Costs and Environmental Effects from Conservation Tillage Adoption in Iowa

Lyubov Kurkalova, Catherine Kling, and Jinhua Zhao

CARD, Department of Economics

Iowa State University

Presented at the University of Toulouse, France, February 2003

Policy Background

- Conservation Security Act
 - What will it cost?
 - What benefits will it generate?
- Carbon Markets
 - What could agriculture supply?
 - What are the co-benefits?

Major Model Components

Economic Behavior: Adoption Model

 Environmental Consequences: Physical Process Models

 Simulation of Policy: Integration of Economics and Environment Measures

Major Model Components: Economics

- What does it take for farmers to adopt conservation tillage practices?
 - Profit loss from switching
 - Reluctance (or premium) due to uncertainty risk aversion, value of information
- Estimate adoption based on observed behavior
 - The subsidy needed for adoption
 - Decompose subsidy into profit loss and premium

Model of conservation tillage adoption

Traditional approach

$$\Pr[adopt] = \Pr[\pi_1 \ge \pi_0 + \sigma_{\varepsilon} \varepsilon] = \Pr[\pi_1 - \pi_0 \ge \sigma_{\varepsilon} \varepsilon]$$
$$= \Pr[\delta x \ge \sigma_{\varepsilon} \varepsilon]$$
$$= \Pr\left[\frac{\delta x}{\sigma_{\varepsilon}} \ge \varepsilon\right]$$

Our approach

 $\Pr[adopt] = \Pr[\pi_1 \ge \pi_0 + \sigma_{\varepsilon}\varepsilon] = \Pr[\pi_1 - \pi_0 \ge \sigma_{\varepsilon}\varepsilon]$ $= \Pr[\beta x - \pi_0 \ge \sigma_{\varepsilon}\varepsilon]$ $= \Pr\left[\frac{\beta x}{\sigma_{\varepsilon}} - \frac{\pi_0}{\sigma_{\varepsilon}} \ge \varepsilon\right]$

Model (continued)

$$\Pr[adopt] = \Pr[\pi_1 \ge \pi_0 + P + \sigma_{\varepsilon}\varepsilon]$$
$$= \Pr[\beta x \ge \pi_0 + \alpha \sigma_{profit} + \sigma_{\varepsilon}\varepsilon]$$

$$= \Pr\left[\frac{\beta x}{\sigma_{\varepsilon}} - \frac{\pi_{0}}{\sigma_{\varepsilon}} - \frac{\alpha \sigma_{profit}}{\sigma_{\varepsilon}} \ge \varepsilon\right]$$

Data

- Random sub-sample (1,339 observations) of Iowa 1992 NRI data (soil and tillage) supplemented with Census of Ag. (farmer characteristics) and climate data of NCDA
- 63% of farmers already use conservation till without any subsidy

Model Specification and Data (Continued)

$$\Pr(adopt) = \Pr\left[\frac{\beta x}{\sigma_{\varepsilon}} - \frac{\pi_0}{\sigma_{\varepsilon}} - \frac{\alpha \sigma_{profit}}{\sigma_{\varepsilon}} \ge \varepsilon\right]$$

- Expected profit of conservation tillage (x)
 - Depends on soil characteristics, climate, and farmer characteristics
- Expected profit of conventional tillage (π_0)
 - County level estimates for each crop based on budget estimates
- Adoption premium $(\sigma_{\scriptscriptstyle profit})$
 - Depends on historical (20 years) precipitation variability
 - Vary by crop, net returns, and farmer characteristics

Results (standard errors in parenthesis)

Net returns to conservation tillage

 $\pi_{1} = \underbrace{41 \cdot I_{corn}}_{(11)} + \underbrace{0.022 \cdot SLOPE}_{(0.012)} + \underbrace{0.63 \cdot PM}_{(0.31)} + \underbrace{73 \cdot AWC}_{(29)} + \underbrace{2.57 \cdot TMAX}_{(0.68)} + \underbrace{-2.48 \cdot TMIN}_{(0.72)} + \underbrace{76 \cdot PRECIP}_{(69)} + \underbrace{194 \cdot TENANT}_{(92)}$

Premium (corn producers)

$$P_{corn} = \sigma_{precip} \left\{ \begin{array}{cc} 1400 - 2.79 \cdot \pi_0 - 103 \cdot OFFFARM \\ (411) & (0.11) \end{array} \right.$$
(47)

$$+ 607 \cdot TENANT - 5.1 \cdot AGE - 763 \cdot MALE$$
(274) (1.8) (302)

Results

 Average required subsidy and decomposition for current non-adopters

Average/Current non-adopters	Corn (\$/acre)	Soybean (\$/acre)
Profit loss	-10.6	-34.8
Premium	13.1	38.4
Subsidy	2.5	3.6

Conservation Tillage "Supply Curve"

Total Subsidy to Achieve 90% Adoption = \$247 M = \$29 M + \$36 M + \$182 M

Model Components: Environmental Measures

- Environmental process models: EPIC CENTURY and SWAT (coming soon!)
 - Carbon sequestration
 - Nitrogen runoff
 - Soil erosion
 - Nitrogen leaching
 - Pesticides

Model Components: Policy Simulations

- Data: 13,000 NRI points located in lowa
- Policies Considered:
 - Practice Based
 - Performance Based (Environmental Targeting)

Practice (Conservation Tillage) versus Performance (e.g. Carbon) targeting

- Target conservation tillage: rank producers by adoption subsidy (\$/acre) from low to high, offer payments to those at the top of the list until the budget is exhausted
 - Target carbon: rank producers by the cost to carbon production ratio (\$/tons) from low to high, offer payments to those at the top of the list until the budget is exhausted

Alternative targeting with alternative budgets

Budget = \$5.7 M

Budget = \$22.8 M

Fraction of maximum possible benefits obtainable under conservation tillage targeting

Gains from better carbon targeting technology

1. Better environmental runs:

- EPIC on each point
 SWAT instream water quality
- CENTURY

Cost assessment of water quality standards

- 2. Apply model to CRP (NRI data again)
 - Data on bids available (1993)
 - Now, alternative is NOT stochastic
 - Test for which effect dominates: risk aversion or real options

3. Combined modeling

3 Choices: CRP, Conv till, Cons tillNested Logit Structure?

4. Policy Assessments

1992 limitation

- What is the affect of substitutability between programs?
- What prices would provide the most environmental quality?

- Consider multiple land uses (multinomial logit)
 - CRP (NRI data)
 - Multiple tillage levels
 - Buffer strips, wildlife breaks, etc
 - More complex modeling structures

How many conservation services can Iowa provide?

Green payments of \$10.4/ac

How many conservation services can Iowa provide?

Green payments of \$3.25/ac

How many conservation services can Iowa provide?

Currently

