

E.coli O157:H7 in Lettuce and Leafy Greens Intervention Assessment Model Workshop

What do we know about sources and environmental ecology?
Asilomar, California — November 13-15, 2006

Robert E. Mandrell, Ph.D.

Research Leader, Produce Safety and Microbiology Research Unit USDA, Agricultural Research Service, Western Regional Research Center 800 Buchanan Street

Albany, CA 94710

Sampling for *E.coli* O157:H7 in the Salinas Valley Watershed (initiated by J. Farrar, CDHS)

- Stimulated by identification of a farm that supplied leafy vegetables associated with 3 separate outbreaks
- Farm investigation: soil, water, plants, feces tested (>200 samples); only 1 strain of *E. coli* O157:H7 isolated, from sediment in a ditch
- Coordinated sampling with CCRWQCB, TMDL study (ARS and CDHS tested for Ec O157:H7)
- Two years of monthly, and sometimes more frequent, sampling

Sampling sites in the Salinas region

Summary of results of isolation of *E.coli* O157:H7 from the Salinas Valley Watershed

Isolation of *E. coli* O157:H7 from multiple samples obtained at different sites on a creek near a potential point source (May 23-2006, low water flow)

Comparison of <u>watershed</u> isolates PFGE profiles with submissions in the PulseNet database

MLVA types of Environmental strains	watershed Source/ Location	PulseNet <i>Xbal</i>	% of PulseNet database	PulseNet Blnl	No. PulseNet Outbreaks/ Clusters	
1	Water-G	EXHX01.1905	ND			
3	Water-H	EXHX01.0221	0.03			
13	Water-G	EXHX01.2122	ND			
15	Water -C	EXHX01.1271	0.36			
16	B (Cow feces)	EXHX01.0543	0.01			
17	U (Sediment)	EXHX01.0122	0.06	EXHA26.0354		
89,99	Water -A,D	EXHX01.0343	0.09	EXHA26.0569		
89,106,107,108,109, 122	Water-A,C,D,E	EXHX01.1709	ND	EXHA26.0569		
90	Water -J	EXHX01.2216	0.02	EXHA26.0684		
91	Water -J	EXHX01.2222	ND			
92	Water -J		ND			
93	Water -J	EXHX01.0047	5.8	EXHA26.0015	9	
93,101,102,103	Water - B,C,E,G	EXHX01.0200	0.8	EXHA26.0015	3	
94,95,96	Water -J	EXHX01.3099	0.03	EXHA26.0265	1	
97,98	Water -A,G	EXHX01.2221	0.02			
100,105	Water - G,H,K,L,N	EXHX01.0200	0.8	EXHA26.0332		
104	Water-M	EXHX01.1031	0.12	EXHA26.0982	1	

Closest MLVA types to spinach outbreak strains: None are identical by MLVA

											O157-	O157-	O157-
MLV A	Strain#	Source	Other info	Vhec1	Vhec2	Vhec3	Vhec4	Vhec5	Vhec6	Vhec7	17	19	37
			3/18/06, 3/20/06, 4/18/06:										
			TEMPRE, ALIAIR,										
100	RM5628	Water*	OLSMON, RECVIC,	18	9	11	13	7	9	8	4	7	6.5
105	RM5675	Water*	4/18/06 ALIAIR	18	9	11	14	7	9	8	4	7	6.5
60	RM5200	Human	2005, Human, sporadic	17	9	11	15	7	9	8	4	7	6.5
115	RM5658	Human	2006, Human, sporadic	16	9	11	13	7	9	9	4	7	6.5
116	RM5652	Human	2006, Human, sporadic	15	9	11	18	7	9	9	4	7	6.5
163	RM 6011	Human	Spinach Outbreak 2006 WI	16	9	11	17	7	9	9	4	7	6
164	RM 6047	Human	Spinach Outbreak 2006 ID	17	9	11	17	7	9	9	4	7	6

^{*}Strains of these MLVA types match Matches PulseNet XbaI EXHX01.0200 and BlnI EXHA26.0332 profile

Sample of "very dry dirt" from pasture: EcO157 not isolated after 8 hr/42C enrichment;

isolated after enrichment at 21 hr/37C

WESTERN

USDA-CSREES-NRI grant award Oct 1, 2006 to Sept 30, 2010, \$1.17 million

CALIFORNIA DEPARTMENT OF

FOOD & AGRICULTURE

ARS (R. Mandrell, PD; M. Cooley)

UC Davis (R. Atwill, Co-PD; K. Tate; R. Larsen)

CDHS (L. Crawford, M. Jay-Russell, J. Mohle-Boetani)

Produce Industry (J. Gorny, United Fresh Produce Assoc.)

K. Reilly, CDHS

H. Giclas, WGA

D. Gombas, UFPA (formerly IFPA)

J. Bogart, Growers-Shippers Assoc., CC

State Pub. Health Labs of CA, MN, OR, WA

- (1) Determine risk factors for in-field contamination of lettuce with EcO157:H7
- (2) Sampling water, soil, produce, livestock and wild animals
- (3) Disseminate recommendations for risk reduction to prevent pre-harvest EcO157:H7

E. coli O157:H7 in the environment

How long does it survive?

Survival of *E. coli* O157:H7 in Soil, Seedlings, Feces

Mukherjee et al, 2006 J Appl Microbiol	 Child illness due to: O157:H7 in garden soil fertilized with cow manure This "naturally occurring" strain survived >69 days: survival at ambient temp. >> than at 4°C
Scott et al, 2006 J Food Protection	 Marked strain of O157:H7 in inoc. cattle feces Survived 97 d in feces, 109 d in water Survived 10 wk longer in cattle vs. lab inoc. culture
Johannessen et al, 2005 Appl Environ Microbiol	 Uptake from manure to crisphead lettuce Seedlings transplanted into manure-amended soil (10,000 O157 cells/g), then 50 d growth in greenhouse Persisted in soil for at least 8 wks No evidence of transfer to lettuce
Islam et al, 2004 J Food Protection	O157 persisted 154 to 217 d in soil amended with spiked compost; 77 d on lettuce, 177 d on parsley

Survival of E. coli O157:H7 in Water

McGee et al, 2002 J Appl Microbiol	 O157:H7 survived in "farm water" 14 d at <15°C Addition of bovine feces (1% w/v) increased survival to 24 d "Farm water" may act as a vehicle for transport across a herd and into watershed
Maule, 2000 Symp Ser Soc Appl Microbiol	 Model systems O157 survived best in soil cores with rooted grass 1 to 2 log decrease from 10⁸ after 130 d Inoculated cattle feces Detectable at high levels for >50d Lower survival in cattle slurry and in river water; detectable up to 10 and 27 d, respectively