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Abstract 

The paper motivates and proposes a closed-form option-pricing model for markets 

such as grains or livestock where the price level can be expected to revert to expected 

production costs. The model suggests that traditional option pricing models will overprice 

long-term options on these markets. 
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OPTION PRICING ON RENEWABLE COMMODITY MARKETS 

 
Introduction 

The Black and Black-Scholes option-pricing models assume that spot price volatility 

increases proportionally to the square root of time. This assumption is reasonable for 

stocks and currencies but is inconsistent with mean reversion in spot prices. Most 

agricultural commodity markets demonstrate a mean reversion to production costs 

(Bessembinder et al.), which suggests that the price volatility around this production cost 

reaches a maximum value. If this is true, and if price volatility is incorrectly assumed to 

increase in proportion to the square root of time beyond this maximum value, the fair 

value of long-term options will be overestimated. This problem is apparent in long-term 

options on crude oil futures. Schwartz recognized this problem in the context of oil 

futures. He had the insight that price imbalances caused by temporary shortages and 

surpluses would eventually disappear without affecting the long-run volatility level. For 

example, a shortage of oil can make the convenience yield greater than the storage cost, 

and this can cause nearby futures prices to exceed the prices of more distant contracts. 

Miltersen and Schwartz, and Hilliard and Reis proposed closed-form option-pricing 

models that incorporate reversion to the mean in this convenience yield. However, their 

models assume that the price level trends rather than reverts to a long-run mean. 

Therefore, such models most likely are relevant to exhaustible commodity markets such 

as gold and oil where Hotelling’s Principle might be expected to hold. 

Our interest is in renewable commodity markets such as grain or livestock, and here 

we can expect mean reversion in both the level of prices and the convenience yield 

(Routledge, Seppi, and Spatt). For example, suppose that grain prices are high because of 

yield shortfalls. Then, we will see a high price level across all futures contracts and an 

inverted market. With reversion to the mean in convenience yield only we might expect 

that the futures prices would eventually reflect a normal cost-of-carry market, but we 
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would also assume that the current high price level is permanent. With the restriction that 

the mean price level will revert, we also can predict that the price level will revert to the 

expected production cost. This additional piece of information allows us to reduce the 

future volatility level. 

The model we propose contains Schwartz’s model as a special case. Hence, it is 

possible to test whether the restriction imposed by Schwartz’s model is warranted by 

observed data. 

 

Graphical Examples 

Figures 1, 2, and 3 are a graphical representation of the three assumptions that 

underlie the three models. All three figures show the same simulated time series of (the 

logarithm of) prices, and all contain the upper and lower confidence intervals for these 

prices at two points in time. 

Figure 1 shows price under the standard Black-Scholes assumption of Brownian 

motion. It can be observed that the confidence interval for prices increases in proportion 

to the square root of time as is assumed in the model. The heavy solid line shows the 

expected price path and this demonstrates a small amount of growth as might be expected 

for the cash prices for commodities or stocks. If futures markets existed for this 

commodity, this heavy line would reflect the temporal basis. At time 20 in Figure 1 the 

cash price is lower than was expected at time 0, and the heavy dotted line shows the 

expected price path from this lower point. All of the price reduction from time 0 through 

time 20 is viewed as permanent in this model. Therefore, the updated expected price path 

runs parallel to the original but at a level that reflects the underperformance of price 

between times 0 and 20. 

Figure 2 shows the Schwartz model, and is otherwise identical to Figure 1. A key 

difference between Figure 1 and 2 is that when the price path is updated at time 20, the 

Schwarz model recognizes that the price drop that occurred just before time 20 was in 

part due to a temporary reduction in the convenience yield reflecting a temporary surplus 

of the commodity. The model assumes that this temporary component will gradually 

disappear, and therefore it adjusts the expected time path of cash prices for this expected
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FIGURE 1. Behavior of xt, conditional expectations, and 95 percent confidence intervals under Brownian motion
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FIGURE 2. Behavior of xt, conditional expectations, and 95 percent confidence intervals under mean reversion in yt but 
not in xt
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price recovery. However, once this temporary adjustment is out of the way, the Schwartz 

model behaves very much like the Black-Scholes model. 

Figure 3 shows the model we propose here. The price path after time 20 contains an 

adjustment to the temporary imbalance as in the Schwartz model. However, the model 

also contains one additional piece of information. It recognizes that the generally low 

level of prices observed at time 20 is well below the production costs for this commodity. 

This suggests a reduction in supply until prices recover to these expected production 

costs. Therefore, the heavy dotted line approaches the heavy solid line as the model 

implicitly adjusts supply and demand so that expected future prices lie on the path 

representing expected production costs. This additional piece of information has a 

dramatic effect on the upper and lower confidence levels because the model recognizes 

that all price deviations around these expected production costs are of a temporary nature 

and it therefore tightens the confidence interval around this price path. 

The upper and lower confidence intervals are directly related to the fair option price 

and we therefore have intuitive evidence suggesting that models that incorporate mean 

reversion in convenience yields will exhibit lower option prices than those that do not. 

We also can conclude that when mean reversion in the price level is added to mean 

reversion in the convenience yield, the fair option value will be lower still. The degree to 

which models that neglect mean reversion in the price level overprice option premia will 

of course depend on the parameters of the models, but it is clear that the degree of 

overpricing will increase with the time to expiration of the option. 

 

The Schwartz Model 

Schwartz advanced a path-breaking model of commodity prices that allows for mean 

reversion in the convenience yield but not on the spot price. Given the seminal nature of 

his work, and the fact that his model is a special case of the model advocated here, we 

introduce Schwartz’s framework first. 

Schwartz’s fundamental insight was that commodities are characterized by 

“convenience yields” that are stochastic and mean reverting. Accordingly, he postulated 

that the convenience yield net of storage costs, ct ≡ Convenience Yield – Storage Cost, 

follows the Ornstein-Uhlenbeck stochastic process (1.1):
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FIGURE 3. Behavior of xt, conditional expectations, and 95 percent confidence intervals under mean reversion in xt and yt
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 dc = (µc – κc c) dt + σc dWc, (1.1)  

where µc/κc = long-term mean, κc ≡ speed of mean reversion (κc > 0), and dWc is a 

Wiener process. The mean of cT as of time t is µc/κc + exp[–κc (T – t)] (ct – µc/κc), and the 

variance is 0.5 {1 – exp[– 2 κc (T – t)]} σc
2/κc.1 

In contrast to the convenience yield process (1.1), Schwartz assumed that the actual 

process for the commodity spot price (S) is not mean reverting. More specifically, he 

hypothesized that spot prices behave as a geometric Brownian motion: 

 dS = µS S dt + σS S dWS, (1.2) 

where dWS is a Wiener process correlated with dWc, so that dWS dWc = ρSc dt (ρSc being 

the correlation coefficient). Letting x ≡ ln(S), application of Ito’s Lemma to (1.2) yields 

the arithmetic Brownian motion (1.3) for the logarithm of spot prices: 

 dx = µx dt + σx dWx, (1.3)  

where µx ≡ µS − σS
2/2, σx ≡ σS, dWx ≡ dWS, and ρxc = ρSc. In (1.2), µx denotes the drift in 

the logarithm of spot prices. 

The rate of return to the commodity holding consists of the relative price change 

(dS/S = dx) plus the convenience yield net of storage costs (c). Thus, the expected rate of 

return to commodity holders is µx + c. In equilibrium, the latter must equal the risk-free 

rate of return (r) plus the risk premium (λ). Letting µx + c = r + λ in (1.1) and (1.3) yields 

the corresponding risk-neutralized stochastic processes: 

 dc = (µc – κc c – λc) dt + σc *
cdW , (1.4)  

 dx = (r – c) dt + σx *
xdW , (1.5) 

where λc is the market price for c risk and *
cdW  and *

xdW  are the Wiener processes under 

the equivalent martingale measure. Note that *
xdW  *

ydW  = ρxy dt. Schwartz derived 

futures prices under the aforementioned assumptions, whereas Miltersen and Schwartz, 

and Hilliard and Reis obtained the equations for the corresponding option prices. 
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Allowing for Mean Reversion in the Price Level 

Unlike Schwartz, here spot prices are allowed to be mean reverting as in (2.1): 

 dS = [µS – κS ln(S)] S dt + σS S dWS. (2.1)  

Given (2.1), Ito’s Lemma yields the Ornstein-Uhlenbeck stochastic process (2.2) for 

the logarithm of the spot prices: 

 dx = (µx – κx x) dt + σx dWx, (2.2) 

where κx ≡ κS > 0 is the speed at which the logarithm of the spot price reverts to its long-

run mean µx/κx. Note that if κx = 0, (2.2) collapses to (1.3), that is, the arithmetic 

Brownian motion with expected drift µx assumed by Schwartz. 

A stylized fact of commodity markets is that convenience yields are positively 

associated with spot prices.2 Hence, the convenience yield net of storage costs is 

postulated to consist of the following random function of the logarithm of the spot price: 

 c = y + κx x, (2.3) 

where y follows the Ornstein-Uhlenbeck stochastic process (2.4): 

 dy = (µy – κy y) dt + σy dWy. (2.4)  

Wiener processes dWx and dWy are correlated so that dWx dWy = ρxy dt, where ρxy is 

the correlation coefficient. Setting κx = 0 in (2.3) yields c = y, in which case the 

advocated convenience yield process becomes identical to that in Schwartz. 

In equilibrium, the instantaneous expected total return to commodity holders {E(dS/S 

+ c) = [(µx – κx x) + (y + κx x)] dt} must equal the risk-free rate plus the associated market 

price of risk (r + λ). Therefore, the risk-neutral process for dx may be written as (2.5) 

 dx = [r – (y + κx x)] dt + σx *
xdW , (2.5)  

where *
xdW  is the Wiener process under the equivalent martingale measure. Component y 

of the convenience yield (2.3) cannot be hedged because it is not traded. Hence, the 
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stochastic process for y under the equivalent martingale measure (2.6) depends on the 

market price for y risk (λy): 

 dy = (µy – κy y − λy) dt + σy *
ydW . (2.6)  

In (2.6), *
ydW  is the Wiener process under the equivalent martingale measure. Note 

that *
xdW  *

ydW  = ρxy dt. 

The risk-neutralized processes (2.5) and (2.6) provide the foundations to derive 

commodity futures and options prices, which are discussed in the next two sections. 

 

Futures Prices 

Under the assumption that the risk-free interest rate r is constant, at time t the 

commodity futures price with maturity T is simply the time-t expected price of the 

commodity at time T under the equivalent martingale measure. That is, 

 F(St, yt, t, T) = )(*
Tt SE , (3.1)  

where )(* ⋅tE  denotes the expectation with respect to the risk-neutralized processes (2.5) 

and (2.6). The expression for )(*
Tt SE  can be obtained by noting that ST = exp[ln(ST)] = 

exp(xT), and that the vector (x, y) follows an affine diffusion (e.g., Dai and Singleton) 

under the martingale measure. This allows us to apply the method proposed by Duffie, 

Pan, and Singleton to get a closed-form solution for the futures price. 

The expression for the futures price is (3.2): 

 F(St, yt, t, T) = exp{Α(0) − Α(t – T) + 
2
1

 [Φ(0) − Φ(t – T)]  (3.2)  

 + ln(St) Βx(t – T) + yt Βy(t – T)}, 

where 

Α(τ) ≡ 










 −
−

y

yyr
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λµ )(
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τΒ )(
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Φ(τ) ≡ 
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Options on Futures Contracts 

Of particular interest here are the prices of options on futures. To this end, let C[F(St, 

yt, t, T), K, t, T1] denote the price at time t of a European call option expiring at time T1 ≥ 

t on a futures contract that expires at time T ≥ T1, with strike price K. Since the payoff of 

such an option at expiration is ]0 ,),,,([ 111
KTTySFmax TT − , standard arguments can be 

applied to show that its price at time t is given by 

 C[F(St, yt, t, T), K, t, T1] = exp[r (t − T1)] ]}.0 ,),,,([{ 111
KTTySFmaxE TT

*
t −  (4.1)  

The analytical solution for the call option price C[F(St, yt, t, T), K, t, T1] can be 

computed by resorting again to Duffie, Pan, and Singleton, as we do next. 

The moment-generating function of the logarithm of futures prices under the 

equivalent martingale measure is defined by (4.2): 

 )()],,,([ 11
zM TTySFln TT

 ≡ ))]}.,,,(( [{ 111
TTySFlnzexpE TT

*
t  (4.2)  

Using (3.2) to substitute for )],,,([ 111
TTySFln TT  on the right-hand side of (4.2) and 

rearranging yields the following expression for the moment-generating function: 

 )()],,,([ 111
zM TTySFln TT

 = exp{z [Α(0) − Α(T1 – T) + 
2
1

 (Φ(0) − Φ(T1 – T))]}  (4.3)  
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   zexpE*
t [{  Βx(T1 – T) 

1Tx  + z Βy(T1 – T) ]}.
1Ty  

 

The expectation term on the right-hand side of (4.3) is of the same form as equation 

(2.3) in Duffie, Pan, and Singleton, so these authors’ advocated method can be applied. 

The resulting analytical solution for the moment-generating function is (4.4): 

 )()],,,([ 111
zM TTySFln TT

 = exp[µ(St, yt, t, T1, T) z + 
2
1

 σ(t, T1, T)2 z2], (4.4) 

where 

 µ(St, yt, t, T1, T) ≡ Α(0) − Α(t − T) + 
2
1

 [Φ(0) − Φ(T1 – T)]  

 + ln(St) Βx(t – T) + yt Βy(t – T), 

 σ(t, T1, T)2 ≡ Φ(T1 – T) − Φ(t – T). 

 

The specific form of moment-generating function (4.4) implies that 

)],,,([ 111
TTySFnl TT  is distributed as a normal random variable with mean µ(St, yt, t, T1, 

T) and variance σ(t, T1, T)2. In addition, (4.4) implies that F(St, yt, t, T) = exp[µ(St, yt, t, 

T1, T) + σ(t, T1, T)2/2]. This is true because F(St, yt, t, T) = )],,,([ 111
TTySFE TT

*
t , and the 

latter expectation equals )1()],,,([ 111
=zM TTySFln TT

 (see [4.2]). These two results make it 

straightforward to derive the following analytical solution for the price of the call option: 

 C[F(St, yt, t, T), K, t, T1] = exp[r (t − T1)] [F(St, yt, t, T) N(d1) – K N(d2)], (4.5) 

where N(⋅) is the standard normal cumulative probability distribution, d1 ≡ {ln[F(St, yt, t, 

T)/K] + 0.5 σ(t, T1, T)2}/σ(t, T1, T), and d2 ≡ {ln[F(St, yt, t, T)/K] − 0.5 σ(t, T1, T)2}/σ(t, 

T1, T). 



 

 

 
 
 

Endnotes 

1. The discrete-time analog of process (1.1) is ct = φ0 + φ1 ct−1 + i.i.d. shockt. 

2. Typically, when a commodity is in relatively short supply, its price is high and its 
convenience is high as well. 



 

 

 Appendix A 

The affine diffusion for vector (x, y) under the risk-neutral measure may be written 
as follows: 
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Appendix B 

The call option formula can be obtained by noting that if ln(S) is normally distributed 
with mean µ and variance σ2, then 
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1TF  > K ⇒ )(
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µ]/σ = [ln(K) – µ – σ2/2 + σ2/2]/σ = [ln(K) – ln(Ft) + σ2/2]/σ, so that 
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In addition, 
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 = Ft N{[ln(Ft/K) + σ2/2]/σ}  (B.3') 

 
Substituting (B.2') and (B.3') into (B.1) yields 
 

 E[max(
1TF  − K), 0] = Ft N{[ln(Ft/K) + σ2/2]/σ} − K N{[ln(Ft/K) − σ2/2]/σ}. (B.4) 

 
The call option formula (4.5) follows immediately from (B.4).



 

 
 
 
 

Appendix C 

Under the risk-neutral measure, the discrete-time distribution of vector [xT, yT] is 
bivariate normal with mean vector (C1) and covariance matrix (C.2): 
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