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Heterogeneous preferences for water quality attributes: 
A discrete choice experiment of Lake Erie recreational anglers 

 

Abstract 

In 2011, Lake Erie experienced a record-setting harmful algal bloom (HAB), posing 

significant risks to ecosystem services, including its $1.5 billion sport fishing industry. 

Using a mail survey of 3,000 Ohio recreational anglers and a choice experiment, this 

article provides the first empirical evidence in the US to link HABs to damages to Great 

Lakes recreational anglers. We account for the heterogeneity in anglers’ preferences 

using various discrete choice models, including random parameters logit, latent class 

model, scaled logit, and generalized multinomial logit models. The results suggest that 

some anglers have stronger preferences for reducing the impacts of HABs on water 

quality, and it is likely important to account for these differences when measuring welfare 

effects. Across the range of individuals in our sample, anglers are willing to pay $8–$11 

more per trip for one less mile of boating through HABs enroute to a fishing site, and $6–

$73 per trip more for one less hour to catch a walleye. 

Keywords: Lake Erie, choice experiment, harmful algal bloom, recreational angler, non-

market valuation, water quality 

Acknowledgements: The authors gratefully acknowledge the support from Lake Erie 

Commission and the NOAA/Ohio Sea Grant Program.  



3 
 

Excessive nutrient runoff from agricultural production contributes to an increasing 

incidence of freshwater eutrophication and coastal hypoxia in the United States and 

worldwide (Diaz and Rosenberg 2008), posing great risks to the sustainability of many 

freshwater and marine ecosystems, including the Great Lakes region, the Gulf of Mexico, 

the Baltic Sea in Europe, and Lake Taihu in China. In 2011, the western basin of Lake 

Erie experienced a harmful algal bloom (HAB) of unprecedented size and severity 

(Michalak et al. 2013), which severely compromised multiple ecosystem services 

provided by the lake, including recreation opportunities, public health, and safe drinking 

water. In particular, dubbed as the Walleye Capital of the World, Lake Erie is the home 

to a $1.5 billion sport fishing industry for over 2 million anglers, and what is considered 

world class walleye and small bass fisheries (Lucente et al. 2012). Scientific studies have 

shown that HABs could lead to fish kills and pose a threat to the fishery industry by 

depleting dissolved oxygen and creating hypoxic dead zones through excessive algal 

growth (Diaz and Rosenberg 2008; Rucinski et al. 2010). However, as far as we know, 

there is a lack of empirical evidence that links HABs to the economic damages to the 

recreational fishery industry in the United States.  

A large body of previous literature has been devoted to the economic valuation of 

benefits resulting from water quality improvements, including both revealed preference 

and stated preference methods (Egan et al. 2009; Fenichel, Abbott, and Huang 2013; 

Hynes, Tinch, and Hanley 2013; Kosenius 2010: Phaneuf and Smith 2005; Van Houtven 

et al. 2014; Viscusi, Huber, and Bell 2008; Whitehead et al. 2010). In particular, there is a 

rich literature of non-market valuation studies to estimate individuals’ willingness to pay 
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for fishing trips and for changes in fishing site characteristics in the Great Lakes region 

(Bogue 2001; Lupi, Hoehn, and Christie 2003; Melstrom and Lupi 2013; Provencher and 

Bishop 1997) as well as for Lake Erie in particular (Hushak, Winslow, and Dutta 1988; 

Kelch et al. 2006). One limitation of these previous studies is that they do not explicitly 

link the recent occurrences of HABs with changes in water quality characteristics in Lake 

Erie fishing sites. One recent unpublished report indicates that the number of fishing trips 

to Lake Erie has declined in recent years due to rising algal toxin levels (Weicksel and 

Lupi 2013); however, this relies on yearly aggregate summary statistics and is descriptive 

in nature. Recently, Palm-Forster et al. (2016) estimated the welfare losses from 

simulated HAB-induced Lake Erie beach closures using benefit transfer. 

In addition, most studies focusing on the Great Lakes used revealed preference 

techniques, such as the travel cost model. Fewer stated preference methods have been 

employed for valuing water quality changes in the Great Lakes, although they are widely 

used elsewhere. Choice experiments, for instance, are becoming increasingly popular in 

various fields of economics, including marketing research (Keane and Wasi 2013), health 

economics (Hole 2008), and non-market valuation of environmental changes (Kosenius 

2010). One advantage of choice experiments over the contingent valuation method is that 

choice experiments can be used to identify marginal rates of substitution between 

different characteristics of an environmental change. This is especially important for 

valuing environmental goods and services that often possess complex, diverse 

dimensions and values (Phaneuf 2013). The study that is closest to ours in spirit is that by 

Kosenius (2010), who uses a choice experiment to examine willingness to pay of the 
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Finnish public for nutrient-reductions in the Gulf of Finland. Our study differs with 

Kosenius (2010) in that we focus on the US, and specifically Lake Erie, and by focusing 

on anglers, a population particularly exposed to HAB impacts.  

The objective of this article is to assess Lake Erie recreational anglers’ 

willingness to pay for water quality improvements and, for the first time in the US, 

quantify the economic impacts of HABs on Lake Erie’s sport fishing industry. We 

hypothesize that Lake Erie recreational anglers have a considerable willingness to pay for 

a reduction of HABs in Lake Erie due to agricultural nutrient runoff abatement. Because 

HABs are a relatively recent phenomena and their impacts vary across space and time, 

both within years and across years, we hypothesize that there is substantial heterogeneity 

across individual preferences. This variation can introduce significant uncertainty in the 

anglers’ fishing experience. Previous studies have shown that recreational anglers differ 

in preferred species, preferred fishing site characteristics, as well as the non-catch 

components of the fishing experience (see for example, Bergstrom and Cordell 1991; 

Rosenberger and Loomis 2001; Melstrom and Lupi 2013). We posit that more frequent 

and intense HABs, which occurred in both the western and central basins in recent years, 

added another dimension of complexity and uncertainty for the fishing experience, and 

that angler responses are likely to be heterogeneous. We investigate these anglers’ 

heterogeneous preferences through a mail survey of 3,000 Ohio recreational anglers in 

2014. In order to assess preferences, we employ a choice experiment with varying water 

quality characteristics at Lake Erie fishing sites. Specifically, respondents were asked to 

choose their favorite hypothetical fishing site, as characterized by walleye catch rates, 
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miles of HAB to boat through en route to the fishing site, water clarity, time in boat 

getting to the fishing site, and distance from house to the boat ramp.  

Using multiple discrete choice models, we estimate the anglers' demand for 

improvements in water clarity, increases in catch rates for walleye, and reduction in the 

size and intensity of HABs. The models we estimate are a conditional logit model (CL), a 

random parameters logit model (RPL), a latent class model (LCM), a scaled multinomial 

logit (SNL), as well as a generalized multinomial logit (G-MNL) model that combines 

the features of RPL and SNL. One common problem of the traditional CL model is that it 

has restrictive substitution patterns due to the Irrelevance of Independent Alternative 

(IIA) assumption. RPL, LCM, SNL, and G-MNL are used to uncover the heterogeneous 

preferences among Ohio recreational anglers for water quality improvements. We assume 

this heterogeneity is derived from spatial and temporal variability in the presence and 

intensity of HABs, and their impact on two important components of fishing trips—the 

fish-catching itself, and the pleasure of the trip en route to and at the specific fishing site. 

In Lake Erie, many fishing trips involve relatively long runs across water to arrive at the 

actual fishing location, and these trips may be heavily affected by HABs, even if the 

fishing itself is not (and vice-versa). The models we estimated differ in how they 

introduce the heterogeneity: RPL and LCM accounts for unobserved taste heterogeneity 

by allowing for continuous or discrete random coefficients for observed variables, SNL 

allows for scale heterogeneity, which captures the randomness of the decision-making 

process via a general scaling up or down of the entire vector of attribute weights (Keane 
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and Wasi 2013), while G-MNL incorporates both scale heterogeneity and a random 

coefficient vector (Fiebig et al. 2010).  

We find substantial willingness to pay for water quality improvements in Lake 

Erie: individual anglers are willing to pay $8–$11 per trip for one less mile of HAB 

needed to boat through before reaching the desired fishing site, and they are willing to 

pay $6–$73 per trip for one less hour needed to catch one more walleye. Our results also 

reveal that although average willingness to pay for various attributes across the models 

does not vary greatly, there is a wide range of values for water quality improvements 

among the respondents. For instance, the latent class model shows the willingness to pay 

for water clarity improvements from somewhat or very murky to very clear ranges from 

$47 for 30% of anglers to more than $120 for another 20% of anglers. These differences 

are important to capture explicitly in the estimation, particularly for welfare analysis of 

policies that target improvements in multiple water quality outcomes. In particular, we 

examine the welfare effects across three different size nutrient reduction policies. We 

find that due to the presence of these subsets of high-valuation anglers, approaches that 

do not account for heterogeneity may over-estimate the benefits. In addition, small 

changes in nutrient runoff would only induce minor water quality improvements, which 

may not provide significant benefits even for high-valuation anglers. 

This article makes at least two contributions to the literature of non-market 

valuation of ecosystem services. First, to our knowledge, we provide the first empirical 

evidence that links HABs and excessive agricultural pollution in the Lake Erie watershed to 

significant losses in ecosystem services as shown by economic damages to a multi-billion 
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dollar recreational fishing industry. Second, using a choice experiment and various new 

discrete choice models including LCM and G-MNL-II, we demonstrate the importance of 

accounting for individual anglers’ heterogeneous preferences for water quality 

improvements. We find that the substantial variations in the spatial and temporal intensity 

of HABs in Lake Erie created additional complexity and uncertainty in the fishing trips, 

and led to heterogeneous behavioral responses of anglers and their willingness to pay for 

water quality characteristics, especially improvements in water clarity. 

The remainder of the article is organized as follows: we first describe the 

estimation methodology, followed by the description of the data and survey design. We 

then present the results of the discrete choice models, which include the estimation of the 

welfare measures associated with various nutrient management policies. Finally, we 

discuss some of the implications of the models and conclude.  

Methodology 

The Random Utility Model (RUM) has become the standard statistical economic 

framework in models of recreational demand (McFadden 1974). In a choice experiment 

setting, respondents are asked to choose among alternative recreational destinations or 

policy options that are characterized by various attributes. The RUM posits that an 

individual chooses the alternative that yields the highest expected utility among a number 

of alternatives on any given choice occasion. Assume that recreational angler 𝑖𝑖 has 𝐽𝐽 

possible multiattribute fishing sites from which to choose in the choice experiment 

setting, the utility 𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖 that angler 𝑖𝑖 derives from alternative 𝑗𝑗 in choice situation 𝑡𝑡 is 

given by 
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(1)         𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖 =  𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖 +  𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖, 

where 𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖 is the observable indirect utility from visiting fishing site 𝑗𝑗, and 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖 is the error 

term which captures the unobserved, stochastic element of the utility. The conditional 

logit model (CL) has been the most widely used discrete choice model in recreation 

demand studies. With a CL model, utility can be represented by  

(2)           𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖 =  𝛽𝛽′Xijt +  𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖. 

Here, Xijt is a vector of perceived site attributes including travel cost, and β is the 

corresponding coefficients for these attributes, while the error term 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖 is independently 

and identically drawn from a type-I extreme value distribution.  

 

As shown in equation (2), CL assumes the equality of the utility functions across 

the respondents, and thus results in homogenous taste parameter estimates. However, 

previous studies have shown heterogeneity is a defining feature of nonmarket valuation 

(Phaneuf 2013), due to both multiple observed and unobserved factors driving recreation 

demand and heterogeneous individual characteristics and preferences. In addition, the 

estimation of only average preferences, as in CL—or misspecification of the taste 

distribution more generally—may lead to biased welfare analysis and wrong 

representation of the value of recreation sites with particular attributes that appeal to a 

subset of the population (Fiebig et al. 2010).  
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In recent years, discrete choice modelers have accounted for the unobserved 

heterogeneity in tastes and preferences with several additional approaches. Currently, the 

two most popular approaches in empirical applications are random parameters logit 

(RPL) model and latent class model (LCM). Both of these models allow for individual 

preference variations, thereby relaxing the IIA property. These approaches, however, 

have differing distributional assumptions. RPL allows for individual-specific, random 

coefficients on observed attributes and assumes a continuous distribution for individuals’ 

preferences: 

(3)          𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖 =  𝛽𝛽𝑖𝑖
′Xijt +  𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖 = (𝛽𝛽 + 𝜂𝜂𝑖𝑖)′Xijt +  𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖.  

As shown in equation (3), β is the vector of mean attribute utility weights in the 

population, while 𝜂𝜂𝑖𝑖 is the angler 𝑖𝑖’s specific deviation from the mean. Theoretically, the 

mixing distribution for 𝛽𝛽𝑖𝑖 in the RPL model can be anything, but it is commonly 

specified as multivariate normal. LCM, on the other hand, models the parameter 

heterogeneity across individuals with a discrete distribution which is a function of 

individual characteristics. The respondents are grouped into a few (K as in equation (4)) 

“discrete” segments or classes which remain latent for the researcher. Within each class 

k, the preference are homogenous (Greene and Hensher 2003): 

(4)          𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖 =  𝛽𝛽𝑘𝑘
′𝐗𝐗𝐢𝐢𝐢𝐢𝐢𝐢 + 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖         𝑖𝑖𝑖𝑖𝑖𝑖,    𝑘𝑘 = 1, 2. .𝐾𝐾 

 

Most recently, several researchers such as Louviere, Hensher, and Swait (2000) 

argue that the taste heterogeneity in most choice contexts can be better described as 
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“scale” heterogeneity—meaning that for some anglers, the scale of the idiosyncratic error 

term is greater than for others. To better understand what scale heterogeneity means, let’s 

rewrite the simple CL model in equation (1) with the scale of the error term, 𝜎𝜎, made 

explicit instead of being normalized to one: 

 (2a)         𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖 =  𝛽𝛽′Xijt + 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖 𝜎𝜎⁄ . 

The scale heterogeneity logit (S-MNL) model assumes that 𝜎𝜎 is heterogeneous in the 

population and hence denotes the value for angler 𝑖𝑖 by the scalar random variable 𝜎𝜎𝑖𝑖, we 

thus obtain: 

(5a)         𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖 =  𝛽𝛽′Xijt + 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖 𝜎𝜎𝑖𝑖⁄ .  

In (5a), all heterogeneity is in the variance of the error term while the β vector is 

homogenous. However, heterogeneity in scale is observationally equivalent to a certain 

type of heterogeneity in utility weights (Keane and Wasi 2013). Multiply (5a) by the 

random scale variable 𝜎𝜎𝑖𝑖 we obtain equation (5b), which can be interpreted as a RPL 

model with 𝛽𝛽𝑖𝑖 = 𝜎𝜎𝑖𝑖 ∗ 𝛽𝛽. As a result, heterogeneity in S-MNL takes the form of the vector 

of utility weights and 𝛽𝛽 is scaled up or down proportionally across the respondents by the 

scaling factor 𝜎𝜎𝑖𝑖. 

(5b)         𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖 =  𝛽𝛽𝑖𝑖
′Xijt +  𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖 = (𝜎𝜎𝑖𝑖 ∗ 𝛽𝛽)′Xijt + 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖 

 

While the S-MNL provides an alternative way of introducing taste heterogeneity 

compared to RPL with normal mixing or LCM, the scaling factor 𝜎𝜎𝑖𝑖 in S-MNL has to be 

positive for all individuals and is commonly assumed to follow an exponential 

distribution. As a result, the vector of random coefficients 𝛽𝛽𝑖𝑖 for all respondents must 
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have the same sign, which is not imposed in the RPL model. Depending on whether the 

coefficient for the price is adjusted by the scaling factor or not, S-MNL could have S-

MNL with and without price or travel cost scaled. More recently, efforts have been made 

to develop a model that nest S-MNL and RPL with normal mixing. Specifically, (Fiebig 

et al. 2010) developed a model called the generalized multinomial logit (G-MNL) model, 

which models the heterogeneity distribution as a continuous mixture of scaled normal. 

The normal mixing RPL and S-MNL are both special cases of G-MNL model (Keane and 

Wasi 2013). The general form of G-MNL model is given by 

(6)         𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖 =  𝛽𝛽𝑖𝑖
′Xijt +  𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖 =  [𝜎𝜎𝑖𝑖𝛽𝛽 + 𝛾𝛾𝜂𝜂𝑖𝑖 + (1 − 𝛾𝛾)𝜎𝜎𝑖𝑖𝜂𝜂𝑖𝑖]′Xijt +  𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖, 

where the parameter 𝛾𝛾 determines how the standard deviation of the random coefficients 

is scaled: in particular, when 𝛾𝛾 = 0, we obtain a model called G-MNL-II in which the 

standard deviations of the random coefficients 𝜂𝜂𝑖𝑖 are scaled proportionally to their mean 

attribute weights. In this article, we employ this specific model, G-MNL-II, which starts 

with normal mixing RPL and multiplies through 𝜎𝜎𝑖𝑖: 

(7)         𝑈𝑈𝑖𝑖𝑖𝑖𝑖𝑖 =  𝛽𝛽𝑖𝑖
′Xijt +  𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖 =  [𝜎𝜎𝑖𝑖(𝛽𝛽 + 𝜂𝜂𝑖𝑖)]′Xijt +  𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖. 

 

In the choice experiment setting, each individual 𝑖𝑖 makes a sequence of T choices. 

The unconditional probability of an angler 𝑖𝑖 choosing site j in the sequence of choice 

scenarios can be represented by   

(8)         𝑃𝑃𝑖𝑖𝑖𝑖 =  ∫∏ 𝐿𝐿𝑡𝑡(𝑗𝑗|𝛽𝛽𝑖𝑖)𝑓𝑓(𝑏𝑏,Ω)𝑑𝑑𝛽𝛽𝑖𝑖𝑇𝑇
𝑡𝑡=1  

= ∫∏ e𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖  
∑ e𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖𝐽𝐽
𝑗𝑗=1

𝑓𝑓(𝑏𝑏,Ω)𝑑𝑑𝛽𝛽𝑖𝑖𝑇𝑇
𝑡𝑡=1  = ∫∏ e𝛽𝛽𝑖𝑖

′Xijt  

∑ e𝛽𝛽𝑖𝑖
′Xijt𝐽𝐽

𝑗𝑗=1

𝑓𝑓(𝑏𝑏,Ω)𝑑𝑑𝛽𝛽𝑖𝑖𝑇𝑇
𝑡𝑡=1 . 
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In this formulation, 𝐿𝐿𝑡𝑡(𝑗𝑗|𝛽𝛽𝑖𝑖) is the familiar logit probability that captures the conditional 

probability of choosing site j in choice scenario t, and 𝑓𝑓(𝛽𝛽,Ω) is the density distribution 

with mean 𝑏𝑏 and variance-covariance matrix parameters Ω to be estimated from the data. 

𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖 denotes the observed utility of choosing site j in choice scenario t, and the last 

equality follows from the standard assumption of the utility being linear in attributes. The 

density 𝑓𝑓(𝛽𝛽,Ω) can be specified to be discrete as in LCM or continuous in 𝛽𝛽 as in any 

other aforementioned models.  

For CL, RPL, S-MNL and G-MNL, the welfare changes for individual 𝑖𝑖 from an 

attribute change from X𝑖𝑖0 to X𝑖𝑖1 and conditional on individual taste 𝛽𝛽𝑖𝑖, measured by 

compensating variation, follows the standard utility difference expression (Hynes, Tinch, 

and Hanley 2013): 

(9)         𝐶𝐶𝐶𝐶𝑖𝑖 =  − 1
𝛽𝛽𝚤𝚤𝚤𝚤�

 �ln�∑𝑒𝑒𝑉𝑉𝑖𝑖
1
� −  ln �∑ 𝑒𝑒𝑉𝑉𝑖𝑖

0
�� = − 1

𝛽𝛽𝚤𝚤𝚤𝚤�
 [ln �∑ 𝑒𝑒𝛽𝛽𝚤𝚤�

′
𝑋𝑋𝑖𝑖
1
� −

 ln �∑𝑒𝑒𝛽𝛽𝚤𝚤�
′
𝑋𝑋𝑖𝑖
0
�], 

where 𝛽𝛽𝚤𝚤𝚤𝚤�  is the parameter estimate of travel cost, 𝛽𝛽𝚤𝚤�  is the vector of estimated random 

parameters for angler 𝑖𝑖, while 𝑉𝑉𝑖𝑖1 and 𝑉𝑉𝑖𝑖0 are the utility evaluated in the policy case and in 

the business-as-usual case. The parameter vector 𝛽𝛽𝚤𝚤�  is uniform across individuals for the 

CL model, and varies across individuals for RPL, S-MNL, and G-MNL-II models and 

should be calculated following equations (3), (5b), and (7) respectively. For example, 

𝛽𝛽𝚤𝚤� =  𝜎𝜎𝚤𝚤� ∗ 𝛽̂𝛽 for S-MNL. For RPL, S-MNL and G-MNL models, the compensating 

variation measures have to be approximated by simulation from draws of the estimated 

distributions for the random parameters (see Train 2009 for simulation methods). For 
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LCM with K classes, the welfare measures have to be weighted by the predicted class 

membership probabilities: 

(10)         𝐶𝐶𝐶𝐶𝑖𝑖 = ∑ 𝜋𝜋𝚤𝚤𝚤𝚤�𝐾𝐾
𝑘𝑘=1 �− 1

𝛽𝛽𝚤𝚤𝚤𝚤�
 �ln�∑ 𝑒𝑒𝑉𝑉𝑖𝑖

1
� −  ln �∑𝑒𝑒𝑉𝑉𝑖𝑖

0
��� 

= ∑ 𝜋𝜋𝚤𝚤𝚤𝚤�𝐾𝐾
𝑘𝑘=1 {− 1

𝛽𝛽𝚤𝚤𝚤𝚤�
 �ln �∑ 𝑒𝑒𝛽𝛽𝚤𝚤�

′
𝑋𝑋𝑖𝑖
1
� −  ln �∑𝑒𝑒𝛽𝛽𝚤𝚤�

′
𝑋𝑋𝑖𝑖
0
��}, 

where 𝜋𝜋𝚤𝚤𝚤𝚤�  is the estimated posterior probability the angler 𝑖𝑖 of being assigned to class 𝑘𝑘 

(Boxall and Adamowicz 2002). In this article, RPL and LCM are estimated using 

mixlogit (Hole 2007) and lclogit packages (Pacifico and Yoo 2012) in Stata 13, 

respectively, while S-MNL and G-MNL are estimated using gmnl package (Gu et al. 

2013) in Stata 13. 

Data and Survey Design 

Following Dillman’s Tailored Survey Design framework (Dillman, Smyth, and Christian 

2009), we conducted a general mail survey on Ohio anglers’ 2013 sport-fishing daytrips 

in spring 2014. Questionnaires were mailed to a sample of recent Ohio fishing license 

holders from 2011–2013 drawn from the Fishing License & Permit Sales database of the 

Ohio Department of Natural Resources (ODNR). The sample was screened to include 

only anglers that were 18 years of age or older, and those who purchased fishing licenses 

in the previous three years. We employed a stratified random sampling method, in which 

we oversample anglers from counties close to Lake Erie.  

Specifically, 2,500 anglers were drawn from counties alongside or close to the 

western or central basin of Lake Erie,i while another 500 anglers were chosen from all 

other counties in Ohio. The number of sampled anglers from each county is proportional 
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to the share of anglers from this county in the fishing license database. After pilot-testing 

the survey design with 16 separately randomly selected anglers, we mailed two rounds of 

survey packets to these 3,000 sampled anglers in mid-January, 2014 and early-March, 

2014. A final reminder card was sent out late-March, 2014. We broke the sample into 

three subsamples and employed three different modes of incentives for each subsample: 

for the first 1,000 anglers, a $1 bill was included in the first round of mailings. For the 

other 2,000 anglers, a name card is included in the survey packet and each respondent 

could choose to fill the card out to enter a lottery to win Home Depot gift cards.ii Figure 1 

shows a map of the western Lake Erie basin, including the Maumee River watershed, 

which is the largest in the Great Lakes Region and contributes, by far, the largest volume 

of sediment and nutrient loadings into Lake Erie (Reutter et al. 2011). 

We received 766 total responses, out of which 753 provided useable information 

for our general summary, leading to a 25% response rate. Of these 753, 566 individuals 

indicated that they fished in Lake Erie in 2013, and over 80% of the respondents were 

from counties near the lake. The bulk of trips came from individuals living along or near 

the lake, and most trips occurred in summer and fall, with fewer trips in spring. Table 1 

presents the comparison of demographic and socioeconomic characteristics of anglers in 

our sample with the sample of Ohio anglers in 2011 National Survey of Fishing, Hunting 

and Wildlife-Associated Recreation (U.S. Fishing and Wildlife Service and U.S. Census 

Bureau 2011). Compared to the sample in the national survey, our sample is skewed 

toward older anglers with higher household income and higher education, and consists of 

more anglers with a primary residence outside of a Metropolitan Statistical Area. In 
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addition, on average the anglers in our sample have over 33 years of experience and a 

third of them already retired.  

This article mainly relies on data from a section of the survey in which respondents 

were presented six hypothetical choice experiment scenarios to determine individual 

preferences for fishing in Lake Erie. Each scenario had two alternative, “hypothetical” 

walleye fishing sites in the lake. The sites vary in five characteristics, including the 

expected walleye catch rate (1, 2, 4, and 6 hours per fish per person),iii water quality 

indicated by the size of algal bloom through which the angler have to boat through to get to 

the fishing site (0, 4, or 8 miles), water clarity (very murky, somewhat murky, very clear), 

driving distance from angler’s house to their preferred boat ramps (15, 30, 45 minutes) and 

the boating time from the ramp to the fishing site (20, 40, 60 miles). In each scenario, the 

angler was asked to choose the walleye fishing trip that she would most prefer, with an 

option to choose neither of these two particular sites. We followed the D-efficient survey 

design principles (Ferrini and Scarpa 2007), and constructed 6 blocks, 72 sets of choice 

scenarios following the SAS Macros developed by Kuhfeld (2005). These choice scenarios 

were then randomly allocated to each angler. Figure 2 presents an example of the choice 

experiment scenario. We chose to represent the size of algal bloom as the distance of an 

algal bloom that the angler would need to boat through (from the shoreline) to get to the 

fishing site because, according to our pilot survey with 15 anglers, it was easier for anglers 

to understand and relate to their fishing experience compared to other measures like the 

probability of the algal blooms in Lake Erie.  
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In the choice experiment models, we calculated the travel cost of driving from 

home to the nearest boat ramp, assuming the gasoline costs for driving on land are $0.52 

per mile. We also assume the opportunity cost of time is 30% of the wage rate (Cesario 

1976), and the wage rates are calculated from the annual income by dividing by 2,000 

hours worked per year.   

Results 

Table 2 presents the regression results of four different discrete choice models, including 

CL, RPL, S-MNL with price scaled by the scaling factor and G-MNL-II; while table 3 

reports the results from a 4-class LCM. We also present additional robustness checks in 

the Appendix, including CL with interactions, S-MNL with price unscaled, as well as two 

alternative RPL models with lognormal distributions for certain water quality variables. 

The optimal number of classes in the LCM is selected based on the lowest Adjusted 

Bayesian Information Criterion (ABIC), and the results for the LCM class number 

selection are available from authors upon request. In addition to the estimated regression 

coefficients and standard deviations, we also report two measures in order to compare 

and evaluate the model performance. The log-likelihood measures the goodness-of-fit 

while the out-of-sample prediction accuracy measures the percentage of accurate 

prediction for the remaining 25% sample when the other 75% sample randomly selected 

are used in the estimation. Unsurprisingly, the log-likelihood increases when the 

preference heterogeneity across anglers is accounted for using individual-specific mean 

utility weights as in RPL. However, a greater gain in goodness-of-fit is achieved when 

the scale heterogeneity across individuals is also taken into account, yielding the G-
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MNL-II, which in a way combines RPL and S-MNL, as the best model in terms of 

goodness-of-fit in table 2. The LCM performs even better than G-MNL-II in terms of 

goodness-of-fit. The story based on out-of-sample prediction accuracy is similar: the two 

models that have the highest out-of-sample prediction accuracy are G-MNL-II and LCM, 

suggesting that based on these two measures, G-MNL-II and LCM are the "best" 

performing models with our data.  

There are several things worth noting regarding the signs and magnitudes of the 

estimated coefficients and standard deviations. First, the mean estimated coefficients for 

the travel cost and water quality attributes have the expected signs across all discrete 

choice models shown in table 2. On average, Ohio anglers dislike fishing sites that are 

too far away or more costly, and they prefer clearer water, higher walleye catch rates, and 

a smaller HAB size to boat through. Secondly, there is substantial heterogeneity across 

the estimated coefficients for all four water quality attributes, as shown by the significant 

coefficients for the standard deviation in RPL and G-MNL-II as well as the significant 

scale parameter in S-MNL and G-MNL-II. Finally, table 3 reveals that discrete 

classifications across Ohio recreational anglers using LCM could be informative: anglers 

in class 1 care less about water clarity, while class 3 anglers have a relatively lower 

valuation for the improvements in walleye catch rates; class 2 and class 4 anglers both 

have balanced valuation towards water quality attributes, however, class 2 anglers have 

much higher valuation for improvements in walleye catch rates while class 4 anglers 

value water clarity more.  
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To better interpret the regression coefficients, we translate the regression 

coefficients into the marginal willingness to pay (MWTP) shown in table 4 calculated 

using the ratio of estimated regression coefficient for one water quality attribute over the 

estimated coefficient for the travel cost. On average across the models, Ohio anglers are 

willing to pay $36.77–$53.96 for one less hour needed to catch one walleye, and $9.02–

$9.63 for one less mile of an algal bloom to boat through. In addition to the mean 

MWTP, we also present the lower and higher bound of the 95th confidence interval of the 

MWTP to illustrate the large heterogeneity in MWTP across individuals. Consider the 

estimates for HAB size reduction: according to the RPL model, Ohio anglers are willing 

to pay $9.63 for a one-mile reduction in HAB size, but the distribution of this MWTP 

spans from $7.30 to $11.96. Similarly the range implied by the G-MNL-II model for 

HAB size reduction is $7.34 to $11.15.  

While there is not a large range across the mean WTP for size of HABs through 

which one must boat, there is considerable heterogeneity within each model (Figure 3). 

This wide distribution in willingness to pay suggests that there is potentially substantial 

heterogeneity amongst anglers with respect to HAB values. The LCM distribution has 

multiple spikes, as expected, given the discrete nature of the mixing distribution, and it 

provides insight into which types of individuals are more heavily affected by HABs. 

Individuals in class 4 have the largest welfare losses, and tend to be older, likely retired, 

and male. Given this demographic, they potentially have more experience fishing, and 

thus the change in environment as a result of increasing HABs causes them more harm. 

The S-MNL has a positive skew, potentially accounting for the positive value most 
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anglers will place on reducing HABs, and the longer tail accounts for the relatively 

smaller group of anglers who have extremely high values for HAB size reduction. This is 

consistent with the finding using LCM. Figure 3 also shows that due to the presence of 

these high-valuation anglers, approaches that do not account for heterogeneity tend to 

over-estimate the average willingness to pay.  

To evaluate the implications of nutrient management policies on water quality 

outcomes and the value anglers place on improving water quality, we develop estimates 

of welfare benefits for three policy scenarios based on potential reductions in dissolved 

phosphorus loadings from the Maumee River watershed (table 5). The three scenarios 

consider 10%, 20%, and 40% reductions in dissolved reactive phosphorus loads. The 

large 40% reduction is based on the recommendation of Ohio's Lake Erie Phosphorus 

Task Force (Ohio Lake Erie Phosphorus Task Force 2013). For each policy scenario, we 

evaluate the impact on HAB size, water clarity, and walleye fishing population using a 

three-dimensional coupled Lake Erie hydrodynamic lower food-web model (Fraker et al. 

2015). The following water quality attributes capture the current baseline condition of 

Lake Erie: it takes roughly 2.2 hours on average to catch one walleye and 6 miles of HAB 

to boat through to reach the desired fishing site, and the water in Lake Erie is somewhat 

murky. The hydrodynamic model and a statistical model that links Maumee nutrient 

loadings and walleye catch rates (Ludsin, DeVanna, and Smith 2014) suggest that there 

would be no improvement in the walleye catch rates in the western and central basins of 

Lake Erie with a reduction in nutrient runoff. In contrast, a reduction in phosphorus 

loadings would reduce HAB size and it would improve water clarity. The models suggest 
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that improvements in water quality are nonlinear, with the 10% and 20% nutrient 

reductions having a small effect in comparison to the 40% reduction.  

Table 6 shows the distribution of compensating variation (CV) across these three 

nutrient management policy scenarios and five discrete choice models following equations 

(9) and (10). Intuitively, anglers’ willingness to pay for the nutrient management policies 

increase with the magnitude of nutrient reduction, and anglers expressed the greatest gains 

in CV for a change from 20% nutrient reduction to 40% nutrient reduction. Specifically, 

Ohio anglers are willing to pay an average of $11–$17 for a 20% reduction in DRP 

loadings from Maumee, and more than double that amount, $29–$48 on average for a 40% 

DRP loading reduction. This consistent with the nonlinearity of the production of 

ecosystem services that a larger reduction in nutrient runoff is needed to generate sizeable 

ecosystem services. There is significant heterogeneity in willingness to pay across 

individuals in the sample, as expected. It is also worth noting that models that explicitly 

incorporate heterogeneity in angler preferences in the most flexible fashion, LCM and G-

MNL-II, yield a lower average welfare measure, at least for small changes in nutrients. In 

contrast, CL and RPL does not fully account for the subset of anglers who have extremely 

high valuation for water quality attributes. To accommodate the presence of these high-

valuation subgroups, the CL and RPL normal mixing distribution seem to shift upwards to 

account for the extremely high coefficients for these anglers and thus often results in a 

higher mean MWTP. 
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Conclusion 

The Great Lakes ecosystem is heavily affected by elevated P loadings from agriculture 

that have degraded water quality and increased the incidence and intensity of HABs. In 

particular, many of the valuable ecosystem services provided by Lake Erie are 

significantly affected, including its $1.5 billion sport fishing industry. Using a mail 

survey of 767 Ohio recreational angler respondents and a discrete choice experiment, we 

provide the first empirical evidence in the US to link HABs to damages to Great Lakes 

recreational anglers. Specifically, we use a discrete choice experiment with varying water 

quality characteristics at two Lake Erie fishing sites, including walleye catch rates, miles 

of HABs to boat through en route to the fishing site, water clarity, and boating distance 

and travel cost from home to nearest boat ramp. In addition to the standard CL model, 

which has restrictive substitution patterns due to the IIA assumption, we estimate four 

other discrete choice models to uncover the heterogeneous preferences among Ohio 

recreational anglers for water quality improvements: RPL and LCM account for 

unobserved taste heterogeneity by allowing for the continuous or discrete random 

coefficients for observed characteristics, while S-MNL and G-MNL-II accounts for the 

randomness of the decision-making using a scale heterogeneity parameter.  

We find significant economic benefits for Ohio recreational anglers associated 

with water quality improvements in Lake Erie, and this substantial valuation varies 

greatly among individual anglers, suggesting that it is critical to account for 

heterogeneous preferences among Ohio anglers. Specifically, Ohio anglers are on average 

willing to pay as much as $9–$10 for one less mile of HAB to boat through before 
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reaching the desired fishing site. We estimated the compensating variation for four 

different nutrient management policies that would reduce the agricultural phosphorus 

loadings from Maumee River watershed, the biggest tributary in the western Lake Erie 

basin and the largest source of nutrient impairment. On average, Ohio recreational 

anglers are willing to pay as much as $29–$48 for a policy that would cut the dissolved 

reactive phosphorus loadings from Maumee by 40%, which would lead to a $2.9–$4.8 

million welfare loss, assuming 10% of trips are affected for the over 1 million Ohio 

recreational anglers.  

This article provides the first empirical evidence that links HABs and excessive 

agricultural pollution in the Lake Erie watershed to significant losses in ecosystem 

services as shown by economic damages to a multi-billion recreational fishing industry. 

We also demonstrate the importance of accounting for individual anglers’ heterogeneous 

preferences for water quality improvements, which is especially important when recent 

occurrences of HABs at varying spatial and temporal scale pose significant uncertainty in 

the fishing experience. By focusing on a random sample of Ohio recreational anglers, we 

underestimate the economic damages to the entire Lake Erie recreational fishery due to 

the omission of anglers from Michigan, New York, Indiana, and Canada.   
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Tables 

Table 1. Comparison of Angler Characteristics of our Sample and National Sample 

    Our sample   
National 
sample 

Variable Value # responses  percentage percentage 

Age 

18-24 years 12 1.6%  16.1% 
25-34 years 54 7.0%  17.6% 
35-44 years 75 9.8%  13.3% 
45-54 years 165 21.5%  31.1% 
55-64 years 196 25.6%  7.1% 
65-74 years 265 34.6%  14.7%       

Education 

11 years or less 26 3.5%  11.5% 
12 years 168 22.4%  51.8% 
1 -3 years of 
college 278 37.0%  16.6% 
4 years or more 
of college 279 37.2%  20.1%       

Annual 
household 
income 

less than 20k 59 8.8%  28.0% 
20-30k 46 6.9%  11.8% 
30-40k 85 12.7%  14.2% 
40-50k 30 4.5%  6.0% 
50-75k 163 24.3%  18.1% 
75-100k 116 17.3%  8.0% 
100-150k 171 25.5%  13.9%       

Population size 
of residence 

1 million or 
more 285 37.2%  30.2% 
250k - 1 million 75 9.8%  32.5% 
50k to 250k    25.5% 
Outside MSA 407 53.1%  11.8%       

Sex Male 672 89.0%  80.1% 
Female 83 11.0%   19.9% 
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Table 2. Model Results from CL, RPL, S-MNL and G-MNL-II Models 
Variable Explanation CL RPL S-MNL G-MNL-II 
Mean coefficient     
price travel cost from home to 

nearest boat ramp ($) 
-0.0069***  -0.0126***  -0.0163*** -0.0208*** 
(0.0008) (0.0012) (0.0015) (0.0018) 

walleye # hours to catch one walleye -0.3205*** -0.6805*** -0.7353*** -1.0170*** 
(0.0125) (0.0345) (0.0451) (0.0682) 

hab_size miles of algal bloom to boat 
through 

-0.0627*** -0.1214*** -0.1548*** -0.1878*** 
(0.0065) (0.0120) (0.0131) (0.0172) 

clarity_clear dummy for very clear water 0.6557*** 0.9440*** 1.1045*** 1.3571*** 
(0.0521) (0.0888) (0.1107) (0.1499) 

clarity_medium dummy for somewhat murky 
water 

0.4433*** 0.5998*** 0.6105*** 0.8604*** 
(0.0521) (0.0767) (0.0959) (0.1243) 

dist_boat boating distance from boat 
ramp to fishing site (miles) 

-0.0068*** -0.0214*** -0.0230*** -0.0271*** 
 (0.0017) (0.0035) (0.0027) (0.0036) 

neither dummy for choosing 
"neither" 

-1.7484*** -3.9268*** -3.8531*** -4.5751*** 
(0.0953) (0.1735) (0.1302) (0.1845) 

Standard deviation 
    

walleye # hours to catch one walleye 
 0.5633***  0.6688*** 
 (0.0345)  (0.0578) 

hab_size miles of algal bloom to boat 
through 

 0.1734***  0.1670*** 
 (0.0157)  (0.0252) 

clarity_clear dummy for very clear water 
 1.1728***  1.5028*** 
 (0.1197)  (0.1842) 

clarity_medium dummy for somewhat murky 
water 

 -0.5414***  -0.0861*** 
 (0.1745)  (0.1666) 
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Table 2. continued     
dist_boat boating distance from boat 

ramp to fishing site (miles) 
 -0.0615***  0.0252*** 

  (0.0038)  (0.0055) 
      
tau scale parameter   1.1225*** 1.0178*** 
    (0.0527) (0.0560) 
      
Log-likelihood -4502.14 -3784.39 -3718.93 -3627.81 
Out-of-sample prediction accuracy 50.7% 54.0% 53.5% 55.6% 
Number of observations 13806 
Number of respondents 767 
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Table 3. Latent Class Models with Four Classes 
Variable Explanation Class 1 Class 2 Class 3 Class 4 
Utility function     
price travel cost from home to boat ramp ($) -0.0208* -0.0160***  -0.0059*** -0.0144*** 

(0.0109) (0.0025) (0.0015) (0.0026) 

walleye # hours to catch one walleye -0.7091**  -1.1674*** -0.036*** -0.4753***  
(0.3173) (0.1003) (0.0281) (0.0502) 

hab_size miles of algal bloom to boat through -0.2272**  -0.1542***  -0.0455*** -0.1588*** 
(0.0939) (0.0272) (0.0115) (0.0215) 

clarity_clear dummy for very clear water 0.5911  0.7567***  0.5089***  1.7339***  
(0.5472) (0.1706) (0.0973) (0.1987) 

clarity_medium dummy for somewhat murky water -0.2498 0.6027*** 0.4299***  1.0100***  
(0.6211) (0.1661) (0.0892) (0.1820) 

dist_boat boating distance from boat ramp to 
fishing site (miles) 

0.0161 -0.0297***  -0.0007  -0.0145***  
 (0.0231) (0.0031) (0.0031) (0.0054) 

neither dummy for choosing "neither" -0.8202 -7.7773***  -3.0586***  -1.6675***  
(1.2650) (0.6022) (0.2917) (0.3489) 

      
Class membership function     

age age of respondent -0.0292**  -0.0294**  -0.0117   
(0.0131) (0.0131) (0.0137)  

education highest level of education -0.2134  0.2161*  -0.1674   
(0.1489) (0.1259) (0.1265)  

employed working or self-employed -1.4289**  -0.9181  -0.9207   
(0.6309) (0.6082) (0.6163)  

male dummy for male -0.1516  -0.2448 -0.0792  
  (0.4502) (0.3900) (0.3993)  
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Table 3. continued 
household 
income household income -1.02E-06 5.41E-06 -7.82E-07  

(4.28E-06) (3.32E-06) (3.34E-06)  

married dummy for married 0.2047 0.3439 0.5054*  
(0.3453) (0.2960) (0.2929)  

retired dummy for retired -0.6340  -0.8665 -0.4748  
(0.6614) (0.6490) (0.6416)  

constant intercept 2.8177*** 1.6090 1.7539*  
  (1.0110) (0.9970) (1.0362)  
      
Latent class share 0.136 0.306 0.322 0.235 
      
Log-likelihood -3328.36 
Out-of-sample prediction accuracy (%) 54.8% 
Number of observations 13806 
Number of respondents 767 
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Table 4. Heterogeneity in WTP across Various Models 
Marginal 
changes MWTP CL RPL S-MNL G-MNL-II 

 Latent class model 
Mean Class 1 Class 2 Class 3 Class 4 

One more hour to 
catch one 
walleye 

mean -46.79 -53.96 -45.05 -48.84 -36.77 -34.16 -73.04 -6.10 -33.04 
low -60.67 -64.56 -53.36 -58.15 -73.04     
high -37.96 -43.36 -36.73 -41.62 -6.10     

           
one more mile of 
an algal bloom to 
boat through 

mean -9.16 -9.63 -9.48 -9.02 -9.53 -10.95 -9.64 -7.71 -11.04 
low -11.94 -11.96 -11.52 -11.15 -11.04     
high -6.99 -7.30 -7.44 -7.34 -7.71     

           
Water clarity 
changes into very 
clear 

mean 95.72 74.85 67.67 65.17 74.51 28.47a 47.35 86.25 120.53 
low 74.53 56.53 53.55 51.87   28.29     
high 125.31 93.17 81.78 81.01 120.48     

Water clarity 
changes into 
somewhat murky 

mean 64.72 47.56 37.40 41.32 53.16 12.03a 37.71 72.85 70.21 
low 47.02 33.28 25.97 30.76 12.03     

high 88.29 61.84 48.83 54.99 72.85         

One more mile 
from boat ramp 
to fishing site 

mean -0.99 -1.70 -1.41 -1.30 -0.74 0.77a -1.86 -0.12a -1.01 
low -1.55 -2.31 -1.82 -1.76    -1.86     
high -0.45 -1.09 -1.00 -0.93  0.77     

Note: MWTP is marginal willingness to pay. Low and high are the lower and higher bound of the 95th confidence interval. 
adenotes the WTP that is not statistically significant.
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Table 5. Impacts of  Different Nutrient Management Policies on Water Quality 
Variables 

Policy scenario Variable values 
Number Description walleye hab_size clarity_clear clarity_medium 
 baseline 2.2 3 0 1 

1 
10% reduction 
in Maumee DRP 
loading 

2.2 3 0.2 0.8 

2 
20% reduction 
in Maumee DRP 
loading 

2.2 2.5 0.3 0.7 

3 
40% reduction 
in Maumee DRP 
loading 

2.2 1 0.7 0.3 

Note: DRP denotes dissolved reactive phosphorus. 
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Table 6. Distribution of Welfare Effects across Nutrient Management Scenarios and Models  
Policy 

CV CL RPL 
RPL-

LogNormal 

S-MNL 
price 
scaled 

S-MNL 
price 

unscaled G-MNL-II LCM 
% 

reduction 

10 

mean 6.20 5.63 8.27 6.05 8.28 4.61 4.91 
std dev  11.50 16.17  6.96 9.20 3.14 
median  5.20 5.04  5.66 4.11 2.80 
low  -24.58 -26.33  1.64 -16.46 1.94 
high  30.83 53.19  34.52 27.04 10.06 

20 

mean 13.88 13.31 12.41 13.82 17.45 11.14 12.15 
std dev  17.64 24.25  12.59 13.89 5.22 
median  13.13 7.56  12.88 10.47 8.35 
low  -34.03 -39.49  3.83 -20.89 7.72 
high  54.99 79.80  56.42 46.51 20.60 

40 

mean 40.02 39.17 28.96 40.27 48.38 33.04 38.76 
std dev  43.14 56.58  32.91 32.99 14.60 
median  38.45 17.64  36.58 31.97 28.07 
low  -76.36 -92.15  11.19 -45.35 26.13 
high  138.27 186.19  142.54 119.14 62.30 

Note: std dev denotes standard deviation of the compensating variation distribution, while low and 
high are the lower and higher bound of 99th confidence interval of compensating variation. 
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Figures 

 
Figure 1. Study area – western Lake Erie basin. 
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Figure 2. One example of choice scenario in the choice experiment. 
 

 

Figure 3. Distribution of WTP for one less mile of HAB.
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Appendix 
 

Variable Explanation 
CL w 

Interactions 
S-MNL price 

unscaled RPL – R1 RPL – R2 

Mean coefficient 

price travel cost from home to 
nearest boat ramp ($) 

-0.0081***  -0.0084*** -0.0105***  -5.2931*** 
(0.0009) (0.0009) (0.0011) (0.2641) 

walleye # hours to catch one walleye -0.3311***  -0.8929*** -0.6775*** -0.7967*** 
(0.0196) (0.0636) (0.0774) (0.0615) 

hab_size miles of algal bloom to boat 
through 

-0.0859***  -0.1852*** -0.0954***  -3.2359*** 
(0.0281) (0.0163) (0.0103) (0.2527) 

clarity_clear dummy for very clear water 0.6346***  1.0513*** 0.8673***  0.8504***  
(0.0600) (0.1221) (0.0774) (0.0754) 

clarity_medium dummy for somewhat murky 
water 

0.4293*** 0.4939*** 0.5319*** 0.5524***  
(0.0597) (0.1000) (0.0677) (0.0695) 

dist_boat boating distance from boat 
ramp to fishing site (miles) 

-0.0056*** -0.0286*** -0.0112*** -0.0116***  
 (0.0020) (0.0031) (0.0026) (0.0025) 

neither dummy for choosing 
"neither" 

-1.2164***  -3.8061*** -3.7673***  -3.9802***  
(0.1537) (0.1251) (0.1570) (0.1648) 

      

Interaction Variables 

walleye*walleye is the key 
species to target 

# hours to catch one walleye 
* dummy_key species to 
target is walleye 

0.0167    

(0.0206)    

hab_size*has seen HAB 
miles of algal bloom to boat 
through * dummy_has seen 
blooms before 

0.0208    

(0.0284)    

neither*male dummy_choose “neither” * 
dummy_male 

0.0661***    
(0.0192)    
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Appendix continued      

neither*education dummy_choose “neither” * 
education level 

-0.2082***    
(0.0376)    

 
Standard deviation 
price travel cost from home to 

nearest boat ramp ($) 
   -2.5044***  

    (0.2316) 
walleye # hours to catch one walleye   1.4161***  0.9362***  

  (0.0714) (0.0503) 
hab_size miles of algal bloom to boat 

through 
  -0.3584*  0.0247***  
  (0.1905) (0.0034) 

clarity_clear dummy for very clear water   0.8355***  -0.7321***  
  (0.1178) (0.1177) 

clarity_medium dummy for somewhat murky 
water 

  -0.3584*  0.4520***  
  (0.1905) (0.1387) 

dist_boat boating distance from boat 
ramp to fishing site (miles) 

  -0.0337*  0.0247*  
   (0.0034) (0.0034) 
      
tau scale parameter  1.3401*** -0.0337*  0.0247*  
  (0.0634) (0.0034) (0.0034) 
 
Log-likelihood -3429.36 -3746.26 -3720.46 -3655.14 
Out-of-sample prediction accuracy (%) 53.5% 52.7% 52.4% 53.1% 
Number of observations  13806 
Number of respondents  767 

Note: RPL-R1 treats the distribution of the coefficient for walleye as lognormal, and RPL-R2 treats the distribution of the 
coefficients for walleye, price and hab as lognormal 
 



40 
 

Grouped Footnotes 

i The counties alongside the shoreline of Lake Erie are Lucas, Ottawa, Sandusky, Erie, 
Lorain, and Cuyahoga; while the counties close to but not along the shoreline included in 
the survey are Wood, Seneca, Huron, and Medina. 
 
ii For the second 1,000 anglers, three gift cards with $200, $150, or $100 are available for 
the lottery winners while the last 1,000 anglers could enter the lottery to win one of the 
six gift cards with $75 for each. 
 
iii The typical walleye catch rate in Lake Erie is estimated by Ohio Department of Natural 
Resources to be about 2.2 hours of fishing for one fish per person for the typical angler. 
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