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Abstract
Tobin and H;)uthakker’s (1950-51) work on consumer behavior under quantity rationing has
been extended by many authors, especially through the use of duality theory. This paper uses duality
theory to extend the work on demand theory under rationing to the case of producer behavior under
quotas. These results permit estimation of otherwise unobservable market supply and demand
structures. The structure of the farm economy operating under a tobacco quota system is estimated,
and the theory is utilized to infer that the supply elasticity of tobacco would be about 7.0 if the quotas
were removed. Estimates such as this are not normally attainable without the theory outlined here,

even though they are essential for the evaluation of policy changes.



The Theory and Measurement
of Producer Response Under Quotas
1. Introduction

There has recently been a revival of interest in the implications of rationing, or more generally
of quantity constraints, in a number of different branches of economic theory. Much of the earlier
work on rationing was conducted during and immediately after World War II. The principal results
establishing locally valid relationships between demand curve slopes under rationed and unrationed
conditions were derived by Tobin and Houthakker (1950-51). Related works were surveyed by Tobin
(1952), the results were later restated by Pollak (1969), and were extended by Howard (1977),
Latham (1980), Neary and Roberts (1980), and Deaton (1981). In particular, the last two authors
illustrate how duality théory can be used to generate empirically estimable demand functions under
rationing in the same way that it can do so in the unrationed case.

In this paper we extend the work on demand theory under rationing to explore the implications
of quantity constraints in the context of production theory. Because of the presence of short-run
adjustment costs leading to short-run input fixity or because of regulatory or institutional constraints,
quantity rationing often influences production decisions. Import licensing and quotas and the
rationing of intermediate inputs are widespread in the developing world. In many developing
countries, agricultural input, output, and credit markets are often targets of government intervention
that results in dual markets. In Canada, the European Community, and the United States, production
quotas have been impiemented for dairy products, tobacco, peanuts, and poultry. Mandatory sales of
agricultural output at below free market prices have been features of India, Indonesia, China, and
many African nations. Quantity restrictions became widely used in international trade as substitute
tariffs after the Tokyo round of the General Agreement on Tariffs and Trade (GATT) negotiations.

All of these cases have a common attribute, kink points in the iso-cost sets of firms. These kink
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points arise from binding constraints on inputs or outputs or other types of restrictions that result in
kink points in the interior (as opposed to the vertices) of iso-cost sets, the extreme case being a
quantity constraint.

In empirical analysis, it is often important to be able to represent an unrationed supply/demand
function in terms of a rationed one, and vice versa. Such functions are necessary if we wish to
predict behavior under rationing where we have observations only on free supply; more important,
they can be used in the converse situation ofA predicting unrationed behavior from observations on 2
market under rationing. Similarly, we mayv wish to estimate a system of firm supplies and derived
demands for a cross section or time series of firms, some of which are rationed and some of which
are not. Such functions can be estimated efficiently if a common technology with common
parameters is assumed for all firms so that the same parameters appear in the two sets of functions.
In this paper, section 2 characterizes the firm’s behavior under rationing in terms of its unconstrained
behavior when faced with virtual prices. Section 3 discusses the specification of flexible functional
form models under rationing. Finally, an empirical example is presented in which the structure of the
unréstricted supply curve of a quota-restricted commodity, tobacco, is retrieved from observations on
the quota-restricted markets. This methodology provides the necessary information to simulate the

effects of deregulation. Section 5 is a summary with conclusions.

2. Quota-constrained versus Unconstrained Behavior

In their classic treatment, Tobin and Houthakker manipulated the first-order conditions to obtain
properties of the derivatives of the rationed demands. They obtained locally valid relationships
between the derivatives of the rationed and unrationed functions; for example, the Le Chatelier resuit
(Samuelson 1947, pp. 163-69) that at the price at which the ration would have been just bought, the
compensated demand curve is no steeper with rationing than without it. Papers by Wales and

Woodland (1983), Hausman (1985), and Lee and Pitt (1986) have proposed methods for estimating
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consumer demand systems in the presence of binding constraints. Wales and Woodland’s approach is
based upon the Kuhn-Tucker conditions associated with a direct utility function, while Lee and Pitt’s
is a dual approach beginning with an indirect utility function and showing how “virtual” price!
relationships can take the place of Kuhn-Tucker conditions. We extend the analysis to that of
production technologies where kink points may occur because of binding nonnegativity constraints on
inputs or outputs or because of production quotas and rationing of inputs.

Consider a firm with netput vector y=(y,, y,)', where y, is a vector of unconstrained netputs
{with positive signs for outputs and negative for inputs) and y, is a vector of netputs that are traded in
the market but are subject to quotas. In the short run (when a vector z of inputs is fixed), the

variable profit function when y, is unconstrained by quotas is

I (o, py: 2) = max (Br v1 + P2 V2 (i ¥2. 2} €7) (1)
1 72
where 7 is the technology set, and p, and p, are netput prices. The properties we assume for this
function are standard: nondecreasing in output prices and fixed inputs, nonincreasing in input prices,
linear homogeneous and convex in prices, concave in fixed quantities, continuous and twice

differentiable. When y, are constraining quota levels, the firm’s constrained variable profit function is

I (p, Pyi ¥y 2) =max (b, ¥, + D5 ¥yt 7y ¥, 2) €7)
¥y
= max (pl‘ YI; (_yl, yz' Z) £ 1) + pz‘ YZ (2)
1

=IP (0 v,0 2) + 03 ¥,

! “Virtual” prices (Rothbarth 1941) are the prices that would induce an unrationed household to
behave in the same manner as when faced with a given vector of ration constraints.
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where the function I is a restricted profit function that we refer to as the "partial profit" function,
independent of p,. The partial profit function (2) shares the properties of the unconstrained variable
profit function as described above.

To establish the relationship between the unconstrained profit function (1) and the quota-
constrained profit function (2), we turn again to the concept of virtual price. We define virtual prices
as the vector of prices p, that would induce the firm to freely choose the netput vector y,. Hence, p,

must be a function of p,, y, and z, or

Py =D, (Dyi ¥3e 2) . ' (3)

We can now evaluate the unconstrained profit function (4) at p, = p, as

max (p, v, * Py ¥3: (Vi ¥y, 2) €7
y,.n(pl rosv TR o ) (4)

I (Pﬁ Yar z) +pv‘ Y2 «

Il* (p,, p,i 2)

and from Hotelling’s lemma, we may formally define p, as the solution to

I =y, . (5)

Now, at virtual prices for quota commodities, constrained and unconstrained profit must be equal,

(6)
II° (p,, Dyi ¥, 2} =11 (py, By 2) .
and from (2) and (4) we establish the relationship between constrained and unconstrained profit
functions as
IlF (o), pi v2o. 20 =1I* (py, Py 20 + (D, - P ¥, (7)

We can characterize the differences between the quota-constrained and unconstrained firm
behavior by examining first and second derivatives of (7). Differentiating with respect to p, and

using (5) we obtain



c u - op
I, =T+ [, - v) 5o =T, (8)

Applying Hotelling’s lemma to (8), we conclude that

¥r Py, Py ¥ar 2) = ¥1 (P Dyl 2) )
that is, the optimal vector of nonquota goods under a quota regime (y5) is identical to the optimal
unconstrained vector (y}) if the latter is evaluated at virtual prices.

Differentiating (7) with respect to quota levels y,, we obtain
I;, = & -p)'+(H"—y)'-(?&’=(p -p,) . (10)
Y2 2 v Py 2 ayz 2 v

Thus, the marginal effect of a change in the quota level is simply the difference between the market
price and the virtual price for the quota input or output (see Figure 1). We refer to this value as
quota rent, designated as r = p, ~ p,.

Finally, differentiating (7) with respect to fixed inputs z,

M =T+ (I, - ) 2e =T (11)

Thus, the vector of shadow prices for the fixed inputs is the same under a quota regime as under a
nonguota regime evaluated at p, = p,.

The comparative statics of the nonquota and quota regimes can be further elaborated by
deriving the Hessians of the former in terms of the latter and vice versa. To do this, we first

differentiate (8) with respect to p, and y, to obtain

. apv
IG o =I5+ [5) 7 - (12)
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Figure 1. Virtual price (pyj) and quota levels for output yy;
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c _ u ‘ apv
IG5 = {15 5) £ (13)
Now differentiating (10) with respect to p, and y,, we have
- 14
I . = . (14)
and
o .. 15
I, ,, = ¥, (15)
Finally, we differentiate (5) with respect to y,, to obtain
op
u —_—v = 16
Py Pv 3y, I (16)

| Equations (12) through (16) may be solved for the Hessians of the unconstrained equilibrium in
terms of those of the constrained equilibrium as follows. First combine (15) and (16) to obtain

H:vpv = (H;: yz)-l (17)

Next, from (13) and (15)
(18)

r'[;l | S H;x Y2 (H;: Y:)-1

Finally, from (12), (14), and (18),



U (=4 [+4 (=4 -1 (+] (19)
Hpip, = n;w1 - I05, , (Hy; y;) I, 5,

In a similar fashion, the Hessian of the constrained profit function may be expressed in terms of the

unconstrained Hessians as

H;z ¥z =- (II;,pv)_l ’ (20)
I, =, (,,)" . and (21)
5, =1, -1, 5, (Hgvp,)_l I, . (22)

Given equation (2), the results in equations (17) to (22} are preserved if we replace IT° by 1P
everywhere.

Equations (17) through (19) show how one may deduce the slopes of the supply and demand
curves of a non-quota regime if slopes for a quota regime are known, while equations (20) through
(22) provide the opposite transformation. Since these results are derived from IT* evaluated at p, =
P, the transformations are exact only at the quota-constrained equilibrium corresponding to quota
level y,. The results provide second-order approximations to the unconstrained profit function in the
vicinity of the constrained equilibrium. This is equivalent to a first-order approximation of the supply
and demand functions such as that shown in Figure 1. Here we can see that the estimates of a profit
function for a firm constrained by a quota to output y;; will provide estimates of the unconstrained
equilibrium level y5; via linear approximation through point a.

Some additional interpretation of these results is useful. The last term of (19) is negative
semidefinite, and the last in (22) is positive semidefinite (Lau 1976). Thus, under quota constraints,
the quantity responses to price changes are smaller than those in the unrationed case; i.e., the

LeChatelier effect. For the case of a single rationed output commodity such as the one considered
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later in this paper, equation (19) shows that the own-price supply elasticity of a variable output under
a nonquota regime is equal to its own-price elasticity under a quota regime plus a nonnegative term.
The nonnegative term is the product of three subterms: the response of variable outputs to the quota
level, the response of the quota commodity to its virtual price, and the response of virtual prices to
the price of variable commodities. The second term is nonpositive due to concavity of the profit
function, and the first and third have the same sign.

From (21), if there is but one rationed commodity, the effect of a quota on output (input) y,,
i.e., a decrease in y,, on a nonquota output is to increase the supply (demand) of the latter if they are
gross substitutes and to decrease it if they are gross complements. Since the order of differentiation
is irrelevant, (21) also indicates that the effect on nonquota outputs of relaxing the constraint is equal
to the effect of a decrease in the price of the nonquota output on the virtual price of the quota
commodity. Therefore, an increase in the price of the nonquota commodity causes the virtual price
of quota commodities to rise if they are gross substitutes and to fall if they are gross complements.

Two extensions of the results (17) through (22) are in order at this point. The first has to do
with the relationship between the Hessian of the partial profit function and that of the unrestricted
profit function. Note that from (2), IP,,, = IT;,,, IE,, = IL,,, and IE},, = II,,; thus, the
transformations between the Hessians of the partial profit and unconstrained profit are the same as
those between constrained profit and unconstrained profit as shown in (17) through (22).

The second extension is to show transformations between the elasticities associated with the
unconstrained, constrained, and partial profit functions. The notation for elasticities is as follows.
Let y represent the vector of netputs as before, or any subset of y that is of interest, and let p
represent the corresponding vector of prices. Let q represent any arbitrary subvector of arguments
with respect to which elasticities are to be calculated. Elasticities of optimal netput values, y, with

respect to q can be expressed as
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E, =0, I, D, , (23)

where E,, is the matrix of elasticities of netputs y with respect to q, and D,, D, are diagonal matrices
with the diagonal consisting of y and q, respectively.
From (10) and (23) it is evident that the elasticity of quota rent with respect to quota levels can

be expressed as

B =01, ,, b, . (24)
Also,
By, = Dy 1,5, Dy, (25)

Solving these for the derivatives of the profit function, substituting into (17) and simplifying, we

obtain
u _ c -1 -1 _ p -1
Brap, = - (E‘-"l ) DDy, = - (B ) (17a)
Similarly, we obtain
o= =-gF T N s I Y p -1
By, = - By (B )" D D, = - BR L, (B, ) (18a)
and
- =4 - -1 ¢ _ _ P p -1
Bl o = B o - ES y (ES ES = Ef - BEy, (BD )" EL - (19a)

The constrained profit function (2) represents variable producer profits under rationing and it is
particularly useful in welfare analysis of rationing. It provides a basis for an empirical measurement
of the willingness of the decision maker to pay for a particular change in some parameter, say, from

o to o'. The cost or willingness to pay for such a change can be measured as
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we [T de (26)

If « = py, then using Hotelling’s lemma, the amount by which the firm must be compensated for a

price change is given by

Py
W; = f Iz, dp,y - (27}
2}

This provides a measure of the change in producer surplus due to a price change. The presence
of rationing poses no new difficulties for the calculation of valid measures of producer surplus.
Using the restricted proﬁt function in (2), and with «=y?, some useful additional welfare results can

be obtained. Using (10), we have

1 13
¥ay ¥ay
Wy = f II5,, dv,y = f P2y = Pyy) 92y
¥y ¥y (28)
)’:lj

= pzj (YZlJ - YZ‘}) - f pvj (Pli Yz Z) dyzj

i3
This expression provides an exact measure of the firm’s willingness to pay for a change in the quota
level of output i. The shaded area of Figure 1 illustrates this change in variable profits due to
additional units of y; producéd.
From (28), the compensation required for a change in quantity constraints can be measured from
price and quantity data and knowledge of the virtual price functions p,; defined above. Such

information is particularly useful in the economic evaluation of changes in quota policies.
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3. A Translog Specification
The foregoing theory suggests that an unconstrained supply and demand system can be derived
from a partial profit function estimated under a quota regime (or vice versa). We specify a translog

structure for the partial profit function,

1nHP=ao+a’X+%X'BX, (29)

where X' = (Inp,, In y,, In z)’ and &, o' and B are parameters to be estimated (a scalar, a vector,

and a matrix, respectively). A convenient partitioning consists of o’ = (e, a,, o)’, and

Using Hotelling’s lemma, the share equations for the n nonquota-constrained variable inputs

and outputs are

s, =a,+B,1lnp, + B, 1lny, + B, In z (30)

whefe $y is an n x 1 vector of optimal shares s, = p,; y; / II". Note that B,, and B,,, which are
needed to evaluate (17) through (22), cannot be estimated from this set of share equations. The
partial profit function itself must be estimated, either alone or jointly with the share equations.

Given the assumptions stated earlier, the profit function must satisfy the properties of symmetry,
monotonicity, linear homogeneity, and convexity in prices, and concavity in fixed quantities.
Appropriate restrictions on the parameters are imposed in the estimation procedure so that the translog
profit function satisfies symmetry and linear homogeneity in prices. Monotonicity, convexity and
concavity are not general properties of the translog. They cannot be conveniently imposed with linear
restfictions on parameters of equations (29) and (30). Instead, the consistency of the estimated share

equations with these properties must be evaluated after estimation. To satisfy the monotonicity
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condition, the estimated shares must be positive. For convexity in prices, the Hessian implied by the
estimated B, submatrix must be positive semidefinite, and for concavity in fixed quantities, the
Hessians implied by B,, and B,, must be negative semidefinite.

Once the parameters of (29) are estimated, the virtual shares (defined as p,; y,, / IFF) for the

quota commodities may be estimated as

-9,=a,+B_1lnp +B,Iny, +B,1lnz . (31)

The full response elasticity matrix consists of responses of netputs, virtual prices, and shadow
prices (for fixed inputs) with respect to netput prices, quota levels, and fixed input levels. This
elasticity matrix can be evaluated for a given set of values of the exogenous variables by using the

estimated coefficients and the predicted shares as

EP = (B-D,+ss’) bt , (32)
where EP is the matrix of elasticities of netputs, virtual prices and shadow prices of inputs with
respect to prices, quota levels and fixed inputs, and s is a vector of predicted shares for the given

values of exogeneous variables.

4, An Application: Estimating Tobacco Supply Elasticity
The production of U.S. tobacco has been subject to federal output restrictions since the 1930s,
first in the form of acreage controls, and later in the form of production quotas (since 1965 for flue-

cured tobacco, and since 1971 for burley, the other major tobacco type)’. In this section we utilize

* Quotas are allocated to firms that could sell or rent them to firms within their county but in
most years not to firms across county lines. This implies different marginal costs across counties.
The rationing problem should then be modeled allowing for as many rations as counties. In this
paper we abstract from this to simplify the model. In a recent study, Rucker, Thurman, and Sumner
(1990) conclude that the welfare effects associated with removal of the cross-country restrictions is
small. This suggests that the misspecification implied by our simplification may not be serious.



14

the theory developed to estimate the supply elasticity of this crop, a crucial parameter in evaluating

potential changes in tobacco policy.

(a) The Data

We have chosen to estimate the tobacco supply elasticity for North Carolina, which is the largest
tobacco-producing state, accounting for about one-third of total U.S. production. The primary reason
for estimation at the state level is that tobacco constitutes a substantial share of agricultural production
value in that state (between 20 percent and 50 percent over the 1950-1984 data period), thus
providing a richer empirical base than would be the case for U.S. agriculture as a whole, in which
tobacco’s share of revenues is less than 4 percent during this period. We estimate a structure with
two outputs (tobacco and all other crop and livestock products), one variable input (production inputs
including hired labor), and three fixed inputs (land, capital and the stock of research knowledge).
Table 1 describes these variables.

Among the data required for estimation of the profit function are expected prices, which are not
directly observable. Our proxy for expected prices is a set of predictions from ARIMA (p, d, @)
models estimated from the time series of realized prices. Using Akaike’s (1974) information criterion
and the Q-statistic (Ljung and Box 1978), the accepted models were an AR (1) for output price and an

AR (2) for variable input price.

(b) Econometric Estimation

We estimate equations (29) and (30), with slight modifications for estimation purposes. First,
random disturbance terms (¢) were added to the profit and share equations. These disturbances
represent the effects of random weather conditions and approximation error; they are assumed to be
homoscedastic and uncorrelated within equations. Contemporaneous cross-equation correlation of the

disturbance terms is permitted.
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If, besides satisfying the above assumptions, the vector of disturbances is multinormally
distributed, maximum likelihood estimation can be performed. Under the stated stochastic
assumptions, the maximum likelihood estimators are consistent, asymptotically normal, and
asymptoticaily efficient. In addition, they provide estimates invariant to the choice of equation
deleted. The ITSUR option of the SYSNLIN procedure in SAS was used for estimation.

Using the expected prices -ﬁtted with the AR models and the data described in the previous
section, the equations (29) and (30) are estimated'by the maximum likelihood method. Cross-
equation symmetry and identity restrictions are imposed along with linear homogeneity in prices.
Aggregation consistency requires homogeneity of degree one in fixed commodities, so these
réstrictions are also imposed. The system has two equations,' with the dependent variables being the
logarithm of profits and the variable output share. The stacked model has 64 observations and 16
estimated parameters,

Collinearity diagnostics developed by Belsley, Kuh, and Welsch (1980) indicate an absence of
strong multicollinearity. Because time-series data are used, the presence of autocorrelation in the
residuals is possible. Simple Durbin-Watson statistics for each of the equations in the system fall in
the inconclusive range. A test for the joint hypothesis that the autocorrelation parameter in each
equation is equal to zero, proposed by Judge et al. (1980), does not reject the null hypothesis (for this
problem q ~ X2 is calculated to be 4.09 and the 0.05 critical value is 5.99). Both of these
procedures test for the existence of serial correlation occurring within a single equation but do not
consider the more general case in which errors may also be serially correlated between equations.

Guilkey’s (1974) Wald test statistic for a system of simultaneous equations that do not contain
lagged endogenous variables as regressors is calculated as 6.51. For four degrees of freedom, the
chi-square critical value at the 5 percent level is 9.48. Therefore, this statistic does not lead to

rejection of the hypothesis that the matrix of first-order vector autoregressive coefficients is zero.
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Estimation proceeded under the assumption of serially independent errors. R? obtained from OLS
residuals are 0.78 for the profit equation and 0.71 for the output share equation. Table 2 presents the
parameter estimates of the restricted model. The table contains a total of 28 parameters, six of which
are significant at the | percent level, five at the 5 percent level, and six at the 10 percent level.

In addition to the imposed properties of symmetry and homogeneity, monotonicity and convexity
in prices are additional properties of a profit function that cannot be satisfied globally with the
translog function. However, they may hold at the specific data points used in estimating the function.
For the estimates in Table 2, monotonicity is satisfied at the point of expansion, but is violated for
two out of six predicted shares at the mean of the data, and for 39 of the 192 predicted shares at the
individual data points. Convexity is violated if own-price elasticities have the wrong sign. There are

no such violations at the average of the data points, but there are at 44 of the 192 data points.

(c) [Estimates of Supply and Demand Elasticities

We use equation (32), with predicted shares evaluated at the mean values of variables, to
calculate the estimated elasticities of optimal production decisions in response to changes in prices and
fixed quantities. The results, shown in Table 3, indicate a nontobacco output supply elasticity of .24
and a derived variable input demand elasticity of -.41, estimates that are lower than we expected but
consistent with other estimates of aggregate agricultural supply and demand elasticities. The key
elasticity of interest in this study is the price elasticity of the latent tobacco supply curve, which is the
inverse of the third element on the diagonal of Table 3. This estimated price elasticity is about 7.0.
This is a large elasticity, larger than the recent estimates of 4.0 to 5.6 by Goodwin and Sumner
(1990), who used a different approach with cross-sectional county-level data for a recent ten-year
period. These large elasticity estimates are quite plausible because tobacco utilizes only 7 percent of
harvested cropland and perhaps higher proportions of other inputs, virtually all of which can be

reallocated between tobacco and other products.
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The remaining diagonal elements in Table 3 indicate that the derived demand elasticities for land
and capital are -.25 and -1.66, respectively (with other prices constant and tobacco quota fixed), and
that there are increasing marginal returns to the research variable. Other key results from Table 3
related to the existence of a quota commodity are the negative unit elasticities of output and variable
input use with respect to changes in the tobacco quota (the first is plausible, the second is surprising
but plausible). The elasticity of tobacco supply price with respect to the price of other output is 2.47
and with respect to the price of variable inputs is -1.47 (an unexpected and implausible sign). This
partial review of the econometric results indicates that the diagonal elements of the elasticities in
Table 3 have appropriate signs and expected magnitudes, while the off-diagonal elements contain
some estimates that are difficult to rationalize, though theoretically possible.

Since this approach to estimating the latent tobacco supply elasticity rests on measuring the
economic effects of reatlocating resources between tobacco and other jointly produced outputs, it is
useful to test this jointness property. For the restricted profit function, nonjointness between
aggregate output and tobacco requires that the second-order cross coefficient between these two
variables (-.135 in our case) be equal to the negative of the product of the corresponding first-order
coefficients (4.75 and -11.94 in our case). A likelihood ratio test, conditional on the maintained
hypothesis of symmetry, homogeneity in prices and in fixed commodities, rejects this null hypothesis
at the 5 percent level.

Equation (19a) provides a measure of how the supply elasticity of nontobacco products would
change if the tobacco quota system were eliminated. We obtain the surprising result that eliminating
quotas would increase the nontobacco supply elasticity from .24 to 17.67. To see why this effect is
so large, tecall that the last matrix expression of (19a) augments the elasticity matrix for a quota
regime to obtain the corresponding portion of the elasticity matrix for an unconstrained regime, For

the case of a single rationed commodity and a single aggregate of other commodities, the
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augmqntation of output supply elasticity consists of the negative of the following product: elasticity of
tobacco virtual price with respect to other output price (2.47) times the elasticity of tobacco output
with respect to tobacco virtual price (6.97) times the elasticity of other output with respect to tobacco
output (-1.01), which equals 17.43. The comparable LeChatelier effect on input demand is to
increase elasticity from -.41 to -1.97, also a very large effect. These large elasticities and
LeChatelier effects could be valid at the average of our data set but seem unlikely to hold over the
range between the constrained and unconstrained equilibrium points, so we are more cautious in

making inferences from those results than from the estimated supply elasticity of tobacco itself.

5.  Summary and Conclusions

We have discussed the theory of producer response under quotas and have shown how duality
theory and the concept of \;ix'tual prices may be used to simplify and extend this theory. Among the
implications of our results are the fact that behavior under rationing may be predicted from a
knowledge of behavior in an unrationed regime and vice versa. This information is important in
evaluating policies that either impose quotas on a previously unconstrained sector or eliminate quotas
in a sector in which they havé long obscured unconstrained market responses. We examine an issue
of the latter type, in which we estimate the market supply elasticity of tobacco from a time series of
data during a quota regime that totally obscured producer response to tobacco price. The estimated
supply elasticity is about 7.0, higher than estimated by others. This difference has implications for
measuring the welfare effects of changes in the tobacco quota program. We conclude that the
approach we develop may be useful in empirical evaluation of other quota and rationing policies

where data permit estimation of restricted profit functions.
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Table 1. Variables describing the agricultural sector

Il’, partial profit: the value of crops and livestock produced, not

Yu

YI29

Z3,

including tobacco, minus the value of variable inputs described
below.

variable output: the value of production of all crop and
livestock products other than tobacco, deflated to 1950 dollars
using the GDP deflator. Realized price is a Tornquist-Theil
index of deflated prices received by North Carolina farmers.
Expected price is from an ARIMA estimator described in the
text.

variable input: total farm production expenses, less
depreciation, property taxes and net rent to nonoperator
landlords, deflated to 1950 dollars using the GDP deflator.
Realized price is a Tornquist-Theil index of U.S.-wide price
indexes weighted by North Carolina expenditure shares,
deflated by the GNP deflator. Expected price is from an
ARIMA estimator described in the text.

tobacco: millions of pounds produced
land: millions of acres of harvested cropland

capital: the value of machinery and motor vehicles on North
Carolina farms deflated to 1950 dollars. For the period 1950-
1970, this value was available only for the United States as a
whole, For this period, the N.C. share of this U.S. value was
estimated to be the same as the share of N.C tractors on farms
to U.S. tractors on farms, as available from the agricultural
censuses and interpolated linearly between census years.

stock of research knowledge: a distributed lag of deflated state
and federal funds expended by the N.C. Agricultural Research
Service. The lag distribution consisted of a 13-year inverted-V.




Table 2, Maximum likelihood estimates of the translog profit function coefficients

Explanatory Variables
Second-Order Coefficients
Dependent First-Order —Price of——-- Quantity of:
Variable Coefficient
output inputs tobacco land capital research
output 4,75411 -2.53356 2.53356 -0.13513 0.71337 0.84852 - -0.98913
{1.95623) (0.29508) (.29508) (.40117) (0.34628) (0.38929) (0.19681)
inputs -3.75411 -2.5336 0.13515 0.71337 -0.84852 2.95917
(1.95623) (.29508) (0.40117) (0.34628)  (0.38929)  (0.68700)
tobacco -11.93763 -2.00720 6.81942 -4.81220 2.68471
(16.51615) (3.96009) (3.04188) (2.96793) (1.45328)
land 3.92327 -11.86200 5.04214 -4.4'7800
(12.49898) (3.64586)  (2.76176)  (1.67087)
capital 9.01436 -0.22991 1.79325
(18.09359) {3.88699) {1.98842)
rescarch 1.26446 -0.92058
(8.97853) (1.20012)
NOTE: Standard errors in parentheses,

0Z
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Table 3. Estimated elasticities, evaluated at the mean of the variables

Blasticities with respect to

Variable Output Input Tobacco Land Capital

Price Price Quota Quantity Quantity Research
Output .24 -.24 -1.01 1.97 .04 1.76
Input 41 -.41 -1.06 1.74 32 -.05
Supply Price Tobacco 2.47 -1.47 .14 -4.86 4.71 -.63
Shadow Price Land 2.01 -1.01 2.04 -3.94 1.90 21
Shadow Price Capital -32 1.32 14.07 -13.47 -.60 -3.42

Shadow Price Research 1.87 03 .27 22 .50 -76
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