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ABSTRACT
We develop a portfolio choice model for farmers faced with both price and production
uncertainty who can hedge this uncertainty using both options and futures contracts. We then
simulate the decision process of a typical lowa farmer and derive his or her optimal options and

futures position.



INTRODUCTION

In a recent paper Lapan, Moschini, and Hanson (LMH, 1991) extended Sandmo’s expected

utility model to analyze production, hedging,.and speculative decisions where futures and options

- markets exist. One important implication of this work is that when individuals percetve futures and
options markets to be unbiased and where local cash prices are a linear function of futures prices,
then there is no place for options as hedging instruments. By extension, individuals who use options
markets under these conditions may always be classitied as speculators.

If the LMH model accurately reflects existing market conditions, then the historic legislative bias
against options may be understood. For example, Cox and Rubinstein (1985, 23) argue that the
“popular misconception equating options with gambling has resulted in extensive government
regulation with puts ar;d calls at times considered illegal.”

The key to the LMH result is that one can divide the price risk into a component due to changes
in end of period futures prices, and an orthogonal component reflecting undiversifiable basis risk.
Because the diversifiable risk is linear in futures prices, futures contracts (which are also linear in
futures prices) dominate options contracts that in the LMH model are noalinear in futures prices.'

A recent survey of lowa farmers indicated that more producers use options to hedge than futures
(Sapp, 1990). This is clearly in contrast with the LMH result and raises the question of the

conditions under which producers may find it optimal to use options to hedge. In the context of the

'This motivation against using options to hedge price risk seems counter-intuitive. For example, Cox
and Rubinstein (p. 46) argue that a primary reason for the success of options markets is that they offer
patterns of returns that cannot be obtained by ownership of the underlying asset (the futures contract in
the LMH model). We can construct synthetic futures with suitable combinations of options. However,
the opposite is not true; the set of returns possible with options includes the set of returns that is possible
with futures. The obvious solution in the LMH model would be to exclude tutures and include both put
and call options. Here, the model would suggest that only synthetic futures positions be used for hedging
purposes.
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LMH result, this is equivalent to the conditions under which the risk faced by producers is nonlinear
in futures prices. One way to introduce this nonlinearity is to introduce production uncertainty. For
example, Jowa grain producers may believe.that low individual grain yields (caused by drought) may
be associated with high grain prices. If producers have sold more grain on the futures or forward
markets than they obtain from on-farm production then they will be forced to purchase expensive
grain to meet contractual commitments. Alternatively, if prices are low (due possibly to abundant
rainfall in the Upper Midwest) and if farm production is greater than anticipated, then the producer
may not have hedged enough production to eliminate all price risk. In the case where the expected
correlation between local output and futures ﬁrices is zero, production risk leads to another nonlinear
relationship because the effect of quantity uncertainty on profit is greater at higher prices.

The purpose of this paper is to introduce production uncertainty into the LMH model both
theoretically and through simulation examples, and to show how options can be used to hedge against
production uncertainty when output is uncertain. We focus on the case when investors believe that
both futures and options are unbiased.

The rest of this paper is organized as follows. The model is set out under the assumption that
tocal production variation does not affect the price of the commodity, and the optimal positions for
futures and options are illustrated. The effect of production uncertainty on optimal hedging behavior
is then emphasized. In the next section, the independence assumption is relaxed. As might be ,
expected with random variables of prices and output, two tinancial instruments, and a truncated
distribution, results for the general case require a lengthy and somewhat tedious derivation. One
motivation for presenting these derivations is that they can be used as the basis for a more specific
and richer analysis. This is demonstrated in the last section of the paper by simulating the decision

process of an lowa corn producer.



MODEL
It is possible to replicate the payoff of any combination of futures, puts, and calls with iny two
of these three assets. QOur attention will therefore be focused on futures and put options. For
éimp!icity, only one strike price for put options is considered and this is assumed to be the current
futures price. Suppose that a producer makes hedging decisions after he or she decides input levels.
Suppose for the time being that pr.oduction variability in dne region does not affect prices. The

random profit at harvest can be written as:
Y=P0 +(F-FYX +R-R) Z - ClQ) (L

where, the diacritical marks of ~ and — denote a random variable and expected value, 6 is the
random output, X and Z are the futures quantity and put options quantity sold by the producer, and
C(C-)-) is a cost function, F is the futures price at the time of a production decision, F is a futures
price at harvest time, P is the cash price at harvest time, R is a put option price at decision time, and

R is the termninal value of a put option with:

R-(F-PL @
where,

L=1ifF<F

L =0ifF=F

Following Benninga, Eldor, and Zilcha (1983, 1984) and Lapan, Moschini, and Hanson (1991) the

cash price is assumed to be a linear regressive function of the futures price:



P=7+f0F +F 3)
 where E['E] = 0and ¢ is assumed to be independent of F and (5 . Substituting (2) and (3) into (1),

the random profit is:
Y@ +BF+890+F-HX+{R-(F-FL}Z-CQ. )

The producer is assumed to choose X" and Z° to maximize expected utility of the random profit. The

first-order conditions can be written as:

E(W'(NF-H1=E[F-FHE{u(D)]|F}]
=E[gF)(F-F]=0

(8)

and
E{uN{F-HAL-R}]=E[{(F-HL-RYE{u(D)|F}]
E[gPA{(F-FHL-R}]=0

(&)

Given subjective distributions of prices and output, and a known utility function, the optimal
futures and put options position, denoting X~ and Z*, can be found by numerical optimization.
However, because the true utility function and the distributions of prices and output are not known,
results derived from particular examples may be misleading and lack generality.

The mean value theorem? can be used to obtain results for the general case where neither the
utility function nor the price and output distributions is known. Using this theory, one can solve for
both the sign and the relative size of X~ and Z*. In the general case, it can be shown that options are
almost always used to hedge production uncertainty in a way that makes intuitive sense.

The mean value theorem (Stein, 1968) is:

 Refer to Stein(1968) or most calculus books.



Let g be a continucus function on [a,b] and have a derivative at all x in [a,b] except at perhaps x
= 3 and x = b. Then there is at least one argument X such thata < X < b and -

gb) — _g(a)

b-a

g(x) =

The conditions for ﬁsing r.hé mean value theorem are continuity and differentiability. With the
existence of options, the price distribution is truncated at the strike price and thus g(F ) is not
differentiable at F. That is, since L = | when ?approaches F from the left side and L = O when
l?approaches F from the right side, the slopes of g(f) with respect to F at F*and F- are

lim %5 gy 80 - x) | F-F
Faf’ ar

and

lim %F) g [ uqy) (80 - X + 2) | FoF ]
F—hF_ 3F

Thus,

ifz =0 lm %8F) . lim %)
FoF' oF F=F  OF

When F approaches F  from the left side the slope of g(l—?"), it is different from the slope of g(I::)
when i?approaches F from the right. Therefore, g(]-:" ) is not differentiable at F (although it is
continuous). However, g(f; ) is differentiable over the interval [Q, F } and [1? , o] and thus the
mean value theorem can be applied to g(l?) in [0, F ] and [I? , @],

Before proceeding, note that the function g(}?) is strictly convex in F over the interval (0, F ]

or [F, es]. This can be shown by differentiating g(F ) With respect to F as follows:

To characterize the sign of azg(f J/F * we need to sign u”(Y ). First, consider that absolute risk



T8E) _p ity 80 - X+ L2y | £
aF
aversion is given by A = — u”(f )/u’(\F’U ). Then, nonincreasing absolute risk aversion means:

EA:_ . u.w(?) +I uh’(?) 5 <0
aY w'(¥) 1'(¥)

It indicates that u™(Y ) must be positive. Therefore, under nonincreasing absolute risk aversion, the

second derivative of g(}? ) with respect to F is positive since both terms within the expectation are
posifive. Consequently, under nonincreasing absolute risk aversion g(}? ) is strictly convex and
differentiable in futures price over the interval [0, F | or {I-T , =]

Figure 1 shows how the mean variance theorem can be applied to g(}?). Suppose that the shape
of g(f-:) is DACBE in Figure 2. Applying the mean value theorem to g(®) over the interval _[I? ,
oe], there is a futures price f such that g(i?) will have the same slope as line AB. Here, fis unique
given the strict convexity of g(F ) in [0, F ] and [F , «]. Equivalently, the slope of the line
connecting (f:: R g(l_:-)) and (1-5, g(l?)) is the same as g'(F), ie.,

$F) ~e®) _ B _p (05 80 - x - L2) | F (D) ]
F-F af ?

=Eu'y) (B0 -X + LZ) | F]

wherey = (r+8f +e) +(F —f)X+{R —(F —f)L}Z -CQ)andf isa
monotonically increasing function of F because g(f-: ) is strictly convex in [0, F ]} and [I‘?, a], The
left side of equation (7) represents the slope of line AB and the right side represents the slope of
g(f:). This analysis can be conducted for all F in [1—5 .o | by connecting point A and any point on
curve g(I?). Applying the mean value theorem to g(f) over the interval [0, f] is similar to the

explanation here.
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Figure 1. A schematic representation of how the expected marginal utility conditioned on futures
price responds to the futures price using the mean value theorem
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Figure 2. An example of the combined position of optimal futures and options



From (7),

gF) =E[u'(Y) | F]

I ] ®)
~g(F) + (F - F)E () 80 - X +LZ) | F .

Substituting (8) into (3) gives:

E(NF-PN1=E(g@® & -F]
~E[(F-FgF) | +E[F-F}
{E [u"() B -X +LZ) | F])]=0.

Since g(F ) is a fixed number and E[E{"i}?} = E[*], this can be rewritten as:

E[(F-F)lg(F) +EW'y) (F-FF B -X+LZ)] =0
Therefore, under the unbiased assumption, i.e., E[I? -F ] = 0, equation (5) can be re‘;vrirten as

E () F - Fy (B0 -X +LZ) ] = 0. 9

Equation (6) can be rewritten in a similar manner:

EW@{LF-FH-R]=0 10
= -aE, [ g(F) (F - F) | - RE [u'() ],

where o = Prob] F <F ] and the subscript | represents the conditional expectation on F <F ,

ie, Ef*] = E['II? < F ]. The first term on the right side of equation (10) can be written,
substituting g(F ) of (8), as:

~aE, [ g(F) (F-F) | = ~oE[(F - F) (F)

+(F-PEW () B0 -X+LDIF]}]
Factoring out terms within {} and using E{E{*|F }] = E[*], it follows that

-aE[g(F) F - F )]= -ag (F) E, [F - F |
~aE {u'y) F - FP (B0 - X + 2) }.

Now using R = E[(F ~ F)L] = —aEJF —F Jandg(F ) = E(u’(Y)| F =F ] yields:
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~aE, [g(F) (F - F) ] = -RE [u'(¥) | F = F]
~aE, [u') (F - FY (30 - X + Z) |,

Therefore, (10) can be rewritten as;

EW' M{LEF-FH-R}|=-R{EW W] -EW ) |F=F]}

- (11}
oE (1" () (F - PP (90 - X« D] =0
Using (9) and (11), the first-order conditions are
E[u"() F-FP{B0-X+LZ}]=0 (12)
and
R{E[W (N]-E[u(D) | F=F]) a3

-aE, [u"G) (F-FP{B0-X+Z}}=0

Factoring out terms in {*}, at the optimal futures and put options positions equations (12) and

(13) can be rewritten as follows:

BE [u" () (F-FP Q| -X E[u" () (F-FF|

_ (14)
v+ Z7eE, [u" () F ~-FF] =0 :
and
~R{E[WD]-EM @ | F-F]}
- BeE, [u" () F - F}F Q] s

+ X o, [u"() (F ~ FY ]
-ZTaE, [u" (y) F -F)) =0
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Consequently, equations (12) and (13) can be rearranged as

Ba
-8b + ¢

X -2L,2°
'-ime' + £ Z”

(16)

where,

Lr=Elu" O F-FF]<0

Loy = oE, [w"(G) F -FF] <0
E[u"()Q(F-F]<0

oE, w5y O (F - F)F]<0
R{E[u'(M]-E[u' (M| F=F]}<o0

Q
il

(]
H

By assumption u"()—;) is always negative for all )T, and (5 and (F — }?)3 are positive so that

Pers Lery, a and b are all negative. And Fp < P, < 0and a < b < @ since

"l

l[E[h(F,Q)lmr(F)dh);E[h(&ot)!ﬁ]r(mf

itE [‘h(ff, (5)]131 is negative for all futures prices. Here h(%) is some functional form for F and
Q , and I'(F ) is the density tunction for F . The sign of c is less straightforward than for Lp, L,
a,and b. Usingc = — R [E{g(F )} — E{g(F )}] = — R E[g(F ) — g(F )] and substituting g(F )
- g(l-:—) = (I?-* F )E[u”(;)(ﬁd -X + LZ)JI?}, then ¢ can be rewritten
-RE[(F - ) E{u"() (60 -X +L2Z) | F} ]

-RE [u() (F - F) (80 ~ X + LZ) | an
-RCov [ F, u™y) (80 - X + LZ) ].

©
il

]

The covariance term has the sign of 3[u”(y J(8Q — X + LZ)J/6F = u™(y }BQ — X +

LZ)2(6FF /8F ), which is positive under nonincreasing absolute risk aversion. Therefore, c is also negative.
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The optimal futures and put options amounts of X" and Z" can be expressed as a function of £,
ZFeri> 8, b and ¢. In effect, these terms are also functions of X and Z°. However, when X* and Z°
are expressed in terms of .SEFF,' ¥Fer, 2, b, and ¢, we find the signs of X" and Z* and/or the relative -
size of X" and Z°. For example, suppose that X" = h,(X", 2% > 0, Z° = h.(X*, 2" > 0 and h,(X",
Z7) are always greater than h,(X", Z7), where h, and h, are some functional forms. Then, we can
conclude that X* > Z" > 0 and that the combined position is decreasing in futures price as shown in
Figure 2, which shows a standard “payoff” diagram. This represents profit or loss at harvest time in
futures and options to the futures price on that date. If the producer has sold a futures contract, then
profits from this_portion of the portfolio fall as the futures price increases. This is true because he or
she has promised to deliver at a fixed price an asset whose value is increasing. Selling put options,
on the other hand, leads to a protit or payoff that is increasing in futures prices in the price range
from O to the strike price (F) and independent of the futures price in the region from F 1o infinity.
If we know that the producer has sold more futures contracts than he or she has sold options, then we
can describe how the total or net position responds to the futures price. The payoff line for the
combined position is determined by adding the payoffs of two assets verticaily for each futures price
realized at harvest time. From Figure 2, at any point up to the strike price, the reduced profit in
futures market from an increase in futures price is greater than the increased benefit (reduced loss) in
the options market. At any point beyond the strike price, a price increase causes the loss in futures
increase while the profit in put options does not affect changes in the futures price. Therefore, we
can conciude that the net payoff is decreasing in futures price in all regions.

When Lep, Lo, a, b and c are considered as fixed coefficients, X™ and Z° can be obtained from
(16} as:

_ {B@a-b)+c} &
B A

xX- >0 (18)




and

B (L a - B b) L
a

(19)

where, A = Lo Zrp — Lop” = Loy (Lor - Loy ) > O since L < Fy < 0. Consequently, the
producer always sells futures, i.e., X" > 0. This occurs regardless of the level of X since (18} is
always positive. On the other hand, whether the producer sells or buys put options is ambiguous.
Rather than analyze the relative positions described in equations (18) and (19), we how focus on
the additional hedging caused by production uncertainty. It is useful to show that under nonstochastic
output the optimal decision is to sell 8Q on the furures market and stay out of the options market.
To find the optimal stochastic position from the results reported below we simply add this
nonstochastic position.
To emphasize production uncertainey, it is useful to substitute 6 = Q_ + ((5 - (5 )into a, b,
and ¢ in equations (16) and (17} so that production can be separated into a nonstochastic and a
stochastic component. First, substituting (j = (5 + (6 - 6 } into ¢ in (17) and rearranging, we
obtain:
RYE(u'(0) Q(F-F)) - XE[w') F -]
+Z o E LU (F-F1)
R {BOE [uw'y) (F - D]+ 8E ') (0 - O F - D]

X E[W)F-P)+ZaE [ WD (F-F)}
-R[BOL, + BLy - X" %, + Z°%,, |,

L]
[}

L}

where £ = E{u"(y E — F )], $r = aEu"(y XF —F )] and Loe = Eu"(y XQ - Q )F -

I-:). Therefore,

c=-R{BOL, +BLy - X%, +2°% (20)

£t i

Substituting (5 = (5 + ((5 - Q_ ) into a and b, they can be rewritten as
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a=E[wWMOF - FP ]

=QE[u'y) F-FR]+E[u'®) Q-0 F-F]
s0 that

a=0% + %
where Loee = Eu"(y Q - Q }F - F ).
Similarly,

b=aE [ W) QF -]
=é$!-‘}“j+"99

~ QFF1

where Lo = aEu"(y )G -~ Q )F - F 1.

Substituting the a and b obtained here into (18), then optimal X" can be rewritten as:

L {8a-b+c}

X =
A
_ Lad B0 + L = 0%y ~ L) + € )
A
- BQS‘EFH (Lo = L) . Loy { B (‘Ef'QFF - fg@fﬂr) + ¢}
A A )

Since A = L ((FLer — Liry), it follows that

L 18 (Epee = L) *+ €}

X* = B0 + B

Substituting a and b into (19} again yields:
B(Epa-2Lb)+ 2 ¢

AR
A
- Bt (éffnr t Eo) - L (éfffrr - L) +Eg C
A
s0 that
7 = 8 (‘ngi’eﬂr T grrﬂfgﬂn) « Zn C'
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Therefore, X" and Z* can be rewritten as:

g.’-‘.’-’] {ﬁ (“‘(Bgr;: - gQ,l-',l-‘,l) + C}
A

X* = ,8(_2 + @n

22 =0 E0rTer = ner) T € 2

Substituting X" and Z* from (21) and (22) into (20), we obtain:

Lo (JS&BQFF - ﬁég@*ﬂ *+C)
A

¢ = -R[BOYL, + 5L, - £, (60 + b

8L Lo = BLLomy + Lop €

+§£n{ A

b1

which can be rewritten as:

c=-R [ 'BA'E‘-’PQF = BE L (L - E"’)@C‘H) + 84, ('EfFFla(fQFF._ gnﬁfofﬂ) ]
23)
1

[~ ]
R (S’ergmr - “cfngfrr) - A

When the production process is nonstochastic, £ge, £y and Loer, are zero® and thus ¢ = 0.
The second terms of the right sides of equations (21) and (22) are all zero, so the optimal futures
amount under the production certainty is 8Q and options are redundant. Consequently, the right
sides of (21) and (22) can be separated by two parts: the first term of the right side is optimal futures
and put options sold by the producer under production certainty and the second term represents _the
additional futures and put options arising from production uncertainty.

Under the independence of price uncertainty and output uncertainty, Lopr = E[u"(Y )
(Q—-Q YF -F Y] =E[ - F)Cov{u"(y), Q |F }]. The conditional covariance has the sign
of du”(y }/8Q = Bu”(y )f (3t /aF ), which is positive since u” > 0 and 3f /3F > O with

nonincreasing absolute risk aversion. The additional futures and put options due to production

’ For example, £ = Elu'(y)Q - Q)F — F )] = 0since Q = Q under nonstochastic
production.
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uncertainty are denoted as AX and AZ, respectively. Then,

AX - AZ = <0 24)

(SFFI - ’g.rp) (C - 65'8@:1:])
A .

since Fpp, ~ Lo > 0, ¢ < 0 and Lope, > 0.4 Therefore,.we can conclude that AZ > AX even
though their signs are unknbwn. |

This result is the key for delineating the additional hedging bosition. Production uncertainty
(independent of prices) causes producers to take options and futures positions that are different from
those taken when production is certain. The precise nature of the additional positions will depend on
the individual’s utility function, and the subjective distributions of output and prices. Nevertheless,
five possible outcomes are shown in Figure 3. The dotted lines represent payoff diagrams in futures
and put options and the continuous line represents the payoff for the combined position. The
underhedging against low futures prices is common to all five possibilities. Intuitively, this occurs
because profit risk caused by output uncertainty is lowest at low prices.” In four of the five cases (b
through e) the producér takes additional insurance when futures price is high. This can be explained
by the positive correlation between futures price and profit risk. Case a is the only exception to this
rule. The payoff diagram for the combined position of Case a is inversely V-shaped (hereafter,
denoted as “A” shaped). Here the effect of production uncertainty is to hedge against small price
changes and to accept losses when price changes are large. This situation might occur when the
producer’s subjective estimate of output variance is low and he or she perceives that there is little

possibility of high prices so he or she is unconcerned about this possibility.

* Similar to Lo > 0, Fer I8 also positive.

*For simplicity, suppose that £=P and that ¥, is the unhedged profit. The conditional variance of
unhedged profit on the futures price is Var[Y, | F1Var(Q). Therefore, the profit variation conditioned on
the futures price increases as the tutures price goes up.
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Figure 3. Additional hedging positions required due to production uncertainty
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Interestingly, there is one possibility (d) where no options are purchased (Figure 3). In this
case, however, the number of futures contracts is different from that in the LMH model (ie., X° =
B8Q + AX, where AX < 0since AX < AZ = (). This leads to the perhaps unsurprising
conclusion that production uncertainty creates hedging decisions that are different in the LMH model
regardless of the functional form of the utility, or the expected price distribution. Additionally,
McKinnon (1967) and Losg (1982) showed that in the absence of options markets production
uncertainty causes producers to hedge less than would otherwise be the case (AX < 0).%7 When the
options market is considered with the futures market, our results indicate that AX may be positive (a
in Figure 3) or negative,

To summarize, in the absence of an anticipated correlation between the individual’s output and
prices, the effect of production uncertainty on profit risk is greatest near the mean price or at high
prices. The producer will hedge against this additional risk by creating payoff schemes that create
losses at low prices and generate profits near the mean or at high prices. The producer’s hedging

position depends on the individual’s utility function and distribution of output and prices.®

INTRODUCING DEPENDENCE BETWEEN PRICES AND OUTPUT
Consider a circumstance where [ocal production changes are correlated with price changes.

Following Losq (1982), the aggregate demand and random output (Q) faced by the individual

® Losq {p. 69) argued that the optimal hedge in the forward market should be less than the firm’s
expected output as long as the third derivative of the utility function is positive if price and cutput are
stochastically independent. In his model, the additional futures selling is (X — Q) since he considered
forward market instead of futures market, i.e., P =F .

" In our model, if only the futures market is considered, AX < AZ = 0 so that we can get the same
result with McKinnon and Losq.

* The additional hedging position is sensitive to the utility function. It is shown in Appendix A that
the additional hedging position arising from the production uncertainty under u” > 0 is exactly opposite
the one under u™ < 0.
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producer are:

0 = 0 (A
Q=K(@Q%H

(25)

where, (5 4 and (5 ' are aggregate demand and aggregate supply, respectively. Here, M represents the
component of the firm-specific production uncertainty, which does not influence aggregate supply and

price. At equilibrium, 6‘ = Q"“ so that the random output of the producer is

Q= KI[Q Py k] (26)

The first derivative of Q with respect to P is
dQ _ 9K §Q¢°
ap  8Q° aF

Multiplying by P /K on both sides and arranging, the following relation holds:

7 =11,
where,
G40 P . 9K O
b Q1 4Q* K
and
. _ Q¢ P
7?'2—_'—""—4'
aP C

In this case, ;f is the p'roduct of the elasticity of local production with respect to aggregate supply
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(%,) and the elasticity of the aggregate demand with respect to price (7,).. Assume that @ and P
are negatively correlated and that » is constant and greater than —1 so that —1 < 5 < 0.°
If the producer expects the price he or she perceives to be correlated with production, then the

derivative of p § with respect to f is:

E’_’g=q{l+2.a_q}a_p
df g dp | of

whereq = Q (f)andp = (r + BT +e¢). Since (3p /3f) = 8, it follows that -

BT _ gg (1+7)
a7

where 7 evaluated at P is equal to # evaluated at 5 because n is assumed to be constant.

From (26), (5 is a function of P (in turn, P isafunctionof F and ¢ ) and Py , i.e., 6 =
K(Q-"(}? . ?), :) = K(I::, ?, ;). Here, F , € , X are independent of each other, so the joint
density function of F s ;, and x is the product of each density function. Therefore, the first-order
conditions derived from the maximization of the expected utility function have the same form as (5)

and (6).

The derivative ot g(f~) with respect to t s

BO _Elu (B emg-X+1Z) | F]
af

Thus,

g =gF +F-PDE[wM{BU+mg-X+L1Z}]|F1 @

The only difference between (8) and (27) is that a (1 + 5} is replaced with (5 Therefore, the

optimal futures and put options amount sold by the producer under the dependence assumptions are:

® The producer might believe that farm vields are correlated with regional yields and that changes in regional
yields can cause price changes.
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L (Bl +m)(@a-b)+c}
A

B () (L,a - L0 + Lo ¢
A

X* =

(28)
Z *

where Q ina, b, Zer and L, are replaced with q compared with previous notations in the
independence case. Thus, £ < P, < Oanda < b < 0.
The procedure to find the sign of ¢ is almost the same as the previous one. The second

derivative of g(l? ) with respect to F is:

azaiff) SELWBH {0 47 - X+ LZF | A

CELw 8 em 2 )
aF

Under the assumptions of nonincreasing absolute risk aversion and —1 < 5 < 0, the second
derivative of g(l—?') with respect to F is positive and thus g(l?) is convex in [0, F ] or [1? , o],
Also, ¢ can be rewritten as

RE[uW'®(F-F{B8g(1 +m)-X+1Z}]
RCov{F, ') {Bg(1 +m) -X+L1Z} ]

©
il

]

The covariance has a sign of 3{u”(y ){8q (1 + 1) — X + LZ}/OF = w" 3 ){Bq (1 + 1) — X +
LZ} + u"(?)ﬁ’(l + n)(aa f&?), which is positive under u” > Qand -1 < 5 < Q. Therefoye, cis
also negative.

One obvious fact is that the producer always sells futures. Similar to the previous analysis, the
possible shapes are presented in Figure 4. In part a, Z° > X" > 0 where the producer will hedge
when the realized futures price is near the mean price. Parts b through e demonstrate that the payoff
diagram for the combined position is decreasing in futures price.

To understand the intuition here, assume that P =F correlated with price. Since B@Q")IBI;

=Q (1 +n>0add® G )¥3P2=(1 +nEQ/F) < 0if =1 < 5 < 0, the unhedged
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The combined futures and options position

Figure 4.
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random revenue (P Q ) is concave in the realized price and its slope is always positive. Options are

required due to such nonlinearity and the producer will not place a hedge against high futures prices.

NUMERICAL SIMULATIONS

The results obtained from the previous sections are now supported numerically. This section
also analyzes the effect of several elements on hedging behavior: the degree of absolute risk
aversion, output variation, the shape of price distribution, and the size of n (see Appendix A for the
effect of the utility function on hedging behavior). First, the method to find the optimal tutures and
options amounts is explained briefly. Then the optimal furures and options position is calculated (a)
when the production uncertainty is independent of prices and (b) when it is dependent on prices. In
all cases we assume that P = F and that the producer has a constant absolute risk aversion, i.e.,

—

u(y ) = —exp{—Af] where A is a constant absolute risk aversion coefficient.

Data and Method

The mean and variance of the output for typical lowa corn producers were calculated from Jowa
Farm Costs and Returns (for 1970 through 1989). The coefficient of variation of Iowa corn
production per farmer was 0.158113." Average 1989 corn production is used to represent mean
production approximately 20,000 bushels, and thus the variance of corn production is assumed to be 1
x 1071

Corn is assumed to be planted the second week of May and harvested the second week of
September. Assume that the September corn futures price in September is the mean price for the

year. The deviation of the futures price from the mean is calculated as a difference between the

' The coefficient of variation of output is defined as {Var{(j Qe

! When the expected production is 20,000 bushels and the coefficient of variation is 0.026165, the
variance of production is calculated as {0.158113 x 20,000)° = 10,466,000,
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September corn futures prices in May and in September. Years considered here for corn futures price
are 1974 to 1989 and the coefficient of variation of the futures price is 0.173205. The September
corn futures price in the second week of September 1989 was 2.92, which is set as the mean price for
the year, and thus variance of the futures price is assumed to be 0.255792.

The first step of the optimization procedure is to establish for X an interval of + 10,000 around
a starting point and to divide this interval into 19 evenly spaced segments so that the number of Xs
considered for calculation is 20. For example, suppose that the starting point of X is 0. Then, the
values for X are (—10,000, ..., —2,000, —1,000, 0, 1,000, 2,000, ..., 10,000).

The values for Z are obtained the same way. In the X-Z plane there is now a grid of 400
points. The expected utitity level at each point on the grid is calculated. The second step is to
choose the point, say (X,, Z,), on the grid, where the expected utility function is greatest. If the
point is an interior solution, then the first step is repeated within an interval of + 1,000 around (X,,
Z,). If the point is a corner solution, then the first step within an interval of + 10,000 around (X,,
Z,) is repeated. This procedure is repeated until an interior solution is found and the first step will
then be repeated within an interval of + 1,000 around the point on the grid where the expected utility
is greatest. The point is regarded as an optimum point. Strictly speaking, the point may not be an
optimum point. However, we are trying to find the shape of the combined position for futures and
options and these two steps are enough to find it. Moreover, when the minimum contract size in
futures market and options markets is considered,' it may be acceptable that the maximum deviation
of our optimal amounts from the true optimal amounts is + [00. We use a CARA (constant absolute
risk aversion) utility function so that the second-order condition is always satisfied (see Appendix B).

Therefore, this search procedure allows us to aveid problems caused by local optimum.

'2 The contract size for corn in futures is 1,000 bushels at the MidAmerica Commodity Exchange and
5,000 bushels at the Chicago Board of Trade.



25
The numerical integration becomes accurate as the domain of random variables is divided as
many times as possible. However, the more accurate calculation requires more cost. The method
used trades cost for accuracy. Iﬁ this research, the random variables are divided into 70, 100, 150,

or 200 according to the step. We choose more segments for the higher step.”

Independence Case
Assume that price and output are normally distributed as follows:
F ~ N (292, 0.255792)
Q ~ N (20,000, 1x107).
Normal distribution has a domain from — o to + o . In this resgarch, the bounds of random
variables are set such that the probability of the truncated area is almost zero.
Table 1 represents the producer’s hedging behaviors in the various situations considered here. In
Case 1.6 and Case 1.7, the distribution of price is truncated from the mean price. The conditional

density function for half normal distribution is the product of both density function of normal

Table 1. Possible hedging position under independence between prices and output

Condition Shape Figure 3
ZZ>X" >0 “A” shaped (a)
Z’=X">0 sell call )
X'>Z">90 {—) sloped ()
X>0,Z2"=90 sell futures (d)
X">0>2" (—) sloped (&)

distribution and 1/0.5. The conditional means of futures price are obtained from integrating the

product of F and a conditional density function of half normal distribution with respect to F , whose

1 Seventy is chosen for the first step and 150 or 200 is generally chosen for the final result. In effect,
dividing the random variables by the segments of 150 or 200 was enough, according to our simulation.
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domain is 0 to F in LHND and £ to 7 in RHND, These can be easily calculated from intquadl in

GAUSS program. The conditional means of futures price are;

E[F|{0<F<292]=25164628 Sor LHND and

E[F|291 = F<7]

3.3235372 Sor RHND.

Under the independence between output and price and F = P, the results indicate that the
producer will always seil (5 fufures under production certainty and will use additional futures and
options for hedging the unequal variation of profit caused by production uncertainty, The combined
position of futures and options is simply a sum of selling futures by (5 and the additional hedging
position due to production uncertainty. Therefore, the combined pesition is automatically determined

if the additional position is found. Therefore, we examine only the additional hedging position here.

I. Cases 1.1 through 1.3. Different Absolute Risk Aversion Coefficients

Figure 5 demonstrates the etfect on hedging behavior of the degree of absolute risk aversion.
The producer sells futures of expected output, (5 and he or she hedges the variation in profit from
production uncertainty, which increases as the realized futures price is higher. If producer A is more
risk averse than producer B, producer A will hedge more the high variation range in profit (thus
higher price range) and iess the low variation range than producer B. Therefore, in Figure 5 the
slope of the payoff line for producer A is greater in [F, o] and less in [0, l?] than that for

producer B.

2. Cases 1.1, 1.4 and 1.5. Different Variance of Output

The hedging behavior according to the ditferent variances of output can be interpreted from
Cases 1.1, 1.4, and 1.5, as shown in Figure 6. The combined positions of additional futures and
options are increasing in futures price in Case 1.1 and “A”-shaped in Cases 1.4 and 1.5. The higher

variation in output causes the producer to hedge more the high price range than the lower variation.
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Figure 5. The effect of the degree of absolute risk aversion on hedging behavior
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This is interpreted from Var[FQ - C(O) | F] = F:Var(Q). When the realized futures price increases,
the variance of unhedged profit increases more rapidly in the high variance of 6 than in its low
variance. Therefore, the producer will hedge more on the high price range when Var(ﬁ ) is large,
Cases 1.4 and 1.5 have "A”-shaped positions, which can result from the interaction between the
output variation and the shape of the price distribution. That is, if the probability of high price is low
and output variation is small, the producer will be worried more about the high probability range with
low profit risk than about the low probability range with high profit risk. Consequeatly, given
absolute risk aversion, whether the producer will take increasing position in futures price or “A”-

shaped position depends upon the distributional shape of price and output.

3. Cases 1.6 and 1.7: Nonsymmetric Price Distribution

Two extremely truncated price distributions are considered here: right half normal distribution
(RHND) and left half normal distribution (LHND). Case 1.6 presents the LHND, where the
producer gives more weight to the high price range for hedging decisions than to the fow price range.
On the other hand, Case 1.7 is the RHND case, where the producer allocates more weight to the low
price range for hedging decisions. As shown in Figure 7, the additional hedging position of the
producer increases with the futures price. However, the producer hedges more the high price range
in the LHND case than in RHND. This emphasizes the effect of the price distributional shape on
hedging behavior. In addition, the payotf diagram of Case 1.6 shows that the additional position is
increasing in futures price even though the most weight is given to the low price range.

Consequently, in any of Cases 1.1 through 1.7, the producer will place a hedge position against
the high price range or against the mean price for additional hedging due to production uncertainty.
The precise position depends on several elements, including the utility function and distributions of

output and prices.



au!

v

e R R

(-

|
(-
—t

bt

30

et Half Normai A ,
/S Distrz:ks
4o vh A ! / Ty
Distribution | -/
i ;
h /
/‘ /
i /
/ /
/
! p
/

Figure 7.

The effect of the shape of price distribution on hedging behavior

‘1]}’



Independence Case

The etfect of production uncertainty on hedging behavior has already been analyzed. In addition
toF =P , we assume that production is perfectly correlated with price so that the elasticity of local
production with respect to aggregate supply is one, 5, = 1. Suppose that aggregate demand is
constantly elastic with respect to priée, (5 = 7}3"" whe;re n is the price elasticity and = is some
constant coefficient. The mean is 20,000 so that E[(i] = ~,4E[1-5 " = 20,000, If price distribution
and 7 are given, we can calculate the vatue of y. The price distribution is assumed to be normally
distributed with mean of 2.92 and variance of 0.255792. The optimal hedging behavior is simulated
here with several values of n as presented in Table 2. The results are shown in Figure 8, which
indicates that the producer who believes in a high price elasticity of demand will hedge more in the
high price range. This can be illustrated from Figure 9. The unhedged profit becomes horizontal as
n approaches —1 and inversely, as » increases from the —1, its curvature increases. In order to
remove profit variation the producer’s hedging position will take the inverse shape with the unhedged
profit. Therefore, the producer will hedge more the high price range and less the low price range
under high » than under low 7.

There is another situation (Case 2.6), where firm-specitic production uncertainty is considered.

The simplest hypothesis for this is that the firm-specific production uncertainty (k) is additive risk:

where « is assumed to be normally distributed with mean 0 and variance 7 x 10°. Suppose that P
has right half normal distribution. The optimal futures and options obtained from the numerical

simulation are 1,000 and 1,700, respectively, with a combined position that is “A™-shaped.
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Table 2. Possible hedging position under dependence between prices and output

Condition Shape Figure 4

ZZ>X" >0 “A” shaped (a)

Z2>0, X =0 sell put (b)

Z2>0> X (+) sloped (c)

X'<0,2°=0 _ buy futures (d)

O0>X">Z (+} sloped {e)
CONCLUSIONS

The producer uses options as well as futures as hedging instruments under the assumption that
futures and options prices are unbiased. Therefore, cash price is a linear function of futures price
because the variance of unhedged profit increases as realized futures price increases. Thus, unhedged
protit is nonlinear in futures prices, so the producer always sells futures. The precise position for

futures and options depends on the utility function and the distribution of prices and output.
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APPENDIX A. COMPARISONS OF ADDITIONAL HEDGING BEHAVIORS ACCORDING
TO UTILITY FUNDTIONAL FORMS

The importance of the utility functional form was stressed earlier. To interpret this, we compare
the additional hedging components under u™ > 0, u”™ = 0 and u™ < 0. If the production process is
nonstochastic, the risk of futures price uncertainty is removed so that the shape of the utility function
does not affect hedging behavior.

In effect, many economists have used the mean-variance method to analyze the producer’s
optimal hedging decision. The mean variance method cannot be used due to a truncation of price

distribution when an options market is considered unless the producer has quadratic utility function,

With the quadratic utility function and independent assumption between prices and output, u” is
constant and therefore £, Loy, Logr and ¢ are zero." The second term of the right side of (17)
is zero and thus the additional futures and put options are zero. Therefore, if we use the mean
variance method to analyze hedging behavior with an options market, the optimal futures and options
amounts under production certainty are equal to those under production uncertainty if price
uncertainty and output uncertainty are independent.

Suppose that u” < 0, then Loy < 0, Lo < 0, ¢ > 0 and thus AX > AZ. Therefore, if the
additional futures and put options amounts under u” > 0 denote AXX and AZZ respectively, then
AXX = —AX and AZZ = —AZ from (21} and (22}). These are exactly opposite for results under u™
> 0. In effect, if u™ < 0, the producer would not hedge high profit variation since higher hedge

return in the low variation increases his or her expected utility level.

“For example £, = Elu”(N)(0 - O)(E - FY*] = u"E[Q - O)(F - F)’] (since u” is constant)
=u”E[Q -Q]E[F -F] (since independent assumption) = 0.
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APPENDIX B. THE SECOND-ORDER CONDITION
UNDER A CARA UTILITY FUNCTION

Under the existence of futures and options markets, the second-order condition is
SOC =E[uw(H(F-FPIE[W @ {R-(F-FHL}}¥]
~{E[wDF-H{R-F-HL}]P
where
ELu"(f) {R~ F - H LY
= RE[ &"(§) | - 2RaE[ w'(H) (F - F) ) + oE [ u"(F) F - PV .

E[WDF - B{R - (F - HL}]
= - REW"NE-F)] - oE [u(DF - ;]

Under a CARA utility function, i.e., E[u”(¥)(F-F)] = 0, the second-order condition above can be
rearranged as follows:
S.0.C. =E[u'(D) (F - I | { RE [u"(}) | - 2RaE, (u'(D) (F - F) }
vof, [u(P) (F - ) {EWDHE - -oE [ (B EFE-P]},
which is always positive since Efu”(¥)(F-F)’] <af, [u”(P)(F -F) <0 and E, [u"(¥)(F-F)]>0..

Consequently, under a CARA utility function, the second-order condition is always satisfied.
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