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1. INTRODUCTION

In a companion series of papers we have described a new
bargaining institution and the design of laboratory experiments to
assess its performance (see Rausser and Simon [1991] and Harrison
and Simon [1991]). In this paper we describe and evaluate the first
series of pilot experiments.

In Section 2 we briefly describe the general Multilateral
Bargaining institution once again, so as to make the present
discussion self-contained. In Section 3 we run through in some
detail the numerical solution to one parameterized version of that
model, to familiarize the reader with the structure and workings of
the model. In Section 4 we discuss some of the conceptual issues
that arise in evaluating the performance of the institution in our
experiments. In Section 5 we evaluate the pilot experiments using
the procedures developed. Finally, in Section 6 we outline the

implications of our results for the next stage of experimentation.



2. THE MULTILATERAL BARGAINING INSTITUTION

The MB institution can be characterized by a model of
noncooperative multilateral bargaining with a central player. The
model has n+1 players, called the player set. The zero'th player is
distinguished from the others and is called the central player.
Players 1 through n are peripheral players.

The players participate in a sequential, multilateral
bargaining game, similar in spirit to Rubinstein's classic {1982]
bilateral game. Their objective in bargaining is to form a
coalition, which is just a subset of the player set, and to choose
an m-dimensional vector from a set of feasible vebtors, called the
choice set and assumed to be compact. The choice set may be
different for different coalitions.

The central player is distinguished from the others in that
she must be included in every coalition. Each player has a utility
function defined on the choice set. We assume that utility
functions are continuéus and strictly quasi-concave.

Problems of this kind are typically formulated as cooperative
games. Cooperative game theorists specify some solution concept
that satisfies certain appealing properties and then study the set
of choices that satisfy the given criterion. Perhaps the most
familiar cooperative solﬁtion concept is the Core. In the céntext
of the MB institution, a vector x is in the Core if it is feasible

for some coalition and 1if, for every coalition C, there is no



feasible vector that is weakly preferred to x by each member of C
and strictly preferred by one member.

Noncooperative bargaining theory differs from cooperative game
theory in that it attempts to model the actual process of
negotiation, rather than just the outcome of the negotiation. A
noncocperative model of multilateral bargaining includes an
extensive form, which stipulates a particular set of negotiating
rules that players must follow.

A natural research program, referred to as the "Nash Program"
after Nash [1953], is to study the cooperative and noncooperative
versions of a game in conjunction with each other. First one
studies a particular cooperative solution concept, then one asks
whether the equilibria (usually the subgame perfect equilibria) of
some noncooperative model implement the cooperative soclutions.
Following this approach, we study the relationship between the Core
of various bargaining games and the subgame perfect equilibria of
our noncooperative version of these games.

The game has a finite number of periods T, each of which ié
divided into three sub-periocds. In the first sub-periocd a player is
chosen by Nature to be the proposer. Nature makes it's choice
according to a probability distribution over the player set that is
prespecified as part of the description of the game. In the secend
sub-period-the proposer announces a coalition, of which he must be
a member, and a vector that is feasible for that coalition. In the
third sub-period the remaining members of the proposed coalition

- each choose whether to accept or reject the proposed vector. If all



accept, the game ends. If not, the next period begins and a new
proposer 1is selected. If agreement 1is not reached by the T'th
period then players receive a predetermined disagreement payoff.’

A strategy for player i specifies the vector that he will
announce in each period if selected to be the proposer, as well as
a set of vectors that i will accept in each period if he is a
member of a coalition announced by some other proposer. A strategy
profile is a list of strategies, one for each player. Each strategy
profile defines an outcome for the game, which is just a function
assigning to each element of the choice set the probability that
the game will end with an agreement to selacﬁ this vector. Note
that only a finite number of these probabilities will be positive.
Moreover, these positive probabilities need not sum to unity, since
the players may never reach an agreement.?

A subgame perfect equilibrium for a game is a strategy profile
with the property that at every sﬁb-period of the game each
player's choice is optimal given the strategies specified by the
other players. Every T-period game has a subgame perfect
eguilibrium. Moreover, this equilibrium is generically unique. A
striking feature of the model is that there are equilibria in which

players fail to agree until the final rounds of bargaining. An

! The game is well specified whether or not there is a central
player. However, the presence of the central player guarantees that
the model - has a solution. Nonetheless, it can sometimes be
instructive to compare our model to the corresponding one in which
the central player is excluded (see Harrison and Simon {[1591;
.section 2.3]).

2 We are just describing the strategy space here. Equilibrium
outcomes, to be defined momentarily, will not admit disagreements.
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equilibrium outcome 1is the outcome defined by a subgame perfect
equilibrium. Note that since agents may fail to agree at the
beginning of the game, the equilibrium outcome need not cocincide
with the distribution over first period proposals.

Our theoretical analysis concerns the equilibrium outcomes of
games with an arbitrafily large number of periods. Accordingly, our
bargaining model is defined as a sequence of T-period bargaining
games, with T growing to infinity. A solution to our bargaining
meodel is a limit .of the equilibrium ocutcomes of the T-period games.

The first major analytical result fﬁr our model is that a
solution exists. That. 1s, the outcomes for the T-period games
always cbnverge as T grows large. It 1is here that the central
player has a crucial role: when there is no player that is a member
of every coalition, T-period outcomes will not in general converge.

A second major result is that, generically, this solution is
deterministic. More precisely, there is generically a unique vector
X with the property that for every epsilon there exists a T
sufficiently large that the agreed upon vector in any game with
more than T pefiods is within epsilon of x with probability one.
' When such a vector x exists we will refer to it as the solution
vector.

Our last major result is that the solution vector is always in

the Core of the corresponding cooperative game.



3. A NUMERICAL EXAMPLE

In this section we consider in considerable detail an explicit
example that has been solved numerically. As a byproduct of this
discussion, the reader will be introduced to our computer algorithm
for solving the ﬁodel. Understanding the algorithm and the solution
will help the reader understand the economic logic of the model as
well as our approach to its experimental evaluation.

We will refer frequently the computer output which is
displayed as Table 1. The first section of the output lists the
parameters of the bargaining problem. There are 16 admissible
coalitions (numbered from 1 to 16) and six players (numbered from
1 to 6). Each line beginning "Members of coalition number..." is
followed by six columns, specifying which players are included in
this coalition. For example, coalition #1 consists of players #2,
#3, and #5.

The next liﬁes indicate the utility parameters of the five
private agents (players 1 through 5). The first five lines give the
ideal points, or bliss points, of each player in terms of the
horizontal and vertical coocrdinate that generates the greatest
payoff for that player. Thus player #2 has a bliss point of (30,
52), which is to say that she receives the highest possible payoff
when the policy values are equal to this. As the policy wvalues
deviate from these values, her payoffs decline.

Specifically, the payoff to agent 1 is a linear function of

the Euclidean distance from the ideal point. The intercept of this



linear function, denoted «,, determines the payoff when agent i's
ideal point is the chosen policy vector (i.e., when the Euclidean
distance from her ideal point is zerc). The coefficient of this
linear function, dencted B., determines the rate at which payoffs
decline from the maximum payoff as the Euclidean distance
increases. The second set of five numbers in Table 1 describing the
utility functions show the values of these two cocefficients for
each agent.

Each player receives a payoff of zero if there is no
agreement.

Each of players #2 through #5 have an equal procbkability in
this game of being asked to make a proposal, but player #1 has 12
times the chance of getting to make a proposal as any of the others
{({i.e., this player is asked to make the proposal 75% of the time,
and each of the other players is asked 6.25% of the time). In the
games considered here we .do not need to include the government as
an active player, hence it has an access probability of zero and is
not included in any of the 16 coalitions.

The remainder of the output summari;es the outcome of
'negotiations in each round of bargaining. Our experiments in this
environment run for five rounds. Thus in Table 1 we show the
detailed results for each of rounds #1 through #5.

Consider the seven rows of numbers below the statement "Round
41", at the bottom of the table. The first five rows contain nine
columns. For 1 € 1 £ 5, the first column of row i is the coalition

selected by player i in the current round. The second and third
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columns list the policy vector proposed by i: the second column is
the value of the horizontal coordinate, and the third column is the
value of the vertical coordinate.

Columns four through eight specify the payoff that each player
will earn if the corresponding policy vector is accepted. Thus
cclumn four shows that player #1 will recéive 90.000, 89.529,
89.397, 89.529 or 89.427 if players 1 through 5, respectively, are
selected to be the proposer (and behave optimally).

The sixth row lists the expected payoff for each player
conditicnal on reaching this round of negotiations. It is
calculated by simply multiplying the payoff t§ the agent in that
column by the probability that each of the row agents gets to be
the proposer. Thus, for player #1, the first payoff listed above is
multiélied by 0.75 and the next fouf payoffs by 0.0625 to obtain
the expected payoff in round #1 of 89.868 listed in row 7.

We solve the model by standard dynamic programming techniques,
starting from round #5. Our maintained hypothesis is that if no
agreement is reached in the last round of negotiations (round #5
here) then each player earns a zero payoff. Consequently, the
optimal response for all players except #5 in this round is to
propose their globally optimal policy vector. This simply implies
that each of these players will propose their ideal point in round
#5, which is what we see in Table 1. Since any player except #5
will accept any proposal rather than incur the zero disagreement
payoff, the proposer can choose any one of the coalitions excluding

player #5 of which she is member. When the proposer is indifferent



"between coalitions, our computer algorithm chooses the one indexed
by the larger number.

Now consider the penultimate round of negotiations, which is
round #4 in our Table. A member j of a coalition will accept a
policy vector proposed by i in this round if and only if the payoff
received by j from the proposal is at least as large as Jj's
expected payoff conditional on reaching the next round. For
example, player #1 will not accept any proposal in round #4 that
does not earn her at least 79.379, since that is her expected
payoff from playing in round #5 and she would veto any proposal
that gave her less than that.>

It follows that to determine her optimal proposal player i
must solve a separate nonlinear programming problem for each
coalition to which she belongs. This problem ensures that all of
the members of the coalition have an incentive not to veto it. In
our last example, anybody consideriné including player #1 in their
proposed coalition in round_#4 must ensure that the policy proposal
generates earnings of at least 79.379 for player #1 (or, to extend
the example, 44.829 for player #2, 47.986 for player #3, and so
on). .

In the current example the policy space has only two
dimensions, which we refer to as the horizontal and vertical
coordinates. Since each coalition has three or four members, there
are two or three "participation constraints" depending on the size

of the coalition. In round #2, for example, player #l's

3 We are implicitly assuming risk-neutrality throughout.
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participation is a binding constraint for players #1 and #2. It is
not binding for players #3 and #4, since they do not include player
#1 in their proposed coalition.

Having solved each of the nonlinear programming problems,
player i then picks the coalition that yields her the highest
payoff. If the payoff exceeds i's expected payoff conditional on
reaching the next round, then i will propese this coalition and the
corresponding policy vector. Note that there may be rounds in which
member i makes -a proposal that is not aqcepted.“ This does not
‘occur in the numerical example considered here, however.

Consider player #l's choice of coalition in round #5. She
chooses eoalition #15, consisting of all players except #5. She
could have received the same payoff had she chosen coalition #14,
which contains the same members as coalition #15 except that player
#4 1is discarded; it is still a majority coalition. The computer
chose coalition #15 simply because the index 15 is larger than the
index 14. It is perfectly possible in general that a player can be
indifferent in terms of expected payoffs between choosing one
coalition or another, even if his pdlicy proposals would differ
conditional on either coalition being selected (this is not true
for round #5).

The importance of this point will be evident when we come to

interpret data from our experiments. It is quite likely that we

“* This can happen for one of two reasons. First, i's best
feasible alternative may yield him a lower payoff than his expected
payoff conditional on passing to the next round. Second, there may
be no proposal available to 1 that satisfies the necessary
participation constraints.
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will encounter multiple predictions in the message-space of the
experimental game being associated with unique (expected) payoff-
space predictions. Thus it will generally be more transparent to
test our predictions in terms of how well subjects apprbximated
their maximum possible payoffs rather than how closely their
messages corresﬁond to those predicted by our algorithm.

The solution to the MB game in Table 1 is found by allowing
the number of rounds to increase until all players make the same
policy proposal. Considerable convergence has occurred by round #1,
especlally considering that we constrain our subjects to report
pelicy wvalues in integers. The solution in this game is the Core
outcome (39, 68), which also corresponds to the ideal point of
player #1. -

Player #1 has a very simple strategy in this game: propose her
ideal point whenever asked! Any coalition that does not include
player #5 will accept this proposal in any round.

Each of the other players have relatively simple strategies as
a function of the round that they are in. As already noted, all
except player-#s offer their own ideal point in round #5 if
negotiations reach that point. In round #4, however, they
compromise their offer in the direction of the Core and away from
their own ideal point.

Table 2 displays some results from a game that is virtually
identical to the one presented in Table 1. The only substantive
difference 1is that player #1 now has a much greater access

probability: she now has the same chance of making a proposal as
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any other player, whereas in Table 1 she had 12 times the chance of
any other player.5

The effect of this change is to slow down the convergence to
an equilibrium. This is particularly visible by looking at the
proposals of players #4 and #5 in round #1. In Table 1 we find that
player #4 proposed (46.553, 76.479) in round #1, whereas in Table
2 we find that she proposes (52.161, 99.161), which is further away
from the equilibrium relative to the ideal point of (62, 109).

The purpose for constructing the variant in Table 2 is to
examine more carefully the individual behavior of subjects taking
the roles of players #4 and #5. In each of rounds 1 and 2 these
players must make non-trivial changes in their proposals,
especially the policy values. In Table 1 we note that players #2
and #3 do not change their policy proposals a great deal until
later rounds. We wanted to construct an environment in Table 2 in
which two players are predicted to make substantial changes in
their policy proposals over just two rounds. This enables us to
conduct experiments with a shorter horizon (the experiments
corresponding to Table 1 ran five rounds; those in Table ran two

- rounds). This should allow subjects more time to repeat the game

’ There is one further difference, which is completely
unimportant for our experiments: players #2 and #3 are transposed
relative to Table 1. Each of these players are computer-simulated
in our laboratory experiments in the game shown in Table 2.
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within a given real-time frame, and hence to learn more about the

game.®

¢ 0f course, we shuffled opponents from game to game so as to
mitigate reputation effects developing due to repeated-game
strategizing. See Harrison and Simon ({1991] for a discussion of
this feature of our experimental design.
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4. EVBLU_ATING THE INSTITUTION

There are two general questions to be answered before we wade
into an evaluation of the labecratory data that has been collected.
These questions will allow us to make some sense out of a great
deal of information provided in each experiment.

The first question is: "How should we measure the performance
of the MB institution?". One of the most important aspects of the
previous discussion of the solution to the MB game 1is that one
cannot just look at a unique set of "messages", defined as the
coalition and policy choices sent by the ‘agent. There are often
several distinct messages that are optimal in the sense of
maximizing expected payoff. Similarly, there may also be several
distinct messages that may not be optimal, but which generate the
same expected payoff.

How are we to decide between these messages? Our computer
programs used an arbitrary rule when selecting optimal coalitions
(choose the coalition with the smallest index number). Should we
say that an agent in ourrexperiments performed differenily from our
theory if he or she used a different arbitrary rule but still
selected a coalition that generated the maximal expected payoff?
Clearly not. The upshot of this issue is that we can either Keep
track of whether or not an agent selected from the optimal set of
-choices, or we can just describe his or her behavior in terms of

the expected payoff from their choices. We believe that the latter
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approach is the easiest to feollow from an expositional perspective,
and adopt it here.’

The second question is: "What should we compare the
performance of the MB institution to?". In other words, how are we
to know if the subjects in our experiment performed well or not?

There are three general ways to make such a comparison. The
first is relative to some theoretical model of behavior, such as
the solution discussed in previous sections. The second is relative
to some numerical model of behavior in which the agents' choices
‘are simulated by "automata" following prescribed strategies. This
approach includes the first as a special case, as we shall see. The
third apéroach is relative to some alternative institution dealing
with the same bargaining problem. An example of such an alternative
is the "Committee Institution" described in Harrison and Simon
[1990].

Each of these approaches has virtues, and we propose to
eventually use them all. In the present study we will consider in
detail the first two approaches, since we have not yet conducted
the experiments with an alternative institution required to

implement the third approach.

?” We are not saying that it is more natural to evaluate
behavior in payoff-space than in message-space, which is a claim
advanced by one of us in a different context (see Harrison [1989;
p.749]) and viewed by many experimentalists as too strong. Rather,
our present point is that reporting results in message-space would
be very messy, since we would have to report a great deal of
information. On the other hand, all of this information boils down
to a much smaller set of numbers when expressed in terms of payoff-
space, facilitating it's communication and interpretation. We will
happily provide the complete data from our experiments on request
(contact Harrison).
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In order to implement a numerical model of behavior in the MB
institution we must define strategies for our simulated players, or
"automata", to follow. A natural way to do this, following Gode and
Sunder [1990], is to define "“zereo intelligence" or "minimal
rationality" strategies, so as to provide some lower benchmark to
evaluate our human subjects.?® The idea is to see, by means of
computer simulation, what level of performance might be expected of
automata playing our games with simple strategies. This provides
some way of saying how well our human players did in the
institution. Of course, we always have an upper bound on how well
they can do, in terms of our modél of fully rational players.

Consider four possible strategies that could have been
followed in terms of cealition cheice. In all cases we restrict
attention to coalitions that contain a majority of players, since
our experiments effectively constrain subjects to these proposals.
Whenever some randomization is called for, we shall assume that it
is implemented using a uniform precbability distribution over the

alternatives; extensions to this assumption are immediate, but of

8 Gode and sunder [1990] illustrate this approach using the
venerable Double Auction market in which buyers and sellers of a
perishable commodity can cpenly make bids or offers, as well as
accept any outstanding bid or offer. They define zero-intelligence
strategies for buyers (sellers) to be the random selection of a bid
between zero (unit cost) and unit valuation (zero), and use a
uniform distribution for all random realizations. They find that
the Double- Auction is never less than 75% efficient using these
strategies, and is typically around 95% efficient for the demand
and supply configurations used in experiments. This indicates that
observed experimental efficiencies using human subjects of up to
95% should not be attributed to the rationality of subjects so much
as the way in which the Double Auction institution constrains and
limits the loss of (aggregate) efficiency due to (individual)
irrationality.
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minor interest. The strategies are presented in increasing order of

their rationality from the perspective of the agent entering it:

- strategy C0: select any coalition that includes me:

+ strategy Cl: select any of the ccalitions of smallest size that
includes me, where "smallest size® still ensures that the
coalition have a majority:; and

+ strategy C: select one of the optimal coalitions.

Note that the last strategy is "the strategy" used in defining our

theoretical and numerical solution, as presented earlier.

In terms of the policy choice strategies, we have a similar
list increasing in the rationality of the strategy:

+ strategy PO0: select any values from the rectangle that just
includes the ideal points of all of the agents:; ~

« strategy Pl: select any values from the convex hull of the ideal
points of all of the agents;

« strategy P2: select any values from within the convex hull of the
ideal points of the players in the proposed coalition; and

- strategy P: select the optimal values for the coalition
proposed.

_Note that the strategies ¢ and P' togethér define the fully

rational strategy choices which provide an upper bound on the

expected payoffs that an agent could receive, assuming that all
other players were similarly playing rationally. Strategies CO and

PO together define what we will refer to as the "zero intelligence"

outcome.
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It is perfectly possible, and indeed behaviorally plausible,
to consider combinations of different levels of raticnality in the
two sets of strategies. Thus we could envisage agents making poor
choices with respect to coalitions (viz., using strategies C0O or
Cl}) and yet making excellent choices with respect to the policy
values proposed (i.e., using strategy P°) conditional on the
coalition choice. This type of decomposition has been used before
in comparable experimental evaluations of dynamic programming
environments by Harrison and Morgan [1990].°

We appreciate that there are.many possible variants on these
strategies, but these do seem to span a wide range of possibilities
and appear plausible as '"minimally rational™ strategies. We have
deliherately stated these strategies in a time-invariant fashion.
This is to provide us with a constant basis for comparison cf human
choices, rather than a measure that must be defined for each time
period of a particular game. Allowing some degree of time-
dependence would not be difficult, and would be an obvious
extension of our approach (e.g., it might seem plausible that
players would put greater weight on policy values closer to their

own ideal point as we approach the final period in a game).

° In that setting the agent was selecting how many job offers
to purchase in some time periecd, and then deciding whether or not
to continue searching after looking at the purchased job offers.
Behaviorally, the subjects seemed to make excellent decisions as to
the number of job offers tc request conditicnal on having decided
to search in a given period. Their errors in judgement could be
almost entirely attributed to errors in deciding when to stop
searching. Our situation is conceptually similar.
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We 1implement this approach by conducting a Monte CcCarlo
simulation of the use of each of the specified strategies. In other
words, assuming that we have selected one of the set {co, ¢1, ¢
‘and one of the set (PO, Pl, P2, p"), we would play the T-period
game a pre-specified number of times (e.g., 10000 times). This is
essential to aveoid biasing our results due to small-sample results.
Note that each play of the game in turn involves another Monte
Carlo game, since we already have one Monte Carle simulation
embedded in the experimental game itself (see Harrison and Simon
[1990] for further details). Having run this larger Monte Carlo
simulation we have a benchmark expected payoff for each agent for
this environment, and this may be directly compared to the actual
average payoff that the human agent realized. -

One aspect of our design requires a natural variation on this
approach. This is when we have a subset of the players in an
experiment computer-simulated. In such cases the strategy used for
the simulated players is what we refer to here as (C, P'}). To
evaluate the benchmark efficiency levels for minimal rationality

strategy selection by one automata, we must similarly employ the

fully rational strategies for all of the other automata.
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5. EXPERIMENTAL RESULTS

5.1 Experimental Design

A large number of pilot experiments have been conducted using
subjects drawn from the undergraduate population at the University
of California at Berkeley. Table 3 describes the experiments that
we report on here.'” For convenience we will refer to each of the
five sessions as A, A', B, B', and €. A session with the same
letter employed identical parameters and only differed with respect
to the subjects employed.!' Accordingly we Qill typically pool such
behavior.

From Table 3 we note that sessions A and A' employed the
simple environment of Table 2. There were 12 human subjects in
session A and 6 subjects in session A'. In each session we had the
human subjects randomly assigned to play the roles of Christine and
Stephanie, who are players #4 and #5, respectively, in the earllier
numerical examples. All of the other players are computer-simulated
using the fully-rational strategies defined in Table 2. Players #1
through #3 aré referred to here as Lisa, Paula, and Stephanie,

" respectively, and the government is referred to as Gordon. This use

10 Many others were conducted, but were discarded for one of
several reasons (e.q., software failure, opaque instructions,
insufficient time to complete more than one or two pericds, or a
substantive revision to the instructions). This is quite standard
in the development of a complex laboratory experiment.

" As Table 3 indicates, there are some differences in the
actual number of human subjects in each such paired session,
implying some differences in the number of replications per period.
This difference should not change behavior in any predictable
manner, if at all.
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of names follows the experimental setup described in Harrison and
Simon ([1991].

The number of replications of each game shown in Table 3
refers to the number of bargaining groups that were active
concurrently in any session. In session A we had 12 human subjects
playing two roles, so there were 6 replications of each game. Thus
there were 6 human subjects assigned to play Christine and 6 human
subjects assigned to play Stephanie. Each human subject retained
the same persona from game to game, but played against a randomly
selected cpponent.

The horizon of the game in sessions A and A' was 2 rounds,
following Table 2. We were able to complete 6 games in each of
these sessions, allowing us to see how subjects' performande
changes with more experience with the institution.

Finally, the last column in Table 3 refers to the stem of the
computer file name used to store the detailed results for each
session. These names are not quite as cryptic as they may look, but
are intended solely to prdvide interested readers with access to

the detailed results if needed.'?

2 The last numeric characters indicate the day of the month
that the experiment was conducted on, the next to last alphabetic
character indicates the month that the experiments were conducted
in, and the first two characters indicate if this was the first
(E1), second (E2), or third (E3) experiment conducted on that day.
Thus experiment E2N21 was the second experiment conducted on
November 21. The computer file describing the output of this
experiment in complete detail is called E2N21.RAW, and is available
in "raw ASCII" form so as to facilitate use by researchers. Similar
".RAW" files are available for each of our experiments on request
to Harrison.
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Sessions B and B' correspond to the envircnment described in
Table 1. These negotiations employed human counterparts to each of
the (active) players, and had a horizon of 5 rounds as in Table 1.
Pooling over the two sessions we have 5 replications of each
experiment, with at least 4 repetitions of each game.

Finally, session C uses the environment of Table 1 and assigns
human subjects to play the roles of Jenny and Christine. Three

replications of this experiment were obtained.

5.2 Performance Measures

The first task in our analysis of results is to derive the
performance measures for each session using the limited rationality
strategies described in section 4. This has not yet been completed,
but preliminary numerical results are extremely suggestive. In
particular, it appears that the MB institution is quite robust to
individual irrationality in the sense that it agents do not have to
be perfectly rational in order to achieve 'good" overall outcomes.
These "good" aggregate outcomes are certainly sub-optimal, but they
are "close" to being c¢ptimal.

This result, if confirmed, constitutes both Good News and Bad
News for the experimental evaluation of the MB institution. The
Good News is that we do not need to train subjects as intensively
as we had anticipated: they can play sub-optimally and still
achieve good outcomes. The Bad News is that it will be difficult to
notivate subjects to behave in a fully rational manner: if the

social pie only increases by a small amount by each individual
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being more rational, and an individual only gets some fraction of
that increased social pie, why should that individual bother
exerting himself?

These conjectures await final numerical results, which will be

to hand within a few weeks.

5.3 Evaluatioen

TO BE WRITTEN.
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6. CONCLUSIONS

Although we are yet to complete the evaluation of our pilot
experimental results, several conclusions as to the next round of
experiments seem warranted.

The first conclusion is that there may be little to gain by
conducting experiments in which one human subject plays against
computer-simulated (fully rational) opponents. If limited
rationality suffices to achieve good social outcomes, then the most
interesting environment to examine is one in which all players are
human. This will provide the best opportunity to see if some player
can exploit the limited rationality of the other players.' It will
also provide the most natural basis for comparison with alternative
institutions that might not be so robust to acts of individual
irrationality (e.g., committee institutions).

The second conclusion is that we should attempt to see if
experience makes a difference with respect to the ability of
subjects to exploit the limited rationality of other players. It
could be that human subjects behave in a limited rational manner
when all are inexperiénced, but that they try to behave in a
strategic manner when they have had some experience. Could this
attempt to behave strategically cause the MB institution to

generate poor bargaining outcomes?

3 0f course, we could computer-simulate limited-rationality
behavior.
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The third conclusion is that we should see if these results
carry over into more realistic environments. We can attempt to
estimate spatial preferences that correspond to field bargaining
environments (e.g., the GATT negotiations) and see if our early

results carry over to them.
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Table 1

A Numerical Exampie

IN

IN
IN
ouT

iN
iN

Ideal point
Ideal paint
Ideal point
{deal point

of player mnumber 1
of player number 2

of player number 4

39.000
30.000
25.000
62.000

68.000
52.000
72.000
109.000

Ideal paint

Utility coefficients
“Utility coefficients
Utility coefficients
Utility coefficients
utility coefficients

of player number 3

of player number 5

165.000

32,

af player number 1: (alpha,
of player number 2: (alpha,
of player number 3: (aipha,
of player number &4: (alpha,
of player number 5:

Round ¥5
#15 39,000 468,000 $0.000
#15  30.000 52.000 71.642
#15 25.000 72.000 75.440
#15  62.000 109.000 42.989
#10  126.269 45.996 0.000
Expected payoffs: 79.379
Round #4
#15 39.000 68.000 20.000
) 33.793 5B.743 79.379
#5 28.733 70.918 .379
#4 44,553 T5.479 78,645
¥3 53.287 61.555 T4.327
Expected payoffs: 86.983
Round #3
#15 39.000 &8.000 $0.000
#2 38,472 64.495 86,456
| 35.005 70.180 BS.449
7 40.403 71.255 86.456
3 42.915 65.740 85.480
Expected payoffs: 83.990
Rourd #2 ]
#15  39.000 &8.000 $0.00Q
#2 38.699 &6.754 8a.718
# 37.5664 68.813 88.350
¥ 39.403 &9.217 88.718
3 40.416 67.213 83.380
Expected payoffs: 89.435
Round #1
#15 39,000 48.000 99.000
#2 38.875 47.545 89.529
#1 38.475 68.297 89.397
#4 39.134 48.452 89.529
s 39.500 67.722 89.427
Expected payoffs: 89.358

51.642
70.000
49.384

4.632

{alpha,

55.440
49.384
70.000
17.674

-26.456 -34.554

44 .829

51.642
62.263
51.044
40.450
44,829
51.143

51.642
54 .904
51.143
48.114
51.143
51.563

51.642
52.872
51.563
50.383
51.563
51.631

51.642
52.099

51.631
51.182
51.631
51.641

47.986

55.440
54.092
65,060
47.986
39.846
54.579

55.440
54.579
59.831
54.579
51.023
55.331

55.440
55.33%
57.038
55.331
53.858
55.427

55.440
55.427

56.025
55.427
56.882
55.440

000

beta)
beta)
beta)
beta)
beta)

90.000
70.000
70.000
90.000
110.000

42.989 -21.042
24.632 -26.473
37.674 -35.602
$0.000 -18.400
0.000 &8.817
41.761 -16.523

42.989 -21.042
32.369 -23.905
39.470 -31.663
53.997 -146.523
41.761 -5.557
62.717 -20.634

62.989 -21.042

39.659 -20.634
62.717 -25.486
46.513 -20.434
42.717 -16.662
42.967 -20.995

42.989 -21.042
41.755 -20.995
42.967 -22.647
44,267 -20.995
42.967 -19.465
42.988 -21.038

42.989 -21.042
42.532 -21.038

42.988 -21.628
43.449 -21.038
42.988 -20.484
42.989 -21.043

1.000
1.000
1.000
1.000
1.000



Table 2
Another Numerical Example

Round #2
#15 39,000 &8.000 90.000 55.440 S51.642 42.989 -21.042
#15  25.000 72.000 75.440 70.000 49.384 37.674 -35.602
#5 30.000 52.000 T1.642 49.384 70.000 24.632 -26.473
#15 42.000 109.000 42.989 17.674 4.432 S0.000 -18.800

T#10 126.269 45.996 0.000 -34.554 -26.456 0.0C0 48.317
Expected payoffs: 56.014 31.589 29.841 39.059 -46.580
Round #1

¥15  39.000 68.000 90.000 55.440 51.642 42.989 -21.042
#5 25.000 72.000 75.440 70,000 49.334 37.474 -35.602
#5 30.000 52.000 71.642 49.384 70.000 24.632 -26.473
#5 52.161 99.161 56.174 31.589 17.892 76.085 -21.314
#10 71,774 59.005 56.014 21.455 27.643 39.059 12.941

Expected payoffs: 69.854 45.574 43.312 44.088 -18.298
Table 3
Experimental Design
¥ Human Simulated Replic~ Repet-
Session Envirorment Subjects Players Players atioms Horizon itions File Name
A Table 2 3 Christine Lisa 3 2 ) E1N2Y
Stephanie Paula
Jenny
Al Table 2 12 Christine Lisa (] 2 L} E2N21
Stephanie Paulas
Jenny
] Table 1 10 Lisa 2 5 4 EIN1®
Paula
Jerny
Christine
Stephanie
B! Table 1 15 Lisa 3 5 5 E2N20
Paulas
Jenny
Christine
N Stephanie
c Table 1 & Jenny Lisa 3 5 [ ETN20
Christine Paula

Stephanie






