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A B S T R A C T   

The extensive adoption of genetically engineered (GE) varieties in U.S. agriculture has dramatically changed the 
patterns of pesticide use. How this process ultimately affects environmental risk remains an open question. 
Previous studies have typically relied on aggregate trends to infer the impact of GE crop adoption on pesticide 
use, which fails to address selection bias and unobserved heterogeneity. We overcome this limitation by 
analyzing applied pesticide toxicity using farm-level fixed effects models, estimated with rich plot-level data on 
>200,000 seed and pesticide choices by U.S. maize and soybean farmers during the 1998–2016 period. We find 
that applied toxicity was, on average, lowered by the adoption of GE varieties across four target organism groups: 
mammals, birds, fish, and honey bees. However, most of the toxicity benefits conferred by GE adoption dissi-
pated over time. For herbicide tolerant varieties, this was due to the increased use of old-line herbicides by GE 
adopters, a likely consequence of the growing problem of glyphosate weed resistance. Applied honey bee toxicity 
saw the sharpest increase during the GE era, but most of this increase was driven by the adoption of neon-
icotinoid seed treatments, rather than GE insect resistant traits.   

1. Introduction 

One of the recognized features of the widespread commercial success 
of genetically engineered (GE) seed varieties is that first-generation GE 
traits have a direct impact on pesticide use (Moschini, 2008; Barrows 
et al., 2014). Herbicide tolerance complements (and thereby increases) 
the use of glyphosate, which in turn substitutes for other herbicides. 
Insect resistance directly substitutes for the need to apply insecticides. 
This complex set of interactions has elicited considerable debate on how 
the diffusion of GE crops has impacted pesticide use patterns, non-target 
species, and the environment (National Research Council (NRC), 2010; 
National Academies of Sciences, Engineering, and Medicine (NASEM), 
2016; Zilberman et al., 2018). Despite more than two decades of 
research on these questions, previous studies have been inconclusive 
because of two major problems: the measures used to quantify pesticide 
use are often uninformative, and the unit of analysis is typically unsuited 
to identify the causal impact of GE crops on pesticide use. 

The first of these problems stems from the need to aggregate widely 
different pesticides into a single metric. Previous research has typically 
employed simple quantity-based measures (Osteen and Fernandez- 

Cornejo, 2013; Larsen and Noack, 2017), or adjusted such measures 
by the environmental impact quotient (EIQ), which accounts for toxicity 
heterogeneity across pesticides (Kleter et al., 2007; Perry et al., 2016a; 
Brookes and Barfoot, 2020). Both approaches have major limitations. 
The quantity-based measures (e.g., total kilograms per hectare or per 
year) do not account for the varying toxicity levels of individual pesti-
cides, often resulting in misleading conclusions (NASEM, 2016; Möhring 
et al., 2019). The EIQ, which combines several aspects of toxicity and 
environmental health, was developed for the purpose of providing an 
overall and more accurate assessment of risk from different pesticides 
(Kovach et al., 1992). However, this metric has been criticized for its 
inaccuracies with respect to both insecticides (Peterson and Schleier III, 
2014) and herbicides (Kniss and Coburn, 2015). 

The second problem arises from using aggregate pesticide use trends 
to infer the impacts of GE trait adoption (Benbrook, 2012; Klümper and 
Qaim, 2014; Coupe and Capel, 2016). This approach can, at best, un-
cover correlations, but is ill-suited for establishing causality. This is 
particularly the case for the impact of GE crop adoption. Inferring what 
the counterfactual pesticide use patterns of GE adopters would be from 
the average usage patterns of non-GE adopters is potentially misleading 
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because the pool of non-GE adopters is likely unrepresentative of GE 
adopters (Fernandez-Cornejo et al., 2014a, 2014b; Kniss, 2017). For 
example, a farm that uses only non-GE crops is more likely to have lower 
weed densities. Farm-level panel data can overcome this problem by 
permitting a comparison of pesticide use patterns for the same farm with 
and without GE crops (Kouser and Qaim, 2011; Kathage and Qaim, 
2012). 

This study expands on previous work by addressing both methodo-
logical problems and by applying the analysis to a unique and large 
farm-level dataset for U.S. maize and soybean production. Concerning 
the issue of how to measure pesticide use, we rely on the risk quotient 
(Peterson, 2006), a toxicity-based metric consistent with the guidelines 
set forth by the U.S. Environmental Protection Agency. This measure has 
been used in recent studies to provide a better understanding of the 
environmental impact of pesticides (Kniss, 2017; Perry and Moschini, 
2020; Schulz et al., 2021). Furthermore, our measure of applied pesti-
cide toxicity is computed at the plot level, where we also observe the 
specific GE traits of the planted seed. This feature permits the analysis to 
uncover the impact of GE trait adoption on the use of pesticides, thereby 
allowing a more nuanced assessment of the environmental impacts of 
first-generation GE traits. 

The use of farm-level data and panel methods to assess the static and 
temporal impacts of GE crops has proved effective in previous work (e. 
g., Kathage and Qaim, 2012). In particular, Kouser and Qaim (2011) and 
Krishna and Qaim (2012) found that adoption of Bt cotton varieties 
significantly reduced pesticide use in India and these benefits persisted 
over time. The only study to analyze the impact of GE variety adoption 
on pesticide use using farm-level data in the United States is Perry et al. 
(2016a). However, their measure of pesticide use (the EIQ) is inade-
quate, and their analysis relies on farm-level data that only extends to 
2011, thereby missing the more recent period when the negative con-
sequences of pest adaptation have become more severe (Gould et al., 
2018). 

In this article, we draw on a farm-level dataset of pesticide and seed 
choices by U.S. maize and soybean farmers, assembled by Kynetec USA, 
Inc. The dataset is constructed from annual surveys, representative at 
the crop reporting district (CRD) level and spans the period from 1998 to 
2016. The data include an average of 5154 maize farmers and 4863 
soybean farmers per year (SI Appendix Table S1). We construct our 
sample by matching plot-level observations on the type of seed trait 
used, planted acres, and the types and amounts of pesticides used. A 
substantial portion of farmers in the sample are observed over multiple 
plots, which permits us to conduct a nuanced fixed-effects regression 
analysis. We provide results for GE herbicide tolerant (HT) soybeans, GE 
glyphosate tolerant (GT) maize, and GE insect resistant (IR) maize. 

To evaluate the environmental impact of pesticide use, we compute 
five different measures of applied pesticide toxicity. The first measure is, 
simply, kilograms per hectare. Due to the limitations noted above, this 
measure is only provided for comparison purposes and is not considered 
a viable indicator of pesticide toxicity. The main set of pesticide metrics 
of interest are based on the risk quotient method (Peterson, 2006). A risk 
quotient is calculated by taking the ratio of an environmental exposure 
value to a target toxicity value. In this study, for each pesticide, exposure 
is measured as quantity applied (kg/ha) and toxicity is given by the 
lethal dose 50% (LD50); that is, the dose of an active ingredient that is 
lethal to 50% of the target population (Kniss, 2017; Perry and Moschini, 
2020; Nelson and Bullock, 2003; Gardner and Nelson, 2008). The 
toxicity associated with the application of multiple pesticides is calcu-
lated as the sum of their individual risk quotients, which we term the 
total risk quotient (TRQ). We report results for four different organism 
groups: mammals, birds, fish, and honey bees. 

2. Background and data 

GE crops represent the successful implementation of modern 
biotechnology in agriculture, resulting from the insertion of one or a few 

foreign genes into the germplasm of common crops by using recombi-
nant DNA techniques. The addition of these genes endows varieties from 
elite germplasm with additional valuable traits. For maize and soybeans, 
to date, these traits primarily consist of two general types of attributes: 
herbicide tolerance (HT) and insect resistance (IR) (Ciliberto et al., 
2019). Most commercial HT crops confer tolerance to the herbicide 
glyphosate, a powerful, broad-spectrum herbicide originally marketed 
by Monsanto under the tradename Roundup®. IR crops, on the other 
hand, embed one or more genes from the bacterium Bacillus thuringiensis 
(hence the label of Bt crops), which permit plants to express proteins that 
are toxic to certain insects. In maize, earlier GE varieties contained a 
single IR trait, which conferred resistance to the European corn borer. 
Later varieties also included Bt genes that provided resistance to some 
species of corn rootworm. Furthermore, the trend has been to combine 
HT and IR traits in commercial varieties, such that at present most 
farmers plant maize varieties that embed multiple GE traits. 

GE varieties have achieved fast and widespread diffusion in several 
leading crops (chiefly maize, soybeans, cotton, and canola) and in a 
number of countries—a notable exception being the European Union. 
The commercial success of GE crops with farmers arises because they 
offer cost-reducing and/or yield-enhancing benefits. By their very na-
ture, the adoption of GE traits has had major repercussions on the use of 
pesticides. GT crops are essentially a cost-reducing innovation that 
permits farmers to adopt an extremely simplified weed control system: it 
uses glyphosate instead of multiple narrow-spectrum herbicides, and 
removes the need for mechanical tillage (Perry et al., 2016b). The use of 
IR varieties, on the other hand, provides farmers with a novel method of 
insect control, removing the need to use insecticides. This solution can 
be cost effective for farmers and, insofar as the affected pests were not 
properly controlled by insecticides, IR traits can also increase expected 
yields. 

Given the foregoing, it is clear that GE traits enrich the set of inputs 
used in farm production and potentially substitute and/or complement 
other inputs. Thus, a major research agenda has been to empirically 
ascertain how, and to what extent, GE traits impact the use of other 
inputs. This is particularly relevant for farmers' use of pesticides which, 
beyond the profitability features of interest to farmers, also have ex-
ternality effects that impact human health, non-target species, and the 
environment at large. In the case of HT varieties, farmers predictably use 
more glyphosate and less of other herbicides. However, the pattern and 
magnitude of this substitution process are empirical questions, and the 
impacts are prone to change over time as farmers respond to changes in 
their environment (e.g., glyphosate weed resistance). The dynamic for 
IR varieties is perhaps more straightforward: they potentially substitute 
for the need to apply conventional insecticides. Here again, however, the 
nature and extent of this substitution remains an unsettled issue, and the 
impacts may change over time if insect resistance develops, or new in-
sect pests emerge. 

2.1. Data 

The primary data source for this study is AgroTrak, a rich proprietary 
farm-level data set, assembled by the agricultural market research 
company Kynetec USA, Inc. We note at this juncture that AgroTrak also 
provides the primary source of information for the widely used pesticide 
estimates assembled by the U.S. Geological Survey (Thelin and Stone, 
2013). The data consists of annual surveys from U.S. maize and soybean 
farmers in all 48 contiguous states, sampled to be representative at the 
CRD level, where a CRD is a multi-county, sub-state region identified by 
the U.S. Department of Agriculture National Agricultural Statistics 
Service. 

Because pesticide use and the associated toxicity measures are our 
main objects of interest, we focus on the subset of AgroTrak data that 
provides information on pesticide use, which encompasses, on average, 
5154 maize farmers per year and 4863 soybean farmers per year during 
the period 1998–2016. The AgroTrak data provide information on plot 
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size, seed trait, and tillage practice, along with pesticide use. The anal-
ysis is thus structured to the smallest unit of land that can distinguish 
this relevant information. Specifically, we define a plot as a combination 
of the tillage type (conventional, conservational, or no-till), seed trait (e. 
g., GT maize), and seed company. Based on the 19-year period sample, 
maize farmers and soybean farmers have 1.83 plots per year and 1.24 
plots per year, respectively. SI Appendix Table S1 reports some general 
summary statistics for the AgroTrak data. AgroTrak stopped reporting 
insecticide seed treatments in 2015, and thus the empirical analysis for 
maize insecticides does not include data from 2015 and 2016. 

To assess the environmental impact of GE traits, in this paper we rely 
on toxicity-based metrics based on the LD50 value (the lethal dose that 
kills 50% of a target animal population) of the individual active in-
gredients of farmers' applied pesticides. As noted earlier, we separately 
track toxicity four four target organism groups. Rat LD50 values were 
used for mammals; for herbicides these values are obtained from Kniss 
(2017), and the LD50 values for insecticides are as reported in Perry and 
Moschini (2020). The herbicide LD50 values for birds, fish and honey 
bees are collected from several different sources (SI Appendix Table S2). 

3. Applied pesticide toxicity 

Pesticides are highly heterogenous in their toxicity. Thus, simple 
quantity-based measures are regarded as uninformative at best, and 
misleading at worst (NASEM, 2016). Hence, in this paper our analysis 
relies on risk-based metrics of applied toxicity. For comparison pur-
poses, however, we also compute a simple use rate (kg/ha) measure as 
follows: given a plot i of size Li, let qik denote the applied amount of 
commercial product k, and let ajk be the amount of active ingredient j 
contained in commercial product k. The quantity per hectare of pesticide 
type P (soybean herbicides, maize herbicides, or maize insecticides) 
applied on plot i is computed as follows 

QP
i =

1
Li

∑

k∈P

∑

j
ajkqik (1) 

Following Kniss (2017) and Perry and Moschini (2020), for an 
improved assessment of the human and environmental risks associated 
with pesticide use, we compute toxicity-based metrics based on the risk 
quotient method. Broadly, a risk quotient for an individual pesticide is a 
ratio of exposure to toxicity, where the measures of exposure and 
toxicity can take different forms depending on the goals and context of a 
study (Peterson, 2006). In this study, exposure is measured as the 
applied quantities of the various pesticides, and toxicity is measured by 
the LD50. These values, of course, depend on the target organism, and 
our analysis considers lethal dose measures for four different subject 
organisms: mammals, birds, fish, and honey bees. Specifically, we use 
oral LD50 values for mammals and birds, contact LD50 values for honey 
bees, and lethal concentration (LC50) values for fish. 

An alternative measure to the risk quotient is the regulatory 
threshold level, which has recently been used in this context by Schulz 
et al. (2021). We elected to use risk quotients as the basis for our mea-
sure of applied toxicity primarily for data availability reasons. The 
regulatory threshold level is unavailable for many important active in-
gredients, such as cyanazine, alachlor, glyphosate, and atrazine, to name 
a few, which were not included in the applied pesticide metrics used in 
Schulz et al. (2021). Given that the focus of our study is on the impact of 
GE crops, it was imperative we include major pesticides such as 
glyphosate. 

The total risk quotient (TRQ) from applied pesticides of type P on 
plot i, for organism group m, is computed as (Kniss, 2017; Perry and 
Moschini, 2020): 

TRQP
im =

1
Li

∑

j∈P

∑
kajkqik

LD50jm
(2)  

where LD50jm is the acute LD50 value for active ingredient j with respect 

to organism group m (mammals, birds, fish, or honey bees).1 The TRQ in 
Eq. (2) thus represents the number of LD50 doses per hectare for or-
ganism group m summed over all pesticide products of type P (we 
separately consider soybean herbicides, maize herbicides, or maize 
insecticides). 

3.1. Observed patterns of GE variety adoption and pesticide use 

Trends in GE variety adoption and pesticide use provide an initial 
glimpse of their evolution over the period of study. Fig. 1-(A) separately 
depicts the share of land planted for GT soybeans, GT maize, and IR 
maize and shows rapid adoption of these traits during the observed 
period. For GE maize, the GT trait is frequently stacked with IR traits. 
Fig. 1-(A) also shows that GT soybean adoption has plateaued at near 
complete adoption since the mid-2000s, whereas GT and IR maize pla-
teaued (at lower rates) more recently. 

Fig. 1 (B)–(D) display pesticide use trends. Following Perry et al. 
(2016a), the bars report average total pesticide use rates (the ratio of 
total kilograms of all active ingredients to total hectares planted), 
whereas the TRQ values are reported by line graphs. To facilitate com-
parison between unweighted amounts of pesticides and the TRQ values, 
we normalize each TRQ index such that its overall mean is set equal to 
the overall mean for the quantity-based amount (kg/ha). 

Several interesting patterns in pesticide use are worth noting. 
Overall, the TRQ trends are considerably different from the total 
quantity trends. For herbicide use in soybeans (Fig. 1-(D)), applied 
toxicity has a distinctive U-shaped trend during the sample period for 
mammals, birds, and honey bees, while for fish there is a general 
decline. The simple quantity measure, on the other hand, shows a slow 
but steady increase. The main reason for this increase is the massive 
increase in glyphosate use, a direct outcome from the adoption of GT 
varieties. The early downward trend for the risk-based measures co-
incides with the rapid increase of glyphosate use, which displaced other 
herbicides with higher toxicity rates (Kniss, 2017). It is apparent, 
however, that the TRQ for all organism groups other than fish have 
increased since 2006, when GT adoption reached a plateau of about 
95%. As shown in Fig. 1-(B), while the use of glyphosate per hectare has 
changed little in the latter half of the sample, the use of other herbicides 
has increased considerably. From 2007 to 2018 the share of glyphosate 
in the total amount of applied herbicides (kg/ha) decreased from 90% to 
52%, possibly a consequence of the diffusion of glyphosate-resistant 
weeds (Heap, 2014; Livingston et al., 2015; Kniss, 2018; Ye et al., 
2021; Van Deynze et al., 2022). 

Trends for herbicide use in maize are quite different (Fig. 1-(C)). The 
total amount of herbicide per hectare has been relatively flat, as 
glyphosate use increased later in maize than in soybeans and is generally 
lower. The resurgence of old-line herbicides in the last few years is also 
less pronounced in maize. The TRQs are characterized by a common 
drop across all organism groups in the first half of the sample. Much of 
the initial dramatic decline in the mammal TRQ can be attributed to the 
phase-out of the highly toxic chemicals alachlor and cyanazine.2 These 
chemicals constituted 61% of the mammal hazard quotient in 1998 
versus just 1.9% in 2016 (SI Appendix Table S16). 

The quantity of insecticides used in maize production, and the cor-
responding four toxicity-weighted measures, exhibit a general 
decreasing tendency. As was the case for herbicides, there was a sig-
nificant reduction even prior to the commercialization of GE varieties, a 
consequence of farmers using less toxic insecticides. Nearly all TRQs fell 
further during the GE era, suggesting an insecticide-saving effect (NRC, 

1 As in Perry and Moschini (2020), TRQ values are rescaled to be thousands 
of LD50 mg/kg/ha for mammals and birds, millions of LC50 μg/L/ha for fish, 
and millions of contact LD50 μg/bee/ha for honey bees.  

2 The voluntary deregistration of cyanazine by DuPont was approved by the 
EPA on 1-6-2000. 
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2010). The major exception concerns the TRQ for honeybees (Fig. 1- 
(D)), which initially declined but then increased significantly from 2010 
to 2018. This trend coincides with the substantial increase in the use of 
neonicotinoids as seed treatments, which are highly toxic to honey bees 
(NRC, 2010; Osteen and Fernandez-Cornejo, 2013; Perry et al., 2016a; 
Perry and Moschini, 2020; Schulz et al., 2021; Fernandez-Cornejo et al., 
2014a). 

4. Empirical analysis 

The foregoing descriptive statistics are informative, but they do not 
account for confounding factors that might affect farmers' decisions on 
seed choices and pesticide use, which prevents conclusive inferences 
about the actual impacts of GE trait adoption on pesticide use. To 
determine these impacts, we take advantage of the panel structure of the 
data. In particular, by including region-specific time trends, farmer fixed 
effects, and year fixed effects, we estimate a GE trait impact model that 
controls for farm heterogeneity and other omitted factors that may 
potentially influence both seed and pesticide choices. 

4.1. Regression models 

To estimate the impact of GE variety adoption on applied pesticide 
toxicity, we run fixed-effects regression models. Specifically, we esti-
mate the following regression equation: 

yi = αt[i] + βt[i]Gi + γr[i]Tt[i] + ϕf [i] + ei (3)  

where i=1,2,…,N indexes the plot. The plot-level left-hand-side variable 
yi takes one of five forms: the simple quantity-based metric of Eq. (1) or 
the toxicity-based metric of Eq. (2), which is specific to organism group 
m (mammals, birds, fish, or honey bees). On the right-hand-side of the 
estimating equation, αt[i] is a time fixed effect; Gi is an indicator variable 
that equals 1 if the relevant GE trait (HT for soybean herbicides, GT for 
maize herbicides, and IR for maize insecticides) was adopted on plot i; γr 

[i]Tt[i] are CRD-specific time trends; ϕf[i] is a farmer fixed effect; and, ei is 
an unobservable error term. The subscript notation follows the 
convention in Gelman and Hill (2007), so that t[i] indicates the year 
associated with plot i, r[i] indicates the CRD associated with plot i, and f 
[i] identifies the farm associated with plot i. 

Regression models of the type we propose can typically be viewed as 
reduced-form representations of conditional input demand functions 
(Perry and Moschini, 2020). A standard concern with this approach is 
the potential for simultaneity bias—farmers simultaneously choose 
which GE traits to adopt and the types and amounts of pesticides. This is 
most apparent when the left-hand-side variable is the simple quantity- 
based metric of Eq. (1), a model we use for comparison purposes only. 
For our core analysis, however, the left-hand-side variable pertains to 
the toxicity-based metric of Eq. (2), and thus is not a direct choice by the 
farmer. Precisely because these measures are meant to capture exter-
nality (pollution) effects, they may not be particularly salient in farmers' 
profit maximization decision. In any event, the two recognized re-
sponses to endogeneity issues, which also arise in estimating production 
functions, are fixed effects and instrumental variables. As exemplified in 
Eq. (3), here we take the fixed effects approach by including separate 
farmer and year fixed effects, as well as regional-specific trends. 

Fig. 1. GE variety adoption and pesticide use in U.S. Maize and Soybeans, 1998–2016. 
Note: (A) Adoption rates for GT soybeans, GT maize, and IR maize (in which one or more genes from Bacillus thuringiensis are embedded), 1996–2020; (B) Herbicide 
use in soybeans (kg/ha and total risk quotients (TRQs)), 1992–2018; (C) Herbicide use in maize (kg/ha and TRQs), 1992–2018; (D) Insecticide use in maize (kg/ha 
and TRQs), 1992–2018. For panel (A), national adoption rates are computed from AgroTrak data for the period 1996–2016, and from USDA data for 2017–2020. For 
panel (D), AgroTrak discontinued the reporting of seed treatment data after 2014. For the purpose of this chart, we impute the missing amounts (kg/ha) for the period 
2015–2018 from the average usage rate for neonicotinoids in 2014. 
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The key identifying assumption for the model's parameters is that the 
adoption of GE trait Gi is exogenous to the unobservable component, 
conditional on other covariates: E[ei|Gi] = 0. The same rationale of Perry 
et al. (2016a) can be invoked here. First, through the farmer fixed ef-
fects, our model can control for heterogeneous farm characteristics (e.g., 
location, weed density, farmer's education, and age) on pesticide use and 
the GE adoption decision. Second, time fixed effects account for year- 
specific factors that are common across plots in the same year (e.g., 
expected crop prices, various input prices). Third, regional trends (i.e., 
CRD-specific time trends) control for other unobservable spatiotemporal 
factors. By conditioning on these components, our model rules out most 
potential confounding factors. 

To the extent that confounding factors remain, we believe the esti-
mated coefficients will be biased toward indicating that GE traits in-
crease, rather than decrease, pesticide use. An important unobserved 
aspect of farmers' input choices is expected pest pressure. Generally, if a 
farmer expects greater pest pressure (insect pressure or weed pressure) 
on a given plot, denoted by Ri, they will be more likely to use GE traits 
and pesticides. Thus, there will be a positive correlation between pest 
pressure, GE trait adoption, and pesticide use, that is corr(Gi,Ri) ≥ 0 and 
corr(yi,Ri) ≥ 0. These considerations suggest that the GE trait co-
efficients may be biased toward indicating a pesticide-increasing 
effect–intuitively, farmers that adopt GE traits appear to use more pes-
ticides than non-adopters because of greater pest pressure, rather than 
the traits themselves. 

In addition to pest pressure, other unobserved factors may poten-
tially affect the estimated GE impacts. Thus, in the results section below, 
we conduct several checks to investigate the robustness of our results. 

4.2. Results 

The pesticide use data consists of plot-level observations that span 
the period from 1998 to 2016 (for maize insecticides, the sample period 
is 1998 to 2014 because plot-level neonicotinoid use is not available for 
the last two years), which nearly covers the entire diffusion phase of GE 
traits. Using a fixed-effects regression model, outlined above, we esti-
mate how farmers change their pesticide use when adopting GE vari-
eties. We report the estimated coefficients separately for soybean 
herbicides, maize herbicides, and maize insecticides. For herbicide use, 
GE soybean varieties are defined as herbicide-tolerant (HT) varieties 
that embed either the GT trait or glufosinate-tolerance (i.e., the Lib-
ertyLink (LL) trait), while GE maize varieties are defined as varieties that 
include the GT trait. The LL trait is not included in the definition of GE 
HT maize because the adoption of the LL trait mainly resulted from the 
introduction of stacked traits containing both GT and LL, rather than 
maize farmers' intentional choice to apply glufosinate. Indeed, since 
2011, the data show that fewer than 5% of plots planted with maize 
possessing the LL trait report using glufosinate (SI Appendix Table S15). 

For an initial assessment, the effect of GE adoption on pesticide use is 
held constant over time. That is, in Eq. (3) we set βt = β, ∀t, and thus 
estimate the average impact of GE adoption during the entire period of 
study. Table 1 reports the estimated coefficients for the impact of GE 
variety adoption on all five measures of herbicide use separately for 
soybeans and maize. For soybeans, HT variety adoption is associated 
with an increased usage rate of about 0.30 kg/ha (an increase of about 
27% compared to non-adopters). By contrast, the risk-based measures 
indicate that GE adoption significantly lowered applied herbicide 
toxicity for all four organism groups. For mammals and fish, HT soybean 
adoption reduced applied toxicity by about 32% and 54% (relative to 
non-adopters), respectively. For birds and honey bees, HT adoption was 
associated with a lower TRQ of 18% and 14%, respectively. 

As noted, both the GT and LL traits are included in the definition of 
HT soybeans. Because the LL trait has recently been a substitute for the 
GT trait in soybeans (unlike maize, stacked traits were not commer-
cialized for soybeans over the period of study), in an additional set of 
regressions, we separately identify the impacts of GT and LL trait 

adoption on herbicide use (SI Appendix Table S10). In terms of total 
amount, GT adopters applied more herbicide than non-adopters whereas 
LL adopters used less herbicide than non-adopters. However, across all 
organism groups, both GT adoption and LL adoption reduced applied 
toxicity. In terms of magnitude, both traits had similar reducing effects, 
except for honey bees, where LL adopters displayed a higher toxicity 
reduction than GT adopters. 

For maize herbicide use, Table 1 shows GT variety adoption was 
associated with a general reduction in applied toxicity during the study 
period. Compared to non-adopters, the applied pesticide toxicity for GT 
adopters was lower by 18%, 12%, and 17% for mammals, birds, and fish, 
respectively. The adoption of GT maize did not have a statistically sig-
nificant impact on use rates (a.i. kg/ha) or on toxicity for honeybees. 

Adoption of IR maize varieties, on the other hand, is associated with 
a significant reduction in applied toxicity for all organism groups, as 
well as a reduction in the quantity metric. As reported in Table 2, the 
TRQs for mammals, birds, fish, and honeybees were lower by 16%, 12%, 
18%, and 8%, respectively, for IR maize adopters compared to non- 
adopters. 

Allowing for the impacts of GE adoption on applied pesticides to vary 
over time permits an assessment of whether there have been temporal 
changes. For these regression analyses, the GE coefficient βt in Eq. (6) is 
allowed to vary over four time intervals: 1998–2001, 2002–2006, 
2007–2011, and 2012–2016. The estimated coefficients for the time- 
specific GE impacts are displayed in four sets of charts on the basis of 
organism group and separately for each pesticide category (Fig. 2) (the 
full regression results corresponding to Fig. 2 are reported in SI Ap-
pendix Tables S6–S8). Specifically, the left y-axes in Fig. 2 report the 
difference in applied toxicity between GE and non-GE adopters for 
herbicides and the right y-axes display the difference in applied toxicity 
for maize insecticides. 

For soybeans, the general finding is that HT adopters initially 

Table 1 
Estimated average impact of GE adoption on herbicide use, 1998–2016.   

Total 
quantity 
(a.i. kg/ 
ha) 

Total Risk Quotient (LD50s/ha)  

Mammals Birds Fish Honey 
Bees 

Soybean herbicides 
β 0.298*** − 0.258*** − 0.126*** − 0.941*** − 3.281***  

(0.0105) (0.0241) (0.00762) (0.0309) (0.258) 
Non-adopter 

mean 
1.112 0.800 0.682 1.743 23.281 

GE adopters 
Δ% 

26.8% − 32.2% − 18.4% − 54.0% − 14.1% 

N 132,788 132,788 132,788 132,788 132,788 
R2 0.571 0.489 0.596 0.589 0.557  

Maize herbicides 
β 0.0150 − 0.297*** − 0.158*** − 0.101*** − 0.513  

(0.0145) (0.0194) (0.00916) (0.00639) (0.289) 
Non-adopter 

mean 
2.555 1.654 1.287 0.583 27.890 

GE adopters 
Δ% 

0.59% − 18.0% − 12.3% − 17.3% − 1.84% 

N 206,558 206,558 206,558 206,558 206,558 
R2 0.563 0.541 0.546 0.562 0.518 

Notes: This table reports the estimated parameters of the GE adoption variables 
in Eq. (3) under the assumption βt = β, ∀ t. For each pesticide group (soybean 
herbicides or maize herbicides), five models are estimated, each with a different 
left-hand-side variable as given by Eqs. (1) and (2). Oral LD50 values are used for 
the mammal and bird TRQs, LC50 values for the fish TRQ, and contact LD50 
values for the honey bee TRQ. Each regression also includes year fixed effects, 
farmer fixed effects, and CRD-specific trends (full estimation results are reported 
in the SI Appendix Tables S3 and S4). For each regression, the estimated β co-
efficient is used to compute the percent difference in pesticide use of GE adopters 
relative to non-adopters. Standard errors are reported in parentheses, * p < 0.05, 
** p < 0.01, *** p < 0.001. 
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exhibited a lower applied toxicity compared to non-adopters, but over 
time these savings dissipated. In the first two sub-periods, HT soybean 
adoption was associated with statistically significant lower applied 
toxicity rates for all organism groups. In the final two sub-periods, there 
was no statistical difference between HT adopters and non-HT adopters 
for mammals and birds, whereas HT adoption still significantly reduced 

the TRQ for fish. For honeybees, on the other hand, the impact of HT 
adoption is not statistically significant in the third sub-period and is 
reversed in the 2012–2016 period when HT adopters exhibited higher 
honey bee toxicity compared to non-adopters. Similar findings pertain to 
GT maize. In particular, the TRQs for adopters and non-adopters of GT 
maize are not statistically different in the last sub-period for mammals, 
birds, and fish, whereas for honeybees, GT maize adopters had a 
significantly higher toxicity impact relative to non-adopters in the final 
two sub-periods. Additional evidence in the Kynetec data indicates that 
the increased use of 2,4-D by GE adopters in later periods was respon-
sible for the rise in honey bee toxicity. 

Although the foregoing estimated regression models are not directly 
informative about why the impacts changed over time, the herbicide 
results are consistent with a decreasing efficacy of glyphosate applica-
tions, possibly a consequence of the emergence of glyphosate-resistant 
weeds (Gould et al., 2018; Heap, 2014; Livingston et al., 2015; Kniss, 
2018; Ye et al., 2021; Van Deynze et al., 2022; Powles, 2008; Nors-
worthy et al., 2012; Gilbert, 2013; Perotti et al., 2020). This conjecture is 
supported by decomposing sub-period specific herbicide applications 
into a glyphosate component and non-glyphosate component. Fig. S1 in 
the SI Appendix reports the estimated differences, based on fixed-effects 
regressions, in herbicide use (kg/ha) between plots planted with GE 
varieties and plots planted with non-GE varieties separately for glyph-
osate and non-glyphosate herbicides. The positive red bars indicate that 
GE adopters use more glyphosate per hectare than non-GE adopters, as 
expected. Correspondingly, the negative blue bars indicate that GE 
adopters use less of all other herbicides—this is the basic substitution 
effect one expects. The main finding that emerges from Fig. S1 for both 
maize and soybeans is that the effectiveness of this substitution effect 
has waned over time—GE adopters are increasingly relying on old-line 

Table 2 
Estimated average impact of GE adoption on maize insecticide use, 1998–2014.   

Total 
quantity 
(a.i. kg/ha) 

Total Risk Quotient (LD50s/ha)  

Mammals Birds Fish Honey 
Bees 

β − 0.0134*** − 1.734*** − 1.032*** − 1.221*** − 124.1***  

(0.00141) (0.171) (0.179) (0.0795) (16.40) 
Non- 

adopter 
mean 

0.124 10.805 8.559 6.660 1457.7 

GE adopters 
Δ% − 10.8% − 16.1% − 12.1% − 18.3% − 8.51% 

N 173,332 173,332 173,332 173,332 173,332 
R2 0.466 0.477 0.400 0.495 0.465 

Note: This table reports the estimated parameters of the GE adoption variables in 
Eq. (3), for maize insecticides, under the assumption βt = β, ∀ t. Five models are 
estimated, each with a different left-hand-side variable as given by Eqs. (1) and 
(2). Oral LD50 values are used for the mammal and bird TRQs, LC50 values for 
the fish TRQ, and contact LD50 values for the honey bee TRQ. Each regression 
also includes year fixed effects, farmer fixed effects, and CRD-specific trends (full 
estimation results are reported in the SI Appendix Table S5). For each regression, 
the estimated β coefficient is used to compute the percent difference in pesticide 
use of GE adopters relative to GE non-adopters. Standard errors are reported in 
parentheses, * p < 0.05, ** p < 0.01, *** p < 0.001. 

Fig. 2. Estimated time-specific impacts of GE varieties on pesticide use, 1998–2016. 
Note: The vertical axes represent the estimated difference in the applied pesticide TRQ between GE adopters and non-GE adopters. The left y-axes provide scales for 
herbicides (soybean herbicides and maize herbicides) and the right y-axes correspond to the values for maize insecticides. Because plot-level data on neonicotinoid 
use in maize end in 2014, the last period for “Maize insecticides” is actually from 2012 to 2014. 
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herbicides to supplement glyphosate in their weed-control strategies 
(Heap and Duke, 2018). 

The insecticide toxicity impacts of IR maize adoption are depicted by 
the blue lines in Fig. 2. As was the case for herbicides, the impacts have 
changed significantly over time. The TRQs for IR maize adopters were 
lower compared to non-adopters in the first three sub-periods, with the 
largest reducing effect occurring in the third sub-period (2007–2011). 
However, these effects sharply reversed in the final sub-period 
(2012–2014). IR maize adoption still reduced the mammal and fish 
TRQs in this period, but there was no statistical difference for the bird 
TRQ and honey bee toxicity was actually higher for adopters. 

Two developments in maize production during this time frame can 
potentially explain the sudden rise in applied toxicity for IR maize 
adopters. The first development is the introduction and widespread 
diffusion of neonicotinoid seed treatments, which are used more 
frequently with IR varieties (Perry and Moschini, 2020). The toxicity of 
neonicotinoids varies significantly across organism groups—they are 
relatively less toxic to mammals and fish, whereas they are highly toxic 
to aquatic invertebrates and pollinators (e.g., honey bees) (Goulson, 
2013). To further assess the role played by neonicotinoids in contrib-
uting to applied toxicity, we estimated a separate set of regressions with 
additional indicator variables for whether the planted seed was treated 
with a neonicotinoid insecticide (SI Appendix Table S11). After 
including these additional indicators, the impact of IR maize on honey 
bee toxicity is negative in the first three sub-periods and statistically 
insignificant in the final sub-period (and also small in magnitude). By 
contrast, neonicotinoids have a large and statistically significant positive 
impact on the honey bee TRQ in all sub-periods, with the largest impact 
in the final sub-period. The change in the estimated honey bee impact 
for IR maize after including the neonicotinoid indicators reflects the 
positive correlation between IR traits and neonicotinoids. Thus, part of 
the sharp increase in TRQs depicted in Fig. 2 was due to neonicotinoids, 
rather than IR trait adoption. 

The second development was the evolved resistance by western corn 
rootworm to multiple Bt traits in GE maize, which was first documented 
in 2009 (Tabashnik et al., 2013; Gassmann et al., 2014). This pest 
adaptation reduced the efficacy of GE rootworm (RW) varieties and 
thereby potentially increased the need for farmers to supplement these 
varieties with additional insecticides (e.g., pyrethroids). The data 
employed in this study distinguish between varieties that confer resis-
tance to the European corn borer (CB) and varieties that confer resis-
tance to various species of rootworms. Thus, to explore this possibility, 
we ran additional regressions in which the IR indicator variable was 
replaced with separate indicators for whether the planted GE seed 
contained CB and/or RW traits (we also included the neonicotinoid in-
dicators in these regressions). The results from these regressions show 
that, prior to the final sub-period (2012–2014), both CB and RW 
adopters had lower honey bee TRQs compared to non-adopters (SI Ap-
pendix Table S12). However, in the final sub-period, RW adoption had a 
statistically significant and positive impact on the honey bee TRQ (this 
impact was still just one-tenth of the neonicotinoid impact, however). 
Conversely, CB adoption was still associated with a lower honey bee 
TRQ in the final sub-period, although the impact was statistically 
insignificant. Overall, these regressions suggest that the evolved resis-
tance by western corn rootworm led to a moderate increase in insecti-
cide use for RW trait adopters. 

4.3. Robustness 

To ascertain the robustness of the GE impact coefficients, we esti-
mated several alternative specifications of Eq. (3). A primary concern 
with the baseline estimated impacts is the potential bias arising from the 
existence of unobserved confounding factors. Although we include 
farmer fixed effects, year fixed effects, and CRD-specific trends, these 
may not fully control for spatio-temporal unobserved heterogeneity. 
Two such unobserved factors are the type of tillage practice and weed 

pressure. No-till is a practice whereby farmers leave all crop residues on 
the field. Previous research has shown that no-till is complementary to 
GE crop adoption (Perry et al., 2016b), and it may also affect pesticide 
use. To control for this, we added an indicator variable for whether a 
farmer used no-till to the baseline dynamic model (SI Appendix 
Table S17). Overall, the use of no-till is generally associated with higher 
TRQs in both crops, but the GE impacts are largely unaffected. As it 
concerns weed pressure, we do not observe this variable directly, but we 
do observe the main weed species a farmer targeted. Thus, for the her-
bicide models, we added indicator variables for nine different major 
weeds to the time-specific GE impact regression models (SI Appendix 
Table S18). As expected, the presence of a particular weed was associ-
ated with greater pesticide use. However, the GE impacts themselves 
remained largely unaffected. 

An additional concern with respect to the baseline analysis is that 
some farmers plant both GE and non-GE crops within the same year. 
Given that the farmer fixed effects do not fully control for heterogeneity 
at the finer plot level, there may be unobserved plot-specific factors 
driving their adoption and pesticide decisions.3 We investigate this issue 
by estimating the models with the sub-samples that exclude farmers who 
planted both GE and non-GE crops within a given year (SI Appendix 
Table S19). The estimated GE impacts in these models are essentially the 
same as the baseline estimated impacts. 

Some farmers in the sample do not use any pesticides in any given 
year, which raises the question as to whether this is due to unmodeled 
specific reasons (e.g., organic crops, environmental concerns, etc.). To 
the extent that this is correlated with GE adoption, the coefficients 
would be biased. To address this concern, we report results for the sub- 
sample that excludes farmers that never used pesticides in a given year 
(SI Appendix Table S20). Overall, the estimated GE impacts are 
unaffected. 

Beyond the factors already considered, there may still remain other 
sources of unobserved spatio-temporal unobserved heterogeneity. For 
example, there may be crop rotation effects or pest population dynamics 
related to the previous season. Of course, one cannot fully control for all 
these possibilities, but we can enrich the set of fixed effects by replacing 
the yearly fixed effects and CRD trends with CRD-by-year fixed effects. 
The results for these models are presented in Table S21 of the SI Ap-
pendix. Here again, the results are highly robust to the inclusion of these 
fixed effects. 

In addition to the foregoing robustness checks, we explored whether 
there is heterogeneity in the estimated GE impacts across two additional 
dimensions. First, we created an indicator variable for whether a farmer 
resided in the Central Corn Belt (CCB), defined as the region consisting 
of Illinois, Indiana, and Iowa, and interacted this variable with the time- 
invariant GE indicator variables. The results for these models are pre-
sented in Table S22 of the SI Appendix. For the herbicide models, the GE 
impacts all remained negative, but the pesticide toxicity reducing effects 
of HT crop adoption were statistically significantly smaller in the CCB. 
Conversely, IR crop adoption in the CCB was associated with larger re-
ductions in the TRQ compared to IR adoption in the non-CCB. Second, 
we allowed for the GE impacts to differ based on whether a farmer 
planted >500 acres in the respective crop (SI Appendix Table S23). In 
this case, there was less heterogeneity in the impacts. Larger operations 
that adopted the HT technology exhibited a slightly smaller pesticide 
reducing effect for mammals and birds in soybeans. In corn, there was a 
larger attenuation of the pesticide reducing effect for mammals and 
honey bees for HT adopters, whereas the insecticide reducing effect from 
IR adoption was increased with respect to mammals and fish. 

3 Recall that a plot is defined as a combination of the tillage type (conven-
tional, conservational, or no-till), seed trait (e.g., GT maize), and seed company. 
While we observe decisions at this level, we do not have information on the 
physical location of a plot over time. A plot, as defined, is therefore best viewed 
as a “virtual” plot. 
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5. Discussion 

The main advantage of the analysis presented here is that the esti-
mated impacts are based on farm-level fixed-effects regressions. Thus, 
our results implicitly uncover the ceteris paribus differences in pesticide 
use between GE and non-GE adopters at the farm level. This approach 
contrasts with those used in other recent studies that instead rely on 
aggregate data to infer the impact of GE adoption on pesticide use. For 
example, Kniss (2017) provides aggregate acute and chronic applied 
toxicity trends for cotton, maize, soybeans, rice, and wheat and finds 
that acute rat toxicity trends for the main GE crops (cotton, maize, and 
soybeans) declined during the period 1990–2015. Despite this evidence, 
the study is not able to make definitive claims about the impact of GE 
adoption on pesticide use. As the author notes, the downward trend in 
applied toxicity could apply to both GE and non-GE crops. Moreover, the 
pool of non-GE adopters may be unrepresentative of GE adopters. Thus, 
a basic comparison of the average pesticide toxicity between each group 
would likely be misleading. 

The most recent large-scale study to analyze trends in pesticide use is 
Schulz et al. (2021). Similar to the findings here, they report that applied 
pesticide toxicity has fallen for mammals, birds, and fish. To assess the 
toxicity impacts associated with GE crop adoption, they provide sepa-
rate trends for three applied toxicity metrics in the two main GE crops: 
corn and soybeans. They show that pollinator and aquatic invertebrate 
toxicity increased over time in maize, and terrestrial plant toxicity 
increased in soybeans. However, they note that applied toxicity for Bt 
and non-Bt crops was equal on a per hectare basis. Similar to the limi-
tations in Kniss (2017), the analysis in Schulz et al. (2021) relies on 
aggregated data, rather than a farm-level analysis. Overall, they were 
not able to make any definitive conclusions about the causal impact of 
GE crop adoption on pesticide use. 

Several important findings emerge from our analysis. First, the 
adoption of HT soybeans and GT maize initially reduced applied toxicity 
with respect to birds, fish, mammals, and honey bees. However, by 
2007, our estimates indicate there was no longer a difference in applied 
toxicity between GE and non-GE adopters for birds and mammals. 
Applied toxicity for fish remained lower for GT adopters relative to non- 
adopters, but was higher for honey bees. Thus, the pesticide use benefits 
conferred by HT varieties were in part transitory. Relatedly, our results 
suggest that glyphosate resistance was the reason these benefits dis-
sipated—farmers had to supplement glyphosate with old-line 
herbicides. 

Our results confirm the general finding that IR maize reduces the use 
of insecticides, both with respect to quantity and applied toxicity, and 
these savings occurred for the duration of the sample period considered. 
The exception to this is applied toxicity with respect to honey bees. 
Initially, IR maize reduced the honey bee TRQ, but by the final sub- 
period, it was associated with higher toxicity. As noted above, an 
important confounding factor is the adoption of neonicotinoid seed 
treatments, which are highly toxic to honeybees and became prevalent 
during the mid-2000s. When we account for neonicotinoid seed treat-
ment adoption in the regressions, IR maize is no longer associated with 
higher honey bee toxicity. Thus, the primary source of increased honey 
bee toxicity in maize was the diffusion of neonicotinoid seed treatments, 
a finding consistent with previous work (Perry and Moschini, 2020). 

This paper uses a similar methodology to Perry et al. (2016a), but 
there are some key differences in approach and findings. The data used 
here extend to 2016, rather than 2011, and we employ risk-based 
pesticide measures instead of the EIQ. The latter produced distinc-
tively new conclusions. The estimated time impacts in Perry et al. 
(2016a) show that, after 2007, even the EIQ index for GE HT soybean 
and maize adopters exceeded the EIQ index for non-adopters. By 
contrast, here we find that, at worst, the applied toxicity associated with 
GE adoption is not statistically different from the applied toxicity asso-
ciated with non-GE crops (the exception is for honey bees). This high-
lights a major deficiency in the EIQ, which is that it correlates too 

strongly with quantity-based measures. Our study also confirms the 
importance of using risk-based measures rather than quantity-based 
measures. The differences were especially stark for HT soybeans. All 
regression estimates show that GE adopters used more herbicides, in 
terms of weight, than non-GE adopters, but in nearly all cases the 
applied toxicity associated with GE plots was either lower than for non- 
GE plots or not statistically different. Finally, this study also accounts for 
the impact of neonicotinoid seed treatments, which was not considered 
in Perry et al. (2016a). 

A few caveats are in order, at this juncture. First, only acute toxicity 
(i.e., LD50) is considered in our analysis. Chronic toxicity may also be of 
interest, and chronic toxicity measures (e.g., no observable effect level) 
do not necessarily correlate with acute toxicity (Kniss, 2017). Thus, 
extrapolating our results to long-term effects could lead to erroneous 
conclusions. Second, following the convention of existing literature, we 
have defined total pesticide toxicity by summing up the toxicity of each 
active ingredient in pesticides, essentially assuming independence of the 
individual effects. For future research, considering the potential super 
additivity of risks that could arise from the combined toxicity of several 
active ingredients may be desirable (Topping et al., 2020). Third, 
although we consider four different organism groups, other groups such 
as daphnia, algae, and earthworms have been analyzed in previous work 
(e.g., Kudsk et al., 2018).4 

Another potentially important aspect not considered in this study is 
the existence of area-wide effects. Previous work has shown that non-Bt 
users benefit from Bt adopters through area-wide suppression effects 
(Hutchison et al., 2010). By suppressing insect populations in an entire 
area, Bt users confer both yield and insecticide saving benefits to non-Bt 
users (the free riders). Our estimates do not capture this potential benefit 
and may therefore underestimate the insecticide saving benefits of both 
IR traits and neonicotinoid seed treatments. Conversely, in the case of 
HT crops, there is potential for negative spillover effects if non-HT users, 
who may still employ glyphosate prior to planting, must resort to 
alternative weed control strategies in the face of glyphosate resistant 
species. Identification of area-wide effects requires precise information 
on the location of plot, which goes beyond the capabilities of our data, 
and we therefore leave it to future work. 

6. Conclusion 

Concerns about the use of pesticides in agriculture remain a major 
topic of interest for environmental and agricultural policy around the 
world. Whereas it is recognized that chemical inputs have made a major 
contribution to food security over the last several decades, it is also clear 
that pesticides present nontrivial risks for human health and the envi-
ronment (Tang et al., 2021). Ensuring adequate food supply for a 
growing world population, while protecting human health and ecosys-
tems from unwanted risks, requires policies that deal with complex and 
thorny issues. There are no silver bullets or simple choices for a socially 
optimal pesticide policy, and several facets need to be addressed in a 
holistic fashion (Möhring et al., 2020). Among the possible innovation 
strategies that could help in this setting, an enticing avenue is offered by 
the development of plants endowed with increased resistance to pest 
pressure. As noted by (Möhring et al., 2020), however,”… the link be-
tween the value of advanced plant breeding and the reduction of pesticide use 
is often neglected in public discussions …”. 

The application of biotechnology in agriculture, and specifically the 
development and widespread adoption of first-generation GE varieties, 
has radically changed the ability of breeders to develop crop varieties 
resistant to pest and environmental stresses. Going forward, gene editing 
tools such as CRISPR-Cas offer the potential of newer and more powerful 
approaches to improving the pest resistance of crops. The experience 

4 Their analysis also accounts for factors such as soil half-life, which may alter 
the estimated toxic load for a bundle of heterogeneous chemicals. 
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with first-generation GE traits can be very instructive in this setting. The 
widespread adoption of GE varieties embedding HT and IR traits has had 
a significant, and at times subtle, impact on pesticide use patterns. The 
overall environmental impact attributable to GE crop varieties remains 
controversial, however. 

Several factors complicate a conclusive assessment of the impact of 
GE crops on pesticide use. The impacts are not static, and several per-
spectives may be of interest—short-term or long-term impacts, actual or 
potential impacts, and whether the impacts are reversible or irreversible 
(Wesseler et al., 2011). The use of appropriate toxicity metrics is 
essential in this setting. As discussed extensively in this article, popular 
aggregate measures—such as total unweighted volume of applied pes-
ticides, or the EIQ-weighted measure—are clearly deficient. Further-
more, as noted, relying on aggregate measures of pesticide use trends, 
even when disaggregated regionally, provides a framework that is 
particularly ill-suited to uncover the causal impacts of GE crop adoption 
on applied pesticides, relative to conventional crops. The data and 
analysis presented in this paper, therefore, by using a large body of farm- 
level data over a relatively long time period, and by relying on suitable 
risk-based metrics, offers one of the most comprehensive assessments, to 
date, on the environmental consequences of GE variety adoption and 
applied pesticide toxicity. 

Some policy implications follow from our findings. A common goal 
of policymakers is to reduce overall agricultural pesticide use without 
significantly sacrificing productivity and economic gains (Finger and 
Möhring, 2022). The rise in glyphosate use that has accompanied the 
proliferation of GE herbicide tolerant crops has been met with calls to 
ban HT crops or restrict the use of glyphosate itself (Ye et al., 2021). Our 
research suggests that removing or limiting the use of GE crops in the 
current environment, as some have suggested, would likely reduce the 
overall quantity of herbicides used but would not confer benefits in 
terms of applied toxicity with respect to mammals, bird, and fish. 
Farmers would return to using traditional crop systems that rely more 
heavily on old-line herbicides and tillage for weed control (Perry et al., 
2016b). 

There are also clear lessons to be learned from the temporal patterns 
in pesticide use by GE adopters. The applied toxicity benefits of HT crop 
adoption could possibly have been preserved had there been earlier 
efforts to prevent the development of glyphosate weed resistance 
(Norsworthy et al., 2012; Davis and Frisvold, 2017; Green, 2018). These 
efforts could have consisted of the occasional supplementation of 
glyphosate with older herbicides, as is done now, but to a lesser degree. 
The toxicity benefits of HT adoption would have been moderated but 
would have persisted over time. In addition, recent years have seen new 
GE herbicide tolerant traits come to market, such as dicamba-tolerant 
soybeans (Johnson et al., 2010; Werle et al., 2018; Wechsler et al., 
2019). To the extent that these new traits confer applied toxicity bene-
fits, it is important to take measured efforts to prevent further weed 
resistance issues. 

Resistance has also been an on-going concern with respect to IR traits 
(Gassmann et al., 2014; Tabashnik et al., 2013), especially with respect 
to RW traits. Our results show that the insecticide saving effects of GE IR 
traits were attenuated for most species groups in the final sub-period of 
our sample (2012–2016), a partial consequence of resistance. To address 
insect resistance, the industry has promoted the use of non-Bt maize 
refuges, and this appears to have been partially successful in forestalling 
further resistance. However, root worm resistance has persisted and 
threats to additional resistance remain. Recent research has shown that 
farmers can decrease the negative impacts of resistance by rotating 
maize with other crops and by diversifying the planted variety of GE IR 
maize (Carrière et al., 2020). In addition, some evidence suggests that 
the widespread use of neonicotinoids can offset the benefits of non-Bt 
maize refuges by killing non-resistance insects. Thus, the occasional use 
of maize not treated with neonicotinoids may also be warranted. Going 
forward, it will be essential to employ all of these strategies, not only in 
the United States, but also in other countries where the adoption of Bt 

maize has not plateaued. 
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