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This paper studies the firm-level relationship among productivity, decision to export, and environ-
mental performance. The emerging theoretical and empirical literature suggests that trade has an
important role in determining firms’ heterogeneity: increased openness to trade induces a real-
location effect that increases within-industry efficiency, thereby linking firms’ decisions to export
and adopt newer (and cleaner) technology. We argue that this framework provides the following
empirically-relevant predictions: there is an inverse relationship between firm productivity and
pollution emissions per unit output; exporting firms have lower emissions per unit output; and
larger firms have a lower emission intensity. To examine these implications empirically, we have
assembled a uniquely detailed dataset of the U.S. manufacturing industry for the years 2002, 2005,
and 2008 by matching facility-level air emission data from the U.S. Environmental Protection
Agency with the facility’s economic characteristics contained in the National Establishment Time
Series database. The strategy is to first estimate a facility-level total factor productivity parameter
as a plant-specific fixed effect. We then investigate how this estimated productivity parameter
correlates with emission intensity on a pollutant-by-pollutant basis. Our empirical findings support
the hypotheses suggested by the conceptual model. For each criteria air pollutant considered,
we find a significant negative correlation between estimated facility productivity and emission
intensity. Conditional on a facility’s estimated productivity and other controls, exporting facilities
have significantly lower emissions per value of sales than non-exporting facilities in the same
industry. We also find that plant size is negatively and significantly related to emission intensity
for all pollutants.
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It is recognized that the relationship
between international trade and the envi-
ronment is a complex one, with several
distinct possible effects that pull in oppo-
site directions. Not surprisingly, therefore,
no consensus has emerged on whether the
overall impact of increased economic inte-
gration across national borders increases or
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decreases pollution; neoclassical trade the-
ory suggests that either outcome is possible
(Copeland and Taylor 1994; 1995). Empirical
investigations have documented the sepa-
rate roles of the “scale effect” (i.e., trade
tends to expand economic activity, which
ceteris paribus worsens the environment), the
“technique effect” (i.e., trade raises national
income, which is presumed to lead to more
stringent environmental regulations that ben-
efit the environment), and the “composition
effect” (i.e., trade leads to greater special-
ization and redistribution of factors across
industries, with ambiguous effects on the
environment). Using panel data of aggregate
(country-level) sulfur dioxide (SO2) pollu-
tion, Antweler, Copeland, and Taylor (2001)
find that the technique effect tends to dom-
inate the scale effect and the composition
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effect to reduce pollution, so that the overall
effect of trade is favorable to the environ-
ment. Frankel and Rose (2005), using a
cross-section data set and a methodology that
deals with the endogeneity of trade, also find
that trade reduces SO2 pollution. The results
in Cole and Elliott (2003) are similar with
regard to SO2 emission, but they find that
trade may increase carbon dioxide (CO2) and
nitrogen oxides (NOx) pollution. The results
in Managi, Hibiki, and Tsurumi (2009), who
rely on a larger sample of countries, are also
decidedly mixed, with the impact of trade on
the environment varying across pollutants
and countries.

The foregoing studies have investigated
the link between trade and the environ-
ment in the context of inter-industry trade
models and with aggregate (country-level)
data. Much of the recent trade theory, how-
ever, has focused on firm-level decisions and
emphasized the role of firm heterogeneity
with respect to their productivity (Melitz and
Redding 2012). This theoretical framework
shows that increased openness to trade can
have important consequences for firms’ pro-
ductive decisions, can impact the dynamics
of firms’ entry and exit, and can lead to a
reallocation of resources within an industry.
With the increasing availability of micro-level
data sets, the observed differences between
exporters and non-exporters has been inves-
tigated with respect to many dimensions,
with findings indicating that exporters tend
to be larger, more productive, pay higher
wages, and generally perform better than
non-exporters (Bernard and Jensen 1999;
Tybout 2003; De Loecker 2007; Bernard
et al. 2007). More recently, some studies
have attempted to extend this framework
of analysis to import decisions (Gibson and
Graciano 2011) and to study the environ-
mental implications of trade. In this paper,
we are particularly interested in the latter.
Attention to environmental performance
in this setting is important because, with
heterogeneous firms, increased openness to
trade brings about a reallocation effect that
increases within-industry efficiency (Melitz
and Trefler 2012). As noted by Kreickemeier
and Richter (2014), in the context of the
relationship between trade and pollution,
this “reallocation” effect is distinct from
the standard scale, technique, and composi-
tion effects noted earlier, and provides yet
another way in which trade can affect the
environment.

Whether, and by how much, exposure to
trade affects environmental performance in
the presence of firm heterogeneity is largely
an empirical issue. Using micro-level panel
data from different countries and various
measures of environmental activities, existing
empirical studies find that exporters have
better environmental performance than
non-exporters. For example, Holladay (forth-
coming) investigates toxic pollution emissions
from U.S. manufacturing establishments
over the years 1990–2006, and finds that
exporters emit less toxic emissions than non-
exporters when controlling for establishment
output and industry characteristics. Further,
Girma and Hanley (2015) use a measure of a
four-point ordinal response to two surveyed
questions concerning the environmental
impacts of innovation for UK firms. These
authors find that exporters are more likely
than non-exporters to denote innovation
as having “high” or “very high” environ-
mental effects. Using data from a panel of
Irish manufacturing firms, Batrakova and
Daves (2012) adopt fuel consumption as a
proxy for firms’ environmental behavior, and
show a negative correlation between export
status and fuel expenditures for high fuel
intensity firms. Similarly, Forslid, Okubo,
and Ulltveit-Moe (2014) construct firm-level
CO2 emissions using data on all types of fuel
use, together with emission coefficients from
Swedish firms. These authors’ findings also
suggest a negative correlation between an
export dummy and CO2 emission intensity
at the firm level, and also a negative rela-
tion between emission intensity and firm
productivity. Other recent studies include
Barrows and Ollivier (2014), who analyze
firm-level CO2 emissions intensity for Indian
manufacturing firms, and Cao, Qiu, and Zhou
(Forthcoming), who study investment on
pollution abatement technology with Chinese
firm panel data.

This paper contributes to this emerging
body of literature. The new application that
we provide, relative to the existing literature
discussed in the foregoing, is to study the
environmental performance of U.S. man-
ufacturing firms, with a focus on their air
pollution emission. Our conceptual frame-
work suggests two testable hypotheses of
interest in the presence of firm heterogeneity:
(a) facility productivity is inversely related
to emission intensity; and (b) export sta-
tus is negatively correlated with emission
intensity. An ancillary hypothesis is that the
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size of firms is inversely related to pollu-
tion intensity. To test these hypotheses we
have compiled a uniquely detailed facility-
level dataset of the U.S. manufacturing
industry for the years 2002, 2005, and 2008.
The dataset is assembled from a variety of
sources. The National Emission Inventory
(NEI) of the U.S. Environmental Protec-
tion Agency (EPA) provides facility-level
criteria air pollution data for SO2, carbon
monoxide (CO), Ozone (O3), and Total Sus-
pended Particulates (TSPs). The facility-level
economic characteristics data are obtained
from the National Establishment Time Series
database (NETS). These two databases are
matched through the Data Universal Number
System (DUNS), which is a unique facil-
ity identifier. We have further augmented
our dataset with pollutant-specific county
nonattainment/attainment designations under
the Clean Air Act Amendments (CAAA)
legislation. Whereas the impact of CAAA
regulations on industrial activities, per se, has
been the object of several existing studies,
the main reason for us to consider the plant’s
exposure to such regulations is secondary.1
Given our focus on the two hypotheses dis-
cussed above, it is important to control for
possible other determinants of environmental
performance, one of which is the firm’s expo-
sure to environmental compliance costs (e.g.,
CAAA regulation), which may differ across
individual plants.

The aim of this paper is largely empirical,
and the strategy that we employ involves
two main steps. First, a facility-level produc-
tivity parameter, which we model as TFP,
is estimated as a plant-specific fixed effect
from a panel data set using nine years of data
(2000–2008). Second, given this estimated
productivity parameter, we investigate how
plant-level productivity correlates with emis-
sion intensity on a pollutant-by-pollutant

1 Greenstone (2002) finds negative impacts of CAAA regula-
tion on the growth of polluting manufactures in nonattainment
counties. Others (Becker 2011; Greenstone, List, and Syverson
2011) find that the CAAA nonattainment designation is associ-
ated with drops in total factor productivity (TFP) for surviving
polluting plants. There is also a debate on whether the CAAA
causes firms to relocate (within the country or abroad). Hen-
derson (1996) and Becker and Henderson (2000) show that the
O3 nonattainment regulation leads to the relocation of polluting
plants from more to less polluted areas. Hanna (2010) finds that
the CAAA causes regulated U.S.-based multinational firms to
increase their foreign assets and outputs. As for the impact of
the regulation on pollution cleanup, Greenstone (2004) finds that
the SO2 nonattainment designation plays a minor role in the
dramatic decline of county-level ambient concentrations of SO2
from 1969–1997.

basis. The additional role of exposure to
trade for environmental performance is
also investigated in this setting. To further
validate the conceptual model that we pos-
tulate, the impacts of facility attributes on
the probability of selection to export are
estimated via a logistic regression of export
status on measures of trade costs, facility
TFP, and other controls (including a facility’s
exposure to environmental regulations). Our
empirical findings are overall supportive of
the hypotheses suggested by the conceptual
model. For each criteria air pollutant, that is,
SO2, CO, O3, and TSPs, we find a significant
negative correlation between the estimated
facility productivity and emission intensity.
Conditional on a facility’s estimated produc-
tivity and other controls, exporting facilities
have lower emissions per value of sales than
non-exporting facilities in the same indus-
try. These negative correlations between
exporting status and emission intensity are
statistically significant for all pollutants we
track. We also find that plant size is nega-
tively and significantly related to emission
intensity for all pollutants. There is also some
evidence that polluters located in CO, O3,
or TSPs nonattainment counties have lower
emission intensity than those residing in
attainment areas.

Methodological Framework

The key insight in much of the theoretical
and empirical literature spawned by Melitz
(2003) and Bernard et al. (2003) is that firm
heterogeneity is an intrinsic feature of the
real world, even within narrowly defined
industries, and this feature ought to be an
explicit ingredient of both theoretical and
empirical analyses. In most papers, this het-
erogeneity is modeled by assuming that firms
are endowed with an exogenously drawn
productivity parameter. This firm-specific
parameter is meant to be a summary statistic
representing various forms of heterogeneity
in production that reflect each firm’s ability
to turn inputs into outputs. Such heterogene-
ity includes differences in technical efficiency,
organizational skill, managerial ability, qual-
ity of workers, and corporate culture. These
heterogeneities translate into equilibrium
outcomes that reflect the economic environ-
ment in which firms operate. For example,
differential openness to trade across indus-
tries and/or countries affects the size of the
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market and hence the equilibrium distribu-
tion of firms’ efficiency. The larger potential
market, as well as the presence of foreign
trade costs that exceed those for domestic
sales, can lead to an equilibrium in which the
most efficient firms export, the least efficient
firms are driven from the market, and firms
of intermediate efficiency serve only the
domestic market.

Whether and how such increased efficiency
translates into improved environmental
performance—the central empirical ques-
tion addressed in this paper—depends on
the specifics of the model that one pos-
tulates. Kreickemeier and Richter (2014)
discuss an adaptation of the Melitz model
that incorporates pollution as a joint output
of production. This illustrates a first channel
by which firm heterogeneity can impact envi-
ronmental performance. Insofar as pollution,
as a byproduct of production, is proportional
to the quantity of inputs used in the pro-
duction process, more efficient units (which,
by definition, obtain more output from the
same bundle of inputs) turn out to have a
lower emission intensity (quantity of emitted
pollution per unit of output).

Another channel by which firm het-
erogeneity can affect environmental per-
formance involves technology adoption. This
perspective is inspired by Bustos (2011), who
studies new technology adoption by hetero-
geneous firms and finds that exporters are
more likely to innovate. Following such an
approach, Cui, Lapan, and Moschini (2012)
develop a model where firms choose between
two alternative technologies, one of which
(the upgraded technology) is assumed to be
an emission-saving technical change rela-
tive to the initial technology; upgrading the
technology requires extra fixed costs but
yields lower marginal costs.2 This model
predicts that a continuum of heterogeneous
firms is partitioned by technology upgrade
choice and export status. Productive firms
can earn enough revenues to cover the fixed
costs of entering the export market, and thus
select to be exporters. Moreover, only the
most productive exporters upgrade to the
emission-saving technology because they
are the only ones with profitable incentives.
This setting suggests the two hypotheses
that are the focus of our empirical analysis:

2 Cui (2014) further explores the effects of openness to trade and
the stringency of environmental regulations on firms’ technology
upgrading choices and exports decisions.

(a) facility productivity is inversely related
to emission intensity; and (b) export status is
negatively correlated with emission intensity.
Forslid, Okubo, and Ulltveit-Moe (2014) also
provide an explicit adaptation of the Melitz
model that focuses on technology adoption,
by allowing heterogeneous firms to emit pol-
lution and to invest in abating pollution. But
rather than a discrete technology choice, they
assume a continuous investment in pollution
abatement.

Naturally, the incentives of firms to invest
in pollution abatement equipment or to
undertake costly upgrades of their technol-
ogy specifically to reduce pollution depend
upon the economic benefits from doing
so. If there is an explicit price (or tax) for
emissions, then firms that are larger, either
because they are more productive and/or
because they face a larger potential market
because of exports, will have a greater incen-
tive to undertake these fixed costs. Similarly,
even if there are no current emission charges,
firms located in non-attainment areas may
be required to adopt less emitting technolo-
gies, particularly whenever existing capital is
replaced or whenever the firm expands. It is
also possible that firms that export, particu-
larly to areas like the European Union, may
find it beneficial to market their product as
being a “clean good,” and hence they may
have a greater incentive to adopt cleaner
technologies as a form of product differenti-
ation. Finally, inasmuch as capital decisions
depend upon a long planning horizon, the
expectation of some future pollution price
(e.g., through cap and trade) may influence
current decisions regarding investment in
pollution-reducing technologies. Thus, while
the “pollution as by-product model” clearly
predicts an inverse relationship between firm
efficiency and firm emissions per unit output
(or sales), the forgoing discussion implies that
if firms see any economic benefit from reduc-
ing pollution, there should also be an inverse
relationship between potential market size
and firm emissions per unit output. Conse-
quently, the firm’s export status, as well as
variables that affect trade such as transport
costs, have an explanatory role in addition
to that of firm productivity in explaining
emissions.

Empirical Model

To test the two main hypotheses suggested
by the underlying theoretical framework,
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we adopt a two-step approach. First, we
obtain an estimate of the TFP parameter at
the plant level. Given the estimated facility
productivity, we then investigate how pro-
ductivity is related to the plant’s emission
intensity, as well as the role of the plant’s
export status in this setting.

Plant-level productivity measures are noto-
riously difficult to perform (Van Beveren
2012). This is particularly the case when, as
in our case, the database lacks information
about capital stock or investment at the plant
level: the only productive input for which
we have detailed information is labor. To
overcome this challenge, and to derive a
meaningful estimate of facility-level produc-
tivity with the data on hand, we propose a
practical approach that identifies a plant’s
TFP within a fixed effect framework. A key
ingredient of our procedure is to assume that
all firms in the same industry use the same
technology (although they are heterogeneous
with respect to productivity), and that this
technology can be represented by a homoge-
neous production function. More specifically,
the production function that applies to a
facility i in industry j at time t is written as

(1) qijt = exp(Aj + φij + eijt) · hj(Lijt, xijt)

where qijt is output, Lijt is the amount of
labor employed at the plant, xijt is the vec-
tor of all other inputs of production, Aj is
an industry-level scaling constant, φij is the
plant-specific productivity parameter, and eijt
is a zero-mean identically and independently
distributed (i.i.d.) error term. The plant-level
productivity parameter φij is also presumed
to have zero mean, an obvious property
given that it is meant to measure a plant’s
productivity relative to the industry average.

Given that we do not have detailed infor-
mation on the vector xijt, to proceed we
postulate that the production function is
homogeneous of degree κj, so that we write

qijt = exp(Aj + φij + eijt) · L
κj

ijt(2)

· hj(1, xijt/Lijt).3

This reformulation of the production
function is useful because it separates the

3 Recall that, for a function f (z) that is homogeneous of degree
κ, then f (tz) = tκf (z), ∀t > 0.

plant-level labor input Lijt, which is observ-
able in our data, from the input ratios xijt/Lijt
(e.g., the capital/labor ratio), which we do
not observe. If we now assume that all firms
within the same industry face the same input
prices, then the maintained assumption that
all firms in the same industry have a common
and homogeneous production function (apart
from their individual productivity parameter)
leads to the conclusion that all firms in the
same industry would select the same input
ratios xijt/Lijt as a result of cost minimiza-
tion.4 This suggests that the unobservable
component hj(1, xijt/Lijt) in equation (2) is
common among all plants in the same indus-
try and can therefore be proxied by a suitable
set of industry-by-year dummy variables.

Taking logs, the production function can
be written as

(3) ln qijt = Aj + φij + λjt + κj ln Lijt + eijt

where the degree of homogeneity κj of the
production function measures the industry-
specific degree of returns to scale (which,
in this context, can be either increasing or
decreasing), and λjt ≡ ln hj(1, xijt/Lijt) is an
industry-specific time-varying term. The
plant-specific parameters φij can be esti-
mated with the aid of plant-specific dummy
variables, and the industry-specific but time-
varying term λjt can be estimated with the
aid of industry by year dummy variables. It
is now apparent that the TFP parameters φij
can be estimated using a fixed effect model
(Pavcnik 2002).

Because we wish to relate productivity to
emissions, and we have data on emissions for
three distinct years (2002, 2005, and 2008), a
question is whether or not a plant’s produc-
tivity coefficient should be allowed to vary
across these three observation points. An
essential assumption in estimating equation
(3), implicit in the foregoing, is that a plant’s
own relative productivity is time-invariant
over the period used to estimate it. To allow
a plant’s TFP parameter to differ for the
three emission years 2002, 2005, and 2008,
therefore, requires one to estimate it based
on three years of data only (e.g., 2006–2008
for the 2008 productivity parameter). Hence,
for the main results discussed in the paper,

4 The homogeneity of the production function, in particular,
ensures that cost-minimizing input ratios depend only on price
ratios and are not affected by the scale of output.
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we elect to estimate the TFP parameters pre-
suming constancy over the period 2000–2008.
Alternative TFP parameters that vary across
pollution years, however, are also considered
and discussed in the robustness section.

Next, we wish to investigate the relation-
ship between the plant’s estimated TFP
measure and the plant’s emission intensity,
and also to evaluate the role of the plant’s
export status on emission intensity. If E�

ijs
denotes a plant’s total emission of pollutant
� in year s, emission intensity is defined as
emission per unit of output, which in log
terms is measured by y�

ijs ≡ ln(E�
ijs/qijs). The

emission regression of interest, omitting the
pollutant index for clarity of exposition, is
therefore written as

yijs = θj + λs + γ1TFPij + γ2Xij(4)

+
∑

k

γ3kZk
ijs + εijs

where TFPij ≡ φ̂ij| is the plant’s estimated
productivity, Xij ∈ {0, 1} is the “export status”
indicator (Xij = 1 if the facility is exporting),
and Zk

ijs denotes a set of control variables
that may be plant-specific (including expo-
sure to regulation). In equation (4), the
industry-specific intercept θj allows for pollu-
tion intensity to differ systematically across
industries, λs is a year-specific coefficient
controlling for possible time trends affecting
all industries, and εijs is the stochastic error
term (assumed i.i.d.).

Data

For the purpose of estimating equations (3)
and (4), we have assembled a unique detailed
facility-level emission dataset on criteria air
pollutants and facility characteristics that
pertains to the U.S. manufacturing indus-
try. A “facility” is a place where economic
activities that result in air emissions occur.
Facility emission data are obtained from the
NEI database of the U.S. EPA, and pertain
to pollution data for the years 2002, 2005,
and 2008.5 The facility economic characteris-
tics are taken from the NETS database, and

5 This includes all the years for which such data were available
at the time this study was undertaken. Recently, the EPA has
released access to NEI data for 2011 as well.

pertain to the period 1990–2008. These two
databases are matched through the DUNS
number assigned by Dun and Bradstreet to
identify unique business establishments.

The NETS database, developed through
a joint venture with Dun and Bradstreet by
Walls and Associates, is a unique database
that provides information on a large number
of U.S. business establishments for every
year since 1990.6 The data acquired for this
study include establishment name, number of
employees, value of sales, an export indica-
tor, the DUNS number, geographic location
(i.e., latitude and longitude), Zip Code, and
five-digit Federal Information Processing
Standard (FIPS) county code.7

The EPA’s NEI database contains infor-
mation about facilities that emit criteria
air pollutants for all areas of the United
States. Since 2002, the EPA has released an
updated version of the NEI database every
three years. The facility-level NEI database
acquired for this empirical study includes
emission data for four criteria air pollutants,
that is, SO2, CO, O3, and TSPs during 2002,
2005, and 2008.8 The Facility Registry System
(FRS) of the EPA provides DUNS numbers
of these polluting facilities, allowing us to
match the NEI with the NETS databases.
We first match polluting facilities within
the NEI database across years, and then
retrieve DUNS numbers for these polluters
from the FRS of the EPA. Second, we match
these polluters with those appearing in the
NETS database through the DUNS number.
This matching procedure narrows down our
dataset to 16,695 polluting facilities (i.e., with
a nonzero emission value for at least one pol-
lutant) in year 2002, 12,022 polluting facilities
in year 2005, and 10,144 polluters in 2008,
all in the U.S. manufacturing industry as
determined by having a four-digit Standard
Industrial Classification (SIC) code between
2000 and 4000. This amounts to roughly half

6 NETS data have been used to study issues related to job
creations and destructions, business relocation, and business
ownership (Kolko and Neumark 2008, 2010; Neumark, Wall,
and Zhang 2011). Neumark, Wall, and Zhang (2011) provide
a detailed description of the NETS and an assessment of the
quality of the NETS database along many dimensions. Holladay
(forthcoming) also relies on the NETS database.

7 Whereas the plant-level number of employees and value of
sales change over time in the NETS database, the export status
indicator is time-invariant.

8 A more detailed discussion of the facility-level NEI database
is provided in the appendix, which also discusses some caveats
(particularly as they relate to the 2005 data).
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of the polluters in the manufacturing indus-
try reported in the NEI database prior to
matching.9 More details on the data matching
procedure are provided in the appendix.

The regulatory attainment/nonattainment
county status information is obtained from
the Green Book Nonattainment Areas for
Criteria Pollutants reported by the EPA.10

A list of variables and data sources used in
the paper is summarized in table A1 in the
appendix. For each criteria air pollutant that
we track, the Green Book indicates whether
only part of a county or the whole county
is in nonattainment. We assign a county
to the nonattainment category for each of
four criteria pollutants, that is, SO2, CO,
O3, and TSPs, if the entire county or part of
the county is designated with nonattainment
status.11,12

Descriptive Statistics

Our merged dataset—used to investigate
the relationship among productivity, export
status, and emission intensity—consists of
an unbalanced panel of polluting facilities
in 2002, 2005, and 2008, for a total of 38,192
facility-by-year observations from 18,435
facilities located in 2,017 U.S. counties. There
are 7,525 facilities represented throughout
the study period. Table 1 provides sum-
mary statistics on a number of variables in
the merged dataset. The value of sales is
deflated by the four-digit SIC industry ship-
ment deflator provided by the NBER-CES
manufacturing industry database.13 It is
worth noting that, because of the matching

9 Prior to data matching, the NEI database contains 25,574
manufacturing polluters in 2002, 20,948 in 2005, and 21,102 in
2008.

10 For detailed information, see http://www.epa.gov/air/oaqps/
greenbk/index.html.

11 The formation of ground-level ozone is a complicated chemi-
cal process that involves volatile organic compounds (VOCs) and
oxide of nitrogen (NOx) when these two react in the presence
of sunlight. There are separate standards for NO2, 1-hour O3,
and 8-hour O3. We classify a county as nonattainment for O3 if
it is in nonattainment for NO2 or O3, including both 1-hour and
8-hour standards. Therefore, the pollution of VOCs and NOx is
associated with this combined O3 nonattainment designation.

12 There exist separate standards for PM10 and PM2.5. We
classify a county as nonattainment for TSPs if it is in nonattainment
for at least one of these standards. TSPs in this study are primary
particulates matters (the sum of primary PM10 and primary
PM2.5).

13 This database pertains to the U.S. manufacturing sector for
the period 1958–2009, and it is assembled from data obtained from
various federal agencies with the goal of providing consistent time
series for a large number of industries, including price deflators,
capital stocks, and productivity estimates (Becker, Gray, and
Marvakov 2013).

procedure adopted, each facility emits at
least one pollutant, but not all facilities
have emissions reports for all four crite-
ria air pollutants. In many cases, facilities
only have estimates for one pollutant in the
NEI database. In addition, the dataset con-
tains a few observations with extremely low
emissions, which do not appear credible.14

These outliers, which only account for a
small fraction of total relevant observations,
were dropped from the analysis and are not
included in table 1.15

The last two columns of table 1 summa-
rize the differences between exporters and
non-exporters across facility characteristics.
Exporters are larger than non-exporters in
terms of sales and number of employees.
These descriptive results are in line with
the growing empirical trade literature on
heterogeneous firms. When it comes to envi-
ronmental performance, exporters emit more
SO2, O3, and TSPs, but less CO than non-
exporters. Pollution intensity measured by
emissions per value of sales (tons per thou-
sand dollars), however, is lower for exporters
relative to non-exporters for all criteria air
pollutants. The differences are persistent for
each sample year separately.

According to the EPA’s Green Book, in
2002 only a small number of the total of 3,143
U.S. counties were designated as nonattain-
ment: 21 counties in SO2 nonattainment, 19
counties in CO nonattainment, 251 coun-
ties in O3 nonattainment, and 64 counties in
TSPs nonattainment. In 2005, the number
of counties with SO2 or CO nonattainment
designations declines to 12 and 11, respec-
tively, while the number of counties with
O3 or TSPs nonattainment status increases
drastically to 431 and 259, respectively. In
2008, the number of counties with O3 nonat-
tainment status substantially dropped from
431 to 293, while the number of counties with
other nonattainment status changes slightly.
Most nonattainment counties are covered in
our merged dataset.

14 For example, the smallest facility-level nonzero value of SO2
in the data was 2.1 × 10−10 tons per year, that is, 0.21 micrograms
per year (a microgram is equal to one billionth of one kilogram).

15 Specifically, we adopted the threshold of 0.001 tons per year
(i.e., one kilogram) for inclusion in the analysis. The fraction of
observations with annual emissions less than 0.001 tons per year
are as follows: 7.73% for SO2, 1.22% for CO, 0.49% for O3,
and 1.81% for TSPs. Empirical estimation with these outliers is
considered but not reported in the paper. Accounting for the
outliers does not change the empirical results in any significant
way.
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Table 1. Summary Statistics

Exporter Non-exporter
Variable Obs. Mean Std. Dev. Min. Max. Mean Mean

Sales (thousand $) 38,192 31, 946.1 79, 320.7 0.1 3, 404, 478 45, 021 27, 685
Employees 38,192 215.4 479.0 1 15, 000 308.4 185.1
SO2 (tons) 20,221 130.4 880.6 0.001 41, 845.2 150.5 123.2
CO (tons) 23,829 141.1 1, 593.9 0.001 87, 428.9 123.2 147.5
O3 (tons) 34,980 101.9 464.7 0.001 23, 121.4 101.7 102.4
TSPs (tons) 29,272 41.2 198.8 0.001 11, 383.1 42.8 40.6
SO2 per Sales 20,221 0.051 1.413 2.25E−09 139.5 0.011 0.065
CO per Sales 23,829 0.063 2.930 2.46E−09 309.4 0.013 0.080
O3 per Sales 34,980 0.041 0.946 1.09E−08 89.4 0.027 0.046
TSPs per Sales 29,272 0.016 0.416 2.39E−09 53.3 0.008 0.019
Export Status 38,192 0.246 0.431 0 1 1 0
SO2 NA 38,192 0.009 0.093 0 1 0.008 0.009
CO NA 38,192 0.079 0.270 0 1 0.064 0.084
O3 NA 38,192 0.468 0.499 0 1 0.469 0.467
TSPs NA 38,192 0.203 0.402 0 1 0.190 0.207

Note: The acronym NA stands for nonattainment, and is one-year lagged status. Sales are deflated by value of shipment deflator on the basis
of four-digit SIC industry level; O3 is sum of NOx and VOCs, TSPs is the sum of PM10-PRI and PM2.5-PRI. The numbers of pollutant-specific
polluters with annual emissions less than 1 kg are 1,669 for SO2, 297 for CO, 175 for O3, and 533 for TSPs.

Empirical Results

By using the data discussed in the foregoing
section, we test the two main hypotheses that
we have postulated: first, that productivity is
inversely related to emission intensity; sec-
ond, that there exists a negative correlation
between export status and emission intensity.

Productivity Estimates

We begin by estimating the facility-level
productivity following the fixed-effect meth-
odology discussed earlier, based on the
time series of economic characteristics for
each facility included in the merged dataset.
We consider two alternative productivity
estimates. As noted earlier, the implicit
assumption is that a plant’s own productiv-
ity is time-invariant over the period used
to estimate it. In the baseline, the results of
which are presented here, equation (3) is
estimated with data from 2000–2008. Hence,
the maintained assumption is that plant-level
productivity parameters are the same for
the three years for which we have data on
emissions (2002, 2005, and 2008).

The estimated plant-level TFP parameters
are too numerous to report individually, but
figure 1 illustrates the distribution of TFP
estimates. By construction, our TFP mea-
sure is relative to the industry average, and
hence this distribution has zero mean. The
standard deviation of 0.599 suggests consid-
erable heterogeneity across manufacturing

plants. This is consistent with existing stud-
ies.16 Perhaps not surprisingly, given that
these are log productivity parameters, this
distribution appears rather symmetric. It
should be recalled, however, that the main-
tained assumption in equation (1) is that the
plants’ multiplicative productivity terms are
exp(φij).17

We note that, as a by-product of our
TFP estimation procedure, we obtain the
coefficient of returns to scale κ̂j for all 136
three-digit SIC industries in our sample. The
distribution of such estimates is illustrated
in figure 2. On average, the manufacturing
industries in our sample display essentially
constant returns to scale (the simple aver-
age over all industries is 0.972), with some
variation (the standard deviation is 0.097).

For robustness checks, productivity param-
eters were also estimated with an alternative
procedure that allows plant-level TFP to
change over time. Specifically, for each of
the years that we have plant-level emission
data (2002, 2005, and 2008), equation (3)
is estimated with a three-year window of
data up to and including the year of interest.
To estimate TFP parameters for the year
2002, therefore, we use data for the period

16 For example, for labor productivity, Bernard et al. (2003)
find the standard deviation of within-industry log productivity to
be 0.6.

17 If the estimated log productivities in figure 1 were nor-
mally distributed, for example, then the implied multiplicative
productivity terms would be log-normally distributed.
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Figure 1. Density distribution for the estimated TFP parameters

Figure 2. Density distribution for the coefficients of returns to scale

2000–2002. Similarly, TFP parameters for
2005 are estimated with 2003–2005 data,
and TFP parameters for 2008 are estimated
with 2006–2008 data. In any event, the dis-
tribution of TFP estimates thus obtained is

similar to those of the baseline, although
somewhat more dispersed: the standard
deviation is 0.564 for 2002, 0.596 for 2005,
and 0.659 for 2008. As illustrated in the
supplementary online appendix, there is
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substantial correlation between the baseline
and the alternative TFP estimates. Specifi-
cally, the correlation coefficients are 0.882
for 2002, 0.908 for 2005, and 0.856 for 2008.
It turns out that the results discussed below
are extremely robust to the choice of TFP
estimates.18

Emission Intensity

To assess the relationship among productiv-
ity, export status, and emission intensity—the
main subject of interest of this paper—we
estimate the model in equation (4). The
left-hand side variable here is the log of
the emission per unit of output (deflated
value of sales). The explanatory variables,
in addition to the indicator of export status
(a dummy variable) and the plant-level TFP,
include other relevant control variables. The
rationale for expecting emission intensity
and export status to be related to plant-
level productivity was articulated earlier.
As for other control variables, we include
dummy variables that flag whether the plant
is located in a county classified by the EPA
as being in nonattainment status for the year
of interest.19 This status is pollutant-specific,
of course, and equals one if the facility is
located in a nonattainment county for that
pollutant (zero otherwise). The inclusion
of these variables is for control purposes.
Presumably the compliance requirements
for plants located in nonattainment counties
affect both their emission and their pro-
ductivity, and differentially so relative to
counties that do not face such regulatory
pressure. Given the focus of this paper, it is
important that the connection we establish
between productivity, export status, and
emission be conditioned on the regulatory
pressure that might differ across plants.

The model of equation (4) is estimated
pollutant-by-pollutant, with the emission
intensity computed separately for each crite-
ria air pollutant. In addition to the variables
discussed in the foregoing, we also control for
the plants’ location by including state fixed
effects, and for possible systematic differ-
ences across industries by including industry

18 These robustness results are reported in the supplementary
appendix available online.

19 Hence, all facilities in the same county are assumed to face
the same regulatory pressure. County nonattainment/attainment
status is officially reclassified every July. In our regression, the
attainment/nonattainment status variable of a county for calendar
year t is based on the July determination of year t − 1.

fixed effects. We also include year fixed
effects (recall that here we are pooling the
observations for the three years 2002, 2005,
and 2008). The results are reported in table 2.
The sample size of polluting facilities varies
with pollutant type. Standard errors reported
in parentheses are clustered at the three-digit
SIC industry level.20 For each of the four
pollutants considered, we report the results
of two regressions, one of which includes
the plant’s size (measured as the log of the
number of employees) on the right-hand
side of the table (in addition to the variables
discussed in the foregoing).

From table 2 it is apparent that we find a
strong negative relationship between esti-
mated productivity and emission intensity.
Consider first the regressions without the size
variable. In all cases, the estimated coeffi-
cient associated with productivity is different
from zero at the 1% significance level. The
magnitude of this estimated coefficient varies
across pollutants, ranging from -1.015 (for
SO2) to -0.757 (for CO), values that are not
too far from one in absolute value. This find-
ing is suggestive of the hypothesis, noted
earlier, by which productivity may affect
emission intensity because pollution is a
by-product of input use. Recall that the pos-
tulated production function for our model
was given in equation (1), where hj(Lijt, xijt)
is an industry-specific production function,
and Lijt is the amount of labor employed at
plant i in year t, and xijt is the corresponding
vector of all other inputs of production. If
the amount of plant total emission E�

ijt for
pollutant � were proportional to input use,
for example, E�

ijt = α · hj(Lijt, xijt) for some
α > 0, then the structure in equation (1)
would imply that the coefficient linking pollu-
tion intensity ln(E�

ijt/qijt) and productivity φij

would be exactly −1.
Concerning the coefficient on the export

status variable, the estimates in table 2 con-
sistently show negative correlations between
export status and emission intensity for all
four criteria air pollutants tracked in the
paper, with magnitudes that are fairly close
across pollutants (ranging from −0.295 for
SO2 to −0.262 for CO). Also, these neg-
ative coefficients differ from zero at the

20 Alternative specifications of standard errors (i.e., cluster at
facility level, cluster at industry level, and robust standard errors)
were considered but, because of space reasons, are not reported
here and are available upon request. These specifications do not
alter inference in any significant way.
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Table 2. Main Results: Emission Intensity Equation

SO2 CO O3 TSPs

VARIABLES (1) (2) (3) (4) (5) (6) (7) (8)

Productivity −1.015∗∗∗ −0.848∗∗∗ −0.757∗∗∗ −0.621∗∗∗ −0.886∗∗∗ −0.721∗∗∗ −0.776∗∗∗ −0.603∗∗∗
(0.118) (0.117) (0.093) (0.085) (0.124) (0.102) (0.072) (0.064)

Export status −0.295∗∗∗ −0.026 −0.262∗∗∗ −0.027 −0.285∗∗∗ −0.041 −0.287∗∗∗ −0.032
(0.085) (0.076) (0.065) (0.062) (0.038) (0.035) (0.051) (0.048)

SO2 NA 0.295 0.222
(0.288) (0.258)

CO NA 0.154 0.164
(0.104) (0.109)

O3 NA −0.275∗∗∗ −0.288∗∗∗
(0.054) (0.060)

TSPs NA −0.159∗∗ −0.090
(0.072) (0.068)

Size −0.694∗∗∗ −0.553∗∗∗ −0.563∗∗∗ −0.601∗∗∗
(0.034) (0.037) (0.025) (0.025)

Observations 19,826 19,826 23,347 23,347 34,342 34,342 28,672 28,672
Adjusted R2 0.445 0.499 0.407 0.471 0.319 0.422 0.401 0.469
Industry FE Y Y Y Y Y Y Y Y
Year FE Y Y Y Y Y Y Y Y
State FE Y Y Y Y Y Y Y Y

Note: Dependent variable is log of emissions per value of sales. The industry fixed effect is a set of three-digit SIC industry dummies. Standard
errors reported in parentheses are clustered at three-digit SIC industry. Coefficients for the regression constant and fixed effects are suppressed.
Asterisks ∗∗∗ indicate significance at the 1% level, ∗∗ indicate significance at the 5% level.

1% significance level for all pollutants.
The empirical findings are in line with the
theoretical prediction that export status is
negatively correlated with emission inten-
sity. Exporters emit less pollution per sale
than non-exporters, with this reduction effect
ranging from 26–29%, depending on the
pollutant.

The estimated effect of nonattainment
designations on pollution emission intensity
is positive (but not significant) for both SO2
and CO, and negative and significant for
O3 (at the 1% level) and for TSPs (at the
5% level). The variety of impacts that we
uncover is, perhaps, not surprising. The need
to meet stricter environmental regulations
in non-attainment counties should lead to
lower total emission, ceteris paribus. But the
costs of meeting such regulations are likely
to affect production efficiency (productiv-
ity) as well, which might result in increased
emission intensity (because of lower output
per amount of resources used). It is unclear
which of these effects would dominate. At
any rate, the inclusion of these regulation
variables in the model is for control purposes,
as noted earlier, and our focus of interest is
elsewhere.

Table 2 also includes, for each pollu-
tant, the estimation results of a version of

equation (4) that includes “size” (measured
as the log of the number of employees). In
this model, size could affect emissions in
much the same way as exports: larger size
means the fixed costs of adopting cleaner
emissions technology is less burdensome
and larger size allows for an economy of
scale effect with respect to emissions. To
see how the latter might work, consider
the pollution-as-byproduct illustration arti-
culated in the foregoing. But now allow
for returns to scale for emission to be dif-
ferent than for output, for example, E�

ijt =
α · [hj(Lijt, xijt)]σ, where 0 < σ < 1 indicates
increasing returns to scale with respect to
clean air (decreasing returns to scale with
respect to emission). Given the assumption
of homogeneous industry-level production
functions, invoked earlier, one would then
obtain E�

ijt = α · L
κjσ

ijt [hj(1, xijt)]σ. In view of
the production function in equation (1), this
would suggest that ln(E�

ijt/qijt) is related to
ln(Lijt) by the coefficient κj(σ − 1). Hence,
the hypothesis of an independent economy
of scale effect with respect to clean air (i.e.,
σ < 1) would imply a negative relationship
between the log of emission intensity and
the log of employment. This is indeed the
result, as reported in table 2. We find that
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the size variable has a negative effect on
emission intensity, with a magnitude rang-
ing from −0.694 (for SO2) to −0.553 (for
CO). In all cases the coefficient of the size
variable is significant at the 1% level. Includ-
ing the size variable does not substantially
change the coefficient of the TFP variable,
which remains negative, large, and signifi-
cant at the 1% level. The inclusion of size,
however, does change the magnitude of
the coefficients associated with export sta-
tus, which, while retaining a negative sign,
are no longer significantly different from
zero.

We should note at this juncture that the
interpretation of the effects of the size and
export status variables on emission intensity
is not straightforward. Our empirical model,
while inspired by theoretical models of
export decisions and technology adoption by
heterogeneous firms, is not a structural repre-
sentation of such models. The results that we
find, therefore, need to be interpreted with
some care. Unlike plant-level productivity,
which following the theoretical literature
discussed earlier we take as pre-determined,
size and export status are chosen by firms in
equilibrium. And, given productivity, size is
influenced by export status because the latter
permits access to a larger market—indeed,
this is the hallmark of Melitz-type models.
What the results in table 2 establish is that
productivity clearly matters for emission
intensity. Largeness matters as well, because
firms with the same productivity within the
same industry—as defined by production
technology—may face differing markets for
their (heterogeneous) products. Thus, given
technology and export status, firm size might
differ because of the market conditions faced
by the firm. Exporting firms might emit
less, per unit output, because they tend to
be larger and there might be economies of
scale if emissions are proportional to input
use. Alternatively, of course, larger firms
might have more of an incentive to invest in
cleaner technology, which is another chan-
nel by which the results in table 2 could be
rationalized. Finally, it is important to note
that the conceptual models of trade with
heterogeneous firms that we discussed do not
imply a direct channel through which exports
affect emission intensity. Rather, it is because
the ability to export leads firms to modify
other decisions—such as size—that access
to export markets might affect emission
intensity.

Corroborating Evidence

To further validate the theoretical under-
pinnings of our model, it is of some interest
to examine how the facilities’ export status
is related to the estimated TFP productiv-
ity measure. According to the Melitz-type
models discussed earlier, export status is
endogenous, depending upon productivity,
trade variable costs, and other cost param-
eters. Furthermore, ceteris paribus, in our
model export status should be positively
correlated with productivity. To investigate
this property, we seek proxies of trade cost
variables. Two proxies employed in this study
are facility-specific and industry-specific trade
variable costs. The former is measured by
the geographical distance of each polluting
facility to its nearest U.S. port, and the latter
is measured by the ad valorem freight rate
at the four-digit SIC industry level.21 The
geographic distance reflects the costs associ-
ated with the transportation of goods from
manufacturing sites to the port of shipment.
The freight rate, constructed by Bernard,
Jensen, and Schott (2006), is the markup
of the Cost-Insurance-Freight (CIF) value
over the Free-on-Board (FOB) value relative
to the FOB. This industry-specific freight rate
serves as a proxy of the iceberg trade costs
associated with ocean or inland waterway
transport of the goods to the port of des-
tination. These two measures together are
considered as proxies of trade variable costs.

We employ a logistic model to estimate the
probability of selecting to export conditional
on the estimated facility productivity, the
two measures of trade variable costs, and
exposure to environmental regulations, con-
trolling for industry characteristics. Regard-
less of pollutant type, the logistic regression
is specified as

Pr(Xijt = 1)(5)

= F

(
γ0 + γ1 Distancei

+ γ2 Freightjt + γ3 TFPijt

+
∑

k

γ4kZk
ijt + θj + λt + εijt

)

21 According to IHS Global Services, U.S. seaborne trade with
the rest of the world accounts for 78.05% by volume (millions
of metric tons), and 48.47% by value of total U.S. trade (billions
of dollars) in 2008.
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Table 3. Export Decision

(1) (2)

Distance −1.133∗∗∗ −1.130∗∗∗
(0.405) (0.406)

Freight 0.767 0.759
(1.794) (1.794)

Productivity 0.171∗∗∗ 0.172∗∗∗
(0.049) (0.049)

Any NA 0.098 0.097
(0.062) (0.063)

Single-plant Dummy 0.040
(0.065)

Observations 30,312 30,312
Pseudo R2 0.0955 0.0955
Industry FE Y Y
Year FE Y Y
State FE Y Y

Note: Dependent variable is binary export decision (=1 if plant is
exporting). “Any NA” is a dummy variable that equals one if any
of the pollutant-specific NA dummy variables does so. Coefficients
for the regression constant and fixed effects are suppressed. Asterisks
∗∗∗ indicate significance at the 1% level.

where F(·) denotes the logistic function, and
Distancei denotes the distance (in thousands
of miles) of a polluting facility to its nearest
U.S. port. The World Port Source online
database provides geographic locations (i.e.,
latitude and longitude) for 548 U.S. ports
including harbor, river port, seaport, off-
shore terminal, and pier, jetty, or wharf.22

For each polluting facility, we compute its
distance to all 548 U.S. ports based on the
“Haversine” formula, given the latitude and
longitude of two points, then pick the short-
est distance as the distance to the nearest
port.23 Freightjt indexes the freight rate at the
four-digit SIC industry level. The industry-
level data on CIF and FOB are acquired
from the online data source of U.S. Manu-
facturing Exports and Imports compiled by
Peter Schott (2010).24 All other variables
were defined earlier.

Table 3 presents the estimation results
for equation (5). A version of the regression
equation with a single-plant firm status is also
reported in this table. This was suggested
by a reviewer to control whether single-
plant firms might be less likely to export,

22 For detailed information, please see http://www.worldport
source.com/states.php.

23 The “Haversine” formula calculates the great-circle distance
between two points, that is, the shortest distance over the earth’s
surface.

24 The 2008 industry-level CIF and FOB data, which are not
provided in Schott (2010), are simply taken from 2005.

ceteris paribus. Because this regression is not
pollutant-specific, environmental regulation
pressure is captured by a single nonattain-
ment variable (which is equal to one if the
corresponding county is in nonattainment
for any pollutant, and zero otherwise). The
results in this table are supportive of our
approach and consistent with the prediction
of the underlying theoretical model.25 First,
a positive and statistically significant coeffi-
cient of the TFP regressor indicates that the
higher is a facility’s productivity, the more
likely it is to export. Second, the estimated
coefficients of distance to port are negative
and significant at the 1% level. As facilities
residing closer to ports are likely to have
lower costs associated with transporting the
goods from manufacturing sites to the ports
of shipment, they are more likely to engage
in the export market. Note that this effect
is over and above the distance effect that is
possibly already captured by the state fixed
effect included in all regressions. Having
controlled for the distance to port, the mea-
sure of freight rates that we have included
does not seem to have additional explanatory
power (the estimated coefficients are not
statistically different from zero).

As for the other variables included in
table 3, single-plant firms appear equally
likely to export as multi-plant firms, other
things being equal. For the variable that
codes counties’ non-attainment status vis-à-
vis the four pollutant categories considered,
our model does not have a clear prediction
as to their expected sign. In any event, the
estimated coefficients for this variable are
not statistically different from zero in each of
the two versions of the estimated equation
reported in table 3.

Robustness Checks

The results of table 2, consistent with the
theoretical rationalizations proffered ear-
lier, indicate an average negative correlation
between emission intensity and productivity.
It is of additional interest to verify whether
this relation is monotonic. To test whether
indeed the most productive facilities have
better environmental performance, we use
dummy variables of productivity quintiles to
replace the continuous productivity measure

25 The number of observations drops as compared with the
number in table 3 because the Schott (2010) data source that we
are using does not contain data for all four-digit SIC industries.
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Table 4. Emission and the Quintiles of Productivity Distribution

SO2 CO O3 TSPs
VARIABLES (1) (2) (3) (4)

2nd Productivity Quintile −0.261∗ −0.260∗∗ −0.281∗∗∗ −0.209∗∗
(0.138) (0.102) (0.055) (0.083)

3rd Productivity Quintile −0.252 −0.168 −0.330∗∗∗ −0.148
(0.161) (0.108) (0.073) (0.098)

4th Productivity Quintile −0.437∗∗∗ −0.436∗∗∗ −0.598∗∗∗ −0.365∗∗∗
(0.163) (0.118) (0.065) (0.087)

5th Productivity Quintile −1.234∗∗∗ −0.864∗∗∗ −1.061∗∗∗ −0.824∗∗∗
(0.173) (0.110) (0.077) (0.099)

Export Status −0.031 −0.028 −0.045 −0.038
(0.077) (0.062) (0.036) (0.048)

Size −0.698∗∗∗ −0.556∗∗∗ −0.563∗∗∗ −0.607∗∗∗
(0.036) (0.037) (0.025) (0.024)

F-Statistics for equality of prod. 46.68 33.64 63.87 50.47
Observations 19,826 23,347 34,342 28,672
Adjusted R2 0.497 0.468 0.415 0.466

Note: Dependent variable is log of emissions per value of sales. See text for definition of quintiles variables. All regressions include three-digit
SIC industry fixed effects, year fixed effects, and state fixed effects, as well as pollutant-specific NA variables (just as in table 2). Standard errors
reported in parentheses are clustered at three-digit SIC industry. The F-statistics refer to the equality of all productivity quintiles dummies. Asterisks
∗∗∗ indicate significance at the 1% level, ∗∗ indicate significance at the 5% level, and ∗indicates significance at the 10% level.

in equation (4). The results are reported in
table 4 (due to space constraints, only the
versions of equation (4) that include the
“size” variable are reported). The results are
quite consistent with those of table 2. Rela-
tive to the firms with the lowest productivity
(the 1st quintile), firms in quintiles 2 to 5 have
a lower emission intensity, and this gap is
different from zero at the 1% significance
level for the fourth and fifth quintiles (for
all pollutants). Moreover, these productivity
coefficients are monotonically decreasing
across quintile starting with the third quin-
tile (the productivity coefficients associated
with the second and third quintiles are very
similar): generally speaking, the higher pro-
ductivity quintile a facility belongs to, the
lower emission intensity it has. Within the
same three-digit SIC industry, facilities in
the fifth productivity quintile have the best
environmental record in terms of the low-
est emission intensity. Ceteris paribus, the
results of table 4 imply that plants in the
fifth productivity quintile on average emit
only a fraction of the SO2 emitted by first
productivity quintile plants, specifically 29%
(this fraction corresponds to 42% for CO,
35% for O3, and 44% for TSPs). The null
hypothesis that the productivity effects are
equal across all quintiles is rejected by the
appropriate F test at the 1% significance
level. From table 4 it is also apparent that
representing the productivity impacts in

terms of quintiles does not affect the infer-
ence about the other variables. In particular,
the estimated coefficients, and the standard
errors, associated with export status and the
size variables are essentially the same as in
table 2.

As noted by a reviewer, ideally the
empirical characterization of the impact
of productivity on emission would need to
account for births of new facilities and exits
of some plants. Unfortunately, the data
that we have is not informative about this
dynamic process. As a robustness check,
therefore, to guard against the possibility that
our results might be affected by the selection
bias of ignoring entry and exits of plants, we
first re-estimate productivity equation (3)
using a balanced panel of data pertaining
to all plants that are present for the entire
period 2000–2008, and then re-estimate emis-
sion intensity equation (4) using the balanced
panel sample (by pollutant) in 2002, 2005,
and 2008. The results are reported in table 5
(again, to save space, only the versions of
equation (4) that include the “size” variable
are reported). Table 5 offers considerable
support for the corresponding full-sample
results of table 2. The estimated coefficients
for the productivity variable, in particular,
are almost identical.

As suggested by one reviewer, we esti-
mated equation (4) with a subset of observa-
tions pertaining to plants in “dirty industry”
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Table 5. Emission Intensity Regression (Balanced Sample Results)

SO2 CO O3 TSPs
VARIABLES (1) (2) (3) (4)

Productivity −0.848∗∗∗ −0.674∗∗∗ −0.733∗∗∗ −0.615∗∗∗
(0.124) (0.080) (0.096) (0.063)

Export Status −0.033 −0.024 −0.011 −0.050
(0.115) (0.076) (0.045) (0.064)

Size −0.713∗∗∗ −0.514∗∗∗ −0.527∗∗∗ −0.582∗∗∗
(0.047) (0.048) (0.028) (0.030)

Observations 10,362 12,843 19,683 15,738
Adjusted R2 0.524 0.475 0.439 0.482

Note: Dependent variable is log of emissions per value of sales. All variables defined as in table 2. All regressions include three-digit SIC industry
fixed effects, year fixed effects, and state fixed effects, as well as pollutant-specific NA variables (just as in table 2). Standard errors reported in
parentheses are clustered at three-digit SIC industry. Asterisks ∗∗∗ indicate significance at the 1% level.

Table 6. Pollutant-specific Dirty Industry List

Industry (SIC codes) SO2 CO O3 TSPs

Pulp and paper (2611–31) Y Y Y Y
Organic chemicals (2861–69) Y
Petroleum refining (2911) Y Y Y
Rubber and miscellaneous plastic products (30) Y
Stone, clay, glass, and concrete (32) Y Y Y
Iron and steel (3312–25, 3321-2) Y
Nonferrous metals (333–34) Y Y

Note: Industry classification used for table 7, constructed based on Greenstone (2002).

Table 7. Emission Intensity Regression (“Dirty Industries” only)

SO2 CO O3 TSPs
VARIABLES (1) (2) (3) (4)

Productivity −1.421∗∗∗ −0.632∗∗ −0.858∗∗∗ −0.529∗∗
(0.289) (0.194) (0.075) (0.186)

Export status −0.152 −0.245 −0.085 0.100
(0.276) (0.451) (0.050) (0.194)

Size −0.496∗∗∗ −0.514∗∗∗ −0.515∗∗∗ −0.480∗∗∗
(0.071) (0.086) (0.080) (0.065)

Observations 2,365 1,690 6,270 3,563
Adjusted R2 0.386 0.349 0.385 0.246

Note: Dependent variable, Export Status, Productivity, and Size are as in table 2. All regressions include three-digit SIC industry fixed effects, year
fixed effects, and state fixed effects, as well as pollutant-specific NA variables (just as in table 2). Standard errors reported in parenthesis are clus-
tered at three-digit SIC industry. Asterisks ∗∗∗ indicate significance at the 1% level, ∗∗ indicate significance at the 5% level.

only, that is, industries that are known to
be heavy emitters of criteria air emissions.
The classification of “dirty industry” used
is pollutant-specific, based on Greenstone
(2002), and is described in table 6. When
restricting the sample to only dirty indus-
tries, the fraction of exporters by pollution
type drops from 24.6% reported in table 1
of the summary statistics to 14.3% for SO2
dirty industry (28.3% for CO dirty industry
only, 21.5% for O3 dirty industry only, and
22.7% for TSPs dirty industry only). The

results of estimating the emission intensity
equation (4) using data from the dirty indus-
tries is presented in table 7. The results are
quite consistent with what is reported in
table 2; in fact, if anything, the productiv-
ity coefficients are larger in absolute value
than those of table 2 (and remain equally
significant).

Several other robustness checks, sug-
gested by the reviewers, were carried out.
These checks are omitted here due to
space constraints, but are reported in the
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supplementary appendix online. We explored
the performance of our alternative TFP esti-
mates, which allowed variations across years
2002, 2005, and 2008 (as discussed earlier), in
explaining emission intensity. Because these
TFP estimates are somewhat noisier than
those obtained from the 2000–2008 data used
in table 2, the corresponding coefficients of
the productivity variable are a bit smaller in
absolute value, but the sign and significance
of these coefficients are the same as those of
table 2. Similarly, these alternative estimates
of TFP coefficients do not change at all the
results and inferences reported in tables 3,
4, and 5. Introducing other control variables
(from a limited set of available plant-specific
characteristics, such as public status of firms,
foreign ownership, gender of CEO, gov-
ernment contract status, and single-plant
firm status) also did not change the results
of table 2 in any meaningful way. Similarly,
omitting the NA variables, or omitting some
of the fixed effects (industry, year, or state),
did not seem to have impacts on the size,
sign, and significance of the coefficients of the
productivity variable in table 2.

Conclusion

The relationship among international trade,
firm productivity, and environmental out-
comes is both intellectually interesting and
policy relevant. Contemporary research sug-
gests that firm heterogeneity with respect
to productivity is a prominent part of the
economic environment and is an impor-
tant predictor of export status. Also, to the
extent that the use of inputs—rather than
output per se—is the likely cause of emis-
sions, then an inverse relationship between
productivity and emissions per unit out-
put is to be expected. Furthermore, to the
extent that large firms have more incentive
to adopt newer and cleaner technology, then
exporting firms—which face larger potential
markets than non-exporters—are more likely
to adopt cleaner technologies and thus have
lower emissions per unit sales.

In order to test our two basic hypotheses
(more efficient firms and exporting firms are
likely to have lower emissions per unit sales),
we assembled a large and unique data set for
the U.S. manufacturing industry. Specifically,
we have matched facility-level air pollution
data from the U.S. EPA with facility-level
economic characteristics data obtained from

NETS. The empirical analysis based on these
data that we have presented provides strong
support for these two hypotheses. We find
robust evidence of a negative correlation
between the estimated facility productivity
and emissions per value of sales. The neg-
ative impact of productivity is statistically
significant for each criteria air pollutant
we track. Furthermore, we present addi-
tional evidence that this productivity effect is
monotonic: after dividing the firms into quin-
tiles based upon their relative productivity
within an industry, we find that the higher
the productivity quintile, the lower the firm’s
relative emissions.

In addition, we find that exporting facilities
tend to have less emission per value of sales
than competing non-exporters within the
same industry, conditional on estimated pro-
ductivity and on exposure to the CAAA. We
also find evidence that, given productivity,
larger firms have lower relative emissions,
consistent with the notion that larger firms
have more incentives to incur costs asso-
ciated with adopting cleaner technologies.
Finally, consistent with the predictions of
modern trade theory, we find that facilities
with higher estimated productivity are more
likely to export.

This empirical evidence, along with empir-
ical work that identifies impacts of trade
liberalization on technology adoption (Bustos
2011), have some interesting policy impli-
cations. Clearly, the optimal response to
pollutants that have global consequences
is an internationally coordinated effort to
reduce those pollutants through pollution
taxes or “cap and trade” programs. Yet, for
a wide variety of reasons, efforts to achieve
such coordination of environmental policies
have not been very successful. On the other
hand, while there is broad (if not complete)
support among economists for policies that
liberalize trade in goods, there is skepticism
about the value of these policies among
some politicians and the general public. If
the predictions that expanded trade leads
to an increase in the equilibrium productiv-
ity of firms, and if our results showing that
increased firm productivity is correlated with
lower emissions intensity are correct, then
the potential benefits that would come from
successful completion of the Trans Pacific
Partnership or successful negations for a
US-EU free trade area, exceed the purely
material benefits. And it should be under-
stood that these benefits are mutual—that
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is, the expanded productivity in both the
United States and in its trading partners
should have beneficial environmental con-
sequences. While there are those who fear
that globalization will lead to further envi-
ronmental degradation, the results of this
paper in fact provide support for the belief
that globalization, largely through its impact
on firm-level productivity, may contribute
to reducing global pollution. Thus, whereas
international trade cannot be construed as
a substitute for environmental policies, it is
also apparent that it should not be seen as
adverse to environmental outcomes.

Supplementary Material

Supplementary material is available at http://
oxfordjournals.our_journals/ajae/online.
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Appendix

A.1. Description of the NEI Database

This section provides a brief introduction of
the NEI facility-level emission database and
summarized caveats of this database.
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The NEI database includes estimates of
annual criteria and hazardous air pollutant
emissions from sources in the 50 U.S. States,
the District of Columbia, Puerto Rico, and
the Virgin Islands. Sources are divided into
two large categories: stationary and mobile.
The former includes point and nonpoint
sources, and the latter consists of on-road
and non-road sources. The collection and
updating of 2002 and 2005 NEI databases
follow with the Consolidated Emissions
Reporting Rule (CERR). The 2008 NEI is
compiled using the Air Emissions Reporting
Rule (AERR), rather than its predecessor
the CERR.26 For the case of point sources
(polluting facilities) data, both reporting
rules require a report on actual emissions for
all facilities that emit above certain thresh-
olds, determined by pollutant. State or local
pollution control agencies have to comply
with the requirement. These agencies report
emissions from larger point sources annually,
and have a choice to report smaller point
sources every three years or one-third of
the sources each year. Smaller point source
facilities with annual emissions below cer-
tain thresholds can be defined as nonpoint
area sources. While states are more likely to
report major sources as point sources and
smaller sources as nonpoint sources, the EPA
encourages states to submit small sources to
the point inventory.

Some major caveats concerning the NEI
database pertaining to point sources can be
summarized as follows. First, the EPA devel-
oped the 2005 NEI data based on a reduced
level of effort. Part of this reduced effort
involved using some 2002 NEI data in the
2005 NEI as surrogates for emissions data
representing 2005. The 2005 NEI database
provides flag variables, “Start Date/End
Date” fields, to indicate which data are 2005
emissions and which data are actually taken
from 2002 emissions. Around one-third of
the observations in the 2005 NEI have a flag
variable of “Start Date” referring to year
2002. When it comes to the manufacturing
industry, roughly one-quarter of observations
in 2005 are duplicates of 2002 emissions. We
dropped these observations from our study,
as their duplicate nature entails that they do
not carry independent information. Second,

26 For the CERR, please see http://www.epa.gov/ttn/chief/
cerr/cerr.pdf. For the AERR, please refer to http://www.epa.
gov/ttn/chief/aerr/final_published_aerr.pdf.

the 2008 NEI database was built from emis-
sions data in the EIS. Note that this 2008
database uses a new facility identifier, called
EIS site ID, rather than the previous NEI site
ID. A comprehensive and updated coverage
of facility identifiers may be obtained from
the Emission Inventory System Gateway.
This gateway, however, is only available to
EPA staff, EIS data partners responsible
for submitting data to EPA, and contractors
working for the EPA on emissions-related
work. For this study, we rely on the FRS ID
reported in the FRS of the EPA to match
polluting facilities across sample years. All
observations in 2002 and 2005 NEI databases
have both records and FRS ID reported in
the FRS, and hence can be matched between
these two years. However, one-eighth of the
2008 NEI database is missing from the FRS,
and roughly 7% of facilities in the manufac-
turing industry in this database do not have
any records in the FRS. These missing man-
ufacturers are discarded in our study. Last
but not least, as noted in the EPA technical
document (EPA 2012), emission data for
filterable and condensable components of
particulate matter (i.e., PM10-FIL, PM2.5-
FIL, and PM-CON) is not complete and
should not be used at any aggregate level.
Users interested in PM emissions are sug-
gested to only consider primary particulate
matter, which are PM10-PRI and PM2.5-PRI.
Following this suggestion, TSPs in our study
is the sum of these two pollutants.

A.2. Data Matching

The data matching work consists of two main
procedures. First, we match polluting facil-
ities within the NEI database across years,
and then retrieve DUNS numbers for these
polluters from the FRS of the EPA. Second,
we match them with those appearing in the
NETS database through the DUNS number.

The 2002 and 2005 NEI databases assign
each polluting facility a unique NEI site ID,
whereas the 2008 NEI data uses a different
facility identifier called Emission Inven-
tory System (EIS) ID. To match these NEI
databases across sample years, we retrieve
facility FRS ID from the FRS of the EPA.
The FRS is a centrally-managed database
that identifies facilities, sites, or places
subject to environmental regulations or of
environmental interests. The EZ Query in
the FRS provides data download options
for a customized list of facilities, which are
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Table A1. Variable List

Variable Definition Source

Facility Level
Sales Value of sales ($) NETS
Employees Number of employees NETS
Export Dummy Export indicator, equals 1 if exports, 0 otherwise NETS
Distance Distance of a facility to its nearest port (miles) Calculated
SO2 Sulfur Oxide (tons) NEI
CO Carbon Monoxide (tons) NEI
VOCs Volatile Organic Compounds (tons) NEI
NOx Oxide of Nitrogen (tons) NEI
PM10-PRI Primary particulate matter less than 10 microns (tons) NEI
PM2.5-PRI Primary particulate matter less than 2.5 microns (tons) NEI
TSPs Total Suspended Particulates, sum of PM10-PRI and

PM2.5-PRI (tons)
Calculated

O3 Ozone, sum of VOCs and NOx (tons) Calculated
SO2Intensity SO2per sales Calculated
CO Intensity CO per sales Calculated
O3Intensity O3 per sales Calculated
TSPs Intensity TSPs per sales Calculated

County Level
SO2NA SO2 Nonattainment, equals 1 if nonattainment, 0 otherwise EPA
CO NA CO Nonattainment, equals 1 if nonattainment, 0 otherwise EPA
O3NA O3 Nonattainment, equals 1 if nonattainment, 0 otherwise EPA
TSPs NA TSPs Nonattainment, equals 1 if nonattainment, 0 otherwise EPA
Industry Level at Four-digit SIC
CIF Cost-Insurance-Freight value of U.S. imports Peter Schott
FOB Free-on-Board value of U.S. imports Peter Schott
Freight Rate (CIF - FOB)/FOB Calculated
Deflator Value of shipment deflator NBER-CES

associated with NEI or EIS programs.27

The data obtained from the EZ Query
include three different facility identifiers:
FRS ID uniquely assigned by the FRS, NEI
site ID assigned by the NEI, and EIS facility
ID assigned by the EIS. With the NEI site ID
contained in the FRS, we are able to match
all polluting facilities in the NEI database
with those in the FRS through the NEI site
ID between 2002 and 2005. However, around
7% of the 2008 NEI database in the manu-
facturing industry does not have records in
the FRS. These observations are dropped in
the study. With the FRS ID, facility DUNS
numbers are retrieved separately through
the Facility Registry System Query.28 In the
end, the facility-level emission dataset we
compiled contains criteria air emissions, facil-
ity name, FIPS county code, Zip Code, SIC
code, facility FRS ID, and DUNS number.

In the next step, we match polluting facil-
ities in the NEI database with those that

27 For EZ Query, see http://www.epa.gov/enviro/html/fii/ez.html.
28 For Facility Registry System Query, please refer to

http://www.epa.gov/enviro/html/fii/fii_query_java.html.

appear in the NETS Database through the
DUNS number. The EPA does not pro-
vide further information about how DUNS
numbers are reported for polluting facil-
ities and why some of them have missing
DUNS numbers in the dataset. Due to an
incomplete report on DUNS numbers in
the FRS, approximately 80% of polluting
facilities in the manufacturing industry col-
lected in the NEI database have associated
DUNS numbers. Thus, a pair of facilities
from each source is considered as a match if
the following series of criteria are satisfied.
The facilities share the same DUNS number
and are located in the same area in terms
of five-digit Zip Code and five-digit FIPS
county code. More importantly, for each pair
we compare their facility names from each
source to ensure the match.

In the matched dataset, it turns out that
the number of polluting facilities with zero
emissions drops dramatically across years,
while the number of polluting facilities with
missing values for emission increases accord-
ingly, suggesting a conflation of the two
(conceptually distinct) statuses. This pattern
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actually exists in the original facility-level
NEI database prior to matching. We drop
from further consideration facilities that
show missing values for the emission of all
pollutants considered here; and because the

distinction between non-emitting facilities
from those for which the data are miss-
ing does not appear very credible in this
dataset, we also drop those facilities with
zero emission values for all pollutants.
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