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ESTIMATION OF THE DISTRIBUTION OF USUAL
INTAKES FOR SELECTED DIETARY COMPONENTS

by

G. E. Battese, 5. M. Nusser, and W. A. Fuller
Iowa State University

INTRODUCTION

The U.S. Department of Agriculture (USDA) has been responsible for
conducting periodic surveys to estimate food consumption patterns of
households and/or individuals in the United States for over 50 years.
Data from these surveys have had a significant impact on the formulation
of food-assistance programs, on consumer education and on food regula-
tory activities,

In recent years, there has been interest in estimating the
proportion of the population that has insufficient intake or excessive
intake of certain dietary components. Different approaches have been
suggested for the estimation of this proportion. In all approaches, it
is necessary to analyze data on dietary intakes for a sample of
individuals. Also, all approaches recognize that an individual who has
a low intake of a given dietary component on one day is not necessarily
deficient (or at risk of being deficient) so far as that dietary
component is concerned. It is low intake over a sufficiently long
pericd of time that produces a dietary deficiency. A dietary deficiency
exists when the "usual" (i.e., normal or long-run average) intake of the

dietary component is less than the appropriate dietary standard.



In this paper, our focus of attention is the usual intake of
selected dietary components. We consider the estimation of the
cumulative distribution function of usual intake using a sample of
individuals for whom several daily observations on dietary intake have
been obtained. The data on selected dietary components are from the

1685-86 Continuing Survey of Food Intakes by Individuals (CSFII).

THE CSFIT DATA

During 1977-78, the USDA conducted its latest Nationwide Food
Consumption Survey, in which food intakes of sample individuals (at home
and away from home) were ascertained for three consecutive days. On the
day of the interview, a sample respondent was asked to report his or her
food intake during the previous day and then to record intakes for the
day of the interview and for the day following the interview. After
this survey was conducted, it was recommended by the National Research
Council (1986) that food intakes be obtained for non-consecutive days
over an extended perilod of time so that the normal consumption patterns
of individuals may be better estimated.

In 1985 the USDA conducted a Continuing Survey of Food Intakes by
Individuals. The survey collected daily dietary intakes for women
between 19 and 50 years of age and their pre-school children. Intakes
were to be obtained at apprdximate two-month intervals over the period
of one year (April 1985 to March 1986). Data for the first day were
collected by personal interview. Data for subsequent days were
collected by telephone whenever possible, The sample was a multi-stage
stratified area probability sample from the 48 conterminous states. The

primary sampling units were area segments, and the probability of



selection of area segments was proportional to the number of housing
units in the segments as reported by the Bureau of the Census. Of the
1,459 women who agreed to participate and provided the first one-day
dietary intakes, 71 percent completed at least four days, 63 percent
completed at least five days, and 47 percent completed all six days.

In this paper we analyze a data set contalning four days of dietary
intakes for 785 women aged between 23 and 50 years who were responsible
for meal planning within the household and who were not pregnant or
lactatiné during the survey period. The four days of data consisted of
the first one-day dietary intakes for all individuals who provided éc
least four days of data plus a random selection of three daily intakes
from ﬁhe remaining three, four or five days of data available. Empir-

ical results are presented for intakes of the five dietary components:

calcium, energy, iron, protein and vitamin C.

PRELIMINARY ANALYSES

Since the survey data are for different days of the week and
different months of the year, the effects of these as sources of
variability are investigated. Let Yij represent the intake of a given

dietary component for individual 1 for the j-th reporting day. We

consider the linear regression model

= a + Bk LR P S (1)

Y. .
1] 1]

where

ﬁk =1 1if the (i,j)-th observation was collected in the k-th

month, k=1, 2, ..., 12:



= 0 otherwise;

vy =1 1if the (i,j)-th observation was collected on the m-th day
of the week, m=l, 2, ..., 7 :

= 0 otherwise;

and eij is the error in the regression equation.

In this model, month effects are significant at the five-percent
level for all five dietary components. Weekday effects are significantc
for energy and protein, but not for calcium, iron or vitamin C.

Using data not adjusted for month or weekday effects, the average
intake for the first-day of interview was significantly greater than the
average intakes for the remaining three days for the five dietary
components. The average intakes for the second, third and fourth days
are not significantly different. There are no significant differences
ameng the average intakes with respect to interview sequence, after
accounting for the month and weekday effects. This conditional result
is not particularly meaningful, however, because month effects and time-
of-interview effects are confounded to a considerable extent in these
four-day data. We conclude that interview sequence effects or month
effects or both are present in the data.

The variances of intakes within individuals and among individuals
(i.e., intra-individual and inter-individual variances) are estimated
from the simple analysis of variance described in Table 1. In that

table,

Y. =4 Z2Y,, (2)
. j=1



Table 1. Analysis of variance for observed individual intakes

Source d.£f. S.5. EMS
n - -

Individuals 784 T4(Y, - Y )2 g2 + 4o
. i. .. w b
i=1
n 4 )

Days/individual 2355 Tz (Y., - ¥, )? ol

. . ij i. w
i=1 j=1

and

- I L
Y =n X Y, (3
.. . i.
i=1

are the average of the four daily intakes for the i-th individual and
the average of all observations on all sample individuals, respectively;
aé is the intra-individual variance; aﬁ is the inter-individual
variance; and n=785 . The ratios of the estimated intra-individual and
inter-individual variances are presented in the first column of Table

2. The estimates from the four-day GCSFII data are of similar magnitude
te those reported by Sempos et al. (1985) for studies on adult women in
two different years. The averages of the two ratio estimates reported
by Sempos et al. (1985) are given in the last column of Table 2.

Other summary statistiecs for the daily intake of the five dietary
components are presented in Table 3. Also presented in Table 3 are the
Recommended Dietary Allowances (RDAs) for the United States, as reported
in the latest RDA publication (see National Research Council 1980). The

estimates for the mean daily intakes are the simple averages over all

sample individuals. The estimates for the standard deviation, skewness



Table 2. Estimates for the ratio of intra-individual to inter-
individual varianceg of daily intakes of dietary components

Estimates for a;/oﬁ

Dietary component This study Sempos et al. (1985)
Calcium 1.8 1.1
Energy 2.0 1.6
Iron 2.5 2.6
Protein 2.9 2.1
Vitamin C 2.4 2.4

Table 3. Summary statistics for the distribution of the four-day
average intakes of dietary components

Dietary Standard

component RDA Mean deviation Skewness Kurtosis
Calcium (mg) 800 579 281 1.16 2.41
Energy {(kecal) 2,000% 1,493 487 0.61 0.82
Iron (mg) 18 16.0 3.68 1.24 3.51
Protein (g) 44 59.6 19.6 0.77 2.37
Vitamin C {(mg) 60 75.2 49.6 1.37 2.62

%The value for emergy is the mean energy requirement as stated in the
latest RDA report [see National Research Council (1980, p. 23)].

and kurtosis are obtained from the daily intakes adjusted for month and
weekday effects, according to the specifications of the analysis-of-
variance model (1). All sample statistics were obtained using the SAS

software (see SAS 1985). The standard deviation, skewness and kurtosis



statistics of Table 3 are

-~ - T A l

s = [(n-1)Lyger) 72

€ 1=]. 1

el A s

—. 3z (e./s )3 | (4)

{n-1)(n-2) i e
and
n(n+l) s Je ye . o 3@meD)?
(a1 (n-2)(n-3) .= (6475, (n-2)(n-3) °

i=1

respectively, where :i is the average of the four estimated errors of
model (1) for the i-th individual.

The standard deviation is a measure of the dispersion of the
intakes about the mean intake for the population of individuals. The
skewness statistic measures the lack of symmetry of the distribution of
intakes about the mean. A symmetrical distribution has a skewness
measure equal to zero. If small values of intake are near the mean
while large values are much greater than the mean, then the larger
values ha&e a greater contribution to the third moment and result in
positive skewness. The kurtosis statistic measures the extent to which
values tend to occur distant from the mean. The kurtosis measure for
the normal distribution is zero. A positive kurtosis measure indicates
that a distribution tends to have "fatter tails" than the normal
distribution.

In Table 3, the estimated mean intakes of calcium and iron are less
than the corresponding RDAs by about 0.8 and 2.2 standard deviations,

respectively, whereas for protein and vitamin C the mean intakes are



greater than the corresponding RDAs by about 0.8 and 0.3 standard
deviations, respectively. The estimated mean intake of energy is about
one standard deviation less than the mean of energy requirements of
2,000 kcal from the latest RDA report.

The skewness estimates presented in Table 3 indicate that the
distributions of daily intakes are skewed to the right (positively
skewed) for all five dietary components. The energy and protein intakes
are the least skewed. The kurtosis values indicate that the
distributions of the average reported intakes for the five dietary
components tend to have fatter tails than the normal distribution.

0f the five dietary components we consider in this analysis, three
are discussed in Appendix A of the National Research Council (1986)
report. The three wvariables common to that appendix and our study are
iron, protein and vitamin C. The National Research Council (1986,
p-114) reports that the mean intakes for females in the Nationwide Food
Consumption Survey (NFCS) conducted in 1977-78 were 10.8 mg, 65.6 g and
72.6 mg, for iron, protein and vitamin C, respectively. Thesge values
were based on three-day intakes over consecutive days for about 2,400
women. The estimated mean intakes for protein for our CSFII data are
significantly less than those based on the NFCS data. The estimated
standard deviations of all three dietéry components in the CSFII data
are significantly less than those for the NFCS data.

The characteristics of the distribution of daily intakes of
individuals were investipgated using the sample variances, the sample

third moments and the sample means of the reported intakes for given



individuals, Let the sample variance of daily intakes for the i-th

individual be denoted by
r
To(Y,, - Y. )%, (5)

where r 1is the number of observations per individual (r=4 in our

study). Plots of the sample standard deviation, S; , against the

average intake, Yi. , for the sample individuals are presented in
Figures 1 through 5 for the five dietary components. It is evident that
for all variables, the average of the sample standard deviations tends
to increase as the average intake increases. These plets suggest that
the true standard deviation of individual intakes is a linear function
of the mean Intake.

Let the sample third moment of the individual dietary intakes be
denoted by

r r ;
(Y.. - Y, )3 . (6)

M. =———— Z .. .
3i (r-1)(x-2) j=1 ij i.

Plots of the cube root of the sample third moment against the average
intake for the five dietary components are presented in Figures 6
through 10. In these plots some individuals have negative sampie third
moments and others have positive third sample moments. However, the
plots suggest that the cube root of the sample third moments is
positively correlated with the average intake. A more detailed discus-
sion of models for the moments of individual daily intakes is given in a

subsequent section.
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USUAL INTAKE

The concept of the usual intake of a dietary component for an
individual is crucial to our study. The usual intake for the i-th
individual is defined to be the long-term average of the daily intakes
and is denoted by y; . That is, the usual intake is the conditional

expectation of the daily intakes for individual i ,
. = E(Y, . |1
yy = Bl

One can think of usual intake for a given individual as the average of
daily intakes where the average is over a sufficiently long period of
time, such as a year.

The distribution of usual intake for individuals in the population
is important for assessing the adequacy of intakes of a given dietary
component. The procedure used to estimate the distribution of usual
intake depends on the assumptions made about usual intakes and about the
measurement errors, where the measurement error assocliated with the
reported intake for the i-th individual on the j-th reporting day 1is

Y.. -y

13 { The estimation or prediction of the usual intake for a given

sample individual may also be of interest, but is not discusssed in
detail in this report.

It is frequently suggested (e.g., National Research Council 1986,
p.113) that intake data on dietary components be transformed by a
logarithmic or power transformation and that statistical analyses be
conducted on the transformed nutrient intakes. We prefer to analyze the

original observations when estimating the distribution of usual intake,

N

|



21

A discussion of problems incurred by using transformations is presented

in the Appendix.

DISTRIBUTION OF USUAL INTAKE

We assume that the cumulative distribution function of usual intake
of a dietary component is of interest for a population of individuals.
To estimate the distribution function, it is necessary to define a model
for reported intakes in terms of usual intake and measurement errors.
Suppose that a random sample of n individuals from the population is
available and that r daily intakes are available for each individual.
The additive decomposition associated with ocur definition of usual

intake gives

=¥ + eij , =L, 2, ..., r; i=1, 2, ..., n, (7

Yij
where n=785 and r=4 in our study. Under the definition of usual
intake, the measurement errors, eij , J=1, 2, ..., r , have zero mean
for all individuwals, i=1, 2, ..., n

We investigate alternative approaches to estimating the
distribution function of usual intake using the gamma and Weibull

distributions. We first define a model for the measurement errors and

estimate the parameters of that model.

Model for Measurement Errors

We assume that the measurement errors, eij , in the model (7) are

such that



22
2 13y = 2 .
E(eij]l) ey, 1 1,2, ..., n, (8)
3 /3y = 3 s
E(eijll) yyi, i=1, 2, ..., n, (9)

and that the sixth moments exist. We also assume that the measurement

errors for the i-th individual, , & , dre {condition-

®ivc %120 o Bip
ally) independent and that the measurement errors for different
individuals, eij and ej.:, , where 1 » i' , are independent.

Under the model specification (8)-(9), the standard deviations of
the measurement errors and the cube roots of the third moments of the
measurement errors are directly proportional to the usual intakes of
individuals in the population. The model (8) for the variances of the
measurement errors is consistent with the plots in Figures 1-5. The
model (9) for the third moments of the measurement errors is consistent
with the plots in Figures 6-10. As discussed below, these model
assumptions appear to be appropriate for the five dietary components:

calcium, energy, iron, protein and vitamin C.

-Estimators for the parameters, a« and vy , are

A o 1 10 -

a=1{2 (¥Y? - r 75%2)] = §2 (10)
. i. i . i
i=1 i=1

and
5 o 1 2 1 2
= 73 - Ty 2 - "
oy {ifl(Yi' 3r Yi.si + r 2“31)] ileBi , (11)

where Si and M3y are defined in (5) and (6), respectively. The

estimators (10) and (11) are derived in the Appendix. Values of the
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estimators, and their estimated standard errors, are presented in Table

4, All parameter estimates are significantly different from zero.

Table 4. Estimated parameters of the measurement error models for the
dietary components

Dietary Component

Parameter Calcium Energy Iron Protein Vitamin C
a 0.247 0.1246 0.195 0.1708 0.513
(0.013) (0.0054) (0.012) (0.0076) (0.028)
R 0.123 0.0359 0.161 0.059%4 0.496
(0.022) (0.0068) (0.035) {0.0089) (0.099)

The average daily intake for the i-th individual, ?i , estimates

the usual intake, y; , with variance r ai , where a% is the
(conditional) variance of the measurement errors for the i-th individ-

ual, i.e.,

ai = E(egjli)

The sample standard deviation of the daily intakes for the i-th
individual, S; » although a biased estimator for the population
standard deviation, g; » can be used to obtain a pooled estimator for
Yi - Using Fisher’s approximation, which is based on the normal
distribution, the variance of S; 1is approximated by [2(r-l)]-lai

(see Kendall and Stuart 1969, p. 371). Then, under variance model (8),

we can write
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(12)

where

l\vi ;ai 0 ": 0 2 (r'l)-lai /}

Under normality, the square of A2 is a constant multiple of o , where
the multiple is a function of the number of observations on a given
individual. If A2 is known, a pooled estimator for the usual

intake, ¥i » is

T Yi. + 2(:—1)/\28i

>
1}

(13}
r + 2(r-1)A%

The parameter, Az , in (12) can be estimated using the
functionally-related option of EV CARP, a computer program for
estimation of measurement error models (see Fuller 1987; Schnell and
Fuller 1987). The residuals obtained from the measurement error fit of
model (12} provide a check for the accuracy of the model (8). Let the

residuals from the EV CARP fit be

where 12 is the EV CARP estimator for AZ . The variance of the i-th
-1

residual is approximately a%{ 9§(r-1)-1 + 1 A2} . Let the predicrted

2
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usual intake (13) obtained by using XZ to estimate AZ be represented

1

by §i , i=1, 2, ..., n . The weighted residuals, ;; ;i , have mean

zero and common variance under the model. The plot of the weighted
residuals, §;l;i , against the predicted usual intakes, §i , i=1

., n , should exhibit no systematic pattern if the model (8)
adequately defines the variances of the measurement errors. These plots
are presented in Figures 11 through 15 for the five dietary components.
Since the weighted residuals in these figures are clustered around zero
with no discernible pattern, it appears that the variance model (8) is
adequate for the measurement errors associated with the reported daily
intakes of the five dietary components,

A check for the adequacy of the model (9) for the third moments can
be obtained by using the residuals from the measurement error fit of the
cube root of the sample third moment, M3i , on the sample means. Note
that model (9) can be expressed as

173 173 )
{E(egjh)]/ -7/yi, i=1, 2, ..., n .

Consider the model

1/3

M3i_ - A3yi + W i=1, 2,

n, (14)

where, under the assumptions of model (9), the variance of we

exists, Let the residuals from the EV CARP fit of model {(14) bhe

i 3 3% i=1, 2, ..., n ,
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Plot of the weighted residuals for the variance model
against the predicted usual intakes of energy for women 23-
50 years old.
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Plot of the weighted residuals for the variance model
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where X3 is the EV CARP estimator for A3 . The plot of the weighted
residuals, ;; ;i , against the predicted usual intakes, §i , i=1,
2, ..., n, should exhibit no discernible pattern if the model (9) for

the third moments adequately fits the data. Such plots indicated that
the postulated model (9) is acceptable. The figures are not included in

this paper because they are quite similar to Figures 11 through 15.

Moments of Usual Intake

We assume that the usual intakes, Yy y2, cees Yoo are a random

sample from a distribution with finite fourth moment. The mean of usual

intake is represented by py . The second, third and fourth central
moments of usual intake are represented by pzy _— and By where
T —E(y~p)k =2, 3, &4
ky i y ¥ ? ’

The moments of the average of four daily intakes for a random
sample of individuals can be expressed in terms of the moments of usual
intake and the parameters of the measurement error model (8)-(9). These
derivations are presented in the Appendix, Estimators for the moments
of usual intake are also presented in the Appendix.

Estimates for the first four moments of usual intake are presented
in Table 5. For example, the estimates for the cube root of the third
moment , #3y , of usual intake are presented in the table. Taking roots
results in estimators that are iIn the same units as the reported
intakes. The sign of the cube root is the same as that for the estimate

of the third moment. Also presented in Table 5 are estimates for the
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Table 5. Estimates for the parameters of the distribution of usual
intakes for dietary components

Moment Parameters

Dietary 1 L Ske%?eSS Kurtosis
72 1/3 74 /2 ]

Component py #Zy “3y #&y ﬁl ﬁz 3

Calcium 579.0  233.7 213.9 332.6 0.77 1.10

(mg)

Energy 1,493.2 £03.0 245.9 541.9 0.23 0.27

{keal)

Iron 10.0 2.88 2.80 . 4.43 0.91 2.58

(mg)

Protein 59.6 14.9 10.9 23.6 0.39 3.24

(g)

Vitamin C 75.2 39.2 33.6 50.7 0.63 -0.22

(mg)

1
skewness and kurtosis parameters, ﬂlAE and ﬁz - 3, where

]/ 3/2
2 = / = 2
ﬂl = “3y/#2 and ﬁz = p4y/P2 .

The differences between the moments of Table 3 and those of Table 5
are worthf of note. The estimated variances of usual intake range from
70% of the estimated variance of the four-day mean for calcium to 58% of
the estimated variance of the four-day mean for protein. Thus, the
variability of daily intakes makes an important contribution to the
total variability of four-day means. In all cases, the estimated
skewness for the distribution of usual intake is less than the observed
skewness for the four-day means.

Because the estimates of the third moments of usual intake are

positive for all dietary components, the estimated distributions of
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usual intakes are positively skewed. However, energy usual intake is
basically symmetrical. The estimated kurtosis for usual intake is
smaller than the estimated kurtosis of four-day means for all dietary
components except protein. The distributions of usual intake for
calcium, iron and protein appear to have fatter tails than the normal
distribution. The kurtosis for energy and vitamin C differ little from

that of the normal distribucion,.

Gamma Distributions

In this section, we assume that the usual intakes, Yir You +oes
Yn » are a random sample from the two-parameter gamma distribution with

density function

£y) = 07 Pr gy eV 50, 950 850,

where S and # are parameters to be estimated. Given that the shape
parameter, B , is greater than one, the density function is unimodal
and right-skewed with a value of zero at the origin. Furthermore, the

first three moments of usual intake are

E(yi) =88 ,

E(y, - 48)% = 678

and

E(y; - 88)° = 20°8
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In addition, we assume that the measurement errors for the i-th

individual, . eir , are {(conditionally) independent random

e, e,
i1’ Tiz2’

variables, defined by

°15 = zij - E(Zijll) . d=l, 2, ..., r,
where [Zil' Zi2' c e, Zir} is a random sample from the gamma
distribution with parameters gei and ﬁe . These assumptions imply

that the gamma distributions associated with the measurement errors on
different individuals have different scale parameters, gei , i=1,

2, ..., n, but a common shape parameter, ﬂe . Given that the model is
constrained to satisfy the moment properties defined by equations (8)
and (9), it follows that gei - Eyi , 1i=1, 2, ..., n , where § 1is a

positive constant. Furthermore, the parameters & and ﬁe are

expressible in terms of o and Yy by

5~ (2a) 1y
and
B, = by
Thus, method-of-moments estimators for the common parameters of the
distribution of the measurement errors are

A~

§ = (20) Ly

and
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- 3"
ﬂe bady

where a and v are the method-of-moments estimators for a and v

derived in the Appendix. Values of the estimators for §é and ﬁe for

the five dietary components are given in Table 6.

Table 6. Estimates for the parameters of the hypoth-
esized gamma distribution for measurement
errors for five dietary components

Dietary component ) ﬁe

Calecium 0.249 -“ 3.969
Energy 0.144 6.021
Iron 0.412 1.151
Protein' 0.174 5.644
Vitamin G 0.483 2.203

The method-of-moments estimators for the parameters of the

distribution of usual intake are

~ Ly A

§ =p

y Yoy
and
A -11\2
B ﬂzyﬂy ,

A A

where py and pZy are the estimators for the mean and variance of

usual intake, defined In the Appendix. Estimates of the scale and shape
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parameters for calcium, energy, iron, protein and vitamin C are

presented in Table 7,

Table 7. Scale and shape parameter estimates for the
gamma distribution of usual intake for five
dietary components

Dietary component ; ;

Calcium 94 .34 6.14
Energy 108.77 13.73
Iron 0.83 12.01
Protein 3.75 15.88
Vitamin C 20.47 3.67

To test the fit of these distributions, Monte Carlo methods were
used to generaté the distribution of individual four-day means from the
estimated gamma distributions for usual intakes and measurement
errors. For each nutrient, 100,000 usual intakes y; were generated

along with r = 4 measurement errors e for each y; according to

1]
the parameters of the respective estimated gamma distributions. The

usual intake plus the average error for each intake,

were used to generate a cumulative distribution function (edf) against
which the empirical cdf for observed individual means could be

compared. The hypothesized cdf for individual means was generated by

et
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counting the number of generated observations contained in each of 1,000
intervals over the range of observed means. A chi-square goodness-of-
fit statistic was used as the test statistic. Values of the test
statistic are listed in Table 8 for each of the five dietary

components. The chi-square goodness-of-fit statistics are significant
for energy and protein. The assumptions that usual intake has a gamma
distribution and the measurement errors are generated from gamma
distributions are not satisfactory for energy and protein, but are

satisfactory for calcium, iron and vitamin C.

Table 8. Goodness-of-fit statisties for the distribution of four-day
mean intakes based on gamma distributions

Dietary component x2 @
Calcium 35 39
Energy 47.69
Iron 25.01
Protein 46 .59
Vitamin C 24 61

8For size, 0.05, the hypothesized distributional assumptions are
rejected if the chi-square goodness-of-fit statistic, x? exceeds

40.11, which is the 95-th percentile for the chi-square distribution
with 27 degrees of freedom.

Plots comparing the empirical cdf of individual means with the
hypothesized cdf based on gamma densities for each dietary component are
shown in Figures 16 through 20. The plots for energy and protein
indicate a poor fit to the hypothesized distribution in the neighborhood

of the medians.
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Figure 16. Plots comparing the empirical cdf of individual means with
the hypothesized cdf based on gamma densities for calcium.
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Plots comparing the empirical cdf of individual means with
the hypothesized cdf based on gamma densities for energy.
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Figure 18. Plots comparing the empirical cdf of individual means with
the hypothesized cdf based on gamma densities for iron.
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Figure 19. Plots comparing the empirical cdf of individual means with
the hypothesized cdf based on gamma densities for protein.
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Figure 20. FPlots comparing the empirical cdf of individual means with
the hypothesized cdf based on gamma densities for vitamin C.
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Because of the poor fit for energy and protein, alternative models
were developed for those compoments. In order to make the fitted
distribution more symmetric, it was assumed that the square of usual
intake had gamma distribution. The parameters of the gamma distribution
were estimated using the second and fourth moments of the coriginal
observations. The estimated parameters were (;S’ és} = (667,678 .4,
3.58) and (;S’ ;S) - (986.7, 3.82) for the square of energy and
protein, respectively. The plots of the estimated cdf and empirical cdf
are given in Figures 17a and 19a for energy and protein, respectively.
The chi-sgquare goodness-of-fit statisties for these models were 34.05
and 37.58, respectively, which are not significant at the five-percent

level. Thus, the gamma distributions in the squares are acceptable for

the usual intake of energy and protein.

Weibull Distributions

In this section, we assume that the usual intakes, Yy Yoo
Y » are a random sample from the two-parameter Weibull distribution
with parameters r and n , having density function

1
f(y) - T'ﬂn Xn°le'(x/7)

, x>0
Given that the shape parameter, n , is greater than one, the density is
right-skewed and unimodal with a value of zero at the origin. The first
three moments of the Weibull distribution are

E(y;) = 7 T(1 + 1y
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Figure 21. Plots comparing the empirical cdf of individual means with
the hypothesized cdf based on the assumption that the
square of usual intake of energy has gamma distribution.



45

.
)
0.9 -
0.8
Q.7 -
O.8
a.5
Q.4
0.3 4
Q.24 . = Emplirical CDF
-~ = Hypotheslzed CDF
0.1 4
0.0 4
T T T T * T — T 1 T T T ¥ T T 7 T T * T
a 20 40 80 80 100 120 140 1640 180 200 220
MEAN INTAKE FOR FOUR DAYS
Figure 22. Plots comparing the empirical cdf of individual means with

the hypothesized cdf based on the assumption that the
square of usual intake of protein has gamma distribution.
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1 1 1

Ety, - fT(1 + 7 12 = r2[T(1 + 20 ) - T*(L + 7 D],

and
-1, ., 3 -1 -1 -1 3 -1
E{yi - tT(1+g D)3 = r3[T(143n 7) - 3T(1+2n 3T(1l+n ") + 203 (1+np )]
In addition, the distribution of the measurement errors,

e.., e.., ..., e. , for the i-th individual are assumed to bhe
il i2 ir

(conditionally) independent random variables, defined by

= w.. - w.. i ] j= 3 ] LR} ’
eij 1] E( 1Jll) j=1, 2 r
where ({W,., W.,, ..., W, } 1is a random sample from the Weibull
il i2 ir
distribution with parameters L and n, - Given that the model 1is

constrained to satisfy the moment properties of equations (8) and (9),
it follows that the method-of-moments estimators for Tei and n, are

defined by

el i.

>

Horasahr,

) -
§2[0(1 + qu

and

A A

7= 83 [TCL+ 3070y - 301+ 277001 + n2h) + 2022 4 500y

>

A

where o and <y are the estimators for the parameters of the moments

of the measurement errors (8)-(9). The IMSL iterative routine DNEQNF,
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which uses the Levenburg-Marquadt algorithm and a finite-difference
approximation to the Jacoblan, was employed to generate the parameter
estimates listed in Table 9. The method-cf-moments estimators for the

parameters r and 15 are defined by the system of equations

A A A"l
p =711 +n 7)
y

and

pZy = r2[r(1 + 2q‘l) - T2(1 + n-l)]

The IMSL routine DNEQNF was used to construct the estimates of r and

n by solving the nonlinear system of equations. The parameter

estimates are listed in Table 10.

Table 9. Estimates for the parameters of the hypoth-
esized Weibull distribution for measurement
errors for five dietary components

Dietary components g Ae

Calcium 0.845 1.560
Energy 0.675 1.757
Iron 0.472 1.048
Protein 0.776 1.726
Vitamin C 0.999 1.299

The cumulative distribution function for individual means, assuming

the Weibull distributions apply, was generated by the same methods
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Table 10, Scale and shape parameter estimates for
the Weibull distribution of usual intake
for five dietary components

Dietary components ; ;

Calcium 651.4 2.67
Energy 1643 .4 4.17
Iron 11.0 3.88
Protein 63.2 4,52
Vitamin C 84.8 2.00

explained above for the gamma distributions. Results of the goodness-
of-fit statistics are presented in Table 11. The chi-square goodness-
of-fit statistics are significant at the five-percent level for calcium
and iron. These results indicate that the assumptions that usual intake
has Weibull distribution and the measurement errors are generated from

Weibull distributions are not appropriate for calcium and iron.

Table 11, Goodness-of-fit statistics results for testing the
distribution of four-day intakes based on Weibull
distributions for five dietary components

Dietary components x2

Calcium 42 .85
Energy 32.52
Iron 43.07
Protein 26.09

Vitamin G 28.48
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Figures 21 through 25 contain plots of the empirical cdf and
Weibull-based cdf for the five variables. The plots indicate that the
hypothesized distribution functions do not fit well in the tails in the

cases of calcium, energy and iron.
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Figure 23, Plots comparing the empirical cdf of individual means with
the hypothesized cdf based on Weibull densities for caleium.
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Plots comparing the empirical cdf of individual means with
the hypothesized cdf based on Weibull densities for energy.
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Figure 25. Plots comparing the empirical cdf of individual means with
the hypothesized cdf based on Weibull densities for irom,.
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Figure 26. Plots comparing the empirical cdf of individual means with
the hypothesized cdf based on Weibull densities for protein.
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Figure 27. Plots comparing the empirical cdf of individual means with
the hypothesized cdf based on Weibull densities for vitamin
C.



55

‘CONCLUSIONS

The distribution of mean intakes is frequently used to approximate
the distribution of usual intakes. However, errors in measurement lead
to inflated variance in the distribution of mean intakes relative to the
distribution of usual intakes. For the dietary components considered in
this paper, the intra-individual (i.e., measurement) variance of
individual daily intakes ranged from 64 percent to 74 percent of the
total variance of the daily intakes. Clearly, using the distribution of
individual mean intakes as a basis for inferences concerning the
proportion of individuals with inadequate (or excessive) intakes can
lead to serious errors.

To circumvent this problem, we offer a model that decomposes an
observed individual intake into the individual’s usual intake plus a
measurement error, where the standard deviaticn and cube rocot of the
third moment of the measurement errors for an individual are both
linearly related to the usual intake of the individual. Based on data
for calcium, energy, iron, protein and vitamin C intakes for women 23-50
years of age, the standard deviation and cube root of the third moment
of the measurement errors are each satisfactorily approximated by a
constant multiple of the usual daily intakes of the women.

The gamma distribution and the Weibull distribution were employed
as models for the distribution of usual intake. On the basis of plots

and of formal tests, acceptable distributions for usual intake are:

Calcium: gamma distribution;
Energy: gamma distribution, in squares;

Iroen: pgamma distribution;
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Protein: Weibull distribution or gamma distribution, in squares;

Vitamin €: gamma distribution or Weibull distribution.

The methods developed in this paper provide an approach to
estimating the distribution of usual intake that explicitly recognizes
that daily intakes for an individual are only an approximation to the
individual’s usual intake. In addition, the estimation procedure
recognizes the fact that the distribution of daily intakes is heavily
skewed and that the distribution of usual intakes may also be skewed.

The proposed procedure for the estimation of the distribution of
usual intakes for individuals requires a sample of daily intakes of
individuals, with multiple daily intakes for at least a subset of the
sampled individuals. The repeated sample of daily individual intakes
should be spaced in time so that the assumption of conditional
independence among the sample daily intakes for a given individual is
acceptable. Some of the sampled individuals must provide a number of
daily intake records per individual equal to the highest moment of the
distribution of individual intake that is to be estimated.

Although the methods of this paper appear to be relatively
successful for the dietary components under consideration, there are
several directions in which the methods can be extended. Neither the
two-parameter gamma family nor the two-parameter Weibull family appear
to be sufficiently broad to cover the intake distributions of all
dietary components. Therefore, assuming the usual intake distribution
to be a member of a wider class of distributions may be useful. The
error models of this paper may not be adequate for other dietary

components. In particular, preliminary analyses indicate that the model
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for the third moment of the errors does not hold for vitamin A.
Estimaters for the usual intake moments that do not rely upon the error

models are being considered for future research.
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APPENDIX

Transformation of Intakes

Given any transformation of the observed intakes, g(Yij) , it is

always possible to define the decomposition,

- +
where «. ~ (0, ¢2) is uncorrelated with ¢,, ~ (0, ¢2) and «. is
i a ij £ i
the individual effect. Transformations are typically chosen so that

g(Yij) is approximately normally distributed. For eij with positive

variance and a nontrivial function, g(+) , a problem arises in that the
expectation of g(Yij) for an individual is not equal to g(yi) . That
is,

Etg(Y; 1) = g(y))

For example, consider the square-root transformation,

Then the usual intake for individual 1 1is

L E(Yijli)

o
i

= 211
E[(,ug + a, + eij) Il]
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- 2 4 42
(ug toay) o

Hence,

s 2] Ly

yi2 = [y +a)? + 0

> +
He * oy

Thus, if the distribution of usual intake is to be estimated, then
original observations need to be directly analyzed. The analysis of a
transformation of intakes yields estimates for the long-run average of
the transformed wvalues. In other words, our analysis is based on the
postulate that it is the average daily intake of a dietary component
that is of interest, not the average of (say) the logarithm of daily

intake.

Moments of the Usual Intakes

We express the first four moments of the usual intakes, y; , i=l,

2, ..., n , in terms of moments of Yi = yi + éi and the parameters,

a and v , of the model {(8)-(9). We will make repeated use of the

following lemma.

Lemma 1. Let Xl, X2, C e, Xt be a random sample of size ¢t on the

random variable, X , where X has finite fourth moment. Then

E(X) = By

: T
E( = (%, - X)?2) = (t - Dy
i=1
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t
E(C S (X, - 8)%) = (t-1)(e-2)t p,
3 i 3
i=]
and
- - -2
E{ 2 (X, - X)%} = (t-1)t “{(t? - 3t + g, + 32t - Ipuz)
Y i 4 2
. -1t ~ K )
where X =t zizlxi and py = E{(X - Ju.X) } o, k=2, 3, 4 .

Proof., The results are obtained by straightforward algebra, using the

decomposition,

»
P
Il

(xi - PX) - (X- - JU'X) » 1=1 r 2 T S
Now
. Wwy2 - - 2 . . T v 2
X; - X (X; - py) 2(X; = B (X - opg) + (X - )
Therefore,

B(X, - )2 = w, - 206 Dm, + (7 D,

- & he-D,

Similarly, from

(X, - X% = (X, - p)® - (X, - #x>2<i - tiy)

- ¥ . 2 . (X - 3
+ 3(Xi px) (X ux) (X #x) )
it folleows that

2

- ; ; -2
B(R, - R)® = py - 30t Dypy o+ 3 0ny - (£ 0p,
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-2 a
= (t “)(t* - 3t + 2);;3
-2
= (t )(t-2)(t-1)p3 .
Finally,
(X - 0t = (X - opt - 4K

- ux)a(i - mg) + B(X - p)P(X - opg)?

- A(X, - #X)(X S A C ST b
implies that
TR | -1 -2 2
E(X; - X% =g, - &t Dy, + 6(t D p, + (£-1)(p))7]

G e, 4 3D ]+ (€ ), + 3 1) ()7

(£72)((e3 - 42 + 6t - 3)p, + (6t(E-1) - 9(e-1)](n,)2)

(£73)(e-1)1(e2 - 3¢ + D, + 32 - 3 ()7 (]

Given the assumptions of the model (7)-(9) it follows from Lemma 1

that

n
o % vay el ]
Eliil(Yi_ Y oo® (n Drsg

E(

i (F, -1 )% = D (D

1

I3



and
. - -2
Et ZTU(Y. - Y %) =n {n-1){(n? - 3n + 3, - + 3020 - (.02}
. i. .. 4Y 2y
i=1
where
. = E(Y., - -)k =2, 3, 4
#kY - i. pY y R ] .
Now
Yy, Hg T g e ey
and so
= v - -2
oy = By - omy)
= - 2 . - s
E{(y; #y) + 2(y, wey +eil
=y, + r'lE(ayz)
2y i
= +r a + u?)
Aoy (“2y uy)
i.e.,
boo = (L+ r lalu, + (x ha 2
2Y 2y y
Similarly,
- = Y - p-33
Hyg = BGY - oag)

= - 3 - 2a - o2 3
El(y; #y) + 3@y, py) e, + 3(y; uy)ei. +e? )
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-1 -2
By + 3 E((y, - py)[(r Ya yi11 + E[(r D)y vi]

-1 -2
= + 3(r + 2 + + 3 + w31,
By ( )a[#3y “y“zy] (r )7[#3y Boboy “y]

hence it follows that

-1 -2 -2 -2
pag = [1+3(r Da+ (r )1]u3y + 3(r )#y[Zra + 7]u2y + (r )vu;

Finally,

- = PR |
buy = BOY, - omg)

- 4 - 34 - 252 . ~3 S 4
E{(yi py) + h(yi uy) e + 6(yi py) ef A(yi uy)ei. + ei.}

-1 -7 -
- 2 2 - 3 4
pay + 6E{(yi “y) (r )ayi} + 4E((yi uy)(r )7yil + E(ei')

= + 6r + 2
iy [pay b #3y Pyﬂzy

-2 2 o4
AT Tylayy + Bugha, ¥ Ipsy ]+ E(e] )
Now
B4 ) = E(r > [E(es 1D+ 3-DECedel Ll D)
and

E(elJ 35 ) = E(eijli)E(eij,Ii)
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- 2 2
(a y2)(a y2)
Thus

- -3
4 = 4 - 2 4
E(ei_) r [E(eij) + 3{r-Dea E(yi)]
However, by Lemma 1, it follows that

r
- e a2, .
E{ = (Yij - Yi‘)4|1; (e-Lyr “{(r 3r + 3)E(e;j]1)

jml
+ 3(2r - 3)[E(e§j|i)]?1
and so
r _ -2
E{ = (Y,, - Y. )*) = (r-1)r “{(r? - 3r + 3)E(e?.) + 3(2r - 3)E(ay?)?}
5-1 ij i. ij i
Hence
.1 F _
4 _ 2 - - 4
E(eij) {r?(r-1) "E[ Z (Yij Y, 04
j=1
- 3(2r - DaPE(HIC? - 3r + 3yt
Thus
- -3 2 -1 - Y 2
E(e? ) = (r ") {{x2(r-1) "E[ = (Y,, - ¥, )41 - 3(2r - 3)a?E(y*)]
i. j=1 ij 1. i

x (r? - 3r + 3)-1 + 3(1'1)325(Y;)3
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r
= [r(r-1)(r? - 3r + 3)]'1E{ T (Y., - Y. )] + 3(r'3)(r-1-c>a25(ye>
j=1 ij i. i
where ¢ = (2r - 3){r? - 3r + 3)-1 . But

4

E(y?) = + 4 + 6uZ + .
o By Hohy By I
Therefore,

-1 2

E

-2
4(r + 3 + 3u?
( )7i#4y Bobay #yﬂzy]

Tr
+o(r(r-1)(r? - 3 + D] IE[ B (Y., - 1. )4
: ij i.
j=1
-3 2 2
+ 3(r 7)(r-1l-c)a [pay + 4uyp3y + Guypzy + #;]

(1 + 6(r Mo+ 4(xr %)y + 3(r-3)(r—l—c)a2}p4y

+

[lZ(r-3)py{rza + ry + (r-l-c)az]p3y

+

-3 -3
{6(r 2lr2q + 2ry + 3(r-1-c)a?l} + 3(r r-l-c)a?us
( )#y[ Yy ( Ja?] ﬂzy ( JR¢ Ja #y

[r(r-1)(r? - 3r + 3)]'13{

j

-

(55 - Y5 0%

It

1
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Estimators for Error Model Parameters and Usual Intake Moments

It is easily verified that unbiased estimators for E(eij]i) and

3 V' -
E(eijll) are

1k .
$2 = (r-1) "% (Y.. - Y. )2
i . ij i.
j=1
and
1t .
M,. = £[(x-1)(r-2)] % (Y., - Y, )¥ , respectively.
3i . ij i.
j=1
Also, unbiased estimators for yi and yg are [?i - r_lsi] and
{?i - 3r-1?i Si + 2r-2M31] , respectively. Thus method-of-moments

estimators for o and v in the moment models (8) and (9) are

n
% Si
” i=1
a:
oG -1
= (Y2 - r "8
. i i
i=1
and
n
X M.
~ } iml 31
n
T [¥Y® - 3y, 52+ 2%om .1
im1 i, i i 3i

~ A

The values of the estimators, a« and v , and their estimated
standard errors can be obtained using PC CARP, a computer program for
survey sampling estimation. This program for the personal computer is

described in Fuller, et al. (1986).
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Method-of-moment estimators for the first four moments of the usual

intakes, py v Hao p3y and #Qy , are

y

-
Fy .
Pal oy - -~ A ..lA -1
- 2
Hoy oy - ¥ @ uy}[l +r "al ,
~ ~ -2 A ~ Y -~ -2 ~ ~ .,l ~ —2 ~ _1
“3y (Byg - 3Hr )py(Zra + 7)p2y - {r D p§}{1 + 3(r Da + (r ]
b= no - 112(2 )p (r%a + v + (r-1-c)a?)]p
4y = Hay Fy 3y
L (6(r yp(r2a + 2ry + 3(r-1-0)a?) r,. - 3(r ) (r-1-c)alut
Y _ 2y y
1 2 1.° 200 -3 |
- = 3% M, L1+ 6(r Da+ 4({r )y + 3(r )(r-1-c)a?} T,
n . 41
i=1
where
: L = —— v R, 2
Bog = ner B (4 - Y )%,
i=]
- n
cm——D 3 (% % )3
3¢ ® @-1y(n-2) ., i. ..
i=1
b= (2 2 (T - % )% - 3(2n - (a2 (a? - 3n s+ 3L
SRS UL S n oo D)t - Sne 3
and
1 r N
= - 4
M, T (v, - )

r(r-1)(r? - 3r + 3) j=1
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Pearson Distributions

Karl Pearson introduced a class of distributions whose density

functions, f{+) , are characterized by the solution of the differential

equation,

d In £(x) _ X + a

dx 2
bO + blx + bzx

where the parameters, a , bo s bl and b2 , are known functions of the
first four moments of the random variable involved. The particular
solution of the differential equation depends on the nature of the roots
of trhe quadratic equation, b0 + blx + b2x2 = 0 . This depends on the

value of the parameter, « , called "the criterion," which is defined by
— B2
K bl/(hbobz)
Given the expression for the parameters of the quadratic equation,

in terms of the first four moments (see Elderton and Johnson 1969, p.39)

the criterion is

By (B, + 3)?
T 428, - 38 - 6) (4B, - 3B

x

= 02 /3 - 2
where B, = p3/p5 and B, = u,/u3



