DERIVING A FLEXIBLE MIXED DEMAND SYSTEM:
THE NORMALIZED QUADRATIC MODEL
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This article deals with the specification of a locally flexible and theory-consistent system of mixed
demand functions, a framework that allows for a rich set of possibilities about what is assumed as
exogenous in a demand model. A coherent mixed demand system is derived by using the restricted
expenditure function typically studied in the related area of rationed demands. The method is imple-
mented by a new normalized quadratic (NQ) parameterization of the restricted expenditure function.
The resulting NQ mixed demand system is illustrated with an application to a nine-good model of the

Italian demand for vegetables.
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A major thrust of the system-wide approach to
empirical demand analysis has been to specify
models that are integrable into well-behaved
preferences. The restrictions of consumer the-
ory help, at the estimation stage, to reduce
the number of parameters to be estimated
and thus increase efficiency, but adherence
to theory also permits meaningful use of the
resulting estimates for welfare and policy anal-
ysis. The earlier work of Stone (1954), lead-
ing to the linear expenditure system (LES),
was subsequently extended by models that
capture more general and flexible representa-
tions of preferences, such as the translog model
of Christensen, Jorgenson, and Lau (1975),
the differential (Rotterdam) model of Theil
(1975), the almost ideal (Al) demand system of
Deaton and Muellbauer (1980), the quadratic
Al demand system (Banks, Blundell, and Lew-
bel 1997), and the semiflexible Al demand sys-
tem (Moschini 1998).

A common feature of these specifications is
to represent quantity demanded as a function
of market prices and total expenditure (income
for short). Whereas this approach corresponds
directly to the usual formulation of the indi-
vidual consumer problem, its use within an
econometric model requires some additional
identifying assumptions—essentially, what is
to be assumed as exogenous or predetermined.
The standard specification of demand models
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with quantities as the dependent variable as-
sumes that prices are predetermined. That is,
if one thinks of the data at hand as the out-
come of a market equilibrium model, the im-
plicit assumption is that supply functions are
perfectly elastic so that demands adjust to clear
the market. While this condition may hold for
market data in some situations (e.g., tradeable
goods for a small open economy), it obviously
is not universal. Indeed, Geary (1948-1949), in
his derivation of the utility function underlying
the LES, noted that “From the regression view-
point, however, it would be equally logical to
regard prices as dependent variables and quan-
tities as independent variables. ..” This view
has been occasionally implemented in terms
of inverse demand systems, as in the (inverse)
translog (Christensen, Jorgenson, and Lau
1975), the (inverse) Rotterdam model (Theil
1975, 1976; Barten and Bettendorf 1989), the
linear inverse demand system (Moschini and
Vissa 1992; Eales and Unnevehr 1994), and the
inverse normalized quadratic (NQ) (Holt and
Bishop 2002).

The choice of which variables to assume
as predetermined in empirical demand mod-
els has nontrivial implications. To illustrate, if
a direct demand system is specified when in
fact an inverse demand specification is called
for, then the duality between direct and in-
verse demand systems implied by consumer
theory means that, for nontrivial preferences,
the direct demand system will be affected by
a nonlinear errors-in-variables problem. For
such a case it is notoriously difficult to ob-
tain estimators that are consistent. In fact,
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instrumental variable estimators are also in-
consistent (Amemiya 1985), and their applica-
tion in standard system estimation is bound to
give inconsistent estimates of the underlying
preference parameters (Moschini 2001). Un-
like other instances of errors-in-variables in
demand models (e.g., Lewbel 1996), however,
the question in our setting is not about a suit-
able estimation technique. Rather, the ques-
tionis one of choosing the appropriate assump-
tion on what to take as predetermined in or-
der to identify the underlying preference pa-
rameters. Given that, a mixed demand system
approach provides an appealing framework of
analysis.

In mixed demand functions, first analyzed
by Samuelson (1965), the prices of some goods
and the quantity of all the others are predeter-
mined, so that some quantities and some prices
adjust to clear the market. This class of models
has obvious econometric appeal for the pur-
pose of estimating demand behavior, because
it encompasses a spectrum of possibilities be-
tween the polar cases of direct and inverse de-
mand functions. Hence, mixed demands allow
for a much richer set of options about what is
to be assumed as exogenous or predetermined,
which permits the identifying assumptions of
demand models to be tailored to the nature
of the data at hand. Despite this attractive at-
tribute, mixed demand functions have received
comparatively little attention in applied stud-
ies. Moschini and Rizzi (2006) derive and es-
timate a mixed demand system for the special
case of Stone-Geary preferences. More gen-
eral representations of mixed demand systems
have essentially been confined to the Rotter-
dam specification. Barten (1992) appealed to
mixed demand to illustrate the choice of which
variables to assume as exogenous but actually
estimated a standard Rotterdam model, while
taking into account the endogeneity of some of
the prices in formulating the likelihood func-
tion. Moschini and Vissa (1993) and Brown
and Lee (2006), by contrast, formulated and
estimated true differential mixed demand sys-
tems.!

A possible explanation for the paucity of ap-
plications of mixed demand systems resides in
the specific difficulties that arise in this context.
That is, in Samuelson’s (1965) formulation,

! Mixed demands also turn up in environmental economics (e.g.,
Cunha-e-Sa and Ducla-Soares 1999), although the setting there is
more appropriately one of rationed demands (the goods in fixed
supply are public goods and do not enter the consumer’s budget
constraint).
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knowledge of both direct and indirect utility
functions is required to characterize the de-
mand properties. This means that many com-
monly used flexible functional forms—such as
the translog indirect utility function, or the
PIGLOG cost function of Al systems—cannot
be used to specify a mixed demand system be-
cause these flexible functional forms do not
have a closed-form dual representation. That
is why the only flexible true mixed demand sys-
tem that has been proposed to date relies on
approximating the mixed demand equations
directly through a differential approach. Even
though such a Rotterdam-type mixed demand
system is of considerable interest (e.g., Mat-
suda 2004), for some applications (such as wel-
fare analysis) it may be desirable to have an ex-
act parametric representation of preferences.

With this article we hope to advance the
applicability of mixed demand systems in an
empirical setting by making three main contri-
butions. First, we briefly review the theoreti-
cal framework of mixed demands that makes
it explicit why the procedure used in numer-
ous applications of direct and inverse demand
systems is not particularly useful. Second, we
suggest a new approach to specifying a mixed
demand system, based on the restricted ex-
penditure function used in the related area of
rationed demand (Gorman 1976; Neary and
Roberts 1980). Mixed demands and rationed
demands share important similarities, but a
major difference is that for the latter some
markets do not clear. In the case of mixed de-
mands, on the other hand, the virtual prices
of the quantity-predetermined goods do enter
the budget constraint, so that it is in principle
possible to solve for the mixed utility function
implied by the restricted expenditure func-
tion and thus derive integrable mixed demand
equations. We identify a class of restricted cost
functions for which an explicit solution of the
mixed demand equations is possible. Third, to
make the approach operational, we develop a
new NQ parameterization that is locally flex-
ible, and that can satisfy homogeneity, sym-
metry, and curvature properties. The model is
illustrated with an application to vegetable de-
mand in Italy.

Mixed Demands

In the mixed demand setting, we consider con-
sumers are price takers for all goods, but at
the market level the prices of only a subset
of goods is predetermined, whereas for the



1036  November 2007

remaining goods it is the aggregate quanti-
ties that are predetermined. For an explicit
definition of mixed demands, first introduced
by Samuelson (1965) and analyzed by Chavas
(1984), partition the consumption bundle into
(m + n) goods. Let x = [x1, x2, . . ., x,,] denote
the vector of commodities chosen optimally
and let z = [z1, 22, .- ., 2] denote the vector
of commodities in fixed quantity whose prices
are optimally determined. Correspondingly, p;
denotes the nominal price of x;, whereas g,
denotes the nominal price of z;. Total con-
sumer expenditure (income, for short) is y.
Mixed demands are then derived from the
constrained optimization problem (Samuelson
1965, p. 791):

U(x,2) = V(p,q,y)

st. p-x+q-z=Yy,

(1) max
xq

where U(-) and V() are the direct and in-
direct utility functions, respectively, which are
assumed quasi-concave and quasi-convex in
their respective arguments, as well as satisfy-
ing standard monotonicity properties.” The op-
timality conditions for an interior solution of
problem (1) are:

oU (x*,
) %Z)—)\pizo, i=1,....n
Xi
(3)
_WVPanhY) o k=1 m
o : -

@) p-x+q-z=y.

The solutions to (2)-(4) give the Marshal-
lian mixed demand vectors x* = x(p,z,y)
and ¢*=gq(p,z,y). Clearly, at the op-
timum, U(x*, z) = V(p,q*,y) = V*(p,z, y),
where VM( ) is the mixed utility function.
The mixed demand functions x(p, z, y) and
q(p, z, y) satisfy Walras’s law (the adding-up
condition). Moreover, the functions x(p, z, y)
and ¢(p, z, y) are homogeneous of degree zero
and degree onein (p, y), respectively [and thus
the mixed utility function is homogeneous of
degree zero in (p, y)]. The symmetry property

2 Samuelson (1965) and Chavas (1984) represent the indirect
utility function in terms of normalized prices p; /y, which helps the
derivation of duality relations. As long as y is given, however, the
representation in (1) is admissible and simplifies the interpretation
of the model.

Amer. J. Agr. Econ.

applies to compensated mixed demand func-
tions, which are the same as the compensated
demands under rationing (Chavas 1984) and
may be characterized in terms of the restricted
cost function (Gorman 1976)

&) C(p,z,u)zmxin {p-x UK z)=u}.

This cost function is monotonic in its argu-
ments, and homogeneous of degree one and
concave in p. Also, the restricted cost function
C(p, z, u) is convex in z if the utility function is
quasiconcave (Deaton 1981). By standard du-
ality the derivatives of this cost function yield

6)  V,C(p.z,u)=x"(p,z,u)

(7)  V.C(p,z.u)=—q"(p,z,u)

where x"(p,z,u) denote the compensated
(i.e., Hicksian) mixed demands and ¢" (p, z, u)
are the compensated price-dependent demand
functions of z (i.e., the prices that would
have resulted in the quantity z actually being
the cost-minimizing solution). The functions
x"(p, z, u) and ¢"(p, z, u) are homogeneous of
degree zero and one in p, respectively, and em-
bed standard curvature and symmetry condi-
tions (Chavas 1984; Moschini and Vissa 1993).

Coherent Specification of Mixed
Demand Systems

For the purpose of implementing the mixed
demand approach, direct solution of the opti-
mality conditions (2)—(4) of the problem in (1)
is not feasible for reasonably general repre-
sentations of preferences. A similar problem,
of course, arises in the context of direct de-
mand systems. The standard approach there is
to specify a dual flexible representation of pref-
erences and then apply the derivative property
(i.e., the envelope theorem) to derive demand
relations between observable variables that in-
herit, by construction, the theoretical restric-
tions embedded in the preference relation.
For instance, upon a translog parameterization
of the indirect utility function V(p, ¢, y), di-
rect demand equations are readily obtained
via Roy’s identity (Christensen, Jorgenson,
and Lau 1975). A similar procedure is also
available for the other polar case, when all
quantities are given, whereby one can obtain
an inverse demand system from a parameteri-
zation of the direct utility function via Wold’s
identity (Weymark 1980).
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It turns out that this procedure is of
little help in the context of mixed de-
mands. The value function for the problem in
D isM(p,z,y) =UK*z2) = V(p,q*,y) =0,
and by the envelope theorem we find (see also
Samuelson 1965)

aV(p,q*,
® ~Vd'Y) o i1 s
ap;
aU (x*,
(9) M_)\qlrzo, k:l,,m
0Zk
aV L) *7
o) - Vaty) g

dy

It is apparent that the envelope theorem does
not yield an explicit solution for x* and g*;
one still needs to solve a system of (nonlin-
ear) equations to find the mixed demands of
interest. Two related problems are apparent.
First, commonly used flexible functional forms
for the indirect utility function V(p, ¢, y) do
not have a closed-form solution for the di-
rect utility function U (x, z) (e.g., the translog).
Second, even for more restrictive representa-
tion of preferences for which a closed-form pa-
rameterization for both U(x, z) and V(p, ¢, y)
is available—as with the constant elastici-
tiy of substitution (CES) utility function, for
example—the solution to the dual relations in
(8)-(10) is not any easier than the direct so-
lution of the optimality conditions (2)—(4) of
the problem in (1) (and a solution in closed
form may not be possible in either case, which
is indeed what happens with the CES utility
function).

Given the foregoing, and consistent with
Gorman’s (1976) observation that “. .. duality
is about the choice of independent variables
in terms of which to define a theory” (a point
discussed further in Browning [1999]), in this
article we suggest a new strategy for deriving a
coherent system of mixed demands that relies
on the restricted cost function C(p, z, u). Our
starting point is to note that Marshallian mixed
demands must satisfy the identities

(11)
(12)

x(p.z,y)=x"(p, 2, VM(p. z,))

q(p.z.¥)=4"(p. 2, V*(p. 2, ).

Functions x"(p, z,u) and ¢"(p, z,u) can be
derived for a parametric specification of
C(p, z, u) that satisfies the theoretical proper-
ties outlined earlier, as in equations (6)—(7).
Thus, for the strategy of equations (11) and
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(12) to be viable it is necessary to be able to
retrieve the mixed utility function V¥(p, z, y)
from the postulated restricted cost function
C(p,z,u).

As noted earlier, the distinguishing fea-
ture of mixed demands (as compared with
rationed demands) is that no disequilibrium
occurs (goods in fixed supply are priced at their
shadow value). It follows that the total cost of
achieving utility level u, given (p, z), is

(13)  cM(p,z,u)=C(p.z,u)

- V.C(p,z,u)-z.

Equation (13) defines the mixed cost function
CM(p, z, u), so that the mixed utility function
needed to implement equations (11) and (12)
satisfies the identity

4 cM(p.z. VY(p.zy) =y

Then, in principle, the mixed utility V¥ (p, z, y)
may be obtained by inverting (14), and that,
together with (11) and (12), yields a coherent
system of mixed demand equations.

The remaining stumbling block is that it is
not possible to obtain a closed-form solution
for VM(p, z,y) for an arbitrary specification
of C(p, z, u). For this reason, for example, the
PIGLOG cost function used by Deaton (1981)
to model rationed demand is not particularly
appealing in the present context. The final step
in our modeling strategy, therefore, is to iden-
tify a class of cost functions that allows explicit
solution of the mixed utility function from the
restricted cost function. Specifically, we focus
on restricted cost functions that are affine in u,
written as

(15)

This form is reminiscent of the unrestricted ex-
penditure function that Blackorby, Primont,
and Russell (1978) called the Gorman Polar
Form, which corresponds to quasi-homothetic
preferences and has important applications for
the problem of aggregating individual demand
functions into market demands. Here, how-
ever, because the linear-in-utility property per-
tains to the restricted expenditure functions
(and not to the unrestricted one), the structure
in (15) does not correspond to quasihomoth-
etic preferences. But, because this restricted
cost function is linear in u, the shadow prices
q"(p, z,u) will also be linear in u, so that by
equation (13) the mixed cost function is linear
in u as well, implying that the identity (14) can

C(p,z,u)=F(p,z)+ G(p, 2)u.
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in fact be solved for the mixed utility function
of interest. Specifically,

(16)  VM(p.z.y)
_ Y= Fp. )+ V:F(p.2) -2

G(p,z2)—V.G(p,2) -z

Before proceeding, we note that the lin-
ear homogeneity property of C(p, z, u) implies
that F(p,z) and G(p,z) are both homoge-
neous of degree plus one in p. Furthermore, as-
suming (without loss of generality) that u > 0,
then the concavity of C(p, z, u) in p is ensured
if both F(p, z) and G(p, z) are concave in p.
Likewise, the convexity of C(p, z, u) in z is en-
sured if both F(p, z) and G(p, z) are convex
in z.

In conclusion, given a restricted cost func-
tion with the structure of equation (15), equa-
tions (11) and (12) yield the mixed demand
system

(17)  x(p.z.y) =VpF(p.2) +V,G(p.z)
[y — F(p.2) + V:F(p.2)- zi|
G(p.z2) = V:G(p,2) -z
(18) —4q(p.z,y)=V.F(p,2)+ V:G(p,2)

[y —F(p,2)+V.F(p,z)- z}
G(p, Z) - VZG(]), Z) -z )

Hence, for any given parameterization for
the functions F(p, z) and G(p, z), equations
(17) and (18) allow the derivation of inte-
grable Marshallian mixed demand functions.
The remaining task is that of choosing a pa-
rameterization for F(p, z) and G(p, z) that is
sufficiently general.

The NQ Parameterization

To make the foregoing model operational, we
need to parameterize the functions F(p, z) and
G(p, z). To do so in a way that does not un-
duly influence estimation results, it is standard
practice to ensure that the chosen parameteri-
zation satisfies the requirements of a “flexible
functional form” (Diewert 1974). Several pos-
sibilities are open, but here we follow Diewert
and Wales (1988) and write a NQ specification
for the restricted cost function as follows:

(19) F(p.2)=d"p+(a"p)(n'2)
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G(p.2)=B"p+(a"p)(v"2)

1/p"Bp 1 5 T
s il I
3 ( P >+ 5@ )z Tz)

+pTLz,

(20)

where the superscripted 7 denotes vector
transposition, 3 and & are n x 1 vectors
of parameters, vy and p are m x 1 vectors
of parameters, B = [B;] is an n x n matrix
of parameters, I' = [y,] is an m x m matrix
of parameters, and L = [\;] is an n x m ma-
trix of parameters. All these parameters are to
be estimated. On the other hand, the vector
a=1[ai,a,...,a,])" contains arbitrarily cho-
sen coefficients whose role is to ensure that
the homogeneity property holds (recall that
F(p,z) and G(p, z) are homogeneous of de-
gree one in p).

It can be shown that this model provides
a local approximation at a point (p, z, &) to
an arbitrary cost function C(p, z, u), subject
to the one restriction that 9>C /du? = 0 (what
Diewert and Wales [1988] call the money-
metric scaling).’> Hence, the NQ form that we
are proposing does satisfies the requirements
of a standard flexible functional form. If (with-
out further loss of generality) we set p; = 1
and Z; = 1, the parameters of the model are
subject to the following restrictions (Moschini
and Rizzi 2007):

(21) Zai =1
im1
(22) Bj=Bji, Vi,j=1,...,n
(23) Yes=7Vsk» Vk,s=1,....m
(24) Y &5 =0
im1
25) Y Bi=1
i=1
(26) ZBz‘jZO, i=1,...,n
=1
(27) Z)\jk=0, k=1,...,m.
=

3 Explicit derivation of this property is provided in Moschini and
Rizzi (2007).
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From the NQ specification of equations (19)
and (20), the explicit form of the mixed de-
mands in equations (17) and (18) can be
written as

(28)
X =8+ (n2)a;
“ Bijp; =~
+ Bi + + )\,‘ka + a;
[ R0
1p™Bp 1
T T
- ~’r
X |:v Z 2(an)2 + 2z z]}
xVM  i=1,....n
(29)

—q; = (a"p)pk

s=1

+ |:(an)'\% +(a'p) imzs

+Z>\jkpj]vM, k=1,....m,
j=1

where VM is the mixed utility function in
(16) for the particular NQ parameterization of
C(p, z, u) chosen, that is,

-7
(30) VM= - TyB ’1 .
p bp
BTp+ 2(@p) i(aTP)ZTFZ

For the purpose of estimation, it is desirable
to express the mixed demand system in terms
of expenditure shares. To this end, define

31) wi=P2% i1,
1
y
(2) w=%% r=1...m
y

so that Y ", wf+ >, w;i =1 Equations
(31) and (32), with x}* and ¢/ as given in (28)
and (29), with V™ given by (30), and subject
to the parametric restrictions (21)—(27), repre-
sent the structural estimating equations of the
NQ mixed demand system.

An Iustration

The NQ mixed demand system derived here is
illustrated with an application to the demand
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for vegetables using Italian monthly data ob-
tained courtesy of the Italian statistical insti-
tute ISMEA (Istituto di Servizi per il Mercato
Agricolo Alimentare). As part of its monitor-
ing efforts on food consumption patterns, IS-
MEA maintains an extensive household data
collection system (the “Panel famiglie”) in
partnership with ACNielsen. This effort is
based on records of purchases made by a sam-
ple of 6,000 Italian households. The sample was
meant to be a representative sample, strati-
fied according to sociodemographic and loca-
tion variables. Data of interest are recorded
through the “home scanning” technology: ev-
ery household in the sample is provided with
a computer equipped with an optical scanner,
which is used to record consumption infor-
mation as soon as the purchased product en-
ters the home. Data recorded in this fashion
are supplemented by additional information
concerning the purchase through a computer-
guided questionnaire, and a procedure exists to
record comparable information for items with-
out a bar code. Such elementary purchase data
are electronically retrieved from each house-
hold on a weekly basis and are then aggregated
for four-week intervals.

The data used here, extracted from that
databank, concern consumption of vegetables
aggregated at the Italian national level for the
period January 1997 to April 2004. For each
individual vegetable product, we observe the
total expenditure (measured in €1,000), the
quantity (measured in tons), and the price (i.e.,
the unit cost, measured in euro/kg). The origi-
nal 95 four-week observations were reduced to
eighty-eight monthly observations by averag-
ing observations provided in the same calendar
month. The long list of individual items was
aggregated into the following nine products:
(1) tomatoes, (2) eggplants, (3) zucchini, (4)
bell peppers, (5) lettuce and chicory (includ-
ing radicchio), (6) other vegetables (including
fennel, carrots, asparagus, broccoli, artichokes,
cauliflowers, cucumbers, onions, spinach, cab-
bage), (7) legumes (beans, green beans, and
peas), (8) frozen vegetables, and (9) canned
vegetables.

Table 1 reports some descriptive statistics for
these data (mean prices are given for two dis-
tinct subperiods, for later use). It is apparent
that prices, and more so the quantities of fresh
vegetables, are affected by strong fluctuations
due to seasonal variations in both demand
and supply. Italian consumers value the qual-
ity of fresh vegetables, and thus favor products
that are “in season,” which are predominantly
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Table 1. Descriptive Statistics of Data (Monthly Observations, January 1997 to April 2004)

Prices (euro/kg)

Total Consumption (Tons)

Mean Mean

Product 97-01 02-04 Min. Max. Mean Min. Max.

1. Tomatoes 1.45 1.81 0.80 237 23,792 8,821 49,716
2. Eggplants 1.25 1.48 0.72  2.69 7,162 1,984 14,587
3. Zucchini 1.49 1.84 0.96 344 9,609 3,378 17,117
4. Bell peppers 1.66 1.91 1.08 2.56 7,385 3,369 15,559
5. Lettuce and chicory 1.53 1.83 125 273 19,798 10,739 26,202
6. Other vegetables 1.23 1.46 1.10  1.79 65,679 19,704 99,933
7. Legumes 2.02 2.31 1.40 3.06 5,583 1,016 14,706
8. Frozen vegetables 3.13 3.35 2.84  3.67 13,336 5,940 22,144
9. Canned vegetables 0.85 1.02 0.71 1.30 67,742 35,790 85,589
Vegetables total expenditure (€1,000) 298,697 190,248 359,791

locally produced. Our presumption, therefore,
is that the supplies of fresh vegetables (goods
1to 7 as per the above aggregation) are prede-
termined and perishable, so that prices adjust
to clear the market for these goods. On the
other hand, the last two goods (frozen vegeta-
bles and canned vegetables) are easily stored,
and we treat their prices as given in the con-
sumer problem. Thus, as in Barten (1992), this
data set appears to fulfill the basic assumptions
underlying the applicability of a mixed demand
system. Finally, to apply our mixed demand
system to this subset of goods at the aggregate
level, we also postulate that the representa-
tive consumer’s preferences are weakly sepa-
rable in the appropriate partition (Blackorby,
Primont, and Russell 1978).

Results

The conditional mixed demand system to be
estimated is composed of nine equations, seven
of which have the form of equation (29) and
two of which have the form of equation (28),
where y is the total expenditure on the nine
goods. Prior to estimation, quantities z; and
prices p; were normalized so as to have unit
mean. Furthermore, the aggregator (a’p;) =

21‘2:1 a; pi; Was constrgcted as a Laspeyres in-
dex (i.e., with the weights a; set to equal av-
erage shares of the two goods involved). As
discussed earlier, the NQ system is estimated
in its share representation, as in equations (31)
and (32), with x} and ¢ as in equations (28)
and (29), with V™ given by (30), and sub-
ject to the parametric restrictions (21)—(27),
where n =2 andm = 7. Given that ) |_, w¥ +
Y i wi =1, this constitutes a singular sys-
tem, and therefore one equation is dropped
prior to estimation.

The stochastic form of the estimating system
can be represented as
(33) w,=f(X;,0)+e, t=1,...,88,
where w, = (w1,,...,w8t)T is the vector of
(m +n — 1) budget shares for observation t;
f() is the vector-value function as per the
NQ structure derived earlier, with X, rep-
resenting the vector of all explanatory vari-
ables for observation ¢ and 6 denoting the
vector of all parameters to be estimated; and
e, = (e1;, ..., eg)T is the error vector. Assum-
ing that this error vector is multinormally
distributed with zero mean and a constant
contemporaneous covariance matrix allows
maximum likelihood (ML) estimation (e.g.,
Davidson and MacKinnon 1993, Chapter 9),
which is invariant with respect to which equa-
tion is omitted.

Preliminary analysis, however, suggested
the need to consider two additional issues: sea-
sonality, and serial correlation in the estimated
residuals. To handle seasonality—a standard
feature of empirical studies that (like ours)
rely on monthly data—we seasonally adjusted
the price and quantity data prior to estimating
the demand system by using monthly dummy
variables, following the procedure discussed
in Davidson and MacKinnon (1993, Section
19.6). To account for serial correlation, we pos-
tulated a first-order autocorrelation process
and therefore estimate the following model:

(34) Wy = f(Xta 9)+ R- [wz—l - f(Xt—la 9)]
+879 l:2,...,88
where R = p I, and where all variables are now

seasonally adjusted. Note that the autocorre-
lation coefficient p is constrained to be the
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Table 2. Summary Results for Estimated NQ Mixed Demand System

Price/Quantity
Share Equations Equations

Equations of R? DW R? DW
1. Tomatoes 0.42 1.80 0.81 1.77
2. Eggplants 0.35 2.48 0.65 2.50
3. Zucchini 0.27 1.71 0.82 1.68
4. Bell peppers 0.58 1.87 0.75 1.88
5. Lettuce and chicory 0.70 1.58 0.87 1.61
6. Other vegetables 0.80 1.64 0.94 1.62
7. Legumes 0.88 2.15 0.73 2.06
8. Frozen vegetables 0.58 2.03 0.65 2.07
9. Canned vegetables 0.48 1.75 0.66 1.80
Log likelihood 2,916
Number of parameters 53
Observations per equation 87

Autocorrelation coefficient

p = 0.5058 (& 0.0329)

same for all equations, which provides the sim-
plest structure guaranteeing that the resulting
stochastic system satisfies adding-up (Berndt
and Savin 1975). The standard assumptions
leading to ML estimation, discussed earlier,
now apply to the vector &,.

ML estimation of this system was carried
out by using the software package TSP (ver-
sion 4.5). Some estimation results are reported
in table 2. We find that the proposed model
yields a satisfactory fit, as measured by the
R? of the individual equations. A reviewer ex-
pressed concern about the relatively low fit of
some share equations. In table 2 we report the
R? of the implied estimate of the price and
quantity equations underlying the share equa-
tions to illustrate that the possible low fit is,
to a certain extent, a reflection of measuring it
from the share equation perspective. The esti-
mated autocorrelation coefficient (p = 0.51)is
significantly different from zero. The Durbin—
Watson statistics for the individual equations
of table 2 also suggest that serial correlation is
satisfactorily handled by the simple first-order
structure implemented in (34).

Detailed estimation results for the individ-
ual parameters are omitted here (they are
available upon request). Instead, below we re-
port the elasticity values implied by the es-
timated parameters, which are more directly
informative of the underlying demand struc-
ture. But we note that the underlying restricted
cost function, once evaluated at the estimated
parameter values, satisfies the curvature prop-
erties implied by theory. Specifically, the esti-
mated restricted cost function turns out to be
convexin z (globally so, because the Hessian in

question entails only constant parameters) and
concave in p (at the point p; =z = y = 1).

Elasticities

As with standard demand analysis, the sensi-
tivity of the endogenous variables to changes
in predetermined variables is best illustrated
by elasticities. In our setting, given the pre-
sumption that the monthly quantities of fresh
vegetables are best viewed as predetermined
at the aggregate level, interest centers on the
Marshallian mixed elasticities that are directly
derived from our estimated equations. Table 3
reports the estimated own-quantity and own-
price Marshallian mixed elasticities, and the
expenditure elasticities, evaluated at the sam-
ple mean of the predetermined variables (p;
7zt =y = 1). For these Marshallian elastities
we also report standard errors (in parentheses,
under the corresponding elasticity) computed
using the standard deltamethod.* As expected,
given that the restricted cost function satis-
fies the curvature conditions, the coefficients of
own-quantity and own-price effects are nega-
tive. The fact that the own-quantity mixed elas-
ticities of the price equations are negative and
less than one in absolute value suggests that
the ordinary demand for vegetables is elastic

4 The elasticities in Table 3 were computed by taking analytic
derivates of the mixed demand equations and, as per the appro-
priate elasticity definition, by using the TSP command DIFFER
and then evaluated at the estimated parameter values and at the
chosen point of the explanatory variables. In addition, the TSP
command ANALYZ allowed calculation of the asymptotic stan-
dard errors of the estimated elasticities (a nonlinear combination
of random variables) through the implementation of the so-called
delta method (Hall and Cummins 1999).
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Table 3. Marshallian Mixed Demand Elastic-
ities (Evaluated at the Sample Mean)

Own Quantity or

Own Price Expenditure
q —0.54 (0.1071) 1.14 (0.1246)
q2 —0.59 (0.1032) 1.07 (0.1581)
qs —0.87 (0.1236) 1.28 (0.1730)
qa —0.48 (0.0663) 1.14 (0.1766)
qs —0.39 (0.0836) 1.30 (0.1009)
qs —0.34 (0.0351) 0.86 (0.0556)
q7 —0.27 (0.0364) 1.15 (0.1208)
X1 —0.65 (0.0876) 0.83 (0.1041)
X, —0.74 (0.0914) 0.93 (0.1100)

Note: See table 4 for the indices of variables g; and xy.

with respect to own price. On the other hand,
the estimated values for the own-price elastic-
ities of the quantity equations, also less than
one in absolute value, indicate a relatively in-
elastic demand for both frozen vegetables and
canned vegetables.’

The question of substitution and/or comple-
mentarity relations between the goods is here
best posed in terms of the mixed Hicksian
(compensated) elasticities, defined as follows:

(35) O = (3g; (p. 2, u) /02,) (/)
k,s=1,...,7
(36) el = (9g) (z. p.u)/3p;)(pi/qx).
k=1,....7, i=1,2
(37) Uk = (0x]' (z. p.u)/0z) (a/xi) .
i=1,2, k=1,...,7
(38) = (3x]'(z, p.u)/0p;)(p;/xi),

i,j=12.

The curvature properties of the restricted cost
function (concavity in p and convexity in z)
would imply that own-price and own-quantity
elasticities, v, and 6], are nonpositive. Fur-
thermore, the compensated cross elasticities
can characterize the substitutability pattern
among goods. Specifically, the so-called R clas-
sification (R for “rationed”) proposed by Mad-
den (1991) is of interest here. According to
this classification, quantity constrained goods

5 These observations, of course, must be interpreted in the mixes
demand framework. If interest were on the usual Marshallian elas-
ticities of direct demand systems, then such elasticities could be
computed as outlined in Moschini and Vissa (1993).

Amer. J. Agr. Econ.

z and z, are substitutes if 6], < 0 and comple-
ments if e,?s > 0; unconstrained goods x; and
x; are substitutes if ng > 0 and complements
if n}i’j < 0; unconstrained goods x; and con-
strained goods z; are substitutes if p/; > 0 and
$/t < 0, whereas they are complements when
pl; <Oand ), > 0.

The complete matrix of compensated mixed
elasticities, evaluated at the mean point of the
data, is reported in table 4. As for the Marshal-
lian elasticities of table 3, we computed the
standard errors by the delta method, but for
clarity they are omitted from table 4. We note,
however, that most of these elasticities (75 out
of 81 estimates, including all of the diagonal
elements) are significant at the 5% level. The
own-price and own-quantity effects are nega-
tive, asimplied by the curvature property of the
restricted cost function (which was not explic-
itly maintained but turned out to be satisfied
by the estimated parameters). The most inelas-
tic Hicksian demand is that for canned veg-
etables (own-price elasticity of —0.21) and the
most elastic Hicksian demand is that for zuc-
chini (own-quantity elasticity of —1.10). Fur-
thermore, it is apparent that the goods we are
modeling are all R-substitutes, as per Mad-
den’s (1991) definition discussed in the pre-
ceding paragraph. Specifically, within the fresh
vegetables group we have 6 < 0; within the
processed vegetables group we have 'fl]f] > 0;
and between fresh and processed vegetables
we find p; > 0and s/, < 0. Lettuce and radic-
chio, and other vegetables, appear to have the
strongest substitution effect with the remain-
ing five fresh vegetables categories. Frozen and
canned vegetables also appear to be effective
substitutes for fresh vegetables.

The Euro Effect

As a final application of the empirical illustra-
tion of the NQ model proposed in this article,
we consider the lively debate that has recently
emerged in Europe, and especially in Italy,
on the inflationary effects of the introduction
of the euro in January 2002. The question is
whether the “changeover” was accompanied
by an unexpected increase in prices, possibly
imperfectly measured by official statistics,
or whether consumers’ perception of the
price increases were, simply put, at variance
with the facts (e.g., Marini, Piergallini, and
Scaramozzino 2004). The sample period of our
data encompasses the date of the introduction
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Table 4. Hicksian Mixed Demand Elasticities (Evaluated at the Sample

Mean)
21 22 23 24 15 26 27 )4 P2

g -09% -012 -013 -019 -054 -0.89 -0.15 0.32 0.68
q. -048 -070 -029 -0.09 -0.75 -0.87 -0.10 0.53 0.47
g —-032 -018 -110 -0.02 -0.63 -1.09 -0.20 0.48 0.52
qs -057 -0.06 -0.02 -062 -053 -090 -0.17 0.34 0.66
qgs —-064 -023 -030 -022 -0.89 -—-120 -—-0.22 0.51 0.49
qg —040 -010 -020 -0.14 -045 -0.88 —-0.13 0.43 0.57
q; —-047 -008 -025 -0.18 -—-0.60 —0.88 —0.40 0.58 0.42
x -029 -012 -0.18 -0.10 -0.39 -0.88 —-0.16 —-0.29 0.29
x, —-043 -0.08 -0.13 -0.15 -027 -—-0.81 —0.09 021 —-0.21

Note: Each entry is the elasticity of the row variable with respect to the column variable. Indices for (g, z) variables: 1 =
tomatoes, 2 = eggplants, 3 = zucchini, 4 = bell peppers, 5 = lettuce and chicory, 6 = other fresh vegetables, 7 = legumes.
Indices for (p, x) variables: 1 = frozen vegetables, 2 = canned vegetables.

of the euro, and the price behavior of the
goods in our bundles does show some upward
trend following the introduction of the euro
(table 1).

Because our model is largely a price-
determination model (for seven of the nine
goods the assumption is that supplies in any
given month are given, and the correspond-
ing prices adjust to clear the market), the hy-
pothesis of an inflationary effect of the euro
introduction suggests that we test whether our
model supports a structural change occurring
with the introduction of the euro. Specifically,
we focus on a possible structural break occur-
ring in January 2002, when the European com-
mon currency (the euro) replaced the lira. The
specific test that we consider is based on the
statistic

T 1 T
39) A=2|—Li+-log——L*
@) a=2| i+l 1]

where T = 87 and 77 = 59 are the sizes of the
full sample and of the sub-sample up to the
hypothesized structural break (i.e., February
1997 to December 2001), L* is the maximized
value of the log-likelihood function over the
entire sample, and L] is the maximized value
of the log-likelihood function over the sub-
sample of 7;. We find that the computed value
of this statisticis A = 184.1. Under the null hy-
pothesis of parameter stability, the statistic A
is distributed as x? with (T — T;)N = 224 de-
grees of freedom, where N = 8 is the number
of estimating equations (Anderson and Blun-
dell 1984). Thus, we find no structural change:
the hypothesis of constancy of the parameters
after the introduction of the euro is not re-
jected at the customary 5% significance level.

Conclusions

This article has dealt with the specification
of a flexible and theory-consistent system of
Samuelson’s (1965) mixed demand functions.
This approach allows for a richer set of pos-
sibilities about what is to be assumed as ex-
ogenous so that the identifying assumptions of
demand models can be tailored to the nature of
the data at hand. The paucity of existing appli-
cations of mixed demand systems in empirical
demand analysis is possibly due to the fact that
derivation of theory-consistent mixed demand
equations is somewhat more difficult than for
ordinary demand equations. After discussing
this problem in some detail, we suggested a
new approach to specifying a coherent mixed
demand system based on the restricted expen-
diture function typically studied in the related
area of rationed demands. The approach was
implemented by a proposed new NQ param-
eterization of this restricted cost function. We
showed that this formulation is locally flexible
in the sense of being able to provide a second-
order approximation to an arbitrary mixed cost
function.

The new NQ mixed demand system was
illustrated with an application to the Italian
demand for vegetables. Specifically, we es-
timated a nine-good mixed demand system
for the group of fresh and processed veg-
etables, whereby we allow for seven goods
(categories of fresh vegetables) to be repre-
sented by predetermined supply, with price
adjusting to clear the market, and for two
goods (canned and frozen vegetables) to have
the standard representation (prices are given).
The system was estimated with monthly data
obtained from a large representative and
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stratified sample of Italian households. The fit
of the estimated equations is fairly good and
the one-parameter correction for serial cor-
relation seems to work well. The estimated
elasticities appear plausible and conform to
Madden’s (1991) notion of R substitutes, as
perhaps one should have expected. This appli-
cation illustrates that the new system that we
have derived is readily estimable and can be
quite useful for modeling demand in markets
in which some prices are exogenously given,
whereas other prices are endogenously deter-
mined given quantities supplied.

[Received April 2006,
accepted January 2007.]
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