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Abstract
Climate change is a major threat to the global food supply,
and adaptation by technological progress is essential. We
show that the scope of the required innovation is
challenging. Our benchmark is the estimated yield gain
in US maize due to genetically engineered (GE) varieties.
Extrapolated future yields, given climate projections,
indicate significant negative impacts of climate change.
Yield shortfalls, by the end of the century, range from 2.8
to 6.3 times the total yield gains from first‐generation GE
varieties. Ambitious and targeted R&D efforts, and
innovation breakthroughs, may be required to offset the
negative impact of climate change.
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1 | INTRODUCTION

Production agriculture depends heavily on exogenous environmental conditions and is thus acutely
vulnerable to the deleterious long‐run effects of climate change. Mounting evidence suggests large
negative impacts (Fisher et al., 2012; Mendelsohn et al., 1994), with severe adverse consequences for
major staple crops' yields (S. Chen et al., 2016; Gammans et al., 2017; Lobell et al., 2011; Miller et al.,
2021; Schlenker & Roberts, 2009; Tack et al., 2015). The long‐run health of the food supply may thus
need deliberate mitigation and/or adaptation measures to deal with global warming. First‐best
mitigation strategies aimed at containing climate change, chiefly by reducing greenhouse gas (GHG)
emissions, are proving problematic, due to the global and dynamic nature of the externalities
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involved with climate change (Carattini et al., 2019). Adaptation strategies, to blunt and counteract
the damaging consequences of climate change, are perhaps more promising because they are less
vulnerable to such strategic problems—whereas GHG emission reduction is a global public good,
investments in adaptation often have local payoffs and substantial private good aspects (Hasson
et al., 2010; Tol, 2005).

Successful efforts to cope with a hostile environment are a major component of the history of
agriculture (Olmstead & Rhode 2011). Technologies to foster agriculture's adaptation may include,
inter alia, new crop varieties with traits enhancing their broad resistance to pest, disease, and
environmental stress, particularly heat tolerance and resistance to drought and salinity (Lybbert &
Sumner 2012). Varieties with shorter growing cycles and earlier maturation, precision agriculture
technologies and more efficient water management, and expanded irrigation are also expected to be
critical. Technological innovations beyond the farm level are also envisioned (Zilberman et al.,
2018), including institutional innovation with a focus on adoption incentives and an appreciation
for the role of learning, networks, and social capital (Zilberman et al., 2012). Ultimately, all this
requires major R&D investments, from both the public and private sectors, to support enhanced
innovation efforts in adaptation‐enabling new technologies.

What is the scope of such an R&D challenge? Harnessing the potential of modern
biotechnology, beyond traditional breeding, is obviously critical in this setting. Hence, we propose
to gauge the extent of innovation required to offset the impact of climate change on yields by using
first‐generation genetically engineered (GE) varieties in US maize production as a “yardstick.”
Specifically, we estimate the contribution of GE traits separate from the long‐run productivity
improvements that have characterized maize yields with the diffusion of hybrid varieties. The
estimated model, along with weather projections from mainstream climate change models, permits
us to forecast expected yields at mid‐century and end‐of‐century and thus characterize the ceteris
paribus yield shortfalls due to anticipated climate change. Comparison of such yield effects with the
one‐time yield gains due to first‐generation GE traits in maize provides a useful metric for the
innovation challenge posed by climate change.

First commercialized in 1996, GE seeds rapidly replaced conventional varieties. In maize,
commercially successful first‐generation GE varieties have embedded agronomic traits—herbicide
tolerance (HT), chiefly tolerance to glyphosate (aka Roundup), and insect resistance (IR), specifically
resistance to the European corn borer and corn rootworms. Farmers' keen interest in GE adoption
attests to their perceived profitability. Experimental evidence also points to a significantly positive
impact of GE on maize yields (Chavas et al., 2014; Nolan and Santos, 2012), and observational data
on realized yields also shows a clear positive impact (Lusk et al., 2019; Xu et al., 2013).

To characterize the impact of GE maize varieties on yield, we use a panel of county‐level yield
data. Our approach improves on previous work by a somewhat more nuanced measurement of
maize GE adoption rates, and by an explicit representation of the interaction effects between GE
adoption and weather variables. Similar to previous work, our yield model is estimated conditional
on historical weather metrics based on daily temperature and precipitation from the Parameter‐
elevation Regressions on Independent Slopes Model (PRISM). The estimated model is used for
counterfactual simulations to determine the expected yield impacts of anticipated climate change,
using weather projections from all 20 global climate models (GCMs) from the Multivariate Adaptive
Constructed Analogs (MACA) data set (Abatzoglou & Brown, 2012). Mid‐century (2040–2059) and
end‐of‐century (2080–2099) weather predictions and future climate conditions are used to compare
scenarios under two GHG concentration pathways.

Our results confirm the finding of previous studies that GE varieties have led to significant
productivity gains in maize production. Accounting for weather conditions is essential to identify
the role of technology in maize production—yields are significantly positively impacted by growing
degree days, are negatively impacted by excess heat, and are sensitive to precipitation and water
stress. We find sizeable yield shortfalls due to the changing weather predicted by these GCMs.
Depending on GHG concentration pathways, average yield shortfalls due to climate change at
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mid‐century range from 2.0 to 2.7 times the entire yield gains made possible by the adoption of GE
varieties. By the end of the century, the estimated average yield gaps range from 2.9 to 6.3 times the
GE yield gain.

To put these results in context, it is important to appreciate that GE crop varieties were
developed in the 1980s from the application of revolutionary recombinant DNA techniques
discovered in the 1970s (Bennett et al., 2013; Moschini, 2008). The commercialization, and eventual
widespread adoption of GE varieties in maize, soybeans, and cotton, was made possible by massive
R&D investments, mostly by the private sector. In the process, the company leading this
development, Monsanto, radically transformed itself from a chemical business to the largest seed
company in the world (Clancy & Moschini, 2017). Finding that yield gains several times larger than
what was accomplished with first‐generation maize GE varieties are needed, to offset the likely
impacts of global climate change, underscores the challenging scope of the required R&D enterprise.

2 | DATA

The main variable to be explained is the US maize yield (bushel/acre) at the county level. Similar to
other studies in this area, the focus is on rainfed agriculture. Specifically, as in Xu et al. (2013),
counties are included in the sample if the fraction of harvested cropland that is irrigated is less than
10% (based on the USDA census of 2002). Furthermore, the analysis is limited to data since 1981, as
in Ortiz‐Bobea and Tack (2018), to ensure that daily precipitation and temperature data are
available. We draw on county‐level maize yield data from the USDA‐NASS for the period from 1981
to 2020. Our sample includes 1774 counties across 36 states. Note that NASS does not provide maize
production and yield data for all counties over the entire period of interest—some marginal counties
may not appear in some years. On average, 1510 counties are observed per year. Hence, the final
data we end up using in estimation has the nature of an unbalanced panel (a total of 60,400 panel
observations over the entire period). Figures A1 and A4 in the Supporting Information Appendix
illustrate the geographic area of our analysis and the spatial and temporal variations of observed
yields.

As for GE adoption, in this paper, we exploit a more refined measure of GE adoption rates than
used by previous studies. The USDA survey‐based state‐level GE adoption data used by previous
studies have two drawbacks: they are available only starting in the year 2000, thereby missing the
crucial early years of GE diffusion, and they cover only a limited number of large maize‐growing
states. Our adoption data are largely constructed from an extensive set of farm‐level observations of
seed choices by US maize farmers assembled by Kynetec USA, a market research organization that
collects agriculture‐related survey data. These proprietary data are based on annual surveys of
random, large samples of US farmers (approximately 4700 maize farmers every year). These data are
available to us from 1996 to 2016, thereby encompassing the entire period from the introduction of
GE traits to their virtually complete adoption. Details on data handling are provided in the
Supporting Information Appendix. For the last 4 years of analysis, Kynetec data are supplemented
with USDA data, without much loss of generality because adoption in the last few years has been
stationary. Based on these data, we are able to construct reliable adoption rates for 21 states. The
pattern of spatial and temporal variation of GE adoption rates is illustrated in Figures A2‐A3 in the
Supporting Information Appendix. Adoption rates are spatially heterogeneous, especially in the first
half of the adoption period, but this variability is reduced with adoption rates converging to more
than 90% in the last few years.

As for weather data, daily temperature and precipitation are procured from the 4 km by 4 km
grid cell PRISM data set. The county‐level temperature and precipitation variables are obtained via
an area‐weighted scheme (Sacks et al., 2010). Two standard metrics of heat used in modeling crop
yields are growing degree days (GDD) and extreme heat degree days (HDD) (Roberts et al., 2013).
Daily GDDs and HDDs are aggregated over the growing season—defined as the months March to
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August, as in Schlenker and Roberts (2009) and Lusk et al. (2019)—to produce the annual measures
of beneficial temperature and heat stress for the county in question.

To measure water stress, Schlenker and Roberts (2009) merely add the total volume of precipitation
and its quadratic in the growing season, March through August. However, Roberts et al. (2013) find that
the correlation between precipitation and yield is weak, and suggest that insufficient moisture can be better
captured by additionally considering vapor pressure deficit (VPD). Hence, we use VPD along with
cumulative precipitation to represent water stress. VPD relates to the difference between how much
moisture the air can hold when saturated and the actual air moisture. It is related to relative humidity, but
it additionally accounts for the effects of temperature on the water holding capacity of the air (Sinclair,
2011). When the actual air moisture is not observed, it can be approximated by using the daily minimum
temperature in lieu of the dew point. Similar to GDD and HDD, daily VPDs are aggregated over the
growing season to form annual county‐level measures. As in Roberts et al. (2013), we utilize two VPD
metrics, the VPD for the March‐August growing season, and the VPD for the July–August months only.
Cumulative precipitation with its quadratic is also included in the model. Descriptive statistics for the main
weather variables used in the analysis, and their spatial and temporal variation, are included in the
Supporting Information Appendix (Table A2‐A5 and Figure A5).

Because GCMs produce weather projections at coarse spatial cells, Auffhammer et al. (2013)
highlighted the need for downscaling and bias correction. In this paper, we relied on a set of 20
downscaled and bias‐corrected GCM projections available in the MACA data set. For each climate model
(or set of models), future weather data are obtained under two warming scenarios defined by the GHG
representative concentration pathways (RCP), specifically RCP 4.5 and RCP 8.5. Forecasted temperature
and precipitation for the years 2040 to 2059 are used to generate weather variables at mid‐century climatic
conditions, and, correspondingly, forecasts for the years 2080 to 2099 are used to generate end‐of‐century
weather data. Consistent with the discussion in Burke et al. (2015), we use model‐implied temperature
and precipitation for all periods when calculating the difference in weather variables between the
historical period and future periods. Specifically, the weather variables for the stationary climate scenarios
are assumed to be the model‐implied estimates over the period 1981–2005 (climate models provide
current modeled temperature and precipitation only through 2005). Summary statistics of the predicted
weather variables for the reference historical period and the two future periods (mid‐ and end‐century),
obtained from the 20 GCMs considered, are included in the Supporting Information Appendix.

3 | YIELD RESPONSE MODEL

The model to be estimated postulates that observed (realized, end‐of‐season) county maize yields
(production per acre) are determined, inter alia, by the technology of production and realized
climatic conditions (weather). We are particularly interested in separating the one‐time impact of
GE trait adoption from the underlying continuous technical progress due to all other
improvements/breeding activities. The models we estimate can be written as:

y α γG G τ T εX β X δ= + + + + + ,it i it st st it s t it (1)

where i is county index; t indicates year; s indicates the state of county i; the conditioning (row)
vector Xit includes all the weather variables of interest, discussed earlier; Gst is the GE adoption rate
(measured, as noted, at the state level); and, T = 1, 2, …, 40t is the linear trend variable. The
parameter vector δ captures the interaction effects between GE adoption and weather variables.
Note that the trend coefficient τs , meant to capture the underlying technical change beyond that
embedded in GE traits, is allowed to vary at the state level. Finally, the intercept αi is county‐specific
and captures heterogeneous factors impacting yield (e.g., soil quality) that are unobserved but
largely time‐invariant.
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The parameterization of the GE trait effect in (1) maintains what Xu et al. (2013) call the “adoption
shift” model—full adoption of GE traits leads to a one‐time shift in the yield trajectory. Alternatively,
one could postulate that GE trait adoption changes the trend slope, which is presumed to reflect the
overall impact of technical change. The “adoption slope” model is virtually indistinguishable, in
sample, from the shift model (Lee et al., 2022). For mid‐century and end‐century projections,
however, it would produce larger effects the further away in the future. We submit that the adoption
shift model is both more conservative and more appropriate for our analysis. In particular, we are not
interested in projecting the unconditional impacts of current and future GE technologies. Rather, we
merely wish to use yield gain attributable to GE traits as a yardstick. This benchmark is not meant to
capture all future productive impacts of GE technologies, but rather the realized yield effects of
hitherto‐adopted first‐generation GE varieties embedding agronomic traits.

Two issues need to be addressed to make the model in Equation (1) operational. One concerns
the representation of GE adoption rates. As discussed earlier, both HT and IR traits have been
introduced into maize varieties, alone or in combination, and at different times. It is likely that HT
and IR traits affect yield differently.1 As illustrated in the Supporting Information Appendix,
however, HT and IR traits have been jointly adopted via stacked traits, which makes it difficult to
credibly identify the separate contributions of the two types of traits. Similar to previous studies, we
represent the impact of GE through a single adoption variable.

The second issue to be resolved concerns the representation of the left‐hand side of Equation (1). Many
studies in this area have adopted a “semi‐log” functional form. That is if Yit denotes the actual yield
(bushels per acre), then ≡y Ylnit it (e.g., Burke & Emerick, 2016; Malikov et al., 2020; Ortiz‐Bobea &
Tack, 2018; Schlenker & Roberts, 2009; Roberts et al., 2013). Alternatively, others have assumed a fully
“linear” functional form; that is, ≡y Yit it (e.g., Lusk et al., 2019; Nolan & Santos, 2012; Xu et al., 2013). The
choice between the linear and semi‐log models can be cast in terms of the LHS transformation analyzed in
the seminal paper by Box and Cox (1964). Results reported in the Supporting Infomation Appendix
(Table A6) overwhelmingly favor the linear model relative to the (widely used) semi‐log model. Based on
these results, we focus on the linear formulation for the remainder of the paper.

Identification of the GE and trend impacts as modeled by Equation (1) relies on the temporal
and spatial variation in the adoption of GE varieties (Lusk et al., 2019; Xu et al., 2013). The crux of
the argument is that the timing of commercialization of specific GE varieties is largely exogenous—
see the related extensive discussion presented in Ciliberto et al. (2019). Other sources of productivity
growth, such as continuing germplasm improvement by conventional breeding, is also traditionally
taken as exogenous to farmers' decisions, and the model captures that by a linear trend. The fact that
the GE adoption was technologically constrained to zero up to 1996 helps with the identification of
GE effects, separate from other sources of yield growth that presumably operated throughout the
sample period. Furthermore, we recognize that the latter may operate differently under dissimilar
growing conditions, and the model permits trends to differ across states. Other confounding factors,
beyond the weather effects that we explicitly model (such as pest pressure differing across regions),
are assumed to be accounted for by country‐specific fixed effects.

We note at this juncture that the objective of this paper is close in spirit to Ortiz‐Bobea and Tack
(2018). Differences in modeling choices that bear on the interpretation of the results, however, are
worth noting. They do not use the information on the (gradual) adoption of GE varieties, and
instead rely on the timing of GE crop introduction, identifying the GE effect on yield by the
difference between the slopes from piecewise linear trend segments, before and after the initial 1996
commercialization of the GE technology. By contrast, we explicitly introduce the adoption rates in
the model and represent this effect as an additive factor. This maintains that the gains from the

1
GE traits conferring insect resistance provided a novel technology to control infestations, such as those by the European corn borer, that had hitherto been only

partially treated. By contrast, GT traits simply provided a new (cost‐effective) avenue to weed control that, however, had already been effectively managed with

alternative herbicides. The large body of experimental evidence analyzed by Nolan and Santos (2012) indicates strong yield effects from IR traits, and essentially no

impact of HT on maize yield.
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adoption of these first‐generation agronomic GE traits is a one‐time occurrence (notwithstanding
the fact that genetic engineering, going forward, may be essential to sustain the trajectory of
productivity gains captured by the underlying linear trend).

4 | ESTIMATION RESULTS

Results for the GE effect on maize yield from the historical data from 1981 to 2020 are reported in
Table 1.2 In this table Models 1 and 2 are defined in Equation (1) when, respectively, the interaction
effects between GE adoption and weather variables are not and are included. It is apparent that
conditioning yield response by realized weather variables is crucial. The F statistics of the null

TABLE 1 Estimated yield model, 1981–2020 (36 states)

Model 1 Model 2
Coefficient SE p Value Coefficient SE p Value

GE 16.60 0.533 0.000 14.22 0.528 0.000

GDD 0.0120 0.0012 0.000 0.0144 0.00129 0.000

HDD −0.316 0.009 0.000 −0.293 0.0102 0.000

VPD 3.396 1.338 0.011 10.47 1.399 0.000

VPD, July–Aug −29.13 0.619 0.000 −27.22 0.704 0.000

PPT 0.0510 0.00327 0.000 0.0814 0.00442 0.000

PPTsq −0.0000485 2.61E−06 0.000 −0.0000799 3.85E−06 0.000

GE ×GDD 0.000647 0.00163 0.691

GE ×HDD 0.0286 0.0195 0.143

GE × VPD −13.75 2.602 0.000

GE × VPD, July–Aug −12.93 1.597 0.000

GE × PPT −0.0110 0.00837 0.190

GE × PPTsq 0.0000252 6.59E−06 0.000

Avg. time trend 0.826 0.105 0.000 0.945 0.102 0.000

State‐specific trend:

Illinois 1.320 0.0296 0.000 1.300 0.0292 0.000

Indiana 1.208 0.0287 0.000 1.157 0.0288 0.000

Iowa 1.520 0.0282 0.000 1.433 0.0283 0.000

Constant 86.31 0.205 0.000 85.56 0.206 0.000

Adj. R2 0.776 0.782

N 60,400 60,400

Note: All weather variables are demeaned so as to have a mean of zero over the estimation sample, such that the effect of the coefficient of the
GE variable is directly comparable between Models 1 and 2 (which includes interaction effects).

Abbreviations: GE, genetically engineered; HDD, extreme heat degree days; GDD, growing degree days; VPD, vapor pressure deficit.

2
Estimation of the panel data model relies on the REGHDFE module in Stata (Correia, 2019).
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hypothesis that the coefficients for all weather variables are jointly equal to zero is, respectively,
F̂ (658, 583) = 2456.0 for Model 1 (no interaction effects) and F̂ (12, 58, 577) = 1349.5 for Model 2.
It is apparent that the null of no weather impacts is conclusively rejected (p < 0.0001 in all cases).
The GE‐weather interaction effects included in Model 2 are also significantly different from zero in
their own: the F statistics is F̂ (658, 577) = 174.62. Consistent with previous research results, for all
models reported in Table 1, we find that the GDD variable has a positive and significant impact on
yields, whereas heat stress, captured by the HDD variable, has a negative and significant impact.

Our inferences, here and in what follows, are based on the so‐called Huber‐White covariance
that is robust to heteroscedasticity (White, 1980). The question that naturally arises in this setting is
whether concerns about the nature of the panel data at hand (arising, e.g., from correlated weather
across counties in the same state, or from the use of state‐level adoption rates for GE traits), should
suggest the use of clustered standard errors. As discussed by Abadie et al. (2017), much of the
conventional wisdom on this matter appears misplaced. We provide additional discussion of this
matter in the Supporting Information Appendix, where we also report the results of a few alternative
clustering strategies (Table A7).

Water stress matters as well, in a substantial way. Yield response to precipitation is (predictably)
concave. As the model includes season‐total VPD and July–August VPD separately, the effect of
VPD on yield from July to August can be measured by summing the two coefficients. The positive
coefficient of the season‐total VPD implies a positive effect of VPD on yield in the early‐to‐middle
growing season. For July and August, however, the corresponding VPD coefficient is negative and
much larger than that of the season‐long variable, indicating an overall negative impact of VPD on
yield. This is consistent with evidence that water stress is particularly detrimental to yield during
certain stages of crop development (Lobell et al., 2014; Ortiz‐Bobea et al., 2019)—for maize, July and
August are critical months for plant growth. Water stress coefficients are found to be highly
statistically significant.

The effects of technology on maize output are large in magnitude and statistically significant.
Model 2, the most general specification and our baseline parameterization, shows an average gain of
0.95 bushels per acre per year across all counties over the period 1981–2020 (this estimate is a simple
average of estimated state‐specific trend coefficients). State trend effects are quite heterogeneous—
the F‐test of the null hypothesis for the equality of state‐specific trend coefficients gives a statistic of
F̂ (35, 58, 577) = 93.27, clearly rejecting the null (p < 0.0001). For illustration, we also report the
state‐specific trend coefficients for the three states with the largest contribution to US maize
production—Iowa, Illinois, and Indiana. Clearly, in these three corn‐belt states, the annual yield
gain from technological improvements captured by the time trend is much higher than in the rest of
the country.

Model 1 suggests that the full adoption of GE traits, per se, contributes a one‐time gain of about
16.6 bu./acre. This effect is large, equivalent to the gains of almost 20 years of underlying trend
effects. Model 2, which accounts for the interaction effects of GE with weather variables, provides a
slightly attenuated estimate. Note that all weather variables were demeaned (using the overall
average over the historical period) to ensure that the coefficients of the GE variable are directly
comparable between Models 1 and 2. From Table 1 it is apparent that the overall impact of allowing
the interaction between weather and GE traits actually lowers the estimated GE effect, to 14.2 bu./
acre (at full adoption of first‐generation GE varieties). Thus, in this model, the GE effect is
equivalent to about 16 years of the underlying trend effect.3

The estimated coefficients for the interaction GE‐weather terms are suggestive of the potential
effect of GE varieties under climate change. The interaction effect between GE and GDD is
essentially nil. The interaction between GE adoption and the HDD variable suggests a moderate

3
Our estimated GE effect is remarkably close to that inferred by Nolan and Santos (2012) who, with a very different methodology and data, estimated the yield gains for

GE maize in the range of 13.3 and 14.8 bu./acre.

LEE ET AL. | 7



positive effect, with GE traits making maize yield more resilient to high temperatures. This
estimated effect, however, is not statistically significant. A similar mitigating effect has been found
by Wang et al. (2021) with field trial data from Wisconsin. What stands out are the interaction
effects between GE adoption and VPD variables, both of which are negative, large, and statistically
significant. Whereas the growing‐season VPD has a positive coefficient absent GE, the net effect is
negative after the full GE adoption. These findings appear consistent with a strand of literature
documenting an increased yield vulnerability to water stress after the introduction of GE varieties
(e.g., Lobell et al., 2014). GE‐precipitation interactions, on the other hand, seem to reduce yield
sensitivity to higher rainfalls in the growing season.

Because Model 2 captures the effects of GE traits and weather variables in a more nuanced
fashion, and the inclusion of interaction effects is supported by the F test, in what follows we rely on
this model to analyze the impact of climate change on yields.

5 | YIELD PROJECTIONS WITH CLIMATE CHANGE

Using the estimated yield models, we can assess the extent to which technology improvements, and
climate change, are likely to affect future yields. For this purpose, future weather variables are used
to forecast maize yields under alternative growth regimes and climate change scenarios. If we denote
future variables by the superscript “f”, and the estimated parameters of the model in Equation (1) by
a hat, the projections for future yields are expressed as:

( )y α G γ G τ TX β̂ δ̂ˆ = ˆ + + + ˆ + ˆ ( forecast with projected future weather),it
f

i it
f

s s s t
0 0 (2)

( )y α G γ G τ TX β̂ δ̂˜ = ˆ + + + ˆ + ˆ ( forecast with model‐implied historical weather),it
f

i i
h

s s s t
0 0 (3)

where ∈t {2040, …, 2059} for mid‐century projections and ∈t {2080, …, 2099} for end‐of‐century
projections. In Equation (3), Xi

h denotes the (row) vector of weather variables under the
presumption of a stationary climate, proxied by their average value of weather variables predicted by
the relevant climate model over the historical period 1981–2005. By contrast, Xit

f in Equation (2)
denotes the (row) vector of projected future weather variables according to the relevant climate
change model and warming scenario. Note that, in all future periods, the adoption rates of GE
varieties are held constant at Gs

0. Specifically, we fix this rate at the observed 2020 level.4

Although this may be obvious, we emphasize that the counterfactual projections based on
Equations (2) and (3) are not meant to be unconditional forecasts—among other things, we do not
attempt at forecasting what future agronomic technologies might be. Rather, these projections are
conditional forecasts about how anticipated future climatic conditions are likely to affect realized
maize yields given the estimated response to weather variables over the historical period, and also
the continuation of crop improvement as captured by the underlying trend.

Predicted counterfactual yields under a specific climate change scenario (using Equation [2])
and under a stationary climate scenario (using Equation [3]) are obtained at the county level. These
predictions are then aggregated to the national level using county‐level weights based on the acreage
of harvested maize in the 2017 Census of Agriculture.

The “yield gap” due to climate change is defined here as the difference between the expected
yield with the anticipated climate change and the yield one would expect given stationary climate
conditions (at recent historical levels)—in both cases, conditional on normal technological progress

4
The national average for this adoption rate is about 91%. We view this as a somewhat more conservative assumption than the alternative of full adoption

(i.e., G = 1s
0 , ∀ s).
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as captured by the underlying trend. Estimates of such yield shortfalls are reported in Table 2. It is
apparent that climate change is predicted to have sizeable impacts on maize yield. Across all 20
GCMs, the ensemble mean at mid‐century indicates a yield shortfall of 25.5 bu./acre for the RCP 4.5
scenario, and 37 bu./acre for the RPC 8.5 scenario. The estimated yield gaps are larger at the end‐
century, with an average shortfall due to climate change of 34.7 bu./acre for RCP 4.5 and 82.4 bu./
acre for RCP 8.5. It is also apparent that the various GCMs lead to considerable variability in
predicted outcomes. For mid‐century, predicted yield shortfalls range from a minimum of 3.8 bu./
acre (model MRI‐CGCM3 under RCP 4.5) to a maximum of 69.9 bu./acre (model MIROC‐ESM‐
CHEM under RCP 8.5). Similarly, at the end century, predicted yield shortfalls range from a
minimum of 7.3 bu./acre (again with model MRI‐CGCM3 under RCP 4.5) to a maximum of 146.8
bu./acre (model HadGEM2‐CC365 under RCP 8.5).

TABLE 2 Maize yield shortfalls due to anticipated climate change: 20 climate models

Mid century End of century
Global climate model RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5

HadGEM2‐ES365 44.0 64.6 67.1 129.5

HadGEM2‐CC365 37.7 68.7 44.8 146.8

MIROC‐ESM 34.9 66.7 52.2 133.8

MIROC‐ESM‐CHEM 43.5 69.9 49.6 121

NorESM1‐M 38.1 49.7 52.3 110.6

CCSM4 32.2 52.4 46.6 91.7

bcc‐csm1‐1‐m 28.7 38.8 40.8 91.1

MIROC5 35.0 45.8 26.5 79.6

BNU‐ESM 28.3 40.5 33.8 83.3

CSIRO‐Mk3‐6‐0 25.9 35.5 36.2 80.4

bcc‐csm1‐1 31.5 29.7 28.4 84.7

IPSL‐CM5A‐MR 23.5 22.7 35.7 83.5

CanESM2 19.3 19.8 31.4 78.9

IPSL‐CM5A‐LR 19.0 23.3 31.5 64.7

GFDL‐ESM2G 15.5 23.8 23.8 53

CNRM‐CM5 11.8 25 25.4 50.6

inmcm4 15.7 18 27 47.3

GFDL‐ESM2M 13.9 18.5 21.4 43

IPSL‐CM5B‐LR 7.4 18.2 12 50.5

MRI‐CGCM3 3.8 8.2 7.3 23.9

Mean 25.5 37 34.7 82.4

Min 3.8 8.2 7.3 23.9

Max 44 69.9 67.1 146.8

Note: Models are listed in descending order based on the overall impact (average over mid‐century and end‐of‐century, and over both RCP 4.5
and RCP 8.5).
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Also worth noting, climate forecasts from HadGEM2‐ES and NorESM1‐M, perhaps the two
most widely used to contrast the impact of future climate predictions on agricultural productivity
(e.g., X. Chen & Chen, 2018; Malikov et al., 2020; Ortiz‐Bobea, 2020; Warszawski et al., 2014), turn
out to be quite pessimistic and not representative of the ensemble means of the full set of GCMs. In
particular, HadGEM2‐ES is the model that predicts the worst outcomes for future maize yields.

To appreciate the magnitude of the estimated yield shortfalls, we can use the estimated yield
gains realized by the adoption of first‐generation GE varieties as of 2020 as a benchmark. The yield
gain due to the (nearly complete) adoption of GE varieties, as implied by our estimated model, is
13.01 bu./acre. Thus, the estimated yield gaps due to climate change at mid‐century range from
approximately 2.0 to 2.7 times the entire realized yield gains made possible by the development and
widespread adoption of GE varieties. By the end of the century, the estimated yield gaps range from
2.8 times to 6.3 times the GE yield gain.

The results discussed in the forgoing are illustrated in Figure 1 (panel A pertains to the
RCP 4.5 pathway, and panel B is for RCP 8.5). The effects of anticipated climate change on

F IGURE 1 Forecasted yields under climate change, ensemble mean of 20 GCMs. GE, genetically engineered;
GCM, global climate model.
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maize yields are quite dramatic. For the more pessimistic RCP 8.5 pathway, climate change
totally offsets the yield gains from the underlying technical progress (as captured by the trend
in the estimated model), such that mid‐century and end‐century projected yields are actually
lower than 2020 yields.

Figure 2 describes the spatial distribution of estimated yield gaps, depending on the period and
scenario of reference. It is apparent that there exists considerable spatial variation in the yield gaps
attributable to climate change. Counties in the southern region turn out to be more sensitive and
vulnerable to warming climate change compared to the northern regions. This result is consistent
with the observation that southern counties are more likely to be exposed to climatic conditions
exceeding a critical threshold (e.g., Schlenker and Roberts [2009] report 29°C as a crucial threshold
for maize growth).

Burke et al. (2015) emphasize the importance of considering the role of climate uncertainty
when making inferences about economic outcomes of interest. Our analysis is well positioned
to gauge the impact of climate uncertainty, as we have relied on a broad set of 20 GCMs
available to us in MACA. Results are reported in Figure 3, which shows the range of climate
impacts by the type of uncertainty for the two warming scenarios considered, RCP 4.5 (panel
A) and RCP 8.5 (panel B). These diagrams illustrate the fact that the uncertainty of our
estimates arises mostly from climate uncertainty, whereas the role of regression uncertainty is
minimal.

Lee et al. (2022) provide more details on various aspects of the model, and investigate the
robustness of the results discussed in the foregoing with respect to using the semi‐log
parameterization for yields, or using a more restrictive geographic sample. They also present a
decomposition of estimated future yield shortfalls according to projected heat and water stress
determinants, although they note that meaningful separation of heat and water stress in the model is
inherently problematic.

F IGURE 2 County‐wise yield gap under climate change, the ensemble mean of 20 GCMs Panel A. RCP 4.5 Panel B. RCP
8.5. GCM, global climate model.
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6 | CONCLUSION

Agriculture is at the forefront of anticipated impacts of climate change, and considerable evidence
has accumulated to suggest that, without countervailing actions, large negative consequences are
probable. Whereas a number of strategies might be helpful to blunt climate change's impacts on the
food supply, there is a growing sense that major adaptation efforts will be necessary. Successful
adaptation may require purposeful, directed investments in R&D to develop suitable new
technologies. Just how large is the innovation effort required for successful adaptation in
agriculture? To shed some light on this question, in this paper we focus on maize production in the
United States. Maize is the most important field crop in the country and one that has benefited
greatly from major technological advances over the last few decades, including the development and
widespread adoption of GE varieties. The latter constitutes the most prominent set of agricultural
innovations since the green revolution. As the nature and scale of this GE revolution are well
understood, in this paper we propose to use it as a yardstick—that is, to gauge the scope of the
innovation task required for adaptation, to offset the impacts of anticipated climate change, in terms
of multiples of what was achieved by the widespread adoption of first‐generation GE traits in maize.

To be clear, our focus on first‐generation GE traits is not meant to suggest that GE technologies have
no further role to play going forward. Our point is that the GE productivity gains captured by our yield

F IGURE 3 Uncertainty range from all 20 climate models Panel A. RCP 4.5 Panel B. RCP 8.5. For each type of
uncertainty, the box shows the upper quartile and the lower quartile across bootstrap replications for yield gaps and the
middle line indicates the median of the estimated yield gaps. Whiskers range from the 5th percentile to the 95th percentile of
the bootstrap replications.
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model relate to a clearly defined set of innovations—first‐generation GE varieties embedding agronomic
traits—that were rapidly diffused (essentially to full adoption) over a relatively short time period. They are
best viewed as a one‐time bump in yields and, as such, provide an attractive yardstick to measure the
extent of the innovation challenges posed by adaptation to climate change. Going forward, genetic
engineering is expected to continue to play a key role in crop improvement. Indeed, promising new GE
technologies such as CRISPR, which offer novel methods to control and improve crops' genomes, are only
beginning to be deployed (K. Chen et al., 2019). For these new generations of GE technologies to affect
yields in the face of changing climatic conditions, however, targeted new R&D investments will be needed
—over and above those required to sustain the underlying trend of yield improvement estimated over the
sample period (which we maintain in all counterfactuals).

We confirm the finding of previous studies that GE traits have contributed significantly to increasing
maize yields. The estimated parameters suggest that the full adoption of (first‐generation) GE traits leads
to yield improvement in the range of 14.2 to 16.6 bushels per acre. Next, we use the model to forecast the
yield impact, at both mid‐century and end‐of‐the‐century, of weather patterns projected from a broad
set of 20 climate models under two warming scenarios (RCP 4.5 and RCP 8.5). We find that the average
yield shortfalls arising from adverse climate developments are large. The ensemble means across 20
GCMs indicate that climate change is expected to decrease maize yields in the range of 25.5–37 bu./acre
at mid‐century, and in the range of 34.7–82.4 by the end century. These yield shortfalls correspond to a
range of 2.0–2.7 times the yield gain from GE over the observed historical period at mid‐century, and to
a range of 2.8–6.3 times the GE yield gain at the end‐century. Finally, we establish that little uncertainty
originates from the estimated yield regression model and that virtually all of the estimated variability of
predicted yield impacts of climate change is due to climate uncertainty.

Extrapolation of the estimated maize yield shortfalls due to climate change to general
agricultural productivity is subject to some caveats, of course. In particular, when aggregating
county‐level results, including the counterfactuals under climate change conditions, we have relied
on fixed county‐specific weights. Thus, our results do not account for a margin of adjustment that
has been recognized as very relevant in this context—the possibility that climate change may affect
comparative advantage enough that the kind of crops grown, and their intensities, may spatially
relocate (Costinot et al., 2016). Crop switching, when feasible, can of course reduce the overall
impact of climate change on agricultural productivity (Rising & Devineni, 2020).

Notwithstanding the foregoing qualifications, the results we have presented imply that the
scope of adaptation to climate change, vis‐à‐vis agricultural productivity, is very challenging. For
the case of US maize, severe yield shortfalls are to be expected by the end of the century under a
wide range of climate model projections, especially for the warming scenario RCP 8.5. We find that
the estimated yield shortfalls are several times larger than the entire productivity gains due to the
adoption of first‐generation GE traits. This is particularly significant given that the development and
diffusion of such GE traits were made possible by a unique confluence of propitious circumstances
—by leveraging breakthrough advances in recombinant DNA techniques, unprecedented research
efforts by agrochemical and seed companies led to the invention of insect‐resistant and herbicide‐
tolerant traits that, once introduced into elite germplasm, were rapidly adopted by farmers. The
underlying R&D investments were substantial—for example, private sector expenditure on crop
seed and biotechnology R&D is estimated to have increased eightfold, in real terms, between 1994
and 2010 (Heisey & Fuglie, 2011). In this paper, we find that the magnitude of the impacts of the
(first generation) GE revolution on crop improvement may need to be replicated several times to
offset the damaging impact of climate change on maize yield. Large, sustained, and targeted research
efforts are needed to counter the negative implications of anticipated climate change.
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