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Abstract 

 
 
The Soil and Water Assessment Tool (SWAT) model is a continuation of nearly 30 years of 

modeling efforts conducted by the U.S. Department of Agriculture (USDA), Agricultural 

Research Service. SWAT has gained international acceptance as a robust interdisciplinary 

watershed modeling tool, as evidenced by international SWAT conferences, hundreds of 

SWAT-related papers presented at numerous scientific meetings, and dozens of articles 

published in peer-reviewed journals. The model has also been adopted as part of the U.S. 

Environmental Protection Agency’s BASINS (Better Assessment Science Integrating Point & 

Nonpoint Sources) software package and is being used by many U.S. federal and state 

agencies, including the USDA within the Conservation Effects Assessment Project. At 

present, over 250 peer-reviewed, published articles have been identified that report SWAT 

applications, reviews of SWAT components, or other research that includes SWAT. Many of 

these peer-reviewed articles are summarized here according to relevant application categories 

such as streamflow calibration and related hydrologic analyses, climate change impacts on 

hydrology, pollutant load assessments, comparisons with other models, and sensitivity 

analyses and calibration techniques. Strengths and weaknesses of the model are presented, and 

recommended research needs for SWAT are provided. 

 

Keywords: developmental history, flow analysis, modeling, SWAT, water quality.  
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INTRODUCTION  

The Soil and Water Assessment Tool (SWAT) model (Arnold et al., 1998; Arnold and Fohrer, 

2005) has proven to be an effective tool for assessing water resource and nonpoint pollution problems 

for a wide range of scales and environmental conditions across the globe. In the U.S., SWAT is 

increasingly being used to support Total Maximum Daily Load (TMDL) analyses (; research the 

effectiveness of conservation practices in the U.S. Department of Agriculture (USDA) Natural 

Resource Conservation Service (NRCS) Conservation Effects Assessment Program (CEAP) 

(Mausbach and Dedrick, 2004; http://www.nrcs.usda.gov/technical/NRI/ceap/); perform “macro-scale 

assessments” such as for the Upper Mississippi River Basin (e.g., Arnold et al., 2000; Jha et al., 2006b) 

and the entire U.S. (e.g., Arnold et al., 1999a; Rosenberg et al., 2003); and for a wide variety of other 

water use and water quality applications. Similar SWAT application trends have also emerged in 

Europe and other regions, as indicated by the variety of studies presented in three previous European 

international SWAT conferences; these are reported in part for the first conference in a special issue of 

Hydrological Processes (volume 19, issue 3), the SWAT2003 2nd International Conference 

Proceedings (http://www.brc.tamus.edu/swat/pubs_2ndconf.html), and in the SWAT2005 3rd 

International Conference Proceedings (http://www.brc.tamus.edu/swat/pubs_3rdconf.html). 

Reviews of SWAT applications and/or components have been previously reported, sometimes in 

conjunction with comparisons with other models (e.g., Arnold and Fohrer, 2005; Borah and Bera, 

2003; Borah and Bera, 2004; Horn et al., 2004; Shepherd et al., 1999). However, these previous 

reviews do not provide a comprehensive overview of the complete body of SWAT applications that 

have been reported in the peer-reviewed literature. Thus, the main objective of this study is to fill this 

gap by providing a review of the full range of studies that have been conducted with SWAT, drawing 

primarily from peer-reviewed literature. Research findings or methods are summarized here for most 

of the approximately 220 peer-reviewed articles that have been identified in the literature, based on 
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relevant application categories. A brief overview of SWAT development history is also provided, as 

well as summaries of the strengths and weaknesses of the model and future research needs.  

SWAT DEVELOPMENTAL HISTORY AND OVERVIEW 

The development of SWAT is a continuation of USDA Agricultural Research Service (ARS) 

modeling experience that spans a period of roughly 30 years. Early origins of SWAT can be traced to 

previously developed USDA-ARS models (Figure 1), including the Chemicals, Runoff, and Erosion 

from Agricultural Management Systems (CREAMS) model (Knisel et al., 1980), the Groundwater 

Loading Effects on Agricultural Management Systems (GLEAMS) model (Leonard et al., 1987), and 

the Environmental Impact Policy Climate (EPIC) model (Gassman et al., 2005; Izaurralde et al., 2006), 

which was originally called the Erosion Productivity Impact Calculator (Williams, 1990). The current 

SWAT model is a direct descendant of the Simulator for Water Resources in Rural Basins (SWRRB) 

model (Williams et al., 1985; Arnold and Williams, 1987), which was designed to simulate 

management impacts on water and sediment movement for ungauged rural basins across the U.S.  

Development of SWRRB began in the early 1980s with modification of the daily rainfall 

hydrology model from CREAMS. A major enhancement was the expansion of surface runoff and other 

computations for up to 10 subbasins, as opposed to a single field, to predict basin water yield. Other 

enhancements included an improved peak runoff rate method, calculation of transmission losses, and 

the addition of several new components: groundwater return flow (Arnold and Allen, 1993), reservoir 

storage, the EPIC crop growth submodel, a weather generator, and sediment transport. Further 

modifications of SWRRB in the late 1980s included the incorporation of the GLEAMS pesticide fate 

component, optional USDA Soil Conservation Service (SCS) technology for estimating peak runoff 

rates, and newly developed sediment yield equations. These modifications extended the model’s 

capability to deal with a wide variety of watershed water quality management problems.  
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Figure 1. Schematic of SWAT developmental history, including selected SWAT adaptations. 

 

Arnold et al. (1995b) developed the Routing Outputs to Outlet (ROTO) model in the early 1990s 

in order to support an assessment of the downstream impact of water management within Indian 

reservation lands in Arizona and New Mexico that covered several thousand square kilometers, as 

requested by the U.S. Bureau of Indian Affairs. The analysis was performed by linking output from 

multiple SWRRB runs and then routing the flows through channels and reservoirs in ROTO via a reach 

routing approach. This methodology overcame the SWRRB limitation of allowing only 10 subbasins; 

however, the input and output of multiple SWRRB files was cumbersome and required considerable 

computer storage. To overcome the awkwardness of this arrangement, SWRRB and ROTO were 

merged into the single SWAT model (Figure 1). SWAT retained all the features that made SWRRB 

such a valuable simulation model, while allowing simulations of very extensive areas. 
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SWAT has undergone continued review and expansion of capabilities since it was created in the 

early 1990s. Key enhancements for previous versions of the model (SWAT94.2, 96.2, 98.1, 99.2, and 

2000) are described by Arnold and Fohrer (2005) and Neitsch et al. (2005), including the incorporation 

of in-stream kinetic routines from the QUAL2E model (Brown and Barnwell, 1987). Theoretical 

documentation of previous versions of the model is provided by Arnold et al. (1998) and is posted at 

www.brc.tamus.edu/swat/soft_model.html. A detailed theoretical documentation and user’s manual for 

the latest version of the model (SWAT2005) is given in Neitsch et al. (2005a; 2005b); the current 

version of the model is briefly described here to provide an overview of the model structure and 

execution approach.    

SWAT OVERVIEW 

SWAT is a basin-scale, continuous-time model that operates on a daily time step and is designed 

to predict the impact of management on water, sediment, and agricultural chemical yields in ungauged 

watersheds. The model is physically based, computationally efficient, and capable of continuous 

simulation over long time periods. Major model components include weather, hydrology, soil 

temperature, plant growth, nutrients, pesticides, and land management. In SWAT, a watershed is 

divided into multiple subwatersheds, which are then further subdivided into Hydrologic Response 

Units (HRUs) that consist of homogeneous land use, management, and soil characteristics. The HRUs 

represent percentages of the subwatershed area and are not identified spatially within a SWAT 

simulation. Alternatively, a watershed can be subdivided into only subwatersheds that are 

characterized by dominant land use, soil type, and management.  

Climatic Inputs and HRU Hydrologic Balance 

Climatic inputs used in SWAT include daily precipitation, maximum and minimum temperature, 

solar radiation data, relative humidity, and wind speed data, which can be input from measured records 

and/or generated. Relative humidity is required if the Penman-Monteith (Monteith, 1965) or Priestly-

Taylor (Priestly and Taylor, 1972) evapotranspiration (ET) routines are used; wind speed is only 
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necessary if the Penman-Monteith method is used. Measured or generated subdaily precipitation inputs 

are required if the Green and Ampt infiltration method (Green and Ampt, 1911) is selected. The 

average air temperature is used to determine if precipitation should be simulated as snowfall. The 

maximum and minimum temperature inputs are used in the calculation of daily soil and water 

temperatures. Generated weather inputs are calculated from tables consisting of 13 monthly climatic 

variables, which are derived from long-term measured weather records. Customized climatic input data 

options include (1) simulation of up to 10 elevation bands to account for orographic precipitation 

and/or for snowmelt calculations; (2) adjustments to climate inputs to simulate climate change; and (3) 

forecasting of future weather patterns, which is a new feature in SWAT2005.   

The overall hydrologic balance is simulated for each HRU, including canopy interception of 

precipitation, partitioning of precipitation, snowmelt water and irrigation water between surface runoff 

and infiltration, redistribution of water within the soil profile, evapotranspiration, lateral subsurface 

flow from the soil profile, and return flow from shallow aquifers. Estimation of area snow coverage, 

snowpack temperature, and snowmelt water is based on the approach described by Fontaine et al. 

(2002). Three options exist in SWAT for estimating surface runoff from HRUs, which are 

combinations of daily or sub-hourly rainfall and the NRCS Curve Number (CN) method (USDA-

NRCS, 2004) or the Green and Ampt method. Canopy interception is implicit in the CN method while 

explicit canopy interception is simulated for the Green and Ampt method.  

A storage routing technique is used to calculate redistribution of water between layers in the soil 

profile. Bypass flow can be simulated as described by Arnold et al. (2005), for soils characterized by 

cracking such as Vertisols. SWAT2005 also provides a new option for simulating perched water tables 

in HRUs that have seasonal high water tables. Three methods for estimating potential ET are provided: 

Penman-Monteith, Priestly-Taylor, and Hargreaves (Hargreaves et al., 1985). ET values estimated 

external to SWAT can also be input for a simulation run. The Penman-Monteith option must be used 

for climate change scenarios that account for changing atmospheric CO2 levels. Recharge below the 

soil profile is partitioned between shallow and deep aquifers. Return flow to the stream system and ET 



 

6 

from deep-rooted plants (termed “revap”) can occur from the shallow aquifer. Water that recharges the 

deep aquifer is assumed lost from the system. 

Cropping, Management Inputs, and HRU-Level Pollutant Losses  

Crop yields and/or biomass output can be estimated for a wide range of crop rotations, 

grassland/pasture systems, and trees with the crop growth submodel. New routines in SWAT2005 

allow for simulation of forest growth from seedling to mature stand. Planting, harvesting, tillage 

passes, nutrient applications, and pesticide applications can be simulated for each cropping system with 

specific dates or with a heat unit scheduling approach. Residue and biological mixing are simulated in 

response to each tillage operation. Nitrogen and phosphorus applications can be simulated in the form 

of inorganic fertilizer and/or manure inputs. An alternative auto fertilizer routine can be used to 

simulate nitrogen applications, as a function of nitrogen stress. Biomass removal and manure 

deposition can be simulated for grazing operations. SWAT2005 also features a new continuous manure 

application option to reflect conditions representative of confined animal feeding operations, which 

automatically simulates a specific frequency and quantity of manure to be applied to a given HRU. The 

type, rate, timing, application efficiency, and percentage application to foliage versus soil can be 

accounted for simulations of pesticide applications.  

Selected conservation and water management practices can also be simulated in SWAT. 

Conservation practices that can be accounted for include terraces, strip cropping, contouring, grassed 

waterways, filter strips, and conservation tillage. Arabi et al. (2007) present standardized methods for 

simulating these and other practices (see additional discussion in the SWAT Strengths, Weaknesses, 

and Future Research Directions section). Simulation of irrigation water on cropland can be 

accomplished based on five alternative sources: stream reach, reservoir, shallow aquifer, deep aquifer, 

or a waterbody source external to the watershed. The irrigation applications can be simulated for 

specific dates or with an auto-irrigation routine, which triggers irrigation events according to a water 

stress threshold. Subsurface tile drainage is simulated in SWAT2005 with improved routines that are 

based on the work performed by Du et al. (2005) and Green et al. (2006); the simulated tile drains can 
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also be linked to new routines that simulate the effects of depressional areas (potholes). Water transfer 

can also be simulated between different water bodies, as can “consumptive water use” in which 

removal of water from a watershed system is assumed.  

HRU-level and in-stream pollutant losses can be estimated with SWAT for sediment, nitrogen, 

phosphorus, pesticides, and bacteria. Sediment yield is calculated with the Modified Universal Soil 

Loss Equation (MUSLE) developed by Williams and Berndt (1977); USLE estimates are output for 

comparative purposes only. The transformation and movement of nitrogen (N) and phosphorus (P) 

within an HRU are simulated in SWAT as a function of nutrient cycles consisting of several inorganic 

and organic pools.  Losses of both N and P from the soil system in SWAT occur by crop uptake and in 

surface runoff in both the solution phase and on eroded sediment. Simulated losses of N can also occur 

in percolation below the root zone, in lateral subsurface flow including tile drains, and by volatilization 

to the atmosphere. Accounting of pesticide fate and transport includes degradation and losses by 

volatilization, leaching, on eroded sediment, and in the solution phase of surface runoff and later 

subsurface flow. Bacteria surface runoff losses are simulated in both the solution and eroded phases 

with improved routines in SWAT2005.  

Flow and Pollutant Loss Routing, and Auto-Calibration and Uncertainty Analysis 

Flows are summed from all HRUs to the subwatershed level and then routed through the stream 

system using either the variable rate storage method (Williams, 1969) or the Muskingum method 

(Neitsch et al., 2005), both of which are variations of the kinematic wave approach. Sediment, nutrient, 

pesticide, and bacteria loadings or concentrations from each HRU are also summed at the 

subwatershed level, and the resulting losses are routed through channels, ponds, wetlands, depressional 

areas, and/or reservoirs to the watershed outlet. Contributions from point sources and urban areas are 

also accounted for in the total flows and pollutant losses exported from each subwatershed. Sediment 

transport is simulated as a function of peak channel velocity in SWAT2005, which is a more simplified 

approach relative to the stream power methodology used in previous SWAT versions. Simulation of 

channel erosion is accounted for with a channel erodibility factor. In-stream transformations and 
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kinetics of algae growth, N and P cycling, carbonaceous biological oxygen demand, and dissolved 

oxygen are performed based on routines developed for the QUAL2E model. Degradation, 

volatilization, and other in-stream processes are simulated for pesticides, as is the decay of bacteria. 

Routing of heavy metals can be simulated; however, no transformation or decay processes are 

simulated for these pollutants. 

A final feature in SWAT2005 is a new automated sensitivity, calibration, and uncertainty analysis 

component that is based on approaches described by van Griensven and Meixner (2006), van 

Griensven et al. (2006), and van Griensven (2006). These routines can be implemented for any subset 

of SWAT input parameters, unless the AVSWAT-X interface options are used as discussed further in 

the Geographic Information System Interface Tools subsection.  

SWAT ADAPTATIONS 

A notable trend that is interwoven with the ongoing development of SWAT is the emergence of 

modified SWAT models that have been adapted to provide improved simulation of specific processes, 

which in some cases have been focused on specific regions. Notable examples (Figure 1) include the 

Extended SWAT (ESWAT) model, the Soil and Water Integrated Model (SWIM), SWAT-G, and 

SWATMOD. The ESWAT model (van Griensven and Bauwens, 2003; 2005) features several 

modifications relative to the original SWAT model including (1) sub-hourly precipitation inputs and 

infiltration, runoff, and erosion loss estimates based on a user-defined fraction of an hour; (2) a river 

routing module that is updated on an hourly time step and is interfaced with a water quality component 

that features in-stream kinetics based partially on functions used in the QUAL2E model (Brown and 

Barnwell, 1987) as well as additional enhancements; and (3) multi-objective (multi-site and/or multi-

variable) calibration and autocalibration modules (similar components are now incorporated in 

SWAT2005). The initial SWAT-G model was developed by modifying the SWAT99.2 percolation, 

hydraulic conductivity, and interflow functions to provide improved flow predictions for typical 

conditions in low mountain ranges in Germany (Lenhart et al., 2002). Further SWAT-G enhancements 

include an improved method of estimating erosion loss (Lenhart et al., 2005) and a more detailed 
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accounting of CO2 effects on leaf area index and stomatal conductance (Eckhardt and Ulbrich, 2003). 

The SWIM model is based primarily on hydrologic components from SWAT and nutrient cycling 

components from the MATSALU model (Krysanova et al., 1998, 2005) and is designed to simulate 

“mesoscale” (100 – 100,000 km2) watersheds. Recent improvements to the model include 

incorporation of a groundwater dynamics submodel (Hatterman et al., 2004), enhanced capability to 

simulate forest systems (Wattenbach et al., 2005), and development of routines to more realistically 

simulate wetlands and riparian zones (Hatterman et al., 2006). The SWATMOD model (Sophocleous 

et al., 2000) is an interface between SWAT and the MODFLOW groundwater model and is discussed 

further in the Model Interface section. The SWATMOD model (Sophocleus et al., 1999) is an interface 

between SWAT and the MODFLOW groundwater model, and is discussed further in the Model 

Interface Section.    

GEOGRAPHIC INFORMATION SYSTEM INTERFACE TOOLS 

A second trend that has paralleled the historical development of SWAT is the creation of various 

Geographic Information System (GIS) interface tools to support the input of topographic, land use, 

soil, and other digital data into SWAT. The first GIS interface program developed for SWAT was 

SWAT/GRASS, which was built within the GRASS raster-based GIS (Srinivasan and Arnold, 1994). 

Haverkamp et al. (2005) have adopted SWAT/GRASS within the InputOutputSWAT (IOSWAT) 

software package, which generates inputs and provides output mapping support for both SWAT and 

SWAT-G. Other tools incorporated in IOSWAT include the Topographic Parameterization Tool 

(TOPAZ), Subwatershed Spatial Analysis Tool (SUSAT), and OUTGRASS, which, respectively, are 

used to delineate subwatershed maps, determine appropriate levels of subwatershed/HRU 

discretization, and to assign model output values to specific watershed grids. 

The ArcView-SWAT (AVSWAT) interface tool (Di Luzio et al., 2004a,b) is designed to generate 

model inputs from ArcView 3.x GIS data layers and execute SWAT2000 within the same framework. 

AVSWAT was incorporated within the U.S. Environmental Protection Agency’s (USEPA) Better 

Assessment Science Integrating point and Non-point Sources (BASINS) software package version 3.0 
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(USEPA, 2006a), which provides GIS utilities that support automatic data input for SWAT2000 using 

ArcView (Di Luzio et al., 2002). The most recent version of the interface, denoted AVSWAT-X, 

provides additional input generation functionality, including soil data input from both the USDA-

NRCS State Soils Geographic (STATSGO) and Soil Survey Geographic (SSURGO) databases 

(Di Luzio et al., 2004a; SWAT, 2007b) for applications of SWAT2005. Automatic sensitivity, 

calibration, and uncertainty analysis can also be initiated with AVSWAT-X for SWAT2005, for a pre-

selected subset of 41 input parameters. The Automated Geospatial Watershed Assessment (AGWA) 

interface tool (Miller et al., 2006) is an alternative ArcView-based interface tool that supports data 

input generation for both SWAT2000 and the KINEROS2 model, including soil inputs from the 

SSURGO, STATSGO, or global FAO soil maps. AGWA and AVSWAT have both been incorporated 

as interface approaches for generating SWAT2000 inputs within BASINS version 3.1 (D. Wells, 

personal communication. USEPA). 

A SWAT interface compatible with ArcGIS version 9.x is currently being tested and is projected 

for release sometime in the fall of 2006 (Olivera et al., 2006; SWAT, 2007a). An ArcGIS 9.x version 

of AGWA (AGWA2) is also under development and is expected to be released around mid-2007 

(USDA-ARS, 2006). A variety of other tools have been developed to support executions of SWAT 

simulations, including: (1) the interactive SWAT (i_SWAT) software, which is described by Gassman 

et al. (2003) and further documented and provided for download by Campbell (2006); and (2) the 

AUTORUN system, as described by Kannan et al. (2007b).  

SWAT APPLICATIONS 

Applications of SWAT have expanded worldwide over the past decade. Many of the applications 

have been driven by the needs of various government agencies, particularly in the United States and 

the European Union, that require direct assessments of anthropogenic, climate change, and other 

influences on a wide range of water resources or exploratory assessments of model capabilities for 

potential future applications.  
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One of the first major applications performed with SWAT was within the Hydrologic Unit Model 

of the U.S. (HUMUS) modeling system (Arnold et al., 1999a), which was implemented to support 

USDA analyses of the United States Resources Conservation Act Assessment of 1997 for the 

conterminous U.S. The system was used to simulate the hydrologic and/or pollutant loss impacts of 

agricultural and municipal water use, tillage and cropping system trends, and other scenarios within 

each of the 2,149 U.S. Geological Survey (USGS) 8-digit Hydrologic Cataloging Unit (HCU) 

watersheds (Seaber et al., 1987; USDA-NRCS, 2006); referred to hereafter as “8-digit watersheds.” 

Figure 2 shows the distribution of the 8-digit watersheds within the 18 Major Water Resource Regions 

(MWRRs) that comprise the conterminous U.S.   

SWAT is also being used to support the USDA Conservation Effects Assessment Project, which  

is designed to quantify the environmental benefits of conservation practices at both the national and 

watershed scales (Mausbach and Dedrick, 2004). SWAT is being applied at the national level within a 

modified HUMUS framework to assess the benefits of different conservation practices at that scale. 

The model is also being used to evaluate conservation practices for watersheds of varying sizes that are 

representative of different regional conditions and mixes of conservation practices. 

SWAT is increasingly being used to perform TMDL analyses, which must be performed for 

impaired waters by the different states as mandated by the 1972 U.S. Clean Water Act (USEPA, 

2006b). Roughly 45% of the nearly 39,000 currently listed impaired waterways still require TMDLs 

(USEPA, 2006c); SWAT, BASINS, and a variety of other modeling tools will be used to help 

determine the pollutant sources and potential solutions for these forthcoming TMDLs. Extensive 

discussion of applying SWAT and other models for TMDLs is presented in Borah et al. (2006), 

Benham et al. (2006), Shirmohammadi et al. (2006), and Vellidis et al. (2006).  

SWAT has also been used extensively in the context of projects supported by various European 

Commission (EC) agencies. Several models including SWAT were used to quantify the impacts of 

climate change for five different watersheds in Europe within the Climate Hydrochemistry and 

Economics of Surface-water Systems (CHESS) project, which was sponsored by the EC Environment 
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and Climate Research Programme (CHESS, 2001). A suite of nine models including SWAT were 

tested in 17 different European watersheds as part of the EUROHARP project, which was sponsored 

by the EC Energy, Environment and Sustainable Development (EESD) Programme (EUROHARP, 

2006). The goal of the research was to assess the ability of the models to estimate nonpoint source 

 

 

Figure 2. The distribution of the 2,149 8-digit watersheds within the 

18 Major Water Resource Regions (MWRRs) that comprise the conterminous U.S. 

 

N and P losses to both freshwater streams and coastal waters. The EESD sponsored tempQsim project 

focused on testing the ability of SWAT and five other models to simulate intermittent stream 

conditions that exist in southern Europe (tempQsim, 2006). Eight models including SWAT have also 

been incorporated into the AgriBMPWater modeling system to evaluate different agricultural BMPs in 

eight watersheds in five European countries (Turpin et al., 2005).  
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The remaining application discussion focuses on the wide range of specific SWAT applications 

that have been reported in the literature. Some descriptions of modified SWAT model applications are 

interspersed within the descriptions of studies that used the standard SWAT model.  

SPECIFIC SWAT APPLICATIONS 

The numerous SWAT applications reported in the literature can be categorized in a variety of 

ways. For this study, the articles were grouped into nine subcategories and then further broadly defined 

as hydrologic only, hydrologic and pollutant loss, or pollutant loss only (Table 1). The summary given 

in Table 1 includes most of the articles found in the literature. However, some of the articles could not 

be categorized according to the Table 1 criteria, and reviews are not provided for all of the articles 

included in the Table 1 summary. A complete list of the SWAT-related peer reviewed articles is 

provided at www.brc.tamus.edu/swat, which is updated on a regular basis. 

 

Table 1. Overview of major application categories of SWAT studies reported in the literature. † 

Primary Application Category 
Hydrologic 

Only 
Hydrologic & 
Pollutant Loss 

Pollutant Loss 
Only 

Calibration and/or sensitivity analysis 14 20 2 
Climate change impacts 21 7 - 
GIS interface descriptions 3 3 2 
Hydrologic assessments 40 - - 
Variation in configuration or data input effects 18 14 - 
Comparisons with other models/techniques 5 7 - 
Interfaces with other models 13 16 6 
Pollutant assessments - 52 5 
†Includes studies describing applications of ESWAT, SWAT-G, SWIM, and other modified SWAT models. 
 

HYDROLOGIC STUDIES 

Simulation of the hydrologic balance is foundational for all SWAT watershed applications and is 

usually described in some form regardless of the focus of the analysis. The majority of SWAT 

applications also report some type of graphical and/or statistical hydrologic calibration, especially for 

streamflow, and many of the studies also report validation results.  A wide range of statistics has been 

used to evaluate SWAT hydrologic predictions. By far the most widely used statistics reported for 

hydrologic calibration and validation are the regression correlation coefficient (r2) and the Nash-
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Sutcliffe model efficiency (NSE) coefficient (Nash and Sutcliffe, 1970). The r2 measures how well the 

simulated versus observed regression line approaches an ideal match and ranges from 0 to 1, with a 

value of 0 indicating no correlation and a value of 1 representing that the predicted dispersion equals 

the measured dispersion (Krause et al., 2005). The regression slope and intercept also equal 1 and 0, 

respectively, for a perfect fit; the slope and intercept are usually not reported for most studies. The 

NSE ranges from -• to 1 and measures how well the simulated versus observed data match the 1:1 line 

(regression line with slope equal to 1). An NSE value of 1 again reflects a perfect fit between the 

simulated and measured data. A value of 0 or less than 0 indicates that the mean of the observed data is 

a better predictor than the model output. See Krause et al. (2005) for further implications of the r2, 

NSE, and other efficiency criteria measures. 

An extensive list of r2 and NSE statistics are presented in Table 2 for 100 SWAT hydrologic 

calibration and/or validation results reported in the literature. This set of statistics provides valuable 

insight regarding the hydrologic performance of the model across a wide spectrum of conditions. No 

absolute criteria for judging model performance has been firmly established to date in the literature. 

However, Moriasi et al. (2006) have suggested that NSE values should exceed 0.5 in order for model 

results to be judged as being satisfactory. Assuming this criterion for both the NSE and r2 values, the 

majority of statistics listed in Table 2 would be judged as adequately replicating observed streamflows 

and other hydrologic indicators. However, it is clear that poor results were obtained for parts or all of 

some studies. The poorest results generally occurred for daily predictions, although this was not 

universal (e.g., Grizzetti et al., 2005). Some of the weaker results can be attributed in part to inadequate 

representation of rainfall inputs, due to either a lack of adequate rain gauges in the simulated watershed 

or subwatershed configurations that were too coarse to capture the spatial detail of rainfall inputs (e.g., 

Cao et al., 2006; Conan et al., 2003b; Bouraoui et al., 2002; Bouraoui et al., 2005). Other factors that 

may adversely affect SWAT hydrologic predictions include a lack of model calibration (Bosch et al., 

2004; Jayakrishnan et al., 2005), inaccuracies in measured streamflow data (Harmel et al., 2006), and 

relatively short calibration and validation periods (Muleta and Nicklow, 2005b).   
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Example Calibration/Validation Studies 

The SWAT hydrologic subcomponents have been refined and validated at a variety of scales (Table 2). 

For example, Arnold and Allen (1996) used measured data from three Illinois watersheds, ranging in 

size from 122 to 246 km2, to successfully validate surface runoff, groundwater flow, groundwater ET, 

ET in the soil profile, groundwater recharge, and groundwater height parameters. Santhi et al. (2001a, 

2006) performed extensive streamflow validations for two Texas watersheds that cover over 4,000 

km2. Arnold et al. (1999b) evaluated streamflow and sediment yield data in the Texas Gulf Basin with 

drainage areas ranging from 2,253 to 304,260 km2. Streamflow data from approximately 1,000 stream 

monitoring gages from 1960 to 1989 were used to calibrate and validate the model. Predicted average 

monthly streamflow data from three six-digit HUA were 5% higher than measured flows with standard 

deviations between measured and predicted within 2%. Arnold et al. (2000) compared SWAT 

groundwater recharge and discharge (base flow) estimates with filtered estimates for the 491,700 km2 

Upper Mississippi River Basin. Annual runoff and ET were validated across the entire continental U.S. 

as part of the HUMUS (Hydrologic Unit Model for the United States) project (Arnold et al., 1999a).  
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Table 2. Summary of reported SWAT streamflow and other hydrologic calibration and validation results. 

Calibration Validation 
Daily Monthly Annual Daily Monthly Annual 

Reference Watershed(s) Area 
(km2) Indicator 

                
Time period 

(C = calibration; 
V = validation) 

 
r2 NSE r2 NSE r2 NSE r2 NSE r2 NSE r2 NSE 

Afinowicz et al. (2005) North Fork of the Upper 
Guadalope River (Texas) 60 stream 

flow 
C: 1992-96  

V: 1997-Sept 03  0.4  0.29    0.09  0.5   

Arabi et al. (2006) Dreisbach & Smith Fry 
(Indiana) 6.2 & 7.3 stream 

flow 

C: 1975 – May 
1977             

V: 1974-75  
  

.92 
and 
.86 

.84 
and 
.73 

    
.87 
and 
.81 

.73 
and 
.63 

  

   surface 
runoff    

.91 
and 
.84 

.80 
and 
.62 

    
.88 
and 
.84 

.75 
and 
.63 

  

Arnold and Allen (1996) 
Goose Creek, Hadley 

Creek, & Panther Creek 
(Illinois) 

122 – 246 surface 
runoff 

1951-52,          
1955-57, or 

1956-58 
        

.79 
to 
.94 

   

   ground 
water flow “         

.38 
to 
.51 

   

   
total 

stream 
flow 

“         
.63 
to 
.95 

   

Arnold et al. (2000) 
Upper Mississippi River 

Basin (north central 
U.S.) 

491,700 stream 
flow 

C: 1961-80  
V: 1981-85   .63      .65    

Arnold et al. (2005) USDA-ARS Y-2 (Texas) .534 crack flow 1998-99       .84      

   surface 
runoff 1998-99       .87      

Arnold et al. (1999a) Conterminous U.S. 
(Figure 2)  - stream 

flow? runoff           .80  

Arnold et al. (1999b) 35 USGS 8-digit 
watersheds (Texas)  

2,253 – 
304,620 

stream 
flow 1965-89     

.23  
to 
.96 

-1.1   
to 
.87 

      

 Sequin, Neches, & 
Colorado Rivers (Texas) 

9,104 – 
108,788 

stream 
flow 1965-89         

.40 
to 
.95 

.53 
to 
.86 

  

Behera & Panda (2006) Kapgari (India) 9.73 surface 
runoff  

C: 2002           
V: 2003     

(rainy season) 
.94 .88     .91 .85     
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Table 2. Continued 

Calibration Validation 
Daily Monthly Annual Daily Monthly Annual 

Reference Watershed Area 
(km2) Indicator 

                
Time period 

(C = calibration; 
V = validation) 

 
r2 NSE r2 NSE r2 NSE r2 NSE r2 NSE r2 NSE 

Benaman et al. (2005) 

Cannonsville (New 
York); 4 sub- 

watersheds: 3, 5, 11, & 
& 78 % of total area 

1,178 
(total area) 

stream 
flow 

1994-99  
   

.72 
to 
.80 

.63 
to 
.78 

        

 2 subwatersheds: 30 & 
78% of total area  stream 

flow 
1990-93 

         
.73 
& 
.80 

.62  
& 
.76 

  

Benham et al. (2006) Shoal Creek (Missouri); 
upsteam gauge 367 stream 

flow  .40 .21 .70 .63   .61 .54 .61 .66   

Binger (1996) Goodwin Creek 
(Mississippi) 21.3 stream 

flow 
V: 1982-91 

(140 r2 statistics)           
93  
≥ 

.90 
 

Bosch et al. (2004) 
Subwatershed of the 

Little River (Georgia, 
USA) 

22.1 stream 
flow 

1997-02 
(uncalibrated)        

-.24 
to     

-.03 
 

.55  
to 
.80 

  

Bouraoui et al. (2005) Medjerda River (Algeria 
and Tunisia) 16,000 stream 

flow 
Sept. 1988 – 
March 1999 .44 .23 .75 .53         

 Medjerda subwatershed 314 “  .66 .33 .62 .59         

 “ 163 “  .69 .41 .84 .84         

Bouraoui et al. (2002) Ouse (Yorkshire, United 
Kingdom) 3,500 stream 

flow 1986-90  .77           

 Ouse subwatershed 1,470 “   .39           

 Ouse subwatershed 980 “   .45           

Bouraoui et al. (2004) Vantaanjoki (Finland) 1,682 stream 
flow 1965-84          .87   

 Vantaanjoki 
subwatershed 295 “ 1982-84  .81           

Cao et al. (2006) 

Motueka River (South 
Island, New Zealand); 

primary calibration 
subwatershed 

1,756.6 stream 
flow 

C: 1990-94       
V: 1995-00 .82 .78     .75 .72     

 Six other subwatersheds 
81.6         
to         

479 

stream 
flow 

C: 1990-94       
V: 1995-00 

.52 
to 
.62 

.36 
to 
.60 

    
.41 
to 
.61 

.35 
to 
.57 

    

Cerucci & Conrad 
(2003) Townbrook (New York) 37 stream 

flow 
Oct. 1999 – 
Sept. 2000   .72          
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Table 2. Continued 

Calibration Validation 
Daily Monthly Annual Daily Monthly Annual 

Reference Watershed Area 
(km2) Indicator 

                
Time period 

(C = calibration; 
V = validation) 

 
R2 NSE r2 NSE r2 NSE r2 NSE r2 NSE r2 NSE 

Chanasyk et al. (2003) 3 watersheds 
(Saskatchewan) 

1.53 – 
2.26 

surface 
runoff 1999-00  

-35.7 
to      

-.005 
          

Chaplot et al. (2004) Walnut Creek 51.3 stream 
flow 1991-98   .73          

Cheng et al. (2006) Heihe River (China) 7,241 stream 
flow 

C: 1992-97      
V: 1998-99   .80 .78     .78 .76   

Chu & Shirmohammadi 
(2004) Warner Creek 3.46 stream 

flow 
C: 1994-95       
V: 1996-99   .66 .52     .69 .63   

   surface 
runoff 

C: 1994-95       
V: 1996-99   .43 .35     .88 .77   

   subsurface 
runoff 

C: 1994-95       
V: 1996-99   .56 .27     .47 .42   

Coffey et al. (2004) University of Kentucky 
ARC (Kentucky) 5.5 stream 

flow 1995 .26 .09 .70 .41         

    1996 .40 .15 .88 .61         

Conan et al. (2003a) Coët-Dan (Brittany, 
France) 12 stream 

flow 
C: 1995-96       
V: 1994-99  .79      .42  .87   

 Coët-Dan subwatershed  stream 
flow V: 1994-99          .83   

Conan et al. (2003b) Upper  Guadiana River 
(Spain) 18,100 stream 

flow 1975-91        .45     

Cotter  et al. (2003) Moores Creek 
(Arkansas) 18.9 stream 

flow 1997-98 .76            

Di Luzio et al. (2005) Goodwin Creek 
(Mississippi) 21.3 surface 

runoff 1982-93         
.90 
to 
.95 

.87 
to 
.97 

  

Di Luzio & Arnold 
(2004) Blue River (Oklahoma) 1,233 stream 

flow 

1994-2000 
(24 separate 

runoff events; 
auto. calib.) 

.24 
to 

.99† 

.15   
to   
.99 

          

    manually 
calibrateda 

.01 
to 
.98 

-102   
to   
.80 

          

Di Luzio et al. (2002) Upper North Bosque 
River (Texas) 932.5 stream 

flow 
Jan. 1993         

–  July 1998          .82   

 

 



 

19 

 

Table 2. Continued 

Calibration Validation 
Daily Monthly Annual Daily Monthly Annual 

-0-.333Reference Watershed  Area 
(km2) Indicator 

                
Time period 

(C = calibration; 
V = validation) 

 
r2 NSE r2 NSE r2 NSE r2 NSE r2 NSE r2 NSE 

Du et al. (2005) 
Walnut Creek (Iowa); 

subwatershed & 
watershed outlet 

51.3  
(total area) 

stream 
flow 

C: 1992-95 
V: 1996-99 

 (SWAT2000) 
 

.39 
& 
.47 

 
.36 
to 
.72 

   
.32 
& 
.35 

 
.13 
& 
.56 

  

 Subwatershed (site 210) - tile flow (SWAT2000)  -.15  -.33    -.16  -.42   

 subwatershed & 
watershed outlet  

51.3  
(total area) 

stream 
flow (SWAT-M)  

.51     
& 
.55 

 
.84 
& 
.88 

   
-.11 
& 
.49 

 
.72 
& 
.82 

  

 Subwatershed (site 210) - tile flow (SWAT-M)  -.23  .67    -.12  .70   

Eckhardt et al. (2002) Dietzhölze (Germany) 81 stream 
flow 

Nov. 1990 – 
Aug. 1993 

(SWAT99.2) 
 -.17           

    
Nov. 1990 – 
Aug. 1993 
(SWAT-G) 

 .76           

El-Nasr et al. (2005) Jeker (Belgium) 465 stream 
flow 

C: June 1986 – 
May 1989 

V: June 1989 – 
May 1992 

.45 .39     .55 .60     

Fontaine et al. (2002) Wind River (Wyoming) 4,999 stream 
flow 

1991-96        
(new snowmelt 

routine) 
           .86 

    1991-96        
(old routine)            -.70 

Fontaine et al. (2001) Spring Creek (South 
Dakota) 427 stream 

flow 1987-95   .62  .94        

Francos et al. (2001) Kerova River (Finland) 460 stream 
flow 1985-94          .65   

Gikas et al. (2005)a 
Vistonis Lagoon 

(Greece); 9 gauges in 
four subwatersheds 

1,349 stream 
flow 

C: May 1998 – 
June 1999         

V: Nov. 1999 – 
Jan. 2000 

  
.71 
to 
.89 

     
.72 
to 
.91 

   

Gitau et al. (2004) 
Town Brook 

subwatershed (New 
York) 

3 stream 
flow 1992-02   .76 .44 .99 .84       

Gosain et al. (2005) Palleru River (India) - stream 
flow 1972-94         .61 .87   

 



 

20 

 

Table 2. Continued 

Calibration Validation 
Daily Monthly Annual Daily Monthly Annual 

Reference Watershed  Area 
(km2) Indicator 

                
Time period 

(C = calibration; 
V = validation) 

 
r2 NSE r2 NSE r2 NSE r2 NSE r2 NSE r2 NSE 

Govender & Everson 
(2005) 

Cathedral Park Research 
C VI (South Africa) 677 stream 

flow 

C: 1991 
V: 1990-95 
(auto. calib.) 

.86      .65       

    V: 1990-95 
(manual calib.)       .68      

Green et al. (2006) South Fork of the Iowa 
River (Iowa) 775 stream 

flow 

C: 1995-98 
V: 1999-04 
(scenario 1) 

0.7 0.7 0.9 0.9 1.0 0.7 0.5 0.4 0.6 0.5 0.7 0.6 

    
C: 1995-00 
V: 2001-04   
(scenario 2)  

0.7 0.7 0.9 0.8 0.9 0.9 0.3 0.2 0.6 0.5 0.7 -0.8 

Grizzetti et al. (2005) Parts of four watersheds 
 (United Kingdom) 

8,900 
(total area) 

stream 
flow C&V: 1995-99  .75  .86        .66 

Grizzetti et al. (2003) Vantaanjoki (Finland) 1,682 stream 
flow 

1989-93 (daily)    
1989-97 (mon.)       .66 .76     

 Vantaanjoki 
subwatershed 295  various time 

periods  .81     .57 .75     

Hanratty & Stefan (1998) Cottonwood (Minnesota) 3,400 stream 
flow 1967-91    .78         

Hao et al. (2004) Lushi (Yellow River 
Basin, China) 4,623 stream 

flow 
C: 1992-97       
V: 1998-04   .87 .87   .84 .81     

Hernandez et al. (2000) 
Subwatershed within 150 

km2 Walnut Gulch 
(Arizona) 

8.23 stream 
flow 

1966-74          
(1 or 10 rain 

gauges) 
          

.33 
& 
.57 

 

Heuvelmans et al. (2006) 25 watersheds (Schelde 
River Basin, Belgium) 2 – 210 stream 

flow 
C: 1990-95        
V: 1996-01  

.70 
to 
.95 

     
.67 
to 
.92 

    

Holvoet et al. (2005) Nil (Belgium) 32 stream 
flow 

Nov. 1998 to 
Nov. 2001  .53           

Jayakrishnan et al. 
(2005) Four watersheds (Texas) 196 – 

2,227 
stream 
flow 

1995-99  
(rain gauge; 
uncalibrated) 

         
-7.4 
to 
.22 

  

    
1995-99 

(NEXRAD; 
uncalibrated) 

         
-.75 
to 
.59 

  

Jha et al. (2004a) Maquoketa River (Iowa) 4,776 stream 
flow 

1981-90        
(average daily, 

etc.) 
      .68  .76  .65  
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Table 2. Continued 

Calibration Validation 
Daily Monthly Annual Daily Monthly Annual 

Reference Watershed  Area 
(km2) Indicator 

                
Time period 

(C = calibration; 
V = validation) 

 
r2 NSE r2 NSE r2 NSE r2 NSE r2 NSE r2 NSE 

Jha et al. (2004b) Upper Mississippi River 
(north central U.S.) 447,500 stream 

flow 
C: 1989-97      
V: 1980-88   .75 .67 .91 .91   .70 .59 .89 .86 

Jha et al. (2006b) Upper Mississippi River 
(north central U.S.) 447,500 stream 

flow 
C: 1968-87        
V: 1988-97 .67 .58 .74 .69 .82 .75 .75 .65 .82 .81 .91 .90 

Kang et al. (2006) Baran (South Korea) 2,979 surface 
runoff 

C: 1996-97       
V: 1999-00 .93 .93     .87 .87     

Kaur et al. (2004) Nagwan (India) 9.58 surface 
runoff 

C: 1984 & 92     
V: 1981-83; 

1985-89; 1991 
.76 .71     .83 .54     

Kannan et al. (2007b)  Colworth              
(United Kingdom) 1.4 stream 

flow 

C: Oct/1999–01 
V: 2001–May/02 
(CN approach) 

 .61      .60     

    Green Ampt  .50      .56     

King et al. (1999) Goodwin Creek 
(Mississippi) 21.3 stream 

flow 

1982-89          
(curve number; 
not calibrated) 

         .84   

    
1982-89          

(Green Ampt; 
not calibrated) 

         .69   

Kirsch et al. (2002) Rock River (Wisconsin): 
Windsor gauge 9,708 stream 

flow 1989-95     .74 .61       

 12 USGS gauges -  1989-96          
(most  gauges)     

.28 
to 
.98 

       

Limaye et al. (2001) Dale Hollow (Tennessee) 2,345 stream 
flow 

C: 1966-90       
V: 1991-93  .42  .74    .45  .80   

Lin & Radcliffe (2006) Upper Etowah River 
(Georgia, USA) 1,580 stream 

flow 
C: 1983-92       
V: 1993-01  .61  .86    .62  .89   

Manguerra & Engel 
(1998) Greenhill (Indiana);  113.4 stream 

flow 1991-95             
.93 
to 
1.0 

        

Mapfumo et al. (2004) 3 watersheds 
(Saskatchewan) 

1.53 – 
2.26 soil water  

C: 1998           
V: 1999-00     

(selected days) 
.85 .77     .72 .70     

Moon et al. (2004) Cedar Creek (Texas) 2,608 stream 
flow      

1999-01         
(rain gauge) .53 .48     .86 .78     

    1999-01         
(NEXRAD) .58 .57     .84 .82     
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Table 2. Continued 

Calibration Validation 
Daily Monthly Annual Daily Monthly Annual 

Reference Watershed  Area 
(km2) Indicator 

                
Time period: 

C = calibration & 
V = validation 

(notes) 
r2 NSE r2 NSE r2 NSE r2 NSE r2 NSE r2 NSE 

Muleta & Nicklow 
(2005a) Big Creek (Illinois) 133 stream 

flow    1999-01  .69           

Muleta & Nicklow 
(2005b) 

Big Creek (Illinois): PRS 
station for calibration 
and CRS station for 

validation 

133 stream 
flow    

C: June/1999- 
Aug/01           

V: April/2000- 
Aug/01 

 .74      .23     

Narasimhan et al. (2005) Six watersheds (Texas); 
24 different gauges   

10,320 – 
29,664 

stream 
flow 

varying periods     
(overall annual 

average)       
    .75 .75     .70 .70 

    
varying periods     
(range across 24 

gauges)    
    

.54 
to 
.99 

.52 
to 
.99 

    
.63 
to 

1.00 

.55 
to 
.97 

Perkins & Sophocleous 
(1999) 

Lower Republican River 
(Kansas) 2,569 stream 

flow 

1977-94 
(separate C & V 
stat. not given)  

        .85    

Peterson & Hamlet 
(1998) 

Ariel Creek 
(Pennsylvania) 39.4 stream 

flow 
May 1992 – July 

1994  .04  .14         

    

May 1992 –  July 
1994             

(no snowmelt 
events) 

 .2  .55         

Plus et al. (2006) Thau Lagoon (France); 
gauges on two rivers 

280         
(total area) 

stream 
flow 1993-99               

.68 
& 

.45‡ 
     

Qi & Grunwald (2005) Sandusky River (Ohio); 
five gauges 

90.3 - 
3,240 

surface 
water 

C: 1998-99       
V: 2000-01    

.31 
to 
.65 

     
-.04 
to 
.75 

  

   ground 
water     

-9.1 
to 
.60 

     
-.57 
to 
.22 

  

   total flow      
.31 
to 
.81 

     
.40 
to 
.73 

  

Rosenberg et al. (2003) 
18 major water resource 
regions for conterminous 

U.S. (48 states) 
- water 

yield 

1961-90    
(overall annual 

average)    
          .92  

    
1961-90           

(at 8-digit 
watershed level) 

          
.03  
to 
.90 
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Table 2. Continued 

Calibration Validation 
Daily Monthly Annual Daily Monthly Annual 

Reference Watershed  Area 
(km2) Indicator 

                
Time period 

(C = calibration; 
V = validation) 

 
r2 NSE r2 NSE r2 NSE r2 NSE r2 NSE r2 NSE 

Rosenthal & Hoffman 
(1999) Leon River (Texas) 9,000 stream 

flow 1972-74          .52   

Rosenthal et al. (1995) Lower Colorado River 
(Texas) 8,927 stream 

flow 1980-89   .75 .69        .86 

 upstream gauges      
.69 
to 
.90 

         

Saleh et al. (2000) 

Upper North Bosque 
(Texas); outlet for 

calibration & composite 
of 11 gauges for 

validation 

932.5 stream 
flow 

C: Oct. 1993 – 
Aug. 1995        

V: July 1995 – 
July 1999         

(with APEX) 

   .56      .99   

Saleh & Du (2004) Upper North Bosque 
(Texas) 932.5 stream 

flow 

C: Jan. 1994 – 
June 1995         

V: July 1995 – 
July 1999 

 .17  .50    .62  .78   

Salvetti et al. (2006) Lombardy Region of the  
Po River (Italy) 16,000 stream 

flow 1984-02  .50  >.70         

Santhi et al. (2001a) Bosque (Texas); gauges 
for two subwatersheds 4,277 stream 

flow 

C: 1962-97 
(annual)          

C: 1993-97      
V: 1998  

  
.80 
& 
.89 

.79 
& 
.83 

.86 
& 
.66 

.88 
& 
.72 

  
.92 
& 
.80 

.87 
& 
.62 

  

Santhi et al. (2006) 
West Fork (Texas): 

gauges for two 
subwatersheds  

4,554 stream 
flow 1982-2001    

.61 
& 
.81 

.12 
& 
.72 

.88 
& 
.86 

.84 
& 
.78 

      

Schomberg et al. (2005) 

Straight, Whitewater, & 
Zumbro Rivers 

(Minnesota); Brent Run 
& South Branch Cass 

Rivers (Michigan)  

829 – 
3,697  

(3 are not 
given) 

stream 
flow 

multiple time 
periods          
(10-year 
records) 

.10 
to 
.28 

-1.3 
to 
.25 

.35 
to 
.58 

-1.4 
to 
.49 

        

Singh et al. (2005) Iroquois River (Illinois & 
Indiana) 5,568 stream 

flow 
C: 1987-95      
V: 1972-86  .79  .88    .74  .84   

Spruill et al. (2000) University of Kentucky 
ARC (Kentucky) 5.5 stream 

flow 
C: 1996           
V: 1995  .19  .89    -.04  .58   

Srinivasan et al. (2005) Upland watershed 
(Pennslyvania) .395 stream 

flow 1997-2000  .62           

Srinivasan & Arnold 
(1994) 

Upper Seco Creek 
(Texas) 114 stream 

flow 
Jan. 1991 – Aug. 

1992   .82          
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Table 2. Continued 

Calibration Validation 
Daily Monthly Annual Daily Monthly Annual 

Reference Watershed  Area 
(km2) Indicator 

                
Time period 

(C = calibration; 
V = validation) 

 
r2 NSE r2 NSE r2 NSE r2 NSE r2 NSE r2 NSE 

Srinivasan et al. (1998) 
Richland-Chambers 

Reservoir (Texas): two 
gauges 

5,000 stream 
flow 

C: 1965-69      
V: 1970-84   

.87 
& 
.84 

.77 
& 
.84 

    
.65 
& 
.82 

.52 
& 
.82 

  

Stewart et al. (2006) Upper North Bosque 
(Texas) 932.5 stream 

flow 
C: 1994-99      
V: 2001-02   .87 .76     .92 .80   

Stonefelt et al. (2000) Wind River (Wyoming) 4,999 stream 
flow 1990-97   .91          

Thomson et al. (2003) 
18 major water resource 
regions for conterminous 

U.S. (48 states) 
- water 

yield 
1960-89    

(overall mean)        .96       

    
1960-89          

(8-digit means 
by MWRR)       

     
.05 
to 
.94 

      

Thomson et al. (2005) 
18 major water resource 
regions for conterminous 

U.S. (48 states) 
- water 

yield 

1960-89    
(overall annual 

average)    
     .94       

Thomson et al. (2005) 
18 major water resource 
regions for conterminous 

U.S. (48 states) 
- water 

yield 

1960-89          
(8-digit means  
by MWRR )   

     
.04 
to 
.81 

      

Tripathi et al. (2003) Nagwan (India) 92.5 surface 
runoff June – Oct. 1997       .91 .87     

Tripathi et al. (2006) 
Nagwan (India); 3 
different watershed 

delineations 
92.5 surface 

runoff 1995-98         
.86 
to 
.90 

   

Vaché et al. (2002) Walnut Creek (Iowa) 51.3 stream 
flow 1991-97   .67          

 Buck Creek (Iowa) 88.2 stream 
flow 1991-97   .64          

Van Liew et al. (2003a) 
Little Washita 

(Oklahoma); calib. – 2 
gauges; valid. – 8 gauges 

2.9 – 610 stream 
flow 

Varying time 
periods  

.56 
to 
.72 

 
.66 
to 
.85 

   
-.35 
to 
.63 

 
-1.1 
to 
.89 

  

Van Liew & Garbrecht 
(2003) 

Little Washita 
(Oklahoma); calib. – 2 

gauges; valid. – 2 gauges 
160 – 610 stream 

flow 
Varying time 

periods  
.60 
& 
.40 

 
.75 
& 
.71 

   
-.06 
to 
.71 

 
.45 
to 
.86 

  

Van Liew et al. (2003b) Little Washita 
(Oklahoma) 610 stream 

flow 
Oct. 1992 – 
Sept. 2000  .55  .78         
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Table 2. Continued 

Calibration Validation 
Daily Monthly Annual Daily Monthly Annual 

Reference Watershed  Area 
(km2) Indicator 

                
Time period 

(C = calibration; 
V = validation) 

 
r2 NSE r2 NSE r2 NSE r2 NSE r2 NSE r2 NSE 

Van Liew et al. (2006)# Walnut Gulch (Arizona) 149 stream 
flow 

varying time 
periods  

.30 
to 
.76 

 
.48 
to 
.86 

   
-1.0 
to    

-1.8 
 

-.62 
to    

-2.3 
  

 Little River          
(Georgia, USA) 334 stream 

flow 
varying time 

periods  
.64 
& 
.71 

 
.83 
& 
.90 

   
.66 
& 
.68 

 
.88 
& 
.89 

  

 Reynold’s Creek (Idaho) 239 stream 
flow 

varying time 
periods  

.51 
to 
.73 

 
.52 
to 
.79 

   
-.17 
to 
.62 

 
.21 
to 
.74 

  

 Little Washita 526 
(Oklahoma) 160 stream 

flow 
varying time 

periods  
.54 
& 
.63 

 
.68 
& 
.76 

   
.13 
to 
.56 

 
-.11 
to 
.60 

  

 Mahantango Creek 
(Pennslyvania) 7 stream 

flow 
varying time 

periods  
.46 
& 
.69 

 
.84 
& 
.88 

   
.35 
to 
.54 

 
.46 
to 
.75 

  

Varanou et al. (2002) Ali Efenti (Greece) 2,796 stream 
flow 1977-93  .62  .81         

Vazquez-Amábile & 
Engel (2005) 

Muscatatuck River 
(Indiana); gauges for 3 

subwatersheds 
2,952 stream 

flow 
C: 1980-94       
V: 1995-02  

-.23 
to 
.28 

 
.59 
to 
.80 

   
-.35 
to 
.48 

 
.49 
to 
.81 

  

   ground 
water   

-.12 
to 
.28 

 
.36 
to 
.61 

   
-.74 
to 
.33 

 
-.51 
to 
.38 

  

Vazquez-Amábile et al. 
(2006) 

St. Joseph River 
(Indiana, Michigan, & 

Ohio); 3 gauges for calib. 
& 4 gauges for valid. 

2,800 stream 
flow 

C: 1989-98      
V: 1999-02  

.46 
to 
.65 

 
.64 
to 
.74 

  
.50 
to 
.66 

.33 
to 
.60 

.73 
to 
.76 

.68 
to 
.74 

  

Veith et al. (2005) FD-36 (Pennslyvania) .395 stream 
flow 

April – Oct. of 
1997-2000   .63 .75         

Wang & Melesse (2005) 
Wild Rice River 

(Minnesota); gauges for 
two subwatersheds  

2,419 – 
4,040  

stream 
flow 

varying time 
periods  

.64 
& 
.33 

 
.87 
& 
.87 

   
.49 
& 
.45 

 
.87 
& 
.82 

  

Watson et al. (2005) Woady Yaloak River      
(Australia) 306 stream 

flow 

C: 1978-89       
V: 1990-01     
(modified 
SWAT)         

 .54  .77  .77  .47  .79  .91 

Weber et al. (2001) Aar (Germany) 59.8 stream 
flow 

1986-87 (daily) 
1983-87 (mon.)        .63  .74   
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Table 2. Continued 

Calibration Validation 
Daily Monthly Annual Daily Monthly Annual 

Reference Watershed  Area 
(km2) Indicator 

                
Time period 

(C = calibration; 
V = validation) 

 
r2 NSE r2 NSE r2 NSE r2 NSE r2 NSE r2 NSE 

White & Chaubey (2005) 
Beaver Reservoir 

(Arkansas); gauges for 
three subwatersheds 

362 – 
1,020  

stream 
flow 

C: 1999 & 2000   
V: 2001 & 2002 
(stats. by year) 

  
.41 
to 
.91 

.50 
to 
.89 

    
.77 
to 
.91 

.72 
to 
.87 

  

†The comparisons were performed on an hourly basis for this study because the Green and Ampt infiltration method was used. 
‡Exact time period of comparison was not stated in study and thus was inferred. 
#
Multiple gauges were used for each watershed, with some variation between calibration and validation periods for some of the watersheds.  



 

27 

Rosenthal et al. (1995) linked GIS to SWAT and with no calibration simulated 10 years of monthly 

streamflow. SWAT underestimated the extreme events but had a significant relationship (r2=0.75). 

Bingner (1996) simulated runoff for 10 years for a watershed in northern Mississippi. The SWAT model 

produced reasonable results in the simulation of runoff on a daily and annual basis from multiple 

subbasins, with the exception of a wooded subbasin. Rosenthal and Hoffman (1999) successfully used 

SWAT and a spatial database to simulate flows, sediment, and nutrient loadings on a 9,000 km2 watershed 

in central Texas to locate potential water quality monitoring sites. SWAT was also successfully validated 

for streamflow and sediment loads for the Mill Creek Watershed in Texas for 1965-68 and 1968-75 

(Srinivasan et al., 1998). Monthly streamflow rates were well predicted but the model overestimated 

streamflows in a few years during the spring/summer months. The overestimation may be accounted for 

by variable rainfall during those months. 

Hernandez et al. (2000) utilized existing data sets (i.e., STATSGO soil database and NALC land 

cover classification) for parameterizing SWAT to simulate hydrologic response to land cover change for a 

small semi-arid watershed (150 km2) in southeastern Arizona. These authors found that calibration was 

required to improve model efficiency for simulation of runoff depth. Manguerra and Engel (1998) 

identify parameterization issues when modeling watershed hydrology for runoff prediction when using 

SWAT. Areas specified were the sensitivity of runoff to spatial variability, watershed decomposition, and 

spatial and temporal adjustment of curve numbers and subsurface flow. Van Liew and Garbrecht (2003) 

evaluated SWAT’s ability to predict streamflow under varying climatic conditions for three nested 

subwatersheds in the Little Washita River Experimental Watershed in southwestern Oklahoma. They 

found that SWAT could adequately simulate runoff for dry, average, and wet climatic conditions in one 

subwatershed, following calibration for relatively wet years in two of the subwatersheds. Govender and 

Everson (2005) also found that the model performed better in drier years than in wet years. However, they 

also found that the model was unable to simulate adequately the growth of Mexican Weeping Pine, due to 

the lack of simulating increased ET rates in mature plantations. 
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Hao et al. (2004) used an automated digital filter technique to separate and calibrate direct runoff 

from base flow for a five-year period for monthly streamflow. The NSE values were above 0.70 for both 

the calibration and validation periods with a relative error within 20%. Chu and Shirmohammadi (2004) 

evaluated SWAT’s capability to predict surface and subsurface flow for a 33.4 km2 watershed in 

Maryland. They found that SWAT was unable to simulate an extremely wet year; with the wet year 

removed, the surface runoff, base flow and streamflow results were within acceptable accuracy on a 

monthly basis. Subsurface flow results improved when the base flow was corrected.  

Qi and Grunwald (2005) point out that SWAT has usually been calibrated and validated at the 

drainage outlet of a watershed in most studies. In their study, they calibrated and validated SWAT for 

four subwatersheds and at the drainage outlet (Table 2). This study found that spatially distributed 

calibration and validation accounted for hydrologic patterns in the subwatersheds. Other studies that 

report the use of multiple gauge sites to perform hydrologic calibration and validation with SWAT 

include Cao et al. (2006), White and Chaubey (2005), Vazquez-Amábile and Engel (2005), and Shanti et 

al. (2001a). 

Applications for Karst Influenced Systems 

Spruill et al. (2000) calibrated and validated SWAT with one year of data each for a small 

experimental watershed in Kentucky. The daily NSE values reflected poor peak flow values and recession 

rates (Table 2). However, the NSE values for monthly total flows were 0.58 and 0.89 for 1995 and 1996, 

respectively. Their analysis confirmed the results of a dye trace study in a central Kentucky karst 

watershed, indicating that a much larger area contributed to streamflow than was described by 

topographic boundaries. Coffey et al. (2004) report similar statistical results for the same Kentucky 

watershed (Table 2). Afinowicz et al. (2005) modified SWAT in order to more realistically simulate rapid 

subsurface water movement through karst terrain in the 360 km2 Guadalupe River Watershed in southwest 

Texas. They report that simulated baseflows accurately matched measured streamflows after the 

modification, and that the predicted daily and monthly and daily resultes (Table 2) fell within the range of 

published model efficiencies for similar systems. Benham et al. (2006) report that SWAT streamflow 
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results (Table 2) did not meet calibration criteria for a karst influenced watershed in southwest Missouri, 

but that visual inspection of the simulated and observed hydrographs indicated that the system was 

satisfactorily modeled. They suggest that SWAT was not able to capture the conditions of a very dry year 

in combination with flows sustained by the karst features. 

Soil Water, Recharge, Tile Flow and Related Studies 

Mapfumo et al. (2004) tested the model’s ability to simulate soil-water patterns in small watersheds 

under three grazing intensities in Alberta, Canada. They observed that SWAT had a tendency to 

overpredict soil-water in dry soil conditions and to underpredict in wet soil conditions. Overall, the model 

was adequate in simulating soil-water patterns for all three watersheds with a daily time step. SWAT was 

used by Deliberty and Legates (2003) to document 30-year (1962-91) long-term average soil moisture 

conditions and variability, and topsoil variability, for Oklahoma. The model was judged to be able to 

accurately estimate the relative magnitude and variability of soil moisture in the study region. Soil 

moisture was simulated with SWAT by Narasimhan et al. (2005) for six large river basins in Texas at a 

spatial resolution of 16 km2 and a temporal resolution of one week. The simulated soil moisture was 

evaluated on the basis of vegetation response, by using 16 years of normalized difference vegetation 

index (NDVI) data derived from NOAA-AVHRR satellite data. The predicted soil moistures were well 

correlated with agriculture and pasture NDVI values. Narasimhan and Srinivasan (2005) describe further 

applications of a soil moisture deficit index and an ET deficit index. 

Arnold et al. (2005) validated a crack flow model for SWAT, which simulates soil moisture 

conditions with depth to account for flow conditions in dry weather. Simulated crack volumes were in 

agreement with seasonal trends, and the predicted daily surface runoff levels also were consistent with 

measured runoff data (Table 2). Sun and Cornish (2005) simulated 30 years of bore data for a 437 km2 

watershed. They used SWAT to estimate recharge in the headwaters of the Liverpool Plains in New South 

Wales, Australia. These authors determined that SWAT could estimate recharge and incorporate land use 

and land management at the watershed scale. A code modification was performed by Vazquez-Amábile 

and Engel (2005) that allowed reporting of soil moisture for each soil layer; these measures were then 
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converted into groundwater table levels based on DRAINMOD theory. It was concluded that predictions 

of groundwater table levels would be useful to include in SWAT 

Modifications were performed by Du et al. (2006) to SWAT2000 to improve the original SWAT tile 

drainage function. The modified model was referred to as SWAT-M and resulted in clearly improved tile 

drainage and over streamflow predictions for the 51.3 Walnut Creek Watershed in central Iowa (Table 2). 

Green et al. (2006) report a further application of the improved tile drainage routine using SWAT2005 for 

a large tile-drained watershed in north central Iowa. The addition of this routine significantly improved 

the model’s ability to simulate a more adequate water balance for a tile-drained region in Iowa (Table 2). 

This study also showed the importance of ensuring that representative runoff events are present in both 

the calibration and validation in order to improve the model’s effectiveness.  

Snowmelt-Related Applications 

In Finland, Francos et al. (2001) adapted the model by adding a weather generator and a snowmelt 

submodel. These authors calibrated at a subbasin level and then scaled-up to the Vantaa watershed-level. 

They emphasize the importance of using good input data and adjusting the relevant parameters. Benaman 

et al. (2005) used the SWAT2000 model to calibrate and validate the runoff for the 1,200 km2 

Cannonsville River Watershed in South Central New York. These authors found the validated runoff NSE 

value was reasonable (0.76); however, they identified both model and data input limitations regarding 

estimation of snowmelt, erosion, and sediment transport. Wang and Melesse (2005) used the SWAT 

model to simulate streamflows for the Wild Rice River Watershed in Minnesota, which involves 

snowmelt hydrology. SWAT simulated the monthly, seasonal, and annual discharges well, in addition to 

the spring daily streamflows, which were predominantly from melted snow. Chanasyk et al. (2003) 

simulated the impacts of grazing on hydrology and soil moisture, respectively, using small grassland 

watersheds under three grazing intensities in Alberta, Canada. They evaluated SWAT’s ability to simulate 

low flow conditions that included snow-melt events. Chanasyk et al. (2003) and Peterson and Hamlet 

(1998) found that SWAT was better suited for long simulation periods and suggested that the snowmelt 

routine be improved. The modifications performed by Fontaine et al. (2002) have clearly improved the 
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snowmelt routine, as evidenced by an NSE increase from -0.70 to 0.86 for a six-year SWAT simulation of 

the Upper Wind River Basin in Wyoming.   

Irrigation and Brush Removal Scenarios 

Gosain et al. (2005) assessed SWAT’s ability to simulate return flow after the introduction of canal 

irrigation in a basin in Andra Pradesh, India. SWAT provided the assistance water managers needed in 

planning and managing their water resources under various scenarios. Santhi et al. (2005) describe a new 

canal irrigation routine that was used in SWAT. Cumulative irrigation withdrawal was estimated for each 

district for each of three different conservation scenarios (relative to a reference scenario). The percentage 

of water that was saved was also calculated. SWAT was used by Afinowicz et al. (2005) to evaluate the 

influence of woody plants on water budgets of semi-arid rangeland in southwest Texas. Baseline brush 

cover and four brush removal scenarios were evaluated. Removal of heavy brush resulted in the greatest 

ET (~32 mm/yr reduction over the entire basin), surface runoff, baseflow, and deep recharge. Lemberg et 

al. (2002) also describe brush removal scenarios. 

Wetlands and Reservoir Applications 

Arnold et al. (2001) found that a simulated wetland near Dallas, Texas, needed to be at or above 

85% capacity for 60% of a 14-year simulation period. Conan et al. (2003b) found that SWAT adequately 

simulated the change from wetlands to dry land for the Upper Guadiana River Basin in Spain. SWAT, 

however, was unable to represent all of the discharge details impacted by land use alterations. The impact 

of flood-retarding structures on streamflow with varying climatic conditions in Oklahoma was 

investigated with SWAT by Van Liew et al. (2003b). It was found that flood-retarding structures are 

effective at reducing annual peak runoff events. Low streamflow was also impacted, showing that 

maintenance of a minimum base flow is vital for stream habitat preservation. Hotchkiss et al. (2000) 

modified SWAT to more accurately simulate U.S. Army Corp of Engineers reservoir rules for major 

Missouri River reservoirs. As a result, the reservoir dynamics were much more accurately simulated over 

a 25-year period.   
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Green-Ampt Applications 

Very few SWAT applications in the literature report the use of the Green and Ampt infiltration 

option. Di Luzio and Arnold (2004) report subhourly results for two different calibration methods using 

the Green and Ampt method (Table 2). King et al. (1999) found that the Green and Ampt option resulted 

in better annual streamflow predictions but that monthly streamflows were more accurately predicted 

using the curve number approach (Table 2), for uncalibrated SWAT simulations for the 21.3 km2 

Goodwin Creek Watershed in Mississippi. Kannan et al. (2007b) also report that streamflow results were 

more accurate using the curve number approach as compared with the Green and Ampt method for a 

small watershed in the United Kingdom. They also report that the Hargreaves ET method outperformed 

the Penman-Monteith ET equation.  

POLLUTANT LOSS STUDIES 

Nearly 50% of the reviewed SWAT papers (Table 1) report simulation results of one or more 

pollutant loss indicators. Many of these studies describe some form of verifying pollutant prediction 

accuracy, although the extent of such reporting is much less than what has been published for hydrologic 

assessments. Table 3 lists r2 and NSE statistics for 30 SWAT pollutant loss studies, which again are used 

here as key indicators of model performance. The majority of the r2 and NSE values shown in Table 3 

exceed 0.5, indicating that the model is able to replicate a wide range of observed in-stream pollutant 

levels. Relatively poor results were again reported for some studies, especially for daily comparisons. 

Similar to the points raised for the hydrologic results, some of weaker results were due in part to 

inadequate characterization of input data (e.g., description of P input gaps in Bouraoui et al., 2002), 

uncalibrated simulations of pollutant movement (Bärlund et al., 2006), and uncertainties in observed 

pollutant levels (Harmel et al., 2006).   

Sediment Studies 

Several studies showed the robustness of SWAT in predicting sediment loads at different watershed 

scales. Saleh et al. (2000) conducted a comprehensive SWAT evaluation for the 932.5 km2 Upper North 
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Bosque River Watershed (UNBRW) in north central Texas and found that predicted monthly sediment 

losses matched measured data well but that SWAT daily output was poor (Table 3). Srinivasan et al 

(1998) concluded that SWAT sediment accumulation predictions were satisfactory for the 279 km2 Mill 

Creek Watershed, again located in north central Texas. Santhi et al. (2001a) found that SWAT simulated 

sediment loads matched measured sediment loads well (Table 3) for two Bosque River (4,277 km2) 

subwatersheds, except in March. Arnold et al. (1999b) compared estimated and SWAT simulated average 

annual sediment loads for five major Texas river basins (20,593 to 569,000 km2) and concluded that in all 

the river basins, SWAT simulated sediment yields compared reasonably well with estimated sediment 

yields obtained from rating curves.   
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Table 3. Summary of reported SWAT environmental indicator calibration and validation results. 

Calibration Validation 
Daily Monthly Annual Daily Monthly Annual 

Reference Watershed(s) Area 
(km2) Indicator† 

                
Time period 

(C = calibration; 
V = validation) 

 
r2 NSE r2 NSE R2 NSE r2 NSE r2 NSE r2 NSE 

Bärlund et al. (2006)‡ Lake Pyhäjärvi (Finland) - sediment 1990-94  .01           

Behera & Panda (2006) Kapgari (India) 9.73 sediment 
C: 2002           
V: 2003     

(rainy season) 
.93  .84     .89 .86     

   nitrate  .93 .92     .87 .83     

   total P  .92 .83     .94 .89     

Bouraoui et al. (2002) Ouse (Yorkshire, United 
Kingdom) 3,500 nitrate 1986-90    .64         

   soluble P     .02         

Bouraoui et al. (2004) Vantaanjoki (Finland) 295 - 
1,682 sediment varying time 

periods  .44        .87   

 Vantaanjoki 
subwatershed 295 total N   .61           

   total P   .74  .62         

   nitrate   .34           

Bracmort et al. (2006) 
Two subwatersheds the 
Black Creek Watershed 

(Indiana) 
6.2 and 7.3 suspended 

solids    
.97 
& 
.94 

.92 
& 
.86 

    
.86 
& 
.85 

.75 
& 
.68 

  

   soluble P    
.92 
& 
.90 

.84 
& 
.78 

    
.86 
& 
.73 

.74 
& 
.51 

  

   total P    
.93 
& 
.64 

.78 
& 
.51 

    
.90 
& 
.73 

.79 
& 
.37 

  

Cerucci & Conrad (2003) Townbrook (New York) 37 soluble P Oct. 1999 – 
Sept. 2000   .91          

Chaplot et al. (2004) Walnut Creek 51.3 nitrate 1991-98   .56          

Cheng et al. (2006) Heihe River (China) 7,241 sediment C: 1992-97      
V: 1998-99   .70 .74     .78 .76   

   Ammonia C: 1992-97      
V: 1998-99   .75 .76     .74 .72   
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Table 3. Continued 

Calibration Validation 
Daily Monthly Annual Daily Monthly Annual 

Reference Watershed Area 
(km2) Indicator 

                
Time period 

(C = calibration; 
V = validation) 

 
r2 NSE r2 NSE R2 NSE r2 NSE r2 NSE r2 NSE 

Chu et al. (2004) Warner Creek 3.46 sediment varying time 
periods   .10 .05     .19 .11 .91 .90 

   nitrate    .27 .16     .38 .36 .96 .90 

   ammonia          .38 -.05 .80 .19 

   TKN          .40 .15 .66 -.56 

   soluble P    .69 -.08     .65 .64 .87 .80 

   total P    .38 .08     .65 .64 .83 .19 

Cotter  et al. (2003) Moores Creek 
(Arkansas) 18.9 sediment 1997-98    .48         

   nitrate     .44         

   total P     .66         

Di Luzio et al. (2002) Upper North Bosque 
River (Texas) 932.5 Sediment Jan. 1993         

–  July 1998          .78   

   organic N           .60   

   Nitrate           .60   

   organic P           .70   

   soluble P           .58   

Du et al. (2006)# 
Walnut Creek (Iowa); 

subwatershed & 
watershed outlet 

51.3  
(total area) 

nitrate 
(stream 
flow) 

C: 1992-95 
V: 1996-99 

 (SWAT2000) 
 

-.37 
&     

-.41 
 

-.21   
&    

-.26 
   

-.14   
&     

-.18 
 

-.21   
&     

-.22 
  

 Subwatershed (site 210) - nitrate   
(tile flow) (SWAT2000)  -.60  -.08    -.16  -.31   

 subwatershed & 
watershed outlet  

51.3  
(total area) 

nitrate 
(stream 
flow) 

(SWAT-M)  
.41 
& 
,61 

 
.80 
& 
.91 

   
.26 
& 
.53 

 
.67 
& 
.85 

  

 Subwatershed (site 210) - nitrate   
(tile flow) (SWAT-M)  .25  .73    .42  .71   

 
Walnut Creek (Iowa); 

subwatershed & 
watershed outlet 

51.3  
(total area) 

atrazine 
(stream 
flow) 

(SWAT2000)  
-.05 
&     

-.12 
 

-.01 
&     

-.02 
   

-.02 
&    

-.39 
 

-.04  
&    
.06 

  

 Subwatershed (site 210) - atrazine   
(tile flow) (SWAT2000)  -.47  -.04    -.46  -.06   
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Table 3. Continued 

Calibration Validation 
Daily Monthly Annual Daily Monthly Annual 

Reference Watershed Area 
(km2) Indicator 

                
Time period 

(C = calibration; 
V = validation) 

 
R2 NSE r2 NSE R2 NSE r2 NSE r2 NSE r2 NSE 

Du et al. (2006) subwatershed & 
watershed outlet  

51.3  
(total area) 

atrazine/ 
stream 
flow 

C: 1992-95 
V: 1996-99 
 (SWAT-M) 

 
.21   
&    
.47 

 
.50    
&     
.73 

   
.12 
&     

-.41 
 

.53 
& 
.58 

  

 Subwatershed (site 210) - atrazine/ 
tile flow (SWAT-M)  .51  .92    .09  .31   

Gikas et al. (2005)a 
Vistonis Lagoon 

(Greece); 9 gauges in 
four subwatersheds 

1,349 Sediment 

C: May 1998 – 
June 1999         

V: Nov. 1999 – 
Jan. 2000 

  
.40 
to 
.98 

     
.34 
to 
.98 

   

   Nitrate    
.51 
to 
.87 

     
.57 
to 
.89 

   

   total P    
.50 
to 
.82 

     
.43 
to 
.97 

   

Grizzetti et al. (2005) 
parts of four watersheds 

(United Kingdom); 
multiple gauges 

1,380 -
8,900 

total 
organic N  1995-99  .24  .32    .28  .38  .68 

Grizzetti et al. (2003) Vantaanjoki (Finland); 3 
gauges 

295 - 
1,682 total N varying time 

periods  .59      
.43 
& 
.51 

 
.10 
& 
.30 

  

   total P   .74      
.54 
& 
.44 

 
.63 
& 
.64 

  

Hanratty & Stefan 
(1998) Cottonwood (Minnesota) 3,400 sediment 1967-91    .59         

   nitrate     .68         

   total P     .54         

   
organic N 

& 
ammonia 

    .57         

Hao et al. (2004) Lushi (Yellow River 
Basin, China) 4,623 sediment  C: 1992-97       

V: 1998-04   .72 .72     .98 .94   

Kaur et al. (2004) Nagwan (India) 9.58 sediment 
C: 1984 & 92     
V: 1981-83; 

1985-89; 1991 
.54 -.67     .65 .70     
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Table 3. Continued 

Calibration Validation 
Daily Monthly Annual Daily Monthly Annual 

Reference Watershed  Area 
(km2) Indicator 

                
Time period 

(C = calibration; 
V = validation) 

 
r2 NSE r2 NSE R2 NSE r2 NSE r2 NSE r2 NSE 

Kirsch et al. (2002) Rock River (Wisconsin): 
Windsor gauge 9,708 sediment 1991-95     .82 .75       

   total P      .95 .07       
Muleta & Nicklow 

(2005a) Big Creek (Illinois) 133 sediment 1999-01  .42           

Muleta & Nicklow 
(2005b) 

Big Creek (Illinois): PRS 
station for calibration 
and CRS station for 

validation 

133 sediment 

C: June 1999 to 
Aug. 2001        

V: April 2000 – 
Aug. 2001 

 .46      -
.005     

Plus et al. (2006) Thau Lagoon (France); 
gauges on two rivers 280 nitrate 1993-99        

.44 
& 
.27 

           

   NH4+  
.31 
& 
.15 

           

Saleh et al. (2000) 

Upper North Bosque 
(Texas); outlet for 

calibration & composite 
of 11 gauges for 

validation 

932.5 sediment 

C: Oct. 1993 – 
Aug. 1995        

V: July 1995 – 
July 1999         

(with APEX) 

   .81      .94   

   nitrate     .27      .65   

   organic N     .78      .82   

   total N     .86      .97   

   soluble P     .94      .92   

   organic P     .54      .89   

   total P     .83      .93   
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Table 3. Continued 

Calibration Validation 
Daily Monthly Annual Daily Monthly Annual 

Reference Watershed  Area 
(km2) Indicator 

                
Time period 

(C = calibration; 
V = validation) 

 
r2 NSE r2 NSE R2 NSE r2 NSE r2 NSE r2 NSE 

Saleh & Du (2004) Upper North Bosque 
(Texas) 932.5 sediment 

C: Jan. 1994 – 
June 1995         

V: July 1995 – 
July 1999 

 -2.5  .83    -3.5  .59   

   nitrate   .04  .29    .50  .50   

   organic N   -.02  .87    .69  .77   

   total N   .01  .81    .68  .75   

   soluble P   .08  .76    .45  .40   

   organic P   -.74  .59    .59  .73   

   total P   -.08  .77    .63  .71   

Santhi et al. (2001a) Bosque (Texas); gauges 
for two subwatersheds 4,277 Sediment C: 1993-97      

V: 1998    
.81 
& 
.87 

.80 
& 
.69 

    
.98 
& 
.95 

.70 
& 
.23 

  

   Nitrate    
.64 
& 
.72 

.59 
&     

-.08 
    

.89 
& 
.72 

.75 
& 
.64 

  

   organic N    
.61 
& 
.60 

.58 
& 
.57 

    
.92 
& 
.71 

.73 
& 
.43 

  

   soluble P    
.60 
& 
.66 

.59 
& 
.53 

    
.83 
& 
.93 

.53 
& 
.81 

  

   organic P    
.71 
& 
.61 

.70 
& 
.59 

    
.95 
& 
.80 

.72 
& 
.39 

  

Stewart et al. (2006) Upper North Bosque 
(Texas) 932.5 Sediment C: 1994-99      

V: 2001-02   .92 .80     .82  .63   

   Nitrate    .80 .60     .57 -.04   

   organic N    .87 .71     .89 .73   

   soluble P    .88 .75     .82 .37   

   organic P    .85 .69     .89 .58   
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Table 3. Continued 

Calibration Validation 
Daily Monthly Annual Daily Monthly Annual 

Reference Watershed  Area 
(km2) Indicator 

                
Time period 

(C = calibration; 
V = validation) 

 
r2 NSE r2 NSE R2 NSE r2 NSE r2 NSE r2 NSE 

Tripathi et al. (2003) Nagwan (India) 92.5 Sediment June – Oct. 1997       .89 .89 .92 .86   

   Nitrate        .89      

   organic N        .82      

   soluble P        .82      

   organic P        .86      

Vazquez-Amábile et al. 
(2006) 

St. Joseph River 
(Indiana, Michigan, & 

Ohio); mean area 
weighted of multiple 

gauges 

2,800 Atrazine 1996-99   .14  .42         

 main outlet at Fort 
Wayne 2,620 Atrazine 2000-04       .27 -.31 .59 .28   

White & Chaubey (2005) 
Beaver Reservoir 

(Arkansas); gauges for 
three subwatersheds 

362 – 
1,020 
(3,100 
total) 

Sediment 
C: 1999 & 2000   
V: 2001 & 2002 
(stats. by year) 

  
.45 
to 
.85 

.23 
to 
.76 

    
.69 
to 
.77 

.32 
to 
.45 

  

   Nitrate    
.01 
to 
.84 

-2.36 
to 
.29 

    
.59 
to 
.71 

.13 
to 
.49 

  

   total P    
.50 
to 
.82 

.40 
to 
.67 

    
.58 
to 
.76 

-.29 
to 
.76 

  

†Soluble P is also report as ortho-phosphate and mineral P for some studies. 
‡Exact time period of comparison was not stated in study and thus was inferred.  
#Comparisons shown for Du et al. (2006) are for sampling days only.  
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Besides Texas, the SWAT sediment yield component has also been tested in several Midwest and 

northeast U.S. states. Chu et al. (2004) evaluated SWAT sediment prediction from a 346 ha Warner Creek 

watershed located in the Piedmont physiographic region of Maryland. Evaluation results indicated a 

strong agreement between yearly measured and SWAT simulated sediment load but simulation of 

monthly sediment loading was poor (Table 3). Jha et al. (2006a) found that the sediment loads predicted 

by SWAT were consistent with sediment loads measured for the Raccon River Watershed (RRW) in west 

central Iowa, as evidenced by monthly and annual NSE values of 0.78 and 0.79, respectively. Bracmort et 

al. (2006) report satisfactory SWAT sediment simulation results for two small watersheds in Indiana 

(Table 3). Benaman and Shoemaker (2005) and found that SWAT underestimated observed load by 29% 

for the Cannonsville Reservoir Watershed in New York, primarily because of underestimation of surface 

runoff during snow melt events. Cotter et al. (2003) report a calibrated NSE value of 0.48 for monthly 

SWAT predictions for the Moores Creek Watershed in Arkansas, while White and Chaubey (2005) report 

NSE values of 0.43 to 0.76 for three Beaver Reservoir watershed sites in northeast Arkansas. Hanratty 

and Stefan (1998) calibrated SWAT using water quality and quantity data measured in the Cottonwood 

River near New Ulm, Minnesota (Table 3). In Wisconsin, Kirsch et al. (2002) calibrated SWAT annual 

predictions for two subwatersheds located in the Rock River Basin (Table 3), which lies within the 

glaciated portion of south central and eastern Wisconsin. Muleta and Nicklow (2005a) calibrated daily 

SWAT sediment yield with observed sediment yield data from the Big Creek Watershed in southern 

Illinois and concluded that sediment fit seems reasonable with an r2 of 0.42. However, no verification 

procedure was conducted because of lack of data. 

SWAT sediment simulations have also been evaluated in Asia, Europe, and North Africa. Behera 

and Panda (2006) concluded that SWAT simulated sediment yield satisfactorily throughout the entire 

rainy season based on comparisons with daily observed data (Table 3) for an agricultural watershed 

located in eastern India. Kaur et al. (2004) concluded that SWAT predicted annual sediment yields 

reasonably well for a test watershed (Table 3) in Damodar-Barakar, India, the second most seriously 

eroded area in the world. Tripathi et al. (2005) compared SWAT with observed daily sediment yield for 



 

41 

the same watershed and found a close agreement with r2 of 0.89 and NSE of 0.89. Hao et al. (2004) stated 

that SWAT was the first physically based watershed model validated in China’s Yellow River Basin. 

They found that the predicted sediment loading accurately matched loads measured for the 4,623 km2 

Lushi subwatershed (Table 3). Cheng et al. (2006) tested SWAT using sediment data collected from the 

Heihe River, another tributary of the Yellow River (Table 3); the resulting monthly NSE statistics were 

0.74 and 0.76 for the calibration and validation periods, respectively. In Finland, Bärlund et al. (2006) 

report poor results for uncalibrated simulations performed within the Lake Pyhäjärvi Watershed (Table 

3). Gikas et al. (2005) conducted an extensive evaluation of SWAT in Vistonis Lagoon, a mountainous 

agricultural watershed in northern Greece, and concluded that agreement between observed and SWAT 

sediment loads were acceptable (Table 3). Bouraoui et al. (2005) evaluated SWAT for the Medjerda River 

Basin in northern Tunisia and reported that the predicted concentrations of suspended sediments are 

within an order of magnitude of corresponding measured values. 

Nitrogen and Phosphorus Studies 

Several published studies from the U.S. showed the robustness of SWAT in predicting nutrient 

losses. Saleh et al. (2000), Saleh and Du (2004), Santhi et al. (2001a), Stewart (2006), and Di Luzio et al. 

(2002) evaluated SWAT by comparing SWAT N prediction with measured N losses in the Upper North 

Bosque or Bosque River watersheds in Texas. They unanimously concluded that SWAT reasonably 

predicted N loss, with most of the average monthly validation NSE greater than or equal to 0.60 (Table 

3). They also found that SWAT satisfactorily predicted P losses, with validation NSE values ranging from 

0.39 to 0.93 (Table 3). Chu et al. (2004) applied SWAT to the Warner Creek Watershed in Maryland and 

reported satisfactory annual but poor monthly N and P predictions (Table 3). Hanratty and Stefan (1998) 

calibrated SWAT N predictions using measured data collected for the Cottonwood River in Minnesota 

and concluded that, if properly calibrated, SWAT is an appropriate model to use for simulating the effect 

of climate change on water quality; they also reported satisfactory SWAT P results (Table 3).  

In Iowa, Chaplot et al. (2004) calibrated SWAT from a nine-year data at flat and intensively 

cultivated Walnut Creek Watershed and concluded that SWAT gave accurate predictions of nitrate load 
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(Table 3). Du et al. (2006) also showed that the modified tile drainage functions in SWAT-M resulted in 

far superior nitrate loss predictions for Walnut Creek (Table 3), as compared with the previous approach 

used in SWAT2000. However, Jha et al. (2007) report very strong nitrate loss predictions for the Raccoon 

River Watershed using SWAT2000, with monthly r2 and NSE values that ranged between 0.73 and 0.79 

for the calibration and validation periods. In Arkansas, Cotter et al. (2003) calibrated SWAT measured 

nitrate and got an NSE of 0.44 in the Moores Creek Watershed; the authors stated that SWAT had a 

response similar to those in other published reports. 

Bracmort et al. (2006) and Arabi et al. (2006) found that SWAT could account for the effects of 

BMPs on phosphorus and nitrogen losses for the Dreisbach and Smith Fry watersheds in Indiana, with 

monthly validation NSE statistics ranging from 0.37 to 0.79 (Table 3). SWAT tended to underpredict both 

mineral and total phosphorus yields for the months with high measured phosphorus losses, but 

overpredicted the phosphorus yields for months with low measured losses. Cerucci and Conrad (2003) 

calibrated SWAT soluble P predictions using measured data obtained for the Townbrook Watershed in 

New York. They reported monthly NSE values of 0.91 and 0.40, if the measured data from February and 

March were excluded. Kirsch et al. (2002) reported that SWAT P loads were considerably higher than 

corresponding measured loads for the Rock River Watershed in Wisconsin. Veith et al. (2005) found that 

measured watershed exports of dissolved P and total P during a seven-month sampling period from a 

watershed in Pennsylvania were similar in magnitude to SWAT predicted losses. 

SWAT nutrient predictions have also been evaluated in several other countries (Table 3).  In India, 

SWAT N and P predictions were tested in two studies using measured data within the Midnapore (Behera 

and Panda, 2006) and Hazaribagh (Tripathi et al., 2003) districts of eastern India. Both studies concluded 

that the SWAT model could be successfully used to satisfactorily simulate nutrient losses. SWAT 

predicted NH3-N was close to the observed value for the Heihe River study in China (Cheng et al., 2006), 

as indicated by the validation NSE of 0.72. Three studies conducted in Finland for the Vantaanjoki River 

(Grizzetti et al., 2003, and Bouraoui et al., 2004) and Kerava River (Francos et al., 2001) watersheds 

reported that SWAT N and P simulations were generally satisfactory. Plus et al. (2006) evaluated SWAT 
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with data from two rivers in the Thau Lagoon Watershed, which drains to the French Mediterranean 

coast. The best correlations were found for nitrate loads and the worst, for ammonia loads (Table 3). 

Gikas et al. (2005) evaluated SWAT using nine gauges within the Vistonis Lagoon Watershed in Greece 

and found that the monthly validation statistics generally indicated good model performance for nitrate 

and total P, with r2 values of 0.57 to 0.89. Bouraoui et al. (2005) applied SWAT to a part of the Medjerda 

River Basin, the largest surface water reservoir in Tunisia, and reported that SWAT was able to predict 

the range of nitrate concentrations in surface water but lack of data prevented in-depth evaluation. 

Pesticide Studies 

Simulations of Isoaxflutole (and its metabolite RPA 202248) were performed by Ramanarayanan et 

al. (2005) with SWAT for four watersheds in Iowa, Nebraska, and Missouri that ranged in size from .49 

to 1,434.6 km2. Satisfactory validation results were obtained based on comparisons with measured data. 

Long-term simulations indicated that accumulation would not be a problem for either compound in 

semistatic water bodies. Kannan et al. (2006) report that SWAT accurately simulated movement of 

terbuthylazine, tebutryn, cyanazine, and bentazone for the 1.41 km2 Colworth Watershed in the United 

Kingdom. The results of different application timing and split application scenarios are also described. 

Prediction of atrazine greatly improved using SWAT-M as reported by Du et al. (2006) for the Walnut 

Creek Watershed in Iowa (Table 3), which is a heavily tile-drained watershed. Vazquez-Amábile et al. 

(2006) found that the estimated timing of atrazine applications in the 2,800 km2 St. Joseph Watershed in 

northeast Indiana was a very sensitive parameter regarding calibration and validation of atrazine in 

SWAT. The predicted atrazine mass at the watershed outlet was in close agreement with measured loads 

for the period of September through April during the 2000-2003 period. Graphical and statistical analyses 

indicated that the model replicated atrazine movement trends well, but the NSE statistics (e.g., Table 3) 

were generally weak.  
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Scenarios of BMP and Land Use Impacts on Pollutant Losses 

Several SWAT scenario studies report the effects of various BMPs, cropping systems, and other 

factors on pollutant losses. Kirsch et al. (2002) describe SWAT results, which indicated that the 

implementation of improved tillage practices can reduce sediment yields by almost 20% in the Rock 

River in Wisconsin. Chaplot et al. (2004) found that adoption of no-tillage, changes in N application 

rates, and land use changes could greatly affect N losses in the 51.3 km2 Walnut Creek Watershed in 

central Iowa. Further analysis of BMPs by Vaché et al. (2002) for Walnut Creek and a second Iowa 

watershed indicated that large sediment reductions could be obtained, depending on BMP choice. 

Bracmort et al. (2006) present the results of three 25-year SWAT scenario simulations for two small 

watersheds in Indiana in which the impacts of no BMPs, BMPs in good condition, and BMPs in varying 

condition are reported for streamflow, sediment, and total P. The effects of BMPs related to dairy manure 

management and municipal wastewater treatment plant effluent were evaluated by Santhi et al. (2001b) 

with SWAT for the Bosque River Watershed in Texas. Santhi et al. (2006) report the impacts of manure 

and nutrient-related BMPs, forage harvest management, and other BMPs on water quality for the West 

Fork Watershed of the Trinitiy River Basin in Texas. SWAT studies in India include identification of 

critical or priority areas for soil and water management in a watershed (Kaur et al., 2004 and Tripathi et 

al., 2003). Stewart et al. (2006) describe modifications of SWAT for incorporation of a turfgrass harvest 

routine, in order to simulate manure and soil P export that occurs during harvest of turfgrass sod within 

the Upper North Bosque River Watershed in north central Texas. Nelson et al. (2005) report that large 

nutrient and sediment loss reductions occurred in response to simulated shifts of cropland into 

switchgrass production within the 3,000 km2 Delaware River Basin in northeast Kansas. Graphical and 

tabular 2-4,D and nitrate losses are reported by King and Balogh (2001) for 99-year simulations of four 

treatment scenarios: continuous corn, undisturbed forest, golf course conversion from forest, and golf 

course conversion from cropland. Two scenarios of surfactant movement are described by Kannan et al. 

(2007a) for the Colworth Watershed. Sensitivity analyses were also performed. Benham et al. (2006) 

describe a TMDL application of SWAT for the 367 km2 Shoal Creek Watershed in southwest Missouri. 
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Frequency curves comparing simulated and measured bacteria concentrations were used to calibrate 

SWAT. The model was then used to simulate the contributions of different bacteria sources to the stream 

system and to assess the impact of different BMPs that could potentially be used to mitigate bacteria 

losses in the watershed.    

CLIMATE CHANGE IMPACT STUDIES 

Climate change impacts can be simulated directly in the standard SWAT model by accounting for 

(1) the effects of increased atmospheric CO2 concentrations, in the range of 330-660 ppmv, on plant 

development and transpiration; and (2) changes in climatic inputs. Several SWAT studies report the 

effects of arbitrary climate changes on streamflow. These include Eheart and Tornil (1999), Stonefelt et 

al. (2000), Fontaine et al. (2001), and Jha et al. (2006b), which report useful insights on plant growth and 

streamflow responses to CO2 fertilization effects and/or other climatic input shifts. The SWAT results 

reported next focus on approaches that relied on downscaling of climate change projections generated by 

general circulation models (GCMs), or GCMS coupled with regional climate models (RCMs).   

SWAT Studies Reporting Climate Change Impacts on Hydrology 

Ritschard et al. (1999) and Limaye et al. (2001) describe climate change impacts on the hydrology 

of selected watersheds in the U.S. southeast region, using SWAT and downscaled climate projections 

from the HadCM2 GCM. Ritschard et al. found that future water availability could decline by up to 10% 

within 20 to 40 years during critical agricultural growing seasons in the Gulf Coast. A second key finding 

(Limaye et al., 2001) was that GCM interfaces with hydrologic models may only work for regional 

assessments of seasonal and annual climate change rather than for short-term watershed-level analyses.  

Rosenberg et al. (2003) simulated the effect of downscaled HadCM2 climate projections (CO2 level 

of 560 ppmv) on the hydrology of the 18 MWRRs (Figure 2) with SWAT within the HUMUS 

framework. Water yields were predicted to change from -11% to 153% and from 28% to 342% across the 

MWRRs in 2030 and 2095, respectively, relative to baseline conditions. Thomson et al. (2003) used the 

same HadCM2-HUMUS (SWAT) approach and found that three El Niño/Southern Oscillation (ENSO) 
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scenarios resulted in MWRR water yield impacts ranging from -210% to 77% relative to baseline levels, 

depending on seasonal and dominant weather patterns. An analysis of the impacts of 12 climate change 

scenarios on the water resources of the 18 MWRRs was performed by Thomson et al. (2005) using the 

HUMUS approach, as part of a broader study that comprised the entire issue of Climatic Change volume 

69, number 1. Water yield shifts exceeding ±50% were predicted for portions of the Midwest and 

Southwest U.S., relative to present water yield levels. Rosenberg et al. (1999) found that driving SWAT 

with a different set of 12 climate projections generally resulted in Ogallala Aquifer recharge decreases (of 

up to 77%) within the Missouri and Arkansas White-Red MWRRs (Figure 2).  

Stone et al. (2001) predicted the impact of climate change on Missouri River Basin (Figure 2) water 

yields by inputting downscaled climate projections, which were generated by nesting the RegCM RCM 

within the CISRO GCM, into the previously described version of SWAT that was modified by Hotchkiss 

et al. (2000). A structure similar to the HUMUS approach was used, in which 310 eight-digit watersheds 

were used to define the subwatersheds. Water yields declined at the basin outlet by 10% to 20% during 

the spring and summer months but increased during the rest of the year. Further research revealed that 

significant shifts in Missouri River Basin water yield impacts were found when SWAT was driven by 

downscaled CISRO GCM projections only versus the nested RegCM-CISRO GCM approach (Stone et 

al., 2003).  

Jha et al. (2004b), Takle et al. (2005), and Jha et al. (2006) all report performing GCM-driven 

studies for the 447,500 km2 Upper Mississippi River Basin (Figure 2), with an assumed outlet at Grafton, 

Illinois, using a framework consisting of 119 eight-digit subwatersheds and land use, soil, and topography 

data that was obtained from BASINS. Jha et al. (2004b) found that Upper Mississippi River Basin 

streamflows increased by 50% for the 2040-2049 period, when climate projections generated by a nested 

RegCM2-HadCM2 approach were used to drive SWAT. Jha et al. (2006b) report that annual average 

shifts in Upper Mississippi River Basin streamflows, relative to the baseline, ranged from -6% to 38% for 

five 2061-2090 GCM projections and increased by 51% for a RegCM-CISRO projection reported by 

Giorgi et al. (1998). An analysis of driving SWAT with precipitation output generated with nine GCM 
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models indicated that GCM multi-model results may be used to depict twentieth century Upper 

Mississippi River Basin annual streamflows, and that the interface between the single high-resolution 

GCM used in the study and SWAT resulted in the best replication of observed streamflows (Takle et al., 

2005).   

Krysanova et al. (2005) report the impacts of 12 different climate scenarios on the hydrologic 

balance and crop yields of a 30,000 km2 watershed in the state of Brandenburg in Germany using the 

SWIM model. Further uncertainty analysis of climate change was performed by Krysanova et al. (2006) 

for the 100,000 km2 Elbe River Basin in eastern Germany, based on an interface between a downscaled 

GCM scenario and SWIM. Eckhardt and Ulbrich (2003) found that the spring snowmelt peak would 

decline, winter flooding would likely increase, and groundwater recharge and streamflow would decrease 

by as much as 50%, in response to two climate change scenarios simulated in SWAT-G. Their approach 

featured variable stomatal conductance and leaf area responses by incorporating different stomatal 

conductance decline factors and leaf area index values as a function of five main vegetation types; this 

approach has not been adopted in the standard SWAT model.  

SWAT Studies Reporting Climate Change Impacts on Pollutant Loss 

Several studies report climate change impacts on both hydrology and pollutant losses using SWAT, 

including four that were partially or completely supported by the EU CHESS project (Varanou et al., 

2002; Bouraoui et al., 2002; Boorman, 2003; Bouraoui et al., 2004). Nearing et al. (2005) compared 

runoff and erosion estimates from SWAT versus six other models, in response to six climate change 

scenarios that were simulated for the 150 km2 Lucky Hills Watershed in southeastern Arizona and the 1.1 

km2 Ganspoel Watershed in Belgium. The responses of all seven models were similar across the six 

scenarios for both watersheds, and it was concluded that climate change could potentially result in 

significant soil erosion increases if necessary conservation efforts are not implemented. Hanratty and 

Stefan (1998) found that streamflows, and P, organic N, nitrate, and sediment yields, generally decreased 

for the 3,400 km2 Cottonwood River Watershed in southwest Minnesota in response to a downscaled 

2xCO2 GCM climate change scenario. Varanou et al. (2002) also found that average stream flows, 
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sediment yields, organic N losses, and nitrate losses decreased in most months in response to nine 

different climate change scenarios downscaled from three GCMs for the 2,796 km2 Pinios Watershed in 

Greece. Bouraoui et al. (2002) reported that six different climate change scenarios resulted in increased 

total N and P loads of 6%-27% and 5%-34%, respectively, for the 3,500 km2 Ouse River Watershed 

located in the Yorkshire region of the United Kingdom. Bouraoui et al. (2004) found for the Vantaanjoki 

River Watershed, which covers 1,682 km2 in southern Finland, that snow cover decreased, winter runoff 

increased, and annual nutrient losses increased slightly in response to a 34-year scenario representative of 

observed climatic changes in the region. Boorman (2003) evaluated the impacts of climate change for five 

different watersheds located in Italy, France, Finland, and the UK, including the three watersheds 

analyzed in the Varanou et al. (2002), Bouraoui et al. (2002), and Bouraoui et al. (2004) studies.  

SENSITIVITY, CALIBRATION, AND UNCERTAINTY ANALYSES 

Sensitivity, calibration, and uncertainty analyses are vital and interwoven aspects of applying 

SWAT and other models. Numerous sensitivity analysis approaches have been reported in the SWAT 

literature, which provide valuable insights regarding which input parameters have the greatest impact on 

SWAT output. As previously discussed, the vast majority of SWAT applications report some type of 

calibration effort; SWAT input parameters are physically based and are allowed to vary within a realistic 

uncertainty range during calibration. Sensitivity analysis and calibration techniques are generally referred 

to as either manual or automated and can be evaluated with a wide range of graphical and/or statistical 

procedures. Some calibration steps occur prior to application of SWAT, such as the common use of 

automated methods that determine separation of base and groundwater flow from overall streamflow 

(Arnold et al., 1995a; Arnold and Allen, 1999).  

Uncertainty is defined by Shirmohammadi et al. (2006) as “the estimated amount by which an 

observed or calculated value may depart from the true value.” They discuss sources of uncertainty in 

depth and list model algorithms, model calibration and validation data, input variability, and scale as key 

sources of uncertainty; the latter two are further discussed in the next section. Several automated 

uncertainty analyses approaches have been developed, which incorporate various sensitivity and/or 
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calibration techniques. These techniques are briefly reviewed here, along with specific sensitivity analysis 

and calibration studies. 

Sensitivity Analyses 

Spruill et al. (2000) performed a manual sensitivity/calibration analysis of 15 SWAT input 

parameters for a 5.5 km2 watershed with karst characteristics in Kentucky, which showed that saturated 

hydraulic conductivity, alpha base flow factor, drainage area, channel length, and channel width were the 

most sensitive parameters that affected streamflow. Arnold et al. (2000) show surface runoff, base flow, 

recharge, and soil ET sensitivity curves in response to manual variations in the curve number, soil 

available water capacity, and soil evaporation coefficient (ESCO) input parameters, for three different 8-

digit watersheds within their Upper Mississippi River Basin SWAT study. Lenhart et al. (2002) report on 

the effects of two different sensitivity analysis schemes using SWAT-G for an artificial watershed, in 

which an alternative approach of varying 44 parameter values within a fixed percentage of the valid 

parameter range was compared with the more usual method of varying each initial parameter by the same 

fixed percentage. Both approaches resulted in similar rankings of parameter sensitivity and thus could be 

considered equivalent.  

A two-step sensitivity analysis approach is described by Francos et al. (2003), which consists of (1) 

a “Morris” screening procedure that is based on the One factor At a Time (OAT) design, and (2) the use 

of a Fourier Amplitude Sensitivity Test (FAST) method. The screening procedure is used to determine the 

qualitative ranking of an entire input parameter set for different model outputs at low computational cost, 

while the FAST method provides an assessment of the most relevant input parameters for a specific set of 

model output. The approach is demonstrated with SWAT for the 3,500 km2 Ouse Watershed in the United 

Kingdom using 82 input and 22 output parameters. Holvoet et al. (2005) present the use of a Latin 

Hypercube (LH)-OAT sampling method, in which initial LH samples serve as the points for the OAT 

design. The method was used for determining which of 27 SWAT hydrologic-related input parameters 

were the most sensitive regarding streamflow and atrazine outputs for 32 km2 Nil Watershed in central 

Belgium. The LH-OAT method was also used by van Griensven et al. (2006) for an assessment of the 
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sensitivity of 41 input parameters on SWAT flow, sediment, total N, and total P estimates for both the 

UNBRW and the 3,240 km2 Sandusky River Watershed in Ohio. The results show that some parameters 

such as the curve number (CN2) were important in both watersheds, but that there were distinct 

differences in the influences of other parameters between the two watersheds. The LH-OAT method has 

been incorporated as part of the automatic sensitivity/calibration package included in SWAT2005.  

Calibration Approaches 

The manual calibration approach requires the user to compare measured and simulated values, and 

then to use expert judgment to determine which variables to adjust, how much to adjust them, and 

ultimately assess when reasonable results have been obtained. Coffey et al. (2004) present nearly 20 

different statistical tests that can be used for evaluating SWAT streamflow output during a manual 

calibration process. They recommended using the NSE and R2 coefficients for analyzing monthly output 

and median objective functions, sign test, autocorrelation, and cross-correlation for assessing daily output, 

based on comparisons of SWAT streamflow results with measured streamflows (Table 2) for the same 

watershed studied by Spruill et al. (2000). Cao et al. (2006) present a flowchart of their manual 

calibration approach that was used to calibrate SWAT based on five hydrologic outputs and multiple 

gauge sites within the 2075 km2 Motueka River Basin on the South Island of New Zealand. The 

calibration and validation results were stronger for the overall basin as compared to results obtained for 

six subwatersheds (Table 2). Santhi et al. (2001a) successfully calibrated and validated SWAT for 

streamflow and pollutant loss simulations (Tables 2 and 3) for the 4,277 km2 Bosque River in Texas. 

They present a general procedure, including a flowchart, for manual calibration that identifies sensitive 

input parameters (15 were used), realistic uncertainty ranges, and reasonable regression results (i.e., 

satisfactory R2 and NSE values). A combined sensitivity and calibration approach is described by White 

and Chaubey (2005) for SWAT streamflow and pollutant loss estimates (Tables 2 and 3) for the 3,100 

km2 Bear Reservoir Watershed, and three subwatersheds, in northwest Arkansas. They also review 

calibration approaches, including calibrated input parameters, for previous SWAT studies. 



 

51 

Automated techniques involve the use of Monte Carlo or other parameter estimation schemes that 

determine automatically what the best choice of values are for a suite of parameters, usually based on a 

large set of simulations, for the calibration process. Govender and Everson (2005) used the automatic 

Parameter ESTimation (PEST) program (Doherty, 2004) and identified soil moisture variables, initial 

groundwater variables, and runoff curve numbers to be some of the sensitive parameters in SWAT 

applications for two small South African watersheds. They also report that manual calibration resulted in 

more accurate predictions than did the automatic PEST approach (Table 2). Wang and Melesse (2005) 

also used PEST to perform an automatic SWAT calibration of three snowmelt- and eight hydrologic-

related parameters for the 4,335 km2 Wild Rice River Watershed in northwest Minnesota, which included 

daily and monthly statistical evaluation (Table 2). Muleta and Nicklow (2005a) describe using a genetic 

algorithm to perform automatic calibration of daily streamflow and sediment yield estimates (Tables 2 

and 3). 

The monthly applications of a shuffled complex evolution (SCE) optimization scheme are described 

by van Griensven and Bauwens (2003, 2005) and Vandenberghe et al. (2001) for ESWAT simulations, 

primarily for the Dender River in Belgium. The user inputs calibration parameters and ranges along with 

measured daily flow and pollutant data. The automated calibration scheme controls up to several thousand 

model runs to find the optimum input data set. Similar automatic calibration studies were performed with 

a SCE algorithm and SWAT-G by Eckhardt and Arnold (2001) and Eckhardt et al. (2005) for the 81 km2 

Dietzhölze and 134 km2 Aar watersheds in Germany, respectively. Di Luzio and Arnold (2004) describe 

the background, formulation, and results (Table 2) of an hourly SCE input-output calibration approach 

used for a SWAT application in Oklahoma. Van Liew et al. (2003) describe an initial test of the SCE 

automatic approach that has been incorporated into SWAT2005, for streamflow predictions for the Little 

River watershed in Georgia and the Little Washita River watershed in Oklahoma. Van Liew et al. (2005) 

further evaluated the SCE alogrithm for five watersheds with widely varying climatic characteristics, 

including the same two in Georgia and Oklahoma and three others located in Arizona, Idaho, and 

Pennslyvania. 
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Uncertainty Analyses 

Shirmohammadi et al. (2006) state that Monte Carlo simulations and first-order error or 

approximation (FOE or FOA) analyses are the two most common approaches for performing uncertainty 

analyses, and that other methods have essentially been derived from these two basic strategies, including 

the mean value first-order reliability method, LH simulation with constrained Monte Carlo simulations, 

and generalized likelihood uncertainty estimation (GLUE). They present three case studies of uncertainty 

analyses using SWAT, which were based on the Monte Carlo simulations, LH-Monte Carlo simulations, 

and GLUE approaches, respectively, within the context of TMDL assessments. They report that 

uncertainty is a major issue for TMDL assessments, and that it should be taken into account during both 

the TMDL assessment and implementation phases. They also make recommendations to improve the 

quantification of uncertainty in the TMDL process.  

Benaman and Shoemaker (2004) developed a six-step method that includes using Monte Carlo 

simulations and an interval-spaced sensitivity approach to reduce uncertain parameter ranges. After 

parameter range reduction, their method reduced the model output range by an order of magnitude, 

resulting in reduced uncertainty and the amount of calibration required for SWAT. However, significant 

uncertainty remained with the SWAT sediment routine. Lin and Radcliffe (2006) performed an initial 

two-stage automatic calibration streamflow prediction process with SWAT for the 1,580 km2 Etowah 

River Watershed in Georgia in which an SCE algorithm was used for automatic calibration of lumped 

SWAT input parameters, followed by calibration of heterogeneous inputs with a variant of the Marquardt-

Levenberg method in which “regularization” was used to prevent parameters from taking on unrealistic 

values. They then performed a nonlinear calibration and uncertainty analysis using PEST, in which 

confidence intervals were generated for annual and seven-day streamflow estimates. Their resulting 

calibrated statistics are shown in Table 2. Muleta and Nicklow (2005b) describe a second study for the 

Big Creek Watershed that involved three phases: (1) parameter sensitivity analysis for 35 input 

parameters, in which LH samples were used to reduce the number of Monte Carlo simulations needed to 
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conduct the analysis; (2) automatic calibration using a genetic algorithm, which systematically 

determined the best set of input parameters using a sum of the square of differences criterion; and (3) an 

Monte Carlo-based GLUE approach for the uncertainty analysis, in which LH sampling is again used to 

generate input samples and reduce the computation requirements. Uncertainty bounds corresponding to 

the 95% confidence limit are reported for both streamflow and sediment loss, as well as for the final 

calibrated statistics (Tables 2 and 3).  

Van Greinsven and Meixner (2006) describe several uncertainty analysis tools that have been 

incorporated into SWAT2005, including a modified SCE algorithm called “parameter solutions” 

(ParaSol); the Sources of Uncertainty Global Assessment using Split SamplES (SUNGLASSES), which 

further evaluates results obtained with ParaSol for a different time period (to ascertain bias in the initial 

confidence region, etc.); and the Confidence ANalysis Of Physical Inputs (CANOPI), which evaluates 

uncertainty associated with climatic data and other inputs. Additional uncertainty analysis insights are 

provided by Vanderberghe et al. (2006) for an ESWAT-based study and by Huisman et al. (2004) and 

Eckhardt et al. (2003), who assessed the uncertainty of soil and/or land use parameter variations on 

SWAT-G output using MC-based approaches. 

EFFECTS OF HRU/SUBWATERSHED DELINEATION AND OTHER INPUTS ON SWAT OUTPUT 

Several studies have been performed that analyzed impacts on SWAT output as a function of (1) 

variation in HRU and/or subwatershed delineations; (2) different resolutions in topographic, soil, and/or 

land use data; (3) effects of spatial and temporal transfers of inputs; (4) actual and/or hypothetical shifts in 

land use; and (5) different resolutions of precipitation input. These studies serve as additional types of 

SWAT sensitivity analyses and provide valuable insight into how the model responds to variations in key 

inputs.  

HRU and Subwatershed Delineation Effects 

The majority of the HRU/subwatershed delineation studies were based on arbitrary subdivision 

criteria. However, Haverkamp et al. (2002) used a statistically based approach called the SUbwatershed 
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Spatial Analysis Tool (SUSAT) to find the most efficient SWAT flow predictions as a function of the 

number of simulated subwatersheds. Further application of SUSAT in combination with SWAT-G, 

IOSWAT, and other software tools is described by Fohrer et al. (2005) and Haverkamp et al. (2005). 

Bingner et al. (1997), Manguerra and Engel (1998), FitzHugh and Mackay (2000), Jha et al. 

(2004a), and Chen and Mackay (2004) found that SWAT streamflow predictions were generally 

insensitive to variations in HRU and/or subwatershed delineations for watersheds ranging in size from 

21.3 to 17,941 km2. Tripathi et al. (2006) also found that little variation occurred in predicted surface 

runoff across three subwatershed delineation schemes (1, 12, and 22 subwatersheds) for the 90.2 km2 

Nagwan Watershed in northeast India, but that evapotranspiration, percolation, and soil water content 

estimates did vary between 5% to 48%, 2% to 26%, and 0.3% to 22%, respectively, between the three 

configurations. Haverkamp et al. (2002) report that streamflow accuracy was much greater when using 

multiple HRUs to characterize each subwatershed as opposed to using just a single dominant soil type and 

land use within a subwatershed for two watersheds in Germany and one in Texas. However, the gap in 

accuracy between the two approaches decreased with increasing numbers of subwatersheds.    

Bingner et al. (1997) report that the number of simulated subwatersheds affected predicted sediment 

yield and suggested that sensitivity analyses should be performed to determine the appropriate level of 

subwatersheds. Jha et al. (2004a) found that SWAT sediment and nitrate predictions were sensitive to 

variations in both HRUs and subwatersheds but mineral P estimates were not. The effects of BMPS on 

SWAT sediment, total P, and total N estimates were also found by Arabi et al. (2006) to be very sensitive 

to watershed subdivision level. Jha et al. (2004a) suggest setting subwatershed areas ranging from 2% to 

5% of the overall watershed area, depending on the output indicator of interest, to ensure accuracy of 

estimates. Arabi et al. (2006) found that an average subwatershed equal to about 4% of the overall 

watershed area is required to accurately account for the impacts of BMPs in the model. 

FitzHugh and Mackay (2000, 2001) and Chen and Mackay (2004) found that sediment losses 

predicted with SWAT did not vary at the outlet of the 47.3 km2 Pheasant Branch Watershed in south 

central Wisconsin as a function of increasing numbers of HRUs and subwatersheds, because of the 
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transport-limited nature of the watershed. However, sediment generation at the HRU level dropped 44% 

from the coarsest to the finest resolutions (FitzHugh and Mackay, 2000) and sediment yields varied at the 

watershed outlet for hypothetical source-limited versus transport-limited scenarios (FitzHugh and 

Mackay, 2001) in response to eight different HRU/subwatershed combinations used in both studies. Chen 

and Mackay (2004) further found that SWAT’s structure influences sediment predictions in tandem with 

spatial data aggregation effects. They suggest that errors in MUSLE sediment estimates can be avoided 

by using only subwatersheds instead of using HRUs within subwatersheds. 

DEM, Soil, and Land Use Resolution Effects 

Bosch et al. (2004) found that SWAT streamflow estimates for a 22.1 km2 subwatershed of the Little 

River Watershed in Georgia were more accurate using high-resolution topographic, land use, and soil data 

versus low-resolution data obtained from BASINS. Cotter et al. (2003) report that DEM resolution was 

the most critical input for a SWAT simulation of the 1,890 ha Moores Creek Watershed in Arkansas, and 

that minimum DEM, land use, and soil resolutions should be between 30 and 300, 300 and 500, and 300 

and 500 m, respectively, to obtain accurate flow, sediment, NO3-N, and TP estimates. Di Luzio et al. 

(2005) also found that DEM resolution was the most critical for SWAT simulations of the 21.3 km2 

Goodwin Creek Watershed in Mississippi; land use resolution effects were also significant but the 

resolution of soil inputs was not. Chaplot (2005) found that SWAT surface runoff estimates were 

sensitive to DEM mesh size and that nitrate and sediment predictions were sensitive to both the choice of 

DEM and soil map resolution for the Walnut Creek Watershed in central Iowa. The most accurate results 

did not occur for the finest DEM mesh sizes, contrary to expectations. Romanowicz et al. (2005) report 

that SWAT streamflow estimates were very sensitive to both soil and land use inputs, on the basis of 36 

different soil and land use map combinations that were used in uncalibrated SWAT simulations for the 

59.1 km2 Thyle Watershed in central Belgium. 
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Effects of Different Spatial and Temporal Transfers of Inputs 

Heuvelmans et al. (2004a) evaluated the effects of transferring seven calibrated SWAT hydrologic 

input parameters, which had been selected on the basis of a sensitivity analysis, in both time and space for 

three watersheds ranging in size from 51 to 204 km2 in northern Belgium. Spatial transfers were found to 

result in the greatest loss of streamflow efficiency, especially between watersheds. Heuvelmans et al. 

(2004b) further evaluated the effect of four parameterization schemes on SWAT streamflow predictions 

for the same set of seven hydrologic inputs, for 25 watersheds that covered 2.2 to 210 km2 within the 

20,000 km2 Scheldt River Basin in northern Belgium. The highest model efficiencies were achieved when 

optimal parameters for each individual watershed were used; optimal parameters selected on the basis of 

regional zones with similar characteristics proved superior to parameters that were averaged across all 25 

watersheds. 

Historical and Hypothetical Land Use Effects  

Miller et al. (2002) describe simulated streamflow impacts with SWAT in response to historical land 

use shifts in the 3,150 km2 San Pedro Watershed in southern Arizona and the 1,200 km2 Cannonsville 

Watershed in south central New York. Streamflows were predicted to increase in the San Pedro 

Watershed because of increased urban and agricultural land use, while a shift from agricultural to forest 

land use was predicted to result in a 4% streamflow decrease in the Cannonsville Watershed. Hernandez 

et al. (2000) further found that SWAT could accurately predict the relative impacts of hypothetical land 

use change in an 8.2 km2 experimental subwatershed within the San Pedro Watershed. Heuvelmans et al. 

(2005) also report that SWAT produced reasonable streamflow and erosion estimates for hypothetical 

land use shifts, which were performed as part of a life cycle assessment (LCA) of CO2 emission reduction 

scenarios for the 29.2 km2 Meerdaal and 12.1 km2 Latem watersheds in the Flanders region of northern 

Belgium. However, they state that an expansion of the SWAT vegetation parameter dataset is needed in 

order to fully support LCA analyses.  

Increased streamflow was predicted with SWAT for the 59.8 km2 Aar Watershed in the German 

state of Hessen, in response to a grassland incentive scenario in which the grassland area increased from 
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20% to 41% while the extent forest coverage decreased by about 70% (Weber et al., 2001). Huisman et al. 

(2004) describe the impacts of hypothetical cropland and pasture The impacts of other hypothetical land 

use studies for various German watersheds have been reported on hydrologic impacts with SWAT-G 

(e.g., Fohrer et al., 2002, 2005) and SWIM  (Krysanova et al., 2005), and on nutrient and sediment loss 

predictions with SWAT-G (Lenhart et al., 2003). 

Climate Data Resolution Effects 

Chaplot et al. (2005) analyzed the effects of rain gauge distribution on SWAT output by simulating 

the impacts of climatic inputs for a range of 1 to 15 rain gauges in both the 51.3 km2 Walnut Creek 

Watershed in central Iowa and the UNBRW in north central Texas. Sediment predictions improved 

significantly when the densest rain gauge networks were used; only slight improvements occurred for the 

corresponding surface runoff and N predictions. However, Hernandez et al. (2000) found that increasing 

the number of simulated rain gauges from 1 to 10 resulted in clear estimated streamflow improvements 

(Table 2). Moon et al. (2004) found that SWAT’s streamflow efficiency improved (Table 2) when Next 

Generation Weather Radar (NEXRAD) precipitation input was used instead of rain gauge inputs. 

Jayakrishnan et al. (2005) also found that NEXRAD precipitation input resulted in improved streamflow 

estimates relative to rain gauge data (Table 2). Further sensitivity of precipitation input on SWAT 

hydrologic output is reported for comparisons of different weather generators by Harmel et al. (2000) and 

Watson et al. (2005). 

COMPARISONS OF SWAT WITH OTHER MODELS 

Borah and Bera (2003, 2004) compared SWAT with several other watershed-scale models. In the 

2003 paper, they report that DWSM, HSPF, SWAT, and other models have hydrology, sediment, and 

chemical routines applicable to watershed scale catchments and concluded that SWAT is a promising 

model for continuous simulations in predominantly agricultural watersheds. In the 2004 paper, they 

compiled 17 SWAT, 12 HSPF, and 18 DWSM applications and concluded that SWAT and HSPF were 

suitable for predicting yearly flow volumes, sediment loads, and nutrient losses; were adequate for 
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monthly predictions except for months having extreme storm events and hydrologic conditions; and were 

poor in simulating daily extreme flow events. In contrast, DWSM reasonably predicted distributed flow 

hydrographs and concentration or discharge graphs of sediment, nutrient, and pesticides at short time 

intervals. Shepherd et al. (1999) evaluated 14 models and found SWAT to be the most suitable for 

estimating P loss from a lowland English catchment.  

Van Liew et al. (2003a) compared the streamflow predictions of SWAT and HSPF on eight nested 

agricultural watershed within the 610 km2 Washita River Basin in southwestern Oklahoma. They found 

that differences in model performance were mainly attributed to the runoff production mechanisms of the 

two models. Furthermore, they concluded that SWAT gave more consistent results than HSPF in 

estimating streamflow for agricultural watersheds under various climatic conditions and may thus be 

better suited for investigating the long-term impacts of climate variability on surface water resources. 

Saleh and Du (2004) calibrated SWAT and HSPF with daily flow, sediment, and nutrients measured at 

five stream sites of the 933 km2 Upper North Bosque River Watershed (UNBRW) located in central 

Texas. They concluded that the average daily flow, sediment, and nutrient loading simulated by SWAT 

were closer to measured values than was HSPF during both the calibration and verification periods. Singh 

et al. (2005) found that SWAT flow predictions were slightly better than corresponding HSPF estimates 

for the 5,508 km2 in eastern Illinois and western Indiana, primarily because of better simulation of low 

flows by SWAT. El-Nasr et al. (2005) found that both SWAT and MIKE-SHE simulated the hydrology of 

Belgium’s Jeker River Basin in an acceptable way. However, MIKE-SHE predicted the overall variation 

of river flow slightly better. 

Srinivasan et al. (2005) found that SWAT estimated flow more accurately than the Soil Moisture 

Distribution and Routing (SMDR) model (Soil and Water Lab, 2002) for a 39.5 ha fd-36 experimental 

watershed in east central Pennsylvania, and that SWAT was also more accurate on a seasonal basis. 

SWAT estimates were also found to be similar to measured dissolved and total P for the same watershed, 

and 73% of the 22 fields in the watershed were categorized similarly on the basis of the SWAT analysis 

as compared to the Pennsylvania P Index (Veith et al., 2005). Grizzetti et al. (2005) reported that both 
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SWAT and a statistical approach based on the SPARROW model (Smith et al., 1997) resulted in similar 

total oxidized N loads for two monitoring sites within the 1,380 km2 Great Ouse Watershed in the United 

Kingdom. They also state that the statistical reliability of the two approaches was similar and that the 

statistical model should be viewed primarily as a screening tool while SWAT is more useful for scenarios. 

INTERFACES OF SWAT WITH OTHER MODELS 

Innovative applications have been performed by interfacing SWAT with other environmental and/or 

economic models. These interfaces have expanded the range of scenarios that can be analyzed and have 

allowed for more in-depth assessments of questions that cannot be considered with SWAT alone, such as 

groundwater withdrawal impacts or the costs incurred from different choices of management practices. 

SWAT-MODFLOW and/or Surface Water Model Interfaces 

A linkage was performed between SWAT and the MODFLOW groundwater model (McDonald and 

Harbaugh, 1988) that is described in detail by Perkins and Sophocleous (1999) and Sophocleous and 

Perkins (2000) and referred to as SWATMOD by Sophocleous et al. (1999). Sophocleous et al. (1999) 

used SWATMOD to evaluate water rights and withdrawal rate management scenarios on stream and 

aquifer responses for the Rattlesnake Creek Watershed in south central Kansas. The system was used by 

Sophocleous and Perkins (2000) to study irrigation effects on streamflow and groundwater levels in the 

Lower Republican River Watershed in north central Kansas and to investigate streamflow into a wildlife 

refuge and streamflow and groundwater declines within the Rattlesnake Creek Watershed. Additional 

SWATMOD testing and scenario results are reported by Perkins and Sophocleous (1999) for the Lower 

Republican River. SWAT was coupled with MODFLOW to study for the 12 km2 Coët-Dan Watershed in 

Brittany, France (Conan et al., 2003a). Accurate results were reported, with respective monthly NSE 

values for streamflow and nitrate of 0.88 and 0.87.  

Menking et al. (2003) interfaced SWAT with both MODFLOW and the MODFLOW LAK2 lake 

modeling package to assess how current climate conditions would impact water levels in ancient Lake 

Estancia (central New Mexico), which existed during the late Pleistocene era. The results indicated that 
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current net inflow from the 5,000 km2 drainage basin would have to increase by about a factor of 15 to 

maintain typical Late Pleistocene lake levels. Additional analyses of Lake Estancia were performed by 

Menking et al. (2004) for the Last Glacial Maximum period. SWAT was also interfaced with a 3-D 

lagoon model by Plus et al. (2006) to determine N loads from a 280 km2 drainage area into the Thau 

Lagoon, which lies along the south coast of France. The main annual N load was estimated with SWAT 

to be 117 t yr-1; chlorophyll a concentrations, phytoplankton production, and related analyses were 

performed with the lagoon model.   

SWAT Interfaces with Environmental Models or Genetic Algorithms for BMP Analyses 

Renschler and Lee (2005) linked SWAT with the Water Erosion Prediction Project (WEPP) model 

to evaluate both short- and long-term assessments, for pre- and post-implementation, of grassed 

waterways and field borders for three experimental watersheds ranging in size from 0.66 to 5.11 ha. 

SWAT was linked directly to the Geospatial Interface for WEPP (GeoWEPP), which facilitated injection 

of WEPP output as point sources into SWAT. The long-term assessment results were similar to SWAT-

only evaluations but the short-term results were not similar. Cerucci and Conrad (2003) determined the 

optimal riparian buffer configurations for 31 subwatersheds in the 37 km2 Town Brook Watershed in 

south central New York, by using a binary optimization approach and interfacing SWAT with the 

Riparian Ecosystem Model (REMM). The analysis determined the marginal utility of buffer widths and 

the most affordable parcels in which to establish riparian buffers.  

Nicklow and Muleta (2005a) have interfaced SWAT with both a GA and a Strength Pareto 

Evolutionary Algorithm (SPEA) to perform single and multi-objective evaluations, respectively. They 

show an example for the 130 km2 Big Creek Watershed in southern Illinois, in which conversion of 10% 

of the HRUs into conservation programs (cropping system/tillage practice BMPs) for a maximum of 50 

GA generations would result in reduced sediment yield of 19%. Optimal land use–tillage combinations 

were determined for each HRU within a maximum of 50 GA generations. Gitau et al. (2004) interfaced 

baseline P estimates from SWAT, with a GA and a BMP tool containing site-specific BMP effectiveness 

estimates to determine the optimal on-farm placement of BMPs so that P losses and costs were both 
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minimized. The two most efficient scenarios met the target of reducing dissolved P loss by at least 60%, 

with corresponding farm-level cost increases of $1,430 and $1,683, respectively, relative to the baseline.  

SWAT-Economic and/or Environmental Model Interfaces 

Osei et al. (2003a; 2003b) simulated the impacts of nutrient losses from grazing dairy cows within 

the 1,279 km2 Lake Fork Reservoir Watershed (LFRW) in northeast Texas and dairy manure applications 

to cropland within the UNBRW in north central Texas, respectively, by interfacing a Farm Economic 

Model (FEM) with the APEX model and SWAT. It was concluded that appropriate pasture nutrient 

management, including stocking density adjustments and more efficient application of commercial 

fertilizer, could lead to significant reductions in nutrient losses in the LFRW, and that manure 

incorporation reduced P losses at a relatively small to moderate cost to producers in the UNBRW. 

Gassman et al. (2006) assessed the impacts of seven individual BMPs and four BMP combinations with 

the same integrated modeling system for the 162.2 km2 Upper Maquoketa River Watershed in northeast 

Iowa, which is dominated by cropland and mixed livestock production. Terraces were predicted to be 

very effective in reducing sediment and organic nutrient losses but were also the most expensive practice, 

while no-till or contouring in combination with reduced fertilizer rates were predicted to result in 

reductions of all pollutant indictors and also yield positive net returns. Additional scenario results for all 

three watersheds are reported in Gassman et al. (2002).    

Lemberg et al. (2002) evaluated the economic impacts of brush control in the Frio River Basin in 

south central Texas using SWAT, the Phytomass Growth Simulator (PHYGROW) model (Rowan, 1995), 

and two economic models. It was determined that subsidies on brush control would not be worthwhile. 

Economic evaluations of riparian buffer benefits in regard to reducing atrazine concentration and other 

factors were performed by Qiu and Prato (1998) using SWAT, a budget generator, and an economic 

model for the 77.4 km2 Goodwater Creek Watershed in north central Missouri (riparian buffers were not 

directly simulated). The implementation of riparian buffers was found to result in substantial net 

economic return and savings in government costs, because of reduced CRP rental payments. Qiu (2005) 

used a similar approach for the same watershed to evaluate the economic and environmental impacts of 
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five different alternative scenarios. SWAT was interfaced with a data envelope analysis linear 

programming model by Whittaker et al. (2003) to determine which of two policies would be most 

effective in reducing N losses to streams in the 259,000 km2 Columbia Plateau region in the northwest 

U.S. The analysis indicated that a 300% tax on N fertilizer would be more efficient than a mandated 25% 

reduction in N use. Evaluation of different policies was demonstrated by Attwood et al. (2000) by 

showing economic and environmental impacts at the U.S. national scale and for Texas by linking SWAT 

with an agricultural sector model. Other examples of SWAT interfaces with economic models are 

reported in Whittaker (2005) and Turpin et al. (2005).  

Interfaces with Ecological and Other Models  

Weber et al. (2001) interfaced SWAT with the ecological model ELLA and the Proland economic 

model to investigate the streamflow and habitat impacts of a “grassland incentive scenario” that resulted 

in grassland area increasing from 21% to 40% and forest area declining by almost 70% within the 59.8 

km2 Aar Watershed in Germany. SWAT predicted streamflow increased while skylark bird habitat 

decreased in response to the scenario. Fohrer et al. (2002) used SWAT-G, the YELL ecological model, 

and the Proland model to assess the effects of land use changes and associated hydrologic impacts on 

habitat suitability for the yellowhammer bird species. The authors report effects of four average field size 

scenarios (.5, .75, 1.0, and 2.0 ha) on land use, bird nest distribution and habitat, labor and agricultural 

value, and hydrological response. SWAT is also being used to simulate crop growth, hydrologic balance, 

soil erosion, and other environmental responses by Christiansen and Altaweel (2006) within the 

ENKIMDU modeling framework (named in honor of the ancient Sumerian god of agriculture and 

irrigation), which is being used to study the natural and societal aspects of Bronze Age Mesopotamian 

cultures.   

SWAT STRENGTHS, WEAKNESSES, AND RESEARCH NEEDS 

The worldwide application of SWAT reveals that it is a versatile model that can be used to integrate 

multiple environmental processes that support more effective watershed management and the 
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development of better-informed policy decisions. The model will continue to evolve as users determine 

needed improvements that will (1) enable more accurate simulation of currently supported processes, (2) 

incorporate advancements in scientific knowledge, and/or (3) provide new functionality that will expand 

the SWAT simulation domain. This process is aided by the open source status of the SWAT code and 

ongoing encouragement of collaborating scientists to pursue needed model development, as demonstrated 

by a recent Model Developer’s Workshop at the Institute for Climate Research Impact in Potsdam, 

Germany. The model has also been included in the Collaborative Software Development Laboratory that 

facilitates development by multiple scientists (CoLab, 2006).   

The foundational strength of SWAT is the combination of upland and channel processes that are 

incorporated into one simulation package. However, every one of these processes is a simplification of 

reality and thus subject to the need for improvement. To some degree, the strengths that facilitate 

widespread use of SWAT also represent weaknesses that need further refinement such as simplified 

representations of HRUs. There are also problems in depicting some processes accurately due to a lack of 

sufficient monitoring data, inadequate data needed to characterize input parameters, or insufficient 

scientific understanding. The strengths and weaknesses of five components are discussed here in more 

detail, including possible courses of action for improving current routines in the model. The discussion is 

framed to some degree from the perspective of emerging applications; i.e., bacteria die-off and transport. 

Additional research needs are also briefly listed for other components, again in the context of emerging 

application trends where applicable. 

HYDROLOGIC INTERFACE  

The use of the NRCS curve number method in SWAT has provided a relatively easy way of 

adapting the model to a wide variety of hydrologic conditions. The technique has proved successful for 

many applications, as evidenced by the results reported in this study. However, the embrace of this 

method in SWAT and similar models has proved controversial because of the empirical nature of the 

approach, lack of complete historical documentation, poor results obtained for some conditions, 

inadequate representation of “critical source areas” that generate pollutant loss (which can occur even 
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after satisfactory hydrologic calibration of the model), and other factors (e.g., see Ponce and Hawkins, 

1996; Agnew et al., 2006; Bryant et al., 2006).  

The Green and Ampt method provides an alternative hydrologic option in SWAT, which Rawls and 

Brakensiek (1986) found to be more accurate than the curve number method and also to account for the 

effects of management practices on soil properties in a more rational manner. However, King et al. (1999) 

and Kannan et al. (2007b) found that the curve number method was more accurate than the Green and 

Ampt approach in their respective SWAT applications, as previously discussed. These conflicting results 

lend support to the viewpoint expressed by Ponce and Hawkins (1996) that alternative point infiltration 

techniques, including the method developed by Green and Ampt, have not demonstrated a clear 

superiority to the curve number method.  

Improved SWAT hydrologic predictions potentially could be obtained through modifications in the 

curve number methodology and/or incorporation of more complex routines. For example, Bryant et al. 

(2006) propose modifications of the curve number initial abstraction term, as a function of soil physical 

characteristics and management practices, that could result in more accurate simulation of extreme (low 

and high) runoff events. Borah et al. (2006) further propose inserting the combined curve number-

kinematic wave methodology used in the Dynamic Watershed Simulation Model (DWSM) into SWAT, 

which was found to result in improved simulation of daily runoff volumes for 8,400 km2 Little Wabash 

River Watershed in Illinois. Model modifications would be needed to address phenomena such as variable 

source area (VSA) saturated excess runoff which dominants surface runoff in some regions including the 

northeast U.S., where down-slope VSA saturated discharge often occurs because of subsurface interflow 

over relatively impermeable material (Agnew et al., 2006; Walter et al., 2000). The modified SWAT 

versions described by Eckhardt et al. (2002) and Watson et al. (2005) may provide useful insights for 

regions that are characterized by VSA hydrology, in which the respective modifications were made to 

address subsurface interflow in low mountain conditions in Germany (SWAT-G version) and to simulate 

VSA dominated hydrology in southwest Victoria, Australia, by incorporating a saturated excess runoff 

routine in SWAT.   
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HYDROLOGIC RESPONSE UNITS (HRUS) 

The incorporation of nonspatial HRUs in SWAT has supported adaptation of the model to virtually 

any watershed, ranging in size from field plots to entire river basins. The fact that the HRUs are not 

landscape dependent has kept the model simple while allowing soil and land use heterogeneity to be 

accounted for within each subwatershed. At the same time, the nonspatial aspect of the HRUs is a key 

weakness of the model. This approach ignores flow and pollutant routing within a subwatershed, thus 

treating the impact of pollutant losses identically from all landscape positions within a subwatershed. 

Consequently, potential pollutant attenuation between the source area and a stream is also ignored, as 

discussed by Bryant et al. (2006) for P movement. The current SWAT HRU provides neither explicit 

spatial representation of riparian buffer zones, wetlands, and other BMPs nor the ability to account for 

targeted placement of grassland or other land use within a given subwatershed. Incorporation of greater 

spatial detail into SWAT is currently being explored, with the initial focus on constructing spatially 

defined landscapes that can then be further subdivided into HRUs.  

SIMULATION OF BMPS 

A key strength of SWAT is a flexible framework that allows the simulation of a wide variety of 

conservation practices and other BMPs, such as fertilizer/manure application rate and timing, cover crops 

(perennial grasses), filter strips, grassed waterways, and wetlands. However, there are limitations in how 

these practices are represented in the model, and some practices such as riparian buffer zones cannot be 

directly simulated at the present time. 

The majority of conservation practices can be simulated in SWAT with straightforward parameter 

changes; Arabi et al. (2007) have proposed standardized approaches for simulating specific conservation 

practices in the model including the adjustment of the parameters listed in Table 4. Filter strips and field 

borders can be simulated at the HRU level, based on empirical functions that account for filter strip 

trapping effects of bacteria or sediment, nutrients, and pesticides (which are invoked when the filter strip 

width parameter is set input to the model). However, assessments of targeted filter strip placements within 
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a watershed are limited because of the lack of HRU spatial definition in SWAT. There are also further 

limitations in simulating grassed waterways, because channel routing is not simulated at the HRU level. 

However, a viable option for some applications may be to configure a watershed using subwatersheds 

without HRUs, which maintains a more realistic representation of channel structure throughout the 

simulated watershed. Overall, the empirical basis used for simulating most of these practice effects is a 

definite limitation in accurately depicting the impacts of such BMPs in the model. However, this 

weakness is a reflection of much of the current state-of-the-art understanding of conservation practice 

effects and is inherent in most available simulation tools.   

Virtually any combination of fertilizer or manure application rate and timing can be simulated in 

SWAT at the HRU level. Nutrient injection or incorporation, in response to tillage passes, can also be 

accounted for, although the model assumes that the nutrients are distributed in the top soil layer rather 

than injected or distributed at a specific depth. Also, side dressing or similar fertilizer placement 

application practices cannot be realistically simulated at present in SWAT. Depiction of cover crops can 

be carried out in various ways such as inclusion of alfalfa or other forages within a crop rotation, and as 

perennial vegetation planted after crop harvest in the fall or in land set-aside programs such as CRP. Only 

a single plant species can be simulated at a given time, which precludes performing scenarios such as 

mixed perennial grasses for a CRP field.  

Constructed wetlands have been identified as a key N loss mitigation strategy in the Mississippi 

River Basin (Mitsch et al., 2001) and in other regions. Representation of constructed wetlands or other 

wetland areas can be simulated in SWAT on the basis of one wetland per subwatershed, which is assumed 

to capture discharge and pollutant loads from a user-specified percentage of the overall subwatershed. 

The ability to site wetlands with more spatial accuracy within a subwatershed would clearly provide 

improvements over the current SWAT wetland simulation approach. Riparian buffers and other 

conservation buffers have also been demonstrated to reduce N and other pollutant losses to streams in 

many locations (Lovell and Sullivan, 2006). The lack of spatial detail in SWAT also hinders simulation of 

riparian buffer zones and other conservation buffers, which again need to be spatially defined at the 
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landscape or HRU level in order to correctly account for upslope pollutant source areas and the pollutant 

mitigation impacts of the buffers. Flexible simulation of riparian and other buffers for a wide range of 

watershed scales and conditions will likely require the incorporation of buffer zone components from 

REMM (or a similar model) into SWAT, which, together with spatially explicit landscape/HRU 

functionality, would allow for realistic assessments of riparian buffer impacts along stream channels. The 

riparian and wetland processes recently incorporated into the SWIM model (Hatterman et al., 2006) may 

also prove useful for improving current approaches used in SWAT. 
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Table 5. Proposed key parameters to adjust for accounting of different conservation practice effects in SWAT. †  
 Suggested parameters that should be adjusted for each conservation practice 
 
Conservation practice  Channel 

depth 
Channel 

width 

Channel 
erodibility 

factor 

Channel 
cover 
factor 

Channel 
Manning’s 
roughness 
coefficient 

Channel 
slope 

segment 

Filter 
strip 

width# 

Hillside 
slope 
length 

Manning’s 
N coeff. 

for 
overland 

flow 

SCS 
runoff 
curve 

number 

USLE C 
factor 

USLE P 
factor 

Contouring          X  X 
Field border       X      
Filter strips       X      
Grade stabilization structures   X   X       
Grassed waterways X X  X X        
Lined waterways X X X  X        
Parallel terraces        X  X  X 
Residue management‡         X X X  
Stream channel stabilization X X X  X        
Strip Cropping         X X X X 
†Source: Arabi et al., 2007. 
‡Soil incorporation of residue by tillage implements is also a key aspect of simulated residue management in SWAT.   
#Setting a filter strip width triggers one of two filter strip trapping efficiency functions (one for bacteria and the other for sediment, pesticides, and nutrients) that account for the effect of filter strip 
removal of pollutants. 
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BACTERIA LIFE CYCLE AND TRANSPORT  

Benham et al. (2006) state that SWAT is one of two primary models used for watershed-scale 

bacteria fate and transport assessments in the U.S. SWAT bacteria component strengths include (1) 

simultaneous assessment of fecal coliform (as an indicator pathogen) and a more persistent second 

pathogen that possesses different growth/die-off characteristics; (2) different rate constants that can be 

set for soluble versus sediment-bound bacteria; and (3) the ability to account for multiple point and/or 

nonpoint bacteria sources such as land-applied livestock and poultry manure, wildlife contributions, 

and human sources such as septic tanks. Jamieson et al. (2004) further point out that SWAT is the only 

model that currently simulates partitioning of bacteria between adsorbed and non-adsorbed fractions; 

however, they also state that reliable partitioning data is currently not available. Bacteria die-off is 

simulated in SWAT based on a first-order kinetic function (Neitsch et al., 2005a), as a function of time 

and temperature. However, Benham et al. (2006), Jamieson et al. (2004), and Pachepsky et al. (2006) 

all cite several studies that show that other factors such as moisture content, pH, nutrients, and soil type 

can influence die-off rates. Leaching of bacteria is also simulated in SWAT, although all leached 

bacteria are ultimately assumed to die off. This conflicts with some actual observations in which 

pathogen movement has been observed in subsurface flow (Pachepsky et al., 2006; Benham et al., 

2006), which is especially prevalent in tile-drained areas (Jamieson et al., 2004). Benham et al. (2006), 

Jamieson et al. (2004), and Pachepsky et al. (2006) list a number of research avenues and modeling 

improvements needed to perform more accurate bacteria transport simulations with SWAT and other 

models, including (1) more accurate characterization of bacteria sources, (2) development of bacteria 

life cycle equations that account for different phases of die-off and the influence of multiple factors on 

bacteria die-off rates, (3) accounting of subsurface flow bacteria movement including transport via tile 

drains, and (4) depiction of bacteria deposition and resuspension as function of sediment particles 

rather than just discharge.  
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IN-STREAM KINETIC FUNCTIONS  

The ability to simulate in-stream water quality dynamics is a definite strength of SWAT. 

However, Horn et al. (2004) point out that very few SWAT-related studies discuss whether the 

QUAL2E-based in-stream kinetic functions were used or not. Santhi et al. (2001a) opted not to use the 

in-stream functions for their SWAT analysis of the Bosque River in central Texas, because the 

functions do not account for periphyton (attached algae), which dominants P-limited systems including 

the Bosque River. This is a common limitation of most water quality models with in-stream 

components, which focus instead just on suspended algae. Migliaccio et al. (2006) performed parallel 

SWAT analyses of total P and nitrate (including nitrite) movement for the 60 km2 War Eagle Creek in 

northwest Arkansas by (1) loosely coupling SWAT with QUAL2E (with the SWAT in-stream 

component turned off), and (2) executing SWAT by itself with and without the in-stream functions 

activated. They found no statistical difference in the results generated between the SWAT-QUAL2E 

interface approach versus the stand-alone SWAT approach, or between the two stand-alone SWAT 

simulations. They concluded that further testing and refinement of the SWAT in-stream algorithms are 

warranted, a finding similar to the views expressed by Horn et al. (2004). Further investigation is also 

needed to determine if the QUAL2E modifications made in ESWAT should be ported to SWAT, 

which is described by Van Griensven and Bauwens (2003, 2005). 

ADDITIONAL RESEARCH NEEDS 

1. Routines for concentrated animal feeding operations and related manure application should be 

developed that support simulation of surface and integrated manure application techniques and 

their influence on nutrient fractionation, distribution in runoff and soil, and sediment loads. 

Current development is focused on a manure cover layer and subsurface transport of phosphorus. 

2. All aspects of stream routing need further testing and refinement, including the QUAL2E routines 

as previously discussed. 
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3. Improved stream channel degradation and sediment deposition routines are needed to better 

describe sediment transport, using the simple channel and degradation routines described by 

Allen et al. (2002) for their modified SWAT-DEG model, and to account for nutrient loads 

associated with sediment movement (Jha et al., 2004a). Channel sediment routing could be 

improved by accounting for sediment size effects, with separate algorithms for wash load and bed 

load. Improved flood plain deposition algorithms are needed, and a stream bank erosion routine 

should be incorporated into the model. 

4. SWAT currently assumes that soil carbon contents are static. This approach should be replaced 

by an updated carbon cycling submodel such as a simplified version of the one described by 

Izaurralde et al. (2006).  

5. Improvements to the nitrogen cycling routines should be investigated based on the suggestions 

given by Borah et al. (2006). Other aspects of the nitrogen cycling process should also be 

reviewed and updated if needed, including current assumptions of plant nitrogen uptake. Soil 

phosphorus cycling improvements have been initiated and will continue. 

6. Expansion of the plant parameter database is needed, as pointed out by Heuvelmans et al. (2005), 

to support a greater range of vegetation scenarios that can be simulated in the model. In general, 

more extensive testing of the crop growth component is needed, especially in light of recent corn 

and other crop hybrid developments that have resulted in ever-increasing yields. 

7. Modifications have been initiated by McKeown et al. (2005) in a version of the model called 

SWAT2000-C to more accurately simulate the hydrologic balance and other aspects of Canadian 

Boreal Forest systems, including (a) incorporation of a surface litter layer into the soil profile, (b) 

accounting of water storage and release by wetlands, and (c) improved simulation of spring-thaw-

generated runoff. These improvements will ultimately be grafted into SWAT2005. 

8. Advancements have been made in simulating subsurface tile flows and nitrate losses (Du et al., 

2005; 2006). Current research is focused on incorporating a second option that is based on the 
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DRAINMOD model approach (Skaggs, 1982) that includes the effects of tile drain spacing and 

shallow water table depth. Future research should also be focused on controlled drainage BMPs. 

9. Routines for automated sensitivity, calibration, and input uncertainty analysis have been added to 

SWAT (van Griensven and Bauwens, 2003). These routines are currently being tested on several 

watersheds and the uncertainty analysis is being broadened to account for uncertainty in 

regression during validation (Harmel et al., 2006). 

10. The effects of atmospheric CO2 on plant growth need to be revised to account for varying 

stomatal conductance and leaf area responses as a function of plant species, similar to the 

procedure developed for SWAT-G by Eckhardt et al. (2003). General revisions of the 

atmospheric CO2 effects are also needed, to reflect more recent findings that elevated CO2 

concentrations will result in crop yield increases that are only about 50% of previously report 

yield impacts (Long et al., 2006) and other issues discussed by Jha et al. (2006b). 

11. Further investigations are being conducted by a variety of researchers to expand the utility of 

SWAT by interfacing it with other models. Two examples include (a) passing forest growth 

estimates from a more advanced crop growth component in the ALMANAC model to SWAT for 

Canadian Boreal Forest conditions (MacDonald et al., 2005), and (b) the SWAP model that is a 

fully integrated APEX-SWAT modeling system (Saleh and Du, 2004). 

CONCLUSIONS 

The wide range of SWAT applications that have been described here underscores that the model 

is a very flexible and robust tool that can be used to simulate a variety of watershed problems. The 

process of configuring SWAT for a given watershed has also been greatly facilitated by the 

development of GIS-based interfaces, which provide a straightforward means of translating digital land 

use, topographic, and soil data into model inputs. It can be expected that additional support tools will 

be created in the future to facilitate various applications of SWAT. The ability of SWAT to replicate 

hydrologic and/or pollutant loads at a variety of spatial scales on an annual or monthly basis has been 
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confirmed in numerous studies. However, the model performance has been inadequate in some studies, 

especially when comparisons of predicted output were made with time series of measured daily flow 

and/or pollutant loss data. These weaker results underscore the need for continued testing of the model, 

including more thorough uncertainty analyses, and ongoing improvement of model routines. Some 

users have addressed weaknesses in SWAT by creating component modifications, which support more 

accurate simulation of specific processes or regions, or by interfacing SWAT with other models. Both 

of these trends are likely to continue. The SWAT model will continue to evolve in response to the 

needs of the ever-increasing worldwide user community and to provide improved simulation accuracy 

of key processes. A major challenge of the ongoing evolution of the model will be to meet the desire 

for additional spatial complexity while maintaining ease of model use. This goal should be kept in 

focus as the model continues to develop in the future. 
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