

Conservation Reserve Program Acres in Iowa

CP1	Introduced Grasses	299,889
CP2	Native Grasses	147,951
CP3	Tree Planting	17,347
CP4	Wildlife Habitat	319,523
CP5	Field Windbreaks	5,764
CP8	Grass Waterways	27,328
CP9	Shallow Water for Wildlife	16,986
CP10	Established Grass	591,059
CP11	Established Trees	7,240
CP12	Wildlife Food Plots	5,619
CP15	Contour Grass Strips	29,920
CP16	Shelter Belts	1,859
CP21	Filter Strips	232,224
CP22	Riparian Buffers	60,434
CP23	Wetland Restoration	30,797
CP25	Declining Habitat	40,801
CP27	FWP Wetland	14,902
CP28	FWP Buffer	38,233
CP29	Marginal Pastureland Wildlife Habitat	3,898
Total		1,897,239

Effects of Tile Drainage on Soil Water

Adapted from: Zucker, L.A. and L.C. Brown (eds.). 1998. Agricultural Drainage: Water Quality Impacts and Subsurface Drainage Studies in the Midwest. Onio State University Extension Bulletin 871. The Ohio State University.

Iowa Conservation Reserve Enhancement Program

Loss = concentration x carrier

Performance Questions

- Water Budget
- Sediment & Nutrient Budget
- Soil Quality Changes
- Size/time scales
- Wildlife benefits/concerns

Infiltration/Surface Runoff

- Restored buffer infiltration rates
 5X > crop field/pasture.
- 6 m wide grass filters remove
 >75% of sediment & > 40% of total N
 & P in surface runoff
- Adding 10 m woody buffer to switchgrass filter removal > 90% of sediment and > 80% of nutrients
- Switchgrass filters more effective than cool-season grass filters.

Soil Organic Matter Fractions

Increase > 50% after 7 years

Cool season grass

Tree (Poplar)

Crop (Soybean)

Conceptual Model of Groundwater Flow

- Higher velocities at bottom of aquifer
- Zone of denitrification at water table
- Aquifer type/thickness affects NO₃ transport

Buffer Siting Model

Terrain Analysis

Identify and prioritize areas where vegetated buffers and constructed wetlands (CREP) have the greatest potential to improve water quality

