A set of papers was circulated prior to the conference as background for the workshop. These papers include key published work by researchers who made presentations on the first day of the workshop. These background papers reflect the state of the art at this point in time. In their workshop presentations, the researchers were asked to focus on discussing the strengths and drawbacks of the methodologies they use, how well the methodologies answer questions about the effectiveness of specific interventions and the overall targeting of intervention resources, and where the research agenda should move to improve the usefulness of economic analyses in setting priorities for reducing foodborne disease. Here is a list of the papers circulated prior to the workshop:


Develops a risk assessment model for antimicrobial resistance in humans and illustrates its limitations, which are associated with a lack of scientific knowledge at different levels.


Develops a model of pathogen dissemination through a supply chain using @Risk to estimate risks and economic impacts for humans of *Salmonella* originating in the pork supply chain. Models how actions taken at different levels of the supply chain affect the prevalence of illness in humans.

CARMA is developing a risk management and assessment tool for the control of the incidence of Campylobacter in the chicken supply chain.

http://agecon.lib.umn.edu/cgi-bin/detailview.pl?paperid=14109

Develops an empirical analysis, using a censored regression model, to analyze the effectiveness of markets and regulations in improving food safety for meat and poultry.


Uses surveys of industry to determine what measures are being taken to reduce pathogen prevalence in meat and poultry plants.


Explores a series of agency problems to represent a supply chain and uses a case study method to focus on how considering perceived risks changes the nature of contracts between organizations along a supply chain.


Develops a probabilistic risk analysis model of typical slaughterhouse practices and links it to a decision model for evaluating the cost effectiveness of different combinations of pathogen-reducing technologies.