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Abstract
The large and sustained yield gains achieved since the
introduction of maize hybrids in the 1930s (about 1.8
bushels per acre per year) have been accompanied by a
remarkably parallel and steady increase in seeding density.
This increase occurred in an environment characterized
by rapid technological innovation, including genetic engi-
neering, and commercial hybrid varieties with short life
cycles. An important question, then, is whether and how
breeders and farmers have learned about the optimal
planting density. In this paper, we use unique and detailed
U.S. farm-level data, consisting of more than 400,000
planting choices from 1995–2016, to assess the nature of
learning about seeding density. Importantly, we control
for unobserved confounders through both hybrid and
farm-level fixed effects. We find that the variance in plant-
ing rates for a given hybrid has decreased over time, and
that farmers tend to plant a given variety at higher rates
over time. This is consistent with Bayesian learning in
which risk-neutral farmers possess priors consistently
below the true optimal rate. We cast doubt on risk aver-
sion as a credible explanation for this finding by analyzing
the contrasting evolution of soybean planting rates (a crop
with exogenously different agronomic determinants of
seed density). We interpret our results as evidence of
inertia: the initial bias in maize farmers’ priors is tilted
towards the optimal planting rates of varieties planted in
the past. One implication of the finding that farmers his-
torically underinvested in seeding rates is that eliminating
this tendency could result in productivity gains.
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1 | INTRODUCTION

One of the most significant agricultural advances of the 20th century was the discovery of hybrid
vigor in maize. The subsequent commercialization of maize hybrid varieties in the 1930s was met
with widespread adoption by U.S. farmers (Griliches, 1957), and over the ensuing 80 years
U.S. average maize yields increased at the impressive rate of about 1.8 bu/acre/year, from roughly
20 bu/acre in the mid-1930s to more than 170 bu/acre in 2016, a nearly eight-fold increase. A large
body of research has shown that these yield gains were the result of complex interactions between
genomic advances due to plant breeding and improved agronomic practices, including enhanced
nitrogen fertilizer and pesticide use (Duvick, 2005). Whereas the exact contribution of each factor
remains a matter of debate, one unambiguous statistical fact stands out: Virtually all observed yield
increases have been accompanied by increasing planting density (i.e., plants per acre). For example,
from the 1960s to the present, mean plant density more than doubled, from 14,000 to 30,000 plants
per acre. There is a strong agronomic basis for this relationship, discussed further below. In any
given year, however, the actual optimal seed density for any given variety is, even having controlled
for the specific soil and climatic conditions faced by heterogeneous farmers, highly uncertain.
Farmers have a large set of seed varieties to choose from and, due to the continual introduction of
new varieties, there is also a rapid turnover in this set. The dynamic and complex nature of the
industry means that farmers’ seed density choice is a difficult problem, one that likely entails errors
as well as learning. Yet, this decision context has remained largely unexplored to date.

Learning is critical in environments where new, complex technologies are frequently intro-
duced (Foster & Rosenzweig, 2010). The presence of learning has been documented in many con-
texts, but its importance has been particularly striking in agriculture. Unlike many other
industries, technological progress is mostly exogenous to the agricultural production sector, being
rooted in research and development investments undertaken by public laboratories or input-
supplying firms (Clancy & Moschini, 2017). As a result, farmers continuously face adoption
choices vis-à-vis a flow of technological innovations they do not control. A growing literature has
sought to assess whether and how farmers learn about new technologies (Bold et al., 2017;
Conley & Udry, 2010; Duflo et al., 2011; Emerick & Dar, 2021; Foster & Rosenzweig, 1995; Hanna
et al., 2014). This work has dealt primarily with developing countries, where adoption of new tech-
nologies can be extremely slow, and insofar as it has considered optimal input decisions it has typ-
ically focused on fertilizer use (Suri, 2011) and variety adoption (Matuschke & Qaim, 2009). A
common thread in these studies is that farmers not only learn but that this learning can be charac-
terized by initial underinvestment: Producers appear to use too little, rather than too much, of an
input (Foster & Rosenzweig, 2010). For example, Duflo et al. (2008, 2011) find that Kenyan
farmers underinvest in profitable fertilizer investments.

In this paper, we study the importance of uncertainty and learning for U.S. farmers’ decisions
about the optimal planting density (seeds/acre) for maize hybrids. What makes this context unique
is the rapid pace of both product turnover and technological change. As we document below, the
commercial life cycle of a maize hybrid variety is typically less than seven years, and in any given
year there are hundreds of horizontally differentiated varieties to choose from. Thus, U.S. farmers
have had to continually re-evaluate the optimal planting rate in a highly complex and changing envi-
ronment. To conduct our analysis, we draw on a large, unique U.S. farm-level dataset of more than
400,000 maize planting choices. The data spans the period 1995–2016 and contains information on
the specific maize hybrid planted, seed price, and farmer-chosen seeding density. These data permit
us to empirically assess whether farmers’ planting rate choices were consistent with testable
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predictions that emerge from a model in which learning is present. In addition, we assess whether
this learning was characterized by initial over or under investment in seed density.

To guide the empirical analysis, we first develop a Bayesian learning model in which risk-neutral
farmers choose the seeding density that maximizes expected profit. This model is in the tradition of
the target-input models employed in the prior literature (Foster & Rosenzweig, 2010). Consistent
with agronomic evidence (e.g., Assefa et al., 2016), we specify maize yields as quadratic in seeding
rates. Uncertainty arises because farmers have imperfect knowledge about this function and, in turn,
the optimal planting rate. Over time, as farmers (individually and collectively) gain experience with
a particular variety, they update their expectations of the optimal rate. We show that this learning
process is characterized by two important, empirically relevant features. First, the presence of learn-
ing implies that the variance in farmers’ beliefs about the optimal rate decreases over time, which in
turn implies that the (conditional) variance in chosen planting rates decreases over time. Second,
farmers’ prior beliefs about the optimal rate can be below or above the true optimal rate. Given a
population of risk-neutral farmers who are unbiased in their priors, we should not observe positive
(or negative) within-variety planting rate trends. Evidence to the contrary suggests that learning with
a biased prior has occurred.

To assess these two implications, we estimate a series of linear models in which farmer-specific
planting rates are regressed on the hybrid’s commercial age, the ratio of the seed price to the
expected maize price, and also variety and farmer fixed effects. Because variety fixed effects are
included, the commercial age coefficient captures whether, on average, farmers’ priors were below or
above the truth. To assess whether there was a decrease in farmers’ perception errors about planting
rates over time, we estimate a second-stage regression in which the squared predicted residuals from
the first stage are regressed on the commercial age variable (as well as variety and farmer fixed
effects). Importantly, the inclusion of farmer fixed effects rules out time-invariant unobserved het-
erogeneity as a driver of the estimated impacts.

The empirical analysis yields two primary findings. First, there is a statistically significant reduc-
tion in the estimated variance of planting rates in the years after a variety enters the market. Each
additional year of commercial availability is associated with a decrease in variance of approximately
4%. Thus, there is clear evidence of learning in the industry. Second, variety-specific mean planting
rates increase significantly with the industry’s experience with the variety. On average, one additional
year of commercial availability is associated with an increase in planting rates of about 222 kernels
per acre, equivalent to about 0.75% of the national mean planting rate. This suggests that farmers’
initial priors are systematically below the true optimal rate; that is, they exhibit chronic underinvest-
ment in seeding rates. We cast doubt on risk aversion as a plausible explanation for this finding by
showing that planting rates for soybeans, over the same period and for essentially the same set of
farmers, have moved in the opposite direction (consistent with agronomic advice for this crop).
Thus, we interpret our findings as evidence of inertia: The initial bias in farmers’ priors is tilted
toward the optimal planting rates of varieties planted in the past.

To illustrate the importance of our estimated results, we investigate two implications of learning
for the industry. We first simulate planting rate counterfactuals in which the amount of learning is
adjusted. We show that planting rates would have still increased at a similar rate over time, but the
path would have shifted up by about 5.7% per year had farmers been initially endowed with more
information. Using the simulated planting rate counterfactuals, we then consider how yield trends
would have been affected by different amounts of learning. This exercise predicts that, in the states
of Iowa and Illinois, maize yields would have been lower by about 1 bu/acre per year had learning
not occurred. Assuming a maize price of $4/bu, this amounts to a $100 million gross revenue impact
per year in these two states.

This paper contributes to the literature on learning in an agricultural context in several ways. As
noted, no existing work addresses whether and how farmers learn about the optimal seed density.
Most previous work that has assessed agricultural learning, primarily in developed countries, has
typically done so with experimental data. Although there are advantages to using experimental data,
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well-known limitations include lack of external validity. Here we leverage a unique and large dataset of
actual farm-level choices across a relatively long-time frame, permitting us to assess whether learning
has occurred “in the field.” Our results also demonstrate an important link between learning and food
production. Maize is the most important field crop in the United States and is one of the world’s key
food commodities. Our findings highlight a distinctive feature of productivity growth in maize. Because
the life cycle of new maize hybrids is relatively short, farmers are constantly “catching up” to the cor-
rect, typically higher, planting rate. This suggests there may be significant unrealized returns from addi-
tional investments into promoting learning on and reducing uncertainty about optimal planting rates.

2 | BACKGROUND

The link between observed maize yield increases and plant density is illustrated in Figure 1.1 From the
mid-1960s to the present, yields more than doubled (from about 75 bu/acre to 175 bu/acre), while
maize plant populations also roughly doubled (from about 14,000 plants/acre to nearly 30,000 plants/
acre). Thus, remarkably, yield per plant is only slightly greater now than it was over 50 years ago.

The fundamental agronomic reason for the observed positive relationship between plant
populations and yields was demonstrated in a series of experiments in which new and old maize
hybrids were planted at different densities (Duvick, 2005; Russell, 1991). These experiments revealed
that at low densities—where water stress and overcrowding were non-limiting factors—the yield
advantage of new hybrids was relatively small. At high densities, however, the yield gap was substan-
tial. Thus, an essential attribute of newer hybrids is that they possess higher tolerance to crowding,
thereby permitting higher planting densities and a higher number of harvested maize ears per acre
(Tokatlidis & Koutroubas, 2004). The relationship between density and yields may be even stronger
for genetically engineered (GE) varieties, introduced and widely adopted since the mid-1990s
(Chavas et al., 2014).

F I G U R E 1 U.S. maize yield (left, bu/acre) and plant population (right, plants/acre): 1964–2016. Note: Plant population
data is for the top 8 maize producing states. Source: USDA

1It is important to distinguish between two closely related but distinct concepts, “plant population” and “planting rate” (also referred to as
“seeding rate”). Plant population is the number of plants per acre that are standing at the end of the growing season, whereas the planting rate
is the number of planted seeds per acre. Our data and analysis pertain to seeding density (planting rate), whereas the USDA data used for
Figure 1 relate to plant population. Planting rate trends for the state of Iowa can be found in Figure 2 below.
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Plant density is particularly important for maize. Most other cereal crops can respond to environ-
mental constraints (e.g., water and nutrient availability) by adjusting the number of productive tillers
(the reproductive shoots that grow from the plant), whereas modern maize varieties cannot effectively
do so (Assefa et al., 2016). Furthermore, the optimal plant density is not simply a genetic attribute of a
hybrid variety; it is also heavily influenced by local environmental conditions and their interactions with
genotype. All of this raises an important question: To what degree and how rapidly have farmers been
able to discover the optimal rates of newer hybrids for their own location? In other words, to what
extent has learning played a role in the observed increase in planting rates and yield growth over time?

Previous studies have often employed a simple test for the presence of learning: When efficiency
and/or productivity increases for a fixed technology over time, then learning is asserted to have
occurred (e.g., Jovanovic & Nyarko, 1995). In our context, the natural analog would be to consider
whether yields or profits have increased for a given hybrid over time. Such an indirect route is not
feasible for us, however, because we do not observe yield or profits at the farm level. But we can con-
duct a more direct analysis of the hypotheses of interest. That is, similar to Conley and Udry (2010),
we look directly at whether the input rate associated with a fixed technology changes over time.

Figure 2 provides some further motivating stylized facts. It illustrates observed planting rate trends
for the 15 most widely planted hybrids in our sample. To avoid issues of heterogeneity across states, this
figure uses data only for Iowa, the most important maize growing U.S. state. Out of the 15 hybrids,
14 had an increasing trend, and one hybrid had a statistically insignificant decreasing trend (hybrid
34B23)—all despite the apparent lack of other major changes that would have encouraged within-
variety increasing rates. Indeed, in the empirical analysis below we show that these trends persist even

F I G U R E 2 Planting rate trends for selected most popular hybrids in Iowa, 1995–2016
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after a variety of controls have been put in place. In any event, farmers are clearly changing their input
rates for a fixed technology over time, which suggests that learning may be occurring.

Our work is broadly related to the large literature on “learning by doing” in a production setting
(Syverson, 2011). This concept, first articulated in Arrow’s (1962) seminal paper, has been studied in con-
texts such as manufacturing (Argote & Epple, 1990), shipbuilding (Thompson, 2001), and automobile
assembly (Levitt et al., 2013). One way to evince learning is to track productivity (efficiency) for a fixed
technology over time. For example, Benkard (2000) found that the number of labor hours required to
produce the Lockheed L-1011 TriStar had halved by the 30th plane and halved again by the 100th plane.
A related method, used in Levitt et al. (2013), is to track a qualitative measure of learning (e.g., number
of defects) over time. Alternatively, a more direct approach considers whether a chosen input level for a
fixed technology changes as more experience is accumulated. For example, Conley and Udry (2010)
investigate whether pineapple farmers adjusted their fertilizer use in response to both their own experi-
ence and that of their neighbors. Our approach follows this tack. By using a unique dataset of farmers’
seed choices at the (very refined) variety level, and by including variety fixed effects in our model, our
empirical results characterize whether and how farmers’ use of a fixed technology evolves over time.

3 | MODEL

We assume that farmers choose the seeding rate that maximizes expected profit. The full model
below will encompass the seed choices of many farmers, each choosing multiple varieties, and over
several years. For clarity, though, consider first the problem faced by a single farmer for a given vari-
ety. We assume risk neutrality (the modeling framework and main results can be readily extended to
the case of risk aversion, however) and presume that the farmer chooses the seeding rate to maxi-
mize expected profit. Experimental evidence from agronomic trials indicates that per-acre maize
yields are approximately quadratic in seeding rates (Assefa et al., 2016). Without loss of generality,
we can write a quadratic yield function as

y¼ b θz�0:5z2
� �

, θ > 0, b > 0: ð1Þ

where z denotes seed density (amount of seed per acre). Note that, with this parameterization, yield is
maximized at z¼ θ. Hence, θ can be interpreted as what Assefa et al. (2018) term the “agronomic opti-
mal” planting density (AOPD). The parameter θ is therefore, at least up to adjustments for input and
output prices, a natural candidate for modeling how farmers learn about the optimal seed density.

From the farmer’s perspective, the agronomic optimal density is a random variable, say eθ.
Let θ�E ½eθ� denote the expectation of the optimal density conditional on available information.
Per-acre expected profit can then be expressed as

π¼ pb θz�0:5z2
� ��wz ð2Þ

where p denotes output price, and w denotes seed price. Maximizing the expected profit function in
(2) yields the farmer’s “economically optimal” seeding density:

z*¼ θ� w
pb

ð3Þ

This simple setup shows that the farmer’s seed choice is a monotonic function of the expected agro-
nomic optimal planting density. As farmers’ information about the variety being planted improves,
they will update their beliefs about θ and adjust seed density, z*, accordingly. The latter, of course, is
an economic decision and must reflect variables relevant to the profit maximization problem other
than the AOPD, such as the seed price w and the expected output price p. In any event, observations
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about farmers’ seed choices, z, provide a window into the nature of their learning process about θ.
To gain more insights into such learning, we place more structure on the problem by developing a
simple Bayesian learning model.

3.1 | Bayesian learning

To articulate a learning model suitable for the data at hand, we recognize that farms, denoted by the
subscript i, are heterogeneous in land characteristics, and we consider several varieties, denoted by the
subscript j. Learning takes place over time, each period tracked by the subscript t. When variety j first
comes to market, at time t¼ 0, it is associated with the “ideal” but unknown planting density on farm
i, denoted by θij. This ideal planting density can be decomposed into a variety-specific component θj,
which is unknown and common across all farmers, and a farm-specific systematic component
known to the farmer and denoted by αi. One way to think of this framework is as a target input model
along the lines of Foster and Rosenzweig (1995) and Jovanovic and Nyarko (1995). That is, we posit

θij ¼ αiþθj ð4Þ

At periods t¼ 1,2,…, each farmer receives a signal sijt , about the true planting density θ
i
j, where

sijt ¼ θijþ εijt , t¼ 1,2,… ð5Þ

The term εijt is an i.i.d. random variable, which captures the fact that the signal is noisy. Given this
information, each farmer can update their beliefs, that is, form a posterior distribution for the ran-
dom variable θj. Following previous literature (e.g., Erdem & Keane, 1996), we assume that both the
prior and the noise have a normal distribution:

θij �N θ
i
j0,σ

2
j0

� �
ð6Þ

εijt �N 0,υ2j

� �
ð7Þ

Note that the variance of the signal noise, υ2j , is variety-specific but time invariant. The advantage of this

Gaussian framework is that the posterior distribution also has a normal distribution, θij �N θ
i
jt ,σ

2
jt

� �
.

Furthermore, the mean θ
i
jt �Et θij

h i
and perception variance σ2jt �Vart θij

h i
¼Vart θj

� �
, conditional

on the information available after the signal at time t is revealed, satisfy the following updating
equations (DeGroot, 2005):

θ
i
jt ¼

υ2j
σ2jt�1þυ2j

θ
i
jt�1þ

σ2jt�1

σ2jt�1þυ2j
sijt , t¼ 1,2,… ð8Þ

1
σ2jt

¼ 1
σ2jt�1

þ 1
υ2j

, t¼ 1,2,… ð9Þ

The Gaussian learning model, therefore, entails a simple elegant updating process: Both updating
equations are linear, with the variance-updating equation being linear in the reciprocal of the
variance, often called “precision” in this setting. Using Equation (9), the updating equation for the
conditional variance can be alternatively stated as:
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σ2jt ¼
υ2j σ

2
j0

υ2j þ tσ2j0
ð10Þ

From (9) and (10) we can derive the first important implication of this Bayesian learning model:

Result 1 As more information is acquired, the variance of the belief about the true agro-
nomic optimal density θij decreases (i.e., σ

2
jt < σ

2
jt�1), and as the number of signals goes to

infinity, this perception variance converges to zero.

Next, consider the evolution of the conditional mean of the posterior distribution. Equation (8)
conveys that the mean of the posterior distribution is a convex combination of the prior mean and
the signal, and that the last signal becomes less and less important as t increases. Alternatively, by
iterating the updating process in (8) and (9), the posterior mean can be expressed in terms of the
prior and the sequence of innovation signals:

θ
i
jt ¼

σ2jt
υ2j

θ
i
j0þ

σ2jt
υ2j

Xt

k¼1
sijk

� �
, t¼ 1,2,… ð11Þ

Recalling that sijt ¼ θijþ εijt , the posterior mean can be expressed as

θ
i
jt ¼

tσ2jt
υ2j

θijþ
θ
i
j0

t
þ
Pt

k¼1ε
i
jk

t

 !
, t¼ 1,2,… ð12Þ

From (10), tσ2jt=υ
2
j ¼ tσ2j0= υ2j þ tσ2j0

� �
! 1 as t!∞. Therefore, it follows that θ

i
jt ! θij as t grows

indefinitely. Hence:

Result 2 Information is useful: As the number of information signals increases, the mean
of the posterior distribution converges to the truth, θ

i
jt ! θij.

Note, however, that because the prior θ
i
j0 is unconstrained, the posterior θ

i
jt can be either above

or below the true value θij as it approaches it.

3.2 | Empirical specification

In the foregoing we have established that the optimal planting density is monotonically related to
the prior belief about the agronomic optimal density. This belief is updated through learning as new
information is acquired. The information signals of the Bayesian framework, in the empirical context
of interest, can take several forms. Seller-recommended seed densities at the time of a new variety’s
introduction are inevitably coarse, being based on only limited trials in locations that may not repre-
sent the growing conditions faced by most farmers. This initial information set is supplemented by
farmers’ own experience: Upon using a given variety, yield realizations will provide an informative
(however noisy) signal. Growers may also learn from the experience of other farmers with the same
variety, or from their own experience with other, related, varieties—these are instances of two vari-
ants of Bayesian learning, “observational learning” and “correlated learning,” respectively (Ching
et al., 2013). Sharing of relevant information may also be mediated by the efforts of seed dealers,
who are in a position to consolidate and disseminate signals of individual farmers, as well as the
work of extension services. The latter may run field trials as well, to investigate the yield effects of
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alternative seeding rates, something seed producers also continue to do in the early years of a new
variety’s commercialization.

Unfortunately, we do not have suitable data to disentangle the roles that such varied sources of
information may have on the learning process. As the explicit Bayesian framework articulated in the
foregoing makes clear, however, the number of information signals that is available prior to making
a decision is crucial. We capture this effect by a variety-specific “age” variable: that is, the number of
years a variety has been commercially available. One additional implication of Result 2 that we
explore in the empirical analysis below specifically relates to the presumption that farmers learn
from their own planting experience. Large farms—because they plant more fields and are likely to
get more information signals in any one production cycle—may exhibit different rates of learning.

Factors other than learning signals, of course, may affect the observed chosen planting density,
including the seed price, the expected output price, as well as other farm specific factors. Hence, to
empirically investigate the learning processes as revealed through observed planting densities, we
estimate the following fixed effects regression equation:

zijt ¼ βAgejtþϕRijtþαiþλjþuijt , ð13Þ

where zijt is the observed planting rate (kernels/acre) for variety j by farmer i in year t, and Rijt �
wijt=pt is the ratio of the observed seed purchase price wijt ($/80,000 kernels, and again for variety j
planted by farmer i in year t) to the expected maize price pt , measured by the harvest-time maize
contract futures price quoted at planting time ($/bu). The key variable of interest is Agejt , which
measures the number of years variety j has been commercially available as of year t. For example, for
a variety first introduced in year 2003, this variable takes value 1 in 2003, value 2 in year 2004,
and so on.

The term λj is a variety fixed effect. This term is essential as it captures the fact that, as discussed
earlier, modern varieties are associated with higher planting densities, ceteris paribus. Thus, having
introduced variety fixed effects, the results can then be interpreted as pertaining to a fixed technology.
The term αi is a farmer fixed effect, which is motivated by Equation (4), wherein it was recognized that
the optimal planting density, for a given variety, may vary across farms (which are heterogeneous with
respect to land and climatic conditions). Inclusion of the farmer fixed effect in the empirical model is
possible because, as noted earlier, in the data many farmers are observed to plant more than one variety
on a given farm.2 These fixed effects are also essential for estimating and interpreting the Agejt variable
coefficient. Thus, the coefficient β captures whether and how quickly farmers update their priors about
the optimal rate, on average (i.e., across all varieties). As a consequence of Result 2 derived earlier, the
Bayesian learning model does not constrain the sign of this coefficient. This sign depends on the nature
of farmers’ prior beliefs, specifically on whether farmers’ initial priors for the AOPD were below or
above their true values, on average. For example, if farmers’ priors were unbiased, such that θj0 ffi θj on
average, then one should expect β to be zero. Note also that because β is not variety specific, we are
implicitly assuming that the rate of learning is the same across varieties. Alternatively, β can be inter-
preted as a mixture of different underlying variety-specific learning rates. In a set of robustness
checks, we relax this constraint and allow β to be heterogeneous across varieties.

Recall that Result 1 establishes that the variance of the posterior of the AOPD decreases as infor-
mation accumulates. As argued in the foregoing, this also means that the variance of observed
variety-specific planting densities should decrease as information accumulates. This implies that the
error term in Equation (5) is heteroskedastic in the variety’s commercial age. In particular, the vari-
ance of this error term should decrease when information accumulates. Therefore, we also estimate
the following regression equation:

2In other words, because a farmer’s various varieties are likely to be planted on land that share common soil and climatic conditions, the farmer
fixed effect can control for some of the heterogeneity across farms seeded by the same variety. An alternative control that we report in the
empirical analysis is to replace farmer fixed effects by regional fixed effects (specifically, crop reporting district [CRD] fixed effects).
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ssrijt ¼ γAgejt þ τiþ κjþ eijt , ð14Þ

where the dependent variable pertains to the standardized squared residuals from the estimated
planting density equation, that is ssrijt � zijt � ẑijt

� �2
=σ̂2u, where σ̂2u is the estimated variance of the

residuals of Equation (13), whereas τi and κj are farmer and variety fixed effects, respectively. Result
1 implies that γ is negative if learning occurred.

4 | DATA

The empirical models are estimated with the maize TraiTrak® dataset, collected by the company
Kynetec USA, Inc. These data consist of farm-level seed sales data spanning the period 1995–2016.
The data were assembled from annual surveys of randomly sampled US farmers, with the samples
designed to be representative at the crop reporting district (CRD) level. Over the period of analysis,
the dataset contains surveys from an average of 4733 maize farmers per year. For each sampled
farmer, we observe the planting rate, identities of varieties planted, and price paid. On average, each
farmer purchases 4.23 varieties per year. Some farmers are surveyed over multiple years, which per-
mits the inclusion of farmer fixed effects.

The original dataset provides 442,803 observations on chosen planting densities, where an obser-
vation is a unique combination of the year, farmer, and planted hybrid. In order to estimate the
model, we trim the dataset in two ways. First, in some cases a farmer did not report the identity of
the variety planted. Because we cannot include variety fixed effects for these observations, we drop
them from the dataset, reducing the sample to 403,327 observations. Second, we remove the very
small number of cases where a value of zero was recorded for the planting rate. Our finalized dataset
consists of 403,261 observations across the 1995–2016 period. In some specifications, we also include
variables for the share of acres (at the CRD level) cultivated with reduced-till technology and the
number of neonicotinoid acre treatments (at the CRD level).3 These variables had limited availability
during the 1998–2016 timeframe, and thus the specifications that include these variables have a fur-
ther reduced sample size of 360,528 and 314,393, respectively.

Table 1 contains statistics that summarize the structure of the final sample consisting of 403,261
observations. On average, 4412 farms were sampled per year. Although this is not a balanced sample,
farms are typically sampled more than once. On average, a given farm was sampled 2.77 years over
the interval, but some farms were sampled all 22 years (just three). Each farm purchased 4.23 distinct
varieties per year, on average, and each farm planted the same variety 1.22 times across the years
they were sampled. This last statistic, however, also reflects how many years a farm was sampled.
For example, if we only observe a farm in two different years, we can only observe them planting a
given variety at most twice. This observation is another reason in support of using a commercial age
variable that is not specific to each farm. Given that most farms are observed a fraction of the years
in the sample, variables that track how many times a farmer planted a variety would significantly
underestimate the number of times that farm had actually purchased a particular variety.

Table 2 reports summary statistics for each of the variables used in the finalized sample. The
mean overall planting rate was 29,532 seeds per acre. The table also reports planting rates dis-
aggregated by the central maize belt (CCB) and the non-CCB, where the CCB includes IA, IL, IN,
and the southern crop reporting districts in MN and WI. The average planting rate in the CCB was
31,047, significantly higher than the non-CCB rate of 28,091. On average, the commercial age for a
variety was 2.77 years, although some varieties were actually observed for the maximum possible
value of 22 years. A related variable is the life cycle of a variety, which measures how many years a
variety was commercially available. The average life cycle for a variety was about 6.3 years, a

3Neonicotinoid acre treatments are the ratio of the number of acres treated with a neonicotinoid insecticide to the number of planted acres.
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relatively short time span. Seed prices averaged $155.06 per 80,000 kernels, and the maize futures
price averaged $3.74 per bushel; the mean ratio of these prices was 40.62.

5 | RESULTS

Table 3 contains regression results for the baseline model. We report results for four specifications,
each differing by the type of fixed effects included. The importance of fixed effects is demonstrated
most starkly by comparing Column 1, which contains no fixed effects, with Column 2, which con-
tains variety fixed effects. In Column 1, the coefficient on the price ratio variable is positive and sig-
nificant, contrary to expectations, and the coefficient on the commercial length variable is negative
and significant. Both coefficients flip signs upon introducing variety fixed effects. Intuitively, the esti-
mated coefficients in Column 1 are, in part, based on comparisons of planting rates for newer varie-
ties, that is, those with short commercial life spans, to planting rates for older varieties that are still
on the market. By contrast, the fixed effects estimator in Column 2 is based on within-variety
variation.

The final two columns introduce regional or farmer fixed effects. In general, they confirm the
presence of significant unobserved factors that are both correlated with seed age and planting rates.
Column 3, for example, adds CRD fixed effects in addition to variety fixed effects and results in a
larger estimate for the seed age variable (about 126 kernels compared to 92.6 kernels). This suggests
that newer varieties are first introduced in higher planting rate regions (such as the CCB), and then

T A B L E 1 Dataset summary

Variable Mean SD Min Max

Farms sampled per year 4412 564 3092 5194

No. years sampled per farm 2.77 2.78 1 22

Unique varieties per year 3715 683.3 2769 5073

No. purchases/farm/year 4.23 3.05 1 41

No. times given variety purchased 1.22 0.58 1 12

Note: there are 34,363 unique farms sampled in the data.

T A B L E 2 Summary statistics for model variables

Variable N Mean SD Min Max

Planting rate

Overall 403,261 29,532 4509.4 8000 57,143

Non-CCB 206,660 28,092 4899.9 8000 57,143

CCBa 196,601 31,047 3463.9 10,000 53,333

Commercial age 403,261 2.774 1.826 1 22

Life cycle 403,261 6.289 3.790 1 22

Seed price 403,261 155.06 80.326 0 420

Maize futuresb 403,261 3.737 1.233 2.324 5.894

Price ratio 403,261 40.624 14.694 0 113.5

Reduced-till share 360,528 0.587 0.200 0 1

Neonic acre treatments 314,393 0.551 0.427 0 2.000

aIA, IL, IN, and the southern crop reporting districts in MN and WI.
bAnnual data (there are 22 unique values).
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diffuse to lower planting rate regions. Column 4 replaces CRD fixed effects with farmer fixed effects,
which has the effect of increasing the coefficient on seed age even further to a point estimate of about
222 kernels per year. This suggests that early adopters of new varieties tend to plant at significantly
higher rates compared to late adopters.

It is also of some interest to note that the responsiveness of farmers’ planting rates to market
prices (the ratio of seed to expected output price) is extremely small. Recall that the sample average
of w/p is approximately 40.6. Hence, a 10% increase in this price ratio, given the estimated coefficient
in the last column of Table 3, would reduce planting rates by a mere 8 kernels per acre (less than
0.03% of the average planting rate)!

Table 4 presents results for the squared residual regressions. Specifically, using the coefficient
estimates from specification (4) in Table 3, our preferred specification, we compute the predicted
standardized squared residuals for each observation and then regress these on the commercial age
variable. Having established the importance of including fixed effects, here we report estimates from
two specifications, one with regional and the other with farmer fixed effects. Overall, we find signifi-
cant evidence of decreasing planting rate variance, and therefore of learning, over time. The fourth
specification, which includes variety and farmer fixed effects, indicates that each additional commer-
cial year is associated with a reduction in planting rate variance by roughly 4% per year.

5.1 | Robustness checks and alternative explanations for inertia

Overall, the results from Tables 2 and 3 confirm two facts: (i) the variance in planting rates,
conditional on variety and farmer fixed effects, decreases significantly over time; and (ii) variety-
conditioned planting rates increase over time. This latter result is particularly noteworthy, as it
suggests there is a persistent bias in farmers’ choices: more often than not, they underinvest in den-
sity at the onset of a hybrid’s commercial life. As previously noted, however, additional explanations
may contribute to this result. Thus, in this section we consider some of these alternative explanations
and factors while also attending to some other potential limitations of our baseline framework.

5.1.1 | Remove early hybrids

For hybrids that appear early in the sample, the commercial age variable may suffer from truncation.
For example, the true commercial age of varieties purchased in 1995 is unknown. Thus, the imputed

T A B L E 3 Maize planting rate regressions

(1) (2) (3) (4)

Commercial age �71.42** 92.55** 126.15** 222.03**

(6.45) (7.02) (5.79) (4.74)

Price ratio (w/p) 90.65** 0.14 �3.92** �1.43*

(1.13) (1.26) (1.03) (0.75)

Constant 26,047.9** 29,291.8** 29,362.3** 29,013.4**

(59.67) (58.71) (47.49) (32.25)

Fixed effects None Variety Variety, CRD Variety, farmer

Observations 403,261 403,261 403,261 403,261

R2 0.089 0.340 0.509 0.783

Note: For all regressions, the dependent variable is the planting rate. Models in each column differ by the included fixed effects. Standard errors,
clustered at the farm-level, are in parentheses.
*p < 0.10. **p < 0.01.
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commercial age for many varieties will be too low and their relative age will be incorrect. To assess
the importance of this issue, we remove all varieties observed in the first five years of the sample
(1995–1999). Given the short commercial life of most hybrids, discussed earlier, it is extremely
unlikely that varieties first observed in 2000 or later had actually been available prior to 1995. Col-
umn 1 of Table 5 reports the results for this reduced sample with a more accurate measurement of
the age variable. We find that the coefficient of this variable is essentially unchanged. Thus, in the
remaining columns we include varieties from the entire sample.

5.1.2 | Additional controls

The second and third columns of Table 5 add control variables for the share of acres with reduced
tillage (at the CRD level) and the number of neonicotinoid acre treatments (at the CRD level). Both
practices became more prevalent during the study period and are potentially related to the seeding
rate (Perry et al., 2016; Perry & Moschini, 2020). For example, some farmers report that
neonicotinoid treated seed have a higher germination rate, which permits a lower seeding rate for a
target plant population. Overall, the coefficient on the commercial age variable is robust and not sig-
nificantly affected by the addition of these variables.

5.1.3 | Regional and individual differences in updating

The baseline estimates do not permit heterogeneity in the response of planting rates to the commer-
cial age variable. Yet, a large literature points to characteristics such as farm size, productivity, and
demographic variables that are correlated with farmer decision making. For example, some recent
evidence indicates that smaller farms are slower to update their pesticide application behavior in
response to the availability of new products (Perry et al., 2019). In addition, the summary statistics
in Table 2 indicate that the more productive regions—the CCB—are associated with higher planting
densities. It may also be the case that these regions increase planting rates at different rates, perhaps
due to larger increases in productivity over time. To assess some of these possibilities, Columns 4–6
present estimation results that allow the commercial age variable to be heterogeneous. Columns
4 and 5 contain separate estimation results for the CCB and the non-CCB, respectively. The com-
mercial age coefficient is almost 40% larger in the CCB compared to the non-CCB. Column 6 pre-
sents results for a model in which the commercial age variable is allowed to differ over three farm
size ranges: (i) planted maize acres were less than 100; (ii) maize acres were between 100 and 1000;
and (iii) maize acres were greater than 1000 acres. The estimation results show that larger operations

T A B L E 4 Standardized squared residuals regressions

(i) (ii)

Commercial age �0.031* �0.041*

(0.005) (0.006)

Constant 1.086* 1.116*

(0.018) (0.016)

Fixed effects Variety, CRD Variety, farmer

Observations 386,872 386,873

R2 0.095 0.282

Note: The dependent variables are the standardized square residuals from Model (4) in Table 3. The models in each column differ by the
included fixed effects. Standard errors, clustered at the farm level, are in parentheses. Observation numbers are smaller than those in Table 3
because observations with perfect fit (due to the fixed effects) are omitted.
*p < 0.01.
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increase densities at a lower rate. For example, a farm with more than 1000 maize acres increases
seeding rates, on average, at a rate of about 208 seeds per year, nearly 40 kernels per year less than
farms with less than 100 maize acres. An additional fact, not reported in Table 5, is that larger farms
tend to start at higher planting rates. In the context of the learning model, these two facts taken
together suggest that larger farms are, on average, less biased in their priors for the AOPD.

5.1.4 | Variety-specific regressions

The learning model presented above permitted learning to differ across seed varieties. However,
for simplicity, the baseline empirical framework set the commercial age coefficient to be the same
across varieties. To assess the degree of heterogeneity in the commercial age coefficient across
varieties, Table 6 contains the commercial age coefficients for models estimated separately for the
15 most popular hybrids in our sample. These hybrids correspond to the same hybrids presented
in Figure 2 above. In contrast to the trends presented in that figure, these trends are estimated in
models that also include farmer fixed effects and the seed-output price ratio. Of the 15 seed age
coefficients, 13 are positive and statistically significant. The other two cases are also positive but
statistically insignificant. The values range from about 2.6 kernels per year for DeKalb hybrid
DKC48-12 to a high of nearly 375 kernels per year for the DeKalb hybrid DKC61-69. Overall,
the variety-specific regressions show some heterogeneity in the estimated responses, but the direc-
tion of updating is invariably positive and the magnitude remarkably consistent with the aggre-
gate results of Table 3.4

T A B L E 6 Variety-specific regressions for the top 15 hybrids

Hybrid Seed age coefficient Standard error Observations R-squared

3394 180.002*** 60.769 2537 0.74

33A14 221.192* 130.965 1205 0.681

33B51 176.472* 101.471 1026 0.73

33G26 203.792** 84.644 1263 0.737

33P67 252.624*** 73.323 1206 0.695

3489 311.518*** 83.927 1477 0.685

34B23 76.153 89.923 1221 0.685

36B08 240.556*** 70.614 1150 0.656

3730 355.255*** 92.247 1319 0.688

3751 202.252** 86.483 1402 0.651

DKC48-12 2.596 80.271 1021 0.876

DKC52-59 269.870*** 48.386 1684 0.89

DKC52-62 289.053*** 50.818 1275 0.866

DKC61-69 374.886*** 70.636 1594 0.785

DKC63-42 323.966*** 72.495 1294 0.866

Note: All models include the price ratio variable and farmer fixed effects. The standard errors are clustered at the farm-level.
*p < 0.10. **p < 0.05. ***p < 0.01.

4Based on a suggestion by the editor, we also estimated regressions with a cumulative individual purchase variable, which tracks the number
times a variety was purchased by a farm up to the current period. The motivation for including this additional variable is to try to disentangle
the role of individual experience from market experience as drivers of learning about planting rates. Overall, we do not find evidence that
individual experience is a driver of the upward trend in planting rates. Individual experience does, however, appear to reduce the perception
error variance. We note, in any event, that the data at hand pose limitations to this line of inquiry: There are simply not many instances in the
data in which a farmer purchases a particular variety more than once. For further details, see the Online Supplementary Appendix.
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5.2 | Risk aversion and nonlinearities

Our baseline analysis assumes that farmers are risk neutral vis-à-vis their seeding rate choices. A rel-
evant question is how the presumption of risk aversion would affect the conclusions to be drawn
from the empirical analysis. Recognizing that the true agronomic optimal seeding rate eθ is uncertain,
from the stylized model presented earlier, per-acre random profit can be expressed as:

eπ¼ pbeθz�0:5pbz2�wz ð15Þ

Note that the random variable eθ enters linearly in per-acre profits. Indeed, the structure of this equa-
tion is isomorphic to that of a competitive firm facing price uncertainty with a convex (quadratic)
cost function. Standard analysis (e.g., Moschini & Hennessy, 2001) then would show that a risk-
averse farmer who maximizes the expected utility of this profit, E u eπð Þ½ �, would choose a seeding rate
zA*t that is lower than the seeding rate zN*

t chosen by a risk-neutral agent. Furthermore, it would fol-
low that zA*t increases as uncertainty about eθ is resolved because of learning.

This framework permits some conclusions regarding how risk aversion affects our baseline anal-
ysis. Learning implies that uncertainty about the agronomic optimal density eθ is reduced as more
information is collected. This means that σ2t decreases, such that the risk-aversion effect, per se, will
tend to be associated with an increasing planting density over time. Of course, learning also affects
the mean θt . Thus, for any given prior we have two general cases:

i. When θ0 < θ, such that the prior mean is below the true value, the mean will be revised upward
as more information is collected. Learning also reduces the posterior variance of the parameter,
and because of risk aversion, this effect tends to increase the planting rate. Hence, when the
prior is biased downward, the mean effect is reinforced by the risk-aversion effect, and the over-
all effect is unambiguous: planting rates increase as a consequence of learning.

ii. When θ0 > θ, such that the prior mean is above the truth, the mean is revised downward as more
information is collected. In this case, learning about the mean tends to drive down the planting
rate, whereas the reduced variance due to learning would tend to increase the planting rate.
Because the mean effect and the risk-aversion effect work in opposite directions, in this case the
overall effect is ambiguous.

These observations have ancillary econometric implications: Identification of the risk aversion effect,
separate from the mean effect, requires information and/or hypotheses about how priors are formed.
As in related work, however, we do not attempt a formal model for the formation of prior beliefs.
The difficulty of separating the risk-aversion effect from agents’ priors has been recognized by previ-
ous work. Much of the literature on learning in agriculture, for example, Conley and Udry (2010),
assumes that farmers are risk neutral.

The foregoing risk-aversion analysis is predicated on the quadratic representation of the yield
response to planting density, which conveniently implies that the per-acre profit in (15) is linear in
the parameter θ, the object of learning. Similar implications arise if, instead, we continue to presume
risk neutrality but the object of learning enters the decision problem nonlinearly. To illustrate, sup-
pose that, as in Gaspar et al. (2020), the per-acre yield function is written as

y¼ ymax� 1� e�θz
� � ð16Þ

where z continues to denote seed density, ymax is the asymptotic yield maximum, and θ > 0 is a
parameter that determines the responsiveness of yield to seeding rates. Recall that the appeal of the
earlier quadratic yield representation is the presumption that the crowding of plants will eventually
decrease per-acre output, which has a clear agronomic basis. The yield function in Equation (16), on
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the other hand, does not admit a negative marginal product: ∂y=∂z¼ θ ymax� y
� �

> 0. Still, this
parameterization may be quite useful as a local approximation of the yield response to plant
density.5

Suppose that, with the parameterization in (16), farmers learn about the parameter θ, and that
(consistent with the Gaussian Bayesian model) this parameter is normally distributed, θ�N θ,σ2θ

� �
.

Then the expected yield, for any given seeding density z, is

E y eθ���z� �h i
¼ ymax 1�

ð
e�θz 1

σθ
ffiffiffiffiffi
2π

p e
�1

2
θ�θ
σθ

� �2

dθ

0@ 1A ð17Þ

The random per-acre profit here is eπ¼ py eθ���z� �
�wz. The integral in (17) admits a closed-form

solution such that the per-acre expected profit can be expressed as:

E eπ½ � ¼ p ymax 1� e�z θ�1
2zσ

2
θð Þ� �

�wz ð18Þ

It can now be shown that the optimal seed density z* that maximizes this per-acre profit is decreas-
ing in the variance σ2θ whenever it is increasing in the expected value θ.6

Thus, the presumption that farmers are risk averse with a quadratic yield function or that
farmers are risk neutral but with an exponential yield function both lead to similar conclusions—the
effect of learning, via the reduction in the variance of the parameter of interest, would tend to
increase optimal planting rates. As a result, the empirical results discussed earlier are consistent with
the presumption that farmers have correct (unbiased) priors, on average, but they are risk averse
and/or the yield function is nonlinear in the parameter that is the object of learning.

Whereas we recognize that risk aversion and/or nonlinearities may play a role in this context, we
do not believe the empirical results uncovered here are mostly due to such effects. In fact, the analy-
sis of soybean planting rates provides insightful corroborating evidence.

5.3 | Soybean seeding rates

Soybeans constitute the second most important U.S. row crop, and most farmers in our sample plant
soybeans in rotation with maize. Using Kynetec data on observed seeding rates for soybeans, we esti-
mate the same set of baseline regressions that were estimated for maize. Table 7 contains the estima-
tion results for soybeans. We report the results of both the planting rate equation and the
standardized squared residuals equation. Having explained the need for variety fixed effects earlier,
here we focus on the two specifications of the planting rate equation that include variety fixed effects
(Columns (1) and (2)).7 In contrast to maize, we find that within-variety soybean seeding rates are
decreasing with learning, as captured by the “commercial age” variable. This result appears to con-
flict with that for maize but is actually consistent with the agronomic differences between the two
crops. In fact, agronomical research has emphasized that optimal seeding rates for soybeans have
fallen over time (de Bruin & Pedersen, 2008; Gaspar et al., 2020; Lee et al., 2008). Farmers’ beliefs, as
revealed by their observed choices, appear to be catching up with this agronomic evidence. That

5Experimental data reported in Coulter (2021), for example, show that yields in Minnesota are still not decreasing at 45,000 kernels/acre,
although they typically flatten at about 33,000 kernels/acre.
6Just as in the case of certainty with the yield function (16), the optimal seed density z� is increasing in the expected value of the θ parameter as
long as the price ratio w=p is not too small.
7Soybean planting data are available to us for the period 1996–2016. To interpret the reported estimated coefficients, note that the mean value
of the left-hand-side variable (planting rate) is 168,761 seeds/acre, the mean value of the price ratio is 3.82, and the mean value of the
commercial age variable is 2.98.
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learning is actually taking place here as well, similar to maize, is confirmed by the standardized
squared residuals equation results (columns (i) and (ii) in Table 7). Just as for maize, we find that
accumulated experience with a given variety reduces the dispersion of the observed planting rates.

The foregoing results for soybeans, furthermore, weaken the case for risk aversion, and/or non-
linearities, as the main explanation for the observed pattern in maize. The choice of soybean seeding
rates is structurally similar to that of maize: if risk aversion and/or nonlinearities were the primary
determinant of variety-specific temporal adjustment in seeding rates, then, given unbiased priors
(on average), one should also expect soybean seeding rates to increase over time, ceteris paribus. But
in fact, it seems that learning is decreasing soybean seeding rates, just as learning appears to lead to
increasing maize seeding rates. In both cases, the estimated adjustments are in the direction
suggested by the prevailing agronomic wisdom. Thus, it appears that for both crops we have uncov-
ered evidence of “inertia” in response to information, a phenomenon that has long been observed in
laboratory-based studies (Benjamin, 2019; Henckel et al., 2021; Phillips & Edwards, 1966) and also
in a variety of real-world circumstances (Handel & Schwartzstein, 2018; Perry et al., 2019). The phe-
nomenon may arise for many reasons, including selectivity when paying attention to data such that
biased beliefs and forecasts result (Schwartzstein, 2014). A literature has emerged showing that expe-
rience with context tends to eliminate non-standard economic responses and investors in some
instances (List, 2003) but accentuate them in others (Haigh & List, 2005). However, unlike most of
the extant literature, our context regards important real-world business decisions and it involves pro-
ducers’ rather than consumers’ or investors’ choices. We find, nonetheless, a clear instance of
inertia—farmers demonstrate a persistent disposition toward choosing planting rates that may have
been appropriate with past varieties but are no longer optimal for new varieties.

5.4 | Counterfactuals

Using the estimated model, we assess two counterfactual scenarios: (i) the case in which the seed age
variable is set to zero; and, (ii) the counterfactual in which 6.3 years (i.e., the average commercial life
cycle of a variety) are added to the seed age variable. The first scenario evaluates the consequences of
no learning, whereas the second scenario assesses the significance of endowing farmers with more
information from the beginning. The latter scenario also informs on the implications of chronic

T A B L E 7 Soybean regression results

Planting rates Standardized squared residuals

(1) (2) (i) (ii)

Commercial age �818.99* �1022.15* �0.035* �0.052*

(57.71) (55.32) (0.005) (0.006)

Price ratio (w/p) �1268.54* �1069.35*

(133.37) (114.13)

Constant 175,914.30* 175,718.85* 1.107* 1.159*

(574.92) (454.64) (0.020) (0.018)

Fixed effects Variety, CRD Variety, farmer Variety, CRD Variety, farmer

Observations 187,776 187,776 175,832 175,832

R2 0.334 0.683 0.104 0.313

Note: For models in columns 1 and 2, the dependent variable is the planting rate. For models in columns (i) and (ii), the dependent variable is
the standardized squared residuals of the corresponding planting rate equation. The number of observations is smaller for the standardized
squared residuals regressions because observations with perfect fit (due to the fixed effects) are omitted. Standard errors, clustered at the farm-
level, are in parentheses.
*p < 0.01.
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underinvestment in seeding rates by farmers. For comparison purposes, we first generate a baseline
by predicting planting rates using the estimated coefficients from column 4 of Table 3:

ẑijt ¼ β̂Agejtþ ϕ̂Rijt þ α̂iþ λ̂j: ð19Þ

These predicted seeding rates can be compared with two counterfactual predictions. One is the
seeding rates ezijt that would be expected if no learning took place, which are obtained by setting the
commercial age variable to zero, that is:

ezijt ¼ ϕ̂Rijt þ α̂iþ λ̂j: ð20Þ

Alternatively, we can consider the seeding rates z
^

ijt that would arise if farmers were endowed with
considerably more information from the beginning, that is, at the time of the variety’s initial release.
Specifically, suppose that the information equivalent to 6.3 years of experience with any given
variety—the average life cycle of a commercial hybrid variety in our sample—is a good approxima-
tion to what is likely knowable for a mature variety. Then, the counterfactual seeding rates associated
with this augmented information is estimated as:

z
^

ijt ¼ 6:3β̂þ ϕ̂Rijtþ α̂iþ λ̂j: ð21Þ

Using these predicted seeding rates, we next calculate the national average for each year in the sam-
ple. The annual predictions associated with each counterfactual, as well as the baseline annual pre-
dictions, are reported in Figure 3. Comparing the baseline to the counterfactual without learning,
there is a clear downward shift in planting rates by 625 kernels per year, on average, equivalent to
about 2.1% of mean planting rates. Conversely, with the information level equivalent to 6.3 years of
experience with a variety, seeding rates would shift up by about 774 kernels per year, on average,
equivalent to about 2.6% of observed planting rates.

The planting rate counterfactuals have implications for expected yields. Whereas we do not
observe farm-level yields, we can link seeding rate predictions to yields by using yield-density rela-
tions from field trial data. In particular, Assefa et al. (2016) estimate yield response functions using
density trial data from DuPont Pioneer. Their data span the period 2000–2014 and consist of
124,374 observations for Pioneer hybrids under different planting densities. They find that a qua-
dratic model fits the data best. To be consistent with such experimental data, here we restrict our
attention only to Pioneer hybrids and focus on hybrids planted in Iowa and Illinois. These are the
two most significant maize growing regions in the United States, and the goal of this exercise is only
to obtain a sense of the order of magnitude associated with the planting rate counterfactuals. In
Assefa et al. (2016), the relevant estimated quadratic equation for the latitudes corresponding to
Iowa and Illinois is:

ŷijt ¼ 3:29þ0:18ẑijt�0:001ẑ2ijt: ð22Þ

Using this equation, along with the predicted values of zit for Iowa and Illinois based on the CCB
coefficient estimates from Column 4 of Table 5, provides the baseline yield predictions. We then
generate new predictions for zit using Equations (20) and (21), and insert these values into Equa-
tion (22). The difference in yields between these scenarios constitutes an estimate of the impact of
learning and additional information, respectively.

For the scenario without learning, the average reduction in yields is about 1 bu/acre per year, or
0.6% of mean yields in IA and IL. There is also considerable heterogeneity in these effects. For exam-
ple, the 5th percentile effect is about 0.2 bu/acre, whereas the 95th percentile effect is about 2.7
bu/acre. To provide additional context, at a maize price of $4/bu, an impact of 1 bu/acre translates
to $4/acre in additional revenue. Total maize acreage in Iowa and Illinois in 2019 was around
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25 million acres. Thus, this effect results in estimated additional $100 million in farmers’ revenue.
Given that average yields in these two states was about 190 bu/acre in 2019, this is equivalent to
0.5% increase in revenue per farm. The counterfactual with information equivalent to 6.3 years of
learning, available immediately when the variety is first released, generates effects of a similar magni-
tude but in the opposite direction: on average, yields would increase by 0.85 bu/acre, or about 0.5%
of mean yields. Of course, these are gross effects and not net of possible additional costs, and these
calculations are simply meant to provide a yardstick. Two main points seem worth emphasizing,
however. First, the revenue impact of learning about seed density is not insignificant—the difference
between the best information scenario considered (the “6.3 years of learning”) and no learning is
about 1% of farmers’ maize revenue. Second, the amount of learning in the market, as displayed by
the data, is not trivial—about half of that associated with the best information scenario considered.

6 | CONCLUSION

There is continuing interest in obtaining a deeper understanding of the root causes of the exceptional
technological progress that has characterized modern agriculture (Olmstead & Rhode, 2008;
Wright, 2012). Our paper contributes unique empirical evidence concerning an important link
between improved maize varieties and increased yields: higher planting rates. Based on an extensive
dataset of observed seed planting densities by a representative sample of U.S. maize farmers, cover-
ing more than 400,000 purchases over 22 years, we have established some clear empirical findings.
First, farmers’ planting density choices display a pattern unambiguously consistent with Bayesian
learning—for a given variety, as more information about the variety accumulates, the variance of
chosen planting rates decreases. A second strong empirical finding is that a given variety tends to be
planted at higher densities as more information is accumulated. This finding is prima facie consis-
tent with learning—if everything relevant to the optimal planting density were known when the vari-
ety is first commercialized there would be no reason to expect planting densities to change over time
(again, for a given variety). On closer inspection, however, this finding is revealing because the result
here is about the average tendency across all varieties, conditional on variety fixed effects. Hence,

F I G U R E 3 Predicted counterfactual seeding rates. Notes: This figure shows predicted planting rates under three
different scenarios, based on Equations (19)–(21) using the estimated parameters from column 4 of Table 3. The “Baseline”
predicted rates are generated with the observed commercial Age variable. The “No Learning” predicted rates are generated
with the commercial Age variable set to zero. The “6.3 years of Learning” rates are predicted with the variable Age = 6.3 (the
average commercial life cycle of a variety in the sample)
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our results suggest that, on average, farmers’ initial priors about varieties’ optimal planting densities
are systematically below the truth.

Several considerations may be germane in interpreting these empirical results. First, learning is
necessarily slow in our setting because a signal about a variety’s optimal planting density takes a full
production cycle (1 year) to materialize. Second, the degree to which farmers learn from the experi-
ence of others about a given variety is limited by heterogeneity across space and time (e.g., differing
latitude, soil conditions, and weather). Learning from experimental results produced by extension
services and seed companies is also limited by the fact that such trials only typically consider a select
number of varieties, as well as by a coarse grid of possible planting densities in these trials. One could
add, furthermore, that farmers’ skepticism toward the recommendations of seed companies may be
due to imperfectly aligned incentives (farmers can lose by under seeding or by over seeding, whereas
seed sellers’ profit only increases with seed density). Indeed, Hennessy et al. (2021) find that maize
farmers place the most weight on their own experience with a variety in determining the best plant-
ing rate, and the recent rise in distributed farmer networks (such as the Farm Business Network)
have been driven in part by farmers’ need for information beyond what is provided by seed sellers
and their own experience.

Whereas we have presented compelling evidence of learning behavior by US maize farmers, the
evidence we have uncovered shows that this learning process is slow and affected by inertia. These
findings support the notion that learning is inherently difficult in complex environments, and several
elements of complexity matter in our context. As noted earlier, the life cycle of commercial maize
varieties is short, and farmers have to form priors for continuously introduced new varieties. Fur-
thermore, in a technologically dynamic industry, farmers often learn about more than just the opti-
mal planting density. This is particularly true of the U.S. maize industry during the period we
examine, which has seen the introduction and widespread adoption of GE seed varieties (Ciliberto
et al., 2019). Over time, the progressive embedding of commercialized varieties with multiple GE
traits (glyphosate tolerance and insect resistance) has led to an even more complex decision environ-
ment. It is perhaps unsurprising, therefore, that in learning about the optimal density, farmers may
have often relied on their own past experience. Consequently, as suggested by the empirical results
in this paper, farmers’ planting choices display a degree of inertia vis-à-vis the optimal planting
density.

Maintaining crop productivity remains a major tool to address the challenges of feeding a grow-
ing world population in the midst of climate change. U.S. maize yields have attracted considerable
interest in this context, and there is a general recognition that continuing innovation efforts are
essential (Lee et al., 2021; Ortiz-Bobea & Tack, 2018). An important implication of our findings is
that there may be unrealized returns from efforts intended to assist in optimizing planting rates for
new maize hybrids. Additional variety trials, however conducted, could help shift up the yield curve.
More generally, whereas research into the development of new agricultural technologies is very
important for continued productivity growth, our results emphasize the belief that attention to the
implications of the increasing complexity accompanying such technologies should not be neglected.
Learning processes associated with technology adoption and diffusion remain of paramount impor-
tance, and they are not confined solely to (widely studied) developing countries’ contexts. How
learning can be best assisted is a matter for debate (Norton & Alwang, 2020), but new opportunities
may be available with a more extensive deployment of information technologies and precision agri-
culture practices. In particular, fostering peer-to-peer interactions may be well-suited to learning
about the optimal seeding rate choice because much of the information resides with farmers them-
selves. The recent growth in precision agriculture has led to the emergence of large distributed data-
bases on farming outcomes. Thus, one potential policy that could encourage the diffusion of
information would be the allocation of public funds toward incentivizing enrollment in peer-to-peer
databases that track yield outcomes associated with different planting rates.
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