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THE EMPIRICAL MINIMUM VARIANCE HEDGE

Abstract

Decision making under unknown true parameters (estimation risk) is discussed along with
Bayes and parameter certainty equivalent (PCE) criteria. Bayes criterion provides the solution for
optimal decision making under estimation risk in a manner consistent with expected utility
maximization. The PCE method is not consistent with expected utility maximization, but is the
approach commonly used.

Bayes criterion is applied to solve for the minimum variance hedge ratio (MVH) in two
scenartos based on the multivariate normal distribution. Simulations show that discrepancies
between prior and sample parameters may lead to substantial differences between Bayesian and
PCE MVHs. Such discrepancies also highlight the superiority of Bayes criterion over the PCE, in
the sense that the PCE method cannot not yield decision rules that contain prior (or nonsample)

along with sample information.



THE EMPIRICAL MINIMUM VARIANCE HEDGE

Estimation risk can be defined as a situation in which the joint probability density function
(pdf) of the random variables associated with a decision problem ts not known with certainty. This
1$ a common occurrence in economics; for example, parameters such as the marginal productivity
of fertilizer, the elasticity of demand, and the regression coefficient of futures on cash prices are
rarely known by the decision maker. Agents who must make decisions in the presence of random
variables are generally confronted with the additional uncertainty of less than perfect knowledge
about the pdf governing the distribution of those variables.

Almost all studies involving decision making in the presence of estimation risk implicitly
use the "plug-in" or "parameter certainty equivalent” (PCE) approach. This consists of developing
the theoretical decision model assuming that the pdf and its parameters are known with certainty.
Once the optimal decision rule is derived, the empirical application proceeds by substituting sample
estimates for the unknown parameters in the formula for the optimal deciston rule. Although it is
intuitively appealing and empirically tractable, the parameter certainty equivalent method has no
axiomatic foundations and is not consistent with expected utility maximization.

Although the applied section of this paper is concerned with hedging, the shortcomings of
the PCE approach can best be demonstrated by means of a speculative example, Assuming that the
true parameters are known, theory predicts that a risk-averse individual will speculate if the known
futures mean is different from the current futures price. In order to determine the optimal
speculative position empirically, the PCE method advocates using the sample futures mean as a
substitute for the true but unknown futures mean. Notice that prior information, such as possible
strong belief in the efficient market hypothesis, and sample information, such as the standard
errors of the estimated parameters, are ignored by the PCE. Taken to its extreme, the PCE would
predict a long speculative position whenever the mean of recent futures prices is lower than the
current futures price and a short position when the opposite is true. This is clearly a questionable

speculative behavior; yet, this procedure is essentially what is followed when using the PCE.



The question addressed in this paper is how the theory itself (and by extension the
empirical methodology) is changed if we admit that there is uncertainty about the magnitudes of the
true parameters and that information about them can be obtained from both historical data and other
sources.

When estimation risk is due to imperfect knowledge about the parameters of the joint pdf
(given that the funcuonal form of the pdf is known), the methodology that is consistent with the
expected utility paradigm is Bayes decision criterion (DeGroot, Chapters 7 and 8). Bayes criterion
takes into account uncertainty regarding the unknown true parameters by assigning a pdf to these
parameters and then integrating over the parameter space.

Bayes decision criterion has been thoroughly studied in statistics (Raiffa and Schlaifer,
DeGroot, Berger, Klein et al.). It has also been applied to solve important problems in finance,
such as security market equilibrium (Bawa; Barry and Brown; Coles and Loewenstein), portfolio
choice (Klein and Bawa 1976 and 1977; Bawa; Stephen Brown; Chen and Brown; Alexander and
Resnick; Jorion 1985 and 1986; Frost and Savarino; Cheung and Kwan), and option pricing
(Boyle and Ananthanarayanan). However, Bayes criterion has been largely ignored in agricultural
economics. A possible exception is a study by Dixon and Barry, who modeled the allocation of
funds by an agricultural bank among three assets and concluded that estimation risk influenced the
portfolio’s composition.

Only in recent years have agricuitural economists shown some interest in estimation risk
{e.g., Dixon and Barry; Pope and Ziemer; Collender and Zilberman; Collender; Chalfant,
Collender, and Subramanian). Pope and Ziemer examined the performance of alternative
estimation methods for second-degree stochastic efficiency analysis. Using Monte Carlo
experiments, they found that the plug-in approach generally performed no better than the empirical
distribution function, and Lﬁa[ the empirical distribution generally led to more correct rankings
under small sample sizes. Coliender and Zilberman analyzed the optimal land allocation problem
under alternative joint pdfs for crop returns. They concluded that farmers with different opinions

regarding the joint pdf of crop returns will both allocate and value land differently, even if they



have the same degree of absolute risk aversion and identical opinions about the mean and the
variance of crop returns. Collender addressed the decision maker's ability to distinguish among
different farm plans based on their sample means and variances. In his application, Collender
found that it may be staustically impossible to distinguish among most esimated mean-variance
combinations lying at the efficient frontier at reasonable levels of significance, even for large
sample sizes. The work by Chalfant, Collender, and Subramanian studies the sampling properties
of the portfolio allocations based on the PCE approach. They show that allocation decisions from
the PCE method are biased and inefficient. They also propose an alternative approach which leads
to decisions that are unbiased and that in addition have lower variance.

The goals of this study are twofold. First, the Bayesian approach is discussed in general
terms and is compared to the PCE approach. Second, Bayes criterion is applied to the estimation
of the minimum variance hedge ratio. The issue addressed here is related but different from that
studied by Collender and Zilberman. These authors analyzed the problems associated with using
an incorrect functional fonﬁ for the joint pdf, assuming perfect knowledge about the parameters,
Here, we are concerned with the problems associated with less than perfect knowledge about the

paramneters, assuming perfect knowledge about the functional form of the joint pdf.

Decision Making under Uncertainty
The standard optimization pfbblem under uncertainty can be represented by the following

expression
(2.1) maxy . DExlﬁ(U) =maxy . DJ U[R({, v)] p(v10) dy
where E(-) is the expectation operator, U[R(d, ¥)] is a von Neumann-Morgenstern utility

function, R(d, v) is a function of a vector of decision variables d and a (k x 1) vector of future

random vanables y = X, related to the decision problem, p(y!g) is the joint pdf of y given the



vector of parameters £, Y is the domain of y, and D is the feasible decision set. The joint pdf will
generally depend on d (Klein et al.), but for notational convenience we will denote it by p(y!f)
rather than by p(v18, d) in the exposition.

The decision problem represented by expression (2.1) is the basic paradigm of expected
utility theory, and it provides the framework used to develop the theories of the firm and the
consumer under uncertainty (Hey). An important underlying assumption of (2.1) is that p(y/8) is
perfectly known. However, there are many real-world situations in which this assumption is not
valid, in which case there exists estimation risk (Bawa, Brown, and Klein). Estimation risk may
arise because of less than perfect knowledge about either (i) the functional form of p(yl), or (ii)
the parameters contained in the vector § (given that the function p(yi@) is known with certainty).
Although case (i} is relevant in certain situations (Bawa; Collender and Zilberman), in this paper
we are concermned only with case (ii). In other words, we will define estimation risk as the
situation where the decision maker knows the functional form of the joint pdf p(yI8) with certainty,
but has less than perfect knowledge about the parameters in 8. Consequently, we will refer to the
absence of estimation risk as a case of perfect parameter information (PPI).1

If 8 in (2.1) is not known with certainty, then E!,Q(U) is not known either because the
expectation is a function of §; therefore, E!,Q(U) cannot be maximized. Bayes decision criterion
provides a remedy to this situation in a manner that is consistent with the axioms of expected utility
theory (DeGroot, Chapters 7 and 8). The solution consists of taking into account the uncertainty
about the parameters by postulating a joint pdf of 8 and integrating over the parameter space, i.e.,

the decision problem is

(22) max, , pEyByg(U)] =maxy ] {] UIRW ] pul®) dy) p@IX, 1) a8
(&)

Note that dccisions based on the PPI need not be similar to those based on the PCE. The former assumes
perfect prior knowledge about the paramelers, whereas the latter assumes perfect confidence in the quality of the
sample information. Because there is no need for the sample information in one scenario to be identical to the prior
information used in the other, the resulting decisions may be different.



where p(@X. 1) is the posterior pdf of § given the sample data matrix X and the prior
(nonsample) information I, and © is the domain of §. The sample data matrix X = (Xpseos Xp)'is
a (T x k) matrix of T past realizations of x.

The posterior pdf p(81X, I7) contains all the information available regarding the parameter
vector 8 at the decision time T. This pdf conveys all the sample and nonsample information about

6 because it is obtained by application of Bayes theorem as follows:!

(23) p@IX. L) = p(@ll;) pXI0)

where < denotes proportionality, p(911,) is the prior pdf of §, and p(X!0) is the likelihood
Junction. The prior pdf represents the decision maker's prior (nonsample) infonmation about §;
this pdf reflects the probabilities of different values of § assigned by the agent based on his
practical experience, knowledge and beliefs. And according to the Likelihood Principle, all
relevant experimental information about 8 after X is observed is contained in the likelthood
function for the observed X (Berger, p. 28). By combining both sample and nonsample
information, the posterior pdf provides a better assessment about the parameter vector than either
the prior pdf or the likelihood function alone.

Expression (2.2) can be alternatively stated as

(24) maxy , pBglBg(U)] =maxy [ UIRG@, 0] p(elX, Tp) dy

where p(yIX, I) is the predictive pdf of y.? Expression (2.4) facilitates the comparison of Bayes

criterion with the PPI case (2.1). It can be observed that the only difference between the right-

IRecall that pla. ) = ple) plale) = p(a} p(ela), and therefore p(ale) = pla) plela)/p(e) « p(a) p{ela}, where
pla, e) is the join: pdf of any pair of random variables a and ¢, p(ale) and p(ela) are the conditional densities, and p(a)
and p(e) are the marginal densilics.,

3Expression (2.4) is oblained by reversing the order of integration of (2.2), noting that U[R(d, v)] is

indcpendent from §, and using the fact that p(viX. Ip)= f Py p(alx. IT) df.
o



hand sides of expressions (2.1) and (2.4) is that the joint pdf of y in the former 1s p(yi@), whereas
in the latter it is p(yIX, I;). When the parameter vector § is known with certainty, the sample X
adds no information about the parameters; therefore, the decision maker can ignore X and proceed
10 make decisions based on the joint pdf p(yl8) as indicated by (2.1). In the more common
situation characterized by imperfect knowledge regarding §, however, it is unreasonable to ignore
either the prior or the sample information. In this case, by employing the predictive pdf the
decision maker uses all the available information,

As mentioned in the introduction, the standard approach employed in studies involving
estimation risk 1s the PCE. Letting 9(X) denote the sample point estimate of the unknown

parameter vector g, this method can be stated as
(25) maxg pByg_jU) =maxy. ] VIR v plyBQ0] dy

Simply put, in the PCE the sample point estimate 8(X) replaces the unknown vector 8 in (2.1),
i.e., the parameter estimates are taken as if they were known with certainty. Solving the decision
problem by means of the PCE is generally much easier than doing so using Bayes criterion, but the
PCE has no axiomatic foundations. Klein et al. analyzed the necessary and sufficient conditions
for the PCE approach to yield the optimal solution (i.e., the Bayesian solution). They show that
these conditions are very restrictive and seldom fulﬁlléd by the pdfs commonly used in economic
studies. Moreover, they also show that the loss in utility from using the PCE rather than Bayes
criterion may be very large.

An alternative decision rule in the presence of estimation risk has been recently suggested
by Chalfant, Collender, and Subramanian. These authors show that in 2 mean-variance framework
the PCE portfolio will have, on average, a greater return and a greater variance than the optimal
PPI portfolio. As an alternative to the PCE, they propose a portfolio based on sample mean and
variance estimates but in such a way that it is the same, on average, as the optimal PPI portfolio in

the absence of estimation risk. They prove that such a portfolio is superior to that obtained using



the PCE because it yields greater expected utility. One limitation of this decision rule, however, is
that it does not necessarily maximize expected utility. In this regard, Bawa, Brown, and Klein

have shown that Bayes criterion yields, on average, the maximum expected utility.

The Minimum Variance Hedge Ratio
A typical problem involving estimation risk is that of calculating the minimum variance
hedge ratio (MVH). The MVH is the ratio between the futures and the cash positions that
minimizes the variance of income, given the agent's cash position. The MVH is an important
paradigm in the theory of hedging, and dominates the applicd hedging literatre. -

Reduced to its essentials, the derivation of the MVH is as follows. Consider a decision
muaker at decision date 7 whose random terminal income %y, , equals the returns from his cash and

futures positions, i.e.,

(.1 7y =pry Q-Upy, - fPF

where py.; is the random cash price at date 7+1, Q is the amount of product sold at date T+1, fr-, |
is the random futures price prevailing at date T+1 for delivery at some date T+ > T+1, f.is the
current futures price for delivery at date 7+, and F is the amount sold in the futures market at date
T and purchased at date 7+1. The decision problem consists of selecting the hedge F that

minimizes the variance of terminal income, given the cash position Q:
s . 2 7
(3.2) mingVar{ny, ) = ming[Q” Var{pr,,) -2QF Cov{py, Iy + F Vardfy, )]

The subscripts in the vanance and covariance operators denote that they are conditional on the

information at date 7. The first order condition (FOC) corresponding to (3.2) is



dVargmn, ;)
(3.3) —%u =-2Q Covlpy, . fr, ) + 2F Varlfy, ) =0

which can be solved for the variance-minimizing hedging position!

Covi(pr,,. fr,)
- T+t "T+1
G4 Frn = "V,

The ratio Cov,{py,,, f7,)/Var,{fr,,) is the MVH. It has been shown that the MVH is the
optimal hedge ratio if the current futures price fis an unbiased predictor of the posterior futures
price . ,, regardless of the decision maker's degree of absolute risk aversion (Benninga, Eidor,
and Zilcha). In addition, the MVH is the optimal hedge ratio for extremely risk-averse decision
makers (Kahl). Because of these atmributes, and also bcca;lse of the apparent easiness-of the

| empirical calculation, the estimation of the MVH has been the focus of numerous applied studies.
Implicitly or explicitly, all such studies use the PCE approach, that is, they estimate Fpp by means

of FPCE:

(3.5) Fpg= 22 Q
i

where &pf and &ff stand for the sample estimates of Covy{py,,. f1,,) and Var(f, ), respectively.

Different methods have been applied to obtain the MVH estimate Esp[/&ﬁ.- A popular
technique consists of regressing cash on futures prices employing historical data, and using the
futures price regression coefficient as the estimated MVH. Examples of studies applying this
approach (or some variation of it) are Ederington; Hayenga and DiPietre; Stewart Brown; Witt,
Schroeder, and Hayenga; Wilson; and Myers and Thompson. Other authors advocate the use of
GARCH models (Baillie and Meyers) and conditional forecasts (Peck) to estimate the MVH. For

illustrative purposes, in Table 1 we reproduce MVH estimates for a set of agricultural

I'The second order condition for a minimum is always satisfied because Varf{fr, ) >0.



Table 1. Estimates of the minimum variance hedge ratio

Study Comn Soybeans  Wheat Beef Cows Hogs

Myers and Thompson 0.85-1.04 0.87-1.12 0.61-1.10

Ederington 0.76-1.02 0.78-0.92

Baillie and Myers" 0.09-1.53 0.22-1.17 (-0.06)-0.40

Mathews and Fackler 7 0.55-1.04 0.86-0.95
Mathews and Holthausen 0.84 0.93

*The estimates by Baillie and Meyers correspond to the ratio of the values of the futures and cash positions.
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commodities. The different MVH estimates correspond to alternative methods and/or data sets.
Even though the collection in Table 1 is by no means exhaustive, the large range of the
estimated MVHs for each particular commodity is striking. The values reported in Table 1 suggest
that estimation risk is important in the case of the MVH. But if estimation nisk exists, then the
sample estimate of the MVH need not lead to the optimal decision. Moreover, the stated properties
of the MVH (i.e., optimality under unbiased futures prices or extreme risk aversion) hold under

PPI conditions, but they do not necessarily hold in the presence of estimation risk.

Using Bayes criterion to derive the MVH in the presence of estimation risk

In the PPI case, utility is given by U[R(d, y)] = - Var(n;, ), with Rd, y) =7y, |, d =F,
and ¥ = (Py, ;. fr,,)". To be consistent with the variance-minimizing principle that underlies the
MVH, we will assume that the utility under estimation risk is U[R(d, y)] = - C,p, With G, being
the predictive vaniance of income conditional on the information at date T. Then, applying a
derivation analogous to that of expressions (3.1) through (3.4), the futures positdon that minimizes

the predictive variance of income is

(3.6) Fguy= —2E Q
Ciip

where Cpp is the predictive covariance between futures and cash prices, and oy is the predictive
variance of futures prices. We use the subscript BAY to identify the hedging solution obtained by
application of Bayes criterion (i.e., by using the predictive pdf). The hedge Fy , is the
counterpart of Fpp; in the presence of estimation risk.

The exact form of the rato cpﬂchtP depends on the functional form of the predictive pdf.
In this paper, we will analyze two particular scenarios based on the multivariate normal
distribution. For our purposes, the most important result regarding the multivariate normal
distribution is the relationship between prior, posterior, and predictive pdfs. These are available in

Airchison and Dunsmore, and summarized below.
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Assume that the as yet unobserved (& x 1) random vector y is k-variate normal and
independently distributed with unknown mean vector | and unknown covariance matrix Z. Let the
sample data consist of the (T x k) matrix X of T past observations, with sample estimates of the

mean vector and the covariance matrix given by

u=1X/T
X-1RY X-1EWT-1)

o
I

where 1 is a (T X 1) vector of ones. Let the prior information regarding the unknown mean vector
it and the unknown covariance matrix I be represented by the k-variate normal pdf (3.7) and the 4-
variate Wishart pdf (3.8), respectively.
' k

3.7 pully) = £y, Z/7)

-1 Qe -1

3.8) pE I =T g V)
Then, the prcdiétivc pdf of y is k-variate Student-f with (v + T) degrees of freedom as follows

3.9 paX, Ip) = £ wiup, Zp v+ D

where: o= Yy +(1-0) N

v+ T 1 - “ -

=(——) 1+ —— 1-w) s - - T

Zp (V+T_2)( +T+T)[m,,20+( w) I+ (1-0)0- L) 0@-uy)]
w0, =7(1+T7)

0, =v(v+T)
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The prior mean vector Y, represents the decision maker's beliefs regarding the unknown
mean vector jf. The degree of confidence in this prior mean vector is measured by the positive
scalar 7. The situation of complete knowledge about i is represented by the limit of 7as it
approaches infinity, and zero prior knowledge is represented by the limit of 7 approaching zero.
Complete knowledge regarding y means that the agent is completely certain that 4 = i, in which
case lp = [y Itcan be seen that the predictive mean YL, is a weighted average of the prior and the
sample means, As expected, the weight given to the prior (@, ) decreases as the amount of sample
information (7) increases relative {o the amount of prior information (7), thus yielding a predictive
mean Y, closer to the sample mean ﬁ

The Wishart distribution (3.8) used for the prior of the covariance matrix is, loosely
speaking, a multivariate generalization of the Chi-square distribution; the Wishart distribution
applies to a covariance matrix rather than to a scalar variance. The prior covariance matrix X,
denotes the decision maker's prior beliefs about the unknown covariance matrix X. The positive
scalar v measures the decision maker's degree of confidence in Z; the degree of confidence in
increases with v. Complete certainty (lack of knowledge) about Z is modeled by letting v approach
infinity (zero). The predictive covariance matrix Z, is a weighted average of the prior and the
sample covariance matrices plus a term involving the difference between the sample and the prior
mean vectors. The weight assigned to the prior covariance (,) approaches unity as the decision
maker becomes more confident about Z, (i.e., as v increases); therefore, the predictive covariance
matrix Zp approaches the prior covariance matrix when the agent is very confident about 2. In |
the case of perfect knowledge about X, v tends to infinity and @, equals unity; hence,

Ip= Lo = L. In this limiting instance, the predictive pdf of y becomes k-variate normal because
the k-variate Student- pdf approaches the former pdf as the degrees of freedom tend to infinity.

Note that Z, is also affected by the difference between the prior and the sample mean
vectors. The reason for this secondary effect is that the discrepancy between the prior and the
saumple mean vectors adds another source of variability. The importance of this additional

variability is greater when the relative confidence in the prior imean vector and the sample
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covariance matrix are both large [i.e., w_and (1 - @) close to one, respectively]. The greater the
confidence in the prior mean vector, the greater its relevance; similarly, the greater the relative
quality of the sample covariance matrix, the greater the accuracy of the sample mean vector.

We will now apply the stated result concerning the predictive pdf p(yIX, I} of a k-variate

normal joint pdf p(yl0) to obtain the solutions for Fy,y under two alternative scenarios, namely,

Case (i). Cash and futures prices are independently bivariate normally distributed with unknown

mean vector up and unknown covariance matrx Zp:
(3.10) p(u1) = £l Z)

where: p = (pr, s )’

Ky = (Mg, Hp)'
= Cpp pr)
% (pr Ot

Case (ii). The natural logarithms of cash and futures prices are independently bivariate normally

distributed with unknown mean vector i, and unknown covariance matrix Zy:

(3.11) pv®) = £, Z)

where: [ = (IP, 1
IP =In(pr, ;)
fp=In(Er,y)

14.1 = (lllp» l-uf).

§1=[mplp Gfpzf]
Oldy  Olglg
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Cases (i) and (11) were chosen because they have been frequently used in modeling the MVH, and
also because they yield closed-form solutions for the ratio O/ Oggp- It CaN be argued that it is more
realistic to hypothesize that the net returns -not the price levels- are normally distributed, but it is
straightforward to show that the solution under such assumption is essentially the same as that for
Case (i). Similarly, if it is assumed that the logarithms of returns rather than the logarithms of
prices are normally distﬁbutcd, the solution is basically the same as that for Case (ii). Hence, to

save space we will concentrate our attention on Cases (1) and (11) only,

Case (i). When prices are bivariate normally distributed as stated in (3.10), the ratio of the

predictive covariance to the predictive variance is

@, 0,0+ (1-0)0 +a (1-0,) M, -1ty (- Hep)

Optp
(3.12) = - - 2
Ogp W, Gt (1-0)0+ 0, (1-0,) (- He)

where the subscript O identifies the priors and the hat denotes the sample estimates.!

As it was discussed before, both @, and w,, approach one when the decision maker is much
more confident about his prior beliefs than about the sample estimates. In such circumstances, the
ratio crpmlom, in (3.12) simplifies to cpmlcm), which is the same as the PPI minimum variance
hedge ratio (3.4). The opposite situation arises when the sample size is so large compared to the
strength of the prior beliefs that the relative weights @_and w, both approach zero. In this
instance, the ratio Cotp/ Orp in (3.12) collapses to &pf’I&ff and is equal to the ratio found using the

PCE approach (3.5). Case (i) may convey the incorrect idea that it is always true that Fg . = Fpp

IExpression (3.12) was obtained by using the following result concerning the multivariate Student-f pdf
(Zcllner, p. 388): If w=Ly where L isa (k; x k) matrix of rank k; < k and y is a (k X 1) random vector

distributed as the &k-variate Student-r shown in (3.9), then w is distributed as & ;-variate Student-r with pdf
{ky)
f‘a‘

(wLup LZpL, v+
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when prior information is negligible (i.e., when both @, and w, tend to zero). Case (ii) below
shows that the equivalence between the Bayesian and the PCE solutions in the absence of prior
information does not hold in general.

It is interesting to note that even if the decision maker's prior beliefs about the variance and
covariance are such that @, tends to zero, the ratios from the Bayesian criterion (3.12) and the PCE
(3.5) may still be different. In general, this will happen if the individual attaches some weight to
his prior beliefs about the mean vector (i.e., @, > 0} and the sample futures mean is not the same as

the prior futures mean (i.e., {1, # Ho)- In such event, the ratio O, »/Cpp in (3.12) will be
f p ftP

(3.13) 2 Opr+ ©Or (B - Byo) (¢ - Keo)
. B C - 2
O Oge + 0o (e - Hp)

which is different from &p‘léﬁ. The reason for this result is that the discrepancy between prior and

sample means is an additional source of variability.

Case (ii): Under the assumptions stated in (3.11), the ratio of the predictive covariance to the

predictive variance can be shown to equall

(3.14) Optp = exp(9,) exp(¢,./2) [exp(d,p) - 1]
Ogp  exXp(d) exp(9/2) [exp(dg) - 1]

1To derive expression (3.14), three siatistical results were employed. First, the k-variate Student-r pdf in

(3.9} was approximated by the k-variate Normal pdf f]{f) (¥lp, (v + AV +T - 2) Zp) (Johnson and Kotz, p. 101).

This approximation was done because, strictly speaking, the predictive covariance and variance of prices does not
exist if the logarithms of prices follow a bivariate Student-s distribution.

Second, that if v=L z. where L is a (£ 1% k) matrix of rank & 1 S kand z is a (k x 1) random vector
distributed as k-variale Normal with mean vector i, and covariance malrix Z,. theny is distributed as & ;-variate

Normal with mean vector L L, and covariance matrix L Z,‘ L' (Zelincr, p. 382).
Third, that if y = (ul,..., ug)'is a {k x 1) positive random vector such that ¢ = In(y) is k-variaic Normaity
distributed with mean vector U= (ucl,.... pek)' and covariance matrix Ze = (G""iej)‘ then (Press, p. 149)

cov(ui, 4j) = explite; + He; + (Teje; + Oeje))/2 + Oejej] - €xplUe; + He; + (Oee; + Seped/2]i i, j = L. &
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where: ¢. = @ Wi+ (1- @) pii,j=p. €

v+ T

3 (1+ —

S — )
v+T-2 T+ T

¢jj =
[0, Gl +(1- @) 61i1j +0, (1- ) (1 - Big) (ﬁ,}_ -l i j=p.f

and exp(-) denotes the base of the natural logarithms raised to the power (-).

If prices are distnibuted as shown in (3.11), the PCE estimator of the MVH can take several
forms depending on the technique used for estimation. For example, employing the nonparametric
unbiased estimators of the covariance and variance yields

T - -
(3.15) Gy 5 P Hp) (o mo

T ~ 2
% 3 (- h
=

whereas the maximuom likelihood estimator gives

(3.16) é‘ﬂ _ exp(}‘un) exp[(1l - I/T) é’n’nlzl {exp[(1 - 1/T) &’n’r] - 1)
"7 G expQup expl(l - 1/T) Gigy/2] {exp[(1 - UT) Gugy] - 1}

Still other PCE estimator is given by the uniformly minimum variance unbiased estimator
(Shimizu), which is a complex function of the sample estimates ﬁfp, fur, Erxpzp, Enpzf, and ézfzf. In
general, none of these estimators is identical to the Bayesian ratio (3.14), even in the limiting case
in which the decision maker has no prior information (i.e., , = ®_=0). This result shows that it
is not always true that Fg, y = Fpp when there is no prior information about the parameters.
Therefore, the equivalence between the Bayesian and the PCE solutions in the absence of any prior
information found in Case (i) depicts a very special situation and cannot be generalized.

It is worth noting, however, that the PPI MVH in (3.4) is nested in the Bayesian solution
in both Cases (i) and (ii) [i.e., in expressions (3.12) and (3.14)]. This observation can be easily

proven by increasing both v and 7to infinity, which represents the case of complete confidence
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about the priors. This result always holds because the posierior pdf under PP gives probability
one to the parameters being equal to the priors; therefore, integrating over the parameter space does
not make any difference and expression (2.2) collapses to (2.1).

In Tables 2, 3 and 4, we report the results of simulations regarding the PPl ratio in (3.4),
the PCE ratio in (3.5), and the Bayesian ratio for Case (i) (3.12).12 The parameter values in the
simulations are arbitrary but realistic; the means and variances employed reflect a coefficient of
variation of approximately 16 percent, and the differences between the prior and the sample price
means are either zero or one standard deviation.

Table 2 contains the results for the case in which the prior and the sample futures means are
identical. The values in this table are unchanged regardless of the difference between the prior and
sample cash means, The reason for this result is that the additional variability caused by the
difference between the prior and sample means vanishes if the prior and sample futures means are
identical3 The top and bottom four rows of Table 2 show that when the prior and sample means,
variances, and covariances are all equal then all three methods provide similar results. The fifth
row shows how the results change if the sample covariance is one half as large as the prior, and the
individual has three times as much confidence in the sample as in the prior. In the PPI and PCE
scenarios we ignore these confidence weights. The PPI individual ignores the sample information
and places a full hedge. The PCE individual places full weight on the sample and hedges only half
as much as under PPL If the weights on the prior and sample information change then the
Bayesian position changes but the other two do not.

Table 3 summarizes the results for the case in which the prior exceeds the sample futures
mean by one standard deviation and the sample cash mean is identical to the prior cash mean. The

top line of this table presents an example in support of the most surprising results of these

1The simulations consisted of solving for the MVHs in expressions (3.4), (3.5). and (3.12) under particular
values of the independent variables. )

2The resulis for Case (ii) are similar in terms of the differences among the solutions for the three altemative
methods.

3The difference between the prior and sample cash means affects the predictive cash variance, but this is not
involved in the MVH.
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Table 2. Minimum variance hedge ratios for prior and sample futures means (|4, and ;:tf) equal to
10, and prior and sample futures variances (O, and 6rr) equal to 2.56

Covariance Relative Strength of Prior  Min. Variance Hedge Ratio Corresponding to
Prior  Sample Mean Variance Bayes Cnit. PCE PPI]
2.56 2.56 0.25 0.25 1.00 1.0 1.0
2.56 2.56 0.25 0.75 1.00 1.0 1.0
2.56 2.56 0.75 0.25 1.00 1.0 1.0
2.56 2.56 0.75 0.75 1.00 1.0 1.0
2.56 1.28 0.25 0.25 0.62 0.5 1.0
2.56 1.28 0.25 0.75 0.88 0.5 1.0
2.56 1.28 0.75 0.25 0.62 0.5 1.0
2.56 1.28 0.75 0.75 0.88 0.5 1.0
1.28 2.56 0.25 0.25 0.88 1.0 0.5
1.28 2.56 0.25 0.75 0.62 1.0 0.5
1.28 2.56 0.75 0.25 0.88 1.0 0.5
1.28 2.56 0.75 0.75 0.62 1.0 0.5
1.28 1.28 0.25 0.25 0.50 0.5 0.5
1.28 1.28 0.25 0.75 0.50 0.5 0.5
1.28 1.28 0.75 0.25 0.50 0.5 0.5

1.28 1.28 0.75 0.75 0.50 0.5 0.5
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Table 3. Minimum variance hedge ratios for prior futures mean () equal to 11.5, sample futures
mean (ﬁlf) equal to 10, prior and sample cash means (upo and ﬁp) equal to 10, and prior
and sample futures variances (Ggy and E)’”) equal to 2.56

Covariance Relative Strength of Prior Min. Variance Hedge Ratio Corresponding to
Prior  Sample Mean Variance Bayes Crit. PCE PPl
2.56 2.56 0.25 0.25 0.86 1.0 1.0
2.56 2.56 0.25 0.75 0.95 1.0 1.0
2.56 2.56 0.75 0.25 0.67 1.0 1.0
2.56 2.56 0.75 0.75 0.86 1.0 1.0
2.56 1.28 0.25 0.25 0.54 0.5 1.0
2.56 1.28 0.25 0.75 0.83 0.5 1.0
2.56 1.28 0.75 0.25 0.42 0.5 1.0
2.56 1.28 0.75 0.75 0.75 0.5 1.0
1.28 2.56 0.25 0.25 0.75 1.0 0.5
1.28 2.56 0.25 0.75 0.60 1.0 0.5
1.28 2.56 0.75 0.25 0.59 1.0 0.5
1.28 2.56 0.75 0.75 0.54 1.0 0.5
1.28 1.28 0.25 0.25 0.43 0.5 , 0.5
1.28 1.28 0.25 0.75 0.47 0.5 0.5
1.28 1.28 0.75 - 0.25 0.34 0.5 0.5

1.28 1.28 0.75 0.75 0.43 0.5 0.5
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Table 4. Minimum variance hedge ratios for prior futures mean (L) equal to 11.5, sample futures
mean (}:1[) equal to 10, prior cash mean (1,0 equal to 11.5, sample cash mean (;:lp) equal
to 10, and prior and sample futures variances (O and (3”) equal to 2.56

Covariance Relative Strength of Prior Min. Variance Hedge Ratio Corresponding to
Prior  Sample Mean Variance Bayes Cnit. PCE PPI
2.56 2.56 0.25 0.25 1.00 1.0 1.0
2.56 2.56 0.25 0.75 1.00 1.0 1.0
2.56 2.56 0.75 0.25 1.00 1.0 1.0
2.56 2.56 0.75 0.75 1.00 1.0 1.0
2.56 1.28 0.25 0.25 0.68 0.5 1.0
2.56 1.28 0.25 0.75 0.88 0.5 1.0
2.56 1.28 0.75 - 025 0.75 0.5 1.0 -
2.56 1.28 0.75 0.75 0.89 0.5 1.0
1.28 2.56 0.25 0.25 0.89 1.0 0.5
1.28 2.56 0.25 0.75 0.64 1.0 0.5
1.28 2.56 0.75 0.25 0.92 1.0 0.5
1.28 2.56 0.75 0.75 0.68 1.0 0.5
1.28 1.28 0.25 0.25 0.57 0.5 0.5
1.28 1.28 0.25 0.75 0.53 0.5 0.5
1.28 1.28 075 . 025 0.66 05 0.5

1.28 1.28 0.75 0.75 0.57 0.5 0.5
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simulations. This row compares the three optimal hedges when the prior and sample variances and
covariances are similar, but where the prior and sample futures means are different. Intuitively,
one would not have expected the hedge ratio to change under these circumstances, and yet the
Bayes criterion ratio is different from the PCE or PPL. The intuition here is that the difference
between the sample and prior futures means is another source of variability which increases the
predictive futures variance. This result is important because it represents a realistic scenario where
the decision maker is naive about the variance and covariance terms but has prior about the futures
mean (e.g., the decision maker might have insider information about the futures mean).

Table 4 reports the results from the simulations assuming that each prior mean is one
standard deviation larger than the respective sﬁnple mean. The Bayes MVH:s in this table are
larger than those in Table 3 because the numerator in expression (3.12) increases with the
difference between the cash means. The Bayes MVHs in the top four rows are the same as the
PCE and PPI MVHs because of a very special scenario: the differences between the prior and

sample means are identical, and the PPI and PCE MVHs are identical and equal to one.

Summary and Conclusions

Decision making models generally assume perfect parameter information (PPI), i.e., that
the true parameters characterizing the joint probability density function (pdf) of the relevant random
variables are known. In most applications, however, the true parameters are not known, that is,
there is estimation risk.

Bayes decision criterion provides a way of dealing with estimation risk in a manner
consistent with expected utility maximization. This approach assigns a pdf for the unknown true
parameters based on sample and prior information, and uses this pdf to integrate the original
objective function over the parameter space; optimization is then performed over the resulting
integral. Bayes criterion has been used in statistics and finance, but has been neglected in

agricultural economics. The standard technique employed in agricultural economics is the
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parameter certainty equivalent (PCE). The PCE consists of substituting the sample estimates for
the unknown true parameters in the PPI decision rule. The PCE approach is easier to implement
than Bayes criterion, but not consistent with expected utility maximization. Moreover, the PCE
decision rules are generally different from the Bayesian decision rules.

In this paper, estimation risk is discussed in general terms and Bayes criterion is presented
and its properties are compared with the PCE. Bayes criterion is then applied to obtain the solution
of the minimum variance hedge ratio (MVH).

The MVH is the ratio of futures to cash positions that minimizes the variance of income,
given a particular cash position, Empirical estimation of the MVH has been the subject of many
studies employing the PCE approach, and is a clear example of a problem involving estimation
risk. Bayesian MVHs are derived for two scenarios, one assuming that cash and futures prices are
bivariate normally distributed, and the other assuming that the logarithms of cash and futures prices
are bivariate normally distributed. In both scenarios, the Bayesian solutions to the MVH are
functions of weighted averages of sample and prior parameters, with weighing factors that depend
on the relative qualities of the sample and prior information.

Simulation results reveal that discrepancies between prior and sample parameters may lead
to substantial differences among the PPI, PCE, and Bayesian solutions for the variance-minimizing
hedge ratio. Such discrepancies also highlight the superiority of Bayes criterion over the PCE or
the PPI approaches in the sense that neither of the latter two methods yield decision rules which
combine sample and prior (or nonsample) information.

The PCE decision rule only takes into consideration sample information and neglects any
prior information, and the opposite is true of the PPI decision rule. Only the Bayesian decision
rule blends both types of information in a manner consistent with expected utility theory, Thisisa
highly desirable property of the Bayesian approach because it is common for the decision maker to
have available prior information but not be completely certain about it. In the MVH example, prior
information could well be represented by the agent’s knowledge about the market, by insider

information, or by opinions from market experts. Neither of these sources of information matters
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when using the PCE technique, ¢.g., the PCE MVH remains unmeodified even if the decision
maker receives insider information from a reliable source. This charactenstic is clearly

unacceptable, yet it is intrinsic to any PCE decision rule.
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