Designing Practice Based Approaches for Managing Agricultural Nonpoint-Source Water Pollution

Catherine Kling

Upper Midwest Stream Restoration Symposium
February 24-27, 2013
La Crosse, Wisconsin

This research was supported by the National Science Foundation, Dynamics of Coupled Natural and Human Systems Program, award number DEB-1010258, as well as two regional collaborative projects supported by the USDA-NIFA, award numbers 2011-68002-30190 and 2011-68005-30411.

U.S. Water Quality: Lakes

- Lakes, Reservoirs, Ponds:
 - 42% assessed, 65%
 inadequate water quality to
 support uses
 - Over 11 million acres are "impaired"
 - Agriculture third highest source of impairment

The diverse aquatic vegetation found in the Littoral Zone of freshwater lakes and ponds.

A cyanobacteria bloom in a Midwestern lake.

Water Quality: Rivers & Streams

Photos courtesy Iowa DNF

- Rivers and Streams:
 - 26% assessed, 50%
 inadequate water quality to
 support designated uses
 - Nearly ½ million stream miles are "impaired"
 - Agriculture leading source of impairment (identified as cause of 22% unknown second highest)

Time trend

Assessed Waters of United States

Figure 1. US waters assessed as impaired

Source: EPA National Summary of Assessed Waters Report

What abatement options exist? Examples from U.S. Agriculture

- In field Management Practices
 - Reduced (no) tillage
 - Manure, fertilizer management/reduction
 - Cover crops, rotation changes
 - Land retirement
- Structural Practices
 - Buffers
 - Grassed Waterways
 - Denitrification, controlled drainage
 - Wetland restoration

Conservation practices

Land Retirement

Wetlands Restoration

Efficacy and Cost of Practices

- Vary by
 - Pollutant
 - Field characteristics
 - Land use in watershed
 - Provision of other ecosystem services
- Ideally, all of these factors considered in efficient policy design

In sum, have to deal with all of these aspects

- Enormous number of farm fields/decision makers
- Each: one or more land use/conservation practices
 Retire land (e.g., CRP), Reduce tillage, Terraces, Contouring,
 Grassed Waterways, Reduce fertilizer, better timing, etc.
- Costs and effectiveness vary across locations
- HOW? Use models to guide policy

Soil and Water Assessment Tool

 Watershed-scale simulation model developed by USDA - Agricultural Research Service

 Predicts ambient (instream) water quality associated with a spatially explicit set of land use/conservation practices

Gassman et al. (2007) identify over 250 publications using SWAT

Watershed

SWAT:

13 Fields, 4 land use/abatement options: a, b, c, d

SWAT simulates water quality under alternative land use, abatement activities

Least Cost Problem

- What is the optimal placement of conservation practices?
- Brute force strategy:
 - Using water quality/hydrology model, analyze all the feasible scenarios, picking cost-efficient solutions
 - But, if there are N abatement possibilities for each field and there are F fields, this implies a total of possible NF configurations to compare
 - 30 fields, 2 options → over 1 billion possible scenarios!

Strength Pareto Evolutionary Algorithm

Search technique to approximate pareto optimal frontier

- Integrate Evolutionary Algorithm with water quality model
- Search for a frontier of cost-efficient nutrient pollution reductions
- Zitzler, Laumanns, and Thiele. "SPEA2: Improving the Strength Pareto Evolutionary Algorithm," TIK-Report 103, May 2001, Errata added September, 2001

Terminology

"Individual" = specific assignment of practices to fields

"Population" = set of individual watershed configurations

SPEA2 Applied to Optimal Watershed Design

Step I: Generate initial population

Step II: Run Swat and compute costs

Step III: Identify best individuals

Step IV: Evaluate stopping rule

Step V: Choose parents

Step VI: Create offspring

Pareto frontier

Pareto Frontier

- Strength S(i)= # of individuals i dominates
- Raw fitness R(i)= sum of strengths of individuals that dominate i
- Low value best: R(i)=0 means i is on the frontier

Boone River Watershed Iowa

- ~586,000 acres
- tile drained, 90% corn and soybeans
- 128 CAFOs (~480,000 head swine)

Natural Environment: Boone

- Some of the highest
 N loads in lowa
- TNC priority area biodiversity
- Iowa DNR Protected Water Area

Common Land Unit Boundaries

- 16,430 distinct CLUs
- Detailed data related to:

 land use,
 farming practices,
 production costs,
 slope,
 soils,
 CSRs, etc.
- Weather station data

The Land use/Abatement Set

For each CLU

- Current practice
- Land retirement
- No tillage
- Reduced fertilizer (20%)
- Cover crops
- Sensible combinations

Gains from Optimal Placement

				Practice Allocation (%)							
	Cost (\$1000 dollars)	% N	% P	NT	NT, RF	CC, RF	CC NT RF	Other			
Cover Crops, Red.											
Fert	15,380	29	32			100					
Same N reductions	2,778	29	44	84	13	<1	<1	3			
Samo Triodustions	2,110										
Same Cost	15,365	47	45	8	23	<1	64	5			

Boone Individual 0001

N 4,837,160.0 Phosphorus 187,888.0 Cost \$0.00

Baseline

NT
Cover Crop
Cover Crop NT
RF
NT RF
Cover Crop RF
Cover Crop NT RF
CRP

Least Cost for N and P Reductions

	Cost		Reduction (%)		Watershed practices (counts of HRUs)									
Target %								CC,	``	NT,	CC,	CC,	Retire	
Decrease	(\$1,000)	(\$/acre)	N	Р	Baseline	NT	CC	NŤ	RF	RF	RF	NT, RF	Land	
10	1,158	2.19	11	21	1781	795	4	0	2	311	3	4	2	
20	2,064	3.90	21	33	580	2310	4	2	1	1	2	0	2	
30	3,389	6.41	30	44	1	2398	1	3	3	382	5	107	2	
40	8,072	15.26	40	45	7	9	4	90	3	2173	5	608	3	
50	20,815	39.36	50	50	5	10	5	11	12	966	11	1635	247	
60	39,651	74.98	60	60	6	3	5	3	9	213	8	1828	827	
70	79,194	149.75	70	81	4	61	2	369	2	417	5	3	2039	
80 C A R	104,993	198.53	80	89	4	8	3	91	7	1	6	2	2780	

Per acre average costs of abatement actions needed to achieve equal percent reductions in N and P

Policies to Attain Nutrient Reductions

- Taxes (or subsidies)
- Voluntary Approaches (may be with financial incentives)
- Regulations
 - Technology requirements
 - Standards (permits)
 - Permit trading, "cap-and-trade," "offsets"
 - Other (compliance requirements, labeling requirements)

Regulation types

- Technology Requirements: required to adopt specific method of production or technology catalytic converters,
- Standards: required to have a permit to cover their emissions or meet a standard zoning requirements
- Firms may be allowed to buy and sell permits from one another
- Compliance Requirements

Property rights with polluters

- Cost share programs voluntary
 - Conservation Reserve Program,
 - Environmental Quality Improvement Program,
 - Conservation Security Program, and
 - Wetlands Reserve Program , etc.
- Reverse auctions
- Offsets (baseline and trade)
- Labeling, consumer information programs
- Conservation compliance

Property rights with society

- Approach for many pollutants
 - Industrial sources air pollution
 - Point sources water pollution
 - Smoking bans, etc.
- Policies that are consistent with:
 - Cap and trade (capped sectors)
 - Regulatory requirements

BMPs: Everglades Agricultural Area

718,000 acres (40 acre fields)

- Everglades Regulatory Program
 - goal 25% P reduction overall
 - mandatory BMPs, 1995
 - Implemented via points
 - flexibility in BMPs, 25 points/farm
 - expert judgment set point values
 - must implement and monitor WQ

Wikipedia

EAA Regulatory Program

Property Rights: with citizens

- First 3 years: 55% P load reduction (SFWMD, 1998)
- Unable to find information on costs
 - Direct cost of BMPs
 - Lost profit
 - Cost of monitoring
 - Cost of program implementation

Comments and Questions Welcome!

