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Abstract

Traditicnal time series models assume a constant
conditional variance. Realizing the implausibiliity of this
assumption, Bollerslev proposed Generalized Autoredgressive
Conditional Heteroscedasticity (GARCH) processes, which are
characterized by nonconstant conditional variances. In thig
paper, GARCH(1l,1l) processes were applied to model livestock
prices. Results indicate that GARCH processes adedquately
describe retail meat price behavior.



Introduction

In recent yvears, agricultural economists have made
extensive use of time series analysis to model economic data
(Bessler and Brandt 1982; Shonkwiler and Spreen 1982; Harris
and Leuthold 1985). Indeed, time series models, including
univariate autoregressive and/cor moving average processes,
vector autoregressions, transfer functions, and dynamic
regressions, have become fundamental tools of economic
analysis. The considerable popularity of the time series
approach can be attributed to a number ©f reasons. For
instance, these models can be used to gain insights into the
dynamic properties of complex systems (Begsler 1984; Brorsen,
Chavas, and Grant 1985). In addition, time series analysis
requires less subjective judgment on the part of the analyst;
model identification and specification are obtained by
exploiting systematic relationships in the data. But perhaps
the most important reason for the widespread use of these
models is their forecasting accuracy. Often, a parsimoniocusly
specified univariate or multivariate time series model will
vield better forecasts than more complex structural econometric
models (Brandt and Bessler 1981).

There are several possible reasons for the enhanced
forecasting performance of time series models, but the most
likely 1s that these processes use past information optimally.
For example, consider a standard first-order autoregressive
{AR) process,

Ye = Bg * ByYeoq * € (1)

where Y is a random variable drawn from a conditional density
function f(ytlyt-ll and € is white noise with mean zerco and

variance V(et) = g . The forecast of today's wvalue of Yt’
conditioned con past information, is simply E(ytlyt—l) = BO +
Blyt—l' Likewise, the unconditional mean of Yy isg BO/(l - Bl).



The improved forecasting accuracy attributed to many time
series models clearly derives from optimal use of past
information. 0ddly enough, these optimal forecasting
properties have not, until r?cently, been extended to
predictions of the variance. So for real processes, one might
expect more accurate forecast intervals-if additional
information on past observations of Y, were allowed to
condition the forecast variance. A more general class of time
series models seems desirable. Realizing this, Engle (1982)
proposed a class of autoregressive processes better known as
ARCH (Autoregressive Conditional Heteroscedasticity) models.
The key feature of an ARCH process is that the forecast
variance, ht’ is conditioned on past realizations of Yy

Although ARCH processes have been used successfully to
model macroeconomic data by Engle (1982), Engle and Kraft
(1983), and Weiss (1984), problems arise because of
nonnegativity constraints associated with the parameter vector
& in the conditional variance equation. This has resulted in
the use ¢of rather arbitrary linear declining lag structures in
the ht equation to account for the long memory typically found
in empirical work. Recognizing this, Bollerslev (1986)
recently introduced a new class of conditional heteroscedastic
models known as GARCH (Generalized Autoregressive Conditional
Heteroscedasticity) processes. A chief advantage of GARCH
processes over ARCH processes i1s that often a more flexible and
parsimonious lagastructure in the conditional variance equation
can be obtained.

There are a surprising number of areas in economics where
GARCH models could be applied. For instance, portfolio models
require information about price variances, and GARCH processes
are a logical tool for generating proxy wvariables for risk
premiums. Likewise, price and/or output risk variables are
often included in aggregate supply equations {Just 1974;
Antonovitz and Green 1986; Aradhyvula and Holt 1987; and Seale
and Shonkwiler 1987). Although ARIMA models are fregquently
used to predict the means included in these equations, ad hoc¢
procedures are often employed to generate variance terms.

GARCH models provide a natural framework for generating both
conditional means and variances in these situations. There has



also been considerable interest in modeling vields as
stochastic processes (Bessler 1980). However, the variance
associated with standard time series models is constant and
consequently provides only limited information about
higher-order moments.

The purpose of this study is to develop, estimate, and
test GARCH models for the retail prices of beef, pork, and
chicken. Retail meat prices seem reasonable to investigate,
since they were relatively stable during the 1960s but
experienced substantial volatility during the 1970s and early
1980s. The working hypothesis, then, is that GARCH models will
vield more plausible forecast confidence intervals for these
retail meat prices than will traditional time series models.

This study reviews the key assumptions underlying GARCH
processes and fits them to beef, pork, and chicken prices.
Empirical results are then evaluated and contrasted with
standard autoregressive meodels. The final section exXamines the
use of GARCH mcdels to estimate conditional variances and
reviews implications for future research. '

The GARCH(p.,q) Process

Let € denote a real valued discrete-time stochastic
process and Qt denote the set o0f all information available
through time periocd t. The GARCH(p,q) process for a normal
conditional distribution 1s then given by

c—:tIQt ~ N(O, ht)' {2)
P oael X
h, = a. + a.€, . ¥ B.h,__. . (3)
t 0 i=1 i“t-1i i=1 iTt-1
where

p 20, g =0
a > 0, a; 2 g, i =1, . g, and
Bi 2 0, i=1, . D.
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Note that for p 0 the process reduces to an ARCH(g) process.
Also, for p = q 0, the conditional variance is constant, as
in typical time series models, and the innovation € simply
reduces to white noise.

In the ARCH(g) process the conditional variance is
specified as a linear function only of the past sample
variances. Alternatively, the GARCH(p.q) process allows lagged
values of the conditional variance to enter the ht equation as
well. This corresponds to the extension of an AR process to an
ARMA process in traditional times series modeling andg,
consequently, implies some sort of adaptive learning
mechanism.

The GARCH(p,d) regression model can be obtained by letting

the et's be innovations in a linear regression,

€ = Y, - xt'b, (4)
where Yy is the dependent variable, Xy is a vector of
cbservations on explanatory variables including past
realizations of Yo and b is a vector of unknown parameters to
be estimated. If all roots of 1 - B{p) = 0 lie outside the
unit circle, (3) can be respecified as a distributed lag of
past squared innovations. That 1is,

-1 -1 2
ht = ao(l - B(1}) + A(L) (1 - B{L)) et

which, together with (2), implies an infinite-dimensional
ARCH({w) process. The Oi's can be g?tained from a power series

expansion of D{(L) = A(L) {1 - B(L})) ., Where
n
6, = a; + _g Bjoi_j, i=1, ..., q, (6)
=1
n
= z B'é ’ 1 = q+l’ '



and n = min{p, (i-1)}. Thus, if D(1) ¢ 1, the GARCH(p, g)
process can be approximated to any degree of accuracy by a
stationary ARCH(dq) process with a sufficiently large value
of q. _ _

But as an ARMA analogue, the GARCH process could be
justified, through a Wald's decomposition type of argument, as
a more parsimonious description. Bolilerslev {1986) shows that
a sufficient condition for the GARCH{p,q) process defined in
{2) and (3) to be stationary is that A(l} + B(l) < 1. The
unconditional mean and variance of the innovatigg €. are given
by E(et) = 0 and Var(et) = ao/(l - A(1) - B{1})) . Thus, in
the GARCH({p.,q) process, the unconditional variance is constant,
while the conditional variance could change over time.

0f practical concern is the identification and diagnostic
checking of the appropriate lag structure for the conditional
variance eqguation in a GARCH process. Autocorrelation and
partial autocorrelation functions of the inncovation series are
typically used when identifyving and checking the time series
behavior of ARMA models (Box and Jenkins 1976). Bollerslev
(1986) shows that these same functions, as applied to the
squared residual series, can be useful for identifying and
checking the time series behavior of the conditional variance
equation of the GARCH form.

ITdentification and diagnostic checking of a GARCH process
proceed as follogﬁ. Let L denote the n autogorrelation and
¢kk denote the Kk partial autocerrelation of et, cbtained by
solving the GARCH analogue to the Yule—Walker equations. The
usual interpret%tions apply. For an ARCH(q) process, by CULS
off after the ¢g lag. This is identical to the behavior of
the partial autocorrelaticon function of the estimated residuals
€y for an AR(g) process. Likewise, the partial autocorrelation
function of € for a GARCH(p.q) process is, in general,
nonzero, and it dampens slowly. In this manner, the
agtocorrelation and partial autocerrelation functicons of the
et's can be used for identifying and checking the GARCH form.

Estimation of the GARCHE regression model can be achieved

by using standard maximum likelihood (ML) methods. Let z't =



F 2 ’
(li et"’l' L] et_g: ht_lp s vy ht_ )l W - (aon C.Il.r LR ] aql
Byv --es Bp), and 8 = (b', w'). The GARCH model in (2), (3},
and (4) may then be rewritten as
et = yt - X tb, {(7)
ht = z tw

Apart from a constant term, the log likelihood function for a
sample of T observations is

zt(e), (8)

2 -1

h

lt(e) = ~-,5 log h, - .5 €. hy

i
The first and second derivatives of the log likelihood function
in (8) with respect to © are outlined in Bollerslev (1986;
pp. 315-16).

A convenient feature of the GARCH model is that the
off-diagonal blocks of the information matrix associated with
the 62t / Ok Ow' terms can be shown to be zero. Because of
this asymptotic independence, w can be consistently estimated
using initial consistent (QLS) estimates of b. This is a
useful property, since initilal consistent estimates of b and w
can be easily obtained for starting the ML iterative
estimation. Finally., as with ARMA models, the derivatives of
(8) contain recursive terms. To start the recursion, we need

presample estimates for both Et and ht’ t £ 0. In this
-1

instance, the sample analogue T e'e 1s used to obtain
consistent estimates for the presample values of et and ht.

Empirical Results
The estimates of GARCH models for three retail price

seriles——-beef, pork, and chicken--are reported here, along with
the estimates of standard AR models as applied to each series,



The retail prices of beef, pork, and chicken were used because
they have been associated with varyving degrees of volatility
over the past 20 yvears. During the 1960s and early 1970s, meat
prices were relatively stable. However, large shocks in the
price of feed grains, high inflation rates in the general
economy, price controls, and the subsequent breeding herd
liquidations that occurred in the mid and late 1970s resulted
in volatile meat prices during this period. Alsc, there is
evidence that structural change has occurred in the demand for
red meats in recent years (Chavas 1983}, possibly adding a
further dimension of uncertainty to the forecasts of retail
meat prices. These casual observations suggest that it is
reasonable to believe that forecast variances associated with
these prices would not have remained constant during this
period. Consequently, an improved model specification would
allow the conditiconal variance Term to reflect this increased
volatility.

The estimated GARCH and AR models were obtained using
quarterly data, from the first quarter of 1967 through the last
quarter of 1986, from various published USDA sources. The ML
estimates ¢f the model parameters were obtained by following
procedures outlined in the previous section and by using the
Davidon-Fletcher-Powell algorithm, In addition, the inequality
and nonnegativity constraints associated with the parameter
vector w in the GARCH model were enforced explicitly by using a
penalty function in the estimation {(Judge et al. 1982, pp.
655-57} .,

Estimation results for the autoregressive models are
presented in Table 1. The roots of all three estimated AR
models are outside the unit circle, thus satisfying the usual
stationarity requirements. The Box—-Pierce Q statisgics, along
with the MAPEs {(mean absolute percent errors) and R , indicate
that the conditional means of the fitted models do a good job
of tracking actual levels. The first 20 autocorrelations for
the et's were examined for all three models and none was found
Lo be significantly different from zero at the 5 percent level.
However, the autocorrelations and partial autocorrelations of
the squared residual series presented a different picture. In
all instances, there were spikes in the autocorrelation
function that exceeded two standard deviations. In addition,



Table 1. Maximum likelihood estimates of autoregressive models
fitted

Price of beef (PBt)

(1 - 1.073 B + 0.304 B% - 0.470 B® + 0.257 B%)PB,

(0.006) (0.012) (0.012) (0.006)
= 4.611 + €, |
(3.338)  ©
hiy = var{e ) = 48.207
1t Y (30.660)
Q = 14.84 MAPE = 3.07  R% = 0.98 x%gs (15) = 25.00

Price of pork (PP.)

(1 - 1.144 B + 0.301 B2 - 0.289 BY + 0.824 B> - 0.602 B®

(0.005)  (0.008)  (0.009)  (0.013)  (0.006)
12 ,
~ 0.070 BY2)PP = 5.600 + e,
(0.001) (5.132)
hor = var (e,¢) = 41.380
2t © (25.181)
Q = 15.79 MAPE = 3.64  R% = 0.98 %05 (13) = 22.36

Price of chicken (Pct)

(1 - 0.764 B - 0.163 B + 0.128 B3 - 0.165 BY) pc,
(0.006)  (0.012) (0.012) (0.007)

= 3.037 + ¢
(2.652) 3t

h = var {(€3+) = 20.567
3t 3t
{5.581)

Q = 20.26 MAPE = 4.82  R% = 0.9t x? 4c(15) = 25.00

Notes: B 1s the lag operator, Bsxt = Xe_g- Figures in
parentheses are approximate standard errors. All
prices are nominal retail prices in cents per pound.



the partial autocorrelations were positive and exhibited
dampening behavior, suggesting that retail meat prices might be
better represented as GARCH processes.

The ML estimates of GARCH{l,1l) regression models for beef,
pork, and broiler prices are reported in Table 2. GARCH{1l,1l)
processes were used because, as Bollerslev suggests, they are
parsimonious and are coften the most likely candidates in
applied analysis. The results indicate that stationarity
conditions for both the conditional mean and variance of the
e§timated GARCH models are satisfied. The reported MAPEs and
R wvalues also indicate that the estimated parameters
associlated with the conditional means do a good job of
exXplaining historical movements, although these results do not
indicate any improvement in explanatory power relative to the
AR models presented in Table 1. The implication is that GARCH
processes will not necessarily improve upon the forecast
performance of the mean of the stochastic process and, in fact,
there is no reason to believe they should. But GARCH models
will provide more information about the precision of these
forecagts,

To illustrate, confidence intervals (99 percent} for the
one-period-ahead forecasts associated with beef prices were
computed. The 99 percent cenfidence intervals for beef, along
with the actual price series, are shown in Figure 1. As
indicated, retaill beef prices were volatile during the
mid-1970s, as reflected by the wider confidence intervals
associated with the GARCH forecasts during this period. By
comparison, the 1960s and early 1970s were characterized by
relatively stable and trending beef prices, The results in
Figure 1 indicate that the confidence intervals associated with
the one-step-ahead forecasts during this period are much
smaller than those for the mid-1970s. Again, traditional time
series models do not give such intuitively appealing results
since the width of the confidence interval (conditional
forecast variance) would be constant.

Although the estimated GARCH models result in confidence
intervals more intuitively appealing than those of the AR
models, this 1s no guarantee that the GARCH process is a
statistically wvalid improvement over the AR process. In other
words, it is desirable to have a formal test of the GARCH
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Table 2. Maximum likelihood estimates of GARCH models fitted

Price of beef (PBt)

(1 - 1.060 B + 0.605 B2 - 0.959 B> + 0.428 B%) pB,
(0.011)  (0.017)  (0.018)  (0.011)

= 3.549 + ¢
1t
(1.476)

2
h = 4.185 + 0.518 € + 0.465 h
1t 1t-1 1t-1
(6.347) (C.022) (0.019)

MAPE = 3.31 RZ = (.98

Price of pork (PPt)

(1 - 1.019 B + 0.211 B2 - 0.220 8% + 0.726 B> - 0.537 B®

(0.011)  (0.011) (0.010) (0.110) (0.040)
- 0.160 BY2) Pp_ = 3.377 + ey
(0.001) (11.260)
= 2
hoe = 12.101 + 0.813 €4, 4 + 0.163 hyp g

{67.704) (0.0986) {0.011)
MAPE = 3.55 RZ = 0.98

Price of chicken (PCt)

(1 - 0.838 B - 0.115 B2 + 0.080 B3 - 0.116 B%) pcy
(0.010)  (0.008) (0.004) (0.006)

= 1,331 + ¢
(1.567) 3t

2
h = 12.719 + 0.323 eg¢_q + 0.043 D3, 4
3t (4.317) (0.013) 3t (0.007) 3t

MAPE = 4.63 R%Z = 0.91

Notes: B is the lag operator, BSx, = X._o. Figures in
parentheses are approximate standard errors. All
prices are nominal retail prices in cents per pound.



Price of Beef $.-cwt

Retail

280

260

240

R20

200

180

160

140

120

100

80

60

Figure 1.

99 percent confidence
beef retail price.

intervals for one-step—ahead forecasts of

[ P I
7] AR ANE= S =y zS
v 7] . S v
L“ - H" “_Q\‘u ‘3’“#\ aﬁng L
: e ar o TG ]
_ 7 ' oy W Vo ‘,ea
AR &
I ¢
.n";
B 4
L
"IIl]lIlI‘lTTI‘]IIIIi"‘r-llliI‘I|TI|I(IT_TTIIIWITIITTlIII{]Til]T'l|?!ll|[‘|ll||r77|
1967 1969 1971 1973 1975 1977 1979 1981 1983 1983
yeai
o I'B - Upper limit Lower limil

11



12

hypothesis that conditional forecast variances are nonconstant.
This can be accomplished by performing a standard likelihood
ratio test where, under the null hypothesis, the parameters a
and Bl are constrained to zero (the standard AR
representation). The alternative hypothesis is that the model
follows a GARCH form. The appropriate statistic is twice the
difference of the maximized values of the log likelihood
functions for the unconstrained and constrained models,
respectively, which will have a chi-square distribution with

p + q degrees of freedom under the null hypothesis,

The results of the likelihood ratio tests are presented in
Table 3, and for chicken and beef, the null hypothesis that
conditional forecast variances are constant could be rejected
at all usual levels of significance. Results for pork are not
guite as strong, since the AR model could be rejected only at
the 1 percent level. The results in Table 3 are encouraging
and lend support to the contention that the conditional
forecast variances of retall meat prices have been
nonstationary during the past 20 years.

1

Summary

Traditional time series models assume a constant
one-period-ahead forecast variance. 1In recent years, the
implausibility of this assumption has been recognized and
several new classes of stochastic processes have been
postulated. Thege include the ARCH process (Engle 1982) and
the GARCH process {(Bollerslev 1986). These are mean zero,
serially uncorrelated processes with nonconstant variances
that are conditioned on past information. The GARCH and ARCH
processes represent an important advance in time series
modeling since much of the forecasting accuracy associated with
traditional time series models derives from optimal use of past
information. These same optimality conditions now can be used
to generate time-varying predictions of the conditional
forecast wvariance.

_ In this study, GARCH{l,1l) processes were applied tc retail
meat prices. The estimated models replicated historical
movements in these price series adequately; confidence
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Table 3. Results of likelihood ratio tests

value of Log
Likelihood Function Value of

the Test
AR GARCH Statistic Result
Variable Model Model (xzi of test
Price of beef (PBt) -370.44 -347.71 45,46 Reject AR
Price of pork (PPt) -321,15 -316.93 8.44 Reject AR
Price of chicken (PC_) -305.70 -289.18 33.04 Reject AR

T

Notes:

Value of likelihood function reported here is up to an
additive constant. The value of x° at two degrees of
freedom and at 5 percent (1 percent) level of
significance is 5.99(9.21).
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intervals, derived from the conditional forecast variances,
changed substantially over the sample period, highlighting the
potential importance cof the GARCH process. A formal test of
the joint significance of the ay and Bl parameters in the
conditional variance equations in the GARCH models revealed
that the constant variance assumption assoclated with the
estimated AR models could be rejected.

The results of this study indicate that recent advances in
econometrics literature may be fruitfully applied to '
agricultural data. There are many instances where additional
knowledge about forecast variances derived from a GARCH
process could be beneficial. In addition, the normality
assumption associated with conditional distribution does not
present a limitation; other distributions could be used as well
(Bollerslev 1987). The empirical examples presented here
should encourage a wider acceptance of GARCH models in applied
time series modeling.
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Endnotes

To see tgis, note that the conditional variance of Y, in
(}) is o ; while the unconditional variance is

c /(1 - BO). Thus, the conditional variance is constant
and does not use information pertaining to past
realizations of yt.

For instance, the conditional variance of a girst—order
ARCH process can be written as ht = ag + A€ - More
generally, the variance function can be expressed as

ht = h(yt_l, e yt—p: a), where p is the order of the

ARCH process.

The extension of the ARCH process to & GARCH process bears
a striking resemblance to the extension of the standard AR
process to a more general ARMA process,

The stationarity conditions associated with the ht equation
are imposed.
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