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ESTIMATION RISK WHEN THEORY MEETS REALITY

Abstract
Estimation risk occurs in the almost universal situation where parameters of importance for
decision making are not known with certainty. Bayes' criterion is the procedure consistent with
expected utility maximization in the presence of estimation risk. Three interrelated problems in the
presence of esimation risk are analyzed: (i) the choice of the utility-maximizing decision rule in a
mean-variance framework, (11) the calculation of certainty equivalent returns, and (iii) the valuation

of additional sample information.
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ESTIMATION RISK WHEN THEORY MEETS REALITY

Whenever econornic analysis involves incorporating estimated parameters into theoretically
derived decision rules, the optimal outcorne will depend on the estimation procedure. Decisions
such as opumal levels for the export tax (or import subsidy), output, resource allocation, and
research expenditures or the optimal portfolio are usually determined in this manner and resuits are
provided that appear robust to several decimal places. The individual involved in estimating these
parameters is, however, left with a vague sense of unease. Relatively small changes in the
estimation procedure or in the number of data observations can change the magnitude and even the
sign of important decision variables. This problem is called estimation risk (Bawa, Brown, and
Klein) and the traditional procedure of substituting the sample parameter estimates for the true but
unknown parameters is known as the plug-in approach. The incorrect use of the plug-in approach
can have important consequences [Klein et al., Chalfant, Collender, and Subramanian (CCS)].
The correct procedure is to acknowledge the presence of estimation risk both when developing the
theoretical model and when incorporating the estimated parameters into the derived decision rule.

Several studies have explicitly accounted for estimation risk in the financial literature (e.g.,
Boyle and Ananthanarayanan; Bawa, Brown, and Klein; Coles and Loewenstein; Chen and
Brown; Alexander and Resnick; Jorion; Frost and Savarino; Lence and Hayes). But despite the
pervasiveness and the obvicus importance of estimation risk in agricultural economics, the problem
has been largely ignored in this area until recently. Two exceptions are CCS and Collender. |

The purpose of this study is to reexamine three interrelated analytical problems and show
how the presence of estimation risk justifies changes in the way each is solved. The first problem
examined is the choice of the utility-maximizing decision rule in a mean-variance framework, the
second is the calculation of certainty equivalent returns, and the third is the valuation of additional
sample information. First, we set up the framework of analysis more formally and introduce our
notation. Then, we examine each of the three problems in turn. Finally, we summarize the

findings and draw conclusions.



Decision Making in the Presence of Estimation Risk
Consider a decision maker characterized by a von Neumann-Morgenstern utility function of
terminal wealth [U(x), U' >0, U" £0}. Let wealth be a function of a vector of random variables x
=y,,, and a decision vector / [i.e., w(x, ). If terminal wealth were known with certainty, the

optimal decision vector [ could be easily found by maximizing utility with respect to /, i.e.,
(1.1) [ =argmax,_ \Uln(x, 0],

where A is the set of all possible decisions. But because x is random, wealth is also random and
utility is not known with certainty at the decision time; therefore, it is generally hnpoésible to
choose a decision vector that maximizes utility for all possible realizations of the random vector x.
Under uncertainty, the optimal decision vector [* is usually considered to be the one that maximizes
expected utility. According to the expected utility paradigm, the decision maker's objective

function is represented by

(1.2} max; . \E o{Ulr(x, D]} = max, _ AXJ Uln(x, ] 4(x10) dx,

where E(-) represents the expectation operator, X is the domain of x, f 4(x10) is the probabi_h'ty
density function (pdf) of x given 0, and 0 is a known vector of parameters that characterizes the
pdf. By letting £(8, /) =- E (U), the objective function in (1.2) can be alternatively expressed as

(1.3) max,_,E o{Uln(x, D]} = min,_ ,£(8, ).

The function £(8, /) is called the "loss function” in statistical decision theory.



As long as the parameter vector 9 is known, it is relatively straightforward to find a
decision vector /* that minimizes the loss function (or maximizes the expected utility). If 8 is not
known, however, the optimization as stated in (1.2) or (1.3) cannot be performed because, in
general, there is no decision vector that minimizes the Ioss function for all possible values of 8. In
this situation, there is estimation risk. Under estimation risk, the method by which an optimal
decision vector can be obtained in a manner consistent with expected utility maximization is Bayes'
decision criterion (Klein et al., DeGroot). |

Bayes' decision criterion can be summarized as follows. Let the decision maker's prior
beliefs regarding the parameter vector be represented by the prior pdf p(8). Consider having
available y = (y,..., y ), a sample of size n generated by the same process that generates x. The

optimal (Bayes') decision rule [B is the solution to the objective function
(1.4) min,_ \E o (E J[£06, H]} = min, _, é J £6.1) £,4(18) p(®) dy db,

where Y denotes the sample space and fyle(ylﬁ) is the pdf of y given 6. If no data are available, the
objective function is simply min, AEp(a)[ﬁe, D]. Hence, lack of sample data does not prevent the
agent from being able to make an optimal choice; if sample data are available, however, the agent
will use them to improve the information about the unknown true parameter vector 8 and make a
more informed decision.

The function Ep(e){EyIB[£(9’ D1} is called Bayes' risk of a decision rule [ with respecft to
the prior pdf p(8). Comparison of (1.2) and (1.4) reveals that they are entirely analogous: in
(1.2), expectations are taken to eliminate the random vector x, whereas in (1.4) expectations are
taken to eliminate the agent's uncertainty regarding the true but unknown parameter vector 6. We
will exploit this analogy later to provide the intuition of why decisions under estimation risk that
are unbiased estimators of the optimal decisions in the absence of estimation risk (/*) are generally

suboptimal according to the expected utility paradigm.



Bayes' decision ruie can be calculated in an alternative way. If £(8, [) is bounded below,

Fubini's theorem can be invoked to interchange the order of integration in Bayes risk and get
(1.5) Ep(e){Eyle[fl(B, Dj} = }}[ é £0, D f,0r16) p(e).d‘c’) dy
(1.59 =1J' [ é £(8, ) fp(ely)(ely) d9 ] f,0) dy

= E{E g,y [£(8. D1},

where fp(9|y)(9ly) is the posterior pdf of 6 and fy(y) is the marginal pdf of y. Bayes' theorem is
used to obtain (1.5") from (1.5).! Because fy(y) is positive, minimizing Bayes risk with respect to

[ 1s equivalent to minimizing the term inside brackets in (1.5") with respect to [, i.e.,

(1.6) min, \E g (E,o[£(6, D]} = min; _ ,E o [£(8, D].
The term Ep(Biy)[f’(e’ D] is called the posterior expected loss of the decision /. The left-hand side
of (1.6) is the "normal form" of Bayes' criterion, whereas the right-hand side is the "extensive
form" (Raiffa and Schlaifer). |

When written as in (1.5%, an important sampling property of Bayes' decision rule £ is
highlighted. Expression (1.5" tells us that Bayes' rule yields, on average, the minimum loss -for
the prior p(B). That is, if we were able to take an infinite number of y-type data samples and
average the corresponding losses, Bayes' decision rule is such that the average loss is minimum
for the prior p(8). This resuit relates to the problem analyzed by CCS, i.e., the sampling

properties of alternative decisions under estimation risk. Expressions (1.4) and (1.5') te us that

1 According to Bayes' theorem, pla, e) = p(e) plale) = p(a) plela), and therefore plale) = p(a) p(ela)/p(e), where
pla, e} is the joinr pdf of any pair of random vanables a and e, p(ale) and p(ela) are the conditional densities, and p(a)
and p(e) are the marginal densities.



Bayes decisions are the ones that yield, on average, the smallest loss (i.e., the greatest expected
utility).

We now provide an intuitive argument as to why optimal decisions under risk need not be
unbiased and then extend the intuition to decisions in the presence of estimation risk. Consider the

utility function
(1.7) Uln(x,D}=Ulpg-c(g)].c'>0,¢">0,c" >0, c(0) =0,

where p denotes price, g represents production, and c(g) is the cost function. In this problem, we
have x = p and [ = gq. If price is known with certainty, the quantity that maximizes utility is q,
where qc satisfies the first-order condition p = c(@). As explained before, however, production
cannot be chosen in this way when p is random. If expected utility theory is applied to optimize
production in the presence of random prices, Sandmo has shown that the decision maker will
produce ¢g*, where g* is such that E(p) 2 ¢'(g*). In other words, because of price uncertainty, the
agent will produce strictly less (if U" < 0) or the same (if U" = 0) than would be produced if it
were known with certainty that p = E(p) at the decision time {i.e., g* < qc[E(p)] }. The magnitude
of the difference between g* and g E®) depends on the utlity function. By application of
Jensen's inequality (Berger, p. 40), it can be shown that E{g"(p)] < qcfE(p)]; the magnitude of this
difference is independent of the utility function. Therefore, ¢* # E[¢°(p)] in general, i.e., optimal
production under uncertainty (¢*) is generally a biased estimator of the optimal production under
certainty {E[qc(p)]}. An alternative interpretation is that if the agent under uncertainty produced g
= E[qc(p)] rather than g = g, he would generally be making a suboptimal choice according to the
expected utility paradigm. This suboptimality arises because, according to the expected utility
paradigm, the optimal decision under uncertainty (*) is not an estimate of the optimal decision
under certainty () (Klein et al.).

Now, assume for simplicity that the loss function corresponding to (1.7) is



(1.8) £06, 1) = £[E(@) ¢ - c()], £ < 0, £" > 0.

If 8 = E(p) is known with certainty, the production level that minimizes the loss is ¢*. If E{p) is
not known with certainty, however, some arbitrary optimizing decision method must be used. If
(consistent with expected utility maximization) Bayes' criterion is used, we can draw inferences
regarding the optimal (Bayes) production under estimation risk (q ). Bayes produchon under
estimation risk 1s such that Ep[E(p)!y][E(p)] > c'(q ) and in general q # EPIB@)Iy]{q*[E(p)] }, where
Ep{E(p)ly]{q*[E(p)]} is the unbiased estimator of the optimal production level in the absence of
estimation risk. Hence, if the agent produced g = EP[E(p)ly]{q*{E(p)}} under estimation risk, he
would generally be making a suboptimal decision from the standpoint of Bayes' criterion.

In summary, if the optimization problem under estimation risk is solved in a manner
consistent with the expected utility paradigm, decisions that are unbiased predictors of the
decisions that had been taken in the absence of estimation risk are generally suboptimal. This is
because, in a framework consistent with expected utility maximization, the optimal decision under
estimation risk ([B ) is not an estimate of the optimal decision in the absence of estimation risk (%)
(Klein et al.).

In the next section, we will apply the concepts just introduced to mean-variance land
allocation under estimation risk and we will derive the Bayesian allocation vector. It will be seen
that the Bayesian allocation is a biased predictor of the optimal allocation in the absence of

estimation risk but yields a smaller expected loss than does an unbiased allocation.

Land Allocation under Estimation Risk
In a recent contribution, CCS analyzed the sampling properties of the land allocation vector
obtained using the plug-in approachin a mean-van‘a.ncc framework. Among other results, they
showed that the plug-in allocation vector is a biased estimator of the optimal allocation in the

absence of estimation risk. They pursued this matter further and proposed an alternative allocation



vector, also based on the sample mean vector and covariance matrix but featuring unbiasedness.
They proved that the proposed allocation yields greater expected utility than does the plug-in
allocation. B-y explicitly incorporating estimation risk, CCS improved on the plug-in approach.
However, as we discussed in the previous section, the optirnal decision vector need not be
unbiased. The purpose of this section is to use the tools presented earlier to derive the utility-
maximizing decision vector for the land allocation problem examined by CCS.

In the notation employed in the previous section, CCS's land allocation problem can be

summarized as follows:

(2.1) Ulr(x, D] = - expl- r n{x, D],

2.2) =wlx,hH=1x,

(2.3) I=(y... )5 20fri=1.. kI <L,
(24) x=y,,.,=&,.Hx),

(25) f0(x18) = N,(xl, 5,

where 1, is a (k X 1) vector of ones and N, (-) represents the k-variate normal pdf. The utilitj(
function is characterized by constant absolute risk aversion, with r denoting the Arrow-Pratt
coefficient of absolute risk aversion. Terminal wealth [r(x, /)} equals the sum of the product of
returns per acre (x;) times the corresponding number of acres planted (/;) with each crop. The
decision vector (/) comprises the land allocated to each crop. The restrictions on the decision
vector are that (i) the number of acres planted with any crop cannot be negative (/; 2 0), and (i) the

total number of acres planted cannot exceed the total farm acreage (/' 1, <L). The random vector is



that of returns per acre (x =y, ,,), which is assumed to follow a k-variate normal distribution with
mean vector [L and covariance matrix X.

Under the stated assumptions, the loss function has the closed-form solution
(26) £0,D=cxpl-rlu+ 5 r ITD,

If the nﬁean vector W and the covariance matrix £ were known by the decision maker, minimization
of the loss function (2.6) with respect to the feasible decision vector / would yield the optimal land
allocation under uncertainty [*. Noticing that this loss function is monotonically decreasing in (' il

- rI' 2 1/2), the solution can be easily found by maximization of the Lagrangian function
@7 L=lp-5rlSi+AL Iy,

where A is the Lagrangian multiplier corresponding to the total acreage restriction. Assuming an
interior solution and that land is conswraining (i.e., A > (), the first-order conditions for the

maximization of (2.7) can be expressed in matrix form as

oo |12 0

The premultiplying [(k + 1) X (k + 1)] matrix in the left-hand side of (2.8) is symmetric and can be
inverted by applicaton of Theorem A.3.3 in Anderson (p. 594) to yield

v f-1

0 L, B C'
(2.9) = ,
1 ry C 1/r D

where: B = - r (1, x! t‘,c)'1

b

c=x" L2 )

S R S S S|
D= -Z%Z L' X (2 ).



By employing the result in (2.9), the optimal land allocation in the absence of estimation risk can
be shown to equal

(2.10) =~ Dp+CL.

But in the presence of estimation risk regarding W and X, the land allocation problem cannot
be solved by direct minimization of (2.6). We will therefore apply Bayes' decision criterion to
calculate the land allocation vector under estimation risk I, To do $0, it is necessary to postulate a
prior pdf for the unknown parameters. To simplify the exposition and to avoid criticisms
regarding the reasonability and subjectivity of any particular informative prior, we will postulate a
"non-informative” or "diffuse" prior for 4 and £. This is equivalent to hypothesizing that the
decision maker has no information about the parameters other than that provided by y = O
¥, a (k X n) matrix consisting of » past observations on the vector of crop returns. Under the
combined assumptions of a non-informative prior and a k-variate normal distribution of returns,
the posterior pdf of the mean vector and the covariance matrix is k-variate normal-Wishart of the

form (DeGroot)
1A anl
211 g0 = NW,u, T3, £ - 1)
= N, =) W s i - 1y 87, m - 1,

where: ﬁ =y /n,

Z=@-py) O-p)e- ),
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and W,(-) denotes the k-variate Wishart pdf. Given the posterior pdf (2.11), the posterior
expectations of the mean vector }1. and the covariance matrix X are E (W) = i and E a,(E) =
(n-1Yn-k-2) 3, respectively (Anderson, p. 270).

" An approximate solution to the posterior expectatioh of the loss function (2.6) can be
obtained by adopting a relatively mild assumption.?2 This assumption consists of approximating
the k-variate Student-¢ pdf S k(xlf,t, ", n - k) with the k-variate normal distribution Nk[xlﬁ, (n-
kY (n - k-2)Z"] (Shimizu, p. 199). To this end, it is more helpful to analyze the problem in terms

of the predictive pdf as follows. The posterior expected loss function ¢an be rewritten as
(2.12) E 5,y[£(8, D] = g £(8, fp(e‘y)(ely) de

=é{ {-}J Uln(x, D] f 4(xi10) dx } fp(my)(ely) do

= -Xj Ulr(x, D) [ é f o(x10) fp(ely)(ely) df 1 dx

(xly)y dx

=- | Uln(x, D1 £,

(2.129 =- E, {Ulr{x, D1},

where fﬁy(xly) is the predictive pdf of x given y (Aitchison and Dunsmore). Note that the
predictive pdf does not depend on the unknown parameter vector 6.

From (2.12") and (1.6), it follows that, in general, Bayes' decision vector can be
altematively obtained by maximizing the predictive expected utility with respect to the feasible

decision vector. For the scenario being analyzed, the predictive pdf is k-variate Student-¢ of the

2Stricily speaking, the posterior expectation of the loss function (2.6) is not a real number when the pdf is
given by expression (2.11).
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form S k(xi;l, 'n-k),where Z"=(1+1/n)(n-1)Y(n-k $. The closed-form approximaton

(2.13) can be obtained by approximating the Student- pdf with the normal pdf as indicated above.

P21+ 1n) (n -
2(n-k-2)

(2.13) E (Uln(z, D1} =- expl- r [ + Do

Application of the standard optimization results to the right-hand side of (2.13) yields the

(approximate) Bayes allocation

(n -k -2)

@14) = - T+ - D)

bp+CrL,

-1 ceel el
o (L2,

where: &

-1 a1

B=3t-8T 8 s !

For the sake of comparison, the plug-in land allocation (}) and the land allocation advocated

by CCS (7) are reported below as expressions (2.15) and (2.16), respectively.?

3Imerestingly, a decision vector almost identical to CCS's land allocation (7) is obtained by minimizing the
posterior expectation of the loss function (2.17)

' 2
217 £0.D=-rl'u+ % rI'Zil

This loss function is equal to the exponent of the problem's actual loss (2.6). Minimization of the posterior
expectation of (2.17), i.e.,

2
. . 1 2 . - r (n-1) &
(2.18) mm[EAEﬂy(-rlu+2r I'EI)—mmlEA[-rI'u+z(n_k_z)l}:l],
yields the land allocation
= n-k-2) - =
219 1= r D) Du+CL.

It can be seen that the only difference between T and T is that the former contains the factor {n- k-2), which

replaces (n - £ - 1) in the latter. This subtie difference is due to the land constraint (7 1, < L); because of the way 7

is constructed, T would be identical to T if total acreage were not constraining. This result indicates that 7is
approximately (exactly) Bayesian for the loss (2,17) under (no) land constraint. But the loss function for the



i2

(2.15)?=1;f)ﬁ+(‘:1,
c (nk-1D) A~ oz
(2.16) | ==~y Du+CL

CCS have shown that [ is a biased estimator of /* and that [ is unbiased. By applying their
technique, it is straightforward to show that {2 is a biased estimator of /*. But F yields the
maximum predictive expected utility by construction; therefore, P is to be preferred to either { or /
on the basis of the expected utility paradigm.

Table 1 exemplifies how different the allocations obtained by means of (2.14) through
(2.16) may be.# The sample mean vector and the covariance matrix used to build Table 1 are those

reported in the classical article by Freund, that is,

(2.20) p = (100, 100, 100, 100)",

7304.69 903.89 -688.73 -1862.05
620.16 -471.14 110.43
1124.64 750.69

3689.53

2.21) £ =

The mean vector (2.20) and the covariance matrix (2.21) are expressed in unit levels; activity 1

(potatoes) requires 1.199 acres per unit, activity 2 (corn) requires 1.382 acres per unit, actvity 3

problem initally posed is (2.6}, not (2.17). Moreover, the loss function (2.17) does not represent the same
preferences as does the loss (2.6) because, under expected utility theory, the utility function is unique only up to a
positive linear wransformation (Hey, p. 36) and (2.17) is not a linear ransformation of (2.6). Hence, we can conclude

that neither ! nor ! can be Bayes solutions for the land allocation problem initially posed.

4The negative plug-in and CCS land allocations are comer solutions under the nonnegativity restriction.
We preferred to report the unrestricted plug-in and CCS solutions because they are directly obtained by means of
expressions (2.15) and (2.16), respectively.
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(beef) requifes 1.400 acres per unit, and activity 4 (fall cabbage) requires 0.482 acres per unit.?
The values of the coefficient of absolute risk aversion that we employed reflect moderately low to
moderately high risk aversion. The number of observations chosen for the simulations (n =7) 1s
low but not uncommon.b |

The differences among the three alternative allocations are smaller in absolute value as the
degree of absolute risk aversion is greater. Also, the differences are smaller in relative terms when
the total acreage is greater. It is also evident that CCS allocations are more similar to Bayes
allocations than to plug-in allocations. But the most salient characteristic of the figures reported in
Table 1 is the noticeable differences among the allocations obtained by means of expressions
(2.14) through (2.16). The intuition here can best be grasped by comparing allocations for
potatoes and cabbage on one hand and for beef and corn on the other. Potatoes and cabbage have a
relatively larger per acre expected return but also are considerably more risky than are beef and
corn, In the traditional plug-in approach, it is assumed that the producer uses seven years of data
to derive the exact mean and variance of the individual returns, i.e., he "plugs in” the sample
estumates into the first-order conditions as if they were the true parameters. In the Bayes solution,
the producer realizes that with only seven years of data the estimators of the mean, variances, and
covariances themselves are quite uncertain. This additional source of uncertainty causes the
producer to grow much more comn and beef and much less cabbage and potatoes than the levels
prescribed by the plug-in approach. The message of Table 1 is that, unless the number of
observations is sufficiently large (and the number of activities small), it cannot be taken for grainbed
that the allocations obtained by employing (2.14) through (2.16) will be similar. Therefore, given
the expected utility-maximizing properties of Bayes' allocation and the fact that (2.14) 1s no more

difficult to calculate than either (2.15) or (2.16), Bayes' allocation is the one that should be used.

3The original requirement of 2.776 acres per unit of beef was too high relative to the requirements of the
other activities, which led to corner Bayesian solutions for reasonable values of the coefficient of absolute risk
aversion and total acreage. Because we wanted 1o avoid corner solutions (at least for the Bayesian allocation), we
substituted 1.4 for Freund's 2.776.

5We do not report results of simulations performed for a greater number of observations, say n = 30,
because they led to comner solutions for Bayes allocation. For n = 30 and allowing for negative land allocations, the
differences among the three alternatives are smaller than for n = 7 but still quite noticeable.
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Certainty Equivalent Returns

A value often computed in studies regarding uncertainty is the certainty equivalent return
(CER). The CER of a risky invcsmient is the return on a risk-free investment that leaves the
decision maker indifferent between selecting the risky choice and accepting the riskless CER. CER
bears a monotonically increasing relationship with expected utility, i.e., the risky investment [ has
a greater CER than the risky investment Il if and only if | yields greater expected utlity than does
II. Hence, énalyzing the CERSs of alternative risky prospects allows us to draw inferences about
the expected utility of these prospects.

In the absence of estimation risk, CER is obtained as the root of equality (3.1), which we

will call CER" (the superscript n standing for "no" estimation risk).

(3.1) U(CERY = E i Uln(x, D1}

For the land allocation example analyzed in the previous section, we have
(3.2) CER'(M=[u- 5 rl"Ll

as the CER corresponding to the optimal decision vector in the absence of estimation risk (i.e;, M.
In the presence of estimation risk, however, CER cannot be calculated from an expression
like (3.1) because such an expression depends on the true but unknown parameter vector 8. If
CER" were the certainty equivalent under estimation risk, then E o {U{n(x, /}]} would be known
to the decision maker, thus contradicting the definition of estimation risk. CER in the presence of

estimation risk (CER") is the root of the equality (3.3),

(3.3) U(CER") = E_ {Uln(x, D1},
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as opposed to (3.1). ‘For the land allocation example, CER® of Bayes' decision vector is

(4) CER() =P LG D g

From (3.1) and (3.3), it is clear that CER" is not directly comparable to CER®. CER"isa
function of the true parameter vector © (which is known in the absence of estimation risk), whereas
CER® is a function of the particular sample information available, y, and the prior pdf, p(6). If
CER"(/*) and CERE([B } are to be compared, the most reasonable way of doing 5o is in an ex ante

fashion, i.e.,

B, e B Ao r(l+1lnm)y(n-1) B¢
(3.5) CER"(") versus {EJJCER*(P)] =E[" i - 25 X £8Py,
The right-hand side of (3.5) is the value that would be obtained if infinite y-type data samples were
taken, CERE(IB ) for each sample were calculated, and then these CERE([B )s were averaged.

Criterion (3.5) differs from that employed by CCS, who propose using
(3.6) CER'(" versus {EJCER' D) =E (-5 r 20

as the ex ante comparison of CERs. In the right-hand side of (3.6), the optimal decision under
estimation risk ([B ) substitutes the optimal decision in the absence of estimation risk (/) in CER".
But the certainty equivalent return for an individual facing estimation risk is CER®, not CER". The
measure CER® solely depends on available (sample and prior) information and takes into account
the additional uncertainty caused by the lack of perfect information about parameters. CER" is the
correct measure in the absence of estimation risk because it depends on the true parameter values
and does not incorporate the additional uncertainty due to estimation risk. Thus, the decision rule

7 is best paired with CER®, and the decision rule [* is best paired with CER".
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Bayes allocation is obtained by maximizing the predictive expected utility function.
Therefore, it is the allocation that yields the maximum certainty equivalent return in the presence of
estimation risk. In particular, it must be the case that CERe([B ) is greater than or equal to CERE(?)

and CER®(1). Indeed, it can be shown that?

2n-k-1)°

3.7 CER*(’®)- CER(]) = 7
2rnn” -1)(n-k-2)

1:)
O

p b

kdn+nk-k-2) -~ 2=~
Zran-D(n-k-2)*PH

(3.8) CER%(]) - CER(}) =

\Y

0.

Inequalities (3.7) and (3.8) hold because the ratios in the middie terms are strictly positive and the
quadratic term ﬂ D 11 is nonnegative.® The interpretaton of the results in (3.7) and (3.8) is that
the decision maker will be indiffereﬁt among [B .1, and 1 if and only if the extremely unlikely event
Th)) ;1 = () occurs. Otherwise, the agent will strictly prefer 2 over 1, and [ over .

In Table 2 we illustrate the CERs corresponding to the simulations reported in Table 1.9 It
can be observed that Bayes allocation yields the greatest and the plug-in the smallest CER®. As
expected, CERe(lB ) increases with total acreage and decreases with the degree of absolute nisk
aversion. Interestingly, both CER®(7) and CER(]) increase with the degree of absolute risk
aversion. This result can occur only because both decision vectors are suboptimal.

In line with the differences in allocations observed in Table 1, CERC(T) is more similar to

CER(/®) than to CER®(}). The difference between CER®(7) and CER®("®) is smaller in absolute

1t can also be shown that
b - - -~ ~
39) CeRW)-CeR (D)= ~2=k52) Gipiso,
2ra{n -1)

(15nrn-k-1.5
n(n-{(n-k-12)

(3.10) CER(])-CER(}) = - pDaz0.

A oA

811 Dyt is nonnegative because the matrix Dis positive semidefinite.

SNote that CER (I) and CER (l ) under the nonnegativity restriction had been even smaller in the examples
with corner solutions.
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terms when the coefficient of absolute risk aversion is greater, and smallest in relative terms in the
scenario with high risk aversion and large total acreage. But even in the latter scenario, CERe(’f) is
10 percent smaller than CERe([? }, indicating that the differences in CER’s are not negligible.
Consistent with the concluding remarks of the previous section, the potential differences in CERs
among the alternative allocation approaches are large enough to advocate using Bayes' criterion,

particularly given the simplicity of its calculation relative to the plug-in or CCS methods.

The Value of Additional Sample Information in fhe Presence of Estimation Risk

Sample information in general (and additional sample information in particular) has no
value to the decision maker in the absence of estimation risk because the agent already knows
whatever information sample data can provide him. However, most common situations are
characterized by the presence of estimation risk.

The value of additional sample information is an issue of potential importance in the
presence of estimation risk. The analysis of this topic is closely related to that of calculating the
optimal sample size when buying additional sample information. The solutions to both problems
are conceptually (if not operationaily) simple; they are obtained by employing backward induction
in a Bayesian framework. Because both solutions apply similar concepts, for pedagogical reasons
we will solve the second problem first and then extend the analysis to find the value of additional
sample information of a particular size.

Consider a decision maker who has the possibility of acquiring additional (still unobserved)
sample information Vo, of size n, at the cost C(n, ) before selecting . The decision maker's
problem is to determine the optimal size of the additional information (an), based on the already

observed sample v.19 Let 2, =y+V,,ie,z, is the total sample information after having

10For simplicity, we will assume that there is a single-shot opportunity to buy additional sample
information. The solution for the case in which the agent may buy additional information after having bought the

initially optimal nVB but before selecting ! can be obtained by applying the same principies, but it is too
cumbersome and provides littie additional insight,
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acquired the additional sample information v " If the decision maker had the sample information
20 available at the time of making the decision about /, we know from (2.12) and (1.6) that the
optimal Bayes decision vector would be given by expression (4.1):!1

41) I(z,)=argmax, ,E,, (Ul x-C ),

X2y
where the decision vector ° (z, ) is identified by z, to swess that the decision depends on the total
sample information (znv). But the additional sample information (an) has not been observed by
the agent at the time he must select the optimal size nVB: therefore, [B (znv) 1s unknown when
choosing 1. Hence, the problem reduces to maximizing the predictive expected utility from
having the additional sample information Ve, with respect to the size of the additional sample n ,

ie.,
B .
(42) n,” =argmax, , E,, (UG +v,) x-Cou)).

The solution to (4.2) will generally be obtained by means of numerical methods. The optimal size
of the additional sample (an) will depend on the particulér sample information available at the
decision time (¥), the agent's prior {p(8)], and the cost of the additional sample information
[Cln ).

The concepts applied to obtain the optimal size of additional sample information can be
employed to calculate how much the decision maker is willing to pay for an additional sample W,

of size n,, which we will denote by wh. WP is the root of the equality

(43) Eg(UICOY Rl =E,, J(UIPG +w,) x- W),

B
111n the land aliocation example considered in the previous sections, / (znv) is independent of C(n,)
because the utility function is negative exponential. In general, however, Bayes' rule will depend on C(n,).
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where: [B(y + an) = argmax; AExiy+wnw[U(f’x Wl

The term in the left-hand side is the predictive expected utility in the status quo, 1.e., with no
additional sample information. The term in the right-hand side represents the predictive expected
utility from acquiring the additional sample information w, of size n, at the price W, In
particular, it should be noted that the right-hand side is the predictive expected utility before

observing the additional sample because, in general, we will have

44) E,, AU +w, Yx-W))#E

X, Wp xly+w),

W{U[[B(y +w, Y x-Wi).

If the price of the additional sample information is low (W < WB), the agent will prefer to buy the
additional sample. Conversely, when the price of the additional sample information is high (W >
WB), the agent will prefer not to buy the additional sample. Hence, the agent will be indifferent
between the two alternatives only when W = WB

In Table 3 we report an example of the willingness to pay for an additional sample of size
n,. For simplicity, it is assumed that there is a single asset (k = 1) that can be held with no
restrictions (i.e., the decision maker can be short or long the desired amount). The returns on the
asset are normally distributed, and the decision maker has observed that the sample mean }:L equals
3.10% and the sample variance ° equals 2.25- 10° with a sample of size n,. It is further assumed
that the coefficient of absolute risk aversion r equals 1/10000, which refiects moderate risk
aversion. The values reported in Table 3 were obtained by means of Monte Carlo simulations. It
can be seen that the value of an additional sample decreases as the size of the observed sampie (ny)
increases. This result is to be expected because the decision maker is more confident about the
sample information when the sample available is large than when it is small. It can also be seen
that, for a lzrge observed sample (ny = 100), the valﬁc of an additional small sample is negligible.
Table 3 also reveals that the value of an additional sample increases with its size (n); however, the

marginal value of each additional observation decreases very rapidly with n_.
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It is interesting to note from Table 3 that CER” equals $15,105 after observing a sample of
size 12 with mean 3.10* and variance 2.25-10‘8, whereas CER’ equals $16,718 after observing a
sample of size 18 with the same mean and variance. This increase of $1,613 in CER® by going
from a sample of size 12 to a sample of size 18 grossly overestimates the willingness to pay for 6
additional observations by an agent who has obéewed a size-12 sample (compare $1,.613 with
about $270). The explanation for this result is that the agent who has only observed a sample of

size 12 does not know what the outcome of the additional 6 observations will be.

Summary and Conclusions

In the almost universal situation where parameters of importance for decision making are
not known with certainty, decisions will be subject to an additional source of risk related to the
accuracy with which parameters are estimated. Bayes' criterion is the procedure consistent with
expected utility maximization in the presence of estimation risk. To show the importance of
estimation risk, this paper reexamines the land allocation problem in the presence of estimation
risk. A simple allocation rule based on the sample estimates of the mean vector and the covariance
matrix of crop returns is obtained. This land allocation rule is derived in a manner consistent with
expected utility maximization, and is therefore preferable to other ad hoc criteria for decision
makang in the presence of estimation risk. The allocation rule advocated in this study yields greater
expected utility than does an allocation that is an unbiased estimator of the optimal land allocatidn in
the absence of estimation risk.

The paper also discusses how to calculate the certainty equivalent return in the presence of
estimation risk (CER®). Itis argued that CER” is not directly comparable to the certainty equivalent
return in the absence of estimation risk (CER“), and a mean to compare CER" with CER® ex ante is
proposed.

The final section of the study addresses two related issues that can only be analyzed in a

framework that explicitly considers estimation risk. These issues are the optimal size of an
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additional (still unobserved) data sample, and the willingness to pay for an additional (sall
unobserved) sample of a particular size. Applying the tools developed in pre\}ious sections,
conceptual solutions to both problems are presented. This section also shows how one can put
dollar value on additional sample information. This issue is of relevance for experimental design

and the selection of survey size.
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Table 1. Land allocations for seven observations (n = 7) obtained by means of Bayes' criterion, CCS's method, and .plug-in approach.

Total  Coeff. of Absolute Potatoes (acres) Corn (acres) Beef {(acres) Fall Cabbage (acres)

Acreage Risk Aversion Bayes CCS Plug-in  Bayes CCS Plug-in  Bayes CCS Plug-in  Bayes CCS Plug-in

150 1/8500 75 264 934 80.5 592 -162 533 362 -246 87 282 974
1/40000 61.8 1504 465.5 194 -80S -435.4 40 -764 -3625 64.8 1565 4824
300 1/8500 05 193 86.2 177.4 156.2 80.8 1199 1028 420 22 217 910

1/40000 54,7 1433 4584 116.3 16.5 -3384 70.6 -9.8 -295.9 58.4 1500 4759

M4
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Table 2. Certainty equivalent returns for seven observations (n = 7) obtained by means of Bayes'

criterion, CCS's method, and the plug-in approach.

Total Coeff. of Absolute

Certainty Equivalent Return ($)
Acreage Risk Aversion Bayes CCS Plug-in
150 1/8500 10325 8490 27771
1/40000 14933 6294 -164346

300 1/8500 18291 16456 -19805

1/40000 24374 15735 -154504
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Table 3. Value of Additional Samples

Size of Observed  Certainty Equivalent Dollar Value of Additional Sample (WB) of Size

| Sample (n) Return ($) n,=1 n,=5 n, =10
12 15,105 114.8 269.7 273.0
18 16,718 41.3 124.0 150.2
30 18,020 11.7 43.7 64.2

100 19,402 0.8 3.9 7.5




