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Abstract 

Increased crop insurance subsidies have increased the demand for insurance at 

coverage levels higher than the traditional level of 65 percent. Premium rates for higher 

levels of yield insurance under the Federal Actual Production History (APH) program 

equal the premium rate at the 65 percent coverage level multiplied by a rate relativity 

factor that varies by coverage level but not by crop or region. In this paper, we examine 

the consistency of these constant rate relativity factors with the laws of probability by 

determining the maximum 65 percent premium rate that is consistent with a well-defined 

yield distribution. We find that more than 50 percent of U.S. counties have premium rates 

for corn, soybeans, and wheat that are not consistent with the laws of probability for 

coverage levels up to 75 percent. For coverage levels up to 85 percent, almost 80 percent 

of corn counties, 82 percent of soybean counties, and 80 percent of wheat counties have 

rates that are not consistent. Adding the further restriction that at least 15 percent of 

probability falls between 85 percent and 100 percent of APH yields implies that 92 

percent of corn counties, 90 percent of soybean counties, and 95 percent of wheat 

counties have APH rates that are not consistent with the laws of probability for coverage 

levels up to 85 percent. These results imply that crop insurance rates under the APH 

program in most U.S. production regions at high coverage levels exceed those that could 

be generated by a well-defined yield distribution.   
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CROP INSURANCE RATES AND THE LAWS OF PROBABILITY 

Introduction 

Crop insurance is by far the most popular risk management tool used by U.S. crop 

producers. Corn and wheat farmers insure more than 70 percent of all acres planted. The 

two most popular crop insurance products are Actual Production History (APH), which 

provides insurance against low yields, and Crop Revenue Coverage (CRC), which is a 

revenue insurance product. Both of these products offer coverage in 5 percent increments 

from 65 percent to 85 percent of expected yield or revenue. APH premium rates are 

calculated by multiplying the premium rate at the 75 percent coverage level by a rate 

relativity factor that is the same for all crops and for all regions. For example, to find an 

85 percent APH premium rate, one simply multiplies the 75 percent rate by 1.60. The 65 

percent rate equals the 75 percent rate multiplied by 0.65. CRC premium rates for a given 

coverage level are based on the corresponding APH rates. So calculating an 85 percent 

CRC premium requires knowledge of the 85 percent APH premium rate. Thus, changes 

in APH premium rates as coverage levels increase are directly reflected in changes in 

CRC premium rates.  

The purpose of this paper is to examine whether these constant rate relativities are 

consistent with the laws of probability in the sense that the implied rates are consistent 

with a well-defined probability distribution of yields. This topic is relevant because 

changes in the federal subsidy program now encourage producers to increase their 

coverage level and have increased available coverage to levels for which there is no 

historical loss/cost data. Even if one accepts that the 65 percent rates are as accurate as 

they can be, there is no guarantee that the rates at higher coverage levels are accurate 

unless these rate relativities are also accurate. 

The paper is organized as follows. First, we expand on the institutional detail and 

make the case that the changes in the subsidy program enacted in 2000 will encourage a 

gradual switch to higher coverage levels. Next, we provide a very basic set of rules that 
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crop insurance rates must follow if they are to be consistent with the laws of probability. 

For example, we show that for symmetric and negatively skewed distributions, the 

maximum rate for coverage levels below 100 percent is 0.5. This maximum rate can be 

justified only if all of the mass of the yield distribution below the mean value is at zero. 

Hence, we argue that 0.5 puts a practical upper bound on premium rates, yet we find 

APH rates that exceed this maximum amount. We then gradually impose restrictions on 

the structure of the yield distribution and report the APH rates that violate these 

restrictions. Maps are used to show areas where APH rates and rate relativities might be 

consistent with the laws of probability. These maps show that the APH rates structure is 

particularly disadvantageous in wheat producing areas and in high-risk counties. 

Finally, we add enough structure to calculate a set of rate relativities that are 

consistent with both the laws of probability and the literature on yield distributions. When 

we compare these rate relativities with those in the APH system, the source of the 

problem with the APH rate structure becomes clear. Changes in the 65 percent rate imply 

changes in the mass of the yield distribution to the left of this 65 percent level, which, in 

turn, has implications for the mass of the distribution to the right of the 65 percent level. 

Examination of these implications demonstrates that constant rate relatives are 

inconsistent with variations in the 65 percent rate across crops, producers, and counties. 

In other words, if there is evidence that rates should vary across producers, then there is 

evidence that rate relativities should vary across producers. 

 

Institutional Background 

The Agricultural Risk Protection Act (ARPA) of 2000 increased crop insurance 

premium subsidies significantly and changed them on coverage levels above 65 percent 

from a fixed per-acre dollar amount to a percentage of the premium. The percent subsidy 

depends on the coverage level as follows: 59 percent subsidy for coverage levels of 65 

percent and 70 percent; 55 percent subsidy for coverage levels of 75 percent; 48 percent for 

80 percent coverage; and 38 percent for 85 percent coverage. This policy change has two 

implications. First, the move to a subsidy expressed as a constant percentage for a given 

coverage level means that the per-acre subsidy increases with the per-acre premium, thus 

increasing the incentive for farmers to purchase more expensive products. The particular 



Crop Insurance Rates and the Laws of Probability / 3  

 

subsidy levels used for the different coverage levels cause the second effect. The decline in 

the percent subsidy associated with an increased coverage level is generally less than the 

increase in the insurance premium. Thus, per-acre subsidies also increase as coverage 

levels increase. This change encourages farmers to purchase higher coverage levels. 

Crop insurance rates under USDA’s APH program are empirically determined in that 

they depend upon the level of indemnities paid to farmers. They are set so that they 

would generate an adequate premium to cover average historical losses (Josephson, Lord, 

and Mitchell). Figure 1 shows that, until recently, the coverage level most in demand by 

farmers was the 65 percent level. The 1995 increase in acres insured at less than 65 

percent was a result of a rule that made eligibility for commodity subsidies contingent on 

participation in the crop insurance program. The increase in popularity of coverage levels 

greater than 65 percent in 2000 and 2001 can be attributed to the increase in subsidies 

that were available on an emergency basis in 2000 and as part of ARPA in 2001. This 

increase in participation at coverage levels greater than 65 percent is consistent with the 

finding of Just, Calvin, and Quiggin that farmers’ main motivation for purchasing crop 

insurance is to increase their net income by capturing the value of subsidies rather than to 

decrease risk.  

Figure 1 suggests that the RMA has by far the most information about losses at the 65 

percent coverage level. This means that the 65 percent level probably best reflects historical 

losses. The significant acreage covered at the 75 percent level suggests that there is some 

information about how losses, and hence rates, should increase as coverage levels increase. 

However, a substantial portion of the acreage insured at 75 percent comes from a few states. 

For example, in 1993, 40 percent of the acres insured at the 75 percent coverage level were 

in two states, Iowa and Illinois. This means that much of the knowledge about how losses 

increase as coverage increases above 65 percent resides in a relatively few states.  

 

Insurance Rates and Probability Rules 

Actuarially fair insurance rates are found by dividing expected indemnity by 

liability. For a yield insurance policy that covers against yield losses below some 

guaranteed level, YI, the actuarially fair rate is given by rI  = (1/YI ) Pr( y < YI ) ·  
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E[YI  – y | y < YI], where the price paid per unit of yield loss is normalized to one, and  

Pr( y < YI ) denotes the probability that yield is below the insurance level. Then 

 Pr( ) .
[ | ]

I I
I

I I

r Y
y Y

Y E y y Y
< =

− <
 (1) 

Equation (1) shows that, given an insurance rate and a yield guarantee, there is a one-to-

one relationship between conditional expected yields and the probability that yields are 

below the yield guarantee.  

The laws of probability and the definitions of conditional expectation put bounds on 

the permissible values of probability and conditional expected yield. We know that if the 

insurance guarantee is less than the median yield, then Pr( y < YI ) =  0.5. For symmetric 

and negatively skewed distributions, we know also that the mean yield is no greater than 

the median. This implies that if the insurance yield is less than the median, it is also less 

than the expected value of yields and Pr( y < E[y] ) = 0.5. For positively skewed 

distributions, Pr( y < E[y] ) > 0.5, and it could be the case that Pr( y < YI ) > 0.5 if the 

insurance deductible is small enough. 

For U.S. yield insurance products, the maximum guarantee is 90 percent of the 

expected value of yields for the Group Risk Plan (GRP) and 85 percent of APH yields for 

the APH program. Given this built-in deductible and given that APH yields are generally 

less than expected yields (Just, Calvin, and Quiggin), 0.5 places a practical upper bound 

on Pr( y < YI ).  

In addition, from the definition of a conditional equation, we know that E[y | y < YI] 

< YI. From equation (1), if rI = 0.5, then the upper limit (practical or absolute) on  

Pr( y < YI ) of 0.5 implies that the only permissible value of E[y | y < YI] is 0. Thus, for 

negatively skewed and symmetric yield distributions, yield insurance rates greater than 

0.5 for insurance coverage less than expected yield cannot be supported by a well-defined 

yield distribution. For positively skewed distributions, if the insurance guarantee is less 

than the median yield, then the rates greater than 0.5 cannot be supported by a well-

defined yield distribution. 

This result may seem trivial, but the APH program often charges farmers premium 

rates that exceed this upper limit. For example, in Hettinger County, North Dakota, a 
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safflower farmer with an APH yield of 470 lb/ac or less will be charged a crop insurance 

rate of greater than 0.5 for a yield guarantee equal to 75 percent of APH yields. Of 

course, the vast majority of APH rates do not exceed 0.5, so this result is a rather weak 

condition. However, it can be used to develop a stronger condition.  

Suppose we have two crop insurance rates, r1and r2, and two corresponding yield 

guarantees, Y1 and Y2, with Y2 > Y1. Denoting Pr( y < YI ) as F(YI), and using equation (1), 

we can write 

  r2Y2 – r1Y1 = F(Y2) (Y2 – E[y | y < Y2]) – F(Y1) (Y1 – E[y | y < Y1]) 

  = Y2 F(Y2) – Y1 F(Y1) – F(Y1) E[y | y < Y1] (2) 

  – F(Y1 = y < Y2) E[y | Y1 = y < Y2] + F(Y1) E[y | y < Y1] 

  = Y2 F(Y2) – Y1 F(Y1) – F(Y1 =  y < Y2) E[y | Y1 =  y < Y2] 

 

which can be rewritten as  

 r2Y2 – r1Y1 = Y2F(Y2) – Y1F(Y1) – (F(Y2) – F(Y1)) E[y | Y1 = y < Y2]. (3) 

The left-hand side of equation (3) shows the increase in the premium as coverage 

from yield insurance increases. With actuarially fair rates, this increase is a function of 

two cumulative probabilities and the conditional expectation of yield, given that it falls 

between the two yield guarantees. Again, there are permissible limits on both. From 

equation (1) we know that 0.5 =  F(Y2) =  F(Y1) for symmetric and negatively skewed 

distributions, and Y2 =  E[y | Y1 =  y < Y2] = Y1 for all distributions.  

The usefulness of equation (3) is that, for any two insurance rates and corresponding 

yield guarantees, it defines the combinations of probabilities and conditional yields that 

are consistent with actuarially fair rates that are generated by yield losses that are 

generated from some probability distribution. If there is no combination of cumulative 

probabilities and condition expectations that solves (3), then there does not exist a yield 

distribution function that could support the given rates and yield guarantees. That is, from 

the perspective of generating premiums sufficient to cover yield losses, the rates would 

not be actuarially fair.  
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Analysis of Actual Production History Rates 

APH rates depend on a farmer’s APH yield. For a given APH yield, knowledge of 

one coverage level’s APH base rate is sufficient to calculate all other coverage level rates 

because RMA uses constant rate relativity factors to calculate rates at different coverage 

levels. These factors do not vary across crops or regions. The ratio of 70 percent rates to 

65 percent rates is 1.21. The ratio of 75 percent rates to 65 percent rates is 1.53. The ratio 

of 80 percent rates to 65 percent rates is 1.93. And the ratio of 85 percent rates to 65 

percent rates is 2.44. Currently, for many crops and counties, available coverage levels 

are 65 percent, 70 percent, 75 percent, 80 percent, and 85 percent. In some locations, 

coverage levels are available only at 65 percent, 70 percent, and 75 percent. An example 

best illustrates the method that we use to examine the actuarial fairness of APH rates.  

A barley farmer in Becker County, Minnesota, with an APH yield of 55 bu/ac would 

pay an APH rate of 0.103 for 65 percent coverage and 0.125 for 70 percent coverage. The 

corresponding yield guarantees are 35.75 and 38.5 bu/ac. Suppose the conditional 

expected yield in equation (3) is 37 bu/ac. Substituting these numerical values into 

equation (3) and expressing F(Y2) as a function of F(Y1) results in F(Y2) = 0.75  

– 0.833 F(Y1). There are solutions to this equation that satisfy the restrictions that 0.5 =  

F(Y2) =  F(Y1), for example, F(Y1) = 0.35 and F(Y2) = 0.458. So some underlying yield 

distribution exists that could support these rates, and we cannot conclude that the 65 

percent and 70 percent APH rates violate the laws of probability. 

Now suppose that we have a barley farmer in Hubbard County, Minnesota, with an 

APH yield of 40 bu/ac. This farmer faces an APH rate of 0.172 at 65 percent coverage 

and 0.210 at 70 percent coverage. Suppose the conditional expected yield in equation (3) 

is 27 bu/ac. Substituting these values into (3) results in F(Y2) = 1.408 – F(Y1). Clearly, 

there is no solution to this equation that satisfies 0.5 =  F(Y2) =  F(Y1). Hence, there exists 

no yield distribution that supports these rates that is consistent with a conditional 

expected yield of 27 bu/ac. Suppose the conditional expected yield equals the lowest 

possible level of 26 bu/ac. Then equation (3) becomes F(Y2) = 0.704, which is not 

admissible. No combination of conditional expected yield and cumulative probabilities 

can be found that solves equation (3) and that satisfies the two conditions  

 0.5 =  F(Y2) =  F(Y1) and Y2 =  E[y | Y1  = y < Y2] =  Y1.  
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If we accept that the 65 percent rate in Hubbard County is actuarially fair, then we 

can conclude that the 70 percent rate is not fair. It is too high in that there is no 

conditional expected yield in Hubbard County that can satisfy equation (3). Is there a 70 

percent rate that could satisfy equation (3)? Suppose the rate for 70 percent coverage is 

0.18 and the conditional expected yield is 26.5 bu/ac. Then equation (3) becomes F(Y2) = 

0.379 – 0.333 F(Y1) and solutions to this equation clearly exist. This counter-example 

illustrates that the problem with the 70 percent APH rate in this county is that it is simply 

greater than can be justified by the laws of probability. That is, the rate relativity factor is 

too high.  

Equation (3) can be normalized by dividing through by unconditional expected yield. 

This results in  

 r2C2 – r1C1 = C2  F(C2) – C1 F(C1) – (F(C2) – F(C1))  E[y | C1 =  y < C2], (4) 

where C1 and C2 are coverage levels. As previously discussed, because the RMA has 

the most loss experience with the 65 percent rates, we treat it as being actuarially fair. We 

can then ask the question, Given RMA rate relativities, for what range of 65 percent pure 

premium rates does there exist the possibility that rates at higher coverage levels are 

actuarially fair? Here, we define pure premium rates by equation (1). Table 1 provides the 

answer to this question.  

For each combination of coverage levels in Table 1, we conducted a grid search over 

all 65 percent rates to find the rates for which at least one feasible solution to equation (4) 

exists. For example, equation (4) at a 65 percent rate of 0.125, a 70 percent rate of  

0.1515, and a conditional yield of 0.65001 results in a feasible solution of F(Y1) = 0.45 

 

TABLE 1. Range of 65 percent pure premium rate and APH rate relativities that are 
consistent with an upper limit of 0.5 on Pr( y < YI ) and the definitions of conditional 
probability 
Rate Combination Feasible Range 
65% and 70% 0.010 to 0.126 
65% and 75% 0.010 to 0.101 
65% and 80% 0.010 to 0.083 
65% and 85% 0.010 to 0.070 
6%, 70%, and 75% 0.010 to 0.084 
65%, 75%, and 85% 0.010 to 0.053 
65%, 70%, 75%, 80%, and 85% 0.010 to 0.047 
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and F(Y2) = 0.497. Of course, this solution means that there is almost no possibility of 

having yields between 0.85 and 1.0, which illustrates the weakness of the conditions we 

are imposing for actuarial fairness of rates.  

The first four results in Table 1 show that as the coverage level increases, the range 

of feasible 65 percent rates is reduced. This reduced range implies that the rate relativity  

factors are becoming more restrictive as the coverage level increases. The 85 percent pure 

premium rates can only be actuarially fair if the 65 percent rate is less than 0.07. 

The pairwise consideration of rates in the first four rows of Table 1 puts no 

restrictions on the underlying distribution function for intermediate coverage levels. If we 

require that there be the possibility of actuarial fairness for intermediate coverage levels 

as well, then the range of feasible 65 percent rates becomes even narrower. For example, 

in counties where the maximum coverage level is 75 percent, the range of feasible 65 

percent rates for which there is the possibility of actuarial fairness for the 65 percent rate, 

the 70 percent rate, and the 75 percent rate is 0.01 to 0.084. If we require the possibility 

of actuarial fairness for 65 percent, 75 percent, and 85 percent rates, then the maximum 

65 percent rate is 0.053. And, if we require the possibility of actuarial fairness for all 

coverage levels, then the maximum 65 percent rate is 0.047. 

 

Effects of Further Restrictions 

The maximum 65 percent rates reported in Table 1 were obtained by setting the 

conditional yield equal to the minimum possible. This is equivalent to assuming that the 

probability of yields between the considered coverage levels is zero. In addition, no 

restrictions were placed on yields between 0.85 and 1.00. At the upper end of the ranges 

reported in Table 1, there is no probability that yields would fall between 0.85 and 1.00. 

This is illustrated in Figure 2, which shows graphs of the cumulative distribution function 

(CDF) for yields given 65 percent insurance rates and conditional yields when yields falls 

below 65 percent (denoted by CY 0 – 65). The yield distributions at the 65 percent rate of 

0.047, which is at the upper end of the potentially acceptable range of rates for coverage 

up to 85 percent, show little possibility of yields falling between 0.80 and 1.00, regardless 

of the conditional yield level. The yield distribution at a 65 percent rate of 0.025, which is 

in the middle of the Table 1 range, shows a more realistic distribution, with positive 
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weight across all coverage levels. For most distribution functions, one would expect the 

bulk of probability to fall around the level of mean yields, although this is not necessarily 

the case for bimodal distributions. 

Given that the implied CDFs at the upper end of the ranges reported in Table 1 may 

not conform to prior expectations about how yield distributions should look, we examine 

five further restrictions regarding the probability of yields between the highest allowed 

coverage level (0.75 or 0.85) and 1.00. These five scenarios are that the probability of 

yields between the highest allowed coverage level and 1.00 is at least 0.05, 0.10, 0.15, 

0.20, and 0.25. These scenarios provide a range of cases where some weight is distributed 

just below the APH yield in the yield distributions. For example, a normal distribution 

with a mean of 1.00 and a standard deviation of 0.25 would have 22.57 percent of its 

weight between 0.85 and 1.00. 

We also examine the effects of forcing convexity on the CDF of yields between 65 

percent and 85 percent coverage. Convexity implies that the difference in cumulative 

probabilities between two coverage levels increases as coverage increases: F(0.85) - 

F(0.80) > F(0.80) - F(0.75) > F(0.75) - F(0.70) > F(0.70) - F(0.65). In addition to this 

convexity restriction, we also assume that 0.5 - F(0.85) > F(0.85) - F(0.80). To impose 

these conditions, we need to relate observed crop insurance rates to these cumulative 

probabilities.  

Rewriting equation (4) for C2 > C1 gives an expression for cumulative probability at 

one coverage level as a function of cumulative probability at a lower coverage level and 

the conditional expectation of yield given that yield is between the two coverage levels: 

 ( ) (E[ | ] )
( ) .

E[ | ]
r C rC F C y C y C C

F C
C y C y C

− − ≤ < −
=

− ≤ <
2 2 1 1 1 1 2 1

2
2 1 2

 (5) 

Given a conditional yield for yields below the 65 percent coverage level, we can 

solve for F(0.65) using  

 0.65 0.65
(0.65) .

0.65 [ | 0.65]
r

F
E y y

=
− <

 (6) 

Then, F(0.70) as a function of the conditional yield between 65 percent coverage and 

70 percent coverage can be obtained through direct substitution into equation (5). 
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Likewise, F(0.75), F(0.80), and F(0.85) can be obtained with subsequent substitutions. 

All of the scenarios require a value for the conditional expectation of yield for yields 

below the 65 percent coverage level and values for the conditional expectation of yields 

between coverage levels. Convexity in cumulative probability implies that the expected 

yield conditional on yield being between two coverage levels would typically be greater 

than the midpoint of the coverage levels.  

The task is to determine the range of feasible 65 percent rates that are consistent with 

a given set of probability restrictions. This task can be accomplished by searching over 

all possible values for expected yield conditional on yield being below 65 percent for 

each given 65 percent rate. If any of the conditional yields are consistent with the 

restrictions, then we can maintain that there is an underlying yield distribution that could 

be consistent with APH rates. 

Table 2 presents the range of feasible pure premium rates. For the first five 

scenarios, a grid search is performed across all possible conditional yields at 0.005 unit 

intervals. For the convexity scenario, we assume that expected yield conditional on yield 

being between coverage levels equals the midpoint between the two yields.  

A comparison of the Table 1 results with the Table 2 results shows that adding 

reasonable requirements for an underlying yield distribution decreases the maximum rate 

substantially. For crops and counties where 75 percent is the maximum coverage level, 

rates could possibly be actuarially fair if the 65 percent rate is less than 0.055 given the 

 

TABLE 2. Range of 65 percent pure premium rate and APH rate relativities for 
which actuarial fairness is possible 
Restriction Rate Range 
 

65%, 70%, and 
75 % 

65%, 70%, 
75%, 80%, and 

85%  
No further restrictions (see Table 1) 0.010 to 0.083 0.010 to 0.047 
0.5 - F(Highest coverage level) > 0.05 0.010 to 0.075 0.010 to 0.042 
0.5 - F(Highest coverage level) > 0.10 0.010 to 0.067 0.010 to 0.037 
0.5 - F(Highest coverage level) > 0.15 0.010 to 0.058 0.010 to 0.033 
0.5 - F(Highest coverage level) > 0.20 0.010 to 0.050 0.010 to 0.028 
0.5 - F(Highest coverage level) > 0.25 0.010 to 0.042 0.010 to 0.023 
Convex CDF plus 0.5 - F(0.85) > F(0.85) - F(0.80) 0.010 to 0.055 0.010 to 0.032 
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convexity restrictions. For crops and counties that have 85 percent coverage, the 

maximum 65 percent rate for which actuarial fairness is possible is only 0.032 when the 

convexity restrictions are put in place. 

 

Which Crops and Counties Have Actuarially Unfair Rates? 

Given the bounds on rates indicated in the previous section, we would like to 

compare these bounds to current crop insurance rates throughout the country. However, 

these bounds are based purely on yield distribution arguments and do not include  

adjustments for insurance loading and prevented planting, whereas the current crop 

insurance rates do contain such adjustments. To create comparable rates, we have 

adjusted our bounds to reflect the insurance loading and prevented planting adjustments 

by dividing by 0.88 to capture the insurance loading adjustment and adding 0.005 to the 

rates to capture the prevented planting adjustment. These adjustments follow the rate-

setting procedure outlined in Josephson, Lord, and Mitchell.  

For the “no further restriction” case, the adjusted insurance rates have maximum 

bounds of 0.099 for areas with up to 75 percent coverage and 0.058 for areas with up to 

85 percent coverage. For the restriction of at least a 15 percent probability of yields 

falling between the highest coverage level and 1.0, the adjusted insurance rates have 

maximum bounds of 0.071 for the areas with up to 75 percent coverage and 0.043 for the 

areas with up to 85 percent coverage. We examined the crop year 2000 APH 65 percent 

coverage level insurance rates for corn, soybeans, and wheat for the typical producer in 

each county (as determined by the R05 yield span, the middle yield span per county for 

these crops). Figures 3-5 show maps of these rates across the country and whether they 

fall into the bounds previously outlined. The counties shaded in dark blue have 65 

percent APH rates that fall within the bounds set by a yield distribution with the 15 

percent restriction in place for coverage levels from 65 percent to 85 percent. The 

counties shaded in gold have 65 percent APH rates that fall within the bounds set by a 

yield distribution with the 15 percent restriction in place for coverage levels from 65 

percent to 75 percent. The counties shaded in white have 65 percent APH rates that 

exceed either of these bounds. Counties that are not outlined do not have insurance 

coverage for that crop. RMA provides these rates through their Actuarial Data Master 
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web site (http://www.rma.usda.gov/tools/utils/grepadm/). These 2000 rates are indicative 

of current rates that are calculated with a formula without reference to a yield span. 

Table 3 shows that most of the counties where APH insurance is available do not 

have actuarially fair rates over all coverage levels. For corn, only 21.4 percent of the 

counties have potentially fair rates up to 85 percent coverage, and 48.5 percent have 

potentially fair rates up to 75 percent coverage. With the 15 percent probability 

restriction, the proportions fall to 8.2 percent and 28.7 percent. As shown in Figure 3, 

these counties primarily reside in the Corn Belt. The proportion of soybean and wheat 

counties with potentially fair rates is similar, as shown in Table 3.  

For corn and soybeans (see Figures 3 and 4), because the counties that have APH rates 

that could be actuarially fair are located in the Corn Belt, the proportion of production that 

they represent is high. For corn, almost 90 percent of production comes from counties that 

could have actuarially fair rates up to 75 percent coverage, and almost 65 percent of 

production comes from counties with APH rates that could be actuarially fair up to 85 

 

TABLE 3. Proportion of counties and production with possibly actuarially fair APH 
premiums 
 Criteriona 
 Under 0.043 Under 0.058 Under 0.071 Under 0.099 
Corn     
  Number 207 540 725 1225 
  % of Counties 8.2 21.4 28.7 48.5 
  % of Production 29.1 64.8 77.5 89.7 
Soybeans     
 Number 190 351 473 808 
 % of Counties 9.7 17.8 24.0 41.0 
 % of Production 35.7 56.9 66.4 80.1 
Wheat     
 Number 121 291 500 1105 
 % of Counties 5.0 11.2 20.5 45.4 
 % of Production 11.2 23.0 41.9 70.2 
a The level 0.043 corresponds to the upper limit on the APH rate for which actuarial fairness is possible for 
coverage levels up to 85% if at least 15% of probability is between 85% and 100% coverage levels. 0.058 
is the upper limit on actuarially fair APH rates up to 85% coverage levels with no such probability 
restriction. 0.071 is the upper limit on actuarially fair APH rates up to 75% if at least 15% of probability is 
between 75% and 100% coverage levels. 0.099 is the upper limit on actuarially fair APH rates up to 75% 
coverage levels with no such probability restriction.  
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percent coverage. However, this latter number falls to 29 percent of production if the 

reasonable 15 percent restriction is placed on the yield CDF. For soybeans, 36 percent of 

production comes from counties with APH rates that could be fair up to 85 percent 

coverage even with the 15 percent restriction. This estimate increases to 80 percent of 

production for coverage to 75 percent and no other CDF restriction.  

For wheat, the story is different. As shown in Figure 5, most of the major wheat 

growing areas in Kansas and North Dakota have 65 percent APH rates that fall outside 

the possible fair range for coverage levels up to 85 percent. Even without the 15 percent 

probability restriction, only 23 percent of production comes from the 12 percent of the 

counties with low enough 65 percent APH rates to be actuarially fair. Even at 75 percent 

coverage with the 15 percent restriction, only 20 percent of the counties and 42 percent of 

production have 65 percent APH rates that are low enough to be fair. 

Based on the results of Table 3, one would expect that wheat farmers would have 

been less likely than corn and soybean farmers to buy 75 percent coverage before the 

additional ARPA subsidies were available for the simple reason that moving to 75 

percent coverage meant that incremental costs exceeded incremental benefits.  

Examination of RMA data bears out this conjecture. In 1998, 5.7 percent of wheat crop 

insurance policies were at the 75 percent coverage level, as compared to 9.8 percent of 

corn policies and 10.7 percent of soybean policies.  

 

Rate Relativities Derived from a Density Function 

A comparison of APH rate relativities with those derived from a density function 

will illustrate why constant APH rate relativities are not consistent with the laws of 

probability. The starting point is to select a density function.  

Characterizing the distribution of farm-level yields has been the focus of much effort 

by agricultural economists. Day demonstrated that crop yields are skewed, although Just 

and Weninger demonstrated how data used to measure skewed yields is subject to a 

number of possible problems. Day found that the beta distribution is an appropriate 

functional form for parametric estimation purposes. Applied studies that have found the 

beta distribution useful include Babcock and Blackmer, Borges and Thurman, Babcock 

and Hennessy, and Coble et al.  
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The beta density function that describes the distribution of yield y, can be written  
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where p, q, ymax, and ymin are the four parameters. Advantages of the beta distribution are 

that it can exhibit both negative and positive skewness; it has finite minimum and 

maximum values; and it can take on a wide variety of shapes, including J-shaped, and 

normal-like.  

What we want to accomplish is specification of beta parameters that are consistent 

with a given pure premium rate at the 65 percent coverage level. We do this by first 

relating the shape parameters, p and q, to the mean and standard deviation of farm yields, 

and to the maximum and minimum yields. For a given ymax and ymin, p and q can be 

obtained from mean yield µ (which was set to 1) and the standard deviation of yields, s , 

by the following two equations (Johnson and Kotz, p. 44):  
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We normalized mean yield to 1 and searched for the standard deviation of yields that 

resulted in the 65 percent APH rate using Monte Carlo integration. Of course, the 

maximum and minimum yields must be defined to identify a one-to-one mapping of yield 

standard deviation to APH rate. This was accomplished with the following specifications: 

ymin = max(1 – 4s , 0) and ymax = 1 + 2s . Thus, the search for a standard deviation that 

generates the 65 percent APH rates is accomplished by imposing these two conditions on 

the minimum and maximum yields.  

The next step is to generate the appropriate yield distribution for a range of possible 

APH rates. We chose a series of possible 65 percent APH rates ranging from 0.02 to 0.3. 

An APH rate of 0.02 represents an extremely low risk production situation such as might 

exist with irrigated corn. An APH rate of 0.3 represents the high-risk extreme.  
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These four parameters were used to generate 5,000 draws from a beta density with a 

mean of 100 bushels. To calculate the fair premium, we found the average indemnity at 

each coverage level for each APH rate. These results are shown in Table 4. 

Table 4 presents the actuarially fair pure premium rates for ten measures of yield 

uncertainty as expressed by a 65 percent pure premium rate shown in the first column. At 

low levels of yield uncertainty, the fair premiums are low at all coverage levels. 

However, the rate at which the premium rates increase is high. At higher levels of yield 

uncertainty, rates are high but the rate at which they increase in coverage levels is low. 

Figure 6 provides the intuition for this result. Presented are the cumulative distributions 

for two rates. The low rate of 0.03 shows the standard S-shaped curve that we expect 

when looking at a yield distribution. This curve is quite convex over the range of yields 

from 0.65 to 0.85 as shown. The probability of a yield being below 65 percent is about 13 

percent. This probability rises to about 30 percent at a yield of 0.85. This means that the 

chances of receiving a crop insurance indemnity increase by a factor of 2.3.  

Now observe the CDF associated with a 10 percent pure premium rate at the 65 

percent coverage level. The probability of receiving an indemnity with 65 percent 

coverage is 32 percent. This probability does not grow rapidly as coverage increases 

because the CDF is concave over this range. The probability only grows by a factor of 1.3 

as coverage increases to 85 percent. This demonstrates why crop insurance rates should 

increase by a lesser amount for crops and regions that have high initial rates compared to 

crops and regions in lower-risk areas.  

 

TABLE 4. Actuarially fair pure premium rates  
65% Rate 70% Rate 75% Rate 80% Rate 90% Rate 

0.020 0.027 0.035 0.045 0.057 
0.030 0.038 0.048 0.059 0.072 
0.040 0.049 0.060 0.072 0.085 
0.050 0.060 0.072 0.084 0.098 
0.060 0.071 0.083 0.096 0.110 
0.080 0.092 0.105 0.118 0.132 
0.100 0.113 0.126 0.140 0.154 
0.150 0.163 0.177 0.191 0.204 
0.200 0.213 0.226 0.239 0.252 
0.300 0.312 0.323 0.334 0.344 
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A Comparison with the APH Rate Relativities 

Figure 7 compares the rate relativities calculated from Table 3 with the constant rate 

relativities used in the APH program. The APH rate relativities are close to those implied 

by a 0.03 pure premium rate, and this suggests that they are most accurate at this rate 

level. However, a constant set of rate relativities cannot be accurate at all rate levels. For 

example, with the 10 percent pure premium rate used in Figure 7, the actuarially fair 85 

percent premium rate is 1.54 times as large as the 65 percent rate. However, the 85 

percent APH rate is 2.13 times as large. That is, the APH rate is 38.3 percent greater than 

the actuarially fair rate calculated from a well-defined yield distribution. It is clear that 

the APH rate structure is not supportable by the laws of probability. The simple fact is 

that as 65 percent rates increase, more of the mass of the yield distribution must lie to the 

left of the 65 percent level, and this means that fewer outcomes are available for the area 

between the 65 percent level and the mean of the distribution. As mass is shifted to the 

left of the distribution, the probability of a yield outcome that would trigger an indemnity 

at 75 percent and not at 65 percent is reduced, and this in turn reduces the motivation for 

a higher 75 percent rate. Figure 7 shows that the potential for errors in premium rates 

increases as 65 percent APH rates increase and as coverage levels increase.  

 

Implications and Conclusions 

The use of fixed rate relativities to set APH rates cannot be supported if rates at all 

coverage levels are to be actuarially sound. As shown in Figure 7, farmers who plant 

crops in regions where the 65 percent pure premium rate is above 0.03 (which 

corresponds to an APH rate of about 0.04) face unsubsidized premiums that are too high 

at 80 percent and 85 percent coverage levels. The higher is the yield risk, the greater is 

the discrepancy between actuarially fair rates and actual APH rates for coverage levels 

greater than 65 percent. This discrepancy could explain why 65 percent coverage was the 

most popular coverage level in higher-risk areas. Farmers in high-risk areas were being 

charged too much at higher coverage levels. Farmers’ reluctance to increase their 

coverage above 65 percent could also explain why Congress felt the need to move away 

from a fixed per-acre premium subsidy to the current subsidy structure that increases per-

acre subsidies as coverage levels increase. That is, the higher subsidies are used to offset 
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the excessive premium charge, making higher coverage levels more attractive. If APH 

rates were made actuarially fair by allowing rate relativities to vary by crop and region, 

then perhaps Congress could revert to fixed per-acre subsidies, which would induce 

farmers to select the crop insurance product that gives them the biggest risk management 

return per premium dollar rather than having that decision distorted by proportionate 

premium subsidies. 

The increased subsidies under ARPA have brought increased public attention to the 

implications of an unsound APH rate structure. For example, Barnaby demonstrated that 

Revenue Assurance (RA) with the harvest price option could actually cost 20 percent less 

than simple yield insurance and 32 percent less than CRC for Kansas dryland corn 

production at 85 percent coverage. Farmers in these regions must settle for lower 

coverage, or they may find that increased subsidies available at higher coverage levels 

offset the excessive unsubsidized premium. 
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FIGURE 1. Net acres insured under the APH program 

 

 

 
 
FIGURE 2. Graphs of cumulative distribution functions at various insurance rates 
and conditional yields 
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The darkest shade indicates admissible rates up to 85 percent coverage; the lighter shade indicates  
admissible rates up to 75 percent coverage with no restrictions on the distribution function. 

 

 
The darkest shade indicates admissible rates up to 85 percent coverage; the ligher shade indicates  
admissible rates up to 75 percent coverage with the restriction that 0.5 - F (highest coverage level) > 0.15.  
 
FIGURE 3. Sixty-five percent APH rates for corn 
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The darkest shade indicates admissible rates up to 85 percent coverage; the lighter shade indicates  
admissible rates up to 75 percent coverage with no restrictions on the distribution function. 
 

 
The darkest shade indicates admissible rates up to 85 percent coverage; the ligher shade indicates  
admissible rates up to 75 percent coverage with the restriction that 0.5 - F (highest coverage level) > 0.15.  
 
FIGURE 4. Sixty-five percent APH rates for soybeans 
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The darkest shade indicates admissible rates up to 85 percent coverage; the lighter shade indicates  
admissible rates up to 75 percent coverage with no restrictions on the distribution function. 
 

 
The darkest shade indicates admissible rates up to 85 percent coverage; the ligher shade indicates  
admissible rates up to 75 percent coverage with the restriction that 0.5 - F (highest coverage level) > 0.15.  
 
FIGURE 5. Sixty-five percent APH rates for wheat 
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FIGURE 6. Beta cumulative distribution functions for two pure premium rates and 
an expected yield equal to 100 
 
 

 
FIGURE 7. Comparison of APH rate relativities to those derived from a beta 
distribution at various 65 percent pure premium rates
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