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FOREWORD

The Dietary Assessment Research Series presents research and methods developed to better
evaluate survey data used to assess the quality of diets. Increased scientific evidence links dietary
intakes to health outcomes. Recent concerns about exposure to foodborne contaminants is also
motivating increased attention to improved methods of dietary assessment. Improved capacities for
dietary assessment can form a stronger foundation for considering policies on food safety, food
technology, public health, labor productivity, and other areas related to human health and
performance.

Much of the research published in this series is collaborative among researchers in CARD and the
Department of Statistics, and nutrition scientists at Iowa State University and staff at the U.S.
Department of Agriculture, Human Nutrition Information Service {(now Agricultural Research
Service). The identification of the series will make it possible for those interested in the results of the
research to more easily access them. Also, we hope that it will attract broader professional attention
to the important area for scientific and policy research.

The work at CARD and the Department of Statistics is designed to improve statistical, survey,
and research methods used in dietary assessments, and to foster better understanding of diet, nutrition,
and health consequences of food consumption and eating patterns. This series reports developments
in methods, including documentation and applications, that will contribute to better understanding of
dietary intakes, exposures to foodborne contaminants, the quality of diets, and factors associated with
the outcomes. The series also will contain reports related to food and health policy issues that can be

better addressed with new technology.



ABSTRACT
The importance of measurement error for parameter estimation and for the design of
statistical studies, particularly sample surveys, is examined. Beginning with a brief review
of Hansen’s contributions, the discussion concentrates on estimation problems in which
measurement error leads to bias in the usual estimators. Estimation of distribution
functions and regression equations are discussed, and the implications for the design of

surveys are presented.



ESTIMATION IN THE PRESENCE OF MEASUREMENT ERROR
1. Introduction
That data available for statistical analysis are subject to error is universally ’

recognized. Two recent books, Nonsampling Error in Surveys by Lessler and Kalsheek

(1992) and Measurement Errors in Surveys edited by Biemer, Groves, Lyberg, Mathiowetz,

and Sudman (1991), are evidence of the importance attached to measurement error by the
survey sampling community. The papers on this topic at the August 1992 meeting of the
American Statistical Association also demonstrate the concern for the measurement process
in survey sampling.

The majority of the works cited are devoted to identifying sources of error,
developing models for measurement error, designing procedures to minimize measurement
error (or to minimize total error), and to measuring the properties of measurement error.
The survey sampling literature contains less material on the analyses of data observed
subject to measurement error. In other disciplines where survey data are used, notably
psychology, sociology, and epidemiology, measurement variability is an integral part of the

analysis. We shall address some aspects of the analysis problem.

2. Models for Response Error
Hansen and his co—workers at the U.S. Bureau of the Census conducted extensive
studies of response error in the 1950’s and 1960’s. They assumed that the observations in a
survey are the result of a trial from the set of all possible trials. They also assumed that
there is a true value for the characteristic of interest for each individual. Let & be an

estimator constructed from a survey and let & be the true value. Let E{0|s} be the



expected value of the estimator over all possible trials for a particular sample, s. Hansen,

Hurwitz, and Bershad (1961) suggested the decomposition,
E{(0- )%} = [B{(0 - O*))1°
+ E{[0—E(2]5)*)
+ B{[E(Ds) - B(D)]%} (2.1)

where the first term on the right of the equality is the squared bias in the estimator, the
second term is the response variance (measurement variance) contribution, and the final
term is the sampling variance of the estimator. In their introduction the authors also
included the covariance between the response variance and the sampling variance, but the
covariance term was not included in the remainder of their discussion. To investigate the
response variance, Hansen, Hurwitz, and Bershad (1961) defined the response of the j—th

unit at trial t of sample s by

Y‘ts=y-+w

J J s (22)

where y i= E{yjt S} is the expected value of the response of individual j over all possible

trials of samples containing unit j. The response error w called the response

jts ’
deviation, by Hansen, Hurwitz, and Bershad (1961), has zeJro expected value by definition,
but the expected value for a particular sample, E{Wjts |s = s*} need not be zero. Hansen,
Hurwitz, and Bershad (1961) were particularly interested in the correlation between the
Wits for different individuals in the same sample. In interviewer surveys, there is generally

a positive correlation among respondents interviewed by the same individual. Hansen,

Hurwitz, and Bershad (1961) give some estimates of the correlation obtained from the



response variance study conducted in conjunction with the 1950 U.S. Census of Population
and Housing.

Hansen and his co—workers were concerned with censuses and large surveys and
with relatively simple estimators, such as estimators of means and totals. The emphasis in
this early work was on efficient survey design. It exemplifies research at its finest. Areas
of importance were identified, data were collected, and decisions made on the ﬂasis of the
analysis of the data.

There is today a great deal of research on measurement errors in surveys. For
survey statisticians, the emphasis remains much as it was during Hansen’s early work.
Attempts are made to identify and quantify sources of response variability and response
bias, and to use this information in creating efficient survey designs for the estimation of
totals and means. Survey statisticians are concerned about response error at the design
stage, but response error is less often considered at the estimation stage. Also, it is not a
part of survey convention to collect information on response error for the important items
in a survey. Rather special studies may be conducted, often before the actual survey.

A reason for the present custom is the emphasis given to means and totals in survey
methodology. Assume: (i) the response error is unbiased, (ii) response errors in different
primary sampling units are uncorrelated, and (iii), the finite correction term can be
ignored. Then, the usual survey estimators of the mean and of the variance of the mean

are unbiased. These results are stated by Cochran (1977, p. 396).

"Errors of measurement that are independent from unit to unit within
the sample and average to zero over the whole population are properly taken
into account in the usual formulas for computing the standard errors of the
estimates, provided that fpc terms are negligible. Such errors decrease the
precision of the estimates, and it is worthwhile to find out whether this
decrease is serious.

If errors of measurement on different units in the sample are
correlated, the usual formulas for the standard errors are biased. The
standard errors are likely to be too small, since the correlations are mostly
positive in practice. This type of disturbance is easily overlooked and may
often have passed unnoticed.”



We shall adopt a simplified model for measurement error and shall discuss the effect
of measurement error on relatively common estimation procedures. Let the p—dimensional

row vector of observations be denoted by

T € (2.3)

where z, is the true value for unit t, and € is the vector of measurement errors. We

begin by assuming
E{et} =0 and E{ete{_'} =X, (2.4)
for all t, and assume z, is a vector random variable with mean
B, = E{zt} (2.5)
and covariance matrix
5, = Bl(z,— 1) (3, ~ 1)} . (26)
Then Zt is a vector random variable with mean B, and covariance matrix
EZZ = E{(Zt - ﬂz)'(zt - ,u.z)} =3 + E“ ) (2.7)
If (Zl’ cey Zn) is a random sample, then

E{Z} =, (2.8)



E{ﬁzz} = EZZ = Ezz + EEE (2.9)

7

wherte

. —1 I o
Thus, consistent with the quote from Cochran, E{Z} = s, and

Vi) =078, (2.10)
is unbiased for the variance of ‘&z , V{ﬁz} . We shall see that the mean is, essentially, the
only statistic for which this result holds.

We shall restrict our discussion to zero mean measurement error. The bias
associated with measurement error whose mean is not zero is clearly important. There are
a number of techniques in the literature for adjusting for measurement error that does not

have zero mean. The most common is two—phase estimation in which "true" values are

obtained for a subsample of the original sample.

3. Estimation of the Distribution Function
The estimated mean of z is one of the few statistics that remains unbiased in the
and ¢

presence of nontrivial response error. Assume that z are independent normal

t1 t1
scalar random variables. Then Ztl ~ NI(,uz, 9,11 T 0“11) , where 7,11 is the variance
of z and T eell is the variance of €, - Because the normal distribution is completely

determined by the mean and variance, and because the variance of Z is greater than the



variance of z , the cumulative distribution function of Z agrees with the cumulative
distribution furction of z only at the point u, - For the normal distribution, the
quantiles of the distribution of Zt —p, are multiples of the quantiles of z = My - That is,

1 1/2
Uy @) = [9:1177211] f Uy (2)

where QX(d) is the quantile function of X evaluated at d , the quantile function is the
inverse of the cumulative distribution function, and we use both Ui and o, for the
variance of the random variable z . Thus, the sample cumulative distribution function of
Z is a biased estimator of the cumulative distribution function of z except at b, -

The effect of measurement error on the cumulative distribution function is described
in Table 1 and Table 2. The importance of the effect of measurement error depends upon
the part of the distribution function that is of interest. As mentioned, there is no bias in
the estimated median of the normal distribution. The relative error increases as one moves

away from the mean. For example, a measurement error with variance equal to 15% of the

Table 1. Percentiles in the presence of measurement error. Normal distribution
2
o, = 1.
- 2
Probability 7,
(%) 0.00 0.05 0.10 0.15 0.25 1.00 2.00
50 0.000 0.000 0.000 0.000 0.000 0.000 0.000
75 0.674 0.691 0.707 0.723 0.754 0.954 1.168
90 1.282 1.313 1.344 1.374 1.433 1.812 2.220
95 1.645 1.685 1.725 1.764 1.839 2.326 2.849

99 2.326 2.384 2.440 2.495 2.601 3.290 4.029




Table 2. Cumulative distribution function in the presence of measurement error.
Normal distribution ag = 1.

2
o
€
Z—value

0.00 0.05 0.10 0.15 0.25 1.00 2.00
0.000 0.500 0.500 0.500 0.500 0.500 0.500 0.500
0.675 0.750 0.745 0.740 0.735 0.727 0.683 0.652
1.282 0.900 0.895 0.889 0.884 0.874 0.818 0.770
1.645 0.950 0.946 0.942 0.937 0.929 0.878 0.829
2.327 0.990 0.988 0.987 0.985 0.981 0.950 0.910

true variance changes the fraction of the observed values greater than 1.645 from 5% to
6.3%. Thus, a 15% error variance produces a 25% change in this particular parameter.
This discussion illustrates that, under the simple measurement error model, some

estimators that might be considered to be "means" are biased. Let (z be the

t1 1)
normal independent scalar random variables and let Ztl =12 + € Consider the

random variables
th =1 if Ztl < A2

= 0 otherwise
and
g = 1 if zi; < A2
= (0 otherwise .

Assume that we wish to estimate the mean of 20

typ = Plzy) < Ag}



for some A2 not equal to By - Then 22 is a biased estimator of the mean of Zg 5 where
the bias is illustrated in Table 2. The bias results from the fact that the mean of Z 12~ %49
is not zero.

To estimate the distribution function of the underlying true normal variables, we
assume that we have a sample of m individuals and that replicate observations are made

on some individuals. Let

Zij=7+ §; (3.1)
4 Bal (%22 0

~NI||
§j 0] |0 Y%

We use the analysis of variance estimators to estimate the components of variance. The
analysis of variance is given in Table 3. These estimators are not the most efficient, but

they are easy to construct.

Table 3. Analysis of variance for random components model.
Source df SS MS EMS

o s 52 2 2
Individuals dg=m-1 j£1ki(zi' -1) B o, + kyo,

k.
m m i 9 -
Within dy, = ¥ (k. —1) ¥ ¥(Z.-17.) o
W =1 1 i=1 j=1 ij i €




The estimators associated with the table are

k.
=W= dwlz B (2 ~Z.)°
i=1 j=1
_ -1 IE-
L =2 =m Z.
z i i=1 1.
and
52 =k ' (B~ W),
where
m
ky=(m-1)"o-nT 3 ¥
0 j=] 1

(3.2)

and B denotes the between individual mean square. Under the assumption that z and

5i are normally and independently distributed,
vi{i} = m1o? + m 2 2 k, 1,2 ,
z Te
i=11
a2\ _oa—1 4
V{a } =24y o
and

21 . o2 -1_-1 %
V{a;} = 2k,"|(m~1) "m iil

(2 kl 2)2k +do

(3.3)

(3.4)

14
ol .

W
(3.5)



The estimated 7—quantile for the distribution of z is
A |
Q) =p, + 0,8 (n), (3.6)

where # is the standard normal cumulative distribution, and = is the probability defining

the quantile. Using Taylor series arguments, an estimator of the variance of Q(7) is

V{Q(m)} = #1206} + Vi) (3.7)

where V{&z} = (4&§)_1V{&§} , and V{&g} and V{,&z} are obtained from (3.5) and
(3.3) by replacing parameters with their estimators.

In some studies, a portion of the measurement error is due to sampling of the basic
material. To illustrate this and to illustrate the estimation of the cumulative distribution
function in the presence of measurement error, we use some data from the Human
Nutrition Information Service of the U.S. Department of Agriculture. This research is
described more fully in Nusser, Carﬁquiry, Dodd and Fuller (1994).

The data are a subset of the data from the 1985 Continuing Survey of Food Intakes
by Individuals conducted by the Human Nutrition Information Service of the U.S.
Department of Agriculture. Daily dietary intakes were collected from women between 19
and 50 years of age. Daily intakes were obtained at approximate two—month intervals over
the period, April 1985 to March 1986. Data for the first day were collected by personal
interview and were based on a 24—hour recall. Data for subsequent days were based on
24—hour recall and were collected by telephone whenever possible. The sample was a
multi—stage stratified area probability sample from the 48 coterminous states. The
primary sampling units were area segments, and the probabilities of selection of area
segments were proportional to the numbers of housing units in the segments as estimated

by the Bureau of the Census. The sample was designed to be self weighting. Because of
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the high rate of attrition over the six waves of data collection, the Human Nutrition
Information Service constructed a four—day data set for analysis. The four days of data
consisted of the first day of dietary intake for all individuals who provided at least four
days of data, plus a random selection of three daily intakes from the remaining three, four
or five days of data available. Weights were developed to adjust for nonresponse, but the
analyses of this paper are constructed on unweighted data.

We analyze a subset of the four—day data set containing dietary intakes for women
between 25 and 50 years of age who were responsible for meal planning or preparation
within the household and who were not pregnant or lactating during the survey period.
There were 737 women who belonged to this category. Because of the time separation of
the observations, we assume the four observations on each individual to be independent
observations on that individual. The dietary components included in the analyses are
calcium, energy, iron, protein, vitamin A and vitamin C. These components were selected
because of their nutritional importance and because of their different distributional
behaviors.

Our model is
(3.8)

Xij = g(zij; 0) ,

X, Ky Ty 0
~ NI , ,
u 0 0

. o
ij uu



where Zij is the observed intake for individual i onday j, z; = E{Z£j|£ =i} is the
usual intake for individual i, and g(Zij; 0) is a transformation that maps observed
intakes into normal random variables. In our research on this topic, considerable effort has
been devoted to the specification and estimation of the function g(Zij; 0) . For the
purposes of our present discussion, we assume g(Zij; 0) is known.

To simplify our discussion, we treat the sample as a simple random sample of

individuals. The variance components of the model can be estimated using the usual

analysis of variance formulas. Thus,

L=he-yE 3 OG- X )2,

i=1 j=1
(3.9)

5. =(n-— 1)‘151(5%_ -X -,
_IEI 1X1_] and r = 4 is the number of replicate
observations.

Table 4 contains the components of variance for the transformed data. The data
have been t{ransformed so that the transformed observations Xij are approximately
normally distributed with mean zero and variance one. The within variance exceeds the
among variance for all dietary components. The ratio of within to among is smallest for
energy with a value of 1.67 and is largest for vitamin A with a ratio of 2.92.

Figure 1 contains a plot of the original data against the normal scores for calcium.
This plot is sometimes called a Q—Q plot. The line in the plot is the g—function. Figure 2
is the same plot for Z%, where a = ( 3.5)_1 . The root transformation produces variables
that are nearly normal. The dashed lines in the plot are the join points for a grafted cubic
fit to the empirical cumulative distribution function. Figure 3 is the normal score plot for

protein, and Figure 4 is the corresponding plot for the square root of protein. For protein,
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Table 4. Sample moments for data in the normal
scale.
Among—- Within— “121
Di etary Individual I'ndividual -
Component Variance Variance &x
-2 "2
% “u
Calcium 0.364 0.633 1.74
Energy 0.373 0.623 1.67
Iron 0.314 0.683 2.18
Protein 0.273 0.724 2.65
Vitamin A 0.254 0.742 2.92
Vitamin C 0.318 0.679 2.14

the root operation is not sufficient to produce normality and the grafted cubic completes

the transformation to normality.

On the basis of Table 4, the true values (usual intakes) of calcium in the normal

scale are distributed as N(0, 0.633) random variables. The distribution of interest is the

distribution of true values in the original scale. The true value in original scale for

individual i is
C B(Z 1D = BleLex s
% = E{ijh} = E{g (Xij)ll}

= E{g '(x+u)lx=x}.

Because g( ) is a nonlinear function, the transformation that carries the distribution of x

into the distribution of z is not g_1 . We can approximate the expectation for a

particular x by numerical integration using u ~ NI(0, auu) . The calculated z, for a set
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of x; are used to construct a smooth approximation to the relationship between x and

z. Let
z = h(x) = E{g (x + u)|x = x}} . (3.11)

Figure 5 contains a plot of the g and h functions for calcium. Because the g function is
concave, the h function lies below the g function.

The estimated density for usual intakes in the original scale is

-1
£ (2) = ¢, h @2, (3.12)

where ¢x( } is the distribution of usual intakes in normal space. Figure 6 contains the
estimated density for the original observations, for the mean of four daily observations, and
for usual intakes, all in the original scale for calcium. The original observations have a
density with a relatively long right tail. The variance of the distribution of usual intakes
is about 36% of the variance of one—day intakes and about 69% of the variance of a mean
of four intakes per individual. The means of the three distributions are the same. The
distribution of usual intakes is skewed, but less skewed than the distribution of one—day
intakes. Figure 7 is the same plot for protein. The densities for protein are much more
symmetric than those for calcium.

The estimation of the cumulative distribution function of the usual intakes in the
presence of measurement error requires that at least two days be observed for some
individuals in the sample. If one accepts the model, it is not necessary to have duplicate
observations on every individual. The optimal design depends on the importance attached
to the estimation of different portions of the distribution function and on the size of the

error variances. Our analysis was prepared by Anthony An following suggestions of
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Phil Kott. It is assumed that the analysis of variance estimators are used to estimate the
response variance and the variance of the true values.

The entries in Table 5 are the variances for designs with different rates of
replication under the assumption that independent identically distributed determinations
are made on each individual. The first column of the table contains the number of
observations per individual in the study. Thus, if one had 1000 observations and the entry
is 1.25, there would be 800 individuals in the study and duplicate observations would be
made on 200 individuals.

Because the sample mean is unbiased for the population mean under our model, the
best design for the mean is to make no replicate determinations. If 0, = 0-15 and one is
interested in the tails of the distribution, making duplicate observations on about 10
percent of the individuals is appropriate. If 0= 2-00, 2 design with two determinations
on each individual would be a good compromise design.

In reinterview studies, it is observed that the mean of the second interviews is not
equal to the mean of the first interviews. See Bailar (1975). We call the differences in
level observed for the different interviews, time—in—sample effects. One possible way to

extend the model to include time—in—sample effects is to write

J‘(i-=xi+'r-+ui

. 3.13
j it (8.13)

where the Tj are fixed time—in—sample effects. In the nutrition study, we used the first
interview as the standard. For model (3.13), this is equivalent to setting 7, equal to zero.

With fixed time—in—sample effects and 7, =0,

1

V{i} = m(o? + oY), (3.14)
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because [ is the mean for the first interview. Table 5 was constructed using (3.7) with
(3.3) as the variance of ji. Table 6 was constructed using (3.7} with (3.14) as the variance
of £ . All variances in Table 6 are larger than those in Table 5. Also, the increase in
variance of the estimated mean as the replication increases is more pronounced in Table §
than in Table 5. For the case of Uuu/ 0. = 2, the design with two observations per
individual is a good compromise design if the objective is to estimate the entire distribution

function.

4. Estimation of Regression Equations

In this section, we consider estimation for the regression model

v, =Byt x8 + g (4.1)
where
Zt = (Yt’ Xt) - (yt’ xt) + (Wt: ut) = zt + ft
xt ~ Ind(ﬂxr EXX) 1
and

€ ~ Ind(0, %, ) .
The q, is called the error in the equation. It is assumed that
E{¢|x} =0

E{ijt} =0
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Table 5. Variances of estimated normal quantiles with identically distributed
replicates standardized to one observation and Tx = 1.0.
Obs. per
individual Q(50) Q(75) Q(90) Q(95) Q(97.5) Q(99)
- 0.15
1.05 1.20 1.61 2.68 3.64 4.66 6.07
1.10 1.26 1.63 2.59 3.46 4.38 5.66
1.25 1.41 1.79 2.76 3.64 4.57 5.85
1.50 1.67 2.09 3.19 4.17 5.22 6.67
2.00 2.15 2.68 4.06 5.30 6.62 8.45
3.00 3.15 3.91 5.88 7.64 9.53 12.14
—— 1.00
1.05 2.07 7.28 20.87 33.04 46.04 64.01
1.10 2.15 5.12 12.90 19.86 27.30 37.58
1.25 2.34 3.99 8.30 12.16 16.28 21.98
1.50 2.62 3.88 7.15 10.08 13.20 17.53
2.00 3.00 4.14 7.11 9.78 12.62 16.55
3.00 4.00 5.25 8.53 11.46 14.59 18.93
— 2.00
1.05 3.10 22.30 72.41 117.27 165.21 231.48
1.10 3.19 13.44 40.20 64.16 89.76 125.15
1.25 3.44 8.27 20.90 32.21 44.28 60.98
1.50 3.75 6.82 14.84 22.03 29.71 40.32
2.00 4.00 6.28 12.23 17.55 23.24 31.10
3.00 5.00 7.05 12.41 17.21 22.34 29.42
— 3.50
1.50 5.44 12.95 32.56 50.13 68.89 94.83
2.00 5.50 10.34 22.98 34.29 46.37 63.08
3.00 6.50 10.18 19.78 28.37 37.55 50.25
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Table 6. Variances of estimated normal quantiles with time—in—sample effects
standardized to one observation and o, = 1.0.
Obs. per
individual Q(50) Q(75) Q(90) Q(95) Q(97.5) Q(99)
oo = 0.15
1.05 1.21 1.62 2.68 3.64 4.66 6.07
1.10 1.27 1.64 2.60 3.47 4.39 5.67
1.25 1.44 1.81 2.79 3.66 4.59 5.88
1.50 1.72 2.15 3.24 4.22 5.27 6.72
2.00 2.30 2.83 4.21 5.45 6.77 8.60
3.00 3.45 4.21 6.18 7.94 9.83 12.44
O = 1.00
1.05 2,10 7.31 20.90 33.07 46.07 64.04
1.10 - 2.20 5.18 12.95 19.91 27.35 37.64
1.25 2.50 4.15 8.46 12.32 16.44 22.14
1.50 3.00 4.25 7.52 10.45 13.58 17.90
2.00 4.00 5.14 8.11 10.78 13.62 17.55
3.00 6.00 7.25 10.53 13.46 16.59 20.93
Opu = 2.00
1.05 3.15 22.35 72.46 117.33 165.26 231.54
1.10 3.30 13.55 40.31 64.27 89.87 125.26
1.25 3.75 8.59 21.21 32.52 44.60 61.29
1.50 4.50 7.57 15.60 22.78 30.46 41.07
2.00 6.00 8.28 14.23 19.55 25.24 33.10
3.00 8.00 11.05 16.41 21.21 26.34 33.42
o... = 3.50
uu
1.50 6.75 14.26 33.88 51.44 70.20 96.14
2.00 9.00 13.84 26.48 37.79 49.87 66.58
3.00 13.50 17.18 26.78 35.37 44.55 57.25
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forall t and all j. If replicate observations are made on the € , we denote the replicate

observations by ¢, i We assume % _ | >0 and %9q > 0.

The sum of q, +w, is sometimes denoted by e, - Given a sample of n

observations, the ordinary least squares estimator of ﬁl is

. —1
N = mxxTXY (¢2)
where

-1
My =(n—-1)
XX =1

I b

(Xt —-X)’(Xt —)_() !

— B _ _
myy = -1 2 %, -%)(v,-7),

From equation (2.9), the expected values are

E{myy, myy} = (S + Eypo By + B - (4.3)

If (xt, €, qt) are independent normal vectors, then
a 1
E{m}=TxxExy (44)
If Zu a0 the ordinary least squares estimator is biased for ﬂl unless

%0 =5, (4.5)
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In many situations, it is reasonable to assume that Euw = 0. In such cases, :71 isa
biased estimator for f§, in the presence of measurement error. The magnitude of the bias
depends on the magnitude of the measurement error variance relative to the variance of the

true values. For our model with a single explanatory variable and Tw = 0,
71 = E{:Yl} = Kxxﬁl ; (4'6)

where £ = ag}l{axx.

The ratio & is sometimes called the reliability ratio. Fuller (1987, p. 8) gives
values of Ky for socideconomic variables often collected in surveys. Some of the values
are 0.98, 0.92, 0.88, 0.85, and 0.77 for sex, the 45—49 age category, education, income, and
unemployment status, respectively. Thus, the ordinary simple least squares regression
coefficient for income is biased by about 15% of its true value. For the zéro—one variables
such as sex, the reported ratio is the ratio for the latent class model, the model that defines
the true values so that the mean of the response error is zero for every individual.

For normal vanables with n > 3,

V{"i’l} =(n- 3)“10§}1((UYY - 710XY) . (4.7)

The mean square error of ’yl as an estimator of ‘61 is
. 2 2 .
B{(% - 8%} = (5, — 1)°6] + V{7 } (48)

A sample of observations Zt ,t=1,2, ..., n is not sufficient for the estimation of
the parameters of model (4.1). Some type of additional information is required. Several
sources can be considered. One possible approach is to use instrumental variables, where

instrumental variables are variables correlated with X, but not correlated with € - A



related approach is to develop an augmented model in which relationships among a number
of variables is specified. See, for example, Fuller (1987), for discussions of such techniques.
For our current discussion, we restrict consideration to the procedure of using
replicate determinations to estimate 2“ . Assume that it is possible to make independent
identically distributed observations on some elements of interest. Let th v = 1,2, be
two determinations on element t . If two independent identical determinations are made

on each of d elements,

d
-~ _ _1 ’
5, =05d t 2 1(Z“ ~Z,,) (Z, - Z,) (4.9)

. . . _ = —1ld &
is an unbiased estimatorof % _ . Let Z, =05(Z,; + 2,5) and Z =d "I _,Z, .
Then

d
~ _1 _ - ’ _ - -
B,=@-07 E (2 -2)(2 -2 )-05%,, (4.10)

is an unbiased estimator of Ezz . It follows that consistent estimators are

- _ ~ 1..

B, = E;szy , (4.11)
and

B=Y -X g, (4.12)
where

& %
s _ 1%y Tyx
ZZ v -
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In practice, it is necessary to check that f:zz is positive semidefinite before
constructing the estimator of f, . See Fuller (1987, p. 105) for the construction of
. & . .y . . i 1/2,3
estimators when ¥ is not positive definite. It is possible to show that d / (ﬁl — ﬂl)

has a limiting normal distribution with mean zero and covariance matrix

| 1 1
I'= z;xavv + EJ_c:ac[Euu Tyv T Urr) + 2Euvzvu]z;cx ’ (4.13)

where

Oy = (1 =B))875(1, —A))

’ ’

al'l' = (1) _ﬂi)zef(li _ﬁl) )

Yy =B L. Ay -

It is possible to extend the estimation procedure to the situation in which a different
number of replications are made on different elements of the sample. The analysis of
variance estimators are not fully efficient with unequal numbers of replications. Fuller
(1991) and Sanger (1992) give efficient estimation procedures.

To construct the measurement error estimator, one must have available an
estimator of B“ . If a study has not been previously conducted, some of the resources
from the current study must be used to estimate 2“ . In such a situation, the investigator
must choose between a design with no replication and the ordinary least squares estimator
and a design that allocates resources to the estimation of xee .

If a sample is very small, the mean square error of the ordinary least squares
estimator will be smaller than the variance of the estimator adjusted for measurement

error. Because the variance of the measurement error estimator is a function of Ezz and
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Table 7. Sample size for which
variance of MEM with
§ = 0.25 equals the MSE of

OLS.
Riy

nxx

0.25 0.50 0.75
0.98 3274 1320 662
0.92 330 168 109
0.88 189 103 70
0.85 143 80 56
0.77 88 % 38
0.58 55 3ab 26

X €’ the optimal design is a function of unknown parameters. Table 7 compares two
design—estimation procedures for the simple regression problem. One procedure is to
observe n elements and use the ordinary least squares estimator. The second procedure
observes 0.75n different individuals, makes duplicate observations on 0.25n of the 0.75n
individuals, uses the duplicate observations to estimate T and uses the estimator given
by Fuller (1991) to estimate f, . It is assumed that o is known to be zero. The
numbers in the table are the sample sizes at which the mean square error of the ordinary
least squares estimator is equal to the variance of the measurement error estimator. Thus,
if the ratio of T to Iy x is 0.85 and if the squared correlation between y and true x
is 0.25, the procedure that uses 25% of the observations as replicate observations to
estimate the error variance is superior to the ordinary least squares procedure if one is able
to make 143 or more determinations. In the case of the measurement error procedure, 107
different individuals would be included in the study and 36 individuals would be observed
twice. Thus, for measurement error variances of the magnitude recorded for socioeconomic

surveys and for the mean square error criterion, resources should be allocated to error
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variance estimation when the survey is to be used for regression estimation and sample size
exceeds 150.

We have considered only simple regression. The effects of measurement error
generally increase as the size of the regression problem increases. See Fuller (1991) and

references cited there.

5. Comments

We have demonstrated that sample quantiles and regression coefficients are biased
in the presence of measurement error. We were able to construct consistent estimators for
these parameters using estimators of the error variances of the measurement error.

In our discussion, we have restricted our attention to simple models with strong
assumptions. A number of extensions appear in the literature. See Stefanski and Carroll
(1990, 1991) and references cited there for discussions of the estimation of the density
function for a variable contaminated with measurement error. Fuller (1987, 1991)
discusses a number of extensions for regression estimation, including extensions to models
with unequal error variances. The assumption of normal distributions is not required for
most regression estimation and was used in our presentation only for convenience.
However, as with many other procedures, the estimators can be heavily influenced by
extreme observations. Also, in some survey situations, the distribution of the measurement
error may have heavy tails. There is limited work on robust procedures for measurement
error problems.

A primary concern of Hansen and his co—workers at the U.S. Census was with the
correlation between responses on different individuals. See Hansen et al. (1951, 1961,
1964). Bailar (1983) contains a discussion of methods of estimating this correlation. The
estimation techniques we have described can be extended to the case of correlated

measurement errors, where the correlation is between observations on different individuals.
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There are numerous practical considerations associated with the implementation of
replicate determinations on questionnaire items for human subjects. Some of these are
discussed in our earlier references. Also see Bailar (1968) and Forsman and Schreiner
(1991).

We assumed it is possible to make independent determinations on the same
individual. In practice, there are two competing considerations. One desires the
determinations to be close together in time to ensure that the respondent is responding for
the same item and also that the respondent is available for contact. On the other hand,
responses made close together in time are more likely to be correlated than those more
separated in time.

Table 8 has been constructed to evaluate the effect of correlated individual
determinations on the estimator defined by (4.11) and (4.10). We assume that the
estimator is constructed using replicated observations acting as if the replicates are
independent. We assume that a total of n determinations are made and that én=d of
these are replicate observations, where §< 0.5. Thus, n —d = n(l — §) individuals are
observed, of whom n(1 — 26) are observed only once. We assume that it is known that
Tow = 0 and, hence, only the error variance in X need be estimated.

The effect of the correlation on the estimators increases as the size of the
measurement variance increases and as the size of the sample increases. For By = 0.85,
the reliability ratio for income, there is about a 10% loss in efficiency with a correlation of
0.10 relative to independent observations at a sample size of 1000. I the correlation is
0.25, the squared bias at n = 5000 is about four times the variance of the measurement
error procedure. On the other hand, the procedure of making no determinations and using
the ordinary least squares estimator has a mean square error about 15 times that of the
biased measurement error procedure.

We focused on estimators in two situations, quantile estimation and linear

regression. See Carroll (1992) and Fuller (1987) for discussions of estimation for nonlinear
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models. Also, we have concentrated on one form of information about the measurement
error distribution, that obtained from replicate observations. Other procedures such as
those based on instrumental variables are available. See, for example, Fuller (1987).
Hopefully, our discussion will stimulate the use of existing methodology and
research on procedures tailored for survey samples. Qur models were relatively simple.
Extensions of the methodology to combine several kinds of information about the
measurement error, extensions to models where the error distribution is a function of
observables, variance estimation for estimators constructed from complex surveys and
development of procedures robust against extreme observations are but a few of the areas

deserving research attention.
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Table 8. Mean square error multiplied by n for alternative
estimation schemes and correlation between replicated

o _ _ 2
determinations Oy = 1, ﬁl =1, ny = 0.50.

§=0.25
n OLS
p=20 p=0.10 p = 0.25
Ty = 0-087(x, = 0.92)

100 1.58 1.56 1.55 1.63
200 1.58 1.56 1.59 2.27
500 1.58 1.59 1.73 4.20
1000 1.58 1.62 1.95 7.40
5000 1.58 1.92 3.77 33.02

o, = 01765(x = 0.85)

u
100 1.96 1.88 1.89 3.23
200 1.96 1.91 2.07 5.48
500 1.96 2.00 2.61 12.23
1000 1.96 2.15 3.50 23.48
5000 1.96 3.36 10.64 113.51

o =0.2087(k  =0.77)

100 2.67 2.46 2.53 6.24
200 2.67 2.55 3.01 11.53
500 2.67 2.80 4.46 27.40
1000 2.67 3.22 6.87 53.85

5000 2.67 6.59 26.18 265.45
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APPENDIX A.
In this appendix, we give the results used in constructing Table 8. The error
variance is estimated using replicate observations on X . If there is a correlation of Py

between the two observations on Xt , then

B{oy,} = Tyl =#y)

and
V{O'S(th + Xt2) B xt} - 0'5Uuu(1 + pu) ’
where
d
A -1 2
Ty = d 1;21()&1 _Xt2) '

We assume that the covariance matrix of the true values is estimated with

. 1 n—d
Ezz = (n—d) )

t—l(zt' ~2 ) (%, -7 )-(1- 671 1.56)diag(0, &

uu) '

where Zt‘ =0.5(Z,; +Z,) for t=1,2,..,d,and Z, =%, for t=d+1,d+2, ..,

n—d,and

n—d

Z =(n-d IZ

t=1 1.

Therefore, the approximate expected value of the estimator

~ A_lﬂ
ﬂl = Txxxy
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is

E{z‘ll} = (axx + puguu)_laxxﬂl '

Assume there is no measurement error in y . Then the covariance matrix of (&xy

is

V=0 (1= 78V, + (1= 20V, + (1- 1562570V,

where

9 9
Syyoxx11 T Xy 29%XX11°XY

Vi = :
20 o 202
XX117XY XXI1
I A, J + 02 20 g
YYIXX XY 29xx°xy
Va9 = )
2
20%x XY 2oxx
0 0
Vig = )
9
0 2oy (1 — )

and oyy =0, +0.500 (1+p). Let

C=E{f},
and

nV{Bl} = (0, Tt pauu)—2(1, -C)v (1, ).

-~

» O
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Then the mean square error of Bl as an estimator of ﬁl is

E{(B, - £)%) 2 (8, - O + V{B,} .
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