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Food system regulators often decide whether to ban existing practices or approve new technologies

without conclusive scientific evidence on possible damage and knowing that resolution is likely in

the future. In a model with three decision points and stochastic resolution of uncertainty, we study

interactions between expected losses due to regulation and information availability when a regulator

is deciding on an early reversible ban and on a later reversible ban. Adjustment costs create inertia

concerning intermediate signals such that earlier decisions are not overturned, and also a bias against

imposing an early ban. The prospect of more later-stage information can increase or decrease the

incentive to ban early, but research decreases the incentive to ban early.
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In an increasingly globalized world, regulators
in the agricultural and food system are facing
a growing demand for action on a number of
fronts. Consider, for example, the issues sur-
rounding the diffusion of “genetically modi-
fied” (GM) crops—plants transformed by the
insertion of foreign genetic material that con-
fers a specific attribute of interest (e.g., herbi-
cide or pest resistance). GM crops have been
rapidly adopted by producers in the United
States and in a few other countries, but have
also generated strong public opposition that is
ostensibly rooted in the possibility (as yet un-
proven) that GM crops pose a risk to human
health and the environment.

In Europe, this opposition has resulted in
an elaborate regulation—meant to foster food
safety, protect the environment, and ensure
consumers’ “right to know”—that is centered
on the notions of labeling and traceability
(Commission of the European Communities,
2003). The new framework establishes manda-
tory labeling for food and feed produced from
GM crops, including food from GM products
even when it does not contain protein or DNA
from the GM crop. A stringent threshold (less
that 0.9% content) is required for food and
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feed to avoid the GM label. Such a regulation
has so far effectively prevented GM crops from
being adopted by E.U. farmers, and it is bound
to add considerable cost for suppliers who use
GM inputs.

Alternatively, consider the regulatory re-
sponses to the discovery of bovine spongiform
encephalopathy (BSE), a condition commonly
known as “mad cow” disease. BSE first sur-
faced in the United Kingdom in the 1980s. Be-
cause BSE is similar to a sheep disease known
as scrapie, it was speculated that scrapie had
crossed the species barrier, perhaps through
cattle feed containing rendered sheep parts.
This led to an early ban of ruminant-derived
proteins in ruminant feed, both in the United
Kingdom and the European Union. Despite
earlier repeated assurances by U.K. authori-
ties that BSE posed no risk of harm for hu-
man, public concerns elsewhere led to several
bans on importing British bovine products. By
the early 1990s, however, BSE cases had been
found in several European countries, and con-
cern mounted that in fact BSE could pose a
direct risk to humans.

Following additional investigations, the pro-
cess of mechanically recovering meat was
banned in the United Kingdom in 1995 and
throughout the European Union in 2000
(Bradley, 2003). In 1996, it was recognized that
a lethal new variant on the Creutzfeldt–Jakob
disease (CJD) in humans could be related to
BSE (Will et al., 1996). As a response to the
new information, government blood product
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regulators around the world strengthened pro-
hibitions on the sourcing and uses of human
blood. Some of these prohibitions were later
relaxed in light of further research (U.S. Food
and Drug Administration, 2002).

As firm evidence indicated that species
could be silent carriers so that a carrier’s body
parts could reinfect the primary host (Hill
et al., 2000), E.U. regulators extended feed
bans and introduced detailed health rules on
animal by-products that imposed a large num-
ber of use curtailments and documentation re-
quirements (Official Journal of the European
Communities, 2002). In 2003, the first two non-
imported cases of BSE were detected on the
North American continent. Whereas much re-
mains to be understood on BSE and its rela-
tionship to CJD (Smith, 2003), Canada and
the United States are moving to extend pro-
duction/processing method and product use
proscriptions as well as detection protocols
toward those in place in the European Union
(Schuff, 2004a). The costs of these prohibitions
are large. E.U. member states, for example, col-
lect for disposal 16.24 million tonnes of ani-
mal by-products. No longer a revenue source,
the materials entails disposal costs of €100 per
tonne (Commission of the European Com-
munities, 2001). In addition, by-product users
have had to develop substitutes. The United
States produces about 18 million tonnes of af-
fected livestock waste. One estimate of the ef-
fects of use bans on animal waste as feed in the
United States puts the cost at $2.17 billion per
annum (Raine, 2003).

Calls for early regulatory action inevitably
stumble on a knowledge barrier: rarely is the
available scientific information sufficient to
support a clear-cut choice when a problem first
arises. Whereas an early action has the poten-
tial to limit damages when the cause of con-
cern turns out to be correct, regulatory action
can also have immediate negative economic
impacts on the sector. In such a setting,
what attributes should rational regulation dis-
play? Some would argue that “If you have to
overreact or underreact, it is better to over-
react.”1 But imperfect scientific knowledge
implies that trade-offs between potential ben-
efits and lost economic opportunities are in-
herent in any meaningful regulatory choice.
Perhaps more important, scientific knowledge
expands over time so that uncertainty about

1 Representative Gil Gutknecht stated that on January 21, 2004,
at a U.S. House of Representatives Committee on Agriculture
hearing on new regulations to control BSE (Schuff, 2004b).

the questions facing regulators is typically re-
solved over time. The prospect of eventual
resolution ought to be accounted for when tak-
ing the initial regulatory action.

In this article, we explicitly address the issue
of how the evolution of scientific knowledge
may be expected to affect the choices of a ra-
tional, risk-neutral regulator. The calculus of
the problem faced by regulators of course in-
cludes many facets. Foremost is the mandate
to prevent negative effects on public health
and the environment. But regulators must also
consider the economic consequences of their
choices, and affected industries are usually ac-
tive in representing the costs that may result
from various regulatory alternatives. We focus
thus on the effects of the “adjustment costs”
that are implied by a new regulation, and on
how these costs interact with a fundamental
feature of the regulators’ decision problem.
This feature is that scientific knowledge on
an issue is typically imperfect, and is likely to
improve over time. Aggressive regulatory ac-
tivism may prevent problems from escalating
and translating into harm to the public. But be-
cause future knowledge is always expected to
be better than current knowledge, future ac-
tions may be more effective than current ac-
tions. Thus, the possibility of future regulatory
actions, to be based on information presently
unavailable, necessarily affects the optimality
of regulatory choices.

The model we develop can be summarized
as follows. At time t = 0 a new regulation is
considered as a response to emerging concerns
(e.g., banning certain feeding practices that
might be linked to the onset of BSE in cattle).
An action at this time can produce benefits, the
exact magnitude of which is unknown. But a
new regulatory action also entails two distinct
costs: an opportunity cost because alternative
practices are more expensive, and also an ad-
justment cost. At some (unknown) future date
t = �1, more information becomes available
and the regulator may change the action cho-
sen at date t = 0. A new action at this point,
or a reversal of the early action, also incurs ad-
justment costs. Eventually, after an additional
uncertain time interval, at date t = �1 + �2, full
information becomes available and the regula-
tor’s decision can be revisited for the final time.
In this setting, we show that adjustment costs
and the resolution of uncertainty play an im-
portant and interactive role in affecting the t =
0 decision. We also study some effects due to
the expected gradual resolution of uncertainty,
both when expected resolution is exogenous
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and when research funding can advance the
arrival of new information.

Whereas we explore a new modeling ap-
proach by representing the resolution of un-
certainty in terms of a stochastic arrival of
new information, the economics of our study
is rooted in an established strand of literature
originated with Arrow and Fisher (1974), and
Henry (1974), who modeled the effect of the
availability of subsequent information on an
irreversible decision. In their studies, the avail-
ability of later information encourages the
early-stage preservation of options over the set
of actions that could be made after the later-
stage information does become available. This
creates the so-called quasi-option value, which
can play an important role in cost–benefit anal-
yses of environmental problems (Hanemann,
1989).2

Kolstad (1996a) has identified a second av-
enue for expected future knowledge to affect
the early-stage decision calculus: when capi-
tal dedicated to solving a potential problem is
sunk and irretrievable. Sunk costs generate an
incentive to act later, after better information
has become available, so as to avoid a possi-
ble waste. This is a form of real option to de-
fer investment, as in Dixit and Pindyck (1994).
Thus, Kolstad’s (1996a) model identifies a ten-
sion between two types of irreversibilities—
the prospect of irreversible damage favors ear-
lier preventative action, but the need for irre-
versible investments to support current action
favors later actions. In our context, a regula-
tor’s decisions are assumed to be completely
reversible, so that the first kind of irreversibil-
ity (the contraction in the future action space
that featured prominently in Arrow and Fisher
(1974)) is not an issue. On the other hand, the
irreversibility in our model is due to the fact
that new regulation involves sunk adjustment
costs (because of the possible need for new
dedicated capital, and because the changes in-
curred by the production system may involve
loss of rents on existing assets, search costs,
management time, and loss of markets). In ad-
dition, as will be explained, adjustment costs
introduce nonconvexities that affect the role
of subsequent information. This issue does not
appear to have been studied elsewhere.

The real option models rooted in Dixit and
Pindyck, such as Pindyck’s (2002) study of pol-

2 These original insights have been developed and applied in sev-
eral environmental economics studies, particularly with reference
to the problem of “global warming” (e.g., Kolstad, 1996b; Ulph
and Ulph, 1997; Fisher and Narain, 2003).

icy adoption timing, are also germane to our
work. But note that these studies concern the
effects of uncertainty on initial decisions, and
not necessarily the structure of sequential rev-
elations of information that is the focus of our
article. Indeed, such real option models gen-
erally do not distinguish between the stock of
information that has yet to be revealed (i.e.,
the amount of prior uncertainty) and the rate
of flow of new information, so that an in-
crease in the flow of new information at a time
point is confounded with an increase in the
amount of prior uncertainty. Our model will
fix the amount of prior uncertainty and change
the time path of information flow. Jones and
Ostroy (1984) is the study closest to ours. There
the interest is in how flexibility, as represented
by low switching costs, interacts with quality of
information in determining the ex ante value
of an objective function to be optimized. They
seek to identify economic motives for taking
flexible positions. In contrast, our interest is
in understanding the determinants of a regula-
tor’s actions.

Related literature also includes Gollier,
Jullien, and Treich (2000), who introduce a risk
aversion motive for precautionary behavior in
the face of scientific uncertainty. The objective
there is to provide an economic rationaliza-
tion for the so-called precautionary principle,
a concept being increasingly advocated to deal
with environmental and other risks.3 In that
model, the tension between the “now” and
“wait” motives for action emerges from subtle
risk management and wealth effects.4 Whereas
our approach could be formulated to account
for risk aversion with wealth as well, here we
abstract from such considerations, and the ef-
fects that we uncover apply even under risk
neutrality.

3 The principle of precautionary action was adopted in the 1992
United Nations Conference on Environment and Development,
where it was explicitly embedded in the Rio Declaration as fol-
lows: “Lack of full scientific certainty shall not be used as a reason
for postponing cost-effective measures to prevent environmental
degradation” (Freestone and Hey, 1996). The original intent to ap-
ply the precautionary approach to environmental risks has recently
been expanded by the European Union to include food safety as
well (Commission of the European Communities, 2000). There is
an ongoing debate as to the proper economic interpretation of
the precautionary principle, but a cogent interpretation in terms
of traditional cost-benefit analysis under risk is possible (Gollier,
2001).

4 Another article that deals with how risk aversion interacts with
the timing of information availability is Eeckhoudt, Gollier, and
Treich (2005). In a three-date model, they show that earlier resolu-
tion of uncertainty about future income should reduce the incen-
tive to make precautionary savings when the same utility function
applies across periods and has a positive third derivative.
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In what follows we develop our model within
a formal Bayesian decision framework. We
first analyze a two-date version of the model
when the probabilistic resolution of uncer-
tainty is held as exogenous. A choice may be
taken at time t = 0, or it may be postponed until
a later date when uncertainty is resolved. This
basic setting, with no intermediate revelation
of information and/or flexibility, allows a clear
appreciation of the various elements of the
model and provides an important benchmark
for later analysis. We then consider a three-
date, two-period model where uncertainty is
resolved gradually and where there is inter-
mediate flexibility—i.e., the regulator can ad-
just its choice to the attainment of partial new
knowledge. Among other results, the model
shows that the extent of investment in research
on the problem decreases the incentive to ban
early. Our final analysis section returns to the
two-date version of the model, but endoge-
nizes the resolution of uncertainty by optimiz-
ing over research expenditures.

Baseline Model: No Intermediate
Information and/or Flexibility

The prototypical regulator problem we envi-
sion in our model is as follows. There is growing
concern that an existing practice, or emerging
new technology, may pose the threat of some
harm to humans and/or the environment. To
root our model in an explicit Bayesian frame-
work, we postulate that there are two states
of the world: it is true that the practice of
interest causes harm (T) and it is false that
the practice in question causes harm (F). At
time t = 0, there is a probability q that the state
of the world is T and probability 1 − q that
the state of the world is F. For concreteness
we suppose that the regulator’s problem con-
cerns an existing practice, and that the choice is
whether to ban the existing practice or to defer
such a choice to the future. Thus, in the model
there are two actions, to ban (B) and to not
ban (N). Uncertainty will be resolved at some
future date � > 0, when future knowledge will
provide perfect information on the true state of
the world. This information is free to the reg-
ulator, and the arrival date is considered for
now to be exogenous to the regulator. At time
t = 0, the arrival date � is a random variable.

As mentioned earlier, we postulate two dis-
tinct costs that result from a regulatory action.
First, there is a cost to banning a technology
because it forces producers to rely on less ef-

ficient alternatives. We represent that by the
instantaneous cost C (thus, C is the parameter
of a constant flow of costs to be incurred as
long as the regulation is in place). In addition,
we allow for adjustment (switching) costs to
be incurred when the system first adjusts to a
new regulatory regime. Specifically, when the
new regulation is first imposed (regardless of
whether it is now or in the future) a one-time
adjustment cost of �1 > 0 is to be incurred. Fur-
thermore, if a new regulation is reversed in the
future, the cost C ceases to apply (producers
can revert to using the most efficient technol-
ogy) but a new adjustment cost �2 > 0 is neces-
sary to transition back to a new equilibrium.5

On the benefits side, we postulate that there
is an (instantaneous) benefit of D > 0 that
arises from banning a harmful practice (thus,
D can be interpreted as the damage that arises
if true state is T).6 With r as the continuous-
time discount rate, we shall assume that D >
C + �1r. This ensures that a regulatory action
would be prima facie desirable if it were known
with certainty that the practice in question is
indeed harmful. Were this condition not valid
then the rent on the lump sum adjustment cost,
�1r, together with the flow cost, C, would out-
weigh damage done and a ban would never be
optimal.7

The payoff to the regulator is the total (ex-
pected) cost (including possible damages, tech-
nology replacement, and adjustment costs).
The realized cost is written as R(a, s, �), where
a ∈ {B, N} is the action chosen, s ∈ {T, F} is
the realized state of the world, and � ∈ (0, ∞)
is the time at which uncertainty is resolved.
The regulator’s decision problem is given in
figure 1, where payoffs are evaluated at t =
0 present values. In this representation, � is a
random variable with distribution f (�). While

5 These adjustment costs may also be time-dependent. Suppose
regulators do not ban promptly a practice after the public becomes
aware of a concern with it, but do ban after additional information
becomes available. Then consumers may perceive that the process
does not work well to safeguard public well-being and avoid the
good even after the practice has been banned. A large market
disruption may follow, which can be viewed as an adjustment costs
�1 that is time dependent. For tractability, we ignore this issue in
our model.

6 While the magnitude of the suspected damage is known, a prob-
ability can be assigned to the event that this damage is occurring
over time. In reality, the extent of damage is likely to follow a
continuous distribution. In addition, knowledge on the extent of
damage and the probability that any damage is occurring at all will
accrete incrementally. Our model simplifies such matters in order
to obtain clearer insights.

7 In reality, the regulator has available a suite of alternative ac-
tions with distinct consequences for the magnitudes of D and C.
We focus on a single extreme choice because we do not believe that
allowing for an arbitrary array of choices would provide additional
insights.
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Figure 1. Regulator payoffs with no intermediate information
and/or flexibility

our model has � as random, we could read-
ily adapt it so that C or D were random. The
action-conditioned expected losses to the reg-
ulator of a given initial action, written as V(a),
are

V (B) =
∫ ∞

0

[q R(B, T, �)

+ (1 − q)R(B, F, �)] f (�) d�

(1)

V (N) =
∫ ∞

0

[q R(N , T, �)

+ (1 − q)R(N , F, �)] f (�) d�.

(2)

Equation (1) represents expected losses (in-
cluding switching costs) from accepting the
truth of the hypothesis that the practice causes
harm when in fact it does not, i.e., statistical
type II error. Equation (2) represents expected
losses from rejecting the hypothesis when in
fact harm is caused, i.e., type I error.

To gain insights into the problem, we shall
assume that � is exponentially distributed such
that the density function is f (�)=he−h� (Taylor
and Karlin, 1984).8 Parameter h represents the
“hazard rate,” which is a constant for the mem-
oryless exponential distribution. Note that this
parameter is inversely related to the expected
date of arrival of knowledge, specifically
E[� ] = 1/h. Given this parameterization, we
obtain

8 The exponential distribution is widely used in the R&D liter-
ature to model innovation arrival, at least since Loury (1979). Its
main merit is that it is memoryless so that expected time to arrival
of information is independent of how long the scientific uncertainty
has persisted. In addition to being convenient, this property is also
very appealing in our context because it is “neutral” with respect
to the structure of arrival of information.

V (B) = �1 + q
(

C
r

)
+ (1 − q)

(
C + �2h

r + h

)(3)

V (N) = q
(

C
r

+ D − C
r + h

+ �1h
r + h

)
.(4)

In this setting, a ban is optimal if it leads to
a lower total cost, i.e., if V(B) < V(N), which
requires

q >
C + �1r + (�1 + �2)h

D + (�1 + �2)h
≡ q�,h .(5)

Relation (5) allows for several conclusions.
Consider first the special case of no adjustment
costs (i.e., �1 = �2 = 0). In such a case, a ban
is warranted if q > C/D ≡ q0 (and no ban
otherwise); that is, the standard cost-benefit
criterion applies. Next, consider the effect of
positive adjustment costs �i > 0, i ∈ {1, 2}, but
assume that there is no expected resolution of
uncertainty (meaning that h = 0 so that ex-
pected time to resolution is infinite). In such a
case, a ban is warranted if q > (C + �1r)/D ≡
q� > q0.Thus, the existence of adjustment costs
tilts the optimal decision toward the status quo
and the motive is to avoid incurring adjustment
costs.

Finally, with positive adjustment costs as
well as expected resolution of uncertainty (i.e.,
h > 0), a ban is warranted if q > q�,h, where
q�,h > q� is due to (5). Thus, given adjustment
costs, the bias in favor of the status quo is
strengthened for h > 0 when compared with
h=0. Also, as the expected resolution of uncer-
tainty moves closer in time (i.e., h gets larger),
the threshold level q�,h increases so that
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waiting becomes more and more attractive.
The marginal impact of the adjustment cost
parameters is also easily illustrated. Specifi-
cally, ∂q�,h/∂�1 >∂q�,h/∂�2 > 0. Thus, increases
in the magnitude of adjustment costs increase
the hurdle to be met to justify action at t =
0, with the highest effect belonging to the ad-
justment cost incurred with the first regula-
tion (�1). We can summarize the foregoing as
follows.

RESULT 1. The existence of adjustment costs
biases the regulator’s optimal choice towards the
status quo. The existence of adjustment costs
also creates scope for the resolution of uncer-
tainty to impact optimal decisions. As the ex-
pected resolution of uncertainty moves closer
in time, the status quo looks more and more
attractive.

In what follows, we extend the model to al-
low for the adaptation in regulators’ decisions
that improved (but not perfect) intermediate
information makes possible.

Gradual Resolution of Uncertainty:
A Three-Date, Two-Period Model

Truth in science seldom dawns with a single
discovery, but rather it is established after a
sequence of discoveries. To capture this fea-
ture of the real world in an effective manner,
we postulate that uncertainty is resolved in two
stages (e.g., two discoveries are required to as-
certain the truth, and these discoveries are nec-
essarily sequential). At time t = 0, there is a
probability q that the true state of the world is
T, and probability 1 − q that the true state is
F. At some future date t = �1 > 0, the proba-
bility q is updated, say, to q̃, and the initial de-
cision can be changed at this future date.9 The
possibility of revising the decision after new in-
formation becomes available should mean that
the decision-maker is interested in how the sig-
nals are distributed because the revised action
will depend on the new information.

At t = 0, the distribution of signal q̃ is G(q̃) :
[0, 1] → [0, 1] where set probability measures

9 For example, q = 0.5 while the updated probability is dis-
tributed uniformly on q̃ ∈ [0, 1]. The probabilities become more
dispersed after the new information becomes available. A very dis-
persed distribution on q̃ reflects a very informative intermediate
signal. Two extremes are when q̃ = q (so that no new information
emerges at time �1), and when q̃ only has values 0 or 1 (so that the
t = �1 signal is fully informative). The latter distribution is clearly
more dispersed than the former.

are represented as G(S), S ⊆ [0, 1]. We as-
sume that there are no atoms, i.e., no points
of discontinuity on G(q̃).10 To ensure inter-
nal consistency, it must be that q = ∫ 1

0
q̃dG(q̃).

Collectively, the t = 0 information structure is
described as {q̃; G(q̃)}. At some further point
in time t = �1 + �2 > �1, further knowledge will
reveal the true state of the world, and the fi-
nal (ex post optimal) decision is implemented.
Regulation a0 ∈ {B0 , N0} can be taken at t =
0, and regulation a1 ∈ {B1 , N1} can be taken
at t = �1 (although the action set is really the
same at the two dates, for notational clarity
we carry the subscript for B and N as well).11

The problem facing the regulator, as a game
against nature, is illustrated in figure 2, where
each terminal node represents the discounted
(at t = 0) state contingent loss. Note that, to
facilitate tractability, from now onward we as-
sume that �1 = �2 ≡ � (i.e., the same adjustment
cost applies each time a regulatory regimes is
changed).12

To proceed, as in the earlier section, we as-
sume that �1 is exponentially distributed with
density f (�1) = h1e−h1�1 , where h1 is the haz-
ard rate for the first resolution of uncertainty
(e.g., Taylor and Karlin). Once �1 is realized,
the second discovery at �2 becomes possible
and �2 is also distributed exponentially, with
density function f (�2 | �1) = h2e−h2�2 , where
h2 is the hazard rate for the second resolu-
tion of uncertainty. Given these stochastic as-
sumptions, we can take expectations over the
distribution of random dates (�1 , �2) and the
distribution of the states of the world. The de-
cision problem of the regulator can thus be
illustrated as in figure 3, where V (a0, a1 | q̃)
denotes the signal-conditioned, discounted ex-
pected costs (with a0 denoting the action taken
at t = 0 and a1 denoting the action taken at time
t = �1).

Evaluating the terms in the terminal nodes
of figure 2 (by using the exponential dis-
tributions for �1 and �2) and taking expec-
tations over the states of the world, the

10 This means that allocation of boundary points on interval sub-
sets of [0, 1] are of no consequence.

11 The capacity to adapt to decisions matters and should alter pref-
erences over information (Mossin, 1969; Spence and Zeckhauser,
1972; Kreps and Porteus, 1978). Our interest is not in preferences
over information structures, but rather in how information struc-
ture and the temporal structure of later decisions affect earlier
actions taken in the presence of adjustment costs.

12 Allowing �1 �= �2 has no qualitative effect on the results.
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Figure 2. Three-date, two-period model structure, with discounted state-contingent loss

signal-conditioned expected regulation costs
are computed as follows:

V (B0, N1 | q̃) = � + C + �h1

r + h1

+ q̃
h1[Dr + h2(C + �r)]

r(r + h1)(r + h2)

(6)

Figure 3. Regulator payoffs with intermedi-
ate information and flexibility

V (B0, B1 | q̃)

= � + C(r + h1 + h2) + �h1h2

(r + h1)(r + h2)

+ q̃
h1h2(C − �r)

r(r + h1)(r + h2)

(7)

V (N0, N1 | q̃)

= q̃
h1h2(C + �r) + Dr(r + h1 + h2)

r(r + h1)(r + h2)

(8)

V (N0, B1 | q̃)

= �h1

r + h1

+ h1(C + �h2)

(r + h1)(r + h2)

+ q̃
Dr(r + h2) + h1h2(C − �r)

r(r + h1)(r + h2)
.

(9)

The linearity of expected costs in q̃ will prove
to be useful when identifying the regulator’s
optimal t = 0 decisions.

Optimal Initial Decision with No Flexibility

In order to benchmark the three-date, two-
period model in (6)–(9) relative to the base-
line model in (3)–(4) we represent the case of
no flexibility as the constraint a0 = a1. Thus,
only the payoffs V (N0, N1 | q̃) and V (B0, B1 | q̃)
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can be realized. For a ban at t = 0 to be op-
timal, it is necessary that E[V (N0, N1 | q̃)] >
E[V (B0, B1 | q̃)], which requires:13

q >
(r + h1 + h2)(C + �r) + 2�h1h2

(r + h1 + h2)D + 2�h1h2

≡ q̂.

(10)

Notice that q̂ < 1 iff C + � r < D. Hence-
forth, and for the reason given in the baseline
model, we make the assumption that C + � r <
D. Then dq̂/d� > 0 so that the interval in which
a ban occurs, (q̂, 1], contracts as the magnitude
of adjustment costs increases. The same is true
of an increase in either h1 or h2. Essentially,
therefore, this case of no flexibility conforms
to the earlier model and Result 1.14 As Ostroy
and Jones have pointed out in their Proposi-
tion 2, when there is no capacity to respond to
new information then optimal initial decisions
depend only on the initial knowledge, i.e., on q.

Flexible Environment—Optimal
Intermediate Decisions

To analyze the optimal intermediate decisions
under flexibility, it is convenient to rewrite the
signal-conditioned expected costs as

V (B0, B1 | q̃) = V (B0, N1 | q̃)

+ (q− − q̃)K

(11)

V (N0, B1 | q̃) = V (N0, N1 | q̃)

+ (q+ − q̃)K

(12)

where15

q− ≡ C − �r
D + 2�h2

(13)

q+ ≡ C + �r + 2�h2

D + 2�h2

(14)

K ≡ h1(D + 2�h2)

(r + h1)(r + h2)
.(15)

Thus, if the initial decision were B0, then
the regulator should ban at t = �1 when-

13 Note that this expectation operator is defined over the distri-
bution of q̃, and it is evaluated at date t = 0.

14 Equations (5) and (10) are obviously similar, with the differ-
ences arising because �1 = �2 = �, because we have broken the
period of uncertainty resolution into two segments, and because
the sum (�1 + �2) does not quite have an exponential distribution
if �1 and �2 possess the assumed exponential distribution.

15 A quantity very similar to q+ was encountered in relation (5)
above.

Figure 4. Adjustment cost induced inertia in
regulation at a later date

ever V (B0, N1 | q̃) > V (B0, B1 | q̃), i.e., when-
ever q̃ > q−. On the other hand, if the initial
decision were N0, then the regulator should
impose a ban at t = �1 whenever q̃ > q+.

It is readily shown that q− ≤ q̂ ≤ q+, where
q̂ is defined in equation (10). To see this, write
q̂ = [C + �r + 2��h2]/[D + 2��h2] where � ≡
h1 /(r + h1 + h2). Because � ∈ [0, 1], it is clear
that q− ≤ q̂. Also, dq̂/d� ≥ 0, and q̂ = q+ iff
� = 1, so we can conclude that q̂ ∈ [q−, q+].
The role of flexibility on intermediate-stage de-
cisions is summarized in Result 2 and depicted
in figure 4.

RESULT 2. Optimal intermediate decisions,
given flexibility and under adjustment costs, dis-
play some inertia. Specifically, there is an inter-
val [q−, q+ ] such that when the signal falls in
this range the optimal intermediate action is to
carry on with the initial action, regardless of
which initial action was chosen.

Thus, Result 2 uncovers a clear example
of what Dixit and Pindyck call “hysteresis,”
specifically an instance of path dependency in
(optimal) economic decisions. Since dq+/d� >
0 > dq−/d�, the interval expands with the ex-
tent of adjustment costs. If, for example, a gov-
ernment chooses to subsidize adjustment by
partial payment of costs incurred, then this
band would contract. In our setting, though,
there is no reason to support such an interven-
tion because the inertia is optimal. The subsidy
would transfer incidence of costs and also en-
courage excessive adjustment. In what follows
we address the question of how such hysteresis
affects the initial decision.

Flexible Environment—Optimal
Initial Decisions

Having characterized the (constrained) opti-
mality of subsequent decisions, we can now
consider how optimal initial decisions are
taken in a context where it is known that some
information will be revealed (i.e., some un-
certainty will be resolved) and that the initial
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decision can be revisited when that happens
(i.e., there is flexibility). Let a∗

1 ∈ {B1 , N1}
denote the optimal intermediate decision, as
discussed in the preceding section. For signal
action a0 ∈ {N0, B0}, the regulator’s expected
losses (conditional on q̃) are

V
(
N0, a∗

1

∣∣ q̃
)

= min{V (N0, N1 | q̃), V (N0, B1 | q̃)}

=
(

D
r + h1

+ h1h2(C − �r)

r(r + h1)(r + h2)

)
q̃

+ K min[q̃, q+]

(16)

V
(
B0, a∗

1

∣∣ q̃
)

= min
{

V (B0, N1 | q̃), V (B0, B1 | q̃)
}

= C + �r + 2�h1

r + h1

+ h1h2(C − �r)

r(r + h1)(r + h2)
q̃

+ K min[q̃, q−].

(17)

To determine which of the two initial ac-
tions is optimal at t = 0 it is necessary to in-
tegrate over the distribution of the signal q̃.
Thus, the optimal decision at t = 0 will revolve
around what we shall call the “policy func-
tion,” � ≡ E[V (B0, a∗

1 | q̃)] − E[V (N0, a∗
1 | q̃)].

If � < 0, then it is optimal to ban at t = 0,
whereas if � ≥ 0, then it is optimal to not ban
at t = 0. By using equations (16) and (17), the
policy function can be expressed as

� = C + �r + 2�h1 − qD
r + h1

+ E[A(q̃ ; q+, q−)]

(18)

where q = E[q̃], as noted earlier, and

A(q̃; q+, q−)

≡ K (min[q̃, q−] − min[q̃, q+]).

(19)

The function A(q̃; q+, q−) plays an important
role in our analysis, and it is depicted in fig-
ure 5.16 It is bounded on [−2�h1 /(r + h1),0] so
that � ≥ (C + � r − qD)/(r + h1) ≥ (C − qD)/
(r + h1) = �|�=0. This means that the existence
of adjustment cost � introduces a predisposi-
tion to not ban. Similarly, � ≤ (C + � r +

16 With �1 �= �2 figure 5 would modify slightly. But the critical
attributes of concave over [0, q+) and convex over (q−, 1] continue
to apply.

Figure 5. A(q̃; q−, q+)as signal value changes

2�h1 − qD)/(r + h1) = � | �=0 + � (r + 2h1)/
(r + h1).

We can summarize the foregoing as follows.

RESULT 3. In the presence of adjustment costs,
the optimal decision is to not ban if (C + � r)/
D ≥ q and it is to ban if (C + � r + 2� h1)/D <
q. In these cases, the informativeness of the t =
�1 information structure {q̃; G(q̃)} has no effect
on the t = 0 decision. In addition, if it is optimal
to ban in the presence of adjustment costs then
it is optimal to ban in the absence of adjustment
costs, i.e., � ≥ �|�=0 so that � < 0 implies �|�=0

< 0.

Before inquiring into how quality of infor-
mation matters in the presence of adjustment
costs, we remark that it does not matter when
� = 0. From �|�=0 = (C − qD)/(r + h1), it
is clear that whether ban or not ban at t = 0
supports lower t = 0 expected loss under � =
0 depends only on the ex ante signal mean q
and not on any other attributes of {q̃; G(q̃)}.
If q > C/D, then the t = 0 decision is to ban.
If q ≤ C/D, then the t = 0 decision is to al-
low the practice. Only q matters in determin-
ing the t = 0 decision under � = 0 because the
t = �1 expected loss is invariant to the t = 0 de-
cision. Better information will allow for better-
quality t = �1 decisions, thus decreasing ex ante
expected loss, but the t = �1 state-conditional
decisions are separated from the t = 0 decision.
The separation fails when adjustment costs are
incurred. We turn now to the interval of ex ante
probability not covered in Result 3, that is, q ∈
((C + � r)/D, (C + � r + 2� h1)/D].

Effects of the “Quality” of Information

To frame the issue it is useful to consider the
(degenerate) polar case that arises when there
is no meaningful expected resolution of uncer-
tainty. Specifically, if it were known that at t =
�1 the probability of the practice in question
causing harm is unchanged—that is, q̃ = q for
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all possible states of the world—then clearly no
useful information is expected. To have better
information, it is necessary for the signal q̃ to
be more dispersed. This is because the more
dispersed is this signal, the more useful is the
information that can be acted on at date t = �1.
To see this, write the expectations of equations
(16) and (17) as

E
[
V

(
N0, a∗

1

∣∣ q̃
)]

=
(

D
r + h1

+ h1h2(C − �r)

r(r + h1)(r + h2)

)
q

+ K q+ − K
∫ q+

0

G(q̃)dq̃

(20)

E
[
V

(
B0, a∗

1

∣∣ q̃
)]

= C + �r + 2�h1

r + h1

+ h1h2(C − �r)

r(r + h1)(r + h2)
q

+ Kq− − K
∫ q−

0

G(q̃) dq̃.

(21)

Note that the right-hand expressions in
these two equations are decreasing in a mean-
preserving spread on the t = �1 signal so that
min{E[V (N0, a∗

1 | q̃)], E[V (B0, a∗
1 | q̃)]} is also

decreasing. This conclusion conforms to the
well-known result that a more dispersed signal
structure is more informative in the sense that
it supports a lower expected loss (Blackwell,
1953; Epstein, 1980). That is to say, a mean-
preserving spread in the t = �1 signals repre-
sents an increase in the information structure’s
informativeness from the viewpoint of t = 0.

How exactly the increase in informativeness
associated with a meaningful resolution of un-
certainty affects the initial choice depends on
the structure of the distribution of the signal
q̃. There are seven conceivable cases. For each
case j ∈{1, 2, . . . , 7}, we use Bayes conditioning
to develop the threshold level qj above which
the initial decision will be to ban.

Case 1. G([0, q+)) = 0
In this case, the optimal intermediate de-
cision is a∗

1 = B1 with probability 1. Given
that, the t = 0 decision should be to ban
if V(N0 , B1 | q) > V(B0 , B1 | q), which
requires

q >
C + �r

D
≡ q1.(22)

Because q1 < q+, and given that q > q+
with probability 1, here it is optimal to ban
at t = 0.

Case 2. G([q−, 1]) = 0
In this case, the optimal intermediate
decision is a∗

1 = N1 with probability 1.
Given that, the optimal decision at t = 0
is to not ban if E[V (B0, N1 | q̃)] >
E[V (N0, N1 | q̃)], which requires

q <
(C + �r + 2�h1)

D
≡ q2.(23)

Because q < q− with probability 1, and
q− < q2, it is optimal to not ban at t = 0 in
this case.

Case 3. G([q−, q+)) = 0 and neither Case 1
nor Case 2
Here, the optimal intermediate decision is
to ban if q̃ > q+ and to not ban if q̃ < q−.
Thus, the regulator’s expected t = 0 losses
associated with the two actions are

E
[
V

(
B0, a∗

1

∣∣ q̃
)]

=
∫ 1

q+
V (B0, B1 | q̃) dG(q̃)

+
∫ q−

0

V (B0, N1 | q̃) dG(q̃)

(24)

E
[
V

(
N0, a∗

1

∣∣ q̃
)]

=
∫ 1

q+
V (N0, B1 | q̃)dG(q̃)

+
∫ q−

0

V (N0, N1 | q̃)dG(q̃).

(25)

The optimal decision at t = 0 is to ban if
E[V (N0, a∗

1 | q̃)] > E[V (B0, a∗
1 | q̃)], which

requires

q >
C + �r + 2�h1G(q−)

D
≡ q3.(26)

It is readily shown that either decision can
occur under this case.

Case 3 may be viewed as a convex com-
bination of the preceding cases. If G([0,
q−)) is so small as to be negligible, then
� ≈ [C + � r − qD]/(r + h1). A t =
�1, reversal of a0 = B0 is then unlikely
and the t = 0 decision should be similar
to that of Case 1. In general, a more dis-
persed signal at t = �1 can increase or de-
crease the value of G(q−). This means that
if G(q) becomes more dispersed then a N0

decision can change to a B0 decision or
vice versa.
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Case 4. G([q−, q+)) = 1
Here, the optimal intermediate action is to
confirm the initial action B1 | B0 or N1 | N0.

So it is optimal to ban if
∫ 1

0
V (N0, N1 | q̃) ×

dG(q̃) >
∫ 1

0
V (B0, B1 | q̃) dG(q̃), i.e., if

q >
(r + h1 + h2)(C + �r) + 2�h1h2

(r + h1 + h2)D + 2�h1h2

≡ q4.

(27)

Notice that q4 ≡ q̂ as defined in relation
(10), and the reason is straightforward. In
Case 4, the capacity to adapt the regula-
tion to intermediate-stage information is
of no relevance because, given the distri-
bution of q̃ that characterizes this case, it
will never happen. As in Case 3, choices
of cost parameters can support both t = 0
decisions. To see this, set r = 0 and h1 =
h2 = 1 so that the criterion becomes q >
(C + �)/(D + �).

Case 5. G([0, q−)) = 0, G([q−, q+)) �= 0, and
G([q+, 1]) �= 0
In this case, the optimal intermediate pol-
icy is to ban if q̃ > q+ and to stick with
the original decision if q̃ ≤ q+. Thus, the
optimal decision at t = 0 is to ban if
E[V (N0, a∗

1 | q̃)] > E[V (B0, a∗
1 | q̃)], where

E
[
V

(
N0, a∗

1

∣∣ q̃
)]

=
∫ q+

q−
V (N0, N1 | q̃) dG(q̃)

+
∫ 1

q+
V (N0, B1 | q̃) dG(q̃)

(28)

E
[
V

(
B0, a∗

1

∣∣ q̃
)]

=
∫ q+

q−
V (B0, B1 | q̃) dG(q̃)

+
∫ 1

q+
V (B0, B1 | q̃) dG(q̃).

(29)

No clean analog to (22), (23), and
(27) exists. Condition E[V (N0, a∗

1 | q̃)] =
E[V (B0, a∗

1 | q̃)] implicitly defines the t =
0 level of q, call it q5, above which banning
is optimal.

As in Case 3, even conditional on the
case, the particulars of information struc-
ture {q̃, G(q̃)} determine the optimal t = 0
decision. Observe that, for the domain of

Case 5, the function A(q̃; q+, q−) is con-
vex in q̃ (cfr. figure 5) so that a mean-
preserving spread in information structure
increases �. Numerical examples readily
show, assuming the case conditions con-
tinue to hold, that a more informative
{q̃; G(q̃)} can change the t = 0 decision
from B0 to N0, but convexity ensures that
the reverse cannot occur.

Case 6. G([0, q−)) �= 0, G([q−, q+)) �= 0, and
G([q+, 1]) = 0
In this case, the optimal intermediate pol-
icy is to not ban if q̃ ≤ q−, and to stick with
the original decision under all other sig-
nals. Thus, the optimal decision at t = 0 is to
ban if E[V (N0, a∗

1 | q̃)] > E[V (B0, a∗
1 | q̃)]

where

E
[
V

(
N0, a∗

1

∣∣ q̃
)]

=
∫ q−

0

V (N0, N1 | q̃) dG(q̃)

+
∫ q+

q−
V (N0, N1 | q̃) dG(q̃)

(30)

E
[
V

(
B0, a∗

1

∣∣ q̃
)]

=
∫ q−

0

V (B0, N1 | q̃) dG(q̃)

+
∫ q+

q−
V (B0, B1 | q̃) dG(q̃).

(31)

As in Case 5, no clean analog of (22), (23),
and (27) exists.

In figure 5 and for the domain of Case
6, � is concave so that a mean-preserving
spread in information structure decreases
�. Again, and assuming the case con-
ditions continue to hold, numerical ex-
amples show that a more informative
{q̃; G(q̃)} can change the t = 0 decision
from N0 to B0. But concavity ensures a B0

will not be overturned to N0 in the pres-
ence of more information.

Case 7. G(q−) �= 0, G([q−, q+)) �= 0, and
G([q+, 1]) �= 0
The absence of uniform curvature on the
function A(q̃; q+, q−) means that a more
informative signal structure can lead to an
overturn of decision N0 to B0 or an over-
turn of decision B0 to N0.

RESULT 4. Signal dispersion and flexibility do
not matter for Cases 1, 2, and 4. In such cases, the
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informativeness of the signal is inconsequential
for the optimal decision at t = 0. For the other
cases, signal dispersion coupled with flexibility
leads to lower expected costs and can result in
the initial ban decision to be changed to a no ban
decision (Cases 3, 5, and 7) and in an initial no
ban decision to be changed to a ban decision
(Cases 3, 6, and 7).

These conclusions of our model are related
to some fundamental results in the economics
of information. Particularly germane is Theo-
rem 1 in Epstein, which highlights the crucial
role played by the curvature (in the distribu-
tion of uncertainty) of the marginal condition
of the initial problem. In our case, the critical
element concerns the curvature of the function
A(q̃; q+, q−).

A notable feature of Result 4 is that the
recognition that better quality information is
coming does not necessarily favor the status
quo.17 This is due to the fact that the function
A(q̃; q+, q−) does not have a uniform curva-
ture on the entire domain. Specifically, as dis-
cussed earlier and as illustrated in figure 5, the
function in question is concave on [0, q+] and
convex on [q−, 1]. An increase in the disper-
sion of the signal—i.e., more information—has
opposite effects on the expected value of the
function A(q̃; q+, q−), and thus has opposite
impacts on the decision problem, depending
on whether the function in question is concave
or convex. When the signal’s distribution spans
both concave and convex portions (as in cases
3 and 7) then ambiguity arises. Interestingly,
again, such a situation allows for the (perhaps
counterintuitive) result that a more informa-
tive signal may actually increase the propen-
sity to ban at the initial stage (i.e., it may move
the initial decision away from the status quo).
As will be explained in the next section, this
ambiguity concerning the effect on decisions
is not shared with the effect of more early-
stage research on decisions. Both decrease the
expected loss to the regulator, but the effect
on decisions is clearer for more early-stage re-
search.

Effect of More Early-Stage Research

The arrival of new scientific information can
be affected by scientific research, and indeed
it is common to see calls for bans and regula-

17 We reiterate that the conclusions of Result 4 are obviously
predicated on the assumption that the conditions defining each
case do not change as the information structure is changed.

tion coupled with calls for more investment in
research on the problem at hand. How com-
pelling are such calls in the context of our
model? To address this question, note that in
our model the arrival of information is gov-
erned by the parameters of the exponential
distributions (h, h1 and h2). Consider first the
initial model without intermediate flexibility,
leading to the decision rule of equation (5).
Here the mean time to arrival of intermediate
information is 1/h, and one can think of invest-
ment in scientific research as increasing the pa-
rameter h. The right-hand side of equation (5)
immediately yields ∂q�,h/∂h > 0. Thus, invest-
ments that speed up the expected resolution
of uncertainty have the collateral effect of tilt-
ing the optimal initial decision further towards
the status quo. Indeed, because limh→∞q�,h =
1, one would always want to wait if news was
likely to come very soon.

A similar conclusion can be obtained when
intermediate flexibility is allowed. Specifically,
suppose that an investment in more scientific
research is interpreted as increasing parameter
h1 (i.e., reducing the expected time to arrival of
the intermediate information). To analyze how
such an increase in h1 will affect the optimal
decision, write � in (18) as

� = C + �r − q D + 2�h1(1 − �)

r + h1

� = − (r + h1)

2�h1

E[A(q̃; q+, q−)].

(32)

Denominator r + h1 is always positive.
Furthermore, it can be shown that � ∈ [0,
1] because of the bounds on the function
A(q̃; q+, q−) (cfr. figure 5). Consequently, if
�>0, then an increase in the value of h1 cannot
change the sign of �. Hence, when the regula-
tor’s initial decision is to not ban, this decision
cannot be affected by more research leading
to a shortening of E[�1 ]. On the other hand,
when �< 0, an increase in the value of h1 could
in fact change the sign of �. Thus, if the candi-
date’s t = 0 decision is to ban, a commitment
to more research leading to an increase in h1

could overturn the optimal initial decision.

RESULT 5. Research funding and a regulatory
ban can be viewed as “substitutes.” A commit-
ment to undertake more scientific research lead-
ing to earlier resolution of uncertainty tilts the
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optimal initial decision further towards the sta-
tus quo.

How Much Scientific Research?

Although governments often separate re-
search funding decision-making from rule-
making, the foregoing suggests that a coor-
dinated response to a regulation problem in
the absence of sufficient scientific information
should involve both the regulation choice it-
self and the extent of funding for research that
improves the information of the regulator. In
this section we investigate briefly the interac-
tion between research decisions and regula-
tory decisions. To keep the analysis tractable,
we limit attention to the initial framework
without intermediate flexibility. The model-
ing approach is to let h ≡ h0 + h

�

, where h0

is the baseline parameter governing the res-
olution of uncertainty (which depends on re-
search that will anyway be undertaken in the
economy), and h

� ≥ 0 is the addition to this pa-
rameter due to directed research under the
control of the government. Thus, the baseline
exogenous expected arrival of information is
1/h0, and the expected arrival date of informa-
tion when additional research is undertaken is
1/(h0 + h

�

) (so that the regulator can accelerate
the resolution of uncertainty by funding addi-
tional research).

The cost of the additional research effort is
parameterized as �h

�

, where � > 0 is the unit
cost (which reflects many things, including the
state of knowledge in a discipline and the par-
ticular research effort that is necessary). By
using (3) and (4) when h ≡ h0 + h

�

, the regula-
tor’s loss minimization problems, conditional
on a given{B, N} policy choice, are:

L(B) = min
�
h≥0

�1 + C + �2(h0 + h
�

)

r + h0 + h
�

+ q(h0 + h
�

)(C − �2r)

r(r + h0 + h
�

)
+ �h

�

(33)

L(N)

= min
�
h≥0

q
(

C(h0 + h
�

) + Dr + �1(h0 + h
�

)r
r(r + h0 + h

�

)

)
+ �h

�

.

(34)

The first-order conditions for an interior
solution are (1 − q)(C − �2r)/(r + h0 + h

�

)2 =
� under ban and q(D − C − �1r)/(r + h0 +
h
�

)2 = � under no ban. In each case, second-
order conditions for convexity are satisfied so

that optimal solutions h
�∗

B and h
�∗

N , respectively,
attain the unique values

h
�∗

B = max
{(−r − h0 + √

(1 − q)(C − �2r)/�
)
, 0

}(35)

h
�∗

N = max
{(−r − h0 + √

q(D − C − �1r)/�
)
, 0

}
.

(36)

Upon defining the critical points:

q B ≡ 1 − (r + h0)2�/(C − �2r)(37)

q N ≡ (r + h0)2�/(D − C − �1r),(38)

from equations (35) and (36) the following four
cases arise regarding whether it is necessary to
engage in research efforts beyond the exoge-
nous level underlying h0.

Case (i). q ≥ qB and q ≤ qN . In this case, ad-
ditional research is not warranted regard-
less of the initial ban decision taken. The
case was analyzed previously, with deci-
sion rule given in (5) where h = h0. This
case will apply when the values of h0 and
� are sufficiently high.

Case (ii). q ≥ qB and q > qN . In this case, ad-
ditional research is warranted only when
the initial decision is not to ban. From (37)
and (38), it is apparent that the conditions
of this case will be true when (r + h0)2 �
is large, D − C − �1r is larger by a suffi-
cient magnitude, and q is sufficiently small.
Even though the probability of harm is
low, the loss if harm does occur is sufficient
to elicit additional research when the de-
cision is not to ban.

Case (iii). q < qB and q ≤ qN . In this case, ad-
ditional research is warranted only when
the initial decision is to ban. From (37) and
(38), it is apparent that the conditions of
this case will be true when (r + h0)2 � is
large, C − �2r is larger by a sufficient mag-
nitude, and q has value close to 1. Even
though the probability of harm is high, sec-
tor losses under a ban are sufficient to elicit
additional research were a ban to be put
in place.

Case (iv). q < qB and q > qN . This is the most
interesting case and arguably the most
plausible for situations involving pressing
scientific problems, and thus we will con-
sider this case in more detail in the remain-
der of the section. It occurs when r + h0
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and � are sufficiently low in value. In this
case, additional research is warranted re-
gardless of the initial ban decision taken.
By using the optimal solutions in (35) and
(36), the value functions of the minimiza-
tion problems in (33) and (34) are

L(B) = �1 + �2(1 − q) + qC
r

− r�

− h0� + 2
√

�(1 − q)(C − �2r)

(39)

L(N) = q(C + �1r)

r
− r� − h0�

+ 2
√

�q(D − C − �1r).

(40)

Thus, the decision is to ban if and only if
L(N) ≥ L(B), which requires:

h
�∗

N − h
�∗

B ≥ (�1 + �2)(1 − q)

2�
.(41)

Observe that if q = 0 then (41) is never
true. If q = 1, then it is true given that D >
C + �1r. If the left-hand side of (41) has
value 0 then q = (C − �2r)/(D − �1r − �2r)
and the right-hand side of (41) is strictly
positive at this q value (again, given D >
C + �1r). In addition, the left-hand side
of (41) is increasing in q while the right-
hand side is decreasing in q, so continu-
ity ensures that there is a unique value of
q, label it qR (where superscript R = re-
search), such that (41) holds with equal-
ity. From Result 5 we know that the “no
ban” region increases as h increases, and
hence q R > q�,h0

. Furthermore, h
�∗

N > h
�∗

B
when both expressions in (35) and (36) are
evaluated at q = qR.

RESULT 6. Consider the case with no interme-
diate flexibility, where (r + h0)2 � is sufficiently
low in value and it is possible to speed up the
resolution of uncertainty by additional scientific
research. Then there exists a value qR ∈ (0, 1)
such that it optimal not to ban if q ≤ qR and it
is optimal to ban if q > qR. The optimal level
of research increases with q on q ≤ qR and de-
creases on q > qR, i.e., dh

�∗
N /dq ≥ 0 on q ≤ qR

and dh
�∗

B/dq ≤ 0 on q > qR. In addition, when
q = qR then optimal research under no ban is
larger than under a ban.

The intuition for this analysis is as follows.
At low and high q values the t = 0 regulation
is unlikely to be overturned when the truth is
finally known. There is not a strong incentive
to accelerate the expected time of acquiring

additional information. When the value of q is
more central, then the risk of having had the
wrong policy in place at t = 0 is larger and
so more research should be undertaken. This
need for more research is particularly acute
when no ban is put in place at t = 0 because, as
result 5 has already indicated, the decision to
ban substitutes for research.

Conclusion

Regulatory activism that limits the use of ef-
ficient technologies otherwise favored by pro-
ducers, or limits the adoption of new technolo-
gies, has at least two contrasting effects. On
the one hand new regulation has an expected
(gross) benefit because it limits exposure to po-
tential risks, and on the other it introduces an
expected cost because it promotes the use of
less efficient technologies. Striking an optimal
trade-off between costs and benefits is difficult
because decisions are typically required under
imperfect scientific information.

In such a setting some would argue for a cau-
tious or “precautionary” approach to regula-
tion on the grounds that restrictive regulation
could anyway be abandoned in the future, if
the resolution of scientific uncertainty were to
warrant that. But drastic changes in produc-
tion or distribution patterns forced by regula-
tion also entails adjustment costs that are sunk,
i.e., such costs cannot be recovered even if the
regulation in question is modified at a future
date. In this paper, we have argued that such
sunk costs must be accounted for in the com-
putation of the costs and benefits trade-offs of
regulation. More importantly, the existence of
such sunk costs changes the inherent structure
of the regulation problem once it is realized
that scientific uncertainty is resolved gradually
over time.

Our objective here has been to clarify how
adjustment costs affect the dynamics of reg-
ulatory decisions as scientific information be-
comes more complete. Broadly speaking, the
existence of adjustment costs creates inertia
and favors the status quo. But adjustment costs
also change how the optimal regulation re-
sponds to better scientific information. The
knowledge that more information is on the way
can increase or decrease the incentive to put an
early ban in place. We show how parameters
other than the cost per unit time to produc-
ers and the magnitude of contingent damage
per unit time matter. Other critical features in
the model are the extent of adjustment costs
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that might be incurred, the extent of infor-
mation that will be revealed, the structure of
that information, the stochastic attributes of
the information revelation date, and the unit
cost of research. But, regardless of the infor-
mation structure, a regulator may sometimes
be able to decide early and with high confi-
dence if reliable estimates of C and D can be
obtained.

Where one starts in the process does mat-
ter as well. If a technology is banned be-
fore adoption can occur, as was the case
with GM crops in many European countries,
then the existence of adjustment costs in
the presence of imperfect information should
act as a deterrent to lifting the ban. Given
these qualifications, though, there is no a pri-
ori reason to believe that a precautionary
ban is the best principle when seeking to
manage BSE or any other crisis for which
current science provides less-than-conclusive
guidance.

[Received May 2004;
accepted June 2005.]

References

Arrow, K.J., and A.C. Fisher. 1974. “Environmen-

tal Preservation, Uncertainty, and Irreversibil-

ity.” Quarterly Journal of Economics 88:312–

19.

Blackwell, D. 1953. “Equivalent Comparisons of

Experiments.” Annals of Mathematical Statis-
tics 24:265–73.

Bradley, R. 2003. “BSE Risks for Humans Consum-

ing Beef and Beef Products: How Any Risks

Are Managed.” Veterinary Research Commu-
nications 27:15–23.

Commission of the European Communities. 2000.

“Communication from the Commission on the

Precautionary Principle.” COM(2000) 1 final,

Brussels, February.

——. 2001. “Commission Staff Working Paper on

the Processing, Disposal and Uses of Animal

By-Product in Member States.” SEC(2001)

1889, Brussels, November.

——. 2003. “European Legislative Framework for

GMOs Is Now in Place.” Press Release,

IP/03/1056, Brussels. 22 July.

Dixit, A., and R.S. Pindyck. 1994. Investment under
Uncertainty. Princeton NJ: Princeton Univer-

sity Press.

Eeckhoudt, L., C. Gollier, and N. Treich. 2005. “Op-

timal Consumption and the Timing of the Res-

olution of Uncertainty.” European Economic
Review 49:761–73.

Epstein, L.G. 1980. “Decision Making and the Tem-

poral Resolution of Uncertainty.” International
Economic Review 21:269–83.

Fisher, A.C., and U. Narain. 2003. “Global Warm-

ing, Endogenous Risk, and Irreversibility.” En-
vironmental and Resource Economics 25:395–

416.

Freestone, D., and E. Hey, eds. 1996. The Precau-
tionary Principle and International Law. The

Hague: Kluwer.

Gollier, C. 2001. “Should We Beware the Precau-

tionary Principle?” Economic Policy 16:302–

21.

Gollier, C., B. Jullien, and N. Treich. 2000. “Scien-

tific Progress and Irreversibility: An Economic

Interpretation of the ‘Precautionary Princi-

ple.’” Journal of Public Economics 75:229–

53.

Hanemann, W.M. 1989. “Information and the Con-

cept of Option Value.” Journal of Environmen-
tal Economics and Management 16:23–37.

Henry, C. 1974. “Investment Decisions Under Un-

certainty: The ‘Irreversibility Effect.’” Ameri-
can Economic Review 64:1006–12.

Hill, A.F., S. Joiner, J. Linehan, M. Desbruslais,

P.L. Lantos, and J. Collinge. 2000. “Species-

Barrier-Independent Prion Replication in Ap-

parently Resistant Species.” Proceedings of the
National Academy of Sciences of the United
States 97:10248–253.

Jones, R.A., and J.M. Ostroy. 1984. “Flexibility

and Uncertainty.” Review of Economic Stud-
ies 51:13–32.

Kolstad, C.D. 1996a. “Fundamental Irreversibilities

in Stock Externalities.” Journal of Public Eco-
nomics 60:221–33.

——. 1996b. “Learning and Stock Effects in En-

vironmental Regulations: The Case of Green-

house Gas Emissions.” Journal of Environmen-
tal Economics and Management 31:1–18.

Kreps, D.M., and E.L. Porteus. 1978. “Tem-

poral Resolution of Uncertainty and Dy-

namic Choice Theory.” Econometrica 46:185–

200.

Loury, G.C. 1979. “Market Structure and Innova-

tion.” Quarterly Journal of Economics 93:395–

410.

Mossin, J. 1969. “A Note on Uncertainty and Prefer-

ences in a Temporal Context.” American Eco-
nomic Review 59:172–74.

Official Journal of the European Communities.

2002. Regulation (EC) No 1774/2002 of the Eu-
ropean Parliament and of the Council. L 273,

Brussels, 3 October.

Pindyck, R.S. 2002. “Optimal Timing Problems in

Environmental Economics.” Journal of Eco-
nomic Dynamics and Control 26:1677–97.



Hennessy and Moschini Regulation, Adjustment Costs, and Scientific Uncertainty 323

Raine, M. 2003. “Waste Disposal Becomes Costly.”

Western Producer, December 17, http://

www.producer.com/articles/20031211/special

report/20031211rendering01.html.

Schuff, S. 2004a. “Policy Changes to Protect Pub-

lic, Animal Well-Being.” Feedstuffs, January 26,

p. 1 and p. 4.

——. 2004b. “BSE Surveillance Key Theme During

Committee Hearing.” Feedstuffs, January 12,

p. 6 and p. 41.

Smith, P.G. 2003. “The Epidemics of Bovine Spongi-

form Encephalopathy and Variant Creutzfeldt-

Jakob Disease: Current Status and Future

Prospects.” Bulletin of the World Health Or-
ganization 81:123–30.

Spence, M., and R. Zeckhauser. 1972. “The Effect

of Timing of Consumption Decisions and the

Resolution of Lotteries on the Choice of Lot-

teries.” Econometrica 40:401–03.

Taylor, H.M., and S. Karlin. 1984. An Introduction
to Stochastic Modeling. Orlando, FL: Academic

Press.

Ulph, A., and D. Ulph. 1997. “Global Warming, Ir-

reversibility and Learning.” Economic Journal
107:636–50.

U.S. Food and Drug Administration. 2002.

Guidance for Industry: Revised Preventive
Measures to Reduce the Possible Risk of
Transmission of Creutzfeldt-Jakob Disease
(CJD) and Variant Creutzfeldt-Jakob Disease
(vCJD) by Blood and Blood Products. Cen-

ter for Biologics Evaluation and Research,

January.

Will, R.G., J.W. Ironside, M. Zeidler, S.N. Cousens,

K. Estibeiro, A. Alperovitch, S. Poser, M. Poc-

chiari, A. Hofman, and P.G. Smith. 1996. “A

New Variant of Creutzfeldt-Jakob Disease in

the UK.” Lancet 347:921–25.


