overapplication of N as a risk-insuring behavior (Babcock, 1992). Despite the advances in

related empirical research using experimental data (Tembo et al., 2008; Boyer et al., 2013),

the stochastic production function framework offers limited guidance for N management un-

der a variety of weather conditions. 2 Our analysis departs from the previous literature

by explicitly showing how the yield response function varies with rainfall anomalies, and by

providing the optimal N application rate by normal and excessively wet conditions.

More recently, researchers have made significant progress studying the effects of weather

on crop yields (Deschênes and Greenstone, 2007; Ray et al., 2015; Wing et al., 2021));

however, most studies focus on the effects of temperature (Schlenker and Roberts, 2006) or

water stress (Lobell et al., 2014). Few studies examine the effect of excessive rainfall. Li

et al. (2019) uses U.S. county-level data to study the effect of rainfall anomaly on crop yields

and finds that a moderate rainfall anomaly tends to increase yields but extremely excessive

rainfall can be detrimental to corn yields. A limitation of these types of analyses is the

potential endogeneity of rainfall anomalies. Although an occurrence of excessive rainfall is

random, farmers adapt by adjusting management practices such as N fertilization, timing

of N application, N form, and crop rotation as the likelihood of excessive rainfall increases.

For example, farmers may adapt by splitting N application using SD or simply by changing

the level of N fertilizer based on previously realized weather conditions. Furthermore, such

adaptations vary at the farm and field level. Our analysis addresses this potential endogeneity

by utilizing individual field-level experimental data, as the experiment design with random

N application rates does not allow for adaptive N application based on weather conditions

in the previous or current growing season.

This article also presents new evidence on the effects of excessive rainfall and N fer-

tilization on potential N leaching into water streams. Although the impact of N leaching

on water quality is well-established in the literature (Almaraz et al., 2018; Bylund et al.,

2017; Rabotyagov et al., 2014),3 identifying the causal relationship between N application

and water pollution using aggregated data is difficult because of the large heterogeneity in

the link between N concentrations in watersheds and upstream non-point pollution sources

(Hendricks et al., 2014; Skidmore et al., 2023; Metaxoglou and Smith, 2022). For example,

Paudel and Crago (2021) matches county-level fertilizer use with a nutrient concentration in

the watershed using 55 years of data for the entire United States and estimates a positive re-

lationship between fertilization and water pollution. However aggregating data at the county

level over heterogeneous fields could lead to insignificant precipitation effects on nitrate con-

2See Dhakal and Lange (2021) for a comprehensive review of the literature on crop yield response
functions.

3Specifically, N leaching may cause eutrophication and contamination of drinking water, creating
potential health risks to humans and damages to ecological systems. See the Environmental Protec-
tion Agency (EPA) website for detailed information about the environmental damages of N leaching:
https://www.epa.gov/nutrientpollution/effects.
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centration in water streams due to the potential of offsetting effects (Jaynes et al. 2001;

Randall and Goss 2008; Li et al. 2022; Liu et al. (2022)). To overcome this challenge, we

use individual field-level N loss measures developed by agronomists, the late-season CSNT,

and provide new evidence for the effects of N management practices and excessive rainfall

on the probability of N leaching. 4

Lastly, our analysis contributes to the assessment of weather-resilient N management

strategies. Policymakers in the United States have been promoting N management practices

in agriculture to address environmental damages (Ribaudo et al., 2011). Previous studies use

agronomic simulation models to examine the effect of alternative N management practices

on crop yields and N leaching (De Laporte et al., 2021; Mérel et al., 2014). More recent

economics studies use an approach similar to ours, which considers the social costs of N

fertilization. For example, Gourevitch et al. (2018) estimate the social cost of N based on

the impacts of N on air and water pollution, and then calculate the socially optimal nitrogen

application rate at the county level in Minnesota. Our analysis differs by also accounting for

the impact of excessive rainfall on the effectiveness of farming practices using the concept of

weather resilience. We consider the double effect of abnormal weather on N productivity and

on the potential for N leaching and propose a simple framework to evaluate N management

practices when farmers face large weather uncertainty.

The article is organized as follows. Section 2 summarizes the agronomic background for

excessive rainfall and N leaching. Section 3 builds a simple model for efficient N management

under excessive rainfall. Section 4 describes the ISA experiments and provides descriptive

statistics. Section 5 reports our empirical results. Section 6 simulates our model to assess the

changes in the efficient level of N management under excessive rainfall. Section 7 summarizes

our robustness analysis. Section 8 concludes and provides implications of our results and the

next steps for the analysis.

2 Excessive Rainfall and Nitrogen Leaching

2.1 Excessive Rainfall Trend in Iowa

Climate change will likely increase average annual precipitation and the intensity of local

rainfall in North America (Christensen et al. (2007), Prein et al. (2017a), 2017b). In the

northern part of the continent, the increase in average annual precipitation may reach 20%.

Figure 1 shows the early-season precipitation anomalies for Iowa from 1900 to 2020 (NOAA

(2022)). The early season, which comprises May, June, and July, is important because of its

influence on N leaching from agriculture. A precipitation anomaly is defined as a deviation

from the historical average of 318 mm (1901–2000).

4Alternatively, agronomists uses individual field-level nutrient runoff data measured by the edge-of-field
monitoring (Daniels et al., 2018).
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Figure 1: Early-season precipitation anomalies in Iowa.

Note: An early-season precipitation anomaly is a deviation from the 318 mm 100-year average (1901–2020)
precipitation for the months of May, June, and July. Source: National Oceanic and Atmospheric Adminis-
tration (NOAA (2022).

Figure 1 illustrates two trends. The first trend is an increase in average precipitation

as reflected in the higher frequency of positive anomalies after 1990. Average precipitation

U.S. Midwest increased by by 9% since 1991 relative to the 1901–1960 average (Walsh et al.

(2014)). The second trend is an increase in the variance and magnitude of excessive precipi-

tation. The two largest anomalies happened in 1993 and 2010 and were 3-sigma precipitation

events (i.e., events categorized as three standard deviations from the mean). The precipi-

tation event in 1993 totaled 610 mm, almost twice the average, while that in 2020 reached

567 mm. Before 1990, the probability of a year with excessive rainfall above one standard

deviation from the average was just 10%. Since 1990, the probability of a 1-sigma precipi-

tation anomaly has increased to 25%. Furthermore, this large variability in precipitation at

the state level likely underestimates the variability faced by farmers at the field level.

2.2 Nitrogen Cycle in Corn Production and Water Pollution

Figure 2 shows a simplified version of the N cycle in corn production and illustrates the rela-

tionship among N fertilization, rainfall, and the residual nitrate concentration in cornstalks

at the end of the season. There are two sources of N: N from the soil (Ns) and N fertilizers

(Nf). Farmers typically use ammonium nitrate, urea, or manure for N fertilization in corn

production. The timing of N application may vary. Normally, farmers apply N in the late

fall after the soil temperature drops below 50 ◦F, the spring before the planting season, or
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the early summer using SD application. 5 Soil N is derived from the mineralization of soil

organic matter or nitrification, a biological process of the oxidation of ammonia to nitrite.

The amount of N in the soil varies under different management practices such as the choice

of crop rotation.

Figure 2: Simplified nitrogen cycle in corn production.

A proportion of the N supplied by the soil and N fertilizers are used by the plant to

produce the corn kernels, Ny, and proportions are lost into the atmosphere, Na, and into

water streams, Nw. If the supply of N is above the N used by the plant and lost into the

environment, there will be residual N in the cornstalk, Nr. The amount of N leached into

water is the difference between the two sources of N and its other uses:

Nw = Ns +Nf −Ny −Na −Nr (1)

2.3 Excessive Rainfall and Residual Nitrogen

Excessive rainfall promotes leaching and the denitrification of nitrate N in the soil (Jaynes

et al. 2001; Randall and Goss 2008; Li et al. 2022). Nitrate is a negatively charged ion that

is repelled from negatively charged soil clay particles and can freely move with water in the

soil solution. Soil moisture is important for the movement of nitrate ions to plant roots for

absorption. However, a higher soil moisture after excessive rainfall can cause preferential

or excessive water flow through the soil profile and leach a significant amount of nitrate

below the plant rooting zone. Nitrate leaching can reach 70 lbs of N per acre because of

the extensive tile drainage systems installed to remove excessive water in production fields.

5The SD application is the process of N fertilization between rows of corn during the early stages of plant
growth.

7



Agronomists find that N loads from tile drainage systems strongly correlate with the tile

water discharge, which is directly impacted by the amount of rainfall (Lawlor et al. 2008).

Agronomists can assess the probability of N leaching at the end of the crop season using

measures of residual N such as the N content in the soil and in cornstalks. A 12-year survey

of farmers’ fields in Iowa shows that early-season rainfall increased nitrate concentration in

rivers and subsequently decreased nitrate supply to the corn crop, measured using the late-

spring soil nitrate and late-season CSNTs (Balkcom et al. 2003). A low concentration of N

in the cornstalk after the growing season suggests an inadequate supply of N for the plant.

This deficiency could result from the underapplication of N fertilizers and excess losses of N

into the environment. In normal rainfall conditions, the concentration of N in the cornstalk

at the end of the season should be in the optimal range (250–2,000 ppm) considering that

farmers in Iowa are advised to apply near or above optimal N fertilizer rates (Sawyer and

Mallarino 2018). 6 An optimal late-season cornstalk N concentration indicates that the N

from the soil and fertilizers has supplied the plant’s needs.

In excessive rainfall conditions, more N will be lost through leaching, leading to a lower

residual cornstalk concentration at the end of the season. Agronomists test this negative

relationship among cornstalk N concentrations, N losses, and water pollution using field

surveys in Iowa (Anderson and Kyveryga 2016; Balkcom et al. 2003). They find low nitrate

(NO3 N) loads in rivers (below 50 mgd1) with optimal or higher cornstalk concentrations,

but high nitrate loads in rivers (100–350 mgd1) with deficient cornstalk N concentrations.

We use the relationship between cornstalk N concentration and water pollution to estimate

a damage function.

3 Theory: Efficient N Use under Excessive Rainfall

In this section, we propose a simple framework for assessing the impact of excessive rainfall

on N use in crop production. The novelty of the proposed framework is the combination in

one simple model of the effect of excessive rainfall on both the marginal productivity of N

application and the probability of leaching. We solve the nitrogen optimization problems of

the farmer and social planner when there is a probability of excessive rainfall (p). The main

result is a simple expression for the level of inefficient N use, namely, the difference between

the private and social optimal levels of N fertilization. We use this result to assess potential

adaptation and mitigation strategies for N application under excessive rainfall. The three

6Iowa farmers previously estimated the N fertilizer needs for their corn crops using a “yield goal formula.”
The premise was that fertilizer needs are proportional to corn yields. Specifically, fertilizer rates were
calculated by multiplying historical corn productivity by average N fertilizer use efficiency (e.g., 1.0–1.2 lbs
of N for each bushel of corn yield) minus N credits from animal manure or previous soybean or alfalfa crops
(Morris et al. 2018). While this yield goal formula is simple for farmers to use, it ignores N losses and
the effect of corn and fertilizer prices on the optimal N rate. During the past decade, university extension
agronomists across the Midwest have started promoting a more advanced system of N recommendations
called the “maximum return to nitrogen” (see http://cnrc.agron.iastate.edu/). This new system uses the
results of small-plot N response trials to estimate the economically optimal N rates at the regional, state, or
sub-state level considering the mode of crop rotation and prices (Sawyer and Nafziger 2005).
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key components of our framework are a production function, a damage function, and the

representation of extreme rainfall.

Production Function. The production function is a quadratic function that links

corn yield and N use. We rearrange the quadratic function in the form of a target input

model commonly used in the development economics literature to model uncertainty in input

use (Foster and Rosenzweig 1995). The corn yield (Y ) is the sum of the maximum potential

yield (Ŷ ) and a loss function that penalizes the under- or overapplication of N:

Y = Ŷ − a(N̂ −N)2 (2)

The optimal level of N application (N̂) that produces the maximum yield (Ŷ ) is unknown

and likely varies with soil type, climate, and management practices. We assume that the

farmer knows the mean value of N̂ based on guidance from extension agents and input

manufactures as well as the farmer’s own experience. The positive parameter a is a yield

penalty, which we assume varies with the soil and weather conditions. A higher yield penalty

means that errors in N application lead to higher yield losses.

Damage Function. We use a simple threshold damage function for the environmental

impact of N leaching. The key assumption is the existence of a threshold level of N application

above which there is a significant probability of damaging leaching. Under this threshold

level, the plant can absorb much of the N during its growth process and no residual N becomes

available to cause significant leaching. 7 The expected damage (E[D]) is the probability of

damaging leaching (Π) multiplied by the excess amount of N multiplied by SCN:

E[D] = Π(N − N̂)SCN. (3)

The damage function in equation (3) is defined only when there is excess N and the prob-

ability of damaging leaching. Π captures the likelihood of the excessive application of N.

Once the nitrate reaches the damaging level, SCN is the economic damage of an additional

unit of N. 8

Excessive Rainfall. The final component of our conceptual framework is modeling

excessive rainfall. We define two rainfall states: normal rainfall (R for the regular state)

with probability 1 − p and extreme rainfall (W for the wet state) with probability p. We

allow the parameters of the production and damage functions to differ by state. The regular

rainfall state is thus characterized by one set of parameters (ŶR, N̂R, aR, ΠR ) ), whereas the

wet state’s parameters are another set (ŶW , N̂W , aW , ΠW ). We solve the optimal N rates

7The production functions can be extended by adding other inputs and the damage function can be
extended by modeling damage as a nonlinear function of N application. We leave these extensions to future
work. In this article, we instead focus on adding excessive rainfall into the damage and production functions.

8In our empirical analysis, we use the SCN estimates from the extensive literature on nitrate pollution.
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of the farmer and social planner as a function of the probability of extreme rainfall and the

parameters for each state of production.

3.1 The Farmer’s Nitrogen Optimization Problem

The farmer will choose the optimal N application rate (N∗) to maximize their profits consid-

ering the two possible states of production (normal and wet). For simplicity, we normalize

the price of corn to 1 and assume that the cost of N is 0 in our theoretical framework. We

use different combinations of output and input prices in our simulations.

The farmer’s optimization problem is:

Max
N

(1− p)[ŶR − aR(N̂R −N)2] + p[ŶW − aW (N̂W −N)2].

The farmer’s optimal N application rate is:

N∗ =
(1− p)N̂R + αpN̂W

1 + (α− 1)p
(4)

where the parameter α captures the relative magnitude of the yield penalty under ab-

normal and normal rainfall.

Definition 1: Yield Penalty Growth Factor (α). α is the ratio of the yield

penalty in the wet and normal states, α = aW
aR

. It captures the change in the yield penalty as

a result of excessive rainfall. As the yield penalty captures the curvature of the production

function, an α above 1 implies an increase in the marginal product of N.

If only the normal rainfall state existed (p = 0), the farmer’s optimal N application rate

would be N̂ . Given the uncertainty about the rainfall state, the optimal rate is a weighted

average between the yield-maximizing N rates in the two rainfall states. The optimal N rate

N∗ is above N̂R as long as N̂W is above N̂R. For example, if the farmer believes that it is

optimal to apply more N in seasons with excessive rainfall to protect their yield, N̂W > N̂R.

In this case, N use tends to increase as uncertainty about the rainfall state rises (Babcock

1992).

3.2 The Social Planner’s Nitrogen Optimization Problem

The social planner chooses the optimal N application rate to maximize a social welfare func-

tion that includes profits and environmental benefits. When the rainfall state is uncertain,

the social planner maximizes the expected profit, net of the environmental damage.
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The social planner’s optimization problem is:

Max
N

(1−p)[ŶR−aR(N̂R−N)2−ΠR(N−N̂R)S̃CN ]+p[ŶW−aW (N̂W−N)2−ΠW (N−N̂W )S̃CN ].

The social planner’s optimal N rate is:

N∗∗ = N∗ − [(1− p)ΠR + pΠW ]

2aR(1 + (α− 1)p)
S̃CN

The social planner’s optimal N rate is always below the farmer’s optimal rate because

of the expected environmental damage from N use. To simplify the equations, we normalize

the corn price to 1 and express the SCN relative to the price of corn, S̃CN = SCN/P corn.

β is the relative magnitude of the probability of leaching under wet conditions.

Definition 2: Probability of Leaching Growth Factor (β). β is the ratio of the

probability of the leaching penalty in the wet and normal states, β = ΠW

ΠR
. It captures the

change in the probability of leaching as a result of excessive rainfall.

We can rearrange the social planner’s optimal N solution to derive an equation for the

difference between the optimal N rates of the farmer and social planner (N∗ − N∗∗), ∆. ∆

captures the inefficient amount of N application when the rainfall state is uncertain:

∆ = N∗ −N∗∗ = [
1 + (β − 1)p

1 + (α− 1)p
]
ΠR

2aR
S̃CN (5)

Equation (5), the main theoretical result from our analysis, provides a simple framework

for assessing the different drivers of inefficient N application. If the probability of extreme

rainfall were zero (p = 0), the difference between the optimal rates of the social planner and

farmer would be ∆ = ΠR

2aR
S̃CN , namely, the expected MD adjusted by the yield penalty. In

the general case, with the presence of the two rainfall states, the difference between optimal

N rates of the farmer and social planner depends on the probability of extreme rainfall as

well as on the extent to which the yield penalty and probability of leaching change in the

extreme rainfall state. We summarize our analysis of the drivers and potential mitigating

factors of inefficient N fertilization in the following four theoretical implications.

Implication 1. Extreme rainfall increases the expected environmental damage from N

fertilization. Implication 1 is a direct result from the damage function in equation (3) under

the assumption that the probability of leaching increases with extreme rainfall, β > 1.

Implication 2. The effect of extreme rainfall on efficient N use depends on the relative

change in the yield penalty and probability of leaching, β − α. The derivative of ∆ with

respect to the probability of extreme rainfall is ∂∆
∂p

= (β−α) (ΠR/2aR)S̃CN
(1+αp)2

. An increase in the
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frequency of extreme rainfall leads to higher inefficiency in N use if β > α. A larger increase

in the probability of leaching, larger β, increases the expected environmental damage and

overapplication of N (N∗ > N∗∗).

Implication 3. Extreme rainfall may increase the cost of controlling N pollution. If

α > β > 1, the expected damage increases with extreme rainfall, whereas the inefficiency

in N use decreases. The explanation is that a larger increase in the yield penalty raises the

cost of reducing N application. Farmers would then have an incentive to “insure” against

yield losses by overapplying N.

Implication 4. There are two channels for controlling N pollution under extreme rain-

fall: reducing the likelihood of leaching (reducing β) and reducing the yield penalty (reducing

α). One example of a beta-reducing strategy is the adoption of cover crops to prevent nitrate

leaching. Examples of alpha-reducing strategies are the adoption of seed technologies more

resistant to changes in rainfall and the optimization of the timing and form of N fertilization.

The choice of the optimal mitigation strategy should consider the relative costs and benefits

of all strategies.

4 Field Experiments in Iowa

We use experimental data from two ISA experiments to estimate the parameters α and β. We

estimate a production function using ISA’s five-rate on-farm strip experiments to calculate

α. To calculate β, we estimate an N deficiency probability function using on-farm trials with

late-season CSNTs. We describe these two experiments in the next two subsections.

4.1 Five-rate On-farm Experiments

The ISA ran on-farm strip trial experiments to study the effect of N fertilization on corn

yields in 36 fields across Iowa from 2017 to 2021 (ISA, 2021). Figure 3 shows the locations

of the experiments. All the fields are located in private farms that of ISA members. While

most of the fields were chosen randomly, ISA agronomists contacted participants in previous

experiments to conduct N trials in some cases. The experimental areas adopted similar crop

management practices (same corn hybrid seed, tillage, weed management, disease control,

and pest management) except for the N fertilizer treatments.

ISA applied five levels of N (80, 110, 140, 170, and 200 lbs N/acre) for most of the

experiments with C-S and five levels of N (110, 140, 170, 200, and 230 lbs N/acre) for

the experiments with C-C. The experimental unit was a field-long strip, ranging from 800 to

1,300 feet. The width of the strip, 30 to 90 feet, was chosen to match the farmers’ fertilization

equipment. Each experiment had three to five replications or blocks to capture within-field

variability. A block or replication is defined as a group of five strips in sequence. Figure 3

shows the experimental design. Each color represents a different N rate. The field in figure
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3 has 15 strips grouped into three blocks.

Figure 3: Experiment design: Five-rate on-farm strip trials.

Note: The left-hand side is a map of Iowa with the location of each of the 36 fields used in the Iowa Soybean
Association’s five-rate on-farm strip trials. The colors represent years: green is 2017, purple is 2018, red is
2019, blue is 2020, and yellow is 2021. The right-hand side shows the experiment design for one field. The
experimental unit is a field-long strip in which each color represents a different nitrogen rate. The field in
figure 3 has 15 strips grouped into three blocks.

The dataset for the five-rate experiments has 36 fields, 126 blocks, and 586 strips. The

ISA measured corn yields using combine harvesters equipped with yield monitoring and

positional navigation systems. Each strip had one yield observation measured in bu/acre

at the standard 13.5% corn moisture level. Kyveryga et al. (2018) describes the protocols

developed by ISA to run the experiments. The farmers also reported their standard N

rate, the crop rotation used, and the timing and form of N fertilization. ISA integrated the

experimental data with information on the soil characteristics (organic matter, soil drainage

quality, and corn suitability rating – CSR) and weather data (precipitation and the number

of growing degree days). The data on soil characteristics were sourced from the Soil Survey

Geographic Database (SSURGO) (NRCS-USDA, 2022) and the weather data were gathered

from NASA Daymet (Thornton et al., 2022) and Iowa Environmental Mesonet (Herzmann

et al., 2004).

4.2 Two-rate On-farm Experiments with Cornstalk Nitrate Tests

The second ISA experiment was a two-rate on-farm strip trial with CSNTs. The experi-

mental unit was a field-long strip, as in the five-rate experiment. However, in the two-rate

experiment, each block contained two strips: a control strip with the farmer’s normal N rate

and a treatment strip either with the normal rate minus 50 lbs N/acre or the normal rate

plus 50 lbs N/acre. 9 The strips were randomly assigned to the treatment or control groups.

As before, the experimental design controlled for management practices such as seed type,

9The rates of the control and normal treatments depend on the farmer’s information on expected weather
and weather-related risk, previous crops, soil characteristics, application form and timing, input prices, and
expected output price.
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tillage, weed management, disease control, and pest management.

Figure 4 shows the locations of the fields and experimental design for one field. ISA

conducted the two-rate experiments in 107 fields in Iowa from 2007 to 2010 10. The right-hand

side of figure 4 shows the strips in different tones of green and boxes indicating the locations

of the CSNTs. The final dataset has 1,915 observations and also includes information about

the soil characteristics, weather, and the timing and form of N application.

Figure 4: Experiment design: Two-rate trials with cornstalk nitrate tests.

Note: The left-hand side shows the location of each of the 107 fields used in the Iowa Soybean Association’s
two-rate on-farm trials with cornstalk nitrate tests. The colors in the map represent years: green is 2007,
purple is 2008, red is 2009, and blue is 2010. The left-hand side shows the experiment design for one field.
The experimental unit is a field-long strip and the different gradients of green represent control and treatment
strips. The field in figure 3 has three blocks with three strips per block.

The advantage of the two-rate experiment is the measurement of nitrate concentration

in the cornstalk at the end of the season. We use the cornstalk N concentration to model

the probability of N deficiency. The CSNT is an indicator of the plant N sufficiency—the

final balance between N supply and demand for the plant. When tested, plants that fell

into a low stalk nitrate category had a lower supply of N from both fertilizers and the soil,

whereas plants that fell into the excessive category likely had a higher supply of N. Hence,

the oversupply of N to the plant did not produce a yield response but did create residual N

in the stalk.

ISA used the CSNT in each trial in the early fall before the harvest to estimate the corn

N status (demand for N relative to supply). ISA selected six or nine sampling areas for the

CSNT for each block of the control and treatment strips in a field. The small boxes in figure

5 show the sampled locations. In each sampling area, six-inch stalk segments were cut from

10 plants. The stalk nitrate concentration values were classified as low for below 250 ppm

(N demand is above supply and plants likely respond to additional N applications), optimal

for 250–2,000 ppm (N demand equals supply), and excessive for above 2,000 ppm (N supply

10The experiment spans from 2006 to 2014, but the CSNT was implemented only during the period from
2007 to 2010. For the estimation of the production function we use the entire period from 2006 to 2014.
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is above demand). Each field had 12 or 18 samples of stalk nitrate.

Figure 5: Guided stalk nitrate survey.

Note: The left-hand side shows a map of Iowa with the location of each of the fields that were surveyed in the
Guided Stalk Nitrate Survey (683 fields in 2006 and 824 in 2007). The right-hand side shows the sampling
locations for the cornstalk nitrate tests in one field. The sampling locations are identified with numbers. In
each field, three sampling areas were selected in three predominant soil types to represent the average corn
nitrate status (locations 1, 2, and 3). Sample 4 was selected as target deficiency area for this field.

Finally, we use a complementary survey of CSNTs in Iowa to investigate the effect of N

management practices on N deficiency and the probability of environmental damage, namely,

the GSS. The GSS, which was run by ISA, used CSNTs to examine 3,917 fields from 2006

to 2016 (Laurent et al. 2023). Figure 5 shows the locations of the fields tested and sampling

areas in one field. In each field, three sampling areas with three predominant soil types were

selected to represent the average corn nitrate status. The sampling locations are numbered

in figure 5. The survey dataset had 13,715 observations. The advantage of GSS is its broader

coverage of management practices—farmers provided information about field management

(previous crop and tillage) and N management (fertilizer and manure form, rate, timing, and

placement). However, N rates were not randomized in GSS.

4.3 Excessive Rainfall Variation

Table 1 reports the summary statistics of the two ISA experiments by rainfall percentile.

The early-season rainfall variable captures the total precipitation for May, June, and July.

The fields in our sample show significant spatial and temporal variation in rainfall. The

25-year average early-season rainfall is approximately 375 mm and the 25-year standard

deviation is about 120 mm. We define our preferred measure of excessive rainfall at the

field level using the 80th percentile of early-season precipitation for the 25-year period from

1995 to 2020. We also test alternative measures of excessive rainfall using the 65th and 90th

percentiles as well as the absolute threshold measures. As the randomization of excessive

rainfall across on-farm trials covering a large region such as Iowa is impractical, we instead

exploit the spatial and temporal variation in excessive rainfall in the two ISA experiments to

estimate the production and damage functions. The five-rate and two-rate experiments have

five fields and 79 strips and 40 fields and 720 samples with excessive rainfall, respectively.
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In both experiments, the rainfall in wet fields is more than 1 standard deviation above the

normal rainfall level. In dry fields, the rainfall is more than 1 standard deviation below the

normal rainfall level. These results confirm that the occurrence of wet and dry weather is

an abnormality in these fields.

Table 1 also shows the sample balance across the rainfall percentiles. The sample is

balanced for farm characteristics and outcomes but not for N application practices and

years. The CSR and corn yields are similar in wet and normal fields. The yields in wet

fields are slightly lower (higher) in the five-rate (two-rate) experiment. Furthermore, the

crop rotation is predominantly soybean/corn across the rainfall percentiles. The percentage

of N application during the fall in wet fields is higher than that in normal fields. UAN is

the preferred form of N in the five-rate experiment and AA is the most used N form in

the two-rate experiment. In our empirical analysis and simulations, we use the data from

the two ISA experiments and the larger GSS survey dataset to estimate separate models

by the timing and form of N application. The heterogeneity in the production and damage

functions by timing and form is itself insightful about possible mitigation strategies for N

leaching. We also use this heterogeneity analysis to assess whether the imbalanced sample

affects our main results.

The randomization of N rates differs in the two experiments. In the five-rate experiment,

ISA used five arbitrary N rates across the fields; and, by contrast, in the two-rate experiment,

ISA added and subtracted 50 lbs from the farmer’s N rate. The experimental N rate is well

balanced in the five-rate experiment across the rainfall percentiles. However, in the two-rate

experiment, the average N rate is 190 lbs/acre in wet fields and 156 lbs/acre in normal fields.

This difference is due to the farmer’s higher N rate in wet fields in the two-rate experiment.

Interestingly, the farmer’s rate in the five-rate experiment is lower in wet fields, suggesting

that no systematic overapplication of N in areas with higher rainfall occurs. We use the five-

rate experimental dataset to estimate the production function and the two-rate experimental

dataset to estimate the damage function. Moreover, we use field fixed-effects to control for

unobserved field characteristics that may be correlated with the farmer’s N rate to mitigate

the potential for endogeneity in this rate in the two-rate experiment.
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Table 1: Summary Statistics by Rainfall Percentile

Five-rate experiment Two-rate experiment

Normal Dry Wet Normal Dry Wet

Precipitation (mm) 370 241 476 337 264 570

(8) (12) (0) (9) (22) (5)

25-year avg. precipitation 378 384 368 375 374 359

(4) (9) (0) (3) (11) (2)

25-year std. precipitation 118 123 110 134 121 124

(2) (4) (0) (3) (7) (1)

Threshold p80 precipitation 456 454 422 454 451 439

(8) (13) (0) (6) (19) (3)

Yield (bu/acre) 204 207 185 182 188 190

(21) (18) (21) (17) (16) (13)

N rate - experiment (lb/acre) 145 151 147 156 150 191

(42) (42) (40) (28) (25) (30)

N rate - farmer (lb/acre) 183 163 168 153 151 173

(37) (28) (13) (8) (20) (5)

Corn suitability rating 74 84 79 78 82 80

(5) (5) (1) (4) (7) (3)

CSNT N concentration (ppm) 732 1,096 735

(931) (1,055) (792)

Stalk with N deficiency (%) 0.56 0.47 0.65

Soybean-corn rotation (%) 69 66 80 74 65 69

Timing of N application (%)

Fall 5 19 41 55 71 78

Spring 48 41 25 38 29 5

Side-dressing 41 27 0 7 0 18

Form of N application (%)

Urea ammonium nitrate 55 38 25 14 25 18

Anhydrous ammonia 39 49 15 51 66 38

Manure 35 9 45

Experiment year (%)

2007 54 100 0

2008 0 0 43

2009 45 0 3

2010 2 0 55

2017 21 47 0

2018 32 6 66

2019 22 0 19

2020 25 25 15

2021 0 22 0

Number of fields 17 14 5 67 23 40

Number of strips / samples 268 239 79 1,195 390 720

Note: Table 1 presents summary statistics by rainfall percentile: dry (<p20), normal (p20 -

p80), and wet (>p80). CSNT=cornstalk nitrate test. Standard deviations are in parenthesis.
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5 Empirical Results

5.1 Production function

We estimate a quadratic production function to recover the parameters of the target input

model (Equation 2):

Ys = θ0 + θ1Ns + θ2N
2
s + θ3I(wet)s + θ4I(wet)s ·Ns + θ5I(wet)s ·N2

s + λX + δfb + es (6)

where Ys is the observed corn yield; Ns is the experimental N rate in strip s; and, I(wet)

is a dummy variable equal to 1 if we observe excessive rainfall. The parameters of interest

are the yield penalty under normal weather, −θ2, the yield penalty under excessive rainfall,

−θ2− θ5, and alpha, θ2+θ5
θ2

. X is a set of control variables and includes a dummy variable for

dry weather, defined as precipitation under the 20th percentile, and its interaction with the

N rate. The reference weather category is normal weather, between the 20th and the 80th

percentile. δfb are the field and block fixed-effects. There are 36 fields and 126 blocks in our

sample. The field fixed-effects capture unique field attributes such as farm characteristics

and common production inputs and management practices. The block fixed-effects capture

sub-field soil and climate features. We estimate the production function in equation 6 using

the ISA five-rate experimental data.

We find that N becomes significantly more productive with excessive rainfall. Table

2 shows our results for the production function. Columns 1–3 report results for excessive

rainfall, defined as early-season precipitation above the 65th percentile (column 1), the 80th

percentile (column 2), and the 90th percentile (column 3). 11 The unit of measurement

for N rate in our sample is 25 lbs and the marginal product of N under normal weather

is 16.34–1.80N (column 2). 12 Increasing the N rate from 150 lbs/acre to 175 lbs/acre

increases corn yield by 5.5 bu/acre in normal weather, which is approximately a 3% increase

in yield. A similar increase in the N rate with excessive rainfall would increase corn yield

by 10 bu/acre (approximately 6%). The marginal product of N with excessive rainfall is

36.31–4.37N (column 2). In the more extreme case of excessive rainfall, defined as early-

season rainfall above the 90th percentile (column 3), a similar increase of N application

increases corn yield by 15 bu/acre or 9%. 13 These results suggest a strong complementarity

between N and excessive early season rainfall.

11We compute all percentiles of rainfall at the field level. We report additional results for alternative
definitions of excessive rainfall in the robustness section.

12With a quadratic production function, the marginal product of N is θ1 + 2θ2Ns under normal weather,
and (θ1 + θ4) + 2(θ2 + θ5)Ns under excessive rainfall.

13The average corn yield in the United States for the 2020/2021 and 2021/2022 seasons was 171.4 and
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Table 2: Corn Production Function with Excessive Rainfall

Dependent variable is corn yield (bu/acre)

(1) (2) (3)

N rate 13.34*** 16.34*** 17.47***

(3.373) (2.986) (2.846)

N rate squared -0.766** -0.902*** -0.948***

(0.301) (0.260) (0.244)

N rate x I(wet p65) 15.55***

(5.501)

N rate squared x I(wet p65) -0.888*

(0.465)

N rate x I(wet p80) 19.97***

(7.421)

N rate squared x I(wet p80) -1.285**

(0.603)

N rate x I(wet p90) 33.54***

(6.538)

N rate squared x I(wet p90) -2.207***

(0.501)

N rate x I(dry) 3.723 0.721 -0.403

(4.702) (4.432) (4.339)

N rate squared x I(dry) -0.176 -0.0413 0.0046

(0.406) (0.376) (0.365)

Constant 172.4*** 172.4*** 172.4***

(9.327) (9.327) (9.327)

Fixed effects Field-block Field-block Field-block

Yield penalty:

Normal weather (aR) 0.766** 0.902*** 0.948***

(0.301) (0.260) (0.244)

Wet weather (aW ) 1.654*** 2.187*** 3.155***

(0.354) (0.544) (0.438)

α (wet/normal: aW/aR) 2.158** 2.425*** 3.329***

(0.966) (0.924) (0.972)

Observations (strips) 586 586 586

R2 0.957 0.954 0.954

Note: Table 2 shows the results for a fixed-effects production function of corn using the
experimental data with five rates. There are 36 fields and 126 blocks in our sample.
The unit of the nitrogen rate variable is 25 lbs. The variables I(wet) and I(dry) are
dummy variables equal to 1 if the weather was wet or normal. The regressions also
include an interaction between a dummy for rotation and nitrogen rate. All standard
errors are clustered at the block level. *, **, and *** denote significance at the 10%,
5%, and 1% level, respectively.
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The yield penalty also doubles with excessive rainfall. We report estimates for the

yield penalty by the rainfall state and estimates for α in aable 2. The yield penalty under

normal weather is approximately 0.9, implying that a 25 lbs/acre error in N application

would reduce corn yield by close to 1 bu/acre, or 0.6%. The yield penalty increases to 2.19

with excessive rainfall (column 2) while yield becomes more sensitive to the N rate. The

same 25 lbs/acre error in N use would result in a yield loss of about 1.2% with excessive

rainfall. Furthermore, in the case of extreme rainfall, the yield penalty more than triples to

3.155 (column 3) and a 25 lbs/acre error would reduce yield by approximately 1.85%. 14 A

larger yield penalty with excessive rainfall is consistent with overapplication of N. Farmers

anticipating heavier rains may “insure” against potential yield loss by applying additional N

upfront. A higher yield penalty means that errors in N application rates are more costly with

extreme rainfall. However, excessive rainfall also affects potential environmental damages

caused by N fertilization. We estimate this effect in the following subsection.

5.2 Damage function

Ideally, we would link N leaching in a water stream to the original corn field and then

estimate the environmental damage for each field. Unfortunately, such detailed linkage

is rarely available outside small experiments. However, agronomists use such experiments

to establish relationships between water pollution and field N applications. For example,

agronomists show that the level of residual N in the soil or at the corn stalk at the end of

the season negatively correlates to the amount of N leached into water streams. Specifically,

when the N concentration in the cornstalks at the end of the season is lower than 2 gN/kg

(N deficiency), the annual mean NO3 − N load in rivers increases significantly. We use

the relationship between N deficiency in cornstalk and mean N load in rivers to estimate a

damage function for N fertilization.

We can express the probability of N leaching into water as the probability of deficient

N at the end of the season, small Nr, after we control for the effect of the other components

within the N balance. Most importantly, the amount of N fertilizer applied will affect both

leached N and residual N. We use ISA experimental dataset with randomized N application

to control for N fertilization. Our regression model replicates an ideal experiment where we

“fix” the amount of N fertilization, control for the effects of weather and soil characteristics,

and allow only for variation in rainfall abnormality. We assume that, once we control for

other potential N sources and uses, the conditional probability of N deficiency is a good

177 bushels per acre respectively (WASDE, 2022).
14Graphically, the yield penalty captures the curvature of the production function. The production

function is thus much flatter in the normal rainfall case than in the excessive or extreme rainfall cases.
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approximation for the probability of N leaching into water streams:

Pr(Nw > 0|Nf , Z) ≈ Pr(Nr < Nr|Nf , Z) = Λ(λ0 + λ1Nf + λ2I(wet) + λZ) (7)

where Nr is the threshold defined by agronomists for N deficiency; 2 gN/kg, λ is a logis-

tic probability model for the probability of N deficiency; and, Z is a set of weather and

soil attributes that includes the number of degree days during the growing season, mean

precipitation, the standard deviation of precipitation, soil drainage, soil suitability for corn

production, and a dummy variable for dry weather (rainfall < p20). These attributes corre-

late with plant growth and N losses. The parameter of interest is λ2, which is the effect of

excessive rainfall on the probability of N deficiency. We use our estimates for λ2 to compute

β, the ratio of the probability of leaching under normal and excessive rainfall. 15

We find that excessive rainfall significantly increases the N deficiency in cornstalks,

indicating a large effect on the probability of N leaching. Table 3 shows our estimates for a

logit model for N deficiency, where columns 1, 2, and 3 report estimates for three definitions

of excessive rainfall: (a) above the 65th percentile (column 1); (b) above the 80th percentile

(column 2); and, (c) and above the 90th percentile (column 3). The effect of excessive rainfall

is significant and increases with the severity of extreme rainfall. The predicted probability

of N deficiency with normal rainfall is 0.45 and increases to 0.63 and 0.64 with rainfall above

the 65th and 80th percentiles, respectively (columns 1 and 2). With excessive rainfall at the

90th percentile, the probability of deficiency reaches 0.73. All predicted probabilities are

estimated at the mean value of each explanatory variable.

The effect of each control variable is consistent with the N balance equation and an in-

crease in the N rate reduces N deficiency. Higher soil suitability to corn production increases

N deficiency, likely because more productive soils have higher yield potential and therefore

higher N demand for plant growth. The effects of soil drainage, mean precipitation, number

of degree days, and soil organic matter on N deficiency are not statistically significant. The

effect of rainfall variability is positive and large, consistent with the agronomic arguments

for the relationship between rainfall and N leaching. We also estimate logit models with

county and landform fixed-effects and arrive at similar results.

Finally, we compute β, the relative increase in the risk of N deficiency and leaching with

excessive rainfall or the risk ratio in probability models. The risk of N deficiency increases by

41% and 59% with excessive rainfall (columns 1 and 3), which suggests a significant increase

15More generally we could define Pr(Nw > 0|Nf , Z) = KPr(Nr < Nr|Nf , Z) but for the estimation of
beta only the relative measure of the probability under wet and normal rainfall conditions matters. The
constant K would not affect the relative probability
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Table 3: Probability of Nitrogen Deficiency with Excessive Rainfall

Logit model for N stalk deficiency

(1) (2) (3)

I(wet p65) 0.839***

(0.309)

I(wet p80) 0.871***

(0.307)

I(wet p90) 1.292***

(0.355)

N rate -0.0111*** -0.0111*** -0.0117***

(0.00248) (0.00246) (0.00262)

Corn suitability rating (CSR) 0.0264* 0.0266* 0.0309**

(0.0147) (0.0146) (0.0150)

Drainage -0.226 -0.256 -0.234

(0.302) (0.300) (0.299)

Average precipitation -0.00690 -0.00683 -0.0106

(0.0116) (0.0116) (0.0110)

Standard deviation precipitation 0.0328** 0.0329** 0.0340**

(0.0151) (0.0151) (0.0155)

I(dry) -0.0499 -0.0443 -0.0835

(0.490) (0.490) (0.475)

July GDD 0.000384 0.000406 4.76e-07

(0.000739) (0.000743) (0.000560)

Organic matter -0.0891 0.0899 0.0829

(0.0629) (0.0621) (0.0633)

Constant -2.777 -2.861 -1.305

(3.153) (3.137) (2.974)

Predicted probability of N deficiency:

Normal weather (ΠR) 0.45 0.45 0.46

(0.04) (0.04) (0.03)

Wet weather (ΠW ) 0.63 0.64 0.73

(0.05) (0.05) (0.06)

β (wet/normal: ΠW/ΠR) 1.41 1.43 1.59

(0.17) (0.17) (0.16)

Observations (samples) 1,845 1,845 1,845

Chi2 32.99 33.17 33.38

Note: Table 3 shows the results for a logistic regression for the probability of nitrogen defi-
ciency in cornstalks at the end of the season. The nitrogen content at the stalk is considered
deficient if under 250 ppm. The model is estimated using the two-rate experimental dataset
from ISA. The nitrogen rate is randomized in the experiment and the unit of the nitrogen
rate variable is 25 lbs. The variables I(wet) and I(dry) are dummy variables equal to 1 if
the weather was wet or normal. The logistic regressions also include a dummy variable for
dry weather, the number of growing degree days, and the soil organic matter. *, **, and ***
denotes significance at 10%, 5%, and 1% level, respectively.
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in environmental damages (Implication 1). The effect of excessive rainfall on efficient N

management depends on the relative size of α and β (Implication 2). The increase in yield

penalty is larger than the increase in the probability of deficiency. The difference, α− β, is

0.75 for rainfall above the 80th percentile and 1.73 with rainfall above the 90th percentile.

These results imply an increase in the cost of environmental protection (Implication 3) and

suggests that alpha-reducing strategies may be more effective in adapting N management to

abnormal rainfall (Implication 4).

5.3 Alpha-beta Framework

Figure 6 summarizes our findings, with blue circles representing our estimates for α and β

using the full sample and alternative definitions of excessive rainfall. α and β estimates close

to 1 imply that excessive rainfall will not lead to additional leaching or an increase in the

yield penalty.

Figure 6: Summary of findings using alpha-beta framework.

Note: figure 6 shows our estimates for the parameters α and β for different subsamples of the experimental
data. The blue circles are the estimates for the full sample for three definitions of excessive rainfall based
on percentiles of early-season rainfall (65th, 80th, and90th percentiles). The orange circles are the estimates
of α and β for subsamples with different management practices: AA – anhydrous ammonia; UAN –
urea ammonium nitrate; C-S – corn-soybean rotation; Spring – spring N application; SD – side-dressing
application. The green circles are the estimates for split N application: A1 – first nitrogen application; A2
– second nitrogen application. The size of the circles are proportional to the magnitude of the parameter β.

Our estimates using excessive rainfall, defined as the 65th and 80th percentiles (P65 and

P80 on the graph), are similar. Excessive rainfall will increase the probability of leaching by

40% and the yield penalty by 150%. In general, we find that the effect of excessive rainfall

23



tends to be much higher on the yield penalty than on the probability of leaching. If we define

excessive rainfall using the 95th percentile of early-season rainfall, our estimates for α and β

increase. In this case, excessive rainfall increases the probability of leaching by 60% and the

yield penalty by 250%. Such a large increase in the yield penalty would raise the optimal

level of N application. In the next two subsections, we use the alpha-beta framework to

assess the heterogeneous effect of excessive rainfall for alternative management and adaptive

practices.

5.4 Management Practices: Rotation, Form, and Timing

We examine heterogeneity in the effect of excessive rainfall on α and β for alternative man-

agement practices to identify potential adaptive practices. We examine the heterogeneity of

the α and β parameters for two types of crop rotation—C-S and C-C; three N forms—AA,

UAN, and manure; and, three timings of N application—fall, spring, and SD. Table 4 shows

our α and β estimates for each management practice. We use the same model specification

as in the previous section and the 80th percentile definition of excessive rainfall. We use the

five-rate experimental data to estimate the production function and the GSS survey dataset

to estimate the damage function for subsamples by management practice. Figure 6 plots our

α and β estimates by management practice.

We find that α and β vary with management practice. Panel 1 of table 4 shows our

estimates by crop rotation. Our estimate for alpha for C-C is not statistically significant as

most farms in our sample use the more common C-S rotation. We find that β for the C-C

rotation is higher than for C-S, implying a higher probability of leaching under excessive

rainfall. One possible explanation is the higher N application rate on the C-C rotation.

There is usually a large amount of residue in the soil after corn production, which tends to

immobilize N in the soil and reduce N supply to the plant. As a result, farmers predominantly

apply more N for C-C production, which may result in more leaching.

The effect of excessive rainfall on α and β varies significantly by N form (see panel 2

of table 4 for estimates). AA has a significantly larger alpha than UAN although standard

errors are largely due to small subsample sizes. AA also has the highest estimate for β,

followed by UAN and manure. Our estimates for β are much more precise as we use the

larger GSS dataset. We also report in table 4 the expected MD of N leaching for each man-

agement practice using equation 3, along with an SCN estimate of $0.20/lb N. As expected,

UAN has the highest MD in both weather states because it has 25% of its N content as

nitrate, which tends to be more prone to leaching. However, we find that AA has the largest

change in the yield penalty and in the probability of leaching with excessive rainfall. The
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Table 4: Results by Management Practice

Production Damage Expected Damage ($/lb)

α Obs. β Obs. Normal Weather Wet Weather

(1) (2) (3) (4) (5) (6)

Panel 1. Crop rotation:

Corn-soybean (C-S) 1.42 420 1.5 8259 0.08 0.11

(0.4) (0.06) (0) (0)

Corn-corn (C-C) -2.86 166 2 3792 0.05 0.11

(1.87) (0.12) (0) (0)

Panel 2. Form of N application:

Anhydrous ammonia 7.97 269 1.72 6065 0.06 0.1

(8) (0.08) (0) (0)

Urea ammonium nitrate 1.11 305 1.44 3905 0.08 0.12

(0.48) (0.07) (0) (0)

Manure -14.37 532 1.6 2309 0.07 0.1

(124.5) (0.13) (0) (0.01)

Panel 3. Timing of N application

Fall -1.56 87 1.68 5139 0.07 0.11

(0.86) (0.08) (0) (0)

Spring 3.64 246 1.66 5459 0.07 0.11

(0.99) (0.08) (0) (0)

Side-dressing 0.91 241 1.37 1634 0.08 0.11

(0.37) (0.11) (0) (0.01)

We calculate the β and marginal damage ($/lb) from the averaged predicted probabilities using the GSS
data. The results shown in panels 2 and 3 are based on the production function estimates using the five-
rate experimental data. The only exception is for the manure subsample, which is based on the two-rate
experimental data after dropping outliers in terms of nitrogen rate at 5% and yields at 1% before 2011. In
these models we use the control variables of corn suitability rating, organic matter, average precipitation,
standard deviation precipitation, drainage, and year fixed-effects for the manure subsample. Complete results
are reported in Tables 11 and 12 in the appendix.

expected MD under wet weather conditions is similar for all three forms. Manure differs

from other N forms for its high uncertainty in production. Our alpha estimate for manure

is not statistically different from zero and has a very high standard error even using a larger

subsample. Since manure has a large uncertainty in N content, farmers tend to apply a

higher N rate with manure than for other N forms. Furthermore, the consecutive applica-

tion of manure over several years increases the uncertainty of mineral N already in the soil

(nitrate and ammonium), which then can increase soil mineralization and reduce demand

for N application. Finally, manure is commonly applied in the fall before the colder weather

slows down manure decomposition and ammonium nitrification, leading to high variability

in yield response to manure application.

Finally, panel 3 in table 4 shows our estimation for alternative timing of N application.

We also find that α and β differ by timing—SD has the lowest estimates for both α and β,

which suggests that it is more resilient to excessive rainfall. Our alpha estimate for SD is

0.91, implying no change in the yield penalty, while our β estimate is 1.37, the lowest of all

management practices. SD application is a different practice because the farmer has more

information about the status of the crop, the soil, and the growing season weather at the

time of application (late-May to mid-June). Our β estimates for fall and spring applications
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are higher, indicating a greater probability of leaching with excessive rainfall. In this case,

the excessive rainfall impact occurs after N application, thus increasing the risk of N loss by

leaching and denitrification. Also, our alpha estimate for spring is over three times higher

than for SD, suggesting there is a large gain from learning about the weather before N

application.

5.5 Adaptive Practice: Split N Application

Farmers may adapt to excessive rainfall by splitting N application throughout the season.

For example, a farmer may apply less N in the fall or early spring and then apply additional N

in late-May or early-June after learning about weather and crop conditions. This adaptive

strategy potentially reduces the leaching and yield losses, and saves on N expenses. We

exploit a unique feature of the two-rate experimental design to assess the split N application

strategy. In the two-rate experiment, the farmers in the treatment group apply N twice

during the season. The first N application, N1, is done in the fall or early spring, while

the second application of 50 lbs, N2, happens in late May or early June. In the two-rate

experiment design, N1 is the farmer’s normal N rate, whereas N2 is zero for the control group

(single N application) and 50 lbs for the treatment group (split N application). 16

We estimate the production function in equation 6 with two N rates, N1 and N2, and

their interactions with the excess rainfall variable. Our parameters of interest are the inter-

action variables N2 rate × I(wetp80) and N2 rate squared × I(wetp80), and we estimate

separate α parameters for first and second N applications. We control for field and farm

characteristics using measures for CSR, organic matter (OM), a dummy variable for poor

soil drainage, and landform fixed-effects. Given the smaller sample sizes, we do not use

field-block fixed-effects. We focus our analysis on subsamples with the largest number of

fields: full sample; fall application with C-C rotation; fall application with C-S rotation;

and, spring application with C-S rotation. We also estimate the damage function separately

for subsamples with single and split application, which enables us to compare the predicted

probability of leaching under the two practices.

We find evidence that the second N application has a smaller impact on both the yield

penalty and on the probability of leaching. Table 5 reports our estimates for the production

and damage functions with split N application. 17 We do not have sufficient variation in the

interaction of N and excessive rainfall for the subsamples of fall with C-C rotation and spring

16The two-rate experiment records the primary timing and primary N form applied in each field. Although
it is common for farmers to use several N forms in multiple applications, in the two-rate experiment farmers
mostly use SD for the second N application.

17See appendix table ?? for complete regression results.
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with S-C rotation. However, the effect of the second N application is statistically significant

with the most common practice of applying first in the fall with the S-C rotation. The α

estimates for the second application, 1.02, is a fraction of the estimate for the estimate for

the first application, 3.80 (column 3). This result confirms the adaptive value of the split N

application. When the farmer applies N only once, the yield penalty under excessive rainfall

increases sharply, therefore justifying overapplication as insurance. However, the second

application is not sensitive to excessive rainfall. 18

The predicted probability of leaching tends to be lower under split N application but

is not statistically different than single applications in our samples. For the full sample,

excessive rainfall increases the probability of leaching by 56% and 34% under single and split

applications, respectively. The difference is larger with fall application and S-C rotation—

47% under single application and 14% with split application. We would expect a significantly

smaller effect on leaching with split application, yet our analysis of this adaptive practice

deviates from an ideal experiment in two ways. First, farmers would ideally use less N in the

first application and make adjustments in the second application. However, in the two-rate

experiment design, farmers applied their normal N rate in the first application. Thus, we

should not expect a significant reduction in β with the split application. In fact, we should

expect an increase because farmers add 50 lbs of N in the second application. Finally,

farmers commonly use UAN—which has a higher propensity to leach—as the N form in

the second application. The similar estimates under single and split applications are thus

an encouraging sign that the second N application has a small effect on the likelihood of

leaching. Figure 6 shows that SD and split N application (A1) are among the most resilient

management practices under excessive rainfall with relatively small estimates for both α and

β.

6 Simulation: Efficient N Use under Excessive Rainfall

To ascertain the efficient level of N use under excessive rainfall, we simulate the efficient

level of N fertilization under normal and wet weather conditions. At the efficient level of

N, N∗∗, the marginal benefit and the marginal SCN use are equal (see figure 7 for the

simulation). The marginal benefit is the farmer’s marginal net revenue and represents the

farmer’s economic gain for adding one more pound of N. We define farmer net revenue as

18In the case of spring with S-C rotation, the marginal product of the second N application is significant
and the shape of the production function changes from normal to wet weather. This result implies a shortage
of N, likely due to leaching, and therefore applying more N increases yields. By contrast, we find no change
in the shape of the production function from normal to wet weather when the first N application happens in
the fall (table 5 columns 2 and 3). The insignificant effect of the second N application is likely the result of
an over application of N in the fall. Farmers commonly apply high N rates in the fall anticipating N losses
as there is a larger uncertainty about the weather with the earliest N application. Furthermore, the most
common N form applied in the fall is manure, which also has the largest uncertainty in yield returns.
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Table 5: Results by Adaptive Practice

Dependent variable: corn yield (bu/acre)

(1) (2) (3) (4)

Full Fall-Corn Fall-Soybean Spring-Soybean

N1 rate 19.270*** 188.199*** 3.77 101.779*

(6.22) (45.04) (7.53) (58.93)

N1 rate squared -1.552*** -11.674*** -0.328 -10.188

(0.44) (2.73) (0.49) (6.48)

N2 rate 36.378*** 24.334*** 133.868**

(7.57) (7.24) (66.84)

N2 rate squared -15.334*** 2.624*** -9.604*** -65.301**

(3.62) (0.41) (3.50) (32.63)

N1 rate x I(wet p80) -15.642 -368.530*** 17.034 -162.701*

(15.29) (45.09) (14.33) (84.29)

N1 rate squared x I(wet p80) 1.518 24.197*** -0.92 16.617*

(1.12) (2.82) (1.01) (8.58)

N2 rate x I(wet p80) -31.218** 16.394 -184.036***

(13.03) (19.38) (65.31)

N2 rate squared x I(wet p80) 15.448** -7.864 -0.189 88.315***

(6.21) (9.09) (0.79) (31.71)

Observations (strips) 1161 204 661 197

R2 0.346 0.844 0.402 0.792

Yield penalty α (wet/normal: aW/aR):

α1 0.02 -1.07 3.80 -0.63

(0.65) (0.28) (6.12) (0.71)

α2 -0.01 -2.00 1.02 -0.35

(0.41) (3.46) (0.08) (0.23)

Predicted probability of N deficiency β (wet/normal: ΠW/ΠR):

βsingle 1.56 1.18 1.47 1.42

(0.16) (0.34) (0.20) (0.26)

Observations (corn stalk) 886 140 473 162

βsplit 1.34 1.45 1.14 0.31

(0.28) (0.28) (0.35) (0.03)

Observations (corn stalk) 716 114 440 99

Note: table 5 reports results for the estimation of the production and damage function for
split N application. We control for the potential effect of outliers. The two-rate experiment
is prone for outliers because the addition of 50 lbs of N may lead to unrealistically high N
rates. Also, the small sample sizes further increase the model’s sensitivity to outliers. We
removed outlier observations with a DfBeta greater than 2√

n
. We control for field and farm

characteristics using measures for corn suitability rating, organic matter, a dummy variable
for poor soil drainage and landform fixed-effects, shown in Table 10 in Appendix. Given the
smaller sample sizes, we do not use field-block fixed-effects, and we focus our analysis on the
subamples with the largest number of fields: full sample; fall application with C-C rotation;
fall application with C-S rotation; and, spring application with C-S rotation.
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corn price times yield minus N cost and calculate the marginal benefit of N using historical

prices for corn ($4/bu) and N fertilizer ($0.4/lb) (Mcconnell et al. 2022) and our estimates

for the production function (table 2). The marginal benefit function is the downward line

in figure 7 and has a negative slope equal to −2ap, where a is the yield penalty and p is the

probability of excessive rainfall. The slope is larger under wet weather conditions because

the yield penalty increases with excessive early-season rainfall (figure 7b). The bands around

the marginal benefit line are confidence bands representing the 95% confidence interval. The

private optimal N rate, N∗, is determined at the intersection between the marginal benefit

function and the zero-axis, where marginal net revenue equals zero.

The marginal SCN application is the expected economic damage of adding one pound of

N to corn production, which is the probability of N leaching times the SCN (see equation 3).

We assume that the marginal SCN is constant at the farm level, as the relative contribution of

one farm to water pollution is small. We use our estimates for the probability of N deficiency

(see table 3) to approximate the probability of leaching under normal and wet weather. As

there is large uncertainty in the calculation of the SCN, we use a range of values following the

literature referred to by the Environmental Protection Agency (EPA, 2015). 19 For the lower

bound, we use Compton et al. (2011) estimate for the economic impact of N fertilization on

drinking water—the treatment costs in drinking water wells—for a total of $0.09/lb N. For

the medium level SCN, we add the negative impact of N fertilization to waterfront property

values, $0.2/lb N, taken from Sobota et al. (2015) and Dodds et al. (2009). For the upper

bound, we adopt Birch et al. (2011) estimate of $4.35/lb N for the economic impact of a

coastal eutrophication on the recreational use of an estuary. The horizontal dashed lines in

figure 7 show the low, medium, and high values for the SCN. The MD of N is higher under

wet weather because the probability of leaching increases with excessive rainfall.

Table 6 reports the simulation results for low, medium, and high values of the SCN. For

these simulations, we use our estimates for α and β using the full sample for the five-rate ex-

periment and excessive rainfall, defined as the 80th percentile of historical precipitation (p80)

(table 2 column 2). The yield penalty more than doubles, α = 2.43, and the probability of

leaching increases by 43% with excessive rainfall. Both parameters are statistically different

from zero. As α > β > 1, excessive rainfall will lead to higher damages (Implication 1) and

a higher cost of pollution management (Implication 3). The cause for this double impact is

the large increase in the yield penalty. Errors in N application are more costly with excessive

19The document and accompanying spreadsheet is publicly available at https://www.epa.gov/nutrient-
policy-data/research-and-reports-nutrient-pollution. The SCN measures are reported in 2020 US
dollars based on the CPI inflation index from the U.S. Bureau of Labor Statistics at
https://data.bls.gov/pdq/SurveyOutputServlet. Also, we convert the weight metric from kilograms to
pounds.
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rainfall, and the farmer and the social planner will increase N application during excessive

rainfall.

Table 6: Efficient N Rates with Low, Medium, and High Social Cost of Nitrogen

Normal weather Wet weather

α β N∗ N∗∗ MD N∗ N∗∗ MD

(1) (2) (3) (4) (5) (6) (7) (8)

Low SCN 2.43 1.43 191.9 188.5 0.04 193.3 191.3 0.06

(0.09 $/lb N) (0.92) (0.17) (16.8) (15.94) (0) (12.2) (11.8) (0)

Medium SCN 2.43 1.43 191.9 184.0 0.09 193.3 188.7 0.13

(0.20 $/lb N) (0.92) (0.17) (16.8) (14.85) (0.01) (12.2) (11.3) (0.01)

High SCN 2.43 1.43 191.9 22.41 1.96 193.3 93.9 2.78

(4.35 $/lb N) (0.92) (0.17) (16.8) (38.17) (0.17) (12.2) (18.2) (0.22)

Note: Table 6 reports the simulation results for low, medium, and high values of the social cost of nitrogen
(SCN). N∗ is the private optimal level of N application measured in lbs/acre. N∗∗ is the socially optimal level
of N application measured in lbs/acre. MD is the marginal damage of nitrogen application measured in $/lb
N. α and β are the growth factors for the yield penalty and the probability of leaching. For these simulations,
we use our estimates for α and β using the full samples for the five-rate and two-rate experiments. We define
excessive rainfall as the 80th percentile of historical precipitation (p80) (table 2 column 2).

Under normal weather conditions, we estimate the optimal private N rate at 192 lbs/acre,

close to the guidance for N fertilization in Iowa.20 The private rate N∗ does not vary with

the SCN as the farmer optimization problem does not consider the cost of pollution. The

social planner rate varies with the SCN, ranging from 188.5 lbs/acre with low SCN to 22.4

lbs/acre with high SCN. The difference between the private and socially optimal rates, ∆, is

not statistically different from zero with low SCN but increases with the SCN and becomes

very large, almost 170 lbs/acre, and statistically different with high SCN. The MD of N

application also increases with the SCN. With low SCN, the MD is 0.04 $/lb N or about

10% of the cost of N fertilizer. The MD is almost twice the fertilizer cost at the medium

SCN and increases to $1.96/lb N, or five times the fertilizer cost.

Under wet weather conditions, the optimal private N rate is slightly higher than in nor-

mal weather. The farmer considers the higher yield penalty when optimizing N fertilization

and “insures” against yield losses. The social planner rate is also higher but increases faster

with the SCN. Figure 7b shows how the steeper marginal benefit function in wet weather

intersects the MD function at a higher N rate. Under wet weather, N is more productive at

lower rates because of the higher yield penalty. The marginal product of N for the target-

input model production function is 2a(N̂ − N). The marginal product increases with the

yield penalty and the difference between the target rate and N. The effect of the higher yield

penalty is clearer with the high SCN. The social planner’s optimal N rate doubles from 55

20For example, universities in the corn belt collaboratively contribute to the provision of the optimal
nitrogen application rate calculator, which can be found at http://cnrc.agron.iastate.edu/.
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lbs/acre under normal weather to 113 lbs/acre under wet weather. In this case, the private

N rate is closer to the efficient rate (Implication 2).

A - Normal weather

B - Wet weather (p80)

Figure 7: Optimal nitrogen rates by early-season rainfall.

Note: Figure 7 shows the private and socially optimal nitrogen rates for normal and wet early-season weather
conditions. Wet weather is defined as excessive rainfall above the 80th percentile. The optimal nitrogen rate
is determined at the intersection of the marginal damage and marginal benefit functions. The horizontal
dashed lines are the marginal damage functions for the lower bound, upper bound, and the mean social cost
of nitrogen. The marginal benefit function is defined as the net revenue for an additional unit of nitrogen
and has the 95th confidence interval band.

The striking difference between N management in normal and wet weather is the increase

in both the damages and the efficient level of N rates. The MD under wet weather is 42%

higher and reaches $2.78/lb N with high SCN, seven times the fertilizer cost. With such

high damages, the social planner would apply less N. However, the socially optimal N rate,

N∗∗, doubles in wet weather. This counter-intuitive result reflects the high growth rate in

the yield penalty with excessive rainfall. The yield penalty increase of 143% is over three

times higher than the increase in MD. It would be too costly for the social planner to reduce
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Table 7: Parameter Values Used in the Simulation

Parameter Value (2020 US$)

Corn price 4 ($/bu)

Nitrogen fertilizer price 0.4 ($/lb)

Social cost of nitrogen 0.09 (low) ∼ 0.20 (mid) ∼ 4.35 (high) ($/lb)

Probability of nitrogen loss (p80) 0.45 (normal) and 0.64 (wet)

Probability of nitrogen loss (p90) 0.46 (normal) and 0.73 (wet)

Range of nitrogen rate 50–250 lbs

Note: The corn price is the historical corn price (Mcconnell et al., 2022). The social costs
of nitrogen application include drinking water treatment costs and economic impacts to
waterfront property and recreational use (Birch et al., 2011; Compton et al., 2011; Sobota
et al., 2015; Dodds et al., 2009). The probability of nitrogen loss is calculated from the
logistic regression results in table 3.

the optimal N rate further. A potential solution for mitigating the damages under excessive

rainfall would be to adopt management practices that reduce the increase in the yield penalty

(reduce β) or reduce the damage in wet weather (reduce α). Our simulation results suggest

that reductions in β may be particularly beneficial given the large change in yield penalties.

7 Robustness Analysis

We test the robustness of our main results considering alternative model specifications, defi-

nitions of excessive rainfall, and datasets. We find a consistent effect of excessive rainfall on

the productivity of N application and on the probability of leaching under multiple manage-

ment practice combinations. We highlight the importance of controlling for field and block

characteristics in the empirical analysis of N management.

7.1 Alternative Models

The advantage of the experimental data is the randomization of N application across fields.

However, the randomization of N application in on-farm field experiments does not necessar-

ily imply a randomization of the effectiveness of N fertilization because other factors, such

as soil characteristics, may influence how much N is taken by the plant and how much is

lost. To examine the effect of field quality, we test alternative empirical models with different

controls for field characteristics using the five-rate experimental data. We find robust results

once we control for unobserved field characteristics using field and block fixed-effects.

Table 13 (Appendix C) presents results. In column 1, we report results for a specification

with no controls. The model in column 2 has control variables for CSR, a dummy for poor

drainage, soil organic matter, and N form and timing, as well as the mean and standard

deviation of precipitation over the past 25 years. In column 3, we add year fixed-effects,

which controls for annual variation in rainfall. Table 17 shows full estimation results for
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columns 2 and 3. The interaction variables are not statistically significant in the first three

models (columns 1 to 3), but once we control for year variation, the sign of the interaction

variable becomes positive, as expected.

The regression models in columns 4 and 5 control for both year and block fixed-effects.

The results with and without year effects differ because of spatial correlations between field

characteristics and climate. With year fixed-effects, the model relies only on within-year

variation. Once we control for field or block fixed-effects, the estimates of the interaction

variables become economically and statistically significant. Note that the block is a sub-area

within a field. Although the estimates of the two models with fixed-effects are consistent,

block fixed-effects give us more precise estimates by controlling for within-field differences.

Furthermore, α changes significantly from less than or close to 1 to greater than 2 as we better

control for field characteristics. The estimates for α without the fixed effects in columns 1,

2, and 3 are misleading regarding the effect of excessive rainfall. However, the estimates

reported in columns 4 and 5 confirm the significant yield penalty resulting from abnormally

wet weather.

7.2 Alternative Definitions of Excessive Rainfall

We test the robustness of our results against alternative definitions of excessive rainfall

considering field-specific and field-agnostic definitions of abnormal weather. The field-specific

definitions are based on alternative local thresholds, whereas the field-agnostic definition is

based on an absolute threshold of precipitation across all fields. We use two indicators to

define the thresholds of abnormally dry and wet weather: (a) 0.8 and 1.2 times the mean

precipitation and (b) one standard deviation from the mean. Table 14 presents the threshold

precipitation values (in mm) for each alternative definition and data set. We add another

experimental dataset from ISA with seven N application rates to test the robustness. This

seven-rate experiment was completed from 1987 to 1991. We find that rainfall thresholds

are robust across alternative definitions and data sets, with the exception of the seven-rate

dataset, which shows significantly lower thresholds for both dry and wet weather. The

distribution of precipitation has moved rightward since the timeframe for the seven-rate

ISA experiment. Given that the absolute thresholds of all data except the seven-rate data

are similar, we also create a common absolute threshold for the five-rate, two-rate, and

GSS datasets by considering the 20th and 80th percentiles of one empirical distribution of

precipitations from 1981–2020. The resulting dry and wet thresholds are 274.13 mm and

454.03 mm, respectively.

Table 15 presents the results of our robustness analysis. We use the same models and
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dataset as in our main results (see table 2) but with different definitions of abnormal rainfall.

The results show evidence for a significant effect of excessive rainfall on the productivity of N

fertilization. We find large estimates for α across the different definitions of excessive rainfall,

although the precision of the estimates varies across models. Our estimates also vary across

definitions of excessive rainfall because of the differences in the thresholds of wet weather

(see table 14). For instance, the threshold of wet weather for the definition of Mean +-1SD

is about 40 mm higher, resulting in the highest estimate for α, 4.66, indicating a larger

yield loss. In the case of the absolute percentile definition, the smaller effect of excessive

rainfall reflects the local management practices or field characteristics that provide adaptive

capacity against extreme weather. For example, even high levels of precipitation may not be

considered severe if the climate is naturally wetter in some regions and if the field and the

farmer are better equipped to handle heavy rainfall. Hence, in our main analysis, we focus

on the relative measures of severe wet weather.

7.3 Alternative Experiments and Subsamples

We test the robustness of the effects of excessive rainfall in the production and damage

functions using different experimental data and subsamples. Panel 1 of table 16 shows our

estimates for α using our baseline models and the seven-rate experimental dataset from

Kyveryga et al. (2007). All estimates for α are significant despite the small sample sizes

but not statistically different from one. The results suggest that corn production was less

sensitive to excessive rainfall 30 years ago when the seven-rate experiment was completed.

However, as noted in the previous section, the thresholds for excessive rainfall were lower

between 1987–1991, indicating a lower frequency of excessive rainfall. Also, corn production

has expanded in the last 30 years with higher use of mechanized fertilization, which could

lead to larger use of N in areas with wetter weather. Farmers that rely on historical statistics

for N use under excessive rainfall would likely incur large yield losses as α is higher based

on the most recent experiments.

Finally, we test how the combination of multiple management practices affect our re-

sults, focusing on the most prevalent combination of practices with a significant number

of observations in the larger GSS survey dataset. Unfortunately, we do not have sufficient

data to estimate α for combinations of practices, and so our analysis focuses on β estimates.

Table 16 shows our estimates for β for 10 combinations of practices and figure 8 shows an

ordered bar chart for the change in the probability of leaching under excessive rainfall for

each combination of practices. Again, we find economically and statistically significant es-

timates for β across all combinations. However, we also find heterogeneity in our estimates
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for β. The combined practice of fall application with manure N and C-C rotation has the

largest increase in the probability of leaching with excessive rainfall, approximately 77%. In

general, C-S rotation has a lower β consistent with our previous estimates. In fact, even

the more resilient SD application has a high estimate for β when combined with C-C rota-

tion. The combination of practices with the lowest increase in the probability of leaching

is SD application with C-S rotation (32%), less than half the effect of the fall-manure-C-C

combination. In terms of expected damages, combinations with manure N have consistently

high values. Also, combinations with UAN tend to have high expected damages under wet

weather, as expected.

Figure 8: Probability of leaching by combination of management practices.

Note: Figure 8 shows our estimates for beta—the change in the probability of leaching with excessive
rainfall—for combinations of management practices. The management practices are: Fall; AA - fall appli-
cation with anhydrous ammonia nitrogen; Fall; Manure - fall application with manure nitrogen; Spring;
AA - spring application with anhydrous ammonia nitrogen; SD; C-S - side-dressing with corn after soy-
beans rotation; SD; C-C - side-dressing with corn after corn application; AA; C-S; Fall - fall application
with anhydrous ammonia nitrogen and corn after soybeans rotation; AA; C-S; Spring - spring application
with anhydrous ammonia nitrogen and corn after soybeans rotation; Manure; C-S; Fall - fall application
with manure nitrogen and corn after soybeans rotation; and Manure; C-C; Fall - fall application with
manure nitrogen and corn after corn rotation.

8 Conclusion

We build an economic model for efficient N management under excessive rainfall and estimate

the model parameters using ISA experimental data for the state of Iowa. Our results have

implications for N guidance and N leaching adaptation. During the past decade, university

extension agronomists across the Midwest have started promoting a more advanced system

of N recommendations called “maximum return to nitrogen”. 21 This new system uses

the results of small-plot N response trials to estimate the economically optimal N rates

at the regional, state, or sub-state level considering the mode of crop rotation and prices.

Despite recent improvements, it is impractical to have one general state or sub-state N

recommendation given the large spatial and temporal variability in optimal N rates across

fields. Also, the “maximum return to nitrogen” does not account for the effect of rainfall

21See http://cnrc.agron.iastate.edu/ for detailed information about maximum return to nitrogen.
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or the timing and form of N fertilization. We show that under excessive rainfall, efficient

N fertilization depends on the rate of change of two parameters—the yield penalty and

the probability of leaching—and both parameters vary with management practices. We

provide initial estimates for efficient N use but more research is needed to refine N guidance

further under excessive rainfall across a larger set of management practice combinations. The

alpha-beta framework proposed in this article can help guide the design of more on-farm field

experiments to improve N guidance further for farmers.

Our analysis is also informative for climate adaptation in agriculture. Climate change

will likely increase the frequency of excessive rainfall through an increase in the concentration

of atmospheric water vapor. We find that water pollution through leaching will increase

and pollution management will become more costly because N becomes more productive.

These results further highlight the value of adaptation. We assess the relative resilience of

management practices to excessive rainfall and we find a large variation in resiliency but also

large uncertainty. For example, we find that fall application of manure with C-C rotation is

very sensitive to excessive rainfall and can lead to significant additional leaching. However,

we also find it challenging to estimate a production function for manure given the uncertainty

in N content with the N form. Thus, the next step in this analysis is to refine the on-farm

experiment design further to study the most common management practices, as these may

also lead to the highest environmental damages under excessive rainfall. This analysis can

be informative to policymakers designing incentive for farmers to adopt more sustainable

management practices and production technologies.
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Appendix A. Data Description

We use three experimental data sets and one survey data set, along with two sources of

weather data. Figure 9 presents the total precipitation levels from May to July and the ex-

periment sites during experimental periods. Table 8 summarizes all data sets and 9 describes

variables used in the analyses.

We create an indicator variable for the abnormal state of the weather. We use a local

empirical distribution of precipitation to classify current precipitation by quantiles into ab-

normally wet, normal, or abnormally dry. We obtain historical daily precipitation data from

NASA Daymet,22 which is 1km x 1km gridded high-resolution data recorded since 1980. We

use the centroid coordinates of each field to extract daily weather variables. Since the period

of Daymet does not cover the seven-rate data, we obtain additional daily precipitation from

the Iowa Environmental Mesonet and match the city name with the precipitation of the

nearest station as there is no coordinate information in the Mesonet dataset. 23

We aggregate the daily rainfall information into total precipitation from May to July,

which is a critical period for plant growth and nitrate intake. We then use the past 25 years

of observations to build the local empirical distribution for each field and year. If the current

precipitation is above the 80th percentile or below the 20th percentile of this distribution,

we classify it as abnormally wet weather or abnormally dry weather, respectively. This

approach is consistent with definitions of extreme weather using the local 90th percentile as

a threshold. However, too extreme weather tends to destroy the crop output regardless of

management practices, limiting our ability to study the adaptive effect of the management.

We therefore use the 80th percentile threshold as our baseline criterion for the wet weather

anomaly. We also provide results for alternative thresholds.

Lastly, we also report section scatter plots for the five-rate and two-rate experimental

datasets used in our main analysis. In figure 10, the colors of dots represent different fields.

In figure 12, the dark and light blue dots indicate the single and split applications. In the

case of a split application, the total application rates of N are used. A grey horizontal line

refers to 250 ppm, which is the threshold of N deficiency in the corn stalk residual.

22Data is available publicly at https://daymet.ornl.gov/getdata.
23The Iowa Environmental Mesonet data is publicly available at https://mesonet.agron.iastate.edu.
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Table 8: Description of Data Sets

Abbreviation Type (structure) Description Variables Period Fields Obs. (units)

seven-rate Experiment (Field) For each field, 7 levels of N rate were examined from 0
to about 302.7lb.

N rate, yield; rotation, city 1987-1991 54 364 (strips)

five-rate Experiment (Field-block) For each field, 5 levels of N rate are examined with 3-5
replications.

N rate, yield; rotation, form, timing, drainage, soil char-
acteristics, coordinates

2017-2021 36 586 (strips)

two-rate-yield Experiment (Field-block) For each field, two levels of N rate are examined at most
22 replications. Three types of experiments are con-
ducted: (1) farmer’s chosen rate (manure) vs + chemi-
cal 50lb, (2) farmer’s chosen rate (chemical) vs + 50lb,
and (3) farmer’s chosen rate (chemical) vs -50lb.

N rate, yield; rotation, form, timing, drainage, soil char-
acteristics, planting date, landform, coordinates, GDD
of April-July

2006-2014 169 1837 (strips)

two-rate-CSNT Experiment + CSNT (Field) For each field, 9-18 corn stalk samples labeled by treat-
ment regardless of block are tested.

N rate, nitrate level in corn stalk residual; rotation,
form, timing, drainage, soil characteristics, CSR, land-
form, coordinates, GDD of April-July

2007-2010 130 2297 (samples)

GSS Survey + CSNT (Field) For each field, 3-4 corn stalk samples are tested. N rate, nitrate level in corn stalk residual; rotation,
form, timing, drainage, soil characteristics, CSR, HEL,
landform, coordinates, GDD of April-July

2006-2016 3917 13715 (samples)

Weather Public data (1) NASA Daymet: 1km x 1km gridded high-resolution
data matched with data by coordinates

Daily precipitation 1980-2021

(2) Iowa Environmental Mesonet matched with 7R data
by the nearest station

Daily precipitation 1950-2021

SSURGO Public data Soil Survey Geographic Database matched with data by
coordinates

CSR, drainage, organic matter, landform
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Figure 9: Precipitation and experiment sites, 2006–2021.
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Table 9: Description of Variables

Variable Description Unit Data source

Corn yield Harvested corn yields bu/acre ISA. 2021,Kyveryga et al.
2013, 2007

N stalk deficiency Dummy variable equal to 1 if the end-of-season nitrate level in corn stalk is less than 250 ppm Kyveryga et al. 2013; Laurent
et al. 2023

N rate Application rates of nitrogen fertilizer lbs/acre ISA. 2021, Kyveryga et al.
2013; Laurent et al. 2023;
Kyveryga et al. 2007

N1 rate Application rates of nitrogen fertilizer that farmer chose if the additional fertilizer was randomly
treated; otherwise, total application rate

lbs/acre Kyveryga et al. 2013

N2 rate Application rates of nitrogen fertilizer added randomly by an experimental design; zero if not
treated

lbs/acre Kyveryga et al. 2013

I(dry) Dummy variable equal to 1 if the current precipitation is less than 20 percentile of a field-specific
empirical distribution of precipitation from May to July (Section 7.2 uses alternative definitions of
wet weather.)

Thornton et al. 2022, Herz-
mann et al. 2004

I(wet p80) Dummy variable equal to 1 if the current precipitation is greater than or equal to 80 percentile
of a field-specific empirical distribution of precipitation from May to July Similarly, I(wet p65)
and I(wet p90) are generated based on 65th and 90th percentiles. (Section 7.2 uses alternative
definitions of wet weather.)

Thornton et al. 2022, Herz-
mann et al. 2004

Average precipitation Mean of a field-specific empirical distribution of precipitation from May to July of past 25 years mm Thornton et al. 2022, Herz-
mann et al. 2004

Standard deviation precipitation Standard deviation of a field-specific empirical distribution of precipitation from May to July of
past 25 years

mm Thornton et al. 2022, Herz-
mann et al. 2004

July GDD Growing degree days until the end of July GDD Herzmann et al. 2004

Corn suitability rating (CSR) Corn Suitability Rating indicates soil productivity from 0 to 100 based on soil type, slope, and
weather.

NRCS-USDA. 2022

Drainage Dummy variable equal to 1 if drainage is poor like tile drainage NRCS-USDA. 2022

Organic matter Proportion of soil that contains living and dead organic matter like plant residues % NRCS-USDA. 2022

Land-form Categorical variable which groups Iowan land by geomophology, including Des Moines, Northwest
Iowa Plains, Southern Iowa Drift Plain, Iowan Surface

NRCS-USDA, 2022
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Figure 10: The relationship between corn yields and nitrogen application rates in the five-rate
data

Note: Figure 10 presents a scatter plot of corn yields and nitrogen application rates by field. The heading
in each box indicates the growing season weather and the nitrogen management combinations. The dots
are colored by weather abnormality condition during the growing season and their shapes refer to the
experimental replication within the field.
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Figure 11: (b) The relationship between corn yields and nitrogen application rates in the
five-rate data.

Note: Figure 11 presents a scatter plot of corn yields and nitrogen application rates by field. The heading
in each box indicates the growing season weather and the nitrogen management combinations. The dots
are colored by weather abnormality condition during the growing season and their shapes refer to the
experimental replication within the field.
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Figure 12: The Relationship between Nitrate Concentration and N Application Rates in the two-rate-CSNT data: Corn-Corn RotationThe relationship between nitrate
concentration and nitrogen application rates in the two-rate Cornstalk Nitrate Test data: Corn-corn rotation.

Note: Figure 12 presents a scatter plot of nitrate concentration and nitrogen application rates for each weather and management combination. The shape of each dot indicates whether nitrogen was
applied in a single or split application, while the color corresponds to the weather condition. The y-axis represents the natural logarithm of nitrate concentration, with lines indicating the deficiency
level labeled as ln(250).
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Figure 13: The relationship between nitrate concentration and nitrogen application rates in two-rate Cornstalk Nitrate Test data: Corn-soybean rotation.

Note: Figure 13 presents a scatter plot of nitrate concentration and nitrogen application rates for each weather and management combination. The shape of each dot indicates whether nitrogen was
applied in a single or split application, while the color corresponds to the weather condition. The y-axis represents the natural logarithm of nitrate concentration, with lines indicating the deficiency
level labeled as ln(250).

47



Appendix B - Management Practices in Section 5

Table 10: Estimation Results for Production Function with Split Application (Table 5)

Dependent variable: corn yield (bu/acre)

(1) (2) (3) (4)

Full Fall-Corn Fall-Soybean Spring-Soybean

N1 rate 19.270*** 188.199*** 3.770 101.779*

(6.219) (45.042) (7.528) (58.931)

N1 rate squared -1.552*** -11.674*** -0.328 -10.188

(0.439) (2.729) (0.488) (6.480)

N2 rate 36.378*** 24.334*** 133.868**

(7.565) (7.242) (66.838)

N2 rate squared -15.334*** 2.624*** -9.604*** -65.301**

(3.619) (0.413) (3.501) (32.627)

N1 rate × I(wet p80) -15.642 -368.530*** 17.034 -162.701*

(15.290) (45.088) (14.328) (84.292)

N1 rate squared × I(wet p80) 1.518 24.197*** -0.920 16.617*

(1.116) (2.818) (1.009) (8.583)

N2 rate × I(wet p80) -31.218** 16.394 -184.036***

(13.030) (19.384) (65.311)

N2 rate squared × I(wet p80) 15.448** -7.864 -0.189 88.315***

(6.211) (9.087) (0.793) (31.709)

N1 rate × I(dry) -3.965 -162.580*** -13.816 -83.918

(8.000) (47.955) (14.956) (61.069)

N1 rate squared × I(dry) 0.331 10.044*** 1.843 8.767

(0.637) (2.904) (1.446) (6.657)

N2 rate × I(dry) -17.051* -4.545

(9.773) (9.801)

N2 rate squared × I(dry) 8.249* -4.060*** 1.239

(4.462) (1.089) (4.550)

I(dry) 12.653 650.056*** 20.956 196.428

(25.521) (193.305) (40.277) (134.017)

I(wet p80) 34.775 1369.330*** -66.985 406.536*

(50.349) (176.696) (48.812) (209.505)

Corn suitability rating (CSR) 0.236*** 0.124* -0.018 1.186***

(0.073) (0.072) (0.061) (0.384)

Organic matter 0.691*** 0.275*** 0.473 4.952*

(0.197) (0.069) (0.660) (2.678)

Average precipitation -0.196** -0.561*** -0.145 0.412

(0.096) (0.114) (0.103) (0.445)

Standard deviation precipitation 0.397*** -0.339 0.320*** 0.499**

(0.096) (0.241) (0.104) (0.220)

Drainage -5.630*** -5.351** 3.369 -26.402***

(1.808) (2.113) (2.561) (6.773)

Constant 132.345*** -318.230 188.714*** -385.957**

(35.968) (194.923) (39.679) (167.190)

Landform FE Yes Yes Yes Yes

Observations (strips) 1161 204 661 197
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Table 10: Estimation Results for Production Function with Split Application (Table 5)

Dependent variable: corn yield (bu/acre)

(1) (2) (3) (4)

Full Fall-Corn Fall-Soybean Spring-Soybean

R2 0.346 0.844 0.402 0.792

Std.Errors Field Field Field Field

Note: Table 10 shows the results for the linear model of the production function using the two-rate

experimental dataset from the Iowa Soybean Association. The N1 rate represents the farmer’s selected

rate, while the N2 rate indicates the additional application rate, randomly assigned as zero for the control

group and 50 lbs for the treatment group. The unit of the nitrogen rate variable is 25 lbs, and the variable

I(wet) is a dummy variable equal to 1 if the weather was wet. Standard errors are clustered at the field

level.

* p < 0.1, ** p < 0.05, *** p < 0.01
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Table 11: Production Function Estimation Results Used for Analysis in Table 4

Soybean Corn AA UAN Manure Fall Spring SD

Constant 135.288*** 135.421*** 170.913*** 80.759*** 433.240*** 105.883*** 189.245*** 80.759***

(11.161) (17.231) (11.933) (29.452) (149.555) (18.115) (15.236) (29.649)

N rate 24.092*** 13.932*** 10.227*** 24.211*** 3.839 23.479*** 16.241*** 29.472***

(3.544) (3.213) (3.528) (4.501) (12.933) (4.866) (2.910) (4.322)

N rate squared -1.673*** -0.532** -0.352 -1.596*** -0.093 -0.979*** -1.079*** -1.964***

(0.283) (0.268) (0.335) (0.353) (0.804) (0.337) (0.249) (0.354)

N rate x I(wet p80) 14.443* -24.580*** 31.985*** 8.259 -19.516 -34.126*** 38.202*** 2.999

(7.563) (7.278) (10.796) (9.890) (23.641) (8.284) (7.560) (9.863)

N rate squared x I(wet p80) -0.699 2.054*** -2.458** -0.182 1.435 2.501*** -2.852*** 0.186

(0.609) (0.691) (0.950) (0.744) (1.543) (0.736) (0.627) (0.748)

N rate x I(dry) -7.722 4.762 1.905 -2.360 14.522 -6.898 -9.663 2.288

(5.037) (8.129) (5.391) (7.127) (17.402) (6.026) (6.164) (6.128)

N rate squared x I(dry) 0.796* -0.559 -0.244 0.321 -0.892 0.019 0.987* -0.164

(0.409) (0.679) (0.471) (0.591) (1.101) (0.426) (0.522) (0.501)

Corn suitability rating (CSR) 0.006

(0.100)

Organic matter 0.257

(0.296)

Average precipitation -1.196***

(0.457)

Standard deviation precipitation 1.417***

(0.425)

Drainage 2.259

(5.007)

Num.Obs. 420 166 269 305 532 87 246 241

R2 0.949 0.967 0.965 0.946 0.473 0.976 0.969 0.950

Std.Errors Block Block Block Block Field Block Block Block

FE (Field×block) Yes Yes Yes Yes No (Y×L) Yes Yes Yes

Note: Table 11 provides the production function estimates that are used in the analysis in Table 4. The nitrogen rate is scaled by a factor of 1/25. The model
employed field-by-block fixed -ffects using the five-rate experimental data, except for the Manure subsample. As there are no observations of manure in the five-rate
experimental data, we use the two-rate experimental data before 2011 after excluding outliers at 5% for N rate and 1% for yields. For the manure subsample, we
use fixed-effects of year-by-landform and control variables of CSR, organic matter, average precipitation, standard deviation precipitation, and drainage. Standard
errors are clustered at the field level for the manure subsample and at the block level for other subsamples.

*, **, and *** denotes significant level at 10%, 5%, and 1% respectively.
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Table 12: Damage Function Estimation Results Used for Analysis in Table 4

Logit model for N stalk defficiency

(1) (2) (3) (4) (5) (6) (7) (8)

C-S C-C AA UAN Manure Fall Spring SD

I(wet p80) 0.795*** 1.188*** 0.958*** 0.800*** 0.845*** 0.956*** 0.946*** 0.667***

(0.0755) (0.111) (0.0892) (0.106) (0.157) (0.0970) (0.0931) (0.169)

I(dry) 0.00155 0.654*** -0.250** 0.287** 0.473*** 0.0626 0.344*** -0.256

(0.0871) (0.144) (0.116) (0.128) (0.159) (0.114) (0.112) (0.223)

N rate -0.00740*** -0.00612*** -0.0112*** -0.00922*** -0.00342*** -0.00565*** -0.0102*** -0.0129***

(0.000976) (0.00125) (0.00123) (0.00142) (0.00122) (0.00103) (0.00125) (0.00215)

Corn suitability rating (CSR) -0.00532*** -0.000569 -0.00315 -0.00390 0.00124 -0.000171 -0.00354 -0.00715*

(0.00192) (0.00313) (0.00232) (0.00267) (0.00446) (0.00257) (0.00237) (0.00414)

Organic matter 0.0195 -0.0411* -0.00768 0.00535 -0.0218 -0.0592** 0.0172 0.00509

(0.0177) (0.0229) (0.0260) (0.0275) (0.0409) (0.0278) (0.0198) (0.0265)

Average precipitation -0.00210 0.00206 0.000849 0.000815 0.00589 0.000869 0.00225 -0.00115

(0.00190) (0.00304) (0.00224) (0.00279) (0.00450) (0.00265) (0.00221) (0.00437)

Standard deviation precipitation 0.00989*** 0.00867** 0.00321 0.0223*** 0.00740 -0.000271 0.0159*** 0.0144**

(0.00257) (0.00410) (0.00293) (0.00397) (0.00595) (0.00333) (0.00317) (0.00647)

Drainage -0.188*** -0.421*** -0.438*** -0.172* -0.216 -0.506*** -0.225*** -0.0927

(0.0661) (0.100) (0.0870) (0.0989) (0.155) (0.0986) (0.0791) (0.126)

Constant 1.187 -0.386 1.866** -1.181 -2.482 1.688 -1.023 1.204

(0.742) (1.121) (0.925) (1.049) (1.608) (1.034) (0.851) (1.666)

FE (landform) Yes Yes Yes Yes Yes Yes Yes Yes

Observations 8,259 3,792 6,065 3,905 2,309 5,139 5,459 1,634

R2 0.0502 0.0819 0.0720 0.0679 0.0348 0.0522 0.0760 0.0803

Std.Errors Field Field Field Field Field Field Field Field

Note: Table 12 presents the damage function estimates used to obtain β in Table 4. For each subsample, we estimate the logit model using the GSS data. The
nitrogen rate is scaled to 25 lbs. *, **, and *** denote significance at the 10%, 5%, and 1% level, respectively.
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Appendix C - Robustness Tests

Table 13: Estimates with Alternative Model Specifications

Model 1 Model 2 Model 3 Model 4 Model 5

Constant 95.06** 170.72** 100.36 160.33*** 159.63***

(44.61) (83.75) (78.77) (12.34) (9.33)

N rate 29.23** 29.04*** 25.29*** 15.78*** 16.34***

(12.81) (8.93) (6.47) (4.54) (2.99)

N rate squared -1.67* -1.80*** -1.53*** -0.85** -0.90***

(0.93) (0.68) (0.52) (0.40) (0.26)

N rate x I(wet) -1.53 -2.59 4.44 20.53* 19.97***

(20.82) (20.61) (18.97) (11.09) (7.42)

N rate squared x I(wet) 0.18 0.42 -0.09 -1.34 -1.28**

(1.57) (1.56) (1.43) (0.90) (0.60)

N rate x I(dry) -11.10 -10.15 -12.85 1.26 0.72

(14.86) (10.00) (9.59) (6.15) (4.43)

N rate squared x I(dry) 0.54 0.62 0.90 -0.09 -0.04

(1.16) (0.79) (0.76) (0.52) (0.38)

α 0.89 0.77 1.1 2.6 2.4

SE (0.91) (0.83) (0.94) (1.55) (0.92)

Num.Obs. 586 574 574 586 586

R2 0.189 0.309 0.383 0.925 0.954

Std.Errors Field Field Field Field Block

FE No No Year Field x Year Block x Year

Controls No Yes Yes No No

Note: Table 13 shows the corn production function estimation results employing different
control variables with the five-rate experimental data. The unit of the nitrogen rate variable
is 25 lbs, and the variables I(wet) and I(dry) are dummy variables equal to 1 if the weather is
wet or dry, respectively. The control variables for column (2) include corn suitability rating,
a dummy for poor drainage, soil organic matter, N form, N timing, and mean and standard
deviation of historic precipitation. Table 17 in the appendix shows the complete results for
columns (2) and (3).

*, **, and *** denote significance at the 10%, 5%, and 1% level, respectively.
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Table 14: Thresholds (mm) for Excessive Rainfall by Alternative Datasets

Five-rate Two-rate (yield) Two-rate (CSNT) GSS Seven-rate

A. Local percentile (mm)

p20 296.4 278.8 277.1 278.8 231.1

(25.3) (24.9) (23.5) (29.8) (13)

p65 396.7 402.3 401.9 397.1 354

(30.5) (16.7) (18.2) (20.6) (24.2)

p80 450.2 444.2 445.3 448.2 391

(39.8) (24.6) (22.4) (33.1) (27.3)

p90 531.6 514.7 511.5 516 434.2

(50.8) (42.9) (37.4) (50) (30.1)

B. Local mean +- 20% (mm)

0.8 mean 303 295.2 294.9 294.7 253.4

(22.1) (12.8) (12.7) (17.1) (12.1)

1.2 mean 454.6 442.7 442.3 442.1 380.1

(33.2) (19.2) (19.1) (25.6) (18.1)

C. Local mean +- 1 SD (mm)

mean-1SD 261.2 244.5 241.4 243.2 221.1

(21.9) (14.2) (11.7) (20.3) (14)

mean+1SD 496.4 493.4 495.9 493.6 412.5

(37.1) (27.2) (27.3) (31.5) (21.4)

D. Absolute percentile (mm)

p20 274.1 286.9 269.5 277.6 273.1

p80 454 455.7 453.4 449.3 456.1

N.fields 36 169 130 3,917 54

N.obs 586 1,837 2,297 13,715 364

Period 2017-2021 2006-2014 2007-2010 2006-2016 1987-1991

Note: Table 14 presents alternative definitions of abnormal weather. CNST=cornstalk nitrate test.
GSS=Guided Stalk Nitrate Survey. The first three panels report the mean and standard deviation of each
field’s threshold precipitation levels for each data set. We define the thresholds using three alternative
methodologies: (panel A) the percentile of the local empirical distribution of precipitation; (panel B) 0.8
and 1.2 times the historical mean precipitation; and (panel C) one standard deviation from the historical
mean precipitation. In the last panel (panel D), the absolute percentiles are obtained from a single empirical
distribution of precipitation that includes all fields. The unit measure for precipitation is mm.
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Table 15: Production Function Estimates with Alternative Definitions of Excessive Rainfall

Model 1 Model 2 Model 3

Mean +- 20% Mean +- 1SD Absolute percentile

Constant 68.799*** 164.062*** 165.035***

(8.818) (7.219) (8.145)

N rate 15.080*** 15.160*** 17.497***

(3.036) (2.607) (3.073)

N rate squared -0.786*** -0.761*** -1.007***

(0.259) (0.224) (0.257)

N rate x I(wet) 20.246*** 37.563*** 12.418*

(7.719) (5.276) (6.737)

N rate squared x I(wet) -1.226* -2.782*** -0.491

(0.669) (0.451) (0.566)

N rate x I(dry) 2.020 2.605 -1.893

(4.352) (3.938) (4.207)

N rate squared x I(dry) -0.171 -0.266 0.145

(0.368) (0.337) (0.353)

R2 0.956 0.956 0.958

Std.Errors Block Block Block

FE (Field x block) Yes Yes Yes

α 2.6 4.7** 1.5

(1.15) (1.46) (0.63)

Num.Obs. 586 586 586

Dry (%) 43.34 26.11 34.81

Normal (%) 45.05 67.06 51.19

Wet (%) 11.60 6.83 13.99

Note: Table 15 shows the results for a fixed-effect production function of corn estimated using the five-rate
experimental data as in table 2, but with alternative definitions of abnormal weather. The unit of the nitrogen
rate variable is 25 lbs, and the variables I(wet) and I(dry) are dummy variables equal to 1 if the weather
was wet or dry, respectively. The regressions also include an interaction between a dummy for rotation and
nitrogen rate. All standard errors are clustered at the block level. The last panel of the table reports the
percentage of observations that fall into each weather category, as defined by the alternative definitions of
abnormal weather. *, **, and *** denote significance at the 10%, 5%, and 1% level, respectively.
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Table 16: Results for Alternative Experiments and Combinations of Management Practices

Production Damage Expected Marginal Damage

alpha Obs. beta Obs. Normal Weather Wet Weather

(1) (2) (3) (4) (5) (6)

Panel 1. 7-rate Experimental Data:

Full 0.86 364

(0.17)

Corn-soybean (C-S) 0.62 182

(0.18)

Corn-corn (C-C) 1.04 182

(0.23)

Panel 2. GSS Survey Data:

Fall; AA 1.687 3112 0.136 0.23

(0.107) (0.007) (0.009)

Fall; Manure 1.63 2020 0.135 0.22

(0.135) (0.007) (0.013)

Spring; AA 1.75 2562 0.107 0.186

(0.149) (0.005) (0.012)

Spring; UAN 1.516 2618 0.167 0.253

(0.084) (0.007) (0.009)

SD; C-S 1.316 1085 0.193 0.255

(0.115) (0.011) (0.014)

SD; C-C 1.698 508 0.115 0.194

(0.309) (0.015) (0.021)

AA; C-S; Fall 1.555 2359 0.146 0.227

(0.113) (0.007) (0.011)

AA; C-S; Spring 1.602 1662 0.122 0.196

(0.161) (0.007) (0.015)

Manure; C-S; Fall 1.473 1260 0.148 0.218

(0.161) (0.009) (0.017)

Manure; C-C; Fall 1.773 727 0.118 0.209

(0.248) (0.011) (0.02)

Note: Table 16 reports estimates for α from the seven-rate experimental data and estimates of β for
10 combinations of practices using the large Guided Stalk Nitrate survey dataset. The estimates for α
are obtained using the field fixed-effect model for the production function estimation. All models for
β include controls for excessive dry weather, nitrogen rate, corn suitability rating, mean and variance
of precipitation, drainage, and landform fixed-effects. Standard errors for β estimates are clustered at
the field level. AA=anhydrous ammonia. UAN=urea ammonium nitrate. SD=side-dressing.
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Table 17: Complete Estimation Results of Table 13

Model 1 Model 2 Model 3 Model 4 Model 5

N rate 29.227** 29.043*** 25.285*** 15.785*** 16.342***

(12.809) (8.933) (6.473) (4.545) (2.986)

N rate squared -1.670* -1.800*** -1.533*** -0.848** -0.902***

(0.930) (0.678) (0.519) (0.400) (0.260)

N rate x I(wet p80) -1.529 -2.593 4.442 20.527* 19.970***

(20.821) (20.608) (18.973) (11.094) (7.421)

N rate squared x I(wet p80) 0.177 0.420 -0.090 -1.339 -1.285**

(1.574) (1.557) (1.434) (0.904) (0.603)

N rate x I(dry) -11.100 -10.152 -12.846 1.264 0.721

(14.858) (10.000) (9.588) (6.149) (4.432)

N rate squared x I(dry) 0.541 0.623 0.897 -0.091 -0.041

(1.159) (0.793) (0.763) (0.515) (0.376)

Corn suitability rating (CSR) 0.672 1.040**

(0.495) (0.435)

Organic matter 2.664 -0.737

(6.154) (4.428)

Drainage -0.461 14.523

(13.895) (10.065)

Form (UAN) -14.319 17.972

(11.932) (14.115)

Timing (SD) 0.055 -13.471

(17.395) (15.587)

Timing (Spring) -2.201 -10.353

(16.989) (13.956)

Year (2018) -6.555

(13.936)

Year (2019) -39.450**

(15.285)

Year (2020) -64.953***

(20.495)

Year (2021) -12.366

(17.178)

Constant 95.065** 170.717** 100.362 160.333*** 159.634***

(44.605) (83.754) (78.769) (12.342) (9.332)

FE No No Year Field x Year Block x Year

Num.Obs. 586 574 574 586 586

R2 0.189 0.309 0.506 0.925 0.954

Std.Errors Field Field Field Field Block

Table 17 shows the complete estimation results of columns (2) and (3) of Table 13 while other columns are
same as Table 13’s. One unit of nitrogen rate is scaled to 25 lbs. The default groups of form and timing are
AA and fall. The baseline year is 2017. Note that since each field appeared only in one year, the field or
block fixed effects perform equivalently to field-by-year or block-by-year effects.

*, **, and *** denote significance at the 10%, 5%, and 1% level, respectively.
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Table 18: Production Function Estimation Results for α in Table 16

Full Soybean Corn

N rate 0.524*** 0.403*** 0.644***

(0.056) (0.054) (0.077)

N rate squared -0.001*** -0.001*** -0.001***

(0.000) (0.000) (0.000)

N rate x I(wet p80) -0.058 -0.123* 0.007

(0.090) (0.074) (0.115)

N rate squared x I(wet p80) 0.000 0.000* 0.000

(0.000) (0.000) (0.000)

N rate x I(dry) -0.191* -0.115 -0.268*

(0.098) (0.124) (0.140)

N rate squared x I(dry) 0.000* 0.000 0.000

(0.000) (0.000) (0.000)

I(wet p80) 10.801

(7.410)

I(dry) 20.935*** 55.256*** 41.708***

(7.482) (8.864) (10.317)

Constant 91.738*** 91.385*** 86.604***

(4.807) (3.904) (6.090)

Num.Obs. 364 182 182

R2 0.906 0.939 0.921

Std.Errors Field Field Field

FE Field Field Field

Table 18 presents the production function estimation results using the seven-
rate experimental data used to obtain α in Panel 1 of Table 16. The unit
of nitrogen rate is scaled to 25 lbs. As each field was recorded only in one
year, field fixed-effects controls for field-by-year effects.

*, **, and *** denote significance at the 10%, 5%, and 1% level, respectively.

57



Table 19: Damage Function Estimation Results for β in Table 16

Logit model for N stalk defficiency

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Fall; AA Fall; Manure Spring; AA Spring; UAN SD; C-S SD; C-C AA; C-S; Fall AA; C-S; Spring Manure; C-S; Fall Manure; C-C; Fall

I(wet p80) 0.989*** 0.898*** 0.913*** 0.922*** 0.654*** 0.904*** 0.839*** 0.807*** 0.727*** 1.006***

(0.122) (0.167) (0.147) (0.129) (0.210) (0.313) (0.142) (0.182) (0.222) (0.270)

I(dry) -0.402** 0.471*** -0.160 0.542*** -0.425* 0.429 -0.464*** -0.383* 0.366* 0.603**

(0.161) (0.169) (0.187) (0.150) (0.251) (0.506) (0.173) (0.219) (0.216) (0.279)

N rate -0.0106*** -0.00365*** -0.0130*** -0.00806*** -0.0124*** -0.00852** -0.00746*** -0.0122*** -0.00290 -0.00230

(0.00175) (0.00135) (0.00203) (0.00170) (0.00294) (0.00388) (0.00242) (0.00296) (0.00200) (0.00245)

CSR -6.26e-05 -0.000949 -0.00633* -0.00362 -0.00772 -0.0131 -0.000747 -0.00938** -0.00528 0.00458

(0.00319) (0.00487) (0.00360) (0.00329) (0.00523) (0.00831) (0.00359) (0.00411) (0.00603) (0.00864)

Organic matter -0.0507 -0.0643 0.00386 0.0118 0.0948* -0.0427* -0.0169 0.0198 -0.0307 -0.122

(0.0376) (0.0461) (0.0276) (0.0419) (0.0554) (0.0236) (0.0488) (0.0234) (0.0708) (0.0758)

Average precipitation 0.000857 0.00316 0.00417 0.00398 -0.00172 0.000602 0.00167 -0.000553 -0.000862 0.00594

(0.00342) (0.00489) (0.00323) (0.00347) (0.00558) (0.00878) (0.00376) (0.00433) (0.00603) (0.00981)

SD precipitation -0.00323 0.0103* 0.00516 0.0281*** 0.0170** 0.0131 -0.00217 0.00578 0.0134* 0.00473

(0.00405) (0.00626) (0.00455) (0.00488) (0.00815) (0.0120) (0.00452) (0.00586) (0.00775) (0.0120)

Drainage -0.596*** -0.386** -0.326*** -0.274** 0.253 -0.479** -0.472*** -0.344*** -0.183 -0.730**

(0.125) (0.172) (0.117) (0.139) (0.188) (0.223) (0.150) (0.128) (0.248) (0.284)

Constant 3.072** -0.967 0.303 -3.146** 0.0198 1.104 1.773 2.194 -0.176 -1.139

(1.381) (1.751) (1.357) (1.272) (2.172) (3.151) (1.548) (1.701) (2.226) (3.374)

FE (landform) Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Observations 3,112 2,020 2,562 2,618 1,085 508 2,359 1,662 1,260 727

R2 0.0741 0.0411 0.0678 0.0847 0.0738 0.0835 0.0568 0.0638 0.0327 0.0596

Std.Errors Field Field Field Field Field Field Field Field Field Field

Table 19 shows the damage function estimation results for β in Panel 2 of table 16. We use the GSS data to estimate a logit model for each subsample. The unit of nitrogen rate is scaled to 25 lbs. CSR and SD are
abbreviations of corn suitability rating and standard deviation. *, **, and *** denote significance at the 10%, 5%, and 1% level, respectively.
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