Theoretical Production Restrictions and Measures of Technical Change in U.S. Agriculture

Alejandro Plastina and Sergio Lence

NC-1034 Annual Meeting Feb 26, 2016

IOWA STATE UNIVERSITY

Extension and Outreach

Applied Production Analysis

Simple functional forms fully consistent with economic theory

Recent example: Andersen, Alston, and Pardey (JPA 2012)

Vs.

Flexible functional forms not fully consistent with economic theory

Output Elasticity wrt Labor:

- Cobb-Douglas: +, not statistically significant
- Translog: , statistically significant.

Identifying the Problem

- If econometric estimates not fully consistent with economic theory...
- How robust are economic analyses and policy recommendations based on such estimates?

Problem: Lack of Counterfactuals

Main Goal

Investigate the consequences of failing to impose concavity and monotonicity in estimation on a flexible functional form of U.S. ag production:

- Pdfs of parm. estimates
- Characterization of production technology

Additional Contributions

- Technical Change estimates by State
- Technical Change vs. USDA's TFP
- Advocate for Bayesian estimation of flexible forms

Main take-home message

 Imposing concavity and monotonicity in estimation changes the characterization of U.S. agricultural technology.

The Model

Production function: Generalized Quadratic

$$f(X,t) = \beta_0 + \sum_{i=1}^n \beta_i x_i + \beta_t t + \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \beta_{ij} x_i x_j + \sum_{i=1}^n \beta_{ti} x_i t + \frac{1}{2} \beta_{tt} t^2$$
$$\beta_{ij} = \beta_{ji}$$

Concavity: max eigenvalue of H ≤0

• Monotonicity:

$$H \equiv \nabla^2 f(X) = \begin{bmatrix} \beta_{11} & \cdots & \beta_{1n} \\ \vdots & \ddots & \vdots \\ \beta_{1n} & \cdots & \beta_{nn} \end{bmatrix},$$

$$MPP_{x_i} = \frac{\partial f(X,t)}{\partial x_i} = \beta_i + \sum_{j=1}^n \beta_{ij} x_j + \beta_{ti} t \ge 0$$

The Model

Weak Essentiality:

$$f(0_n, t) = \beta_0 + \beta_t t + \frac{1}{2}\beta_{tt}t^2 = 0$$

Does not hold with a time trend.

Alternative Models	Conditions Imposed in Estimation					
	Concavity	Monotonicity @ Mean Input Levels	Monotonicity @ All Data Points			
M1: Unrestricted	no	no	no			
M2: Concavity	YES	no	no			
M3: Mon@Mean	no	YES	no			
M4: Conc+Mon@Mean	YES	YES	no			
M5: Mon@All	no	no	YES			
M6: Conc+Mon@All	YES	no	YES			

IOWA STATE UNIVERSITY Extension and Outreach

Data

- USDA panel dataset on U.S. agricultural production (Ball et. al. 2004)
- 1 aggregate agricultural output
- 3 variable inputs: capital, labor, and materials
- 48 states
- 45 years: 1960-2004

Data (cont'd)

- Output: livestock, dairy, poultry, eggs, grains, oilseeds, cotton, tobacco, fruit, vegetables, nuts, and other miscellaneous outputs
- Capital: service flows of real estate, durable equipment and stocks of inventories.
- Labor: quality-adjusted amount of hired and self-employed labor.
- Materials: fertilizers, pesticides, energy and other miscellaneous inputs.

IOWA STATE UNIVERSITY

Descriptive Statistics (million \$ 1996)

Implicit Quantity Index	Mean	Std. Dev.	Min	Max	N
Output	3,845.8	3,937.5	42.9	31,595.5	2,160
Materials	1,761.2	1,635.9	12.9	9,451.8	2,160
Capital	662.0	591.4	7.4	3,330.6	2,160
Labor	1,971.8	1,742.1	18.2	9,476.4	2,160

Source: USDA

IOWA STATE UNIVERSITY

Extension and Outreach

Estimation of Models 1-6

- 2 versions of M1-M6: AR(0), AR(1)
- Monte Carlo Markov Chain methods in R
- 4 chains of 5 million draws per chain
- First half of each chain discarded (burn-in)
- To avoid high correlation across sets of parameter estimates, only 1 every 5,000 ordered sets of par. est. is used
- 2,000 simulated values for each parameter

LikelihoodP: 95% Credible Intervals

IOWA STATE UNIVERSITY

Extension and Outreach

LikelihoodP: 95% Credible Intervals for M1-M6 AR(1)

IOWA STATE UNIVERSITY

Extension and Outreach

95% Credible Intervals for ρ 's

IOWA STATE UNIVERSITY

Extension and Outreach

Example: bivariate posterior pdfs of $\beta_{\text{\tiny MM}}$ and $\beta_{\text{\tiny MM}}$

Concavity & Monotonicity

Concavity (Max Eig ≤0)

Max Eigenvalue: 95% Cl

Monotonicity in Capital (MPP ≥0)

IOWA STATE UNIVERSITY

Extension and Outreach

Healthy People. Environments. Economies.

CONCAVITY & MONOTONICITY IN CAPITAL ONLY HOLD FOR M4 & M6

Monotonicity (Cont'd)

Monotonicity in Labor

0.4 0.3 0.2

MI. Unrest*AR(I)

MARINDONE MONON (MONON (MO

Monotonicity in Materials

IOWA STATE UNIVERSITY

Extension and Outreach

0.1

Healthy People. Environments. Economies.

MONOTONICITY IN LABOR & MATERIALS HOLDS FOR M1-M6

Output Elasticity wrt Capital $\varepsilon_k = MPP_k \times \text{mean}(K) / \text{mean}(Y)$

IOWA STATE UNIVERSITY

Extension and Outreach

Output Elasticity wrt Labor $\varepsilon_l = MPP_l \times mean(L) / mean(Y)$

TOWA STATE UNIVERSITY

Extension and Outreach

Output Elasticity wrt Materials $\varepsilon_m = MPP_m \times \text{mean}(M) / \text{mean}(Y)$

IOWA STATE UNIVERSITY

Extension and Outreach

Elasticity of Scale

$$\in = \varepsilon_k + \varepsilon_l + \varepsilon_m$$

IOWA STATE UNIVERSITY

Extension and Outreach

Healthy People. Environments. Economies.

DECREASING RETURNS TO SCALE

Technical Change

$$TC = \partial f(X,t)/\partial t = \beta_t + \sum_i \beta_{ti} \overline{x_i} + \beta_{tt} \overline{t}$$

IOWA STATE UNIVERSITY

Extension and Outreach

Healthy People. Environments. Economies.

TC at Mean Input Values

So...M4 or M6? Calculated MMPs with mean parameter estimates from M4 and all input values

% Sample where Monotonicity does NOT hold

IOWA STATE UNIVERSITY Extension and Outreach Healthy People. Environments. Economies.

Preferred Model M6: Conc.+Mon@All+AR(1)

M6: Technical Change

- TC Not Hicks-neutral: β_{tL} , β_{tM} > 0; β_{tK} < 0 (all statistically significant at 5%)
- Disembodied TC explains 1.48% of annual growth in ag output over 1960-2004
- Top 3 states: Colorado (1.82%), Oklahoma (1.80%), Missouri (1.77%)
- TC very variable across states and decades

M6: Catch-up in Tech. Change

- Median TC per state in the 2000s vs.
 Median TC per state in the 1960s:
- Slope coefficient -0.27
- P-value < 0.1%
- Rsquare = 0.824

Technical Change vs TFP Growth 1960-2004

- TFP Growth Ranking: CO 45th, OK 48th, MO 27th
- Correlation between state rankings in TC and TFP growth: -0.50
- Correlation between average annual rates of TC and TFP growth: -0.41
- Differences: technical and allocative efficiency?
 Translog vs. Quadratic?

IOWA STATE UNIVERSITY

Concluding Remarks: Methodology

- Recovered technology from unrestricted model neither concave nor monotonic.
- Both conditions must be imposed in estimation to perform meaningful economic analyses
- How monotonicity is imposed matters
- Bayesian methods allow to impose constraints at all data points

Concluding Remarks: Policy

- Decreasing Returns to Scale:
- a) support recommendation to account for crop insurance subsidies to avoid upwardly biased TFP estimates (Shumway et.al. 2016)
- b) Call into question assumption of CRS in calculation of TFP at the national level.
- c) Extent of concentration in ag production limited by DRS

IOWA STATE UNIVERSITY

Next steps

- Similar analysis using Translog (underlying functional form in USDA's TFP measurement)
- Effect of capital utilization bias (Andersen, Alston, Pardey. JPA 2012)

Thank you for your attention! Comments/Questions?

plastina@iastate.edu shlence@iastate.edu