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COHERENT SPECIFICATION OF A  
MIXED DEMAND SYSTEM:  

THE STONE-GEARY MODEL 
 

by GianCarlo Moschini and Pier Luigi Rizzi* 
 
 
 

HE SYSTEM-WIDE APPROACH TO DEMAND ANALYSIS has long been of 
interest to applied economists (Johnson, Hassan, and Green 1984). The most 
common specification of empirical models in this setting consists of express-

ing quantity demanded as a function of total expenditure and market prices—e.g., via 
a “direct” demand system. Whereas this approach corresponds to the usual 
representation of the individual consumer problem, its use within an econometric 
model requires some additional identifying assumptions—essentially, what is to be 
assumed as exogenous or predetermined. The standard specification of demand models 
with quantities consumed as the dependent variable thus relies on the implicit 
assumption that prices (and total expenditure) are predetermined. That is, if one 
thinks of the data at hand as the outcome of a market equilibrium model, the implicit 
assumption is that supply functions are perfectly elastic so that demands adjust to 
clear the market.  
 This condition may hold for aggregate (market) data in some situations—for ex-
ample, when modeling the demand of tradeable goods for a small, open economy, or 
when prices are administratively set (e.g., public utilities). But often the implicit as-
sumption that supplies are perfectly elastic is not tenable. Geary (1949–50) noted earlier 
on that “From the regression viewpoint, however, it would be equally logical to 
regard prices as dependent variables and quantities as independent variables….” This 
view, which is in keeping with the convention of representing demand curves with 
prices on the vertical axis, suggests an alternative assumption: quantities are pre-
determined, and prices adjust to clear the market along demand curves. In the system-
wide approach to demand analysis, this leads to the specification of “inverse” demand 
systems, an approach that has been found particularly appealing when analyzing the 
demand for perishable products defined over a short period of time. 
 Direct or inverse demand systems have been the object of a great many applica-
tions. Examples of direct demand system specifications include the (direct) translog 
(Christensen, Jorgenson, and Lau 1975), the almost ideal demand system (Deaton and 
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Muellbauer 1980b), the semiflexible almost ideal demand system (Moschini 1998), 
and the (direct) differential or Rotterdam model (Theil 1975 and 1976). Examples of 
inverse demand system specifications include the (inverse) translog (Christensen, Jor-
genson, and Lau 1975), the (inverse) Rotterdam model (Theil 1975 and 1976, Barten 
and Bettendorf 1989), the linear inverse demand system (Moschini and Vissa 1992), 
and the normalized quadratic specification (Holt and Bishop 2002).  
 A third class of demand models is that of “mixed” demand functions, first 
introduced by Samuelson (1965): for some goods the prices are given, but for some 
others it is the quantity that is given, and prices adjust to clear the market. This class 
of models has obvious econometric appeal for the purpose of estimating demand be-
havior, because it encompasses the entire spectrum of possibilities between the polar 
cases of direct and inverse demand functions. Specifically, the use of mixed demands 
could allow for a much richer set of options about what is to be assumed as exoge-
nous or predetermined in a demand system. Despite that, mixed demand functions have 
received comparatively little attention in applied studies. Heien (1977) invoked 
mixed demand theory to specify a reduced-form demand system for the meat sector, 
but theoretically consistent mixed demand systems have been scarce.   
 A feature that renders the specification of theory-consistent mixed demand 
functions challenging is that, in Samuelson’s (1965) formulation, knowledge of both 
direct and indirect utility functions is required to characterize their properties. This 
means that many commonly used flexible functional forms, such as the translog or the 
almost ideal systems, cannot be used directly in this context because these flexible 
functional forms do not have a closed-form dual representation. Perhaps for this 
reason, the system-wide approach to mixed demands seems to have been confined to 
the differential approach. Barten (1992) appealed to mixed demand theory to 
illustrate the choice of which variables to assume as exogenous, but actually 
estimated a standard Rotterdam model (while taking into account the endogeneity of 
some of the prices in formulating the likelihood function). Moschini and Vissa 
(1993), by contrast, formulated and estimated a true differential mixed demand 
system, and this formulation was recently used by Matsuda (2004).1  
 Even though such a Rotterdam-type mixed demand system is of considerable 
interest, for some applications (such as welfare analysis) it may be desirable to have 
an exact parametric representation of preferences. In this chapter we revisit the ques-
tion of how to specify an internally consistent system of mixed demand equations. 
We review the theoretical framework and show that mixed demand functions can be 
                                                 
1 Mixed demands also turn up in environmental economics (e.g., Cunha-e-Sá and Ducla-Soares 1999), 
although the setting there is more appropriately one of rationed demands (the goods in fixed supply are 
public goods and do not enter the consumer’s budget constraint).  
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explicitly derived for a special representation of preferences, namely the Stone-Geary 
utility function ( Samuleson 1947–48, Geary 1949–50). 
 It is well known, of course, that Stone-Geary preferences are restrictive. The mixed 
demand system that we derive, however, presents several motives of interest. First, it 
offers a theory-consistent benchmark against which more flexible mixed demand 
specifications may be compared. Second, the Stone-Geary mixed demand system pro-
vides an appealing framework for exploring in more detail the econometric implica-
tions of choosing the “incorrect” set of predetermined variables in demand models. 
The question essentially boils down to which specification is affected by an error-in-
variables problem, a situation that can lead to serious inconsistency in estimated pa-
rameters. To study this question one needs to compare direct and mixed (and inverse, 
if desirable) demand systems, and for that comparison to be meaningful the alterna-
tive specifications must all be traceable to the same underlying preference structure. 
Because, as we show, Stone-Geary preferences permit the explicit solution of both 
direct and mixed demand functions, the model that we present is rather useful for that 
purpose. We illustrate this with a simple Monte Carlo experiment that contrasts a six-
good direct demand system with a comparable mixed demand system.  
 But the mixed demand system that we derive—which, to our knowledge, has not 
been presented elsewhere—should be of interest in its own right. The Stone-Geary 
utility representation of preferences played an important role in the early 
development of empirical demand analysis, leading to the development of the linear 
expenditure system (LES) (Klein and Rubin 1947–48, Stone 1954). The LES model 
has been used in countless applications, and its simplicity, exact aggregation 
properties, and parametric parsimony continue to make it of interest to practitioners. 
Its restrictive features include that it rules out inferior goods, and that it constrains the 
substitution possibilities across goods (all goods are net substitutes). Whether the 
latter is a serious problem depends on the intended application (in most cases, goods 
are in fact expected to be net substitutes). In any event, this feature allows the Stone-
Geary mixed demand system that we derive to provide a nice illustration of Madden’s 
(1991) R-classification (the generalization, to the case of rationed demands, of the 
notion of Hicksian substitutability and complementarity). Another restrictive feature 
of the LES system is that it entails linear Engel curves (the underlying utility function 
is a special case of quasi-homothetic preferences). This attribute is most damaging in 
the context of complete demand systems, where Engel curves are expected to display 
substantial nonlinearity (Deaton and Muellbauer 1980a). But in conditional demand 
systems that model only a weakly separable partition of the consumption bundle, such 
as the one we present in our application to vegetable demand in Italy, this restriction 
on the shape of Engel curves may be less important.  



4  ESSAYS IN HONOR OF STANLEY R. JOHNSON 
 

  
Mixed Demands 

 
ONSIDER A CONSUMER WHO ALLOCATES disposable income to ( )m n+  goods. 
Let 1 2( , ,..., )nx x x x≡  denote the vector of commodities chosen optimally and 

let 1 2( , ,..., )mz z z z≡  denote the vector of commodities in fixed quantity whose prices 
are optimally determined. Correspondingly, pi denotes the nominal price of xi, whereas 
qk denotes the nominal price of zk. Total consumer expenditure (income, for short) is 
y. Mixed demands can then be derived from the constrained optimization problem 
(Samuelson 1965): 
 
  max ( , ) ( , , ) . .

,
U x z V p q y s t px qz y

x q
− + = , (1) 

 
where (.)U  and (.)V  are the direct and indirect utility functions, respectively, which 
are assumed quasiconcave and quasiconvex in their respective arguments, as well as 
satisfying standard monotonicity properties.2 The solution to (1) gives Marshallian 
mixed demand vectors x*=x(p,z,y) and q*=q(p,z,y). Clearly, at the optimum, 
U ( x * , z ) =  V(p ,q* ,y )≡VM (p,z ,y ) , where VM is the mixed utility function.  
 The mixed demand functions x(p,z,y) and q(p,z,y) satisfy Walras’s law (the 
adding-up condition), that is, ( , , ) ( , , )p x p z y q p z y z y⋅ + ⋅ = . Moreover, the functions 

( , , )x p z y  are homogeneous of degree zero in (p,y), whereas the functions q(p,z,y) 
are homogeneous of degree one in (p,y). It follows also that the mixed utility 
function is homogeneous of degree zero in p and y. The symmetry property that 
applies to mixed demand functions can be characterized in terms of the restricted 
expenditure function ( , , )C p z u  used in the related area of rationed demand (Gorman 
1976, Neary and Roberts 1980): 
  
  { }( , , ) min ( , )C p z u p x U x z u

x
≡ ⋅ ≥ . (2) 

 
Although mixed demands and rationed demands share important similarities, they 
should be carefully distinguished (in the case of rationed demands some markets do 
not clear). But compensated mixed demands are the same as the compensated de-
mands under rationing (Chavas 1984). The cost function ( , , )C p z u  is nondecreasing 
in p, nonincreasing in z, increasing in u, and homogeneous of degree one and concave 

                                                 
2 Samuelson (1965) and Chavas (1984) represent the indirect utility function in terms of normalized 
prices p i /y , which helps the derivation of duality relations. As long as y is given, however, the repre-
sentation in (1) is admissible and simplifies somewhat the interpretation of the model. 

C 
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in p. Also, the restricted cost function ( , , )C p z u  is convex in z if the utility function 
is quasiconcave (Deaton 1981). 
  From Shephard’s lemma, the partial derivatives of ( , , )C p z u  with respect to p 
give the compensated (i.e., Hicksian) mixed demands for goods whose quantity is op-
timally chosen, i.e., the solutions to problem (2), denoted ( , , )hx p z u . Moreover, the 
partial derivatives of ( , , )C p z u  with respect to z give (the negative of) the vector of 
compensated shadow or virtual prices of the goods in predetermined quantity. These 
shadow prices, denoted ( , , )hq p z u , are the compensated price-dependent demand 
functions of z, that is, the prices that would have resulted in the quantity z actually 
being the cost-minimizing solution. Specifically, 
 
  ( , , ) ( , , )h

pC p z u x p z u∇ =  (3) 
 
  ( , , ) ( , , )h

zC p z u q p z u∇ = − . (4) 
 
 The compensated demand functions ( , , )hx p z u  are homogeneous of degree zero 
in p whereas the compensated price functions ( , , )hq p z u  are homogeneous of degree 
one in p. Curvature and symmetry conditions imply that the matrix of partial 
derivatives ( , , )h

p x p z u∇  is symmetric and negative semi-definite, that the matrix of 
partial derivatives ( , , )h

zq p z u∇  is symmetric and negative semi-definite, and that 
( , , )h

z x p z u∇ =  ( , , )h
pq p z u−∇ . These conditions also imply that the Hessian of the 

restricted cost function is skew symmetric. 
 The Hicksian mixed demand functions in (3) and (4) are related to the Marshallian 
mixed demand functions that solve problem (1) by the standard identities: 
 
  ( )( , , ) , , ( , , )h Mx p z y x p z V p z y=  (5) 

 
  ( )( , , ) , , ( , , )h Mq p z y q p z V p z y= , (6) 

 
where VM (p,z ,y )  is the “mixed utility function” defined earlier. In principle, the 
mixed utility may be obtained from the restricted cost function by solving for u the 
identity 
 
  ( ) ( ), , , ,zC p z u C p z u z y−∇ ⋅ ≡ . (7) 
 
Clearly, it is not possible to obtain a closed-form solution for VM(p,z,y) for an arbi-
trary specification of C(p,z,u). For this reason, for example, the PIGLOG cost func-
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tion used by Deaton (1981) to model rationed demand is not particularly appealing in 
the present context. Elsewhere (Moschini and Rizzi 2006) we show that an appropriate 
choice for the parameterization of C(p,z,u) can provide a mixed demand system that 
satisfies the standard requirements of a “flexible functional form.” In what follows, 
however, we follow the direct route of solving the problem in (1) for a specific 
representation of preferences for which we can write both direct and indirect utility 
functions in closed form, namely the case of Stone-Geary preferences.  
 

 
The Stone-Geary Mixed Demand System 

 
HE STONE-GEARY UTILITY FUNCTION played an important role in the early 
development of empirical demand analysis. The LES derived by Klein and 

Rubin (1947-48), later systematically implemented by Stone (1954) in the first large-
scale demand system estimation, was shown to be integrable into a simple direct 
utility function by Geary (1949-50) and Samuleson (1947-48). A concise and infor-
mative background discussion is provided by Neary (1997), who points out that Nash’s 
(1953) solution to his classic axiomatic bargaining problem also entails a function of 
the Stone-Geary type. The direct and indirect utility functions for Stone-Geary prefer-
ences are written as 
 

  
1 1

( , ) ( ) ( )i k
n m

i i k k
i k

U x z x zα β

= =
= − γ − δ∏ ∏  (8) 

 

  
1 1 1 1

( , , ) i k
n mn m

i i k k i k
i k i k

V p q y y p q p q−α −β

= = = =

⎛ ⎞= µ − γ − δ⎜ ⎟
⎝ ⎠

∑ ∑ ∏ ∏ , (9) 

 
where 0,i iα > ∀ , and  0,k kβ > ∀ , and 1 1 .i kn m

i ki k
α β

= =µ = α β∏ ∏  Regularity conditions 
also require ( ) 0,i ix i− γ > ∀ , ( ) 0,s sz s− δ > ∀ , and without loss of generality we put 

1 1 1n m
i ki k= =α + β =∑ ∑ .  

 Given this parameterization of preferences, the first-order conditions for the 
problem in (1) are 
 

  , 1,...,j
j

j j
p j n

x
α

= λ =
− γ

 (10) 

 

T 
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1 1

, 1,...,s s
sn m

s
i i k k

i k

z s m
qy p q

= =

δ β
+ = λ =

⎛ ⎞− γ − δ⎜ ⎟
⎝ ⎠

∑ ∑
 (11) 

 

  
1 1

n m

i i k k
i k

p x q z y
= =

+ =∑ ∑ , (12) 

 
where λ is the Lagrange multiplier. The solution to this set of equations, slightly more 
involved than those of the standard Stone-Geary direct utility maximization problem 
(see the Appendix), yields the following mixed demand equations: 
 

  1*

1 1

, 1, 2,...,

n

i i
j i

j j m n
k kj

i
k ik k

y p
x j n

zp
z

=

= =

⎛ ⎞− γ⎜ ⎟α ⎝ ⎠= γ + =
β⎛ ⎞+ α⎜ ⎟− δ⎝ ⎠

∑

∑ ∑
 (13) 

 

  1*

1 1

, 1,...,

n

i i
s i

s m n
k ks s

i
k ik k

y p
q s m

zz
z

=

= =

⎛ ⎞− γ⎜ ⎟β⎛ ⎞ ⎝ ⎠= =⎜ ⎟ β− δ ⎛ ⎞⎝ ⎠ + α⎜ ⎟− δ⎝ ⎠

∑

∑ ∑
. (14) 

  
 The Hicksian mixed demand functions are obtained by solving the problem in (2) 
given the utility function in (8), yielding  
 

  
1 1

1

1 1
( ) , 1, 2,...,

i

k

a an mj ih a
j j k k

i kj i

px u z j n
p

α −
β

= =

⎡ ⎤α ⎛ ⎞ ⎡ ⎤= γ + −δ =⎢ ⎥⎜ ⎟ ⎢ ⎥α ⎣ ⎦⎝ ⎠⎢ ⎥⎣ ⎦
∏ ∏  (15) 

 
and the associated restricted (rationed) cost function 
 

  ( )
1 1

1

1 1 1
, , ( )

i

k

a an mn
ia

j j k k
j i ki

pC p z u p au z
α −

β

= = =

⎡ ⎤⎛ ⎞ ⎡ ⎤= γ + − δ⎢ ⎥⎜ ⎟ ⎢ ⎥α ⎣ ⎦⎝ ⎠⎢ ⎥⎣ ⎦
∑ ∏ ∏ , (16) 

 
where 1

n
iia =≡ α∑ . Differentiating this cost function yields the compensated shadow 

price equations ( ), ,h
s sq C p z u z≡ −∂ ∂ ; that is, 
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1 1

1

1 1
( ) , 1,...,

i

k

a an m
s ih a

s k k
i ks s i

pq u z s m
z

α −
β

= =

⎡ ⎤β ⎛ ⎞ ⎡ ⎤= − δ =⎢ ⎥⎜ ⎟ ⎢ ⎥− δ α ⎣ ⎦⎝ ⎠⎢ ⎥⎣ ⎦
∏ ∏ . (17) 

 
 The Hicksian mixed demands of the Stone-Geary parameterization permit a nice 
illustration of Madden’s (1991) R-classification, that is, the generalization, to the case 
of rationed demands, of the notion of Hicksian substitutability and complementarity. 
Differentiating the Hicksian mixed demand and shadow price equations in (15) and 
(17), it is easily verified that 
 

  0 , , 1,..., ,
h
jx

j n j
p
∂

> ∀ = ≠
∂

 

  0 , 1,..., , 1,...,
h
j

s

x
j n s m

z
∂

< ∀ = =
∂

 

  0 , , 1,..., ,
h
s

r

q s r m s r
z

∂
< ∀ = ≠

∂
 

  0, 1,..., , 1,...,
h
s

j

q s m j n
p
∂

> ∀ = =
∂

. 

 
Thus, for the Stone-Geary mixed demand system, we find that all goods behave in 
accordance with Madden’s (1991) definition of R-substitutes. This should come as no 
surprise because it is well know that the Stone-Geary preferences, in the context of 
ordinary demand functions, force all goods to behave as Hicksian substitutes. 
 
 

Direct or Mixed Demands? A Monte Carlo Illustration 
 

ECAUSE THE STONE-GEARY PREFERENCES allow for explicit and internally 
consistent derivation of both direct demands and mixed demands, they offer an 

interesting opportunity to explore the consequences of choosing which variables to 
assume as predetermined in applied demand analysis. Here we illustrate with a simple 
Monte Carlo example. We will compare two specifications: (a) all expenditure-deflated 
prices are predetermined; and (b) for one-half of the goods the prices are predetermined 
and for the other half it is the quantities that are predetermined. Thus, (a) leads to the 
standard direct demand system framework, whereas (b) leads to the mixed demand sys-
tem framework. 

B 
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 From the postulated Stone-Geary utility function, the direct demand equations are 
written as 

  *

1 1
, 1, 2,...,

n mj
j j i i k k

i kj
x y p q j n

p = =

α ⎛ ⎞= γ + − γ − δ =⎜ ⎟
⎝ ⎠

∑ ∑  (18) 

 

  *

1 1
, 1, 2,..., .

n m
s

s s i i k k
i ks

z y p q s m
q = =

β ⎛ ⎞= δ + − γ − δ =⎜ ⎟
⎝ ⎠

∑ ∑  (19) 

 
As in many demand systems specifications, we will work with budget shares as the 
dependent variable, where the shares are defined as wi ≡ pi xi / y and ws ≡ q s z s / y .  Hence, 
direct and mixed demand systems have the same observable left-hand-side variable, 
which facilitates comparison. For the direct demand functions in (18)–(19) we have 
 

  *

1 1
1 , 1,2,...,

n mj i k
j j j i k

i k

p p qw j n
y y y= =

⎛ ⎞
= γ + α − γ − δ =⎜ ⎟

⎝ ⎠
∑ ∑  (20) 

 

  *

1 1
1 , 1,2,...,

n m
s i k

s s s i k
i k

q p qw s m
y y y= =

⎛ ⎞
= δ +β − γ − δ =⎜ ⎟

⎝ ⎠
∑ ∑ . (21) 

 
For the mixed demand equations in (13)–(14), on the other hand, we have 
 

  1*

1 1

1
, 1,2,...,

n
i

i
ij

j j j m n
k k

i
k ik k

p
p y

w j n
zy

z

=

= =

⎛ ⎞
− γ⎜ ⎟

⎝ ⎠= γ + α =
β⎛ ⎞+ α⎜ ⎟− δ⎝ ⎠

∑

∑ ∑
 (22) 

 

  1*

1 1

1
, 1,...,

n
i

i
is s

s m n
k ks s

i
k ik k

p
yzw s m

zz
z

=

= =

⎛ ⎞
− γ⎜ ⎟β⎛ ⎞ ⎝ ⎠= =⎜ ⎟ β− δ ⎛ ⎞⎝ ⎠ + α⎜ ⎟− δ⎝ ⎠

∑

∑ ∑
. (23) 

 
 In this Monte Carlo experiment we consider the case of six goods and set n = 3 
and m = 3. The postulated true preference parameters, held fixed throughout, are 
reported in Table 1. For ease of interpretation, this table also reports the own-price 
elasticities and the expenditure elasticities that are implied by these parameters (at the 
mean point of the data generated). 
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 Table 1. Stone-Geary Parameters of True Model 
    Direct Demand Elasticities 

Parameters Good Own-price Expenditure 

α1 0.08 γ1 0.04 x1 -0.69 0.67 

α2 0.18 γ2 0.07 x2 -0.77 0.72 

α3 0.24 γ3 -0.06 x3 -1.25 1.33 

β1 0.10 δ1 0.08 z1 -0.60 0.56 

β2 0.15 δ2 -0.05 z2 -1.43 1.50 

β3 0.25 δ3 -0.08 z3 -1.35 1.47 

 
 
elasticities and the expenditure elasticities that are implied by these parameters (at the 
mean point of the data generated).  
 The experiment proceeds under the alternative assumptions that the structural part 
of the true model is either the system of direct demands in (20)–(21) or the system of 
mixed demands in (22)–(23). Consider first the case when the true data-generating 
process (DGP) is that of direct demand functions. In such a case, for each replication, 
we proceed as follows: 
 
 (a) Fix the sample size T and the parameters’ true value (as given in Table 1). 
 (b) Generate the right-hand-side variables of the share equations in (20)–

(21). Specifically, we put y = 1 throughout (so that prices can be inter-
preted as expenditure-deflated prices, as suggested by the homogeneity 
property) and generate (by using a pseudo-random number generator) 
“true” prices ip  and sq  as normal variables with mean one and with co-
variance [ ]rΣ ≡ σ , where 0.20σ = , ( 1,..., )m n∀ = + , and rσ =  

20.6 ( )× σ , ( 1,..., )r m n∀ ≠ = + . 
 (c) Generate the “true” quantity values, denoted ix  and sz , by using (18)–

(20) and the prices ip  and sq  generated in the previous step.  
 (d) Generate the vectors or error terms, by using a pseudo-random number 

generator, as zero-mean normal variates ~ (0, )e N Ω , where the covari-
ance matrix has the following structure: [ ]rΩ ≡ Ω , , 1,..., 1r m n= + − , 
where 2Ω = ω , r rΩ = ρω ω ( )r∀ ≠ , 0.01ω =  ( )∀ , and 0.2ρ = − . 

 (e) Generate the “observed” prices as i ip p=  and k kq q= , and the “ob-
served” quantities as ( )i i i ix x y p e= +  and ( )k k k kz z y q e= + . Compute 
“observed” shares as i i iw p x y=  and k k kw q z y= . Note that, by con-
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struction, wi= iw +ei and wk = kw +ek, where i i iw p x y≡  and kw ≡  
k kq z y . 

 (f) Estimate the parameters of the Stone-Geary model by the standard maxi-
mum likelihood estimator for seemingly unrelated regressions (as dis-
cussed below in the context of the empirical application) for both the 
direct demand share system in (20)–(21) (the true model in this case) 
and the mixed demand system in (22)–(23) (the misspecified model in 
this case). 

 
 The foregoing procedure is readily modified for the case when the mixed demand 
system is the true model (and thus the direct demand system is the misspecified 
model). In that case, step (e) is replaced by the following: 

 (e′) Generate the “observed” prices as i ip p=  and ( )k k k kq q y z e= + , and 
the “observed” quantities as ( )i i i ix x y p e= +  and k kz z= . Compute 
“observed” shares as wi = pi xi / y and wk = qk zk / y. Note that, by construc-
tion, wi = iw + ei  and k k kw w e= + , where i i iw p x y≡  and k k kw q z y≡ . 

 To elaborate briefly on this Monte Carlo experiment, note that in step (b) we have 
assumed some positive correlation between expenditure-deflated prices (as typically 
found in applications of demand analysis). By contrast, the covariance structure in 
step (d) maintains a negative correlation between share errors (as naturally occurs 
because the budget constraint require errors to add up to zero over all equations). 
Also relevant is the signal-to-noise ratio that is implied by the covariance structure of 
step (d). That is best illustrated by what it implies in terms of fit for the estimated 
equations. If 2R  denotes the standard measure of fit for equation 1,2,...,m n= + , on 
average (as calculated in the experiment presented below) the parameterization that 
we have chosen entails the following fit for the true models (either direct or mixed): 

2
1 0.40R = , 2

2 0.65R = , 2
3 0.58R = , 2

4 0.70R = , 2
5 0.50R = , and 2

6 0.70R = . 
 The experiment just described, with sample size 25T = , was replicated N = 2,000  
times, and some results are reported in Table 2. Specifically, in this table, and for 
each model, we report the average percent bias for each parameter. For example, for 
parameter αi the average percent bias is computed as 
 

   
1

ˆ1 100
rN
i i

r iN =

⎛ ⎞α −α
×⎜ ⎟α⎝ ⎠

∑ ,  

 
where ˆ r

iα  is the estimated parameter in the r th replication, and αi is the correspond-
ing true parameter value (as in Table 1). Similar definitions apply to the other para- 
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Table 2. Average Percent Bias of Estimated Parameters 
 True DGP: Direct Demand System True DGP: Mixed Demand System 

Parameter Mixed Model Direct Model Mixed Model Direct Model 

α1 -7.06 -0.17 -0.52 7.30 
α2 -6.08 0.06 -0.35 5.93 
α3 -5.36 0.13 -0.23 5.10 
β1 21.12 -0.06 0.13 -1.72 
β2 6.26 -0.16 0.77 -14.02 
β3 -0.42 0.01 0.12 -2.40 
γ1 -11.33 0.62 0.36 15.53 
γ2 -17.32 0.22 0.03 23.03 
γ3 -29.99 0.23 -0.30 38.78 
δ1 -47.11 0.16 -0.56 19.50 
δ2 -62.27 0.98 -4.02 78.66 
δ3 -41.07 0.44 -1.71 50.45 

Mean absolute value 21.28 0.27 0.76 21.87 
Note: Number of replications: N = 2,000; sample size: T = 25. 

 
 
meters. It is clear that estimated true models display essentially no bias. The average 
(over all parameters) absolute percent bias is 0.27 for the direct model when it 
corresponds to the true DGP, and it is 0.76 for the mixed model when that is the true 
model. On the other hand, estimating the mixed model when the true DGP is the 
direct model, or estimating the direct model when the true DGP is the mixed model, 
entails considerable bias. The average (over all parameters) absolute percent bias in 
such cases is 21.87 for the direct model and 21.28 for the mixed model. These 
conclusions are supported by the average percent root mean square errors (RMSE) for 
each parameter (not reported here), which account for the sampling variance of the 
estimators (in addition to the bias). It is clear that the performance of the direct or 
mixed demand models depends on whether or not they correspond to the true DGP. 
 Finally, Table 3 illustrates the finite-sample properties of the estimators consid-
ered as the sample size increases. Specifically, to get an idea of the asymptotic con-
vergence, we allow the sample size to increase from 25 to 400. Increasing the sample 
size does not help the precision of the estimates if the assumptions about which vari-
ables are the predetermined ones do not correspond to the true DGP. Estimating the 
“incorrect” model clearly leads to inconsistent parameter estimates. This, of course, is 
to be fully expected. Estimating the direct model when in fact the mixed demand
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Table 3. Average (Absolute) Percent Bias and Sample Size 

  Sample size 
True model Estimating Model 25 50 100 200 400 
 Direct Direct 0.27 0.20 0.09 0.08 0.07 
 Mixed 21.28 20.76 20.33 20.27 20.15 
 Mixed Direct 21.87 21.91 21.64 21.76 21.76 
 Mixed 0.76 0.53 0.22 0.15 0.09 

 
model is the correct specification essentially entails an error-in-variable problem. In 
such a situation, standard estimation techniques lead to inconsistent estimators (Fuller 
1987). In particular, as in Moschini (2001), standard seemingly unrelated regression 
estimation of demand systems is bound to give inconsistent estimates of the underly-
ing preference parameters. 
 
 

An Application to the Italian Demand for Vegetables 
 

HE STONE-GEARY MIXED DEMAND SYSTEM derived here is illustrated with an 
application to the demand for vegetables using Italian monthly. These data com-

prise both fresh vegetables as well as canned and frozen vegetables. Our presumption 
here is that, in this setting, the supplies of fresh vegetables are predetermined and 
perishable, so that prices adjust to clear the market for these goods. On the other hand, 
for frozen vegetables and canned vegetables (which are easily stored), the standard pre-
sumption that prices are given, and quantities adjust, seems more acceptable. Thus, as 
in Barten’s (1992) application, this data set appears to fulfill the basic assumptions 
underlying the applicability of a mixed demand system. Of course, to apply our mixed 
demand system to this subset of goods at the aggregate level, we also need to postu-
late that the representative consumer’s preferences are weakly separable in the appro-
priate partition (Blackorby, Primont, and Russell 1978). 
 
Data 
 
The data used in this study were obtained courtesy of the Italian statistical institute 
ISMEA (Istituto di Servizi per il Mercato Agricolo Alimentare). As part of their moni-
toring efforts on food consumption patterns, ISMEA maintains an extensive household 
data collection system (the “Panel Famiglie”) in partnership with ACNielsen. This 
effort is based on records of purchases made by a sample of 6,000 Italian households. 
The sample was meant to be representative, stratified according to socio-demographic 

T 
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and location variables. Data of interest are recorded through the “home scanning” 
technology: every household in the sample is provided with a computer equipped 
with an optical scanner, which is used to record consumption information as soon as 
the purchased product enters the home. Data recorded in this fashion is supplemented 
by additional information concerning the purchase, through a computer-guided ques-
tionnaire, and a procedure exists to record comparable information for items without 
a bar code. Such elementary purchase data are electronically retrieved from each 
household on a weekly basis and are then aggregated for four-week intervals. 
 The data used here, extracted from that databank, concern consumption of vegeta-
bles aggregated at the Italian national level for the period January 1997 to April 2004. 
For each individual vegetable product we observe the total expenditure, the quantity, 
and the price (i.e., the unit cost, measured in euro/kg). The original 95 four-week ob-
servations were reduced to 88 monthly observations by averaging observations pro-
vided in the same calendar month (August 1997 and 1998, July 1999 and 2000, June 
2001 and 2002, and May 2003). The long list of individual items was aggregated into 
the following nine products: (1) tomatoes, (2) eggplants, (3) zucchini, (4) bell peppers, 
(5) lettuce (including chicory and radicchio), (6) other vegetables (including fennel, 
carrots, asparagus, broccoli, artichokes, cauliflowers, cucumbers, onions, spinach, cab-
bage), (7) legumes (beans, green beans, and peas), (8) frozen vegetables, and (9) 
canned vegetables. Table 4 reports some descriptive statistics for these data. It is ap-
parent that prices, and more so the quantities of fresh vegetables, are affected by 
strong fluctuations due to seasonal variations in both demand and supply.  
 
Results 

For the purpose of estimation we represent the mixed demand system in share form, 
as in (22)–(23). The conditional mixed demand system to be estimated is composed 
of nine equations, seven of which have the form of equation (23) and two of which 
have the form of equation (22). Prior to estimation, quantities zk and prices pi were 
normalized so as to have mean one. Given that * *

1 1 1n m
i ki kw w= =+ =∑ ∑ , this constitutes 

a singular system, and therefore one equation is dropped prior to estimation.  
 The stochastic form of the estimating system can be represented as 

  ( , ) , 1,...,88t t tw f X e t= θ + = , (24) 

where 1 8( , , )T
t t tw w w= is the vector of (m+ n–1) budget shares for observation t ; 

f (⋅) is the vector-valued function as per the structure in (22) and (23), with Xt repre- 
senting the vector of all explanatory variables for observation t and θ denoting the 
vector of all parameters to be estimated; and 1 8( , )T

t t te e e=  is the error vector.
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Table 4. Descriptive Statistics of Data 

 Prices (euro/kg) Total Consumption (tons) 
Product: Mean Min. Max. Mean Min. Max. 
1. Tomatoes 1.56 0.80 2.37 23,792 8,821 49,716 
2. Eggplants 1.32 0.72 2.69 7,162 1,984 14,587 
3. Zucchini 1.60 0.96 3.44 9,609 3,378 17,117 
4. Bell peppers 1.74 1.08 2.56 7,385 3,369 15,559 
5. Lettuce 1.62 1.25 2.73 19,798 10,739 26,202 
6. Other vegetables 1.31 1.10 1.79 65,679 19,704 99,933 
7. Legumes 2.11 1.40 3.06 5,583 1,016 14,706 
8. Frozen vegetables 3.20 2.84 3.67 13,336 5,940 22,144 
9. Canned vegetables 0.90 0.71 1.30 67,742 35,790 85,589 
Vegetables total 
expenditure (1,000 euros) 

   298,697  190,248 359,791 

 
 Assuming that this error vector is multinormally distributed with zero mean and a 
constant contemporaneous covariance matrix allows maximum likelihood (ML) esti-
mation (e.g., Davidson and MacKinnon 1993, chapter 9), which is invariant with re-
spect to which equation is omitted. Preliminary analysis, however, suggested the need 
to consider two additional issues: seasonality, and serial correlation in the estimated 
residuals. To account for seasonality we allow the intercept-like parameters γ j and δ k 
to depend on seasonal quarterly dummy variables Ddt, where 2,3,4d =  indexes the 
quarter of each monthly observation not in the first quarter (these dummy variables 
were actually rescaled, by subtracting the own mean, to have a mean value of zero 
over the sample). Specifically, 
 

  
4

1
2

, 1, 2j j jd dt
d

D j
=

γ = γ + γ =∑  (25) 

 

  
4

1
2

, 1,...,7k k kd dt
d

D k
=

δ = δ + δ =∑ . (26) 

 
 As for autocorrelation in the errors, we allow for first-order serial correlation by 
estimating the model: 
 
  [ ]1 1( , ) ( , ) , 2,...,88t t t t tw f X R w f X t− −= θ + − θ + ε = , (27) 
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where R = ρI, and where now the parameter vector θ includes the seasonal parameters 
as well. The model entails a total of 42 parameters (17 Stone-Geary coefficients, 24 
seasonal parameters, and the coefficient of autocorrelation). Note that the autocorrela-
tion coefficient is constrained to be the same for all equations, which provides the 
simplest structure guaranteeing that the resulting stochastic system satisfies adding-
up (Berndt and Savin 1975, Moschini and Moro 1994). The standard assumptions 
leading to ML estimation, discussed earlier, now apply to the vector εt. 
 ML estimation of this system was carried out by using the software package TSP 
(version 4.5). The estimated parameters are reported in Table 5, except for the pa-
rameters of the seasonal effects, which are omitted (but because of our having scaled 
the seasonal dummy variables to have mean zero, the parameters γj1 and δk1 retain the 
same interpretation as the original parameters γj and δk). 
 The standard errors suggest that the parameters are all estimated with consider-
able precision (except for γ2, they are all significantly different from zero at the 0.01 
probability level). The estimated autocorrelation coefficient is significantly different 
from zero as well. Seasonality also turns out to have a significant effect. In fact, the 
value of the likelihood ratio LR=2[L*–L0 ], where L* is the maximized value of the 
log-likelihood function with seasonal terms and L0 is the maximized value of the log-
likelihood function with the constraints γjd = δkd = 0, d = 2,3,4, ∀j,k, is LR = 187.2. 
This exceeds the critical value of the corresponding χ2 distribution with 24 degrees of 
freedom. Thus, the hypothesis of no seasonal effects is decisively rejected (even with 
the size-correction suggested by Italianer 1985). 
 
Table 5. ML Parameter Estimates for the Stone-Geary Mixed Demand System 
(sample: February 1997–April 2004) 

Parameter Estimate Std. Error Parameter Estimate Std. Error 

β1 0.10470 0.01094 δ11 -1.61772 0.23016 
β2 0.02414 0.00205 δ21 -1.43719 0.16021 
β3 0.03864 0.00361 δ31 -1.39137 0.18201 
β4 0.04159 0.00421 δ41 -1.96160 0.24804 
β5 0.11410 0.01616 δ51 -2.14579 0.51695 
β6 0.46584 0.02895 δ61 -3.73940 0.56327 
β7 0.07503 0.00867 δ71 -4.76009 0.67360 
α1 0.07060 0.00748 γ11 -0.06237 0.02001 
α2 0.06537 0.00686 γ21 0.01137 0.01049 
ρ 0.43194 0.03739    

Note: Log-likelihood = 2,808.7. 
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 Table 6 reports individual equation statistics: the 2R measure of fit and the Durbin-
Watson statistics (DW) as a measure of serial correlation. Despite the extremely parsi-
monious parameterization implied by the Stone-Geary formulation, the fit of all equa-
tions is quite good. The DW statistics suggest that the simple parameterization chosen 
(a common autocorrelation coefficient for all equations) is actually fairly successful 
at correcting for the serial correlation of the error terms. 

Table 6. Estimation Results, Summary Statistics 
 Share equation 2R  DW 
 1. Tomatoes 0.96 1.83 
 2. Eggplants 0.98 2.24 
 3. Zucchini 0.84 1.63 
 4. Bell peppers 0.97 2.23 
 5. Lettuce 0.65 1.64 
 6. Other vegetables 0.99 2.16 
 7. Legumes 0.99 2.45 
 8. Frozen vegetables 0.75 1.90 
 9. Canned vegetables 0.60 1.38 

 

Test of Structural Change 

A lively debate has recently emerged in Europe, and especially in Italy, on the infla-
tionary effects of the introduction of the euro in January 2002. The question is whether 
the “changeover” was accompanied by an unexpected increase in prices, imperfectly 
measured by official statistics, or whether consumers’ perception of the price increases   
were, simply put, at variance with the facts (e.g., Marini, Piergallini, and Scaramozzino 
(2004). The sample period of our data encompasses the date of the introduction of the 
euro, and the price behavior of the goods in our bundles does show some upward 
trend following the introduction of the euro, as illustrated in Table 7. 
    Because our model is largely a price-determination model (for seven of the nine 
goods the assumption is that supplies in any given month are given, and the 
corresponding prices adjust to clear the market), the hypothesis of an inflationary 
effect of the euro introduction suggests that we test whether our model supports a 
structural change occurring with the introduction of the euro. Specifically, we focus 
on a possible structural break occurring in January 2002, when the European common 
currency (the euro) replaced the lira. The specific test that we consider is based on the 
statistic 

  * *
1

1 1

12 log
2

T TL L
T T
⎡ ⎤Λ = + −⎢ ⎥⎣ ⎦

, (28) 
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where T = 87 and T1 = 59 are the sizes of the full sample and of the sub-sample up to 
the hypothesized structural break (i.e., February 1997 to December 2001), L* is the 
maximized value of the log-likelihood function over the entire sample, and *

1L  is the 
maximized value of the log-likelihood function over the sub-sample of T1. We find 
that the computed value of this statistic is Λ = 128.3. Under the null hypothesis of 
parameter stability, the statistic Λ is distributed as χ2 with (T – T1)N = 224 degrees of 
freedom, where N = 8 is the number of estimating equations (Anderson and Blundell 
1984). Thus, we find no structural change: the hypothesis of constancy of the parame-
ters after the introduction of the euro is not rejected at the customary 0.05 signifi-
cance level.  
 
Elasticities 
 
As with standard demand analysis, the sensitivity of the endogenous variables to 
changes in predetermined variables is best illustrated using elasticities. Table 8 re-
ports the estimated Hicksian elasticities derived from our mixed demand equations, 
evaluated at the sample mean of the predetermined variables (pi = zk = y = 1).  Given 
that the estimated coefficients satisfy the Stone-Geary regularity conditions, the own-
quantity and own-price effects are negative. The substitution pattern displayed by the 
cross-price elasticities are heavily constrained by the fact that, as noted earlier, with 
the Stone-Geary utility function all goods are R-substitutes in Madden’s (1991) sense. 
These elasticities, of course, also satisfy additional restrictions because of the homo-
geneity and adding-up properties—see Moschini and Vissa (1993) for an explicit 
statement of such restrictions. 

Table 7. Average Prices Before and After the Euro (euro/kg) 

Price of: 
Before the Euro 

January 1997–December 2001 

After the Euro 
January 2002– 

April 2004 
 1. Tomatoes 1.45 1.81 
 2. Eggplants 1.25 1.48 
 3. Zucchini 1.49 1.84 
 4. Bell peppers 1.66 1.91 
 5. Lettuce 1.53 1.83 
 6. Other vegetables 1.23 1.46 
 7. Legumes 2.02 2.31 
 8. Frozen vegetables 3.13 3.35 
 9. Canned vegetables 0.85 1.02 
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Table 8. Hicksian Mixed Demand Elasticities (Evaluated at the Sample Mean) 

 z1 z2 z3 z4 z5 z6 z7 p1 p2 

q1 -0.68 -0.07 -0.12 -0.10 -0.27 -0.72 -0.10 0.52 0.48
q2 -0.29 -0.48 -0.12 -0.10 -0.27 -0.72 -0.10 0.52 0.48
q3 -0.29 -0.07 -0.54 -0.10 -0.27 -0.72 -0.10 0.52 0.48
q4 -0.29 -0.07 -0.12 -0.44 -0.27 -0.72 -0.10 0.52 0.48
q5 -0.29 -0.07 -0.12 -0.10 -0.59 -0.72 -0.10 0.52 0.48
q6 -0.29 -0.07 -0.12 -0.10 -0.27 -0.93 -0.10 0.52 0.48
q7 -0.29 -0.07 -0.12 -0.10 -0.27 -0.72 -0.27 0.52 0.48
x1 -0.42 -0.11 -0.17 -0.15 -0.38 -1.04 -0.14 -0.69 0.69
x2 -0.28 -0.07 -0.11 -0.10 -0.25 -0.68 -0.09 0.49 -0.49

Note: Each entry is the elasticity of the row variable with respect to the column variable. Indices for (q,z) 
variables: 1 = tomatoes, 2 = eggplants, 3 = zucchini, 4 = bell peppers, 5 = lettuce, 6 = other fresh vegetables, 7 = 
legumes. Indices for (p,x) variables: 1 = frozen vegetables, 2 = canned vegetables.  
 
 
 Perhaps of more immediate interest are the Marshallian elasticities. Rather than 
reporting such elasticities for the estimated mixed demand system, we have computed 
the Marshallian elasticities of the implied direct demand equations. Moschini and 
Vissa (1993) discuss the general method for reconstructing elasticities of ordinary de-
mand functions from estimated mixed demand functions. Here, however, our task is 
simplified because the assumed preferences admit an explicit solution for Marshallian 
direct demand equations, as given in equations (18)–(19). The price and income 
elasticities of these demand equations are reported in Table 9. 
 Expenditure elasticities, reported in the last column, suggest that non-fresh prod-
ucts have a more inelastic demand than fresh vegetable products (that is, the latter 
have more of the “luxury” good attribute). Own-price elasticities are all negative, as 
expected (all goods must be normal with Stone-Geary preferences, and thus Giffen 
goods are ruled out). Also of interest is that, with the exception of canned vegetables, 
all products display an elastic demand. Indeed, the own-price elasticity values indi-
cate that some of the products are very elastic (legumes, for example, have an own-
price elasticity of -5.40). Thus, we confirm Moschini and Vissa’s (1993) observation 
that mixed demand estimation seems to yield more elastic demand relations than di-
rect demand estimation (not surprisingly, perhaps, given the differing assumptions 
about the source of the error). In any event, we should note that the Marshallian elas-
ticities in Table 9 are conditional on aggregate expenditures on vegetables and should 
be interpreted accordingly.  
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Table 9. Marshallian Direct Demand Elasticities Implied by Mixed Demand Estimates  
(evaluated at the sample mean) 

 q1 q2 q3 q4 q5 q6 q7 p1 p2 y 

z1 -2.45 0.04 0.06 0.07 0.20 0.96 0.16 0.06 -0.01 0.91
z2 0.16 -2.40 0.05 0.07 0.19 0.90 0.15 0.05 -0.01 0.84
z3 0.15 0.03 -2.34 0.07 0.19 0.88 0.15 0.05 -0.01 0.83
z4 0.19 0.04 0.07 -2.88 0.23 1.09 0.18 0.06 -0.01 1.02
z5 0.20 0.04 0.07 0.09 -2.90 1.16 0.20 0.07 -0.01 1.09
z6 0.31 0.07 0.11 0.13 0.37 -3.00 0.29 0.10 -0.02 1.64
z7 0.37 0.08 0.13 0.16 0.45 2.12 -5.40 0.12 -0.02 1.99
x1 0.09 0.02 0.03 0.04 0.11 0.53 0.09 -1.41 -0.01 0.50
x2 0.06 0.01 0.02 0.03 0.07 0.35 0.06 0.02 -0.95 0.33

Note: Each entry is the elasticity of the row variable with respect to the column variable. Indices for (q,z) 
variables: 1 = tomatoes, 2 = eggplants, 3 = zucchini, 4 = bell peppers, 5 = lettuce, 6 = other fresh vegetables, 7 
= legumes. Indices for (p,x) variables: 1 = frozen vegetables, 2 = canned vegetables.  
 
 

Conclusions 
 

N THIS CHAPTER WE HAVE REVISITED the idea of approaching empirical 
demand analysis with a mixed demand system. After briefly motivating the study, 

and reviewing the relevant theory, we have analyzed in detail the mixed demand 
system that one can obtain from the Stone-Geary utility function, the preference 
relation underlying the standard LES model. These preferences, of course, are known 
to be restrictive. But because it has not been presented before, the mixed demand 
system that we have derived should be of interest, as a benchmark at a minimum. In 
fact, the properties of aggregation across consumers enjoyed by Stone-Geary 
preferences (a special case of quasi-homothetic preferences), and the parsimonious 
nature of the parameterization, may still make this specific model of interest, in its 
own right, for large-scale demand systems. In addition, because the Stone-Geary 
preferences allow for the explicit solution of both direct and mixed demand functions, 
the model that we have detailed is useful as a framework with which to explore some 
of the implications of the stochastic specification of demand systems. We have 
illustrated this last attribute with a simple Monte Carlo experiment. The results of our 
simulations confirm the importance of making correct assumptions about which 
variables to take as predetermined in empirical demand models and thus vindicate our 
presumption that mixed demand models deserve more attention. 

I 
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 The system developed was illustrated with an application to the Italian demand 
for vegetables. Specifically, we estimated a nine-good mixed demand system for the 
group of fresh and processed vegetables, whereby we allow for seven goods 
(categories of fresh vegetables) to be represented by predetermined supply, with price 
adjusting to clear the market, and for two goods (canned and frozen vegetables) to 
have the standard representation (price is given and quantity adjusts). The system was 
estimated with monthly data obtained from a large representative and stratified 
sample of Italian households. This application illustrates that the new system that we 
have derived is readily estimable and can be quite useful when a mixed demand 
model is called for. The fit of the estimated equations is good and the one-parameter 
correction for serial correlation seems to work reasonably well. The estimated 
elasticities appear plausible, although more work needs to be done to characterize 
more carefully the substitutability patterns (inevitably constrained by our restrictive 
preference assumptions).  
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Appendix 
 

O SOLVE THE FIRST-ORDER CONDITIONS in (10)–(12), note from (10) that the 
solutions for variables xj would be readily obtained upon having solved for the 

Lagrange multiplier λ. Thus, substituting the n equations (10) into the budget 
constraint (12), and rearranging (11), the m + 1 equations to be solved are  
 

  
1 1 1

m n n

k k i i i
k i i

q z y p
= = =

⎛ ⎞λ = λ − γ − α⎜ ⎟
⎝ ⎠

∑ ∑ ∑  (A1) 

 

  

1 1

1,...,s s
s s sn m

i i k k
i k

q q z s m
y p q

= =

δ
+β = λ =

⎛ ⎞− γ − δ⎜ ⎟
⎝ ⎠

∑ ∑
. (A2) 

 
As it stands, the system is nonlinear in the variables of interest λ and qs (s = 1,…m), 
but it can be made linear in transformed variables as follows. Sum the m  equations in 
(A2), use the budget constraint in (A1), and recall that 1 11m n

s js j= =β = − α∑ ∑ , to obtain  
 

 

1 1

1
n m

i i k k
i k

y p q
= =

λ =
⎛ ⎞− γ − δ⎜ ⎟
⎝ ⎠

∑ ∑
 . (A3) 

 
By using (A3) in (A2), it follows that the system of m + 1 equations to be solved is 
reduced to 
 
 1,...,s s s s sq q z s mλ δ +β = λ =  (A4) 

 

 
1 1 1

m n n

k k i i i
k i i

q z y p
= = =

⎛ ⎞λ = λ − γ − α⎜ ⎟
⎝ ⎠

∑ ∑ ∑ . (A5) 

 
This system of equations is linear in the transformed variables 1( )n

i iiL y p=≡ λ − γ∑  
and Qs ≡ λqs (s = 1,…,m). Solving these linear equations, and re-expressing the 
results in terms of the variables of interest, yields the mixed demand equations in 
(13)–(14). 
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