
TESTING FOR COMPLEMENTARITY:
GLYPHOSATE TOLERANT SOYBEANS AND

CONSERVATION TILLAGE

EDWARD D. PERRY, GIANCARLO MOSCHINI, AND DAVID A. HENNESSY

Many decisions in agriculture are made over combinations of inputs and/or practices that may
form a technology system linked through complementarity. The presence of complementar-
ity among producer decisions can have far-reaching implications for market outcomes and for
the effectiveness of policies intended to influence them. Identifying complementarity relations,
however, is made difficult by the presence of unobserved heterogeneity. Drawing on recent
methodological advances, in this paper we develop a test for complementarity between glyphosate
tolerant soybeans and conservation tillage that overcomes certain limitations of previous studies.
Specifically, we develop a structural discrete choice framework of joint soybean-tillage adoption
that explicitly models both complementarity and the correlation induced by unobserved hetero-
geneity. The model is estimated with a large unbalanced panel of farm-level choices spanning
the 1998–2011 period. We find that glyphosate tolerant soybeans and conservation tillage are
complementary practices. In addition, our estimation shows that farm operation scale promotes
the adoption of both conservation tillage and glyphosate tolerant seed, and that all of higher fuel
prices, more droughty conditions, and soil erodibility increase use of conservation tillage. We
apply our results to simulate annual adoption rates for both conservation tillage and no-tillage in
a scenario without glyphosate tolerant soybeans available as a choice. We find that the adoption
of conservation tillage and no-tillage have been about 10% and 20% higher, respectively, due to
the advent of glyphosate tolerant soybeans.
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Decision variables in many real-world prob-
lems are often best viewed as combined in
clusters, for example, bundles of goods or
sets of practices. This clustering naturally
arises when the payoff associated with the
level of one variable is increasing in the level
of another variable; that is, when they are
complements. The underlying supermodular
structure of the decision makers’ objective
function constitutes the essence of such
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situations (Milgrom and Roberts 1990).
Complementary choices are ubiquitous and
appear in consumption problems, production
contexts, dynamic choices, and organizational
design (Berry et al. 2014). They are relevant
in agricultural settings as well, where farmers’
decisions increasingly pertain to choices of
“systems” composed of alternative combi-
nations of inputs or practices. For example,
the choices of which crop to produce, what
rotation to use, and type of tillage to employ
are often intertwined with mechanical equip-
ment investments and the choices of an array
of chemical inputs and genetics. An accurate
characterization of such choices—that is,
determining whether they form a technology
system linked through complementarity—is
crucial for both policy analysis and the eval-
uation of alternative hypotheses. Indeed,
many policy interventions entail spillover
effects and unintended consequences, which
are often the result of unaccounted-for
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complementarities between targeted and
other variables.

An open question in agriculture that can
benefit from a focus on complementarity
relates to the environmental implications of
genetically engineered (GE) crop varieties.
Since their introduction in 1996, GE crops
have been both commercially successful and
controversial (Moschini 2008). Environmen-
tal concerns have ranged from the possibility
that adoption of GE crops facilitates
monoculture to the detriment of desirable
rotations, to the incentive that herbicide tol-
erant crops provide for the increased use of
certain herbicides, and the risk of resistance
build-up among the weeds and insects tar-
geted by GE traits. Potential environmental
benefits have been posited as well, however,
such as a reduction in the use of certain
insecticides and a reduction in agriculture’s
footprint (Barrows, Sexton, and Zilberman
2014). An additional important hypoth-
esized impact, which at present remains
unresolved, is that the adoption of glyphosate
tolerant (GT) crops induces the adoption of
environmentally beneficial tillage methods.

Tillage is an important part of farming.
It aids in seedbed preparation and has his-
torically provided a critical means for weed
control both before and after the crop has
emerged (Givens et al. 2009). It has nonethe-
less been associated with several negative
effects, including increased soil erosion
(Blevins and Frye 2003), chemical runoff
(Fawcett, Christensen, and Tierney 1994),
and the carbon footprint of agriculture (Kern
and Johnson 1993; West and Marland 2002).
Conservation tillage (CT), defined as a
tillage system that leaves at least 30% of
crop residues on the soil surface, has long
been advocated as a way to reduce these
detrimental effects (Holland 2004). Even
before the introduction of GT crops, the
use of CT had increased significantly in the
second half of the twentieth century, largely
due to the adoption of chemical herbicides
that allowed growers to reduce their reliance
on tillage for weed control. Despite this, the
chemical-induced diffusion of CT was limited
by several factors. First, to be effective some
herbicides need to be applied at levels that
can injure the crop; for high-residual chemi-
cals, those injuries can potentially extend to
future crops. In addition, the range of weeds
that a typical chemical can treat is narrow,
the post-emergence application window for
many chemicals is highly sensitive to the

environment, and there is often antagonism
between grass and broad-leaf herbicides.
In this setting, the advent of GT soybeans,
introduced in the United States in 1996, was
a game changer. Glyphosate is an effective
broad-spectrum, low-residual herbicide, and
GT crops can be treated with glyphosate with
little to no injury (Carpenter and Gianessi
1999).

Because the combination of glyphosate
and GT crops provides such an effective
and convenient post-emergent weed control
strategy, it can change farmers’ propensity
to adopt CT. Indeed, previous evidence
indicates a positive correlation between GT
crops and CT: cropped acreage under “no-
tillage” systems has increased considerably in
the United States, Argentina, and Canada
since the introduction and widespread
adoption of GE varieties (Barrows, Sex-
ton, and Zilberman 2014; Fernandez-Cornejo
et al. 2014). To investigate whether these
correlations indicate a complementary rela-
tionship, previous research has employed
econometric models that estimate whether
the adoption of GT varieties induces the
adoption of CT, and also whether the adop-
tion of CT induces the adoption of GT
varieties. For cotton, Kalaitzandonakes
and Suntornpithug (2003), Roberts et al.
(2006), and Frisvold, Boor, and Reeves
(2009) conclude in favor of complemen-
tarity, whereas Banerjee et al. (2009) fail
to reject the null hypothesis that CT and
GT cotton are independent. For soybeans,
Fernandez-Cornejo, Klotz-Ingram, and Jans
(2002) and Fernandez-Cornejo et al. (2013)
present evidence in support of a causal rela-
tionship between CT and GT soybeans,
whereas the results in Fernandez-Cornejo
et al. (2003) partially reject the presence of
complementarities.

Overall, the evidence in favor of com-
plementarity between GT crops and CT
outweighs that against it, but data limitations
and certain methodological assumptions
restrict the generality of the existing findings.
With respect to data, we note that, because
of its nature, complementarity is best stud-
ied at the level of individual choices. Yet,
three of the papers cited above (Roberts
et al. 2006; Frisvold, Boor, and Reeves 2009;
and Fernandez-Cornejo et al. 2013) rely
on state-level data rather than farm-level
choices. The three studies that do rely on
farm-level data (Fernandez-Cornejo et al.
2014; Kalaitzandonakes and Suntornpithug
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2003; and Banerjee et al. 2009) have access
to just a single cross-section. Regarding
methodology, two important features for
the identification of complementarity have
been neglected by previous studies. First,
an appropriate test for complementarity
requires a choice-set defined over all possi-
ble combinations of the available practices
(Gentzkow 2007). For example, a grower
facing the choice between two binary tech-
nologies would be modeled as choosing
between four technology systems. When this
is not true—as is the case for the bivariate
probit or logit models often used in exist-
ing studies in this area—complementarity is
either ruled out or inadequately character-
ized (Gentzkow 2007; Miravete and Pernías
2010). The second important modeling fea-
ture is allowance for the possibility that the
unobserved returns are correlated across
practices. This is because the clustering (or
lack thereof) of the observed practices may
be the result of correlated unobserved tastes,
rather than complementarity. Restricting
the unobserved returns across practices
to be uncorrelated—as done by nearly all
existing studies dealing with the comple-
mentarity between GT crops and CT—can
lead to accepting complementarity when it is
absent, or rejecting complementarity when it
is present (Athey and Stern 1998; Cassiman
and Veugelers 2006).

In this article we reconsider the problem
of testing for complementarity between GT
crops and conservation tillage. The nov-
elty of our contribution relates to both the
data used, which are considerably more
extensive than in previous applications,
and the econometric methodology that we
apply, which draws on recent econometric
advances. Concerning data, we use a repre-
sentative farm-level dataset that spans the
period 1998–2011 and contains the seed and
tillage choices of 29,518 soybean growers.
Because GT soybeans were commercially
introduced in 1996, our data cover much of
the period during which growers transitioned
from conventional (CV) soybeans to GT
soybeans. Moreover, while our data set is not
a balanced panel, it does contain repeated
observations over time for a subset of the
individuals (on average, 43% of farmers
sampled in any given year are resampled the
next year). As a result, for many farmers we
observe whether or not their tillage choice
changed upon switching to GT soybeans,
thus aiding in distinguishing complementarity

from the correlation among unobserved
returns. Regarding methodology, our empiri-
cal framework is based on a structural model
with a single choice set for farmers that
includes all four possible combinations of
adoption decisions over GT soybeans and
CT. This contrasts with previous farm-level
tillage studies, where a grower is modeled
as making two simultaneous, albeit distinct,
adoption decisions. In such models, com-
plementarity is not directly estimated and
consequently the results can be difficult to
interpret.1 Our model also controls for the
correlation induced by unobserved hetero-
geneity by estimating the full covariance
matrix associated with the individual random
effects.2

Our results indicate that GT soybeans and
CT are indeed complementary, a conclu-
sion supported by several robustness checks.
We also use our results to investigate the
counterfactual scenario in which soybean
growers did not have the option of choosing
GT soybeans. We find that the adoption rates
for both CT and no-tillage have increased
by about 10% and 20%, respectively, due to
the availability of GT soybeans. One of the
implications of this result is that soil erosion
was potentially lowered by 27 million tons
per year during the 1998–2011 period. An
approximate dollar value for this reduction is
$189 million per year.

The rest of this article proceeds as follows.
We first develop the model to be estimated,
beginning with an exposition on the chal-
lenges associated with the econometric
analysis of complementarity. We then spec-
ify the model and present the econometric
procedure, with an explicit discussion of the
identification conditions. This is followed
by a description of the data, and a presenta-
tion and discussion of the empirical results.
The article concludes with a brief investiga-
tion of some counterfactual scenarios and a
discussion of possible policy implications.

1 For example, Fernandez-Cornejo et al. (2003) found that the
adoption of GT soybeans did not induce the adoption of CT,
but that the adoption of CT did induce the adoption of GT
soybeans. It seems difficult to provide a structural interpretation
to such an asymmetric adoption interaction, and it is unclear
what one ought to conclude about whether CT and GT soybeans
are complementary.

2 An example of the type of unobserved factors we have in
mind is a farmer’s education. If producers with more education
are both more likely to use CT and adopt GT soybeans, then the
unconditional correlation between CT and GT soybeans would
be greater than the correlation that conditions on education.
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Modeling Complementarity

The definition of complementarity between
two activities is that the marginal return to
each activity is increasing in the level of the
other activity. The relevant return to focus
on depends on the objective function of the
decision maker. For technology adoption,
it is natural to focus on the profit associ-
ated with the various potential choices. The
characterization of the notion of comple-
mentarity is best expressed by the property
of supermodularity of the objective function
(Brynjolfsson and Milgrom 2013). Consider
two technologies or practices that a producer
can choose to adopt separately, together,
or not at all. Let dj = 1 and dj = 0 denote,
respectively, the adoption and non-adoption
of practice j, for j ∈ {1, 2}. The profit from
using any one of the four possible combina-
tions of practices can therefore be expressed
as π̃(d1, d2). Practices d1 and d2 are said to be
complementary if profits are supermodular,
i.e., if

γ ≡ [π̃(1, 1) − π̃(1, 0)](1)

− [π̃(0, 1) − π̃(0, 0)] ≥ 0.

When two practices are complementary,
therefore, adoption of one while using the
other has a larger effect on profits than
adopting the practice in isolation. The struc-
tural representation in (1) provides the basis
for testing hypotheses about complementar-
ity. Depending on the type of data at hand,
there are two ways to proceed. First, given
access to firm-level profit data, γ can be
directly estimated (see Cassiman and Veugel-
ers 2006). Often, however, data on profits (or
other suitable performance measures) are
not available—this is the case in our study.
Alternatively, the hypothesis of equation
(1) can be tested using adoption data only.
The presumption is that a producer chooses
the combination of practices that maximizes
returns, thereby revealing information about
the interaction between those practices.

Two significant challenges arise, however,
in testing for complementarity with adop-
tion data. First, the empirical framework
needs to explicitly distinguish between com-
plementarity and the correlation induced
by unobserved heterogeneity. A common
reduced-form approach taken by past studies,
for example, has been to test for complemen-
tarity by estimating the correlation between

two activities after controlling for firm char-
acteristics (Arora and Gambardella 1990;
Arora 1996; Cassiman and Veugelers 2006).
The main limitation of this approach is that
one can rarely control for all relevant charac-
teristics; thus, finding a conditionally positive
correlation will, at best, indicate that com-
plementarity might be present. Alternatively,
Athey and Stern (1998) outline a structural
framework in which γ can be directly esti-
mated (while still controlling for unobserved
heterogeneity). Several papers have since
used such a framework to test for comple-
mentarity in different environments. For
example, Miravete and Pernías (2006) use a
version of the multinomial probit model to
test for complementarity among production
and innovation strategies, and Gentzkow
(2007) uses a mixed logit model to test for
complementarity between print and online
newspapers. Although these two papers
pursue different modeling frameworks, an
essential element of both is that the choice-
set includes all possible combinations of
available practices.3 This permits the sign of
γ to be directly estimated. Furthermore, both
papers control for the potential correlation
among the unobserved returns. Miravete
and Pernías (2006) estimate the covariance
between the unobserved returns to each
practice. Similarly, Gentzkow (2007) allows
the normally distributed error terms in his
mixed logit framework to be correlated. This
is in contrast to multinomial logit models,
where the errors are assumed to be inde-
pendently and identically distributed (IID)
across alternatives.4

The second significant challenge to testing
for complementarity with adoption data is
sufficient identifying variation. The basic
problem is that the observed clustering

3 In general, if there are n available practices then the choice-
set would consist of 2n alternatives. As Berry et al. (2014) note,
the fact that the choice set grows exponentially can be a serious
limitation to the types of problems that can be studied using this
approach.

4 Two related studies in the agricultural literature deserve
mention. Wu and Babcock (1998) use a multinomial logit model
to explore the environmental implications of three farming prac-
tices. The choice-set they specify consists of all eight possible
combinations of the three practices. However, because of compu-
tational considerations, they do not allow for correlation among
the unobserved returns. Moreover, the objective of their study
was not to test for complementarity (e.g., they do not try to
estimate γ). Dorfman (1996) uses a multinomial probit model to
study two technology adoption decisions by US apple growers.
He also specifies the choice-set over all combinations of decisions,
and his model allows for the unobserved returns to be correlated
(by estimating the covariance matrix). However, he does not
attempt to identify structural complementarity.
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of two practices could result either from
unobserved heterogeneity or true comple-
mentarity (as defined in equation [1]). For
example, observing that two practices are
almost always adopted together could be
entirely due to individuals simply having a
high preference for both practices, rather
than the presence of an interaction effect.
Additional information or identifying restric-
tions are thus required to distinguish between
these two alternative explanations. In esti-
mating our model we draw on three sources
for identification. One source is exclusion
restrictions, i.e., the inclusion of variables
that affect the returns to some practices but
not others (Gentzkow 2007). The intuitive
basis of exclusion restrictions is that chang-
ing a variable that only directly affects one
practice will have no impact on the adoption
of another practice unless they are inter-
related.5 A second source of identification
is panel data (Gentzkow 2007). Repeated
observations for an individual indicate
whether (s)he, upon changing one practice,
is more (less) likely to choose another prac-
tice, thereby indicating that the practices are
complements (substitutes). A third source of
identification, the intuition behind which is
similar to the idea of exclusion restrictions,
is exogenous variation in choice-sets (Nevo
2000, 529). If some growers lack access to a
certain practice, for example, GT seed, then
observing that they are less (more) likely
to adopt another practice, for example, CT,
would indicate the presence of complemen-
tarity (substitutability). We return to how
identification conditions apply specifically in
our setting after we have provided details on
the model.

The Model

We implement a variant of the mixed
logit model similar to Gentzkow’s 2007
framework.

Let soybean growers be indexed by
i ∈ {1, . . . , N}, a year by t ∈ {1, . . . , T}, and
a field by f ∈ {1, . . . , Fit}. The formal unit of
analysis is a farm-field-year combination. On
each field in a given year, a soybean grower
makes a discrete choice for two practices:
the type of seed to plant, denoted by ds; and
the type of tillage to employ, denoted by dτ.

5 Keane (1992) demonstrated via simulation that the covariance
matrix of a multinomial probit model is not well identified without
exclusion restrictions.

For seed, a grower may choose conventional
seed (ds = CV) or glyphosate tolerant seed
(ds = GT); for tillage, he may choose inten-
sive tillage (dτ = IT) or conservation tillage
(dτ = CT). With two practices, there are four
mutually exclusive systems (ds, dτ):

�0 ≡ {(CV, IT), (GT, IT),(2)

(CV, CT), (GT, CT)}.

Denote the choice set for each grower in
each year by �it. For the most part, �it = �0.
That is, we assume that nearly all growers in
all years can choose among all four systems.
However, a handful of crop reporting dis-
tricts (CRDs) early on in the sample have no
observed GT soybean purchases.6 For these
districts-years, the presumed choice-set is:
�it = {(CV, IT), (CV, CT)}.

Rather than directly specifying the nor-
malized returns for each pair of choices, as
done in Gentzkow (2007), in our setting
it is instructive to start with the (unob-
served) per-acre profit associated with
system (ds, dτ), denoted by π̃itf (ds, dτ). For
each of his/her field in each time period,
grower i chooses system (ds, dτ) such that
π̃itf (ds, dτ) > π̃itf (d′

s, d′
τ), for all (d′

s, d′
τ) ∈ �it

where (d′
s, d′

τ) �= (ds, dτ). For each system, the
per-acre returns are specified to depend on
a number of observable and unobservable
variables, as follows:

π̃itf (CV, IT)(3)

= β̃
CV,IT
0 + β1pCV,t + β2rCV,t

+
(
β̃CV

3 + β̃IT
3

)
Sizeit + β̃IT

4 Fuelt

+ β̃IT
5 Futurest + β̃IT

6 EIi

+ β̃IT
7 Palmerit +

(
β̃CV

8 + β̃IT
8

)
Trendt

+ ν̃CV
i + ν̃IT

i + ε̃
CV,IT
itf

π̃itf (GT, IT)(4)

= β̃
GT,IT
0 + β1pGT,t + β2rGT,t

+
(
β̃GT

3 + β̃IT
3

)
Sizeit + β̃IT

4 Fuelt

6 CRDs are regions—each representing a collection of
counties—used by the USDA for statistical reporting of cer-
tain data. It is also the finest level at which our seed and tillage
data are representative.
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+ β̃IT
5 Futurest + β̃IT

6 EIi

+ β̃IT
7 Palmerit

+
(
β̃GT

8 + β̃IT
8

)
Trendt + ν̃GT

i + ν̃IT
i

+ ε̃
GT,IT
itf

π̃itf (CV, CT)(5)

= β̃
CV,CT
0 + β1pCV,t + β2rCV,t

+
(
β̃CV

3 + β̃CT
3

)
Sizeit + β̃CT

4 Fuelt

+ β̃CT
5 Futurest + β̃CT

6 EIi

+ β̃CT
7 Palmerit +

(
β̃CV

8 + β̃CT
8

)
Trendt

+ ν̃CV
i + ν̃CT

i + ε̃
CV,CT
itf

π̃itf (GT, CT)(6)

= β̃
GT,CT
0 + β1pGT,t + β2rGT,t

+
(
β̃GT

3 + β̃CT
3

)
Sizeit + β̃CT

4 Fuelt

+ β̃CT
5 Futurest + β̃CT

6 EIi

+ β̃CT
7 Palmerit +

(
β̃GT

8 + β̃CT
8

)
Trendt

+ ν̃GT
i + ν̃CT

i + ε̃
GT,CT
itf .

In these equations, pCV,t and pGT,t repre-
sent the year t seed prices for CV and GT
soybeans, respectively. Similarly, rCV,t and
rGT,t denote the prices of herbicides used
on these two types of varieties. Sizeit is a
dummy variable indicating whether the
grower grew more than 500 acres in soy-
beans. Fuelt is a price index for diesel fuel,
Futurest is the average soybean futures price
in January for the next November contract,
EIi is an index that measures soil erodibil-
ity, Palmerit is a drought severity index, and
Trendt is a time trend.7 The νi terms are
time-invariant, practice-specific normally
distributed unobservables. They represent
individual characteristics we do not observe,
such as education, which may affect the
returns to the different practices. As we dis-
cuss further below, we allow for the νi to be
correlated across systems. The terms ε̃

ds,dτ

itf
are system-specific IID type I extreme value

7 Further details on and summary statistics for each of these
variables are provided in the Data section below.

errors.8 Their inclusion captures the fact that
growers with the same characteristics and
the same environment may still choose a
different system.

The remaining symbols in equations
(3)–(6) are parameters to be estimated.
The intercepts β̃

ds,dτ

0 are alternative-specific
constants that capture the mean unobserved
returns to each system. The superscripts of
the other parameters indicate whether, and
how, the associated variables are presumed
to have a practice-specific effect. For exam-
ple, we assume that EIi, which is invariant
across systems, will differ in its impact on
profits depending on the type of tillage used.
If this were not the case, that is, if the effect
of EIi was the same across systems, then it
would have no effect on the grower’s choices
(the term would drop out upon differencing
the equations). This highlights the additional
fact that not all of the parameters in equa-
tions (3)–(6) are identified. Only parameters
that contribute to differences in per acre
returns are estimable (Train 2009).

To clarify which parameters are iden-
tified, as well as how the model nests a
test for complementarity, we normalize
returns relative to a base system, which is
taken to be the (CV, IT) system. Defin-
ing πitf (ds, dτ) ≡ π̃itf (ds, dτ) − π̃itf (CV, IT),
normalized returns can then be written as
follows:

πitf (CV, IT) = 0(7)

πitf (GT, IT) = βGT
0 + β1(pGT,t − pCV,t)(8)

+ β2(rGT,t − rCV,t) + βGT
3 Sizeit

+ βGT
8 Trend + νGT

i + εGT
itf

πitf (CV, CT) = βCT
0 + βCT

3 Sizeit(9)

+ βCT
4 Fuelt + βCT

5 Futurest + βCT
6 EIi

+ βCT
7 Palmerit + βCT

8 Trendt

+ νCT
i + εCT

itf

πitf (GT, CT) = πitf (GT, IT)(10)

+ πitf (CV, CT) + γ + ε
γ

itf

8 Per standard practice, the variance of the extreme value
distribution is normalized to π2

/
6. Thus, the model coefficients

are identified relative to the unobserved scale parameter (see,
e.g., Kurkalova, Kling, and Zhao 2006).
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where, for each system, the parameters’
superscript now denotes the practice that is
different relative to the base system (CV, IT)

(e.g., βGT
0 ≡ β̃

GT,IT
0 − β̃

CV,IT
0 ). Furthermore:

γ ≡
(
β̃

GT,CT
0 − β̃

GT,IT
0

)
(11)

−
(
β̃

GT,IT
0 − β̃

CV,IT
0

)
ε
γ

itf ≡
(
ε̃

GT,CT
itf − ε̃

GT,IT
itf

)
(12)

−
(
ε̃

CV,CT
itf − ε̃

CV,IT
itf

)
.

Hence, the sum γ + ε
γ

itf captures whether GT
soybeans and CT are complementary. To see
this, note that, in terms of the un-normalized
returns, we have:

γ + ε
γ

itf(13)

= (
π̃itf (GT, CT) − π̃itf (GT, IT)

)
− (

π̃itf (CV, CT) − π̃itf (CV, IT)
)

.

Equation (13) revisits the relation in
equation (1), which determines whether the
two choices of interest are complementary.
However, this relation is now adjusted for the
presence of unobserved heterogeneity; com-
plementarity can vary over the population
through ε

γ

itf . Because E[εγ

itf ] = 0, it follows
that γ is best interpreted as a measure of
mean complementarity in the population. If
our estimate for γ is statistically significantly
greater (less) than zero, then GT soybeans
and CT are, on average, complements (sub-
stitutes). Note also that, in this framework, γ
does not vary on the basis of the observable
characteristics. This is a consequence of our
assumption that the observable variables
have practice-specific effects rather than
system-specific effects. This assumption is
primarily rooted in our goal of obtaining a
straightforward test for complementarity, as
encapsulated by γ. In this regard we follow
Miravete and Pernías (2006), Gentzkow
(2007), and Kretschmer, Miravete, and
Pernías (2012), who also specify the observ-
able variables as having practice-specific
effects rather than system-specific effects.9

To control for the correlation induced by
unobserved heterogeneity, we allow for νGT

i

9 See Athey and Stern (1998) for a more detailed discussion
of these issues.

and νCT
i to be correlated. Specifically, we

assume that (νGT
i , νCT

i ) ∼ N(0, �), where

(14) � =
(

σ2
GT σGT,CT

σGT,CT σ2
CT

)
.

By estimating σGT,CT , we control for unob-
served factors that contribute simultaneously
to the returns of π

GT,IT
itf and π

CV,CT
itf . For

example, if νCT
i is large (small) whenever νGT

i
is large then these two terms will be posi-
tively (negatively) correlated. Without con-
trolling for such correlation, estimates of γ
would be biased upward (downward). Some
of the specific kinds of unobserved variables
that we have in mind include the grower’s
education, attitude towards new technologies,
and degree of risk aversion. For example,
better educated individuals may face lower
adoption costs and so may be more likely
to use both GT soybeans and CT. Similarly,
individuals that are generally more open to
new technologies (so-called early adopters)
may be more likely to use both GT soybeans
and CT. If a person is very risk averse, on the
other hand, the opposite may hold true: GT
soybeans may be viewed as less risky than
CV soybeans, whereas CT may be viewed
as more risky than IT, leading to a negative
correlation between the unobserved returns.

Because we have differenced out the
returns to the (CV, IT) system, the model
as written in equations (7)–(10) makes
explicit which parameters are identified.
The parameters on variables that enter all
of the equations are identified relative to the
(CV, IT) system. For example, the sign of the
estimate for βGT

1 will indicate whether a large
farm is more likely to adopt GT soybeans rel-
ative to CV soybeans. The parameters on the
alternative-specific variables, such as prices,
indicate how changes in the differences of
those variables affect returns. For example,
β1 is the effect of a change in the price of GT
seed relative to the price of CV seed.

Identification

The model as presented is formally identified:
there are more moments than parameters.
However, as noted previously, the precise
identification of the parameters, in partic-
ular the complementarity and covariance
parameters, requires additional sources of
variation and information that go beyond
the basic formal requirements. The issue is

771Perry, Moschini, and Hennessy Glyphosate Tolerant Soybeans and Conservation Tillage

 at Iow
a State U

niversity on M
ay 6, 2016

http://ajae.oxfordjournals.org/
D

ow
nloaded from

 

http://ajae.oxfordjournals.org/


Amer. J. Agr. Econ.

that the patterns of adoption generated by a
model with positively correlated unobserved
returns (σGT,CT is high) and practices that
are substitutes (γ < 0) can be very similar
to the adoption patterns generated by a
model with negatively correlated unobserved
returns (σGT,CT is low) and practices that are
complements (γ > 0). Thus, to distinguish
between correlated tastes and complemen-
tarity requires some form of variation in
the data that would occur because of only
one of these effects, while holding the other
constant.10

As noted earlier, one source of identifica-
tion is exclusion restrictions. To illustrate the
role of these identifying restrictions in the
context of the model just presented, suppose
that the price of GT soybean seeds relative
to that of CV soybeans directly affects the
seed choice but not the tillage choice (i.e., the
relative seed price is an excluded variable).
Further, suppose that there is a shock to
this relative price, for example it decreases.
Then some producers will switch from CV
soybeans to GT soybeans. If GT soybeans
and CT are independent, then there should
be no change in the adoption of CT since the
seed price does not directly affect it. If they
complement, however, then we would also
observe an increase in the use of CT. Some
of the producers that previously chose CV
soybeans with IT would switch to using GT
soybeans with CT. Intuitively, the switch to
GT soybeans (based on the price change)
would shift up the return to CT, thus also
leading to its adoption.

The variables that fulfill the exclusion
restrictions in our model are those that
affect the seed choice – that is, variables
in equation (8) – but not the tillage choice
(equation [9]), and vice versa. The spe-
cific variables that we assume directly
affect the seed choice but not the tillage
choice include the difference in seed prices
(pGT,t − pCV,t) and the difference in herbi-
cide prices (rGT,t − rCV,t) (i.e., these variables
enter the second equation but not the third).
Differences in relative seed prices should
have no effect on the relative return to the
different tillage operations. With regard to
herbicide prices, previous studies by Bull
et al. (1992), Fawcett, Christensen, and Tier-
ney (1994), and Fuglie (1999) do not find a

10 For a more comprehensive discussion of these issues, see
Gentzkow (2007).

significant difference in pesticide use between
CT and IT systems; thus we assume it does
not directly affect the tillage choice.11

The variables assumed to directly affect
the tillage choice but not the seed choice
include Fuelt, Futurest, EIi, and Palmerit.
The variable Fuelt is included to capture the
argument that CT generally requires less
fuel (Triplett and Dick 2008). For a given
tillage method, however, there will be little
difference in fuel usage for different seed
types. Similarly, the EIi only enters the tillage
equation because the degree of erodibility
will not have a differential effect on the seed
choice (holding the tillage-type constant).
The same argument applies for Palmerit,
which is included because CT leaves more
ground cover in place and may be chosen
to conserve moisture in dry years. Finally,
Futurest is included to capture changes in rel-
ative returns due to yield differences between
the tillage options. Previous research has
generally indicated that there is no signifi-
cant yield difference between GT and CV
soybeans (Qaim 2009). Rather, the pri-
mary reason farmers prefer GT soybeans is
because they provide easier weed control
and a reduction in management time (Qaim
2009).

The contribution of panel data to identifi-
cation occurs through the estimation of the
distribution of the time-invariant random
effects. Intuitively, if the adoption of GT
soybeans and CT are correlated because of
a high covariance parameter σGT,CT (rather
than complementarity), then the adoption of
GT soybeans and CT for a given individual
would be uncorrelated over time. Individu-
als may have a high propensity to use both,
but conditional on changing one practice,
they would be no more (or less) likely to use
another. On the other hand, if we observe
across time periods that whenever a given
individual adopts GT soybeans, he or she
is more likely to adopt CT, then this would
imply the presence of synergies. Regarding
choice-set variation, as noted previously,
early on in our sample we do not observe
any purchases of GT varieties in certain crop
reporting districts (CRDs). We interpret this
to mean that they were not available as an

11 As part of robustness checks reported later, we do allow
for herbicide prices to differ in their impact by the type of tillage
employed. We find that it does not affect our complementarity
result.
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option, and thus we exclude them from the
choice-sets of individuals within that region.12

Estimation

The model is estimated by the method of
simulated maximum likelihood (SML) (Train
2009). To simplify the notation, let j denote
system (ds, dτ), that is, j ∈ �it. Furthermore,
rewrite equations (7)–(10) as:

(15) π
j
itf = xj

itf β
j + ν

j
i + ε

j
itf

where xj
itf is the vector of explanatory vari-

ables pertaining to system j, and βj is the
associated parameter vector (note that
π

CV,IT
itf = 0, as above). Let θ denote the vec-

tor of all parameters to be estimated (this
includes the vector of all β parameters, which
implicitly also define the complementarity
parameter γ, as well as the parameters of the
covariance matrix �). Then, for a given real-
ization ν

j
i, the probability of choosing system

j is provided by the standard logit expression:

(16) Lj
itf (ν; θ) = exj

itf β
j+ν

j
i∑

k∈�it
exk

itf β
k+νk

i

.

Let jitf ∈ �it denote the actual system choice
of grower i for field f in year t, and define
ζi ≡ {jitf } as the set of all actual choices in
the sample for grower i. Given ν

j
i, the prob-

ability of ζi is given by the product of the
corresponding logits:

(17) Lζi(ν; θ) =
∏
j∈ζi

Lj
itf (ν; θ).

The unconditional probability is given by the
integral over all ν that generate ζi:

(18) Pζi =
∫

Lζi(ν; θ)f (ν)dv.

Since Pζi is an integral it can be estimated
via simulation. For each individual, multiple
draws of the νij are taken, Lζi is computed,
and then averaged. Specifically, let R denote

12 Because only a small number of CRDs do not have observed
GT seed purchases (early on in our sample), this type of
identification plays a small role in our analysis.

the number of draws of ν
j
i for each individual.

Then Pζi is approximately given by:

(19) Pζi ≈
1
R

R∑
r=1

Lζi(νr; θ).

The SML estimator is therefore given by:

(20) θ̂ = arg max
θ

∑
i

[
ln

1
R

R∑
r=1

Lζi(νr; θ)

]
.

The statistical package that we use is the
Stata user-written mixlogit package devel-
oped by Hole (2007) (for further details see
also Cameron and Trivedi (2010), 523). In
simulating the likelihood function, we use
250 Halton draws, which is well above the
minimum recommendation of 100 (Hensher,
Rose, and Greene 2005, 616).13 It is also
important to re-emphasize that the estimated
parameters, θ̂, are identified relative to the
unobserved variation of the IID extreme
value unobservables, which are implicitly
normalized prior to estimation (see earlier
footnote 8). Thus, for example, instead of
estimating the complementarity parameter γ,
the model actually estimates γ/ϕ (where ϕ
is the unobserved scale parameter for the
extreme value type I distribution). For sim-
plicity, and slightly abusing notation, we
continue to use the same parameter symbols
(e.g., γ) for the remainder of the paper.

Data

The model is estimated with farm-level seed
and tillage data from the survey company
GfK.14 These data, which are designed to be
representative at the CRD level, span 1998–
2011 and include about 4,982 farmers per
year (each farmer can have multiple fields).
As noted above, about 43% of growers
sampled in any given year are also sampled
the next year. In total, our sample contains
82,056 farm-field-year observations across

13 Train (2000) demonstrated that the SML estimates for a
mixed logit model using 100 Halton draws outperform the SML
estimates using 1,000 random draws. The practical benefit of this
is that estimation time is decreased by a factor of ten while
simultaneously increasing accuracy. For a further discussion of
Halton sequences, see Train (2009).

14 Specifically, we use data from GfK’s AgroTrak� and Soybean

TraitTrak
TM

. See the company’s website (http://www.gfk.com/us)
for a brief description of these proprietary data products.
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Table 1. Distribution of Tillage and Seed
Systems (% of observations)

1998– 2002– 2007– 1998–
System 2001 2006 2011 2011

(CV,IT) 20.73 6.34 2.26 10.18
(GT,IT) 21.53 30.41 29.38 27
(CV,CT) 20.3 6.63 3.01 10.35
(GT,CT) 37.44 56.61 65.34 52.47
Observations 28,701 29,240 24,115 82,056

235 CRDs in 31 states (with the largest
soybean states being the most heavily rep-
resented). Among the variables previously
defined, those that come from the GfK data
include tillage and seed choices (i.e., the
endogenous variables), seed and herbicide
prices, and the variable for farm size. With
respect to the tillage choice, in our data
each plot is identified as using one of three
following alternatives: “Intensive Tillage,”
“Conservation Tillage,” or “No-Till.” For
our baseline specification, we treat intensive
tillage as a distinct category, and combine
the plots identified as “Conservation Tillage”
and “No-Till” into the model’s CT category.
However, we also consider an alternative
aggregation procedure where the model’s
CT category is associated only with the plots
classified as “No-Till” (NT) in the data set
and combine the remaining two classifica-
tions into the model’s IT category. Where
applicable, we make explicit which definition
is being used.

The shares for each seed-tillage system are
provided in table 1, where the distribution
of system choices over time is disaggregated
into three subperiods. From 1998 to 2001, CV
soybeans still accounted for about 40% of
the observations, but from 2002 to 2006 they
only made up about 13%, and for the final
subperiod just over 5%. Overall, systems
with GT soybeans accounted for about 80%
of all observations, whereas systems with CT
accounted for about 62% of all observations.

Table 1 also shows that about 67% of acres
planted to GT soybeans use CT whereas
about 50% of acres planted to CV soybeans
use CT. This is generally consistent with pre-
vious work based on different data sources
(e.g., Fernandez-Cornejo et al. (2014)). The
correlation coefficient between GT soybeans
and CT is 0.125 and is significant at a 1%
level. Changes over time also show a positive
correlation. Figure 1 contains US annual
adoption rates for GT soybeans, CT, and
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Figure 1. Conservation tillage and GT
adoption rates for US soybeans (percent
of acres)

NT from 1998 to 2011. GT soybean adoption
increased from just under 40% of acres in
1998 to about 95% of acres in 2011. Over the
same period, CT increased from just under
60% of acres in 1998 to nearly 70% of acres
in 2011. NT increased even more, from 32%
in 1998 to 45% in 2011 (and a peak of 53% in
2008).

With regard to the remaining variables,
the EI data were obtained from the National
Resources Inventory (a survey conducted
by the National Resources Conservation
Service), soybean futures were obtained at
www.quandl.com, diesel fuel prices were
obtained from Quick Stats at the USDA-
NASS website, and the Palmer Z-Index was
obtained from www.ncdc.noaa.gov. Below we
provide additional details, as well as a discus-
sion of their expected effects, for each of the
regressors. Table 2 provides a summary of
their distributions.

Farm Size is a dummy variable that indi-
cates whether a grower planted more than
500 acres in soybeans. The arbitrary cut-off
of 500 acres was a natural choice given the
available data, in which each farm is classified
into one of five categories: (i) <100 soybean
acres, (ii) 100–249 acres, (iii) 250–499 acres,
(iv) 500–999 acres, and (v) 1,000 or more
acres.15 We include Farm Size for both the
seed and tillage choices to control for scale
effects. Past studies have noted that the use
of CT, in particular no-tillage, can require
large fixed costs in the form of better adapted
machinery (Knowler and Bradshaw 2007).

15 For robustness checks we also estimate the model with the
Size variable cutoffs set at 250 and 1,000 acres. Overall, the
results remained unchanged.
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Table 2. Regressor Summary Statistics

Variable Mean S.D. Min 0.25 Median 0.75 Max

Size (>500 acres) 0.33 0.47 0 0 0 1 1
Futures ($/bu) 7.3 2.78 4.48 5.2 6.37 9.6 13.13
Fuel Price Index 49.96 24.33 19.6 29 43.8 65.4 91.2
Erodiblity Index 8.36 9.49 0.29 2.67 5.2 11.32 192.07
Palmer’s Z-Index 0.29 2.47 −4.93 −1.46 −0.11 1.48 11.84
Seed Price ($/50lb bag) 8.98 1.92 6.34 7.46 8.67 9.84 12.41
Herbicide Price Index −0.28 0.2 −0.65 −0.42 −0.26 −0.1 0

Given this, we expect that larger farms will
be more likely to adopt CT. With regard
to the seed choice, we have no strong prior
expectations. Fernandez-Cornejo, Klotz-
Ingram, and Jans (2002) find that larger
farms are more likely to adopt GT soybeans,
whereas Fernandez-Cornejo et al. (2003) find
no size effect. The latter argue that since the
adoption of GT soybeans does not require
significant fixed costs, there should not be
significant differences in adoption between
large and small farms.

Futures is the Chicago Mercantile
Exchange mean soybean futures price in
the month of January for the same year
November contract. It is included as a proxy
for the output price that is expected by pro-
ducers. We use January because that is a
common time at which practice decisions are
made, and we use November because it is
the closest month after harvest. We include
it as an explanatory variable for the tillage
choice because there might be yield differ-
ences between IT and CT. Previous studies,
however, are inconclusive on the effect of
output prices on CT (Knowler and Bradshaw
2007).

Fuel Price is an annual index for diesel
fuel prices (as noted above, it is obtained
from USDA-NASS). We use the mean index
from September to May as this is the period
during which most tillage decisions are made.
The index is included to control for poten-
tial differences in fuel usage between CT
and IT operations. From 1998 to 2011,
real fuel prices rose significantly and thus
could explain some of the variation in tillage
trends. Since CT tends to use less fuel, our
expectation is that higher prices will increase
the likelihood of using CT.

EI is a county-specific, time-invariant index
of soil erodibility due to water events. It mea-
sures a soil’s potential to erode. A higher
index indicates that greater investment is
required to maintain the sustainability of the

soil under intensive cultivation. The National
Resources Inventory considers scores of 8 or
above to indicate highly erodible land. The
EI is included for a couple of reasons. First,
the 1985 Farm Bill requires a producer that
grows crops on highly erodible land to meet
certain minimum conservation requirements
(Stubbs 2012) in order to be eligible for some
government payments. An acceptable way to
comply is to use CT. Second, a grower may
be more likely to use CT on highly erodible
land in order to preserve the soil’s productiv-
ity into the future (Soule, Tegene, and Wiebe
2000). Given these two rationales, as well as
previous findings, we expect that the EI will
have a positive sign; that is, a grower will be
more likely to use CT on more erodible land.

Palmer’s Z is the mean Palmer’s Z-Index
for the month of September in the prior year
(this variable is at the climate-division level;
see Xu et al. (2013) for more details). This
index indicates how dry a locality is rela-
tive to normal conditions. Negative values
indicate drier conditions, whereas positive
values indicate wetter conditions. We include
Palmer’s Z-Index because the presence
of drought may increase the likelihood of
adopting CT. For instance, Ding, Schoen-
gold, and Tadesse (2009) find that drought is
associated with a greater likelihood of using
no-till and other CT practices.

The Seed Price term (pGT,t − pCV,t) is the
difference between mean annual US GT
and CV soybean seed prices ($/50 lb bag). In
our data we observe the transaction prices
for each individual, but we do not observe
the price for the type of seed they did not
buy (e.g., if a grower purchased CV seeds,
we do not know the price they would have
paid for GT seeds). Thus, as a proxy for that
price, we average over all individuals within
a given year. We aggregate to the national
level because, beyond 2003, there are very
few observations for CV seed purchases.
As a result, averaging at a finer level would
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Figure 2. US soybean seed prices, 1998–2011
($/50lb)

introduce considerable sampling variation.
Figure 2 presents GT and CV seed prices
from 1998 to 2011.

Prior to 2009 there was comparatively little
movement in both relative prices and over-
all prices. The increase in soybean output
prices in 2008 led to a significant rise in seed
prices in 2009. In terms of expectations, the
higher the price of GT seed relative to CV
seed, the smaller the return for GT seeds.
Thus, a negative sign is expected. It is worth
noting, however, that previous studies have
found a positive sign for seed price (see, e.g.,
Fernandez-Cornejo, Klotz-Ingram, and Jans
2002). This is likely because of the rapid dif-
fusion of GT soybeans that coincided with a
slight increase in relative prices; we control
for this process with a time-trend.

The Herbicide Price term (rGT,t − rCV,t) is
the difference between the annual US price
indices for glyphosate and for a group of
seven post-emergence conventional herbi-
cides. Our assumption is that the glyphosate
price is the main herbicide price a grower
looks at when considering the adoption of
GT soybeans. For CV soybeans, the matter is
less straightforward. As noted earlier, many
of the herbicides used on CV soybeans are
only effective against specific weed species.
In addition, only some of these herbicides
can be applied post-emergence. We chose
to use only the prices from post-emergence
herbicides because they are what primarily
differentiate CV soybeans from GT soy-
beans.16 In terms of calculation, glyphosate

16 The seven herbicides we include are Raptor�, Flexstar�
1.88L, Fusion�, FirstRate�, Select� 2 EC, Cobra�, and Pursuit�
2 EC. We selected these herbicides because they were the
most frequently used post-emergence herbicides applied on CV
soybeans.
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Figure 3. US soybean herbicide prices,
1998–2011

prices are annual volume-weighted averages
in dollars per pound. The price for CV soy-
beans is a Laspeyres Index: each year, the
index is a weighted average of the ratio of
current prices to base prices. For the base,
we use the mean prices and shares of the
seven herbicides for the entire 1998–2011
period, and the resulting index is rescaled to
equal 1 for the year 1998. Figure 3 presents
these indices for the 1998–2011 period. For
comparison, both the glyphosate and CV
herbicide prices are normalized to equal 1
in 1998. The price of glyphosate has fallen
considerably and almost uniformly since
1998. This is primarily due to the expiration
of Monsanto’s patent in 2000. The exception
to the trend decline occurred during 2008–
2009, when prices rose significantly. During
2008–2009, commodity prices, and in turn
land used for cropping, were very high. This,
combined with a growing demand for GT
corn, led to shortages in glyphosate and an
associated price increase.

The time Trend variable is included to
capture the impact of other factors that con-
tributed to the diffusion of GT soybeans and
CT. This was particularly important for GT
soybeans, as adoption rose from 38% to 86%
over the period 1998–2003. This adoption
pattern was driven by a variety of factors that
are not captured by our model. We expect
that the adoption of GT soybeans will be pos-
itively associated with this trend variable. For
CT, we have no strong prior expectations.

Empirical Results

Table 3 contains our baseline specification.
Overall, the results are consistent with expec-
tations. The alternative-specific constant for
GT seed varieties is positive and significant.
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Table 3. Simulated Maximum Likelihood
Results

Standard
Parameter (variable) Coefficient Error

GT adoption
βGT

0 (constant) 1.5973*** (0.2060)
β1(Seed Price) −0.3262*** (0.0249)
β2(Herbicide Price) −0.9837*** (0.1565)
βGT

3 (Size) 0.1192*** (0.0418)
βGT

8 (Trend) 0.4420*** (0.0098)
CT adoption

βCT
0 (Constant) −0.5710*** (0.1317)

βCT
3 (Size) 0.2850*** (0.0556)

βCT
4 (Fuel) 0.0069*** (0.0021)

βCT
5 (Futures) −0.0255** (0.0124)

βCT
6 (Erodibility) 0.0786*** (0.0117)

βCT
7 (Palmer) −0.0237** (0.0097)

βCT
8 (Trend) 0.0436*** (0.0093)

Other parameters
γ 0.4609*** (0.0405)
σ2

GT 2.2200*** (0.1097)
σ2

CT 3.9186*** (0.2225)
σGT,CT 0.3094*** (0.0846)

Notes: Number of observations = 82,056. Standard errors are clustered
at the CRD level. Except for the covariance parameters, the coefficients

are identified relative to φ, the scale parameter for ε
j
itf . The covariance

parameters are identified relative to φ2.
***Significant at the 1% level.
**Significant at the 5% level.

Conversely, the constant for CT is negative
and significant. This is unsurprising given
that a large number of farms continued to
adopt IT despite the presence of synergies
between GT soybeans and CT (as indicated
by the result for γ). Higher prices for GT
seed (relative to CV seeds) and glyphosate
(relative to substitute herbicides) are asso-
ciated with a lower likelihood of using GT
soybeans. Larger farms are more likely to use
both GT soybeans and CT. Also, the relative
size of the parameter for CT is significantly
larger, suggesting that farm size plays a larger
role for the tillage decision. The linear time
trend is significant and positive for both GT
soybeans and CT, though significantly larger
for GT soybeans, as would be expected.
Among the variables exclusive to the tillage
decisions, there are some interesting results.
Higher soybean futures prices are associated
with a lower likelihood of using CT, though
the effect is only significant at 5%. This sug-
gests that there may be a small perceived
yield-loss associated with the use of CT. For
some soils the formal agronomy literature
provides evidence to support this perception

(Triplett and Dick 2008). Higher fuel prices,
on the other hand, significantly increase the
likelihood of using CT. We also find that
more drought-like conditions, as captured by
Palmer’s Z-Index, increase the likelihood of
using CT, corroborating the finding by Ding,
Schoengold, and Tadesse (2009). Finally, a
higher EI is also found to be associated with
a significantly higher probability of CT use.

For the unobservables, we find significant
evidence of unobserved variation in prefer-
ences for both GT soybeans and CT. The
unobserved variance for CT is particularly
large, suggesting that a variety of omitted
individual characteristics are important for
determining the best tillage practice. This
seems intuitive given the relatively large
adoption rates for both CT and IT through-
out the sample period. Unobserved variation
in tastes is also important for the seed choice,
though relatively less so. This is probably a
reflection of the fact that later on GT soy-
beans are adopted by nearly everyone, and
thus a relatively smaller variance can ratio-
nalize the small share of farms that still use
CV soybeans. The covariance across the
errors is also significant. The implied correla-
tion is about 0.105. Thus, farmers who have
a strong preference for GT soybeans (i.e., a
large νGT

i ) are more likely to have a strong
preference for CT (i.e., a large νCT

i ) and vice
versa. Finally, the estimate for complemen-
tarity, γ, is highly significant and positive,
indicating that GT soybeans and CT are
indeed complementary practices.

What is the economic significance, to the
farmer, of the estimated complementar-
ity effect? One measure is provided by a
grower’s willingness to pay (WTP) for it. In
a standard discrete choice random utility
model, the WTP for an attribute is given
by the ratio of that attribute’s coefficient to
the absolute value of the coefficient for the
price variable (note that the ratio of the two
estimated coefficients will be independent of
the unidentified scaling parameter). In our
model, the objective function is profit per
acre. As a result, the estimated coefficient
for the seed price represents the number of
soybean bags planted per acre (relative to
the unidentified scaling parameter). Divid-
ing an attribute’s coefficient by the absolute
value of the coefficient for seed price thus
gives the WTP per bag of soybeans for that
attribute. For γ, this implies a WTP of about
$1.41 per bag of soybean seeds. Given that a
typical density for soybeans is 1.2 bags/acre,
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Table 4. Average Elasticities

GT(%) CT(%)

Seed Price −1.14D −0.08I

Herbicide Price −0.11D −0.01I

Soy Futures −0.002I −0.04D

Fuel Price 0.002I 0.07D

Palmer Z −0.0004I −0.01D

Erodibility Index 0.01I 0.10D

Notes: The reported effects are elasticities, i.e., the % change in the
probability of adopting GT (CT) given a 1% change in the respective
variable. See text for additional discussion.
D = Direct Effect; I = Indirect Effect.

the WTP of a typical farmer for the synergies
provided by complementarity between GT
seeds and CT is $1.69/acre.

Because the coefficients are identified rela-
tive to the scale parameter φ, only their sign
is directly interpretable. To get a better idea
of the importance of each of the variables, we
simulate the change in the adoption of GT
soybeans and CT in response to a change in
the value of each of the exogenous variables.
This exercise also serves to highlight the role
of complementarity for the impacts of each
of the independent variables. Table 4 con-
tains the average marginal effects (AMEs)
for GT and CT adoption with respect to each
of the regressors. The AME of a variable
is the average change in the probability of
adopting a practice, e.g., GT soybeans or
CT, in response to a change in that variable.
With the exception of Size, we compute
elasticities. As an example, to calculate the
effect of a change in the EI on GT soybean
adoption, we first simulate and compute for
each individual:

(21) ψ
GT,EI
itf ≡ � Pr(GT)

�EI
EI

Pr(GT)

where ψ
GT,EI
itf denotes the elasticity of the

probability of GT soybean adoption with
respect to the EI. The result reported in
table 4 is the average of these elasticities over
all individuals, time periods, and fields. The
superscripts “I” and “D” indicate whether
the impact of the variable on the practice is
indirect or direct, respectively.

Overall, the results indicate that the seed
price plays the largest role among the vari-
ables. For example, a 1% increase in the
price of GT soybeans relative to that of CV
soybeans results in a slightly-more-than 1%
direct decrease in the probability of adopting

Table 5. Alternative Estimates for
Complementarity

Alternative γ Standard
Specifications Coefficient Error

Include Herbicide Price
in CT variables

0.4143*** (0.0395)

No correlation:
σGT,CT = 0

0.5849*** (0.0322)

Ignore panel aspect of
data

1.3610** (0.6699)

Basic logit 0.5473*** (0.0333)
Restrict sample to

Central Corn Belt
onlya

0.3039*** (0.0519)

No-till or till for tillage
choiceb

0.6514*** (0.0414)

Notes: aIncludes Iowa, Illinois, and Indiana, for which there are 26,304
observations in all.
bThis variation specifies the tillage choice as being between no-till or a
positive amount of tillage (rather than between conservation tillage and
intensive tillage).
***Significant at the 1% level.
**Significant at the 5% level.

GT soybeans. Through the complementarity
effect, it also indirectly decreases the proba-
bility of adopting CT by 0.08%. The impacts
of the other continuous variables can be
interpreted in a similar manner. Because the
variable Size is binary, an elasticity cannot be
computed; instead, we compute the percent
difference in the probability of adopting a
practice between growers with more than 500
soybean acres and growers with less than
500 soybean acres. Note also that the impacts
for Size are made up of both direct and indi-
rect effects. The simulation indicates that a
farm with 500 or more soybean acres is 6.9%
more likely to adopt CT and 2.1% more
likely to adopt GT soybeans.

Complementarity under Alternative Spec-
ifications. Certain variations on our
specification, such as allowing herbicide
prices to directly impact the relative prof-
itability of CT, are also plausible, which
may be important for the complementarity
finding. In addition to testing for robust-
ness across these alternatives, this section
serves to highlight the role of certain assump-
tions, such as admitting non-zero correlation
between the unobserved returns, for the esti-
mate of γ. Table 5 contains estimates of γ
for several different specifications. Allowing
for the Herbicide Price variable to directly
impact the tillage choice reduces the coeffi-
cient somewhat but does not alter the finding
of complementarity.
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The next specification demonstrates the
effect of not allowing unobserved tastes to
be correlated (i.e., σGT,CT = 0). In this case
the estimate for γ increases as it captures
some of the effect that is actually the result
of correlated tastes. We also estimate the
model when ignoring the fact that some
individuals have repeated observations (i.e.,
we assume that the ν terms are IID across
fields and time for the same individual). This
substantially increases both the estimate
and the standard error for γ, which suggests
that when using the mixed logit model, it is
important to utilize the panel aspect of the
data. The “Basic Logit” specification not only
ignores the panel aspect of the data but also
does not allow for unobserved heterogeneity
(i.e., the ν terms are set to 0). In this case, the
estimate for γ is actually closer to the original
model than the estimate that ignored the
panel aspect of the data.

We also estimated the model with data
from the Central Corn Belt (CCB) only (the
states we include are IA, IL, and IN). These
three states account for nearly 35% of US
soybean land alone. Our result for γ in this
case is less than before. However, since γ
is estimated on a different sample, it is not
directly comparable to the estimate obtained
from our baseline specification. Because the
parameters are identified relative to the scale
parameter, a different value could indicate
that complementarity between GT soybeans
and CT is less in this region, but it could
alternatively indicate that the IID portion
of unobserved variation is larger in the CCB
(relative to the rest of the country).

The final specification changes the way
the tillage choice is structured. Instead of
specifying the tillage choice for the farmer as
being between CT and IT, we instead spec-
ify it as being between no-tillage (NT) and
tillage (i.e., some positive level of tillage).
We expect the complementarities between
NT and GT soybean to be even stronger
than between CT and GT. Intuitively, the
improved efficiency and convenience of
weed control offered by GT varieties will be
especially beneficial when making the leap
to a NT system. This is weakly confirmed
by the correlation coefficient between GT
soybeans and NT, which is slightly larger at
0.139 (compared to 0.125). The estimate for
γ presented in table 4 indicates that NT and
GT soybeans are complementary, and the
magnitude of γ is indeed larger than it was
for the CT specification. As was noted for the

case of the CCB specification, the estimates
for complementarity are not directly compa-
rable. Nonetheless, the fact that the estimates
of the parameters for the GT variables –
the constant, the seed price, and the herbi-
cide price – remain essentially unchanged
relative to the base specification, suggests
that the larger estimate for γ is in fact the
result of stronger complementarity, rather
than smaller variation in the IID portion of
unobserved tastes.

Conservation tillage without GT varieties.
A natural question that arises from our
model is what CT adoption rates would have
been if GT soybeans were never introduced
into the market. To answer this question,
we calculate the following: (i) the annual
predicted CT adoption rates using the esti-
mates from table 3 (i.e., the predicted rates
based on having GT soybeans as part of the
choice-set); and (ii) the annual predicted CT
adoption rates after removing GT soybeans
from the choice-set for all individuals (also
using the parameter estimates from table 3).
To arrive at the first set of adoption rates, we
first compute for each farm-field-year com-
bination the vector of predicted probabilities
of choosing systems with CT (which requires
simulation). Specifically,

L̂j
itf (θ̂) = 1

R

R∑
r=1

exj
itf β̂

j+ν
j
i,r∑

k∈�it
exk

itf β̂
k+νk

i,r

,(22)

j ∈ {(CV, CT), (GT, CT)}.

The predicted probability for choosing CT
is then given by: L̂CT

itf = L̂CV,CT
ift + L̂GT,CT

ift .
To move from this expression to annual
adoption rates, we use a variable in our
dataset that consists of the number of acres
that each farm-field-year represents in the
population for that year. Denote this quantity
by Aift. The predicted share of CT acres in
year t is then given by

(23) ŜCT
t =

∑N
i=1

∑Fit
f=1 AiftL̂CT

ift∑N
i=1

∑Fit
f=1 Aift

.

To compute the predicted annual shares
for CT when GT soybeans are not avail-
able, we follow essentially the same steps,
except that the predicted probability of
using CT now just consists of a singleton,
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Table 6. Tillage Predicted Adoption Rates (percent of acres)

Conservation Till Predicted Rates No-Till Predicted Rates

With GT Without GT Difference With GT Without GT Difference

1998 53.9 50.6 3.3 31.0 27.0 4.0
1999 55.9 52.1 3.8 32.8 28.2 4.6
2000 57.6 53.3 4.2 35.8 30.5 5.4
2001 59.6 54.6 5.0 38.4 32.0 6.4
2002 59.9 54.7 5.3 38.6 31.8 6.8
2003 62.1 56.3 5.9 40.6 33.0 7.6
2004 62.0 56.0 6.0 40.4 32.6 7.7
2005 64.8 59.1 5.8 45.2 37.3 7.9
2006 66.6 60.7 5.9 48.0 39.8 8.2
2007 66.7 60.6 6.1 47.6 39.1 8.5
2008 68.7 62.7 6.0 48.8 40.2 8.6
2009 66.7 60.5 6.1 45.6 37.2 8.4
2010 68.7 62.6 6.1 48.1 39.4 8.7
2011 69.4 63.3 6.2 49.4 40.5 8.9

denoted by L̃CV,CT
ift (i.e., the only choice being

made concerns which tillage practice to use).
We calculate this probability according to

(24) L̃CV,CT
itf = 1

R

R∑
r=1

exCV,CT
itf β̂CV,CT+ν

CV,CT
i,r(

1 + exCV,CT
itf β̂CV,CT+ν

CV,CT
i,r

) .

Note that, as compared with (22), the denom-
inator inside of the summation in (24) does
not include the terms for GT choices. The
predicted adoption rates for CT when GT
soybeans are not available can then be com-
puted as in (23), but with L̃CV,CT

ift replacing

L̂CT
itf . Table 6 contains these predicted adop-

tion rates for each year of the 1998–2011
period. In 1998 the adoption rate for CT is
3.3 percentage points less in a world without
GT soybeans as an option. This difference
increases steadily up until 2003, at which
point it begins to level off and approach
6 percentage points (or about 10% of the
no-GT soybean scenario). This is a reflection
of the diffusion of GT soybeans, which also
began to level off in 2003. Note also that the
predicted rate for CT increases consider-
ably over the period, by about 10 percentage
points, even when GT soybeans are not avail-
able. The implication of our model is that
such an increase would have been driven
mainly by steadily rising fuel prices, an over-
all increase in farm size, and other unknown
factors captured by the trend variable. The
simulation is also performed for NT. In this
case the gains from complementarity are

even greater. In 1998, the difference is about
4 percentage points more when GT soybeans
are available, and by 2011 the difference is 9
percentage points or a bit over 20% relative
to the scenario without GT soybeans.17

An application to soil erosion. Conserva-
tion tillage or no tillage are not necessarily
desirable, per se. Rather, interest in these
practices is motivated by the fact that they
affect a variety of environmentally-relevant
outcomes. Exploring all such implications is
beyond the scope of this paper. As suggested
by a reviewer, however, it may be desirable
to provide an illustration of one such impact.
To do so, we compute the implied impact
of GT soybeans, through their impact on
CT adoption, on soil erosion. We base our
computation on Montgomery (2007, 13270),
which compiles and presents results from
1,673 measurements of erosion rates under
different settings.18 The median erosion rate

17 Whereas in the text we have presented a constructive pro-
cedure to compute predicted adoption rates if GT soybeans were
not available, we note that one could obtain the same results
by considering the counterfactual in which CT and GT soybeans
are independent. That is, the simulated adoption rates in table 6
are identical to those one would obtain by putting γ = 0 while
maintaining the full choice set. The intuition for the equivalence is
that when the seed and tillage practices are entirely independent,
then each is chosen separately without regard to the other.

18 We alternatively considered computing implied soil loss using
the Universal Soil Loss Equation (USLE), a widely used model
for this purpose. However, use of this model requires detailed
information (e.g., slope length and slope steepness) that are not
available to us. Moreover, there are acknowledged problems with
estimating soil loss based on the USLE (Trimble and Crosson
2000; Montgomery 2007).
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from these measurements under conventional
agriculture is about 1.5 mm/year, which is
roughly 20 times the median erosion rate of
0.08 mm/year for conservation agriculture.
The difference of ≈1.4 mm/year is equivalent
to ≈6.8 tons/acre per year (assuming a soil
bulk density of 1,200 kg/m3). Using the per-
cent differentials for CT from table 6, and
total annual US acres planted to soybeans
(source: Quick Stats at the USDA-NASS
website), this implies a mean reduction in soil
loss of 27 million tons per year. For context,
estimated total soil erosion for US cropland
in 2007—assuming a mean erosion rate of
0.95 mm/year (Montgomery 2007, 13271)
and given a total US cropland of 408 million
acres (USDA-ERS)—can be estimated at
about was 1.9 billion tons. To assess the mon-
etary value of these savings in soil erosion we
use the USDA/NRCS estimated benefits of
$4.93 per ton in water quality improvements
and $1.93 per ton in saved fertilizer (USDA
2009). Thus, the value of the benefits asso-
ciated with the implied soil savings is $189
million per year.

Conclusion

Complementarity is arguably a common fea-
ture among many of the inputs and practices
chosen by agricultural producers. A possible
instance of complementary in agriculture that
has attracted considerable interest concerns
the interaction between herbicide tolerant
crops and conservation tillage practices. In
this paper we have developed a new discrete
choice model of joint practice adoption in
which soybean producers choose among
four tillage-soybean systems, and use it to
investigate the existence and significance of
complementarity between GT soybeans and
CT practices. Our model explicitly incor-
porates both unobserved heterogeneity
and complementarity, thus allowing for a
direct test of whether GT soybeans and
CT are complements. Using a large unbal-
anced panel dataset on individual farmers’
choices spanning the period 1998–2011, we
find that GT soybeans and CT are indeed
complementary practices. This finding is
robust to multiple specifications. Moreover,
by ignoring unobserved heterogeneity, the
degree of complementarity is overestimated.
We further find that GT soybeans and no-
till are likely stronger complements than
GT soybeans and CT. In addition to the

complementarity findings, our results indicate
that highly erodible land, drought-like con-
ditions, and higher fuel prices increase the
likelihood of choosing CT. We also simulate
annual adoption rates for CT and NT in a
world without GT soybeans. The simulations
indicate that CT adoption and NT adoption
have been about 10% larger (or 6 percentage
points) and 20% larger (9 percentage points),
respectively, than what they would have been
as a result of the availability of GT soybeans
(holding total acreage fixed).

Whereas the framework of analysis that
we propose and illustrate in this article has
broader methodological applicability to
many issues in the economics of agricultural
production, some policy implications follow
immediately from our finding that GT
soybeans and CT are complements. When
complementarities are present, policy shocks
that directly affect one activity will also indi-
rectly affect complementary activities and
will do so in the same direction. In recent
years, for example, glyphosate weed resis-
tance has become increasingly problematic
in certain parts of the world (Powles 2008).
As a result, there has been an initiative to
slow that resistance in order to preserve the
viability of glyphosate. Because GT soy-
beans and CT complement one another, such
efforts also indirectly preserve the use of CT
systems. A similar type of reasoning can be
applied to the recent de-regulation of other
herbicide tolerant crops (e.g., Dicamba resis-
tant crops). To the extent that these crops
also promote the use of CT, then their over-
all benefits are potentially under-estimated.

Concerning future research, an important
question that remains unanswered relates
to the effect of herbicide tolerant crops on
herbicide use. Our framework could poten-
tially be extended to look at this question by
also incorporating the choice of how much
herbicide to use. More generally, our frame-
work could be used to consider relationships
between a multitude of other agricultural
choices, such as crop-rotation, farm size,
row-spacing, and the type of machinery to
purchase. For example, economies of scope
at the farm level, rooted in the possible
submodularity of a farm’s cost structure
(and so supermodularity of profits), repre-
sent an important possible application of
our framework of analysis. Given the con-
cerns associated with crop specialization
and monoculture practices, especially vis-
à-vis sustainability considerations, a deeper
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understanding of the complementarity rela-
tions that promote or hinder such trends
would be valuable.
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