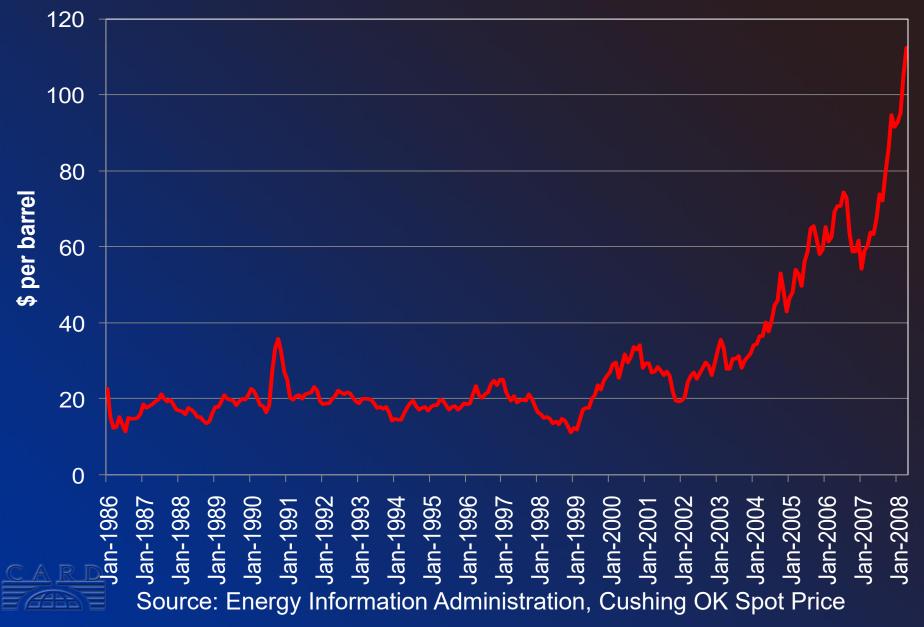
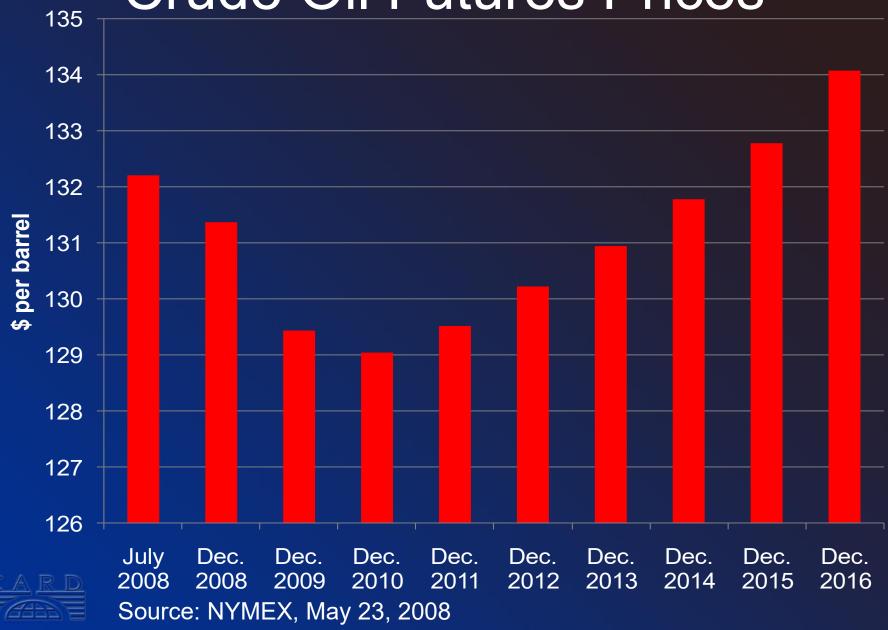
Looking at the Economics of the Next Generation of Biofuels


Chad Hart
Center for Agricultural and Rural Development
Iowa State University
E-mail: chart@iastate.edu

May 27, 2008


"Breeding Lignocellulosic Crops for the Bioeconomy"
Plant Breeding Lecture Series
Iowa State University
Ames, Iowa

Historical Crude Oil Prices

Crude Oil Futures Prices

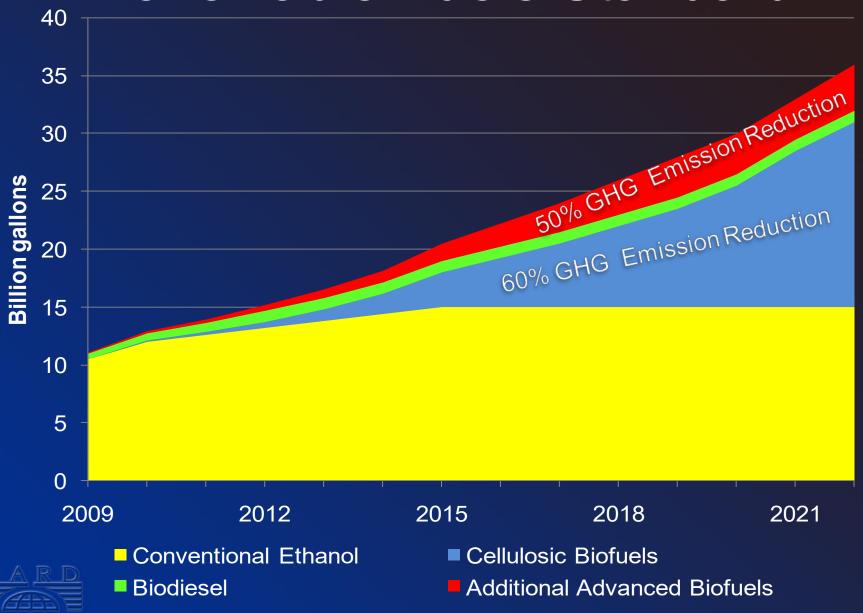
Liquid Fuel Use

2004		2010	2015	2020	2025	2030
Million Barrels			Percent of 2004 Value			
Oil Equivale	nt					
per Day						
United States	20.7	103	109	115	121	129
Canada	2.3	100	100	104	104	104
Mexico	2.0	110	115	130	135	145
Europe	15.6	99	99	100	101	101
Japan	5.4	96	96	96	96	96
China	6.4	147	164	186	213	245
India	2.5	108	128	144	160	176
Africa	2.8	118	139	154	164	175
Central and South America	5.4	120	137	152	167	180
World	82.5	110	118	126	134	143

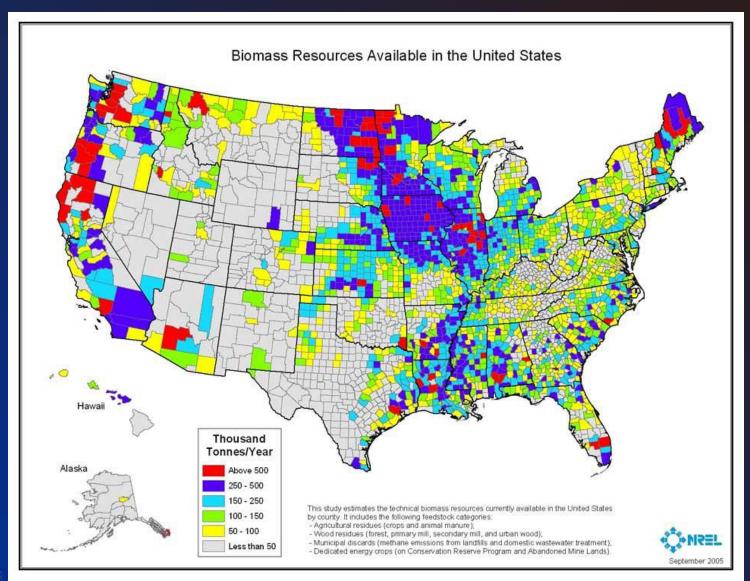
Source: EIA, International Energy Outlook 2007

Countries Pursuing Biofuels

- >US
- > Brazil
- Argentina
- > Colombia
- Paraguay
- > Canada
- Uruguay
- > Mexico

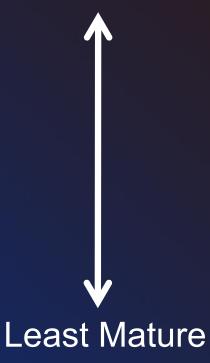

- > Thailand
- New Zealand
- South Africa
- South Korea
- > Philippines
- > Indonesia
- ▶ Pakistan
- > China

- >India
- Malaysia
- > Australia
- Japan
- > EU
- Russia


Not a complete list

Renewable Fuels Standard

Currently Available Biomass



Source: NREL, 2005

Spectrum of Biofuels

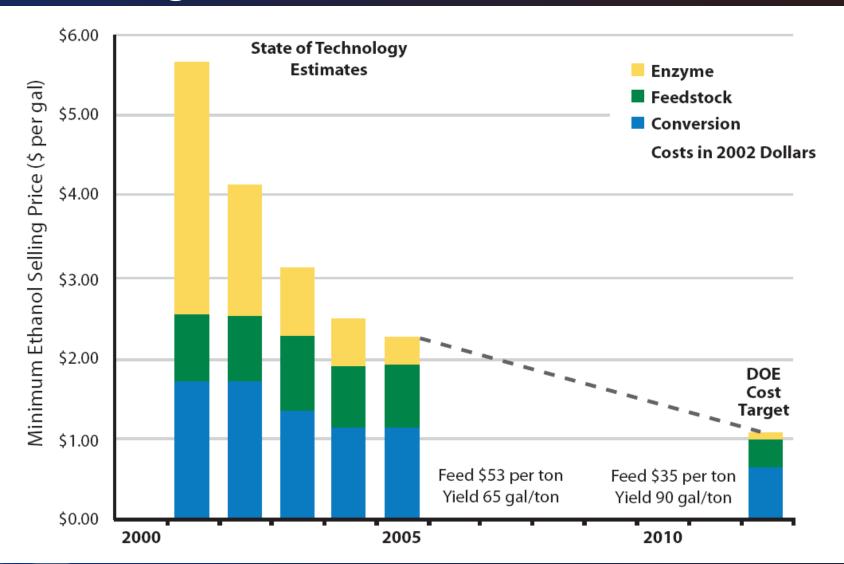
- ► Grain/Sugar Ethanol
- > Biodiesel
- Green Gasoline/Diesel
- Cellulosic Ethanol
- > Butanol
- Pyrolysis Liquids
- Syngas Liquids

Most Mature

Source: NREL, 2006

Biofuel Challenges

- Production costs
 - Conversion, ag. production, etc.
- > Infrastructure barriers
 - Developing supply chain for biomass
 - Continued development of biofuel distribution system
 - Growth in biofuel-compatible vehicles



Biofuel Challenges

- >Investment risks
 - Higher capital costs, emerging technology
- Biomass production shifts
 - Inducing farmers to produce new crops
- Consumer understanding
 - >About the fuels
 - > About the tradeoffs

Progress on Cellulosic Costs

Comparing Costs, 150 Million Gallons Gasoline Equivalent, 2005 \$

Plant Type	Capital Costs	Operating Costs
	(\$ Million)	(\$/Gallon)
Grain	111	1.22
Cellulosic	756	1.76

Source: Wright and Brown, *Biofuels, Bioproducts, & Biorefining* 1(2007):49-56

Production and Infrastructure Costs

Costs for Agricultural Straws and Switchgrass

	2007 Cost	2017 Projected Cost
	(\$ per dry ton)	(\$ per dry ton)
Production	13.10	26.20
Harvest & Collection	18.40	10.60
Storage & Queuing	6.10	3.70
Preprocessing	7.80	6.20
Transportation & Handling	14.70	12.30

Production and Infrastructure Costs

Costs for Agricultural Stovers

	2007 Cost	2017 Projected Cost
	(\$ per dry ton)	(\$ per dry ton)
Production	13.10	26.20
Harvest & Collection	29.50	10.60
Storage & Queuing	22.20	8.60
Preprocessing	16.40	7.80
Transportation & Handling	20.10	14.70

Conversion Costs

Costs for Corn Stover, 2007 \$

	2005 Cost	2012 Projected Cost
	(\$ per gallon)	(\$ per gallon)
Pretreatment	0.44	0.25
Enzymes	0.32	0.10
Fermentation	0.31	0.10
Distillation & Solids Recovery	0.18	0.15
	(gallons/dry ton)	(gallons/dry ton)
Ethanol Yield	65.3	89.8

Conversion Costs

Costs for Hybrid Poplar, 2007 \$

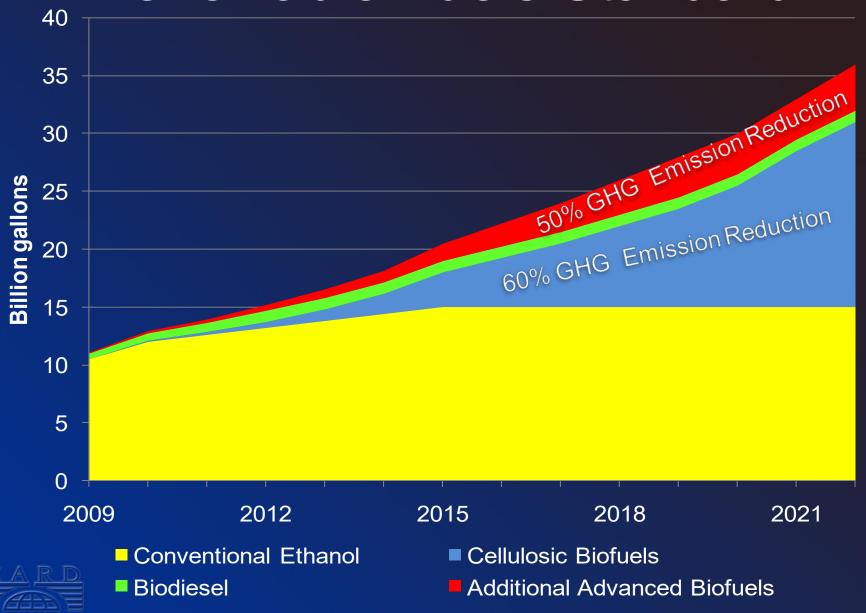
	2006 Cost	2012 Projected Cost	
	(\$ per gallon)	(\$ per gallon)	
Feed Handling & Drying	0.18	0.16	
Gasification	0.14	0.13	
Synthesis Gas Clean-up	0.69	0.43	
Fuel Synthesis	0.08	-0.03	
Product Purification	0.05	0.05	
	(gallons/dry ton)	(gallons/dry ton)	
Ethanol Yield	63.2	69.8	

Switchgrass in the Plains

Found ethanol yields per acre comparable to corn grain ethanol

But indicated that switchgrass would likely be targeted to marginal land where row crop production is less profitable

Source: Schmer, Vogel, Mitchell, and Perrin, *Proceedings* of the National Academy of Sciences 105(2008):464-469


Competing for Acreage

Crop	Net Return		
	(\$ per acre)		
Wheat	115 – 135		
Rice	230 – 370		
Corn	330 – 400		
Sorghum	85 – 105		
Soybeans	305 – 345		
Cotton	150 – 200		

Source: FAPRI, 2008

Renewable Fuels Standard

Cellulosic Biofuel Waiver Provisions

EPA (in consultation with DOE and USDA) can reduce the cellulosic biofuel mandated volume

Waiver trigger based on EIA projections

- > EPA will also sell cellulosic biofuel credits
 - ➤ Price set at Max(\$0.25 per gallon, \$3.00 Average wholesale gasoline price per gallon)

Components of 2007 Energy Act

➤ Up to \$500 million per year in grants for the production of advanced biofuels (with at least an 80% reduction in GHG emissions relative to current fuels)

➤ Up to \$25 million per year in grants for R&D for biofuel production in states with low rates of biofuel production

Energy in the Farm Bill

➤ Grants for the development and construction of advanced biofuel biorefineries, up to 30% of the cost of the project

Loans for the same, up to \$250 million or 80% of the cost per project

Bioenergy Program for Advanced Biofuels

Payments to support advanced biofuel production

Payment structure to be determined by USDA

Mandatory funding: \$55 million for 2008-2009, \$85 million for 2010, \$105 million for 2011

Bioenergy Program for Advanced Biofuels

Discretionary funding: \$25 million each year

➤ Not more than 5% of the funds can be directed to biorefineries with production capacities above 150 million gallons per year

Biomass R&D Technical Advisory Committee

- > 3 key areas of direction
 - > Feedstock development
 - Biofuels and biobased products development
 - Biofuels development analysis

> Funding

- ➤ Mandatory: \$20-40 million for 2009-2012
- Discretionary: \$35 million each year

Biomass Crop Assistance Program

➤ To support production of crops for bioenergy and assist with collection, harvest, storage, and transportation of biomass to conversion facilities

- Excluded materials
 - Farm program crops, animal byproducts, food waste, yard waste, algae

Biomass Crop Assistance Program

Requires producers and conversion facilities to submit proposal establishing a project area

Establishes contracts between USDA, producers, and facilities to promote project

Sets up establishment payments for perennial crops and annual payment to biomass producers

Biomass Crop Assistance Program

Payments are also authorized for biomass collection, harvest, storage, and transportation

- Matching payments
 - >\$1 for each \$1 per ton paid by conversion facility, up to \$45 per ton, for 2 years

Other Energy Provisions in the Farm Bill

- Cellulosic biofuel producer tax credit: \$1.01 per gallon
 - Restricted to domestic production

Waives limits on small ethanol producer credit for cellulosic (\$0.10 per gallon)

Thank you for your time.

Any questions?

