Maximum Likelihood Estimation of
Dietary Intake Distributions

Jeffrey D. Helterbrand

Working Paper 92-WP 98
August 1992

Center for Agricultural and Rural Development
Towa State University
Ames, Iowa 50011

Jeffrey D. Helterbrand is a graduate assistant, Department of Statistics, Iowa State University, Ames, Iowa.

This paper was prepared for the Human Nutrition Information Service of USDA under Research Support
Agreement 58-3198-9-032.



ABSTRACT

This paper applies maximum likelihood estimation techniques to determine
suitable models for dietary intake distributions. Hypothesis test results
indicate that while the gamma and Weibull models appear suitable for
describing the intake distributions of some dietary components, a more
flexible family of distributions is required in order to appropriately
encompass all dietary component distributions.

Six nutrients are considered in the analysis including calcium, energy,
iron, protein, vitamin A, and vitamin C. Based on chi-square goodness-of-fit
tests, we conclude that the three parémeter, generalized gamma family of
distributions accurately describes the distributions of all six dietary
components.

The additional flexibility of this family results in large standard errors
for the parameter estimates. However, the standard errors of the estimated
percentage of the population below a specified level of nutrient intake appear
precise and allow for substantive conclusions regarding nutritional inadequacy

to be made.



Introduction

An estimate of the distribution of intakes for a given dietary
component can be used to obtain estimates of the prevalence of
inadequacy in the nutritional status of individuals. Dietary
inadequacies may result from either excessive of deficieﬁt intakes of a
dietary component over a long period of time. Dietary intake
distributions are of interest to nutritionists and policy makers for
monitoring dietary and nutritional status, for evaluating food policies,
and in nutrition and dietary education programs.

Estimating dietary intake distributions typically involves
estimating distributions of usual intake., The usual daily intake of a
dietary component for an individual is a measure of the individual’s
typical daily consumption rate during a time period appropriate for the
particular dietary component. Usual intake can be viewed as a long-run
average of daily intakes for the individual,

There is clear evidence that many intake distributions are not
symmetric. Hence, distributions such as the gamma and Weibull family
are potential models for usual intake distribution fitting. 1In
preliminary investigations, Nusser et al. (1988) indicated that assuming
that usual intakes follow a gamma d?stribution was appropriate for some,
but not all, dietary components. A similar result was obtained using
the Weibull family. Thus, Nusser et al. suggested the generalized gamma
distribution as a potentially all-encompassing family of distributions

for dietary component distributions.



Properties of the Generalized Gamma Distribution

The generalized gamma family is a three parameter distribution with
density

£y = 1or(e) 1 Ao I lepi- Ity (1)

y>0,8>0,8>0, >0,

where TI'(8) = j;tﬁ-le-tdt and 4 , 8 , and XA are parameters to be

estimated. The generalized gamma family has many familiar
distributional families as special cases. Examples include the
exponential (-1, X = 1) , gamma (i = 1) , Weibull (8 = 1) and
chi-square (8 =2, 8 = n/2, X = 1) distributions. In addition, the
lognormal family is a limiting special case (8 - =)

The cumulative distribution function for the generalized gamma

distribution is

Fly: 8, 8, 2) =T, (8)/T(B) , (2)

where Z = (y/8)" and T,(8) = [2P"le ™%t . The r-th moment of ¥

(r=1l, 2, 3, ...) can be written

ECYT) = ¢°T7 18y T(B + r/n) . (3)

If Y is a generalized gamma variate, then YA is distributed as a
gamma with parameters 9A and B . This property of the generalized
gamma distribution is used in obtaining starting estimates for the

iterative procedures necessary in estimating generalized gamma parameters.



The generalized gamma distribgtion is a more general model than the
Weibull, exponential, and gamma. However, Hager and Bain (1970) concluded
from their study that the Weibull model was about as flexible aé the
generalized gamma distribution for sample sizes up to 200. Thus, given
the complexity of the generalized gamma distribution, and some of the
estimation difficulties encountered, Hager and Bain suggested that the
Weibull assumption was preferable to a generalized gamma distribution for

sample sizes up to 200.

Maximum Likelihood Estimation and the Generalized Gamma Distribution

Stacy and Mihram (1965), Hager and Bain (1970), Parr and Webster
(1965), and Prentice (1974) have examined maximum likelihood techniques tao
estimate the parameters of the generalized gamma distribution. From the
density function, the maximum likelihood equations for n independent

observations . an be obtained as follows. The likelihood function is

n
-1 -1 AB-1 -1 A
EUL Yy e Yy 80800 = TR TG ) P lexp(-007y M)
(4)
Let L{n) = [In f(yl, Yo -oes ¥pi 8, B, A) be the log-likelihood
function. It follows that
o 1%
L{n) = n In(A) - nA8 In(8) - n In[T(A)] + (A8 - 1) Z En(yi) Y ) Yi

i=1 g i



The maximum likelihood equations are obtained by taking the first
derivative of L{(n) with respect to 4§ , B and X , respectively, and
setting the resulting derivatives equal to zero. The equations are

n

nf + T (yi/e)* -0, - e (6)
i=1

_ h .

np(8) + A T n(y,/8) =0, (7)

i=1

_ n n A

n/A+ 3 Z ﬂn(yi/ﬂ) - Z (yi/a) £n(yi/9) =0 , (8>
i=1 i=1

where %(8) = d[4nl'(8)1/d8 . Equations {(6), (7), and (8) must be solved

for 4, B, and X simultaneously. Since a closed form solution for

§ , B, and X 1s not known, an iterative technique is required to
compute the estimators § , g , and X

Using maximum likelihood techniques teo estimate the generalized gamma
parameters requires good starting values for the parameters in order to
obtain the appropriate estimates from the iterative procedure. Adequate
computer resources are also needed to calculate functions such asI'(8) , ¥(4)

and ¥'{B8) . Harter (1965) found the number of iterations
required for convergence tended to be large when estimating S and X
simultaneously. This is apparently due to the high negative correlation
between the estimates of the two parameters. In addition, the approximate
normal distribution for ; predicted by maximﬁm likelihoed theory was not
observed even for samples of size 400 [Prentice (1974)].
To apply maximum likelihood, it is necessary to develop a reliable

iterative technique which will converge to correct solutions, while

keeping the estimates in the parameter space (4§ >0, 28>0, A > 0)



Hager and Bain (1970) indicated that the Newton-Raphson method did not
appear to work well when solving for generalized gamma parameters. Harter
(1965) advised using a hybrid of two different iterative techniques to

find parameter estimates which converge.

An Alporithm for Maximum Likelihood Estimation for the CGeneralized Gamma

Distribution

An algorithm for estimating generalized gamma parameters for the
usual intake data, requires two stages: 1) an algorithm providing good
starting values and 2) an iterative algorithm to compute accurate
solutions from the given starting wvalues.

To obtain estimates of the geﬁeralized gamma parameters, equations
for the first four central moments of the generalized gamma distribucion
are needed, They are
b

p, = Ely) = 9r'l(ﬁ)r(3 + X7 , (9

by = By - Y = @i+ ah - ierie - hn L o

1 1

By = By - w01 = e s + 1Y - ar¥eres + aThres + 2aTh

soar i+ ahr (11)
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The starting value routine begins by using a grid search scheme.
Fifteen A wvalues are chosen from a range of values believed to contain
the parameter. For a given power,. X\ , a starting value for the shape
parameter, ﬂA , is obtalned by solving the second moment equation (10)
evaluated at X . An iterative procedure for obtaining a solution for

ﬂA from (10) is the DBCPOL routine in IMSL, which also requires a
starting value for ﬂA . Since y ~ GG(#, B, A) implies

yA ~ Gamma(&k, B) , an initial wvalue for ﬁ) can be derived as
follows. Using the second order Taylor series expansion, the mean and

variance .of yl can be approximated by

A, . A
E(y") = 6] + ayu, = by, (13)
and
A, 2 2 2
Var(y') = ajp, + 2a 3,80 + 3,(8, = By) = Hyy s (14)
where
a, = Api-l ,
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and By s By o0 Ba and p, are the moments of y . Since yk fellows

a gamma distribution,

A, -1 AL L2
B = [var{y")] "[E(y)] (15)
Hence an initial value for BA is
Fro T Faafia (16)

where B and Bo, are evaluated at the sample moments Bl o By o

By and By Thus for each A , ﬁAO is used to start the DBCPOL

A A

subroutine and ﬁA is computed. A starting value, Gx is also

calculated by evaluating the first moment equation (9) at A and ﬁk

The starting value algorithm computes fifteen vectors,
A

(A, ﬁA’ EA) , corresponding to the fifteen starting A values. The

algorithm next substitutes each of these vectors into the log-likelihood
equation (5) for the generalized gamma distribution, and a value for the
log-likelihood is calculated. The three largest log-likelihood values
and their corresponding A values are determined. A quadratic in A

is fit to these three log-likelihood points, and the X correspondingr

to the maximum of the quadratic is taken to be the starting value, A* ,

for stage 2. Given A* , equation (16) is used to compute S and

A%

A

the first moment equation (9) is then solved to calculate QA* . The

A A

vector (¥, ﬁl*’ 5)*) serves as the starting value for the iterative

maximum likelihood estimation program.



~To compute the maximum likelihood estimators, the nonlinear system

n

Fi(y; 6, 8, A = -0+ = (y/D)" =0, (17)
i=1 :
n
F (y: 6, B, ) = -mp(B) + A I faly,/) =0, (18)
' i=1
T It A
F3(y; 6, B, \) =n/A+ 8 % En(yi/g) -z (yi/ﬂ) En(yi/ﬁ) =0, (19)
i=1 i=1

is solved using a modified Newton’s method. This system corresponds to
(6), (7), and (B). Newton's iterative method requires J(y; 4, B8, ) ,
the Jacobian matrix of partial derivatives of Fl, FZ’ and F3 with

respect to 8 , B, and A . The elements of this matrix are

n
~A8"(A+1) A

IG5 8, B, X = zy; (20)
i=1
le(y; H, ﬂ: A) = -n , (21)
Ao, 2 oA
J13(vi 8, 8, N = (/6 (Zymy, - i £y (22)
i=1 i=1
le(y; gl ﬂ! A) - -nA/s ] (23)
Jzz(y; Hr ﬁ: A) - 'n¢'(ﬁ) ] (24)
141
Jpslyi 8, B, X) = 5 in(y /6) - (25)
i=1
I (y; 8 A) = ~a/a) + 8-V 5 A N b a gy
31 ¥ ' ﬂs n/ ) . Yi n Yi - Yi 1 . yi '

=1 i=1



(26)
n ‘
Jy(¥i 8, B N) = I in(y, /) (27)
i=1 _
2 a2 22
Ty4(yi 8. 8, N = ~(a/x%) - 07 2yl (in yi)z S Un STy . (28)
. ; i
i=1 i=1
The (n + 1)-st estimates of the Newton method satisfy the system,
oA = [—r\ = r ) A ~ PO
nt+l I b F1 0 Ay A9
A 1 ~ : -l -~ A A
.Bn+l -: ﬁn -J Fz(y: an; .ﬂn! An) r
LAn+l” LAn_ 5?3(y; an’ ﬁn' Anl
where (Bn, ﬂn, An) are the estimates at the n-th iteration. At each
iteration n , the log-likelihood is calculated using (Bn, ﬂn' An) to

assure that the estimates are converging to a solution which maximizes

the log-likelihood function., The iteration is assumed to have convergesd

-2 |1 is less
n

when the maximum of {|9n+l.- Bn|, |ﬁn+l - ﬁn" IAn+l

than 0.00001l. Once convergence is achieved, the maximum likelihood

estimates are denoted by #§

A

ML *© Pmie 0 29 wee
One computational difficulty in this algorithm is the calculation
of %(B8) and ¥ (8) . For real positive 8 , ¥(8) 1is a concave

increasing function which satisfies the following relations (Bernardo,

1976)
¥() = - v, (29)

¥(l + B) = ¥(B) + 1/, (30)
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$(B) = Ing - = - 12+ 14' 16+o<—;) (fFor large 8 i.e.  ~ =) |
208 128°  1208% 2528 8 '

(31)

v(g) = -7 - % + 0(8) (for small 8 i.e. 8 - Q)

]

(32)

where vy is Eulers constant. Equation (32) is used to compute w(4)
for 8 < 1.0 x 10-5 . The Stifling expansion (31) is used in
calculating #(8) for A = 8.5 . The recursive equation (30) is used
for 1.0 x 10-5 < B < 8.5, and gives values for (B) that are
accurate to within 1.0 % 10-5 for A in that range. By
differentiating these continuous functions, the resulting equations are
used to calculate % (8) for the three cases.

A second algorithm for fitting the parameters of the generalized
gamma distribution can be constructed using a reparameterization of the
generalized gamma density based on the logarithms of the response
variable. This procedure was suggested by Prentice (1974). The log

generalized gamma variate follows a location-scale model. The density

function under the Prentice parameterization is

f(z; e, 0, q) = |q|{aP(q°2)l'l e:cp(wq‘2 - e (g = 0)
1 1/2 1 2 :
- [ 2] / expl- —5(x - @)7} (q = 0) ,
270 20

where x = log v and w = E(x - a) + ¢(q'2) . Note that, by this

reparameterization, the generalized gamma model has been extended such

-1/2

that g can be negative. If q = g8 , X = log(y) follows a normal

model when gq = 0 . The Prentice parameters (parameterization B) can be
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expressed in terms of the original parameters (parameterization A) by

the nomlinear mapping

q=8"% . a=1log s+ BN, and o = (12877

~

Alsoc, the asymptotic variance of the maximum likelihood estimators gq

and S are related by

var(q) = % 872 var(s)

Parameterization B leads to some ugeful results. First, previous
authors found that a largé sample size was required when trying to
discriminate between B = 1 and 8.= 2 or 3 . Prentice concluded that
on a log scale these distributions are very similar and in fact, without
a large sample size, g =1 1is difficult to discriminate from

B = « . Furthermore, when ; -0 (B close to infinity), maximum
likelihood estimates from parameterization A cannot be obtained by
solving the log likelihood equations. Using parameterization B,
Prentice was able to obtain a log likelihood function which exists for
all g and from which maximum likelihood estimates could be obtained
given an adequate sample size. By simulation, Prentice showed that a
converged faster to its asymptotic normal distribution than B . An

algorithm in SAS: PROC LIFEREG computes maximum likelihood estimates

using parameterization B.

Application of Maximum Likelihood to the Nutrient Intake Data

The above algorithms (corresponding to parameterization A and
parameterization B) were applied to data collected in 1985 by the USDA

in the Continuing Survey of Food Intakes by Individuals (CFSII). The
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survey collected daily dietary intakes from women between 19 and 50
years of age and from their preschool children. The data set used for
our purposes was a suﬁsec of these daﬁa containing.four days of dietary
intakes for 785 women aged between 23 and 50 years who were responsible
for meal planning within the household and who were not pregﬁant or
lactating during the survey period. Six dietary components were
analyzed including caleium, energy, iron, protein, vitamin A, and
vitamin C. The data to which the algorithm was applied were predicted
“pseudo” usual intakes generated from the original data using
measurement error techniques {Nusser et al. (1990)]. This methodology
was designed to adjust the observed intakes for the presence of
measurement error in the dietary intake data.

The algorithm created by Nusser et al. (1990) involved several
steps to produce pseudo usual intake values. First, the original daily
intakes were transformed into normal space using a nonparametric
transformation based on the inverse normal cumulative distribution
function. In normal space, the daily intakes were assumed to follow a
measurement error model, and normal theory was used to develop
predictors of usual intakes in normal space for each individual. An
inverse transformation was then applied to the predicted normal usual’
intakes to produce the set of pseudoc usual intakes in the original
space,

Applying the maximum likelihood estimation algorithm to the pseudo
usual intake data for five of the nutrients produced the parameter
estimates shown in Table 1. Using parameterization A, the algorithm

failed to converge to the maximum likelihood parameter estimates for
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vitamin A. Asymptotic standard errors were computed as the inverse of
the estimated information matrix.

" The asymptotic standard errors of the estimated coefficients are
large, indicating the parameter estimates are relatively imprecise.
This is due to the high correlation between the parameters. TFor all
nutrients, the correlation between B8 and X was between -0.99 and
-1.00. Hager and Bain (1970) indicated that as 8 1increases away from

~

one, the asymptotic variance of B approaches infinity.

Table 1. Estimated Generalized Gamma parameters for each dietary

component.
Calculated
Dietary Component HMLE ﬁMLE AHLE log-likelihood

Calecium 35.84114 9.65852 0.81871 -5327.88
_ {51.61706) (5.19540) (0.22681)

Energy 320.46719 7.75763 1.32358 -5811.81
{243 .85407) (3.73358) {0.33039)

Iron 0.35396 16.73130 0.84740 -1912 .46
(0.72619) (11.8838) (0.30629)

Protein 20.84224 5.88937 1,66667 -3218.55
(10.31079) (2.46468) £0.36583)

Vitamin C 27.35708 3.23953 1.13405 -3892.81

(12.82631) (1.00431) (0.19121)
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Table 2. Estimated Generalized Gamma parameters for each dietary

comporient.
Calculated
Dietary Component ?MLE IMLE qMLE log-likelihood
Calcium 6.34976 0.39289 0.32491 -5327.90
(0.02182). (0.01037) (0.08405)
Energy . 7.31722 0.27135 0.35623 -5811.84
' (0.01480) (0.006719) (0.08138)
Iron . 2.28698 0.28834 0.25092 -1912.48
{0.01476) (0.00741) (0.07291)
Protein 4.10782 0.24566 0.46814 -3218.35
(0.01329) (0.00669) (0.07951)
Vitamin A 8.27385 0.53854 0.01608 -7119.67
(0.03034) (0.01359) (0,08718)
Vitamin C 4.34508 0.49006 0.55409 -3892 .86

(0.02841) (6.01412) (0.08848)

Using parameterization B, the LIFEREG procedure in SAS converged to
the parameter estimates in Table 2. The estimates of Table 1
transformed into the parameterization of Table 2 are very close to those
of Table 2. The largest difference occurred for iron, where 4 from
parameterization A differs by 0.85 from the B calculated by
parameterization B. Also, the calculated iog likellhoods obtained by
the two procedures are similar but not identical.

Note that for vitamin A, maximum likelihood estimates under

A A

= 3867.47853 , A = 0.00048 and
MLE

parameterization A would be MLE

9 e-l796.48 Th

MLE™ . us, ﬂMLE is quite large, and as indicated by

Prentice, this caused convergence problems for Vitamin A when the
maximum likelihood estimation algorithm based on parameterization A was

used,
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It is of interest to test the fit of the hypothesized generalized
gamma distributions for each nutrient. A chi-square goodness-of-fit
statistic, using twenty-five mutually exclusive intervals over the range
of the pseudo usual intake data, was used as a test statistic. Observed
frequencies for the pseudo usual intake data and the expected
frequencies from the h&pdthesized distributions were computed and the
test statistics, based on 21 degrees of freedom, are presented in Table
3 for each of the six dietary components. Tests of size 0.05 indicate
the generalized gamma provides a satisfactory fit for all six of the
dietary components. A plot of the hypothesized generalized gamma and
empirical cumulative distribution function for each nutrient is included

in Appendix A.

Testing Hypotheses with the Maximum Likelihood Estimation Alporithm

Of intersst is whether or not the Weibull or gamma distributions
would provide a satisfactory fit for the pseudo usual intake data.
Tests of these hypotheses can be constructed using the likelihood ratio
test.

Table 3. Goodness of Fit test for
Generalized Gamma Distribution.

Component x2
Calcium 27.3
Energy 22.5
Iron 32.5
Protein 27 .4
Vitamin A 24.3
Vitamin C 15.6

The a = .05 point of the chi-square
distribution with 21 4f is 32.7.
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Table 4. Estimated Weibull parameters for each dietary

compornernt.
Dietary Component BMLE AMLE
Caleium . 652.26217 2.65716
(9.13450) (0.07395)
Energy - 1641.63778 3.86013
(15.82403) (0.10724)
Iron : 10.94775 3.47975
‘ (0.11705) (0.09684)
Protein . 64,85339 4.25585
(0.56710) (0.11832)
Vitamin A 5109.62014 1.87827
(101.22994) (0.05227)
Vitamin C 85.95530 2.16479
{1.47753) (0.06025)
Testing A =1 . The density function for the Weibull distribution
is
-1 -1 a-1 -1 A
£Ay) =6 "A(8 "y)" Texp[(-4 V7],
which is the generalized gamma density with B8 = 1 . By constraining

the maximum likelihood estimator algorithm to estimate the parameters of
the Weibull distribution, the parameter estimates for the six nutrients
listed in Table 4 were obtained. Note that when 8 1is set equal to
one, the standard errors of the parameter estimates decrease
dramatically compared to those computed under the generalized gamma
assumption. To test whether the Weibull is a suitable family of
distributions for each nutrient, likelihood ratio tests were
constructed. By the asymptotic properties of the likelihood ratio test,

2(log 1ikelihoodWEIB - log likelihood ) 1s asymptotically distributed

GGD
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Table 5. Likelihood ratio test for
“Weibull null hypothesis
against Generalized Gamma.

2
Component X
Calcium 63.2
Energy 58.0
Iron 100.2
Protein 42.7
Vitamin A 118.5
Vitamin C 24,1

The a = .05 point of the chi-square
distribution with 1 df is 3.84.

as chi-square with one degree of freedom under the null hypothesis. The
test statistics are presented in Table 5. Tests of size 0.05 indicate
that the Weibull family does not adequately fit the distribution of any
of the dietary components analyzed. That is, the generalized gamma
hypothesis dominates the Weibull hypothesis in the likelihood ratio
test,

Asymptotic chi-square goodness-of-fit tests for the hypothesized
Weibull distributions were computed and are listed in Table 6. These
statistics alsc indicate that the hypothesized Weibull distribution does
not accurately describe the data for five of the dietary components, but
is adequate for vitamin C. Plots of the hypothesized Weibull and
empirical cumulative distribution functions are included in Appendix A.

Testing A =1 . The density function for the gamma distribution

can be written

£g(y) = (0T 6 P exp0 7y
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Table 6. Goodness of fit test for
Weibull Distribution.
2
Component X
Calcium 54.6
Energy 62.5
Iron 84.5
Protein 37.3
Vitamin A 115.7
Vitamin C 31.5

The a = 0.05 point of the chi-square

distribution with 22 df is 33.9.

which is the generalized gamma distribution with X =1

the gamma distribution parameters for the six dietary components are

given i

those for the generalized gamma distribution.
Again,

chi-square with one degree of freedom under the null hypothesis.

n Table 7.

2(log likelihoodG

AM

- log likelihood

Note that standard errors are again much lower than

GGD)

Table 7. Estimated Gamma parameters for each dietary
componenct.
Dietary Component O LE PuLe
Calcium 88.20452 6£.57410
{4.51406) (0.32376)
Energy 111.68941 13.33135
(5.67370) (0.66456)
Iron 0.81781 12.10267
(0.04157) (0.60258)
Protein ©3.79538 15.59343
(0.19262) (0.77873)
Vitamin A 1246.43305 3.61820
(64.61994) (0.17487)
Vitamin C 18.62355 4.07795
(0.96226) (0.19799)

Estimates of

is asymptotically
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likelihood ratio test statistic for each nutrient was computed and is
presented in Table 8. The likelihood ratio test at size 0.05 indicates
‘the gamma family cannot be rejected as an adequate family to describe
the distribution for the dietary components calcium, energy, iron and
vitamin C.

An approximate chi-square goodness-of-fit test for the hypothesized
gamma distributions were computed and are listed in Table 9.
Corresponding plots of the hypothesized gamma and empirical cumulative
distribution function for each nutrient are included in Appendix A.
Chi-square tests of size 0.05 indicate that the hypothesized gamma
distributions is satisfactory in describing the distribution of the data
for five dietary components, vitamin A excluded.

Table 8. Likelihood ratio test x> for

gamma null hypothesis against
Generalized Gamma.

Component

>

Calcium

Energy

Iron

Protein

Vitamin A 3
Vitamin C

OFP RO ~O
w O oo OO

The a = .05 point of the chi-square
distribution with 1 4df {s 3.84.
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Table 9. Approximate goodness-of-fit

2 .
test x~ for each dietary com-
ponent gamma parameter estimates,.

Component X2
Calcium 28.4
Energy 21.4
Iron 30.0
Protein 30.2
Vitamin A 54.5
Vitamin C 22.7

The o = .05 point of the chi-square
distribution with 22 4f is 33.9.

Using the Estimated Usual Intake Distributions to Estimate the

Prevalence of Nutritional Inadequacy

Estimated usual intake distributions can be used to evaluate the
nutriticnal status of a population of individuals., The assessment of
dietary status within a population typically inveolves comparison of
observed dietary intakes with a measure of the requirement for a
particular nutrient or food component (NRC, 1986). One common method of
comparison relies on a fixed point cut-off requirement level. The
recommended daily allowance for a dietary component, established by the
United States Department of Agriculture Food and Nutrition Board, is an
example of such a cut-off point. The cut-off method utilizes a standard
requirement level as the criterion value, where individuals with intakes
below this standard are said to be at nutritional risk. Since the
recommended daily allowance levels are set sufficiently high to meet the
known nutritional needs of nearly all healthy persons, a cut-off point
often is defined to be a proportion of the recommended daily

allowance. The proportion used by researchers and pelicy makers differs
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across nutrients and studies. The choice of a proportion, k , is a
matter of judgment, though the cuﬁ-off proportion is usually chosen
between 0.5 and 0.8. Any estimate of an at risk percentage is very
sensitive to the value of the recommended daily allowance proportion
k . As this proportion decreases, the percentage of the population
deemed at risk declines.

Given 3 maximum likelihood estimate of the usual intake
distribution and a proportion k , estimates of the percentage of the
population of women aged 23-50 who are at nutritional risk for a given
dietary component can be obtained. The cumulative distribution function
for the generalized gamma, defined.in equation (2), is used to calculate
the proportion of the population whose intakes fall below a specified
level y . For the six dietary components and for k = 0.5, 0.65, 0.8,
the estimates of women aged 23-50 at nutritional risk for a given
dietary component using the generalized gamma models are presented in

Table 10.
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Table 10. The estimated percentage at-risk (and approximate
standard errors) for each dietary component using
generalized gamma parameter estimates.

Percentage at-risk for criteria
k(RDA) as the cut-off point

Component
k
RDA .5 .65 .8
Calcium (mg) 800 22.42 44,76 65.50
(1.23) (1.56) (1.47)
Energy (kecal) 2,000 10.36 34,30 63.47
(0.88) (1.44) (1.46)
Iron (mg) 18 41.18 75.70 93.02
(1.48) (1.24) (0.74)
Protein (g) 44 0.15 1.05 4 .17
(0.10) (0.26) (0.50)
Vitamin A (IU) 2666 2.35 6.63 13.11
(0.83) (0.81) (1.17)
Vitamin C (mg) 60 7.52 14.98 24.35
(0.78) (1.08) (1.26)

Since the distribution function is nonlinear in the parameters, the
standard errors for the percentage estimates are approximated using

Taylor’s theorem. Denote the estimated cumulative distribution function

A ~ A

for the generalized gamma as F(y; 4, 8, X} . By Taylor’'s theorem we
have
. dF(y; 8, 8, X h
Fly; 8, B, ) = F(y; ¢, g, 2 +SRLEE B2y )
-, 9F¢y; 8, B, A) o dF(y; 6, 8, A) s -1
+ 35 8- B+ o (- +0 @),

where (#, B, A) are the true parameters. Thus,
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Table 11. The estimated percentage at risk (and approximate
standard errors) for each dietary component using
gamma parameter estimates.

Percentage at risk for criteria
k(RDA) as the cut-off point

Component
x
RDA 5 65 8

Calcium (mg) 800 22.29 46.32 65.05

(1.21) (1.41) (1.37)
Energy (keal) 2,000 10.22 34.75 63.93

(0.86) (1.37) (1.38)
Iron {(mg) 18 40,95 75.59 93.11

(1.40)  (1.25) (0.69)
Protein (g) 44 0.05 0.67 3.59

(0.02) (0.13) (0.46)
Vitamin A (IU) 2666 4.09 8.33 13,97

(0.50) 0.77) (1.00)
Vitamin C (mg) 60 7.36 14.96 24.53

(0.72) (1.03) (1.25)

Var[F(y; ; B ;) - F(y; 8, A, ﬁ')] - V[%E (p - p)] ,

where p = (8, #, X) . That is,

A -~ A

Var[F(Y; 8, B, A) - F(y; 8, X, ﬂ)] - Qfé%L_zl V(p) nggp )

AA

where V(p) 1is the estimated covariance matrix of the parameter
estimates. Since the values of the partial derivatives at the true

parameters are not known, the parameter estimates are used to
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approximate the partial derivatives as well. Hence, the variance of the

percentage estimates can be approximated by

N (F(ve 3 8 ayp o (8F dF dF & 50 0 dF dF dF
dF dF dF : . '
where [da’ ag’ dl} are evaluated at the parameter estimates and

V{4, B, X} 1is the estimated covariance matrix qf the parameter
estimates.

A relatively high percentage of the population is estimated to have
nutritional deficiencies in calicum, energy and iron, and a low
percentage is estimated to be at risk with respect to protein and
Vitamin A.

The percentage of women aged 23-50 estimated to be at nutritional
risk, based on the gamma models, are presented in Table 1l1. The
percentage at-risk estimates are similar under the generalized gamma and
garma models, for all dietary components excluding Vitamin A. Recall
that the gamma model was found not to be a satisfactory model for the
Vitamin A data. Also, although the standard errors for the generalized
gamma parameter estimates are large, the standard errors of the
percentages at-risk under the generalized gamma models are only slightly

larger than the standard errors computed under the gamma model.

Conclusion

In this paper, estimation of the generalized gamma distribution has
been discussed. An algorithm has been presented which generates
starting values from the data, and uses these starting values to obtain

maximum likelihood estimators for the generalized gamma parameters.
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Maximum likelihood estimates of the parameters of the distribution
of usual intakes were obtained using two parameterizations. Likelihood
ratio tests were used to test whether the distribution of usual intakes
for selected dietary components could be reasonably described by the
less complex Weibull and gamma families. Finally, using the maximum
likelihood estimators of the generalized gamma parameters, the
percentage of women aged 23-50 at nutritional risk was estimated using
the cut-off method at different proportions of the recommended daily
allowances for the dietary components analyzed in this study.

This study indicates that for the 1985-1986 CSFII data, the less
complex gamma distribution provides an adequate fit for five of the
nutrients, vitamin A excluded. Based on the chi-square goodness of fit
tests, the generalized gamma family appears to accurately represent all
six nutritional component usual intake distributions. Although the
standard errors of the parameter estimates are large, the standard
errors of the statistic of interest, percentage at-risk, are reasonable
and allow for substantive conculsions regarding nutritional inadequacy

to be made.
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